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Abstract
The optimization of porous infill structures via local volume constraints has become a popular approach in topology optimiza-
tion. In some design settings, however, the iterative optimization process converges only slowly, or not at all even after several 
hundreds or thousands of iterations. This leads to regions in which a distinct binary design is difficult to achieve. Interpreting 
intermediate density values by applying a threshold results in large solid or void regions, leading to sub-optimal structures. 
We find that this convergence issue relates to the topology of the stress tensor field that is simulated when applying the same 
external forces on the solid design domain. In particular, low convergence is observed in regions around so-called trisector 
degenerate points. Based on this observation, we propose an automatic initialization process that prescribes the topological 
skeleton of the stress field into the density field as solid simulation elements. These elements guide the material deposition 
around the degenerate points, but can also be remodelled or removed during the optimization. We demonstrate significantly 
improved convergence rates in a number of use cases with complex stress topologies. The improved convergence is demon-
strated for infill optimization under homogeneous as well as spatially varying local volume constraints.

Keywords Topology optimization · Porous infill · Stress tensor

1 Introduction

Topology optimization aims at finding the optimal struc-
tural layout under relevant design specifications. Topology 
optimization of multi-scale structures, which dates back to 
the seminal paper by Bendsøe and Kikuchi (1988), has been 
a topic of great interest in recent years. The rapid develop-
ment in this field is partially stimulated by the possibility to 
fabricate complex structures using additive manufacturing. 
For an overview of topology optimization approaches for 
designing multi-scale structures, we refer readers to a recent 
review article by Wu et al. (2021a).

It has been shown that density-based topology optimi-
zation for compliance minimization, under local volume 
constraints, creates porous infill structures similar to those 

found in bone (Wu et al. 2018). These bone-mimicking 
porous structures are lightweight, robust regarding material 
damages and loading variations, and stable with respect to 
buckling. The local volume constraints work similarly to 
maximum length scale control (Guest 2009). They prevent 
the forming of large solid regions and, consequently, create 
porous structures distributed more evenly over the design 
domain. This approach has been extended, in conjunction 
with a coating approach proposed by Clausen et al. (2015), 
to design concurrently structures and porous sub-structures 
therein, referred to as shell-infill composites  (Wu et al. 
2017). It has also been applied to design porous shell struc-
tures (Träff et al. 2021). Other notable extensions include 
the design of porous structures with gradation in the poros-
ity and pore size (Schmidt et al. 2019; Das and Sutrad-
har 2020), use of multiple materials (Li et al. 2020; Zhao 
and Zhang 2021), and fiber-reinforced structures (Li et al. 
2021). Besides by density-based approaches, porous infill 
structures have been designed using an evolutionary design 
approach (Qiu et al. 2020) and machine learning (Cang et al. 
2019).

In this paper, we investigate the convergence behavior of 
density-based topology optimization with local volume con-
straints under a single load case. In density-based topology 
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optimization, an important convergence criterion is that the 
optimized density field converges to a binary or so-called 
black-white design, i.e., the pseudo density is close to 1 or 
0. A few hundred iterations or even more are not uncommon 
to achieve black-white designs (Wu et al. 2017). To improve 
the convergence rate, a typical solution is to apply a continu-
ation scheme where parameters are updated after a certain 
number of iterations. However, in some optimization sce-
narios under local volume constraints, we have observed that 
certain regions fail to converge to a binary design even after 
thousands of iterations (see Fig. 1). Interpreting these inter-
mediate density values by applying a threshold results in 
large solid or void regions, leading to sub-optimal structures.

To analyze the regions where low convergence is 
observed, we investigate the stress distribution in these 
regions via trajectory-based visualization (Wang et al. 2020). 
In particular, we shed light on the relationship between the 
convergence behavior and the principal stress directions that 
occurs when simulating on the solid design domain. This 
approach is inspired by previous work on infill optimiza-
tion, where uniformly seeded tensor glyphs have confirmed 
good agreement between the optimized porous infill and 
the principal stress directions in the solid under load (Wu 
et al. 2018). In this paper, we exploit advanced mechanisms 
to perform a topology-based analysis of the stress field, 

including the use of degenerate points and topological skel-
etons. At a degenerate point, the principal stress directions 
cannot be decided, yet a set of hyperbolic and parabolic 
sectors exist in its surrounding, in which similar patterns 
of neighboring trajectories are observed (Delmarcelle and 
Hesselink 1994). The topological skeleton consists of the 
boundaries between adjacent sectors—so-called separa-
trices—and indicates pathways along which the forces are 
steered towards the degenerate points. In topology optimiza-
tion, degenerate points have been used to indicate locations 
where integrability conditions are violated and consistent 
domain parameterizations cannot be computed (Stutz et al. 
2020).

