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This paper presents current developments of the attitude determination
algorithm for Del¦-n3Xt, TU Delft next nanosatellite. Several novel
quaternion ¦lters using Sun vector and Earth magnetic ¦eld measure-
ments and rate gyro outputs are presented. The quaternion measure-
ment matrix associated with each line-of-sight measurement is shown
to be rank de¦cient. This property is exploited in order to design re-
duced order measurement update stages in the ¦lters. The measurement
model reduction is designed such as to preserve the statistical informa-
tion. The ¦lter covariance propagation can cope rigorously with the
multiplicative process noises. The paper also describes the development
of the Sun vector determination algorithm, which merges the outputs
of 6 body-mounted four-quadrant Sun sensors. For each sensor, a sim-
ple algorithm allows Sun vector determination while avoiding the use
of uncertain physical parameters. This algorithm takes into account
geometrical imperfections linked to manufacturing limitations. A thor-
ough error analysis of the photodiodes measurement outputs is carried
out. A spacecraft Sun vector determination algorithm is proposed and
illustrated, in the absence of Earth albedo e¨ect, via Monte-Carlo simu-
lations and experimental validation. In addition, extensive Monte-Carlo
simulations illustrate the good performances of the quaternion ¦lters us-
ing spacecraft Sun vector and Earth magnetic ¦eld measurements. The
novel reduced ¦lter shows good performances in a challenging tumbling
dynamics environment, where a standard additive Kalman ¦lter fails to
converge.

1 INTRODUCTION

The attitude quaternion [1, p. 758], q, is the most popular spacecraft attitude
parametrization and its mathematical modeling and ¦ltering have been ongoing
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topics of research for more than forty years [2]. An important family of quater-
nion estimators has been developed using the Kalman ¦ltering paradigm [3, 4].
This approach presents known advantages such as statistically meaningful es-
timates, an easy estimation error covariance analysis, and the straightforward
incorporation of parameters other than attitude in the estimation process, to
name a few. Recently, the well-known quaternion process equation, which fea-
tures state-multiplicative noises due to gyro noises in the angular velocity mea-
surement, was reformulated in terms of an It�o stochastic di¨erential equation [5].
This was done in order to comply with the mean-square calculus theory underly-
ing the Kalman Bucy ¦ltering theory. A related result consisted of the speci¦c
Lyapunov di¨erential equation for the quaternion second-order moment. Its driv-
ing term, which stemmed from the state-multiplicative quaternion process noise,
was explicitly developed and the solution was shown to preserve a trace invari-
ance, which express the quaternion norm invariance in the mean-square sense.
Further analysis of that equation was, however, needed. Previously, another
work [6] on quaternion Kalman ¦ltering from vector observations introduced a
4 × 4 measurement model equation for q, which was bilinear with respect to q
and to the observation noise. The highlight of that measurement model was to
do away with the undesired linearization procedure but it had the drawback of an
increased, four-dimensional (4D), measurement model, where the measurement
matrix was rank-degenerated.
This work builds on the foregoing e¨orts and suggests new developments for

a family of more e©cient continuous-discrete quaternion Kalman ¦lters. It de-
scribes the Lyapunov exact di¨erential equation for the true quaternion second
moment. This equation has the nice property of preserving the unit-norm of
the true quaternion in the mean-square sense. As a result, it allows an exact
covariance propagation in the ¦lter in spite of the multiplicative process noise.
Further, the spectral properties of the quaternion measurement matrix, associ-
ated with a line-of-sight measurement [6], are described and exploited in order to
develop several computationally e©cient quaternion ¦lters, while preserving the
statistical information in some sense. Hinging on the rank-two degeneracy of the
4 × 4 measurement H-matrix, three di¨erent approaches are suggested in order
to select an e©cient 2× 4 measurement matrix. The ¦rst method heuristically
exploits a well-known performance criteria based on the Fisher information ma-
trix [7, p. 84] while the second method minimizes the trace of a state-dependent
noise covariance matrix. Both methods aim at identifying the statistically most
e©cient 2×4 submatrix. The third method, however, constructs the two rows of
a 2×4 matrix based on the two orthonormal basis vectors of the orthogonal com-
plement to the Null-space of the H-matrix. These approaches lend themselves
to di¨erent measurement update stages in novel continuous-discrete quaternion
¦lters.
The baseline attitude determination system on-board Del¦-n3Xt includes a

three-axis magnetometer, 6 body-mounted four-quadrant Sun sensors, and a
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three-axis rate gyroscope. While the magnetometer and the gyroscope are be-
ing purchased, the Sun sensors original design is begin carried out at TU Delft
Chair of Space Systems Engineering. This paper describes ongoing developments
of the Sun vector determination system. For each Sun sensor, the Sun line-of-
sight is determined by a simple algorithm that does away with some uncertain
physical parameters. The proposed algorithm takes into account geometrical im-
perfections due to manufacturing limitations. A thorough analysis of the errors
associated with the photodiodes£ measurements is presented, and approaches for
Sun vector determination at spacecraft level, i. e., merging the outputs of the
6 Sun sensors, are proposed and illustrated via Monte-Carlo simulations and
experimental validation. Finally, a numerical example of attitude determination
using rate gyro, Sun vector, and Earth magnetic ¦eld measurements is presented
illustrating via extensive simulations the performances of the novel quaternion
¦lters. The novel ¦lter paradigm shows a clear advantage with respect to a
standard additive Kalman ¦lter, which fails to converge in a rapidly tumbling
dynamics environment.
Section 2 is devoted to the mathematical modeling, including the analysis

of the Lyapunov di¨erential equation of the quaternion second moment, the
properties of the H-matrix, and the approaches for reducing the measurement
model. Section 3 presents the Sun vector determination system design. Section 4
presents the numerical simulations of the attitude estimators. Conclusions are
drawn in section 5.

