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Improving the Comprehensibility of Generated Test
Suites using Test Case Clustering

1st Mitchell Olsthoorn
Delft University of Technology

Delft, The Netherlands
M.J.G.Olsthoorn@tudelft.nl

Abstract—Software testing is critical for ensuring the quality
of software systems. Manually writing test cases is time-intensive
and costly, which has led to the development of automated
test case generation techniques. However, the adoption of these
techniques is limited due to the difficulties in comprehending
the generated test cases. In this paper, we propose an approach
to improve the comprehension of automatically generated test
suites by clustering the test cases within the test suite. Our
approach clusters the test cases based on the test objectives
(e.g., lines and branches) they cover, grouping together those
with similar attributes to enhance developer understanding. To
evaluate our approach, we conducted an empirical study with 52
participants performing three software maintenance tasks based
on related work. The results show developers agree with the
proposed clusters and that clustered test suites facilitate faster
software maintenance tasks.

Index Terms—software testing, test case generation, test case
clustering, software comprehension

I. INTRODUCTION

Through the years, search-based test case generation ap-
proaches have gained significant attention in the software
testing community [1], [2], [3]. These approaches use meta-
heuristic search algorithms to automatically generate test cases
that satisfy specific test objectives, such as covering lines,
branches, or paths in the code. While these techniques have
been shown to be effective in detecting faults in software
systems [4], [5], [6], their adoption in the industry remains
limited [7].

One contributing factor to this limited adoption is that
automatically generated test cases often still require significant
human intervention to understand the test cases and validate
the assertions [8], [9]. Therefore, by enhancing the comprehen-
sibility of the generated test cases we can significantly reduce
the cost associated with software testing activities when using
automatic test case generation tools.

Program comprehension is a well-studied field, with most
research focusing on source code, exploring aspects like
readability, complexity, and visualization [10]. In contrast,
test code comprehension has received less attention, likely
due to its simpler structure. Some researchers have proposed
techniques to improve test code comprehension [11], [12],
[13], including for automatically generated test cases [14],
[15], [16], [17]. However, all these studies focus on individual
test cases or methods without exploring comprehension at the
test suite level.

To address this gap, this work proposes a post-processing
approach for automatically generated test suites that aims to
reduce the effort required for developer comprehension. Our
approach clusters test cases based on the similarity of the
search objectives (i.e., function and branch coverage) covered
by the test cases to enhance the overall suite’s comprehensi-
bility. We hypothesize that clustering test cases based on what
they cover will group together test cases that are semantically
similar, making it easier for developers to understand the test
suite as a whole.

To evaluate our hypothesis and approach, we conducted an
empirical study with 52 participants performing three software
maintenance tasks. The tasks were designed based on the
concept of learning activities related to program comprehen-
sion [18], assessing the impact of test case clustering on
the comprehensibility of the test suite. We evaluate both
whether the participants agreed with proposed clusters and
if clustering improved the comprehensibility of the test suite.
The participants completed these tasks via an online survey,
and their performance was evaluated based on the quality of
the task outcomes and the time taken to complete the tasks.

Our results show that, in most cases, developers agree with
the clusters of test cases. Regarding comprehensibility, we
found that test suites using the clustering approach allowed de-
velopers to complete software maintenance tasks more quickly
than those without clustering. While clustering improved task
completion speed, it did not significantly affect the quality of
task outcomes compared to non-clustered test suites.

In summary, we make the following contributions: (i) a
novel test case clustering approach targeting automatically
generated test suites, (ii) an empirical study evaluating the
impact of test case clustering on the comprehensibility of
such test suites, and (iii) a replication package to facilitate
the reproducibility of our study [19].