When applying topology analysis to the stress tensor 
field, it reveals that low convergence occurs around a spe-
cial type of degenerate points, known as trisectors. Notably, 
such degenerate points do not always appear, but if so, low 
convergence is often observed in their surrounding. Due to 
the isotropy of the stress tensor close to a trisector, the prin-
cipal stress directions and, thus, a locally consistent binary 
material layout cannot be decided by the optimizer. In our 
work, we propose an automatic pre-process that supports 
the optimizer in finding such a layout, resulting in signifi-
cantly improved convergence rates in settings where trisec-
tors are paramount. In particular, we build upon the efficient 

Fig. 1  a Illustration of the design domain (500x250 simulation ele-
ments) and boundary conditions. b, c The density distributions after 
250 and 1000 iterations, respectively, from topology optimization 
under local volume constraints. Design parameters are �e = 0.6 , 
Re = 18 and re = 4.5 . d, e, f The sensitivities at 1000 iterations, of the 
objective �c

��
 , the constraint �g

��
 , and − �c

��
∕
�g

��
 . g, h, i. The optimized den-

sity fields under different parameter settings: g Re = 12 . h re = 2.6 , Re 
varies linearly from 8 to 24, from the left to right side of the design 
domain. i �e varies linearly from 0.4 to 0.7, from the left to right side 
of the design domain. All other parameters are kept the same as in (b) 
and (c)
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computation of degenerate point locations and separatrices, 
and prescribe an initial density field where elements along 
the separatrices are solid and all other elements take an 
intermediate value (i.e., the local volume upper bound). 
The solid elements along the separatrices can be changed 
over the course of the optimization to improve the structural 
performance, yet we observe that the optimization keeps 
them more or less unchanged and changes element densities 
in other parts accordingly. In the vicinity of trisectors, the 
initialization guides the optimizer towards a stable binary 
design and enables the optimization process to quickly 
converge towards a sound global layout. Interestingly, even 
though one might expect that the imposed initialization 
biases the optimizer towards a less stiff local optimum, the 
resulting binary designs show the same or even improved 
compliance compared to the designs generated by the origi-
nal approach which exhibit unresolved intermediate density 
values in the presence of trisectors.

The remainder of this paper is organized as follows. In 
Sect. 2, we first review the problem formulation underly-
ing porous infill optimization. Then, in Sect. 3 we analyse 
the convergence of porous infill optimization, elaborate on 
the relationships between optimization convergence and 
the existence of degenerate points in the stress field, and 
propose topology-guided density initialization to counteract 
low optimization convergence. The implementation details 
of performing the topology analysis to the stress tensor field 
are discussed in Sect. 4. We demonstrate the effectiveness 
of our approach in a variety of experiments in Sect. 5. Sec-
tion 6 concludes the paper with a discussion of the proposed 
approach as well as future research directions.

2  Porous infill optimization

The low convergence in some design tasks is observed while 
using the infill optimization approach (Wu et al. 2018), on 
which and some of its extensions the effectiveness of our 
method will be demonstrated. For the sake of completeness, 
we briefly review the formulation of the density-based infill 
optimization with local volume constraints.

2.1  Local volume constraints

In a discretized design domain, the local volume ( �̄�e ) of a 
circular region centered at the centroid of an element, xe , is 
computed by

(1)�̄�e =

∑
i∈Ne

𝜌i
∑

i∈Ne
1
, Ne = {i� ∥ xi − xe ∥2≤ Re}, ∀e,

where �i ∈ [0, 1] is the pseudo density for the i-th element. 
Re denotes the radius of the region on which the local vol-
ume is measured.

An upper bound ( �e , 0 < 𝛼e < 1 ) is imposed on the local 
volume of each element in the design domain, i.e.,

Thus, the local volume constraint involves two parameters, 
Re and �e . Re indirectly controls the spacing between sub-
structures, and �e effectively controls the porosity  (Wu 
et al. 2018). In the original approach, both input fields are 
prescribed to be homogeneous. Recent developments have 
demonstrated the use of heterogeneous fields to generate 
gradations of the porosity and pore size of the optimized 
porous structures (Schmidt et al. 2019; Das and Sutradhar 
2020; Zhao and Zhang 2021).

Assigning a local volume constraint to each element 
results in a large number of constraints that need to be con-
sidered by the optimizer. Dividing both sides of Eq. 2 by �e , 
these constraints are aggregated by the p−mean function,

where n is the number of elements. p = 16 is found to give 
a good approximation, and is used in this paper.

2.2  Optimization problem

With the local volume constraint defined, the optimization 
problem is given by

Here the objective is to minimize the compliance, measured 
by the strain energy c. K is the stiffness matrix in finite ele-
ment analysis. U is the displacement vector, obtained by 
solving the static elasticity equation (Eq. 5), where F is the 
loading vector. g(�) represents the aggregated local volume 
constraint.