2 MATHEMATICAL MODELING

2.1 Lyapunov Di¨erential Equation for the Quaternion Second
Moment

It was shown in [5,8] that the quaternion process equation can be expressed in the
framework of Mean-Square calculus via the following It�o stochastic di¨erential
equation:

dqt = FIqt dt− 12 ™(qt) dβt ; qt(0)
a.e.= q0; t ∈ [0, T ] (1)

with

FI =
1
2

(

Ÿt − 3σ
2
ε

4
I4

)

where Ÿt is the function of the measured angular velocity, Ÿt, which is corrupted
by an additive Brownian motion noise, βt, and dβt denotes its in¦nitesimal inde-
pendent increments such that E{βtβTt } = σεI3δ(t − τ). A known characteristic

57



PROGRESS IN FLIGHT DYNAMICS, GNC, AND AVIONICS

of this process equation is the state-multiplicative process noise where the noise
input matrix, ™, is a known linear matrix function of the quaternion, q = [eT q]T,
i. e.,

™(q) =
[
qI3 − [e×]

eT

]

(2)

where [e×] denotes the cross-product matrix, which is de¦ned as follows: for
any pair of vectors in R

3, x and y, [x×]y = x × y. As a result, the Lyapunov
di¨erential equation governing the time propagation of the second moment of
qt, Xt, is expressed as follows:

‘Xt = FIXt +XtF
T
I +

σ2ε
4
[(trXt)I4 −Xt] ; X(0) = X0 . (3)

The damping terms on the main diagonal of FI allows for the process to be
converging in the mean-square sense (m.s.s.), which ensures, in particular, the
invariance of the quaternion norm (m.s.s.), i. e.,

E{‖qt‖2} = trXt = trX0 ∀t ≥ 0 .

The unit-norm property of qt can, thus, be preserved (m.s.s.) by adequately
choosing the trace of X0 equal to one.

Proposition 1. Consider the Lyapunov di¨erential equation satis¦ed by the
second-order moment of the quaternion, Xt, which is given in Eq. (3), and let x
denote the 16×1 column-vector vec Xt, which is formed by stacking the columns
of Xt one onto the other, then

(i) the 4× 4 matrix equation (3) is equivalent to the following 16-dimensional
vector equation:

‘xt = Axt; x(0) = vecX0
where

A = 1
2
(Ÿ⊕ Ÿ) + σ2ε

(
�a�aT − I16

)
;

Ÿ⊕ Ÿ = Ÿ⊗ I4 + I4 ⊗ Ÿ ;
�a =
1
2
vec I4 =

1
2
[1 · · · 1 · · · 1 · · · 1]T (4)

and ⊗ denotes the Kronecker product; I16 is the identity matrix in R16;
and the ¢·£ denote zeros in Eq. (4);

(ii) the spectrum of the matrix A is as follows :

Sp {A} = {0,−σ2ε (7),−σ2ε + jω(4),−σ2ε − jω(4)}
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where the superscript numbers in parentheses denote the algebraic multi-
plicity of the associated eigenvalues. Moreover, the kernel of A is gen-
erated by �a and the unique steady-state solution to Eq. (3) is as follows :
X∞ = (1/4)I4; and

(iii) consider the case where the angular velocity vector is constant, then

xt = eAt x(0) ;
eAt =

[
e (1/2)Ÿt ⊗ e (1/2)Ÿt

] [
�a�aT + e−σ

2
ε t
(
I16 − �a�aT

)]
. (5)

The proofs are straightforward and are not shown here for the sake of brevity.

Remark 1. The second bracket parentheses in the right-hand side of Eq. (5)
provide an analytical expression for the in§uence of the state-multiplicative noise
in Eq. (1) onto the quaternion second moment. Notice that the matrix in these
brackets converges to the dyadic matrix (�a�aT), as t goes to ∞, which has the
e¨ect of orthogonally projecting the state vector x onto the vector line generated
by the unit-vector �a. Clearly, for σε = 0 (no process noise), the solution for X
boils down to the solution of the standard Lyapunov equation, ‘X = (1/2)ŸX
+X(1/2)ŸT, which admits the following closed-form solution, for the case of a
constant vector ω:

Xt = e (1/2)ŸtX0e (1/2)Ÿ
Tt .

When σε �= 0, it will be shown that Xt ∼ (1/4)I4 when t ∼ ∞.
Remark 2. If trX0 = 1, then the steady-state is simply x∞ = (1/2)�a, i. e.,
X∞ = (1/4)I4, which has the following interpretation: since the quaternion
process is being driven by a Brownian motion that uniformly di¨uses in its three
directions, then the steady-state uncertainty in qt becomes equal in all four
components.

2.2 Properties of the Quaternion Measurement Matrix

Let b and r denote the projections of an ideal noise-free line-of-sight measure-
ment, also called vector measurement, onto the spacecraft coordinates frame,
B, and onto some reference frame, R, respectively. It was shown [6] that the
rotation quaternion from R to B, q, belongs to the Kernel of a speci¦c matrix,
denoted by H , i. e.,

Hq = 0
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where H is computed using the pair (b, r) as follows:

s =
1
2
(b+ r) ; (6)

d =
1
2
(b− r) ; (7)

H =
[−[s×] d
−dT 0

]

. (8)

The following proposition states some insightful properties of the H-matrix.

