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Abstract

With an average football (soccer) match recording over 3,000 on-ball events, effective use
of this event data is essential for practitioners at football clubs to obtain meaningful insights.
Models can extract more information from this data, and explainable methods can make them
more accessible to practitioners. The Expected Threat model has been praised for its explain-
ability and offers an accessible option. However, selecting the grid size is a challenging key
design choice that has to be made when applying the Expected Threat model. Using a finer grid
leads to a more flexible model that can better distinguish between different situations, but the
accuracy of the estimates deteriorates with a more flexible model. Consequently, practitioners
face challenges in balancing the trade-off between model flexibility and model accuracy. In this
study, the Expected Threat model is analyzed from a theoretical perspective and simulations are
performed based on the Markov chain of the model to examine its behavior in practice. Our
theoretical results establish an upper bound on the error of the Expected Threat model for dif-
ferent flexibilities. Based on the simulations, a more accurate characterization of the model’s
error is provided, improving over the theoretical bound. Finally, these insights are converted
into a practical rule of thumb to help practitioners choose the right balance between the model
flexibility and the desired accuracy of the Expected Threat model.

1 Introduction

An average football (soccer) match contains around 3,000 on-ball events [1]. This data can provide new
meaningful insights for football clubs. It can, for instance, be used to study players for scouting or opponent
analysis. This can help practitioners make better informed decisions. Mathematical models can be used to
extract more complex information from these on-ball events [2], which can give football clubs an advantage
over the competition.

However, advanced mathematical models introduced by researchers might not be adaptable or practical
enough for coaches and teams [3]. It is important to have models that can be explained in such a way
that they can be understood by practitioners and utilized in practice [3]. To achieve this, models to distill
information from the in-game data should also be assessed on how explainable and interpretable they are [4].
This means that explainable models are of added value because they offer an accessible option to retrieve
complex information from in-game data.
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The Expected Threat [5, 6] model quantifies the quality of an action, which gives detailed information
about offensive player quality, and it is praised for its interpretability [7]. Nonetheless, practitioners still face
one key design choice when applying the Expected Threat model. The Expected Threat model estimates the
probability of scoring, and to do this, it divides the pitch into different in-game states. The number of in-game
states, M, describes the model flexibility and can be chosen. A model with more game states can distinguish
between more situations [8]. On the other hand, more states decrease the accuracy of the Expected Threat
model because more probabilities are estimated with the same amount of data. Increasing the amount of data
is often infeasible in practice, because of the additional costs. This trade-off between model flexibility and
accuracy hinders the application of the otherwise accessible Expected Threat model in practice. The aim of
this study is to provide a rule of thumb for practitioners to manage the trade-off between model flexibility
and accuracy of the Expected Threat model.

2 Expected Threat

The Expected Threat model [5, 6] considers football as a Markov chain and is based on the idea that good
actions increase the probability of scoring a goal within the possession chain. The pitch is divided into M
squares, and the state of the game is defined as the square where the ball-possessing player is. For each state
s, the model then calculates the probability of scoring, denoted by x7'(s). The quality of an action is defined
as the difference before and after the action: AxT (Spefore; Safter) = X7 (Safter) — X7 (Sbefore ) -

When a player has ball possession, there are two ways to score a goal: either directly score a goal or move
the ball to another state with a dribble or pass and score from there. To score a goal, the player has to decide
to shoot, and the player has to score the shot. If the current game state is denoted as s, the probability of this
happening is P(shot|s) - P(goal|shot,s). Because P(goal|shot,s) is the quantity described by Expected Goal
(xG) models, this can also be denoted as P(shot|s) - xG(s). If the player decides not to shoot, a goal can be
scored by moving the ball to each other game state s” and scoring from there. The probability of scoring via
the game state s" can be written as Ty_,y - xT (s"), where Ty_,y is the probability of transitioning from s to s'.
This means that the probability of scoring from game state s is

xT (s) = P(shot|s) - xG(s) +ZI¥—>S’ xT(s). (1)

In practice, the values of P(shot|s), xG(s), and Ty_,¢ are estimated by counting the occurrences of these
events in the data set. When these are estimated, the only unknowns in (1) are the values x7 (s). Because (1)
holds for each state s, it gives a system of equations, which is generally solved using an iterative algorithm.
In this way, the probability of scoring from state s is estimated.