The formulation takes �e as the design variable. The 
pseudo density field ( � ) is computed from � by a density 
filter ( � → �̃ ), followed by a smoothed Heaviside projection 

(2)�̄�e ≤ 𝛼e.

(3)
(
1

n

∑

e

(
�̄�e

𝛼e

)p
) 1

p

≤ 1,

(4)min
�

c =
1

2
U

T
KU,

(5)s.t. KU = F,

(6)g(�) =

(
1

n

∑

e

(
�̄�e

𝛼e

)p
) 1

p

− 1 ≤ 0,

(7)�e ∈ [0.0, 1.0], ∀e.
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( ̃� → � ). The density filter, with a filter radius re smaller 
than Re (Eq. 1), avoids checkerboard patterns resulting 
from numerical instabilities. The associated equations of 
this standard operator are omitted here but can be found in 
e.g., (Wang et al. 2011; Wu et al. 2018). The purpose of the 
projection �̃ → � is to promote a 0-1 solution, by threshold-
ing at the value of 1

2
,

The smoothed Heaviside function has a parameter, � , to 
control its sharpness. For improving convergence behaviour, 
a continuation scheme is applied to gradually increase its 
sharpness, i.e., we start with � = 1 and double its value every 
40 iterations until it reaches 128.

To interpolate the Young’s modulus for intermediate den-
sities, we use the modified SIMP (Solid Isotropic Material 
with Penalization) model,

where E0 is the Young’s Modulus of a fully solid element. 
Emin is a minimum Young’s modulus ( Emin = 1.0e−6E0 in our 
test), introduced to avoid the singularity of the global stiff-
ness matrix. � is the penalization factor, which is typically 
set to 3. Ee(�e) is the interpolated Young’s Modulus of the 
element with density �e.

The commonly used global volume constraint is not 
included here, but can be added as an additional constraint. 
An example of incorporating both local and global volume 
constraints is shown in Fig. 9 in the results section. The aver-
age of local volume fractions, i.e., 

∑
e �e∑
e 1

 , gives an estimation 
of the global volume fraction of the resulting optimized 
structure. To precisely control the global volume without 
resorting to an explicit global volume constraint, one may 
apply a continuation scheme, i.e., adjusting the local volume 
bound towards the end of optimization. Suppose the intended 
global volume fraction is �global . The local volume bound can 
be scaled by �new

e
=

∑
e �global∑

e �e
�e.

The optimization problem is solved using the method of 
moving asymptotes (MMA) (Svanberg 1987). In all experi-
ments performed in this work, the move limit of design vari-
ables is set to 0.01 unless specified otherwise.

3  Convergence analysis and improvement

When applying topology optimization using local volume 
constraints, in some scenarios it is observed that the itera-
tive optimization process converges very slowly. When 
inspecting such scenarios in more detail, for instance, by 

(8)𝜌e(�̃�e) =
tanh(

𝛽

2
) + tanh(𝛽(�̃�e −

1

2
))

2 tanh(
𝛽

2
)

.

(9)Ee(�e) = Emin + ��
e
(E0 − Emin),

visualizing the density distribution of the intermediate 
designs, it turns out that in some regions even after several 
hundreds or thousands of iterations a distinct binary design 
cannot be achieved by the optimizer. One of such scenarios 
is shown in Fig. 1. The rectangular design domain is fixed 
on its left edge. A unit load is applied on the right, while 
another unit load on the bottom, both in the middle of the 
edges. In Fig. 1b, i.e., optimization after 250 iterations, two 
large grey regions can be observed. While the grey region 
on the left converges to a binary design after another 250 
iterations, the grey region on the right does not result in a 
binary design even after a few thousands iterations. Apply-
ing a threshold to the intermediate densities to set them to 
either 0 or 1 results in large void or solid regions with sub-
optimal mechanical properties or use of material.

To further analyze the cause of slow convergence, we 
examine the sensitivities at the 1000 iterations. In Fig. 1d, 
the plot of �c

��
 , the region where low convergence is observed 

has a high absolute sensitivity, meaning that an increase in 
density shall be favored for reducing the objective. However, 
an increase of density in this region will greatly violate the 
aggregated local volume constraint, as can be seen in Fig. 1e, 
the plot of �g

��
 . Shown in Fig. 1f is − �c

��
∕
�g

��
 , a metric similarly 

used for deriving a fix-point type update scheme with the 
optimality criteria (Sigmund 2001). It can be seen that in the 
low convergence region the ratio is rather homogeneous and 
does not indicate a clear density update strategy.