Proposition 2. Given the pair of unit-norm column-vectors, (b, r), that are
associated with a single vector observation then,

(i) the spectrum of H is as follows :

SpH = {0, 0, j,−j}
and there exist an orthonormal matrix, Q ∈ R

4×4, and a block-diagonal
matrix, ˜ ∈ R

4×4, such that

H = Q˜QT = [q1 q2 q3 q4]

⎡

⎢
⎢
⎢
⎢
⎣

0 1 1 1

−1 0 1 1

−1 −1 0 1
−1 −1 −1 0

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

qT1
qT2
qT3
qT4

⎤

⎥
⎥
⎥
⎦
;

(ii) the kernel of H, KerH, is generated by the orthonormal basis {q1,q2}
where

q1 =

[
s

0

]
1
‖s‖ ;

q2 =

[
−s× d
‖s‖2

]
1
‖s‖ ;

(iii) the orthogonal complement of KerH, (KerH)⊥, is generated by the or-
thonormal basis {q3,q4} where

q3 =

[
d

0

]
1
‖d‖ ; (9)

q4 =

[
s× d
‖d‖2

]
1
‖d‖ . (10)
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The proofs hinge on classical results in matrix analysis and are omitted for
the sake of brevity.

Remark 1. The vector q1 is a quaternion representing a 180◦-rotation around
the Euler axis supported by the vector s. Geometrically, this rotation is mate-
rialized by letting the tip of the b-vector describe half-a-circle around s while
staying in a plane that is orthogonal to the (b, r)-plane. On the other hand, the
vector q2 describes a minimal-angle rotation, and it corresponds to the Euler
axis supported by the vector s × d. In this case, the b-vector is rotated un-
til it coincides with the r-vector, while staying in the (b, r)-plane. The angle
of the q2-rotation, ϕ2, is easily determined from the scalar component of q2,
i. e.,

ϕ2 = 2 arccos(‖s‖) . (11)

Remark 2. The vectors q3 and q4 may also be interpreted as quaternions
of rotation. In this case, however, the geometrically transformation maps b to
(−r) instead of r. The q3-rotation is, thus, a 180◦-rotation around the Euler axis
supported by d, where the tip of the transformed vector describes half-a-circle,
from b to (−r), in the plane orthogonal to (b, r). The q4-rotation brings b to
(−r) by rotating the transformed vector in the plane (b, r) and around the axis
supported by s×d. The Euler angle of that rotation is simply the supplementary
angle to ϕ2, as given in Eq. (11).

2.3 Reduced Quaternion Measurement Model

Consider the four dimensional quaternion measurement model that was intro-
duced in [6], i. e.,

0 = Hkqk − 12 ™kδbk (12)

where Hk is de¦ned in Eq. (8) using the noisy vector bk, δbk is an additive zero-
mean white noise with covariance matrix Rk, and ™k denotes the quaternion-
dependent 4× 3 matrix, as de¦ned in Eq. (2). Since a 4D H-matrix that is com-
puted from a single vector observation is of rank two, then a two-dimensional
(2D) measurement model can be developed and used in a quaternion ¦lter. The
measurement update stage in that ¦lter will, thus, have a reduced computational
burden. Three possible approaches for the desired model reduction will be de-
scribed next. The ¦rst two approaches suggest extracting a 2 × 4 submatrix
of H according to simple, intuitive, rationales. The third approach hinges on
the spectral properties of the H-matrix in order to construct an adequate 2× 4
measurement equation.
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2.3.1 Approach #1

There are six 2 × 4 submatrices of Hk, each one being of rank two. They cor-
respond to the following pairs of rows: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), and
(3, 4). Their expressions, denoted by Hij , are provided in Table 1. From an
algebraic point of view, all six reduced measurement matrices are equivalent. In
the context of stochastic ¦ltering, however, the particular choice of one of these
matrices may impact the statistical properties of the estimation process, as will
be pointed out next, and, thus, provide the user with a meaningful criterion for
picking up the right model. The heuristics stems from the concept of the Fisher
information matrix and on the following known result (see, e. g., [7, p. 84]): As-
suming a standard linear measurement model, i. e., zk = Mkθ + vk where Mk

and θ are deterministic and vk is a vector of zero-mean independently identi-
cally distributed Gaussian noises, with variance σ2, then the Fisher information
matrix, J(θ), associated with the measurement zk, is expressed as

J(θ) =
1

σ2
MT
k Mk .

Hinging on the above result, the proposed method for choosing the reduced mea-
surement matrix consists in maximizing some measure of the matrix J . Since J
is positive semide¦nite, one can use the value of its trace, which is proportional
to the squared Frobenius norm of the associated measurement matrix. The

Table 1 Six possible reduced quaternion mea-
surement matrices and their performance index

Model Rows Hij ‖Hij‖2F
1 (1, 2)

[
0 s3 −s2 d1
−s1 0 s1 d2

]

1 + b3r3

2 (1, 3)
[
0 s3 −s2 d1
s2 −s1 0 d3

]

1 + b2r2

3 (1, 4)
[
0 s3 −s2 d1
−d1 −d2 −d3 0

]

1− b1r1

4 (2, 3)
[−s3 0 s1 d2
s2 −s1 0 d3

]

1 + b1r1

5 (2, 4)
[−s3 0 s1 d2
−d1 −d2 −d3 0

]

1− b2r2

6 (3, 4)
[
s2 −s1 0 d3
−d1 −d2 −d3 0

]

1− b3r3
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Frobenius norms of the six matrices Hij , i. e.,

‖Hij‖F =
√

tr [(Hij)THij ] ,

are easily computed and are provided in Table 1, as functions of the components
of the vectors b and r.

Method: For each acquired vector observation, (b, r), compute the H-matrix,
as given in Eq. (8), and compute the performance index ‖H ij‖2F (see Table 1)
for the six possible reduced models. Then choose, out of the six possible models,
the model that maximizes the performance.

2.3.2 Approach #2

The second approach also hinges on a statistical rationale, but only considers the
covariance matrix of the associated state-dependent measurement noise. Con-
sider the 4D quaternion measurement model (12). Let P vk denote the covariance
matrix of the quaternion-dependent noise appearing in Eq. (12), i. e.,

P vk
�
= cov

{

−1
2
™kδbk

}

.