II. APPROACH

Our approach is a post-processing step for automatically
generated unit-level test suites that aims to enhance the com-
prehensibility of a test suite by clustering test cases based
on the search objectives (i.e., functions and branches) they
cover. We hypothesize that clustering test cases based on their
covered objectives will group together semantically similar test
cases, making it easier to identify groups of related test cases,
improving the comprehensibility of the test suite.
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Our approach first extracts the covered objectives from the
generated test cases. The objectives are then encoded into a
binary representation, where each digit indicates whether the
objective is covered by the test case (1) or not (0). Next, we
apply dimensionality reduction to the binary representation
of the test coverage data to reduce the high dimensionality
and sparsity of the data. Thirdly, we cluster the test cases
using the K-Means algorithm [20]. Both of these steps are
explained in detail in the following subsections. Finally, our
approach generates a new test suite using the assigned cluster
labels to improve the organization and presentation of the
test cases. Several testing frameworks support hierarchical
organization of test cases. Mocha [21], for example, uses a
nested organization style similar to RSpec Behavior-Driven
Development style [22], employing keywords to define hier-
archical relationships. JUnit 5 [23] on the other hand supports
nested test classes, which can be used to represent the clusters.
Alternatively, developers can use the cluster labels to group
test cases in the test suite documentation or naming conven-
tions.

A. Dimensionality Reduction

Test coverage data is characterized by high dimensionality
and sparsity. The dimensionality of the data corresponds to
the total number of functions and branches in the class under
test, which can vary significantly depending on the class’s
complexity [24]. Additionally, as individual test cases typically
cover only a small subset of these objectives, most dataset
values are zero. The sparsity becomes worse as the complexity
of the class increases, leading to a large number of dimensions
with little to no data.

High dimensionality and sparsity pose significant challenges
for clustering. In high-dimensional spaces, distances between
data points tend to converge, reducing the effectiveness of
distance-based clustering methods like K-Means [20] or hier-
archical clustering [25]. Sparse data adds an additional chal-
lenge, as many dimensions have minimal impact on clustering
but significantly increase computational overhead. Further-
more, sparsity causes data points to become widely dispersed
in high-dimensional space, making it difficult for density-
based methods like DBSCAN [26] to identify dense regions
for clusters. Noise and outliers also have a greater impact in
high-dimensional data, further complicating clustering tasks.

To address these challenges, we use an Autoencoder
model [27] to obtain a low-dimensional representation of the
data as it provides flexibility regarding architecture and activa-
tion functions. An Autoencoder consists of two components:
an encoder, which compresses the input data into a reduced
representation, and a decoder, which reconstructs the original
data from this compressed form [27]. By minimizing recon-
struction error during training, the Autoencoder learns the
data’s significant features while ignoring noise and irrelevant
details.

After training the Autoencoder on the test case data, we use
only the encoder to transform the high-dimensional data into a
compact, low-dimensional representation. This representation

effectively preserves the essential features of the test cases,
making the data more suitable for clustering.

B. Clustering of Test Cases

After extracting features from the test case data using
the Autoencoder model, we apply the K-Means algorithm to
perform clustering. Since K-Means requires the number of
clusters to be predefined, we use the Elbow Method [28] and
Silhouette Coefficient [29] to determine the optimal number.

The Elbow Method [28] analyzes the relationship between
the number of clusters and the Within-Cluster Sum of Squares
(WCSS) [30]. As the number of clusters increases, WCSS
decreases, but at a certain point, the reduction rate slows
significantly, forming an "elbow". This "elbow point" indicates
the optimal cluster number. However, identifying a clear
"elbow point" is not always straightforward.

To address this, we also use the Silhouette Coefficient [29],
which measures clustering quality by evaluating both cohesion
within clusters and separation between clusters. A value close
to 1 indicates well-defined clusters, with points tightly grouped
within their own cluster and well-separated from others.

By combining the insights from the Elbow Method and the
Silhouette Coefficient, we can reliably determine the optimal
number of clusters for the test case data.

III. EMPIRICAL STUDY

To evaluate our hypothesis and approach, we conducted an
empirical study with 52 participants performing three software
maintenance tasks to answer the following research questions:
RQ1 To what extent do developers agree with the proposed

clusters?
RQ2 To what extent does test case clustering improve the

comprehensibility of the generated test suites?
The first research question aims to assess the effectiveness

of our clustering approach in grouping similar test cases as
developers might have a different view on what constitutes
similar test cases. The second research question aims to evalu-
ate the impact of clustering test cases on the comprehensibility
of the test suite by measuring the efficiency and effectiveness
of developers at performing software maintenance tasks.