3.1  Relationship between convergence and stress

Prior work in infill optimization has shown that the opti-
mized porous structure is in many regions according to the 
principal stress directions that occur in the solid design 
domain under equal boundary conditions and external loads. 
At each point in a 2D solid under load, the stress state is 
fully described by the stress vectors for two mutually orthog-
onal orientations. The second-order stress tensor

contains these vectors for the axes of a Cartesian coordinate 
system. �xx and �yy are the normal stress components along 
the x and y directions, respectively, �xy is the shear stress 
component.

S is symmetric since the shear stresses given by the 
off-diagonal elements in S are equal on mutually orthogo-
nal lines. The principal stress directions of the stress ten-
sor indicate the two mutually orthogonal directions along 
which the shear stresses vanish. These directions are 
given by the eigenvectors of S, with magnitudes given by 
the corresponding eigenvalues �1 and �2 of S. For �1 ≥ �2 , 
�1 is called the major principal stress, and �2 the minor 

(10)S(x, y) =

[
�xx �xy
�xy �yy

]

(x,y)
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principal stress. Accordingly, the corresponding eigenvec-
tors v1 and v2 are called major and minor principal stress 
directions. The signs of the principal stress magnitudes 
classify the stresses into tension (positive sign) or com-
pression (negative sign). However, since there are two 
principal stresses acting at each point, the classification 
is with respect to a specific direction.

Figure 2a shows a tensor glyph-based visualization of 
the stress field, corresponding to the scenario in Fig. 1. 
Here, the stress tensors are represented by oriented ellip-
ses. The axes of the ellipses are oriented according to 
the eigenvectors of the stress tensor, and the lengths of 
their radii are determined by the eigenvalues. The colors 
of axes indicate the sign of the principal stresses, red 
for positive and green for negative values. Figure 1b, 
i.e., optimization after 250 iterations, has two large grey 
regions. Comparing it with Fig. 2a, it can be seen that 
the grey region on the left corresponds to �1 ≈ −�2 , and 
the one on the right corresponds to �1 ≈ �2 . While after a 
few hundred more iterations (see Fig. 1c) the grey region 
on the left converges to a binary design, the grey region 
on the right shrinks but remains visible. In these regions, 
the optimizer can favour material growths either along 
the major or the minor principal stress direction, and it 
seems that because no preferential direction is present the 
optimizer has problems to decide for any of them. In the 
regions where the optimizer doesn’t converge, however, 
another specific property can be perceived in addition 
to isotropic stress. As indicated by principal stress lines 
(PSLs), which are computed by performing numerical 
integration along the major and minor principal stress 
directions (see Fig. 2b), these regions seem to cover loca-
tions where the PSLs indicate directional discontinuities 
in the tensor field. This observation gives rise to a stress 
topology-based analysis of the optimization convergence, 
which we provide in the following.

3.2  Stress topology‑based analysis

Topology analysis of 2D symmetric second-order tensor 
fields (e.g., stress tensor fields) has been introduced in the 
seminal work of Delmarcelle and Hesselink (1994). The 
topology of a 2D stress tensor field is composed of its degen-
erate points and the corresponding topological skeleton. At a 
degenerate point, the stress tensor has repeating eigenvalues, 
i.e., �1 = �2 , meaning that the major and minor stress direc-
tions cannot be decided. The topological skeleton is given 
by principal stress lines—so-called separatrices—that start 
from degenerate points.

An isolated degenerate point can be classified by the 
winding number of one of the eigenvector fields on a loop 
surrounding the degenerate point. Delmarcelle and Hes-
selink (Delmarcelle and Hesselink 1994) proposed an invari-
ant to perform this classification in a stable way. In Sect. 4, 
we describe how the degenerate points are computed and 
classified for a stress tensor field given at the vertices of a 
Cartesian grid. A major/minor separatrix is a principal stress 
line starting at a degenerate point and following the major/
minor eigenvector field. Let us also refer to Sect. 4 for a 
discussion of how to determine these directions. Figure 2c 
illustrates the major and minor separatrices in the stress field 
corresponding to the used test scenario in Fig. 1.

At a trisector there are three separatrices in the major (and 
three in the minor) principal direction field that divide the 
neighborhood into three sectors sharing this point. Around 
a wedge there can be either one sector or three sectors. In 
a sector, similar stress trajectories in the major and minor 
principal stress direction fields are observed. Figure 2c, as 
well as all other experiments we have performed, indicate 
that the regions where convergence cannot be achieved are 
always centered around a trisector, while wedges seem to 
have no influence on the convergence rate. Furthermore, 
regions where the convergence rate is low but the optimizer 
can eventually arrive at a stable binary design do not con-
tain any degenerate point (Fig. 1b, left). These regions have 