This matrix can be exactly expressed as a function of the ¦rst two moments of
qk [6]. Reducing the measurement model (12) by simply extracting two rows
obviously impacts the resulted measurement noise. For instance, choosing the
pair of rows (1, 4) yields the following 2× 2 reduced noise covariance matrix:

P v14 = L14P vLT14 ; L14 =
[
1 · · ·
· · · 1

]

where the dots are representing zeros. A method is henceforth suggested for
choosing the pair of rows according to the following rationale: the extracted pair
will be such that the covariance of the associated reduced measurement noise
will be minimal among all possible choices. The measure of performance will be
the trace of the reduced noise covariance matrix.

Method for a general Pv. The method is summarized by the following steps.
As a preliminary, let the six matrices Lij , i, j = 1, 2, 3, 4, j > i, be de¦ned as
follows: any matrix Lij is a 2× 4 matrix with all entries equal to zero except for
the entries at (1, i) and (2, j), which are equal to one.

Step #1. Compute the six possible 2× 2 reduced noise covariance matrices,
{P vij}:

P vij = LijP vLTij . (13)
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Step #2. Compute their traces:

αij = trP vij .

Step #3. Choose (i, j) to solve mini,j αij and use, accordingly, the reduced
matrices, Hij and P vij , in the reduced measurement update stages of the quater-
nion ¦lters.

Case A: Rk = σ2b I3. The method that results for Case A is simple and is
essentially summarized in Table 2. It can be shown [6] that, for such a ma-
trix Rk,

P vk =
σ2b
4
(I4 −Xk)

where, between measurement epochs, Xt can be propagated using Eq. (3). This
yields the value of Xt and, thus, of its diagonal elements, xii. Finding the pair
(i, j) that minimizes the criterion αij , i. e., (2−xii−xjj), yields the most e©cient
reduced model. There is an intuitive interpretation to this selection method.
Assume, for example, that the ¦rst and the forth components of q, i. e., e1 and
q, have the highest second-order moments, x11 and x44, respectively. Since the
quaternion components act as noise ampli¦ers in the noise multiplicative term,
then the adequate model should be the one where neither e1 nor q enter the
expression for that multiplicative noise. This can be partly achieved by choosing
the reduced matrix H14, since the coe©cients multiplying e1 and q are equal
to zero in the ¦rst and forth rows, respectively, as seen from the expression for
H14:

H14 =

[
0 s3 −s2 d1
−d1 −d2 −d3 0 .

]

Indeed, for this case, the proposed method selects the reduced matrix H14.

Table 2 Six possible reduced noise covariance
matrices and their performance index, for i, j
= 1, 2, 3, 4, j > i, xii and xjj are the diagonal
elements in the matrix Xt

Rows
4

σ2b
P vij

4

σ2b
αij

(i, j)
[
1− xii −xij

−xij 1− xjj

]

2− xii − xjj
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Case B: Rk = σ2b (I3−bkbTk ). The proposed matrix Rk is a usual approximate
expression for the covariance matrix of the unit-norm vector bk. It was shown [6]
that, for such a matrix Rk,

P v =
σ2b
4
(I4 −X −BXBT)

where the time subscript was dropped for simplicity, and

B =

[−[b×] b
−bT 0

]

.

The method for Case B is summarized next.
Step #1. Compute the three scalar quantities, βi, i = 1, 2, 3:

β1 = (1 − b21)(−x11 + x22 + x33 − x44) + 2[b1b2(x12 − x34) + b1b3(x13 + x24)] ;
β2 = (1 − b22)(x11 − x22 + x33 − x44) + 2[b1b2(x12 + x34) + b2b3(x23 − x14)] ;
β3 = (1 − b23)(x11 + x22 − x33 − x44) + 2[b1b3(x13 − x24) + b2b3(x23 + x14)]

where the scalars xij are the entries of X .

Table 3 Relationships
between β∗ and the re-
duced models

β∗ Rows
−β3 (1,2)
−β2 (1,3)
β1 (1,4)
−β1 (2,3)
β2 (2,4)
β3 (3,4)

Step #2. Solve

β∗ = min (β1,−β1, β2,−β2, β3,−β3)

and choose the adequate pair of rows according to the
relationships shown in Table 3. The above steps are
obtained by applying the general method previously
described. Once the adequate model is identi¦ed from
Table 3, the corresponding reduced order matrix, Hij ,
may be obtained from Table 1, and the associated re-
duced noise covariance matrix can be computed using
Eq. (13). Notice that Rk is of rank two, and so is the
reduced matrix P vij .

2.3.3 Approach #3

Another approach for reducing the quaternion measurement model, as given
in Eq. (12), consists in exploiting the spectral properties of the H-matrix, as
provided in Eqs. (9) and (10), i. e., in using the closed-form expression for the
orthonormal basis, {q3,q4}, of (KerH)⊥.
Proposition 3. Given a single vector observation, (bk, rk) where bk is corrupted
by an additive zero-mean white noise δbk with covariance matrix Rk, then,
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(i) the quaternion, qk, satis¦es the following reduced 2 × 1 quaternion mea-
surement equation:

0 = Hkqk + vk

where the 2× 2 matrix Hk is computed as follows:

Hk =

[
(sk × dk)T ‖dk‖2
−sTk 0

]
1
‖dk‖

with s and d as given in Eqs. (6) and (7), and vk is de¦ned as the following
state-dependent noise:

vk = −12 V k™(qk)δbk ;

V k =

[
sTk 0

(sk × dk)T ‖dk‖2

]
1
‖dk‖ (14)

Table 4 Reduced multiplicative noise covariance matrix, P v
k ,

and its steady-state for two cases of Rk

Rk P v
k P v

∞

σ2bI3
1
4
σ2b

(
I2 − V kXkV

T
k

) 3
16
σ2bI2

σ2b (I3 − bkbTk )
1
4
σ2b

(
I2 − V kXkV

T
k − CkXkC

T
k

) 1
8
σ2b I2

(ii) the measurement noise, vk, is a white noise sequence with zero mean (to
¦rst order in ‖δb‖) and with a second moment, P v, which is next expressed,
as a function of Xk, for speci¦c but important cases of Rk, in Table 4 where
V k is given in Eq. (14) and the 2× 4 matrix Ck is computed as follows :

Ck =

⎡

⎣
rTk [bk×] 1− rTk bk

1
2
rTk (I3 + 3bkb

T
k )− 2bTk 0

⎤

⎦
1

√
2
√

1− bTk rk
.

