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1
INTRODUCTION

1.1. RESEARCH BACKGROUND
We depend on the Internet.

In 2013, more than 72% of the population in the European Union used the Internet at
least once a week [114]. Individuals use it for communication, for information, as a mar-
ketplace, and for leisure. Organizations use it to connect with their customers, partners,
suppliers, branches and teleworkers. Governments use it to connect with civilians, en-
terprises, and other governments. The Internet brought forth completely new concepts,
such as e-commerce, e-government and cloud computing.

Unfortunately, a new type of crime has also emerged along with the Internet: cy-
bercrime. Its impact is significant. According to a Eurobarometer survey, held in 2013,
about 50% of the Internet users in Europe is concerned about experiencing various types
of cybercrime [115]. The global damage caused by cybercrime is not exactly known, but
runs into billions of USD [4].

Botnets play an important role in cybercrime. A botnet consists of a large group
of remotely controllable computers or bots. The bots are controlled by an individual
or organization, referred to as the botmaster. Although there are some rare examples
of benign botnets that perform legitimate tasks, most botmasters have malicious ob-
jectives and deploy bots exclusively for criminal operations. Without the knowledge or
consent of the owner, computers are recruited as a bot by malware infection and sub-
sequently deployed in diverse criminal activities, such as DDoS (Distributed Denial of
Service) attacks, spam, click fraud, theft of sensitive information, and even cyber terror-
ism [27][126][136]. In this work the word botnet refers exclusively to malicious botnets.

1.1.1. SCHEMATIC OVERVIEW OF A BOTNET
Figure 1.1 gives a schematic overview of a botnet. Criminal attacks are launched from
bots. Every Internet-connected computer, including: Personal Computers, mobile
phones, network printers, embedded devices, and industrial process controllers, can be
turned into a bot by malware infection.

1
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The botmaster communicates with the bots in a special communication infrastruc-
ture, referred to as the C&C (Command and Control) Infrastructure. The botmaster is
separated from the attacking bots by intermediate computers or stepping stones that
complicate the trace back from discovered bots towards the botmaster by the C&C com-
munication. The trace back complexity is further increased when the stepping stones
are distributed over several countries with different legislation [69].

Figure 1.1: Schematic overview of a botnet.

1.1.2. DEFINING BOTNETS AND BOTS
It is difficult to accurately define a botnet [104]. Although it is evident that a botnet is
a set of bots, connected to a botmaster, this definition is not satisfactory without the
definition of a bot. Communication plays an important role, but the sole ability of mal-
ware to connect to other malicious instances is not a sufficient condition to classify an
infected computer as a bot. Modern malware is practically always a combination of dif-
ferent components for: infection, attack, concealment, adaption, and communication.
Not only popular media, but even scientific literature, often refers to the same malware
instances with different terms, such as: virus, root kit, backdoor, RAT, or trojan. The
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choice of the name often depends on a particular property or component that is high-
lighted by the referrer. Despite efforts to classify malware or attack classes in a taxonomy
[69][63], there is no accepted uniform definition of a bot. In our work, instead of giving
an exact definition of a bot, we present two basic conditions that must be met, to classify
an infected computer as a bot:

1. Remotely controllable: A bot is remotely controllable. The communication chan-
nel for the remote control is designed as an infrastructure that can enduringly
connect a large group of bots with each other and/or the botmaster. Depending
on the obtained privileges, local files and hardware-related resources can become
remotely accessible or controllable by the botmaster.

2. Adaptable: The bot has built-in functionality to change its settings, functionality,
and program code. The botmaster can control the adaption by the C&C chan-
nel. This can include downloads of new settings and/or malware. Examples of
adaptions are: addition of a specific attack capability, modification of the C&C
communication, deployment of new countermeasures against specific types of
detection, and complete removal of the malware and its traces.

Both conditions require specific pre-built provisions in the malware of any bot. If
the involved malware lacks these provisions, the infected computer is not a bot. Hence
a computer, infected by a simple backdoor or spyware agent that connects to a remote
receiver is not a bot, since it cannot be adapted. A computer infected by a polymorphic
virus is not a bot if there is no remote control after infection.

Both conditions also constitute the key facilities that turn a botnet into a universal
tool for cybercrime.