Fig. 2  Stress tensor field visualizations. The stress tensor field is 
according to the scenario shown in Fig. 1a, when simulating on the 
solid design domain. a Tensor glyphs are drawn at sampled vertices 
of the Cartesian simulation grid. Colors indicate the sign of the prin-
cipal stresses, red for positive and green for negative values. b Trajec-

tory-based visualization. Orange and turquoise trajectories represent 
the major and minor principal stress directions, respectively. c Topol-
ogy-based visualization. The circle and quads indicate the trisector 
and wedge degenerate points, respectively, which are connected via 
the major (red) and minor (blue) topological skeletons
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major and minor principal stresses that are close in their 
magnitudes but differ in signs, i.e., �1 ≈ −�2 , yet in these 
regions there are no topological changes in the stress field. In 
Fig. 3, we give two more examples which verify our obser-
vations, and clearly indicate the relationships between low 
convergence and existence of trisectors.

The topological skeletons can be perceived as limits of 
the principal stress lines close to the boundary between 
different stress regions. We hypothesize that the porous 
structures in regions where convergence is not achieved, if 
a stable binary design should be enforced, follow these skel-
etons, just as porous structures in other regions follow the 
principal stress directions. To validate this hypothesis, our 
idea is to guide the material deposition along the topologi-
cal skeleton via a skeleton-based initialization of the density 
field. The initialization sets the optimizer to a state in which 
a stable binary design in the regions around trisectors is 
prescribed. The design can be changed during the course of 
the optimization, yet our experiments demonstrate that the 
optimizer maintains this design and builds additional sup-
port structures around it. These results empirically proof the 
validity of our hypothesis, and they indicate that the devia-
tion from the prescribed skeleton is not favorable for the 
objective function.

3.3  Stress topology‑guided initialization

Typically in density-based topology optimization, the 
density field is initialized with a constant value. For infill 
optimization, the constant is chosen as the local volume 
upper bound. In accordance to the observation that the 
material layout in porous infill optimization is guided by 

the principal stress directions, we propose to augment the 
initialization by setting the densities of elements close 
to the topological skeleton to a high value. This strategy 
is fully automatic, since the computation of neither the 
degenerate points nor the topological skeleton does involve 
any user intervention.

To generate the initial material layout, the elements which 
are near the topological skeleton are identified first. In the 
current implementation, all elements that are touched by any 
of the PSLs belonging to the skeleton are identified. Then, 
the initial volume fraction of these elements is set to solid 
at the beginning of the optimization process. In this way, 
the initial density field around a trisector degenerate point 
becomes inhomogeneous, giving rise to sensitivities favor-
ing a unique topology layout. It is worth noting that these 
pre-embedded solid elements are not passive elements but 
still belong to the design space, i.e., the density at these ele-
ments can be adjusted by the optimizer if a stiffer design can 
be achieved. Figure 4 shows the initial density fields that are 
used in the test cases ’Cantilever’, ’Bracket’ and ’Bearing’.

The proposed initialization process can be integrated into 
porous infill optimization in a fully automated way. Once the 
design domain, material parameters, fixations and external 
load conditions are given, the following steps are performed: 

(1) Finite element analysis to compute the stress field in 
the fully solid design domain.

(2) Topology analysis including the computation of all tri-
sector degenerate points and the topological skeleton 
containing these points.

(3) Initialization of the density field according to the topo-
logical skeleton.

Fig. 3  Design domains and 
boundary conditions of models 
’Bracket’ (a) and ’Bearing’ 
(d) using Cartesian simulation 
grids of resolutions 512 × 400 
and 512 × 512 , respectively. b e 
Trisector degenerate points and 
the corresponding topological 
skeletons. c, f Density distribu-
tions after 1000 optimization 
iterations with �e = 0.6 , Re = 18 
and re = 4.5
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(4) Topology optimization using local volume constraints 
for porous infill optimization.

4  Implementation details

In the following, we discuss the computation of the locations 
of degenerate points in a given Cartesian simulation grids, 
as well as the computation of the topological skeleton that 
is required to initialize the density field. Given the definition 
of degenerate points, a degenerate point can be located by 
solving the following system of equations:

where (x∗, y∗) denotes the coordinates of the point to be 
solved for. Here we consider the general situation in topol-
ogy optimization, i.e., the finite element analysis is per-
formed using axis-aligned quadrilateral finite elements with 
bilinear shape functions. Thus, each element has four nodes 
that coincide with the element’s vertices, and the values at 
the nodes are bilinearly interpolated within the element. 
Then, Eq. 11 becomes a non-linear system of equations, 
which can be solved by the Newton-Raphson method.