The proof of Proposition 3 is straightforward.

2.4 Concluding Remarks

Each of the above approaches for reduction of the quaternion measurement model
lends itself to a speci¦c measurement update stage in the Kalman ¦lter. These
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stages are of dimension two, which lowers the computational burden in the ¦lter,
as compared to the 4D stage designed in [8]. The provision of analytical expres-
sions for the minimization criteria, and for the covariance matrices, balances the
need for additional algebraic manipulations. The resulting Kalman ¦lters are
straightforward to develop and their expressions are omitted here for the sake of
brevity.

3 SUN VECTOR DETERMINATION SYSTEM

The Sun vector determination on board Del¦-n3Xt involves a system of six Sun
sensors, one on each of the six body panels of the three-units CubeSat. This
con¦guration was chosen in order to ensure that the Sun will be visible indepen-
dent of the satellite£s attitude. This requirement is critical for mission success
where the aim is to demonstrate three-axis Sun pointing stability. The Sun sen-
sors were mounted on the body because the entire area of the solar panels was
needed for power generation.

3.1 Sensor Sun Vector Determination

The subsequent analysis focuses on a single Sun sensor. The Sun sensor that
is designed is of the quadrant type, where four similar square photodiodes are
tightly located next to each together in a square formation. The photodiodes
can absorb light, which passes through a square hole that has the same dimen-
sions as each photodiode. Depending on the direction of the incoming light,
the area that is lit moves over the four quadrants and a photocurrent is being
generated and measured for each of the quadrants. As can be seen from Fig. 1a,
the lit area on each photodiode is direction dependent. This dependency be-
tween the sensor orientation and the measured currents stands at the heart of
the operation principle of the Sun sensor. It should be already noted that a
practical design has to take into account various parameters such as geometrical
constraints like the angular divergence of the incoming light, manufacturing con-
straints like blunt edges, and disturbances due to measurement random noises
or perturbations induced by secondary light sources like the Earth albedo. Part
of the design developments taking into account these aspects will be presented
in the following.
Let focus next on the ideal case in order to develop the basic Sun vector

determination algorithm for a single Sun sensor. Let {vi, i = 1, 2, 3} denote the
components of the Sun unit vector, v, along the Sun sensor axes. Let α and β
be de¦ned as in Fig. 1a. They are related to the components vi as follows:

tanα =
v1
v3
; tanβ =

v2
v3
.
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Figure 1 Sun sensor geometry: (a) four-quadrant Sun sensor; and (b) cross section
with cover dimensions

Henceforth, the expression for the unit Sun vector v is as follows:

v =
1

√
1 + tan2 α+ tan2 β

⎡

⎣
tanα
tanβ
1

⎤

⎦ . (15)
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3.1.1 Ideal case

Equation (15) shows how to compute the vector v for given values of tanα and
tanβ. As depicted in Fig. 1a, these quantities are related to the lit areas of the
four-quadrant Sun sensor, which are themselves functions of the photocurrent
intensities at each diode, Ii, i = 1, 2, 3, 4.
The proposed approach computes two ratios, R1 and R2, which are the ob-

servables, from which the two unknowns, tanα and tanβ, and thus, the sensor
Sun vector, can be determined, as described next. Given acquired measurements
of the photodiodes currents, Ii, i = 1, 2, 3, 4,

R1 =
I1 + I2 − I3 − I4
I1 + I2 + I3 + I4

;

R2 =
I3 + I2 − I1 − I4
I1 + I2 + I3 + I4

;

tanα = − 2h
d− t R2 ; (16)

tanβ = − 2h
d− t R1 ;

v̂ =
1

√
1 + tan2 α+ tan2 β

⎡

⎣
tanα
tanβ
1

⎤

⎦ . (17)

The above algorithm was developed under assumptions of zero Sun divergence,
no manufacturing imperfections, and an ideal linear relationship between illu-
minated areas and photodiodes current intensity. Note that the coe©cients of
proportionality are usually uncertain physical parameters.
By doing away with these factors, the proposed approach is simpler and

less subject to errors than an approach involving individual current-orientation
relationships.

3.1.2 Manufacturing imperfections

In a physical implementation of the quadrant sensor, the hole is made in a cover
above the sensor. Since the cover has a certain thickness, this in§uences the
lengths la, lb, lc, and ld.
Let θ denote the incident light angle, as depicted in Fig. 1b. The geometrical

characteristics of the cover near the hole induce constraints on the incoming rays
as depicted by the three beams in Fig. 1b. A straightforward analysis yields
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l =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

d

2
− t

2
− h1 tan θ if θ ≤ 0 ;

d

2
− t

2
− (h1 + h2) tan θ if 0 ≤ θ ≤ π

2
− θslope ;

d

2
− t

2
+

tcov − h2
tan (θslope)

− (h1 + tcov) tan θ if θ ≥ π

2
− θslope .