1.1.3. THE EVOLUTION OF BOTNETS
The first botnets saw the daylight in 1989 with the introduction of IRC (Internet Relay
Chat) and were intended for benign IRC control and usage [101]. In 1998 GTBot was one
of the first popular malicious botnets, used for DDoS attacks. Its C&C infrastructure was
based on IRC. It was followed by many variants that all used IRC or the HTTP protocol
as C&C [8]. In addition to DDoS, other botnet applications followed, most notably, the
distribution of spam [45]. Early botnets that were used for distribution of spam were
Agobot and Bobax, around 2003 [105]. During the last decade, in addition of DDoS and
spam, botnets were deployed for all types of attacks that require some type of collusion,
such as: click fraud, phishing, and cycle stealing. In 2013 a new and emerging applica-
tion, based on cycle stealing, is the mining of bitcoins by botnets[100].

All mentioned attacks have in common that the effectiveness is closely related with
collusion between a large number of bots in a botnet. Collusion transforms a botnet
into a computer grid, containing computers of different owners that work together to
solve a common problem [24]. Unfortunately, in this case the common problem is a
criminal task. Grid computing can be relatively cheap and highly scalable compared to
centralized computing. If implemented correctly, an increase of the number of nodes
will result in approximately an equal growth of computing power, bandwidth and/or
storage. A huge grid with massive computing capabilities can rapidly be established by
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the mentioned scalability of grid computing, combined with the exponential growth of
malware infections by viruses or worms. This is supported by discoveries of very large
botnets, with thousands to millions of computers, committed to Internet-related crim-
inal activities. In 2010, the Conficker Working Group tracked more than 2 million dif-
ferent IP-addresses, belonging to bots in the Conficker botnet. In the same year, the
National High Tech Crime Unit of the Netherlands’ Police Agency (NHTCU) estimated
the size of Bredolab, a botnet that was taken down, around three million [34]. Of course
exact figures about botnet sizes are in some cases questionable [104] but convictions of
botnet-related crime, like DDoS-related extortion and spam, show the significance of
large botnets [34][55]. Several incidents also reveal that in conflicts, or situations of po-
litical tension, large botnets are used for terroristic attacks and warfare. A well-known
example is the DDoS attack, launched from a massive number of bots, that targeted Es-
tonian institutions for two weeks in 2007, during a period in which there was a strained
relationship with Russia. Many similar incidents are reported from regions with war or
political tension, like Korea, Georgia, West Bank, and Syria [126].

Botnets can be used for data theft. This can concern data that is directly stored on the in-
fected computer, or captured from connected I/O devices, such as keyboard and screen.
But also other data is vulnerable, if it is indirectly accessible from resources to which the
bot has special access, such as other computers that are located in the same network. In
addition to theft, data access also enables manipulation or destruction of information.

In case of botnets that target consumer computers, the stolen or manipulated data
is often used for identity fraud and related bank fraud. In case of botnets that target
enterprise networks, the objective is often espionage, data manipulation and sabotage.
Not only criminal organizations are behind such attacks. There is growing evidence that
governments use botnets systematically for cyber espionage [12][36][41][84].

In 2009 Ghostnet infected more than thousand computers worldwide of which 30%
resided in government institutions, including governmental offices. Ghostnet bots were
capable of searching and transferring files, and covertly operating devices such as web-
cams and microphones [36].

In 2010 Stuxnet sabotaged nuclear installations in Iran. Research revealed extremely
sophisticated malware that could control industrial PLCs. Although often referred to
as a worm, because of its advanced spreading mechanism, Stuxnet includes also bot
functionality with C&C for information upload and updates. It is believed that foreign
authorities were behind the attack, because of the advanced design of the malware [42].

In 2010 Google announced that it was infiltrated by malware that had stolen intel-
lectual property and had targeted Gmail accounts of Chinese activists. The responsible
malware was later named Operation Aurora by McAfee and research revealed sophis-
ticated malware that used C&C. According to Google at least twenty other companies
were also attacked [41][84].

Revelations about the NSA, by Snowden in 2013, include information about the in-
filtration of a large number of computer networks around the world by the U.S. govern-
ment. In some cases malware was used with C&C functionality for control and transport
of the harvested information [12].
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1.1.4. BOTNET COUNTERMEASURES
Many countermeasures have been deployed against botnets. Apparently there has been
no decisive countermeasure, because botnets are since many years the most important
instrument of Internet related crime and massive numbers of computers are part of bot-
nets. This is illustrated by many publications, such as:

• Research, conducted in 2009 among ISPs, in the Netherlands revealed that be-
tween 5% and 10% of all connected computers were part of a botnet [128].