Since degenerate points usually appear only in a few ele-
ments, an efficient way is required to test whether a cell can 
contain such a point and needs to be further analysed, or 
can be excluded right away. Therefore, each element is first 
classified according to the following conditions:

where (xi, yi), i = 1 ∶ 4 refers to the four nodal coordinates 
of a finite element. It can be easily shown that an element 
cannot contain a degenerate point if any of the conditions in 
Eq. 12 is true. If none of the conditions is true, the element 
needs to be further analyzed to locate a degenerate point 
in its interior. Figure 5 shows a possible distribution of the 
eigenvalues corresponding to the major and minor principal 

(11)
�xx(x

∗, y∗) − �yy(x
∗, y∗) = 0,

�xy(x
∗, y∗) = 0,

(12)

𝜎xx(xi, yi) − 𝜎yy(xi, yi) > 0, i = 1 ∶ 4 or

𝜎xx(xi, yi) − 𝜎yy(xi, yi) < 0, i = 1 ∶ 4 or

𝜏xy(xi, yi) > 0, i = 1 ∶ 4 or

𝜏xy(xi, yi) < 0, i = 1 ∶ 4

stress directions in a quadrilateral simulation element con-
taining a degenerate point.

In a symmetric second tensor field, two types of stable 
degenerate points exist: trisectors and wedges. They are indi-
cated by characteristic patterns of the PSLs in their vicin-
ity, and are determined from the so-called tensor gradients 
(see Delmarcelle and Hesselink (1994) for a comprehensive 
derivation). First, the partial derivatives of the tensor are 
introduced as

These derivatives are then used to compute the invariant 
under rotation

The sign of � determines the type of the degenerate point. 
I.e., a trisector degenerate point is indicated by 𝛿 < 0 , and a 
wedge degenerate point is indicated by 𝛿 > 0 . At a trisector 
degenerate point, there are three major and three minor sepa-
ratrices starting from this point. In contrast, two separatrices 
start from a wedge, one coincides with the major PSL and 
the other one with the minor PSL (see Fig. 2c). These sepa-
ratrices are termed the topological skeleton of a stress tensor 
field, i.e., the topological skeleton is composed of the PSLs 
starting from the degenerate points. Compared to the PSLs 

(13)
a =

1

2

�(�xx−�yy)

�x
b =

1

2

�(�xx−�yy)

�y

c =
��xy

�x
d =

��xy

�y

(14)� = ad − bc.

Fig. 4  The initialized density 
fields of the ’cantilever’ in 
Fig. 1 and ’Bracket’ and ’Bear-
ing’ in Fig. 3

Fig. 5  The eigenvalues corresponding to the major ( �
1
 ) and minor 

( �
2
 ) principal stress direction are shown as height fields over the 

domain of a simulation element (grey square). At a degenerate point, 
both eigenvalues have the same value
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not belonging to the topological skeleton, the tangent of the 
topological skeleton at the degenerate point is not unique, 
since there is an infinite set of principal stress directions at 
such points. To solve this problem, Delmarcelle and Hes-
selink (1994), propose that the tangents to the topological 
skeleton at the degenerate points are the real root(s) of the 
cubic equation

5  Results and discussions

In this section, we use several examples to demonstrate 
the effectiveness of the proposed initialization for density-
based porous infill optimization. The initialization and opti-
mization are both implemented in Matlab. The initializa-
tion involves a finite element analysis, followed by a stress 
topology analysis and computation of the topological skel-
eton. Running on a desktop PC with an Intel Xeon CPU at 
3.60GHz, the initialization in our experiments took less than 
2 seconds. All design domains are discretized by Cartesian 
finite element grids with unit size simulation elements. The 
Young’s Modulus and Poisson’s ratio are set to 1.0 and 0.3, 
respectively. Convergence improvement is quantified by the 
sharpness measurement

(15)dx3 + (c + 2b)x2 + (2a − d)x − c = 0.

(16)s =
4

n

∑

e

�e(1 − �e)

A small value of s indicates a sharper binary design of the 
optimized topology.

Figure 6 shows the binary designs that are generated 
using an initialization by topological skeleton. The same 
parameter settings as in Fig. 1 are used here. As can be seen, 
in all cases a binary design is achieved regardless of the 
area of the region around the degenerate point where con-
vergence is not achieved by the original approach. Figure 7 
compares the intermediate density distributions during the 
optimization using a uniform density initialization and the 
proposed topology-guided density initialization. Table 1 
compares the mechanical properties of the designs gener-
ated by both approaches, as well as the used material and the 
sharpness (cf. Eq. 16) of the designs after 1000 optimization 
iterations. Notably, even after some thousands of iterations 
convergence cannot be reached via original porous infill 
optimization. As can be seen from the sharpness values, the 
proposed initialization strategy improves the convergence 
behavior of porous infill optimization considerably. In all 
test cases, a distinct binary design has been reached within 
the given number of iterations. The difference in compliance 
and material fraction is rather small.