(18)

Using Eq. (18), it is possible to derive expressions for la, lb, lc, and ld. Using
a similar method as in the previous paragraph yields the relevant expressions
for the sought quantities, tanα and tanβ, as functions of the ratios R1, R2,
and of the geometrical parameters de¦ned in Figs. 1a and 1b. The Sun vector
determination algorithm for a single Sun sensor is summarized as follows. Given
acquired measurements of the photodiodes currents, Ii, i = 1, 2, 3, 4,

R1 =
I1 + I2 − I3 − I4
I1 + I2 + I3 + I4

; (19)

R2 =
I3 + I2 − I1 − I4
I1 + I2 + I3 + I4

; (20)

tanα =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− R2 [d− t+ f ] + f
2h1 + tcov +R2tcov

R2 ≥ − f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ;

− (d− t)R2
2h1 + h2 +R2h2

0 ≤ R2 ≤ − f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ;

− (d− t)R2
2h1 + h2 −R2h2

f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ≤ R2 ≤ 0;

− R2 [d− t+ f ]− f
2h1 + tcov −R2tcov R2 ≤ f (h2 + 2h1)

h2 (f + d− t)− tcov (d− t) ;

(21)

tanβ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− R1 [d− t+ f ] + f
2h1 + tcov +R1tcov

R1 ≥ − f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ;

− (d− t)R1
2h1 + h2 +R1h2

0 ≤ R1 ≤ − f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ;

− (d− t)R1
2h1 + h2 −R1h2

f (h2 + 2h1)
h2 (f + d− t)− tcov (d− t) ≤ R1 ≤ 0 ;

− R1 [d− t+ f ]− f
2h1 + tcov −R1tcov R1 ≤ f (h2 + 2h1)

h2 (f + d− t)− tcov (d− t) ;

(22)

v̂ =
1

√
1 + tan2 α+ tan2 β

⎡

⎣
tanα
tanβ
1

⎤

⎦ . (23)
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3.1.3 Measurement errors

A simpli¦ed measurement chain for each photodiode consists of a photodiode
that converts light into current followed by an operational ampli¦er (op-amp),
which output voltage is proportional to the input current, in series with an
analog-to-digital converter (ADC) that provides a quantized signal at a spe-
ci¦c sampling rate. As a result, the measured output voltage is expressed as
follows

V0 = Rf (IS + Idist − Id − Ish + In,phot + In−)

− 1
β
en,amp − en,f + equ,ADC + en,ADC . (24)

Here, IS denotes the current intensity due to the direct incident Sun light, and
all other terms are disturbances and noises. Their source, type, and magnitudes
are summarized in Table 5.
Let Vi, i = 1, 2, 3, 4, denote the noisy voltage outputs, as given in Eq. (24).

These signals are produced onboard by the four photodiodes electronic assem-
blies of a single Sun sensor. Assuming a linear relationship between the output
voltages and current intensities, with identical proportionality factor, these volt-
age values are used in Eqs. (19) and (20), instead of the currents intensities,
i. e.,

Table 5 Summary of the Sun sensor signal and measurement errors in the voltage
outputs

Signal Source Type Magnitude, V
Rf IS Sun Signal 2.64
Rf Idist Earth albedo Bias 0.88
Rf Id ϕ dark current Bias 1.5 · 10−8
RfIsh ϕ leak current Bias 3.9 · 10−6
RfIJ ϕ Johnson current noise Gaussian 4.8 · 10−11
RfIS,0 ϕ signal current shot noise Poisson 3.4 · 10−7
RfIS,d ϕ dark current shot noise Poisson 2.2 · 10−11
RfIS,sh ϕ leak current shot noise Poisson 3.6 · 10−10
RfIn− Op-amp equivalent current noise Gaussian 4.8 · 10−10
β−1en,amp Op-amp equivalent voltage noise Gaussian 4.3 · 10−7
en,f Op-amp Johnson voltage noise Gaussian 3.9 · 10−8
equ,ADC ADC quantization noise Uniform 1.6 · 10−5
en,ADC ADC noise Gaussian 1.1 · 10−5
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R1 =
V1 + V2 − V3 − V4
V1 + V2 + V3 + V4

;

R2 =
V3 + V2 − V1 − V4
V1 + V2 + V3 + V4

. (25)

The remainder of the sensor Sun vector determination is carried out following
Eqs. (21) (23).

3.2 Spacecraft Sun Vector Determination

This subsection describes two algorithms used for merging the outputs of the
Sun sensors in order to estimate the spacecraft Sun vector. The ¦rst algorithm
is based on a constrained least-squares (LSQ) approach. The proposed problem
is formulated as follows:

min
vTv=1

⎡

⎣J(v) =
1
2

6∑

j=1

wj ‖v− v̂j‖2
⎤

⎦ (26)

where v denotes the unit-norm spacecraft Sun vector, v̂j denote the unit-norm
sensor Sun vector estimates, as determined in Eq. (17), and wj are the positive
scalar weights designed according to the relative reliability of each estimate.
Notice that, by a slight abuse of notation, the vectors v̂j in Eq. (26) represent
the sensor Sun vectors along the spacecraft body frame (while the algorithms
previously introduced compute their representation along each sensor coordinate
frame). The problem of determining the misalignment between the sensor and
the spacecraft body frames is not treated in this work. The solution to the
problem (26) is easily shown to be as follows:

v̂SP =

6∑

j=1

wjv̂j

∥
∥
∥
∥
∥
∥

6∑

j=1

wjv̂j

∥
∥
∥
∥
∥
∥

.

The weighting coe©cients, wj , are computed as follows:

wj =
4∑

i=1

Vi,j

where Vi,j denotes the voltage output from the photodiode i at the sensor j. This
choice relies on the heuristics that a sensor Sun vector estimate should be trusted
more when the sensor is more illuminated and thus produces larger voltages.
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The second algorithm (HC) compares the values of the voltage signals at the
six Sun sensors and selects the Sun vector estimate produced by the sensor with
the maximum signal. The implementation is obviously simpler, and the results
not so di¨erent from the previous algorithm, as will be shown next.