Due to randomness in the training data, errors are made in the estimation of P(shot|s), xG(s), and T;_, .
These estimation errors cause errors in the estimated x7'-values. For practitioners, it is important to have a
bound on these errors. The model error in this study is defined as the maximal difference between the true
and the estimated xT-values, denoted by |[xT — xT || The distribution of this error depends on the number
of training points NV and the number of game states M and can be used to describe the trade-off between
model flexibility, described by M, and model accuracy.

Using the properties of the Expected Threat model, it is possible to derive probabilistic bounds on the
error of the model. For this purpose, the transition matrix is the matrix with the transition probabilities Ty .y
as entries. A summary of our theoretical results is described in the following theorem.
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Theorem 1. Let g € RM be defined by g, = P(shot|s) - xG(s) and let T be the transition matrix. Assume that
||| < 1 and that for the estimated transition matrix ||T|| < 1. Moreover; assume that the estimates of the
quantities in the Expected Threat model are obtained by taking averages of N independent Bernoulli random
variables. Then the following bounds hold with probability at least 1 — Q:

— 1 log(2M? /) \/log(ZM/a) 2 log(2M?/ at)
”ﬂ_m“’gm@\/ w o VT ) s \MV Ty )@

log(2M?/at)
2N

log(2M/at)

More specifically, the term M corresponds to the error in estimating T and | —=55— to the

error in estimating g.

This theorem shows that the error in estimating the xT-values is of the order O(M+/log(M)/+/N). How-
ever, the results also suggest that, in practice, implemented models might fall under a finite sample regime
where the error in g is still larger, and where a faster decay of the error can be observed.

3 Methods

To find the error distribution of the Expected Threat model in practice, simulations were performed based
on the Markov chain underlying the model. The data used for this simulation study is obtained from the
openly available Statsbomb data set [9]. All available games from the Premier League, Ligue 1, Serie A, La
Liga, and the Bundesliga were used. The events that did not describe passes, dribbles, errors, clearances, or
shots were filtered out. This resulted in a data set of approximately 4,000,000 events, which is equivalent to
around 6.5 full seasons of one league.

In this research, the maximal model error was studied for Expected Threat models with different dis-
cretization grids, and thus for different flexibilities M, which are described in Table 1. For each grid size M,
one Expected Threat model was calculated with the Statsbomb data. These models were assumed to be the
ground truth for elite male leagues within the scope of this study. Because the data set is relatively large, this
is a reasonable assumption.

Each of these ground truth models describes a Markov chain, which can be used to resample a new data
set. For each ground truth model, new data sets of different sizes N were resampled, which were then used
to train resampled Expected Threat models. The model error was then obtained by calculating the maximal
absolute difference between the ground truth x7-values and the x7"-values based on the resampled data. This
process was repeated 1,000 times for each combination of M and N as described in Table 1. This created
48,000 data points describing the model error, the grid size M and the number of data points V.

The goal of this research is to obtain more insight into the trade-off between the model flexibility gov-
erned by M and the model accuracy, described by the model error. Because situations with Mlog(M)/+/N >
15 resulted in errors too large for practice, these were filtered out. This makes it possible to study the
distribution of the errors in this setting, which is interesting for practitioners

Using the simulated data, the distribution of the maximal model error could be studied. To do this, the
following lognormal model was assumed to describe the maximal model error:

— M*
[XT —xT||o = C——=—¢f, where &€ ~N(0,5?). (3)

(V)P
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ne ny M=nyny || N
16 12 192 100,000
32 24 768 130,000
40 30 1200 170,000
48 36 1728 240,000
56 42 2352 370,000
64 48 3072 630,000
1,300,000
4,000,000

Table 1: Grid configurations with corresponding M values and the sample
sizes N of the simulations.

The model error, which is a maximal absolute difference, is known to be positive. Additionally, the theo-
retical results indicated that both the mean and spread of the error are small if M is small and N is large.
This makes the lognormal model a reasonable assumption. Moreover, this model describes the powers of the
variables M and N, which are unknown because the theoretical results only gave an upper bound.

If ¢ = log(C), (3) is equivalent with

10g(|[XT — xT ||o0) = ¢ + atlog(M) — Blog(v/N) +€&, where & ~ N(0,52). (4)

This formulation gives a linear model with normal residuals. Therefore, ordinary least squares (OLS) can be
applied to estimate ¢, &, B, and o2.