• At the end 2013 of Microsoft announced that it had taken down the ZeroAccess
botnet, in a cooperative effort with authorities and industrial partners. The bot
consisted of several million bots. This was the eighth botnet takedown by Mi-
crosoft in the last three years [14].

• Symantec reported in 2012 that worldwide there is still a spam rate of 69% of
all mail. Spam is almost exclusively sent by botnets. The spam rate is declining
slightly since 2011, but targeted attacks and espionage increased by 42% [122].

In line with these publications, the continuous media attention also indicates that
botnets are still a real and unsolved threat.

An important success factor of botnets is the high survivability. Since botnets are
used for criminal activities, a botmaster will continuously anticipate the high risk of re-
pressive actions. Like any critical infrastructure the botnet survivability is increased by
redundancy and diversity. For botnet C&C communications, typical techniques that in-
crease the survivability are IP fast-flux techniques [65] and peer-to-peer C&C between
bots [66]. In contrast to legitimate infrastructures, invisibility is an important factor in
botnet survivability, because repression can only take place after detection. A botnet has
various types of activities that are eligible for detection, such as: the infection, the sub-
sequent host activity, C&C communication, attacks, and money flow. Advanced stealth
technology is at the disposal of botnets to stay below the radar of Anti-Virus solutions
and Intrusion Detection Systems. This includes techniques, such as: code morphing,
encryption, steganography, segmentation of botnets, tampering of detection systems,
and the use of popular protocols and well known services [113]. Fortunately, the invis-
ibility of a botnet has practical limitations. Important causes that limit the invisibility
are:

• attack traffic: Traffic, such as DDos-traffic or spam give opportunity to discover
bots;

• other survivability measures: Techniques as IP fast-flux and peer-to-peer can re-
sult in detectable anomalies;

• malware installation: during the initial installation of the malware a bot can be
visible, because some bot-related stealth techniques, are not effective until after
complete installation.

• limited resources: the effort, invested in invisibility by the increased complexity of
program code, communication, and maintenance, must be covered by the botnet
revenue.
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Not all invisibility restrictions are always applicable. The level of invisibility depends
on the type of botnet and its deployment.

1.2. THE ENTERPRISE NETWORK
Computer networks of organizations are often referred to as enterprise networks. An en-
terprise network comprises a generic model of a computer network that is exclusively
used by a private or public organization. In addition to communication media and net-
work components, it can include a large variety of end systems or computers, such as:
desktop computers, servers, mainframes, industrial equipment, and connected (mo-
bile) devices. There is one common administration. The size can range from a SOHO
(Small Office Home Office) network with only one or a few computers in a LAN, to a large
network with many LANs, optionally distributed over several locations and connected
by WANs as private or virtual private networks. Large network technology corporations
have defined enterprise networks in reference models, such the Enterprise Campus 3.0
Architecture of Cisco [25] and the FlexNetwork Architecture of HP [64].

We oppose enterprise networks to public networks that deliver connectivity to home
networks and mobile consumer devices. The computers in a home network are typi-
cally: PCs, laptops, tablets, game consoles, and all types of embedded devices for per-
sonal use at home. It also includes smart phones for private use, connected by home
WIFI.

In contrast to the public networks, enterprise networks have a common adminis-
tration that includes control over the end systems and communication. Enterprise net-
works are isolated from public networks by well defined perimeters with controlled ac-
cess, normally implemented by firewalls. Inside an enterprise network, the end systems
are confined in compartments with different communication policies. For example a
public accessible internet server is located in a Demilitarized Zone, or DMZ. Client com-
puters are located in separate compartments with stateful traffic inspection, that only
allows traffic if it is initiated by the clients.

There are small networks with properties of both enterprise and home networks, but
in our problem statement we will use the simple classification of enterprise networks
versus public networks with connected home networks and consumer devices. To make
the distinction as clear as possible we clarify some special cases that can give rise to
confusion:

• Public LAN in a corporate network: Some enterprise networks deliver public inter-
net access to visitors or employees. If this part of the network is well confined, it
can be seen as a separate public network that is not a logical part of the enterprise
network.