A. Tasks

Since comprehensibility can not be measured directly, we
designed three tailored software maintenance tasks related to
software testing, inspired by prior research [18], that aim to
indirectly assess the comprehensibility of test suites.

1. Fix the Failing Test Cases: Participants are given the
change history of the class under test and an automatically
generated test suite for the unmodified version of the code.
Using the change history, participants were asked to identify
failing test cases and modify them to ensure the test suite
remained valid for the updated version of the code. For this
task, we monitored (i) which test cases participants identified
as failing, (ii) the number of correctly fixed test cases, and
(iii) the time spent.
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2. Identify Potential Error Scenarios: Participants are
provided with an automatically generated test suite without
access to the class under test. They were asked to analyze
the test cases to determine input boundaries and conditions
under which a specified method would throw exceptions.
Additionally, they were also asked to rate their understanding
of the class functionality and their confidence on this rating.
For this task, we monitored (i) the number of input conditions
selected that participants thought might cause the method to
throw an error and (ii) the time spent.

3. Evaluate and Cluster the Test Cases: Participants were
asked to review the clusters produced by our test clustering
approach and rate their agreement with each cluster. They were
also asked to share the criteria they would use to group test
case if they were in charge of the clustering process. For this
task, we monitored (i) the level of agreement with the clusters.

B. Classes Under Test
To generate the test case, we used SynTest-JavaScript [31],

[32], a search-based test case generation tool for JavaScript,
on its default settings as it integrates with Mocha [21],
a testing library that offers native support for hierarchical
test case organization. We generated test cases for three
JavaScript classes: Polygon.js (9 functions, 18 branches,
161 sloc), Queue.js (8 functions, 12 branches, 110 sloc),
and ShoppingCart.js (11 functions, 22 branches, 98
sloc). These classes were chosen to represent varying levels
of complexity and to minimize participants having prior fa-
miliarity with them.

For Task 1, participants were provided with a code change
history to identify test cases likely to fail due to the changes.
These code changes were created by making modifications to
the classes that (i) are related to one specific branch of the
code at a time and (ii) are independent from other chances.

More details about the classes and the changes made to
them can be found in the replication package [19].

C. Participants
The 52 participants that participated in the study represent

a diverse range of JavaScript programming experience: 4
participants had less than a year of experience, 15 had 1-2
years, 22 had 3-5 years, 9 had 6-10 years, and 2 had over 10
years of experience. Their professional backgrounds included
29 software developers, 18 students, and 5 researchers. To
ensure the integrity of the responses, qualifying questions were
included to identify and exclude participants who appeared to
complete the survey hastily.

D. Procedure
This study was conducted through an online survey created

using Alchemer [33], a platform designed for interactive
surveys. Before starting the tasks, participants completed a pre-
task questionnaire to indicate their experience with software
testing and JavaScript development. After completing each
task, participants answered post-task questionnaires, which
included open-ended questions and 5-point Likert scale rat-
ings [34].

Task 1 involved two classes under test, each with two test
suite variants: clustered and non-clustered. Participants were
split into two groups: one started with the clustered test suite
of the first class followed by the non-clustered test suite of the
second, while the other group followed the reverse order. This
was done to ensure that the results were not influenced by
the order in which the participants completed the tasks [35].
For task 2, the participants were randomly given either the
clustered or non-clustered test suite of the third class under
test. Lastly, for task 3, the participants were given only the
clustered test suite of one of the classes under test.

For statistical analysis, we opted for the Wilcoxon rank-
sum test [36], a non-parametric statistical test, as not all data
followed a normal distribution and this test is less sensitive to
outliers and distributional assumptions. We used a significance
level of 0.05 to determine statistical significance. Additionally,
we used Cliff’s Delta [37] to measure the effect size of the
differences between treatments.

IV. RESULTS

A. RQ1: To what extent do developers agree with the proposed
clusters?

The results from task 3 show that most participants agreed
with our clustering outcomes, with 40.4% selecting Agree and
27.2% selecting Strongly agree. The next most common re-
sponse at 21.7% was Neutral, neither agreeing nor disagreeing
with our clustering results. Only a small subset of participants
(9.6%) disagreed.