Figure 8 shows the converged density distributions of the 
’Bracket’ and ’Bearing’, obtained using the topology-guided 
initialization strategy. Low convergence regions from the 
original approach (cf. Fig. 3) are removed. The convergence 
is again confirmed by a reduction in the sharpness value. In 
the ’Bearing’ result from the original approach (cf. Fig. 3f) 
the area of the low convergence regions is large. In this case, 
the sharpness value is reduced by an order of magnitude by 

Fig. 6  Binary designs by porous infill optimization with stress topology-guided density initialization. The same parameter settings as in Fig. 1c, 
g, h and i, respectively, are used. A quantitative comparison is given in Table  1

Fig. 7  Intermediate density distributions of the results in Fig. 1c (top, using a uniform density initialization) and Fig. 6a (bottom, using the pro-
posed topology-guided density initialization)
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the proposed initialization. It leads to a stiffer structure with 
less material consumption.

We further test the applicability of the proposed initiali-
zation on topology optimization with both local and global 
volume constraints. The global volume constraint is

The test is performed on a square where its four corners are 
loaded (Fig. 9a), an example taken from Stutz et al. (2020). 
This example has two trisectors, as shown in Fig. 9b. From 
Fig. 9c, it can be seen that the central region is largely grey 
after 1000 optimization iterations. The grey region disap-
pears in the optimized result from the proposed initialization 
(Fig. 9d). The significant improvement in convergence can 
be seen from the evolution of density distributions shown in 

(17)
1

n

∑

e

�e − �global ≤ 0.

Fig. 9 and the plot of the sharpness over iterations, shown 
in Fig. 10(right). As the large grey region is replaced by a 
binary design, the material consumption reduces from 0.400 
to 0.378 and the compliance value decreases marginally 
from 26.02 to 25.96.

In density-based topology optimization, distributed loads 
are known to be a source of potential low convergence. 
Fig. 11a sketches a disk with radially compression forces 
applied on its boundary. Eight vertices equally-spaced on 
the boundary are fixed in both x- and y-axis, indicated by 
small triangles. The topological skeleton of the stress field 
is visualized in Fig. 11b, while the stress field is visualized 
using tensor glyphs in Fig. 11c. From the visualizations it 
can be seen that the stress field has a complex topology, and 
that the stress tensors in the middle are isotropic and exhibit 
a tiny spatial gradient. This is a challenging case for infill 
optimization with a uniform density initialization (Fig. 11d). 
Figure 11e shows the optimized infill using the proposed 
topology-guided density initialization. The density distri-
butions during the optimization are shown at the bottom. 
This example demonstrates the effectiveness of the proposed 
initialization in the case of distributed loads.

Interestingly, under certain design specifications, the 
original approach is able to create binary designs at the 
presence of degenerate points. This happens if the speci-
fied local volume bound is small. Figure 12a shows the 
cantilever example optimized with a uniform density ini-
tialization under �e = 0.4 (reduced from �e = 0.6 in previous 
examples). It is not precisely known how the different local 
volume bounds triggered the different convergence behav-
ior. The proposed topology-guided density initialization is 
effective for small local volume bounds (Fig. 12b). In this 
case, the sharpness values of results from both initializa-
tion strategies are very close. The one with the proposed 
initialization leads to a slightly larger compliance ( 104.6% ), 
while consuming 5.6% less material. From the intermedi-
ate density distributions shown in the following two rows, a 
noticeable difference between the two initializations can be 
found around the degenerate point after 300 iterations. Our 
experiments also revealed that the local convergence may, 
to some extend, be alleviated by a more aggressive move 
limit in the MMA solver. Figure 12c shows the optimized 
result with a move limit of 0.1 (in contrast to a limit of 0.01 
in previous examples), under a homogeneous initialization. 
While a binary design is obtained, the design has irregular 
large void regions that do not agree with the intention of 
creating distributed porous infill structures. The introduc-
tion of the topology-guided initialization is able to fill the 
void (see Fig. 12d). The difference can be observed in the 
intermediate density distributions shown at the bottom, e.g., 
after 300 iterations, around the degenerate point. The lat-
ter design consumes 4.5% more material, and decreases the 
compliance by 4.2%.