4 Results
Dep. Variable: ||xT —xT||» R-squared: 0.835
Model: OLS Adj. R-squared: 0.835
No. Observations: 23000 Log-Likelihood: -9297.8
Df Residuals: 22997 AIC: 1.860e+04
Df Model: 2 BIC: 1.863e+04
coef  stderr t P> [t| [0.025 0.975]
c -1.8758 0.026 -72.138 0.000 -1.927 -1.825
a 0.9898  0.003 330.569 0.000 0.984 0.996
B 1.0416  0.004 238.837 0.000 1.033 1.050

Variance residuals 0.1314

Table 2: Summary of the OLS model fitted on the log
maximal model error for the data points with

Mlog(M)/+/N < 15.

Sample Quantiles

T T T T T T T T T
—4 s -2 =1 o 1 2 3 4
Theoretical Quantiles

Figure 1: A QQ plot of the residuals of the
fitted OLS model.
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The summary of the ordinary least squares applied to (4) is given in Table 2. It shows that the adjusted
R? is 0.835, which indicates that the model is able to explain most variance of the errors with M and N.
Additionally, Figure 1 shows the QQ plot of the residuals of the lognormal OLS model. It is visible that the
residuals indeed seem to be well-described by the lognormal OLS model. Thus, it can be concluded that
the model in (4) provides a good description of the distribution of the maximal error of the Expected Threat
model. With the found values for a, 8 and 62, the distribution of the model can be described by

M0.9898
T8 _T_____of where € ~ N(0,0.1314). )

(\/IT])I.()4166 ’

The values found for o and 3 are close to 1, although significantly different according to the confidence
intervals in Table 2. This means that the maximal error of the model is of order O(M %% /(\/N)1-0416),
which indicates that the error, in practice, is of a lower order than established by the theoretical results.

|xT = xT || =€

5 Rule of thumb

With the distribution of the model error, it is possible to give guidance to practitioners on how to use the
Expected Threat model. If they have an existing model, the distribution of the error in (5) can be used to
describe the distribution of the error of their model. For example, consider the Expected Threat model by
Singh [6], which has a 16 x 12 grid and one season of the Premier League as training data. This corresponds
to M = 16-12 = 192 game states and roughly N = 620,000 training data points. In the experience of
consulted experts, errors smaller than 0.03 are acceptable for scouting purposes. The distribution of the
maximal error of this model is visualized in Figure 2. It indicates that there is a 62.09% chance of having an
error that is lower than 0.03. This means that there is a reasonable chance of this model having an acceptable
error.

| —— Pdf of maximal model error i —8— 90% Quantile
: == Maximal acceptable error (0.03) : —o— 75% Quantile
|

—8— 50% Quantile
®— 25% Quantile
10% Quantile

——- Maximal acceptable error (0.03)

40 17

Probability of 0.08 4
acceptable error:
~ 0.6209

w
(=]
L

0.06 4

[
o
L

0.04 A

Probability density
Maximal model error

=
(=]
L

0.02 1

0.00 4

T T T T
100 200 300 400

T T T T T
0.00 0.02 0.04 0.06 0.08 Grid size (M)

Maximal model error

Figure 2: The distribution of the maximal model Figure 3: The quantiles of the maximal model error

error of the Expected Threat model in [6], where of an‘ Expected Threat mod.el with N - 2_’480’000
M = 192 and N = 620.000. training data points for different grid sizes M.
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When training a new model, the number of game states M has to be chosen. It is desirable to have a low
model error with a high probability. On the other hand, a more flexible model can better distinguish between
in-game situations. To balance this trade-off, a reasonable idea would be to choose the most flexible model
with an acceptable statistical error. Through consultation with experts, it was established that the Expected
Threat model is sufficiently reliable for scouting purposes when the maximal model error is smaller than 0.03
with a 90% probability. This can be reformulated as the following rule of thumb: select the most flexible
model (highest M) such that the maximal model error is smaller than 0.03 with a 90% probability.

To illustrate this rule of thumb, suppose a practitioner wants to train an Expected Threat model on a
data set of 2,480,000 data points. This corresponds to data of 4 league seasons. Figure 3 shows different
quantiles of the error for values of M for this number of data points N based on (5). The results show that
the maximal M with a 90% quantile smaller than 0.03 is M = 130, which corresponds to a 13 x 10 grid.
This means that the rule of thumb gives that a 13 x 10 grid yields the most flexible model with an acceptable
model error. In this way, the rule of thumb provides guidance to practitioners on how to deal with the trade-
off between model flexibility and accuracy, which makes the accessible Expected Threat model even more
easily applicable for practitioners.
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