In five out of the seven clusters, the majority of participants
agreed with the clustering results, suggesting that participants
generally agree that the test cases in these clusters share
common features, justifying their grouping. However, for the
remaining clusters, more participants were neutral or disagreed
with the clustering results, indicating that these clusters may
not have been as effective in grouping similar test cases.

In our qualitative analysis, we asked participants to explain
their reasoning for selecting a particular response. The partic-
ipants that agreed with the clustering indicated that the test
cases invoked the same methods or had similar inputs and
outputs. On the other hand, the participants that disagreed
with the clustering results often cited reasons such as testing
different methods, using different inputs, or having test cases
with a different purpose.

One example of a cluster that participants generally dis-
agreed with contained two test cases that invoked two different
methods that did not seem related to each other. When we
analyzed the test cases in this cluster, we found that one of
these methods invoked the other internally. As a result, our
clustering method grouped these test cases together, as there
is an overlap in the branches covered by the test cases.

Another example where participants questioned the clus-
tering is related to the sequence of method calls. When
two test cases invoke the same methods but in a different
order, our clustering approach might group them together. The
participants, however, often considered the primary method
invocation for determining how to cluster the test cases.

631
Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2025 at 08:10:02 UTC from IEEE Xplore.  Restrictions apply. 



When we asked the participants about their criteria for
clustering test cases, the majority of them mentioned method
invocations as the most critical factor, with input parameters
and output results coming next.

In summary, most participants agree with our clustering
approach for the majority of the test case clusters, but they
disagree with a few of the clustering outcomes.

B. RQ2: To what extent does test case clustering improve the
comprehensibility of the generated test suites?

In task 1, we evaluated the effectiveness and efficiency
of participants in fixing failing test cases. Effectiveness is
measured by the number of test cases correctly fixed, while
efficiency is the number of correctly fixed test cases divided
by the time spent on the task.

Our results show that for the test suite generated from the
Polygon.js class, participants were able to identify and
fix slightly more test cases on average when using test case
clustering. However, when looking at the statistical analysis,
we found no significant difference between the two approaches
(p-value = 0.125, effect size = 0.246). Similarly, for test
suites generated from the Queue.js class, no significant
difference in effectiveness was observed (p-value = 0.765),
suggesting that test case clustering does not help participants
identify and fix more test cases.

When looking at efficiency, we found that for the test suite
generated from the Polygon.js class, test case clustering
significantly improved efficiency (p-value = 0.0246, effect
size = 0.380), meaning that participants were able to fix
the test cases quicker. However, no significant difference in
efficiency was found for the Queue.js class (p-value =
0.315). One possible explanation for this might have to do
with the complexity of the classes. The Queue.js class
has fewer branches and a lower cyclomatic complexity than
Polygon.js, resulting in fewer generated test cases (8 vs.
17). With less test cases to review, participants could poten-
tially find it easier to identify differences and similarities in
the test suite without relying on clustering for comprehension.
Our clustering approach might therefore not be as beneficial
for simpler classes and test suites.

When we asked which aspects of the test suite were most
helpful for fixing the test cases, the participants highlighted
different elements for clustered and non-clustered test suites.
For clustered test suites, the majority of the participants found
the test suite structure most beneficial, followed by the test
case naming and test assertions. In contrast, for non-clustered
test suites, the participants identified test case naming as
the most helpful feature, followed by the overall test suite
structure. The focus on test case naming for non-clustered
test suites is consistent with previous research on source code
readability and test code readability, which has highlighted
the importance of test case names in helping participants
understand the content of test cases [15], [16], [17].

For task 2, where participants were asked to identify po-
tential error scenarios in the test suite, our results show that
participants using test suites with clustering identified more

exception-triggering conditions on average (6.25) compared to
those without clustering (5.625). Notably, some participants in
the clustering group identified all exception conditions, while
none in the non-clustering group achieved this.

Regarding efficiency, the clustering group also showed a
slightly higher average score (0.697) compared to the non-
clustering group (0.634). However, these differences were not
statistically significant for either effectiveness or efficiency.