Table 1  Quality and convergence comparison. Each pair of rows 
shows the compliance, the fraction of solid material, and the sharp-
ness of the resulting designs when using porous infill optimization 
without (top) and with (bottom) stress topology-guided density ini-
tialization

Cases Compliance Solid fraction Sharpness

Fig. 1c 27.99 0.479 1.8 × 10−2

Fig. 6a 28.26 0.473 5.4 × 10−3

Fig. 1g 27.37 0.501 1.1 × 10−2

Fig. 6b 27.63 0.497 1.1 × 10−3

Fig. 1h 35.49 0.377 1.0 × 10−2

Fig. 6c 35.76 0.379 5.4 × 10−3

Fig. 1i 27.98 0.482 1.2 × 10−2

Fig. 6d 28.47 0.480 1.3 × 10−3

Fig. 3c 19.15 0.490 1.7 × 10−2

Fig. 8a 19.32 0.482 5.8 × 10−3

Fig. 3f 45.67 0.515 6.6 × 10−2

Fig. 8b 45.49 0.504 4.8 × 10−3

Fig. 8  The binary designs that are generated by stress topology-
guided porous infill optimization for ’Bracket’ (a) and ’Bearing’ (b) 
from Fig. 3
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In this paper we focus on addressing the issue of low 
convergence associated with degenerate points. We note that 
there are other causes of low convergence in density-based 
topology optimization. As discussed in Sect. 3.2, the left 
hand side in Fig. 1b includes a region of �1 ≈ −�2 . It takes a 
few hundred iterations for this region to converge (c.f. Fig. 7 
bottom). Extending the initialization from the topological 
skeleton to the entire domain is expected to reduce the num-
ber of iterations.

6  Conclusions

In this work, we have analyzed the convergence of porous 
infill optimization towards a stable binary design. In a 
number of experiments we have shown that low conver-
gence regions may appear in this variant of topology opti-
mization, prohibiting an automatic generation of a distinct 
and mechanically sound binary design. By analyzing the 
topology of the stress field that arises in the solid object, 
the existence of trisector degenerate points in this field 

Fig. 9  Porous infill optimization with both local and global vol-
ume fraction constraints. The optimization settings are �e = 0.6 , 
�global = 0.4 , Re = 18 , re = 4.5 and 1000 iterations. a The design 
domain ( 200 × 200 ) and boundary conditions. b Trisector degener-
ate points and the corresponding topological skeletons. c The density 

distribution generated by porous infill optimization, and d using the 
proposed topology-guided density initialization. The two rows at the 
bottom show the intermediate density distributions during optimiza-
tion, under the two different initializations

Fig. 10  Convergence plots for 
the example shown in Fig. 9, 
comparing the effects of 
homogeneous initialization and 
topology-guided initialization 
regarding the objective (left) 
and sharpness (right)
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Fig. 11  Porous infill optimization under distributed loads. The opti-
mization settings are �e = 0.6 , Re = 36 , re = 4.5 and 1000 iterations. 
a The design domain ( 444 × 444 ) and boundary conditions. b Trisec-
tor degenerate points and the corresponding topological skeletons. c 

Stress visualization using tensor glyphs. d The optimized infills using 
a uniform density initialization e and the proposed topology-guided 
density initialization. The intermediate density distributions using dif-
ferent initializations are shown at the bottom

Fig. 12  Top row: Density distributions of special cases of ’Cantile-
ver’ after 1000 iterations. Control parameters are kept the same as in 
Fig. 1c if not stated otherwise. a Using a uniform initial density field 
and �e = 0.4 . b Using a stress topology-guided initial density field 
and �e = 0.4 . c Using a homogeneous initial density field and setting 

the moving limit of MMA to 0.1. d Using a stress topology-guided 
initial density field and setting the moving limit of MMA to 0.1. The 
intermediate density distributions using different initializations are 
shown at the bottom
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could be determined as the major cause of low conver-
gence. Based on this observation, we have proposed an 
initialization process for porous infill optimization that 
quickly guides the optimization towards a stable binary 
design. This process generates an initial solid material 
layout along the topological skeleton of the stress field, 
which is comprised of principal stress lines starting at the 
trisector degenerate points.

In the future, we intend to shed light on the following exten-
sions of the proposed approach: Firstly, we aim to consider the 
application of stress topology-guided density initialization to 
three-dimensional (3D) domains. Therefore, the convergence 
of 3D porous infill optimization first needs to be analyzed, 
using dedicated visualization techniques for 3D scalar fields. 
Then, since degenerate points become lines and surfaces in 3D 
(Hesselink et al. 1997; Zheng et al. 2005), the relationships 
between the 3D stress field topology and the local conver-
gence ratio needs to be investigated. Based on these investi-
gations, specific initialization strategies and material growth 
processes need to be developed. Secondly, we will consider 
stress topology analysis for homogenization-based infill opti-
mization. In particular, we will address the automatic genera-
tion of a 2D quad-dominant mesh where the mesh edges align 
with the principal stress directions. Porous infill optimization, 
under a single load case, tends to lay out the material along 
the mutually orthogonal principal stress lines, and—with our 
proposed initialization—automatically handles the material 
layout around degenerate points where quad meshing approach 
have difficulties to construct a consistent mesh structure (Wu 
et al. 2021b). We will build upon this observation and com-
bine stress topology-guided porous infill optimization with the 
enforcement of material deposition along the principal stress 
lines.
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