3.3 Simulation Results

A numerical simulation was performed providing Table 6 Design param-
eters of the manufactured
Sun sensor prototype

Parameter Value
d 5 mm
h1 1 mm
h2 0 mm
θslope 30◦

tcover 1.1 mm

the output voltages of all sensors for any Sun space-
craft (S/C) relative position. The in§uence of the
Earth albedo was not accounted for in this investi-
gation. On the other hand, the simulation accounts
for the Sun angular divergence. This relies on the
principle that the hole in the Sun sensor cover con-
sists of the superposition of a very large number
of smaller holes, each one di¨racting the Sun rays
onto the photodiodes. Thus, the validity of the zero
angular divergence, on which the Sun vector determination solution relies, could
be validated by simulation. The numerical values of the Sun sensor geometry
(see Fig. 1) are provided in Table 6. Figure 2a shows the angular error between
the true and the estimated spacecraft Sun vectors as a function of the incidence
angle. These simulation results relate to the Sun vector determination algorithm
with manufacturing imperfections and measurement errors. The largest error is
about 0.3◦ at around 50◦. The spread of the di¨erent points at the same inci-
dence angle stems from the randomness of the Monte-Carlo technique employed
in simulating the Sun rays. The LSQ and the HC slgorithms were tested and
compared. Figure 2b shows the angular error between the true and the estimated
Sun vector for 450 various incidence angles, varying from 0◦ to 70◦; similar per-
formances with a slight advantage for the HC estimator. It has a lower maximum
error, a lower average, and since it is simpler, a lower computation time. Further
investigation is required in order to design statistically better estimators.

3.4 Experimental Results

A prototype of the Sun sensor was manufactured with the design parameters
provided in Table 6 in order to validate experimentally the Sun vector determi-
nation approach. The experimental setup included a beamer as the light source.
The ¤measured¥ ratio R2 was computed as given in Eq. (25) using the measured
output voltages, while a ¤predicted¥ ratio R2 was computed using the model
formula (16) between R2 and the incidence angle α. The results are shown in
Fig. 3, which depicts a good ¦t between measurement and prediction.
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Figure 2 Angular error between the true and the estimated Sun vector as a function
of the incidence angle: (a) sensor Sun vector simulated with (1) and without (2)
noise; and (b) S/C Sun vector (1 ¡ LSQ algorithm; 2 ¡ HC algorithm; 3 and 5 ¡
maximum and average values (LSQ algorithm), respectively; and 4 and 6 ¡ maximum
and average values (HC algorithm), respectively)

4 ATTITUDE DETERMINATION EXAMPLE

In the proposed simulated scenarios, the CubeSat Del¦-n3Xt is orbiting around
the Earth on a circular Sun-synchronous orbit at a height of 600 km. Its prin-
cipal body moments of inertia, Jxx, Jyy, and Jzz are equal to 0.03699, 0.03701,
and 0.00599 kg·m2, respectively. The output of the three body-mounted rate
gyroscope is corrupted by a zero-mean Gaussian white noise with standard de-
viation σε/

√
–t = 2.3 · 10−6 rad/s where –t = 0.25 s denotes the time incre-

ment between two successive gyro readouts. The Earth magnetic ¦eld mea-
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Figure 3 Comparison of the predicted (1) and measured (2) ratio R2 as a function
of the angle of incidence α

surements, as read from a triad of magnetometers (MGM), are corrupted by
zero-mean Gaussian white noises with an equivalent angular standard devia-
tion σb/

√
–tMGM = 1◦ which is typical for coarse magnetic ¦eld measurements.

The MGM sampling time, –tMGM, was selected to be 20 times longer than the
gyros£ in order to test the ¦ltering algorithm in computationally unfavorable con-
ditions. The simulated Earth magnetic ¦eld corresponds to the IGRF11 model.
The inertial coordinates frame corresponds to the local North-East-Nadir frame
existing at the initial time, which is assumed to be the local ascending node
time epoch. The spacecraft Sun vector measurement is acquired in parallel
to the MGM measurements according to the study presented in the previous
subsection. The simulations£ runs last 12,000 s which corresponds to approxi-
mately two orbital revolutions of the satellite around the Earth. During that
laps of time, the inertial projection of the spacecraft Sun vector is assumed
constant.

The ¦rst simulated case assumes that the S/C experiences free rotational dy-
namics around its center of mass with initial rates of 10 deg/s in all three axes.
This corresponds to the maximum allowed rate magnitude after separation from
the launcher. The second simulated case consists of a pure-spin scenario where
the S/C is spinning at the rate of sin(2π/150) deg/s around its axis of lowest iner-
tia, which coincides with an arbitrary inertial direction. The sampling time of the
MGM was reduced to 2.5 s. The sampling time of the Sun sensors remained iden-
tical. For the sake of comparison, an additive extended Kalman ¦lter (EKF) [4]
was implemented, using the same conditions and statistical noise assumptions.
Figure 4 shows the single run performances of three ¦lters, the full quaternion
¦lter (Full), the 2D-reduced quaternion ¦lter using approach #1 (RMAX), and
the EKF. The error quaternion is computed via quaternion multiplication be-
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Figure 4 Time histories of the estimation quaternion-error on a single run in the
spinning (a) and tumbling (b) S/C: 1 ¡ full ¦lter; 2 ¡ RMAX; and 3 ¡ EKF. For
the spinning S/C case, the three ¦lters show equivalent performances. For the freely
tumbling S/C case, the RMAX ¦lter shows similar performances to the full ¦lter, and
the EKF fails to converge
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tween the true and the normalized estimated quaternion. Its fourth component
yields the angular estimation error, δ�, and the ¦rst three components form the
vector part, δq(1), δq(2), and δq(3). The three ¦lters show similar performances
in the spinning S/C case. The angular error converges to a steady-state level
of 0.1◦ that is one tenth of the noise level present in the Earth magnetic ¦eld
measurements and one third from the Sun sensor standard deviation. On the
other hand, in the tumbling S/C case, the EKF fails to converge. This likely
stems from its known sensitivity to initial conditions and modeling errors. The
plots of the full and the RMAX ¦lters show a slight advantage to the full ¦lter.
This result is supported by the analysis of the ¦lters, previously described. The
information is greater in the full ¦lter than in the RMAX ¦lter, which leads to a
quicker convergence of the errors£ ¦rst and second moments in the full ¦lter. In
steady-state, both ¦lters reach similar levels of accuracy to those of the spinning
S/C case. A trade thus appears in the design of the quaternion ¦lter where
speed of convergence can be traded against computational burden (induced by
the 4D-measurement ¦lter). Notice that another nice feature of the RMAX ¦l-
ter is a better numerically conditioned algorithm since Hij(t) is a full row-rank
matrix.
Figure 5a depicts the time histories of