In summary, using test case clustering can significantly
improve developer efficiency for certain software maintenance
tasks when dealing with test suites that contain a large number
of test cases, without affecting the quality.

C. Threats to Validity

One threat to the external validity of our study is the gen-
eralizability of our results. We conducted our study with three
classes under test due to time constraints and the complexity
of the tasks. The classes were chosen to have diversity in terms
of complexity and application domain. Further experiments on
a larger set of classes under test would increase the confidence
in the generalizability of our study and, therefore, is part of
our future work.

A threat to the internal validity of our study is the practice
effect, where participants improve their performance on later
tasks due to familiarity gained from earlier tasks. To mitigate
this risk, we have followed the best practices for experimental
design [18], such as counterbalancing the order of tasks and
randomizing the test suite variants.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a test case clustering approach
to enhance the comprehensibility of automatically generated
test suites. Our approach clusters test cases based on the
covered objectives, such as functions and branches, to group
semantically similar test cases together. We conducted an
empirical study with 52 participants to evaluate the impact
of test case clustering on the comprehensibility of test suites
through three software maintenance tasks.

Our results showed that most participants agreed with our
clustering approach for grouping similar test cases. Further-
more, by using the clustering approach, participants were able
to complete the software maintenance tasks quicker than with
the non-clustered test suites, reducing the effort required to
understand the test suite.

In future work, we plan to evaluate our clustering approach
with a broader set of classes under test to further validate
the effectiveness of our approach. Additionally, we want to
explore other clustering algorithms and dimensionality reduc-
tion techniques to improve the clustering quality and reduce
the computational overhead.

VI. ACKNOWLEDGMENTS

This work was conducted as part of the AI for Software
Engineering (AI4SE) collaboration between JetBrains and
Delft University of Technology.

632
Authorized licensed use limited to: TU Delft Library. Downloaded on August 19,2025 at 08:10:02 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege,
“A systematic review of the application and empirical investigation
of search-based test case generation,” IEEE Transactions on Software
Engineering, vol. 36, no. 6, pp. 742–762, 2009.

[3] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen,
W. Grieskamp, M. Harman, M. J. Harrold, P. McMinn, A. Bertolino
et al., “An orchestrated survey of methodologies for automated software
test case generation,” Journal of systems and software, vol. 86, no. 8,
pp. 1978–2001, 2013.

[4] R. B. Abdessalem, A. Panichella, S. Nejati, L. C. Briand, and T. Stifter,
“Testing autonomous cars for feature interaction failures using many-
objective search,” in Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018, pp. 143–154.

[5] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, and J. Benefelds,
“An industrial evaluation of unit test generation: Finding real faults
in a financial application,” in 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP). IEEE, 2017, pp. 263–272.

[6] G. Fraser and A. Arcuri, “1600 faults in 100 projects: automatically
finding faults while achieving high coverage with evosuite,” Empirical
software engineering, vol. 20, pp. 611–639, 2015.

[7] A. Causevic, D. Sundmark, and S. Punnekkat, “Factors limiting indus-
trial adoption of test driven development: A systematic review,” in 2011
Fourth IEEE International Conference on Software Testing, Verification
and Validation. IEEE, 2011, pp. 337–346.

[8] M. Ceccato, A. Marchetto, L. Mariani, C. D. Nguyen, and P. Tonella,
“Do automatically generated test cases make debugging easier? an
experimental assessment of debugging effectiveness and efficiency,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 25, no. 1, pp. 1–38, 2015.

[9] M. Kechagia, X. Devroey, A. Panichella, G. Gousios, and
A. Van Deursen, “Effective and efficient api misuse detection via
exception propagation and search-based testing,” in Proceedings of the
28th ACM SIGSOFT international symposium on software testing and
analysis, 2019, pp. 192–203.

[10] I. Schröter, J. Krüger, J. Siegmund, and T. Leich, “Comprehending
studies on program comprehension. in 2017 ieee/acm 25th international
conference on program comprehension (icpc),” IEEE, 308ś311, 2017.
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