√
trP , i. e., the square-root of the trace

of the a posteriori estimation error covariance matrix, for the various ¦lters.
All ¦lters started with the same initial conditions for P as well as for X , i. e,
P (0) = X(0) = 5I7. The curves 1 and 7 correspond to the full ¦lter and to
the RMAX ¦lter, respectively. Each one of the other lines correspond to one
of the possible 2D-measurement quaternion ¦lters. For instance, the R1 ¦lter
implements at each update the submatrix obtained by extracting the rows 1
and 4 of the 4D observation matrix (see Table 1). The relative e©ciency of the
RMAX ¦lter, within the family of the 2D-measurement ¦lters, clearly appears in
Fig. 5a. It is interesting to notice that the RMAX ¦lter does not need to compute
a speci¦c measurement matrix, but merely picks the appropriate one from a
limited number of possible values, as a result of the information maximization,
and implements the appropriate update stage. By doing so, it di¨erentiates itself
at once from the other 2D ¦lters, and the gap keeps increasing whenever each of
the possible models shows a better observability. As can be seen from Fig. 5a,
the full ¦lter (1) converges quicker than any of the 2D-measurement ¦lters,
including the RMAX ¦lter, and remains signi¦cantly lower asymptotically. This
is not surprising since the information rate of that ¦lter bene¦ciates from a richer
(4D) observation matrix, i. e., its Frobenius norm is approximately twice that of
any of its six 2 × 4 submatrices. This, therefore, yields a steeper convergence
rate. In order to investigate the statistical consistency of the proposed maximal
information ¦lter, RMAX, the scenario of the tumbling S/C was simulated. The
sampling rates of both the gyro and the MGM were chosen to be 10 Hz. The
sampling rate of the Sun sensors remained identical. These sampling rates are
realistic and can even be further increased for typical gyro readouts. A set of

77



PROGRESS IN FLIGHT DYNAMICS, GNC, AND AVIONICS

Figure 5 Second-order statistics. Single run comparison (a) (1 ¡ full; 2 ¡ R1;
3 ¡ R2; 4 ¡ R3; 5 ¡ R4; 6 ¡ R5; and 7 ¡ RMAX) and Monte-Carlo consistency
check (b) (1 ¡¦lter; and 2 ¡ Monte Carlo)
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60 Monte-Carlo simulations was run, with time-spans limited to 1000 s since
convergence was reached far before.
Figure 5b features the plots of the Monte-Carlo standard deviations of the

quaternion-error vector part (curve 2) and of the corresponding (square-root)
element in the Pt/t matrix (curve 3). The two plots are close to each other
which illustrates the statistical consistency of the proposed maximal information
¦lter.

5 CONCLUDING REMARKS

This work accounts for current developments of the attitude determination sys-
tem of the nanosatellite Del¦-n3Xt at TU Delft ¡ Delft Institute of Technology.
Novel results on quaternion Kalman ¦ltering were presented. It is shown how
to exactly carry through the covariance propagation in spite of the state de-
pendence of the process noise. A nice property of this modeling is that the
quaternion unit-norm property is preserved in the mean-square sense. Simple
expressions were provided for the steady-state, where the second-order moment
of the quaternion converges to a scalar matrix. This can be interpreted as
the uncertainty being spread out equally among the quaternion components
as time increases. In addition, the spectral properties of the 4D H-matrix,
as computed from a single vector observation, was exploited in order to de-
vise several measurement order reduction techniques. Building on these novel
results, a family of quaternion Kalman ¦lters was developed, where the re-
duced measurement update stage signi¦cantly lowers the ¦lter computational
burden.
This paper also described part of the ongoing developments of a TU Delft

designed Sun sensor system for the S/C Sun vector determination. At sensor
level, which is developed following a four-quadrant design, the Sun line-of-sight
is determined by a simple algorithm, where knowledge on uncertain physical
parameters was alleviated. The proposed design takes into account geometri-
cal imperfections due to manufacturing limitations. A thorough analysis of the
errors associated with the photodiodes£ measurement chain was presented, and
approaches for Sun vector determination at S/C level were proposed. Numerical
simulations, accounting for the Sun divergence but not the Earth albedo, showed
a maximum angular error of approximately 0.3◦ at 50 degree incidence. Exper-
imental validation tests were also conducted showing satisfactory ¦t between
measurement and model. Finally, a numerical example of attitude determina-
tion from vector observations ¡ here, the Sun vector and the Earth magnetic
¦eld ¡ was presented illustrating via extensive simulations the performances of
the novel quaternion ¦lters. The novel ¦lter paradigm shows a clear advantage
with respect to a standard additive Kalman ¦lter, which failed to converge in a
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rapidly tumbling dynamics environment. Future work will handle a convergence
analysis of the ¦ltering algorithms, including the modeling of Earth albedo, and
experimental investigations of the Sun vector determination and attitude esti-
mation performances.
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