• Cloud computing: Many components of the corporate network can be virtualized
and remotely delivered by cloud services. This includes complete parts of the in-
frastructure, (Infrastructure As A Service). Although located on a different physical
location, the virtual infrastructure, offered by the cloud can logically be seen as an
integral part of the enterprise network of the client.

• Mobile devices: The trend of BYOD (Bring Your Own Device) introduces the se-
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curity risk that mobile consumer devices become de facto part of the corporate
network. This is prevented by allowing the complete consumer device only in a
public compartment, as a visitor. In addition the device can be logically divided
into in a confined secure workspace that is part of the enterprise network and an
isolated consumer workspace that is connected with a public compartment of the
network.

• ISP: Internet Service Providers have a public network for their clients and an en-
terprise network for management and control of the public network.

1.3. PROBLEM STATEMENT
We focus on network-based detection of bots in Internet-connected enterprise networks.
With regard to the botnet threat and botnet detection, enterprise networks differ in sev-
eral ways from public networks:

• Attack type: As described in Section 1.1.3, there are many incidents that indicate
that botnets are systematically used for espionage (including information theft)
and sabotage in organizations. The attacks are commercially or politically moti-
vated. Enterprise computers, infected with malware that is designed to infiltrate
an organization for stealing or modifying information, are usually part of a botnet,
because:

– A botnet provides the attacker scalable simultaneous control over many in-
stances in multiple infiltrated organizations.

– Bots are adaptable to specific encountered situations or sudden changes.

– A carefully designed C&C infrastructure can contribute to the invisibility of
the malicious communication.

Since the effectiveness of espionage and sabotage depends highly on invisibility,
these bots are normally not used for other more common bot activities, such as
spam or DDoS, because this would increase the detection probability by noisy
attack traffic.

• Revenue per bot: The average revenue of a specialized bot for espionage or sabo-
tage in an enterprise network is obviously much higher than the average revenue
of a generic DoS, or spam on a consumer network. The botmaster will put much
effort in invisibility, to protect the organization-infiltrated profitable bot and as-
sure its successful and prolonged operation. In addition to mentioned absence of
attack traffic, the invisibility is further improved by maximum control over the in-
fected computers to compromise any type of host-based detection, and discrete
low volume C&C traffic.

• Detection and repression environment: The potential presence of sophisticated
botnets for espionage and sabotage within the enterprise premises is regarded by
many organizations as an Advanced and Persistent Threat (APT)[32][99]. As a po-
tential victim, organizations will be highly motivated to respond to this risk with
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comprehensive countermeasures, despite the associated considerable costs. This
opposes the defense against bots on consumer computers. An average consumer
has very limited skills and resources to detect a sophisticated botnet infection. 1

The expected high level of invisibility of specialized bots in an enterprise network and
the difference in detection environment give opportunity to specialized bot detection
that anticipates specific properties of enterprise networks in addition to generic detec-
tion approaches.

To our knowledge, despite the existence of many proposed and implemented counter-
measures, there is little research on botnet detection measures that anticipate the de-
scribed specific environment of enterprise networks. This thesis addresses this knowl-
edge gap. Our research focuses on network-based detection of C&C traffic in enterprise
networks, because:

• Detection is a crucial component of all reactive countermeasures.

• All bots require C&C communication.

• C&C traffic detection in an enterprise network can directly identify infiltrated bots.

• Network-based detection has a low dependency on end systems and a low expo-
sure to malware.

1.4. RESEARCH OBJECTIVES AND SUBSEQUENT RESEARCH AC-
TIVITIES

Our research aims for new network-based C&C detection approaches that anticipate
specific properties of enterprise networks. We will not only consider properties or fea-
tures that are used as direct input for classification of network traffic, but also other
properties that are conditional for successful detection. The research is decomposed in
three research objectives:

I Identify generic properties that are used in existing network-based C&C detection
approaches and identify specific properties of enterprise networks that may lead to
new detection approaches.

II Propose new network C&C detection approaches that anticipate on one or more of
the identified enterprise network-specific properties.

1Some experts and authorities suggest that public ISPs, that connect consumer devices with the Internet,
should play a more active role in countering botnets, despite the fact that they are not the primary victim.
However the counter possibilities of public ISPs in the consumer network are limited because:

– An ISP’s primary goal is the make money. An average private customer is not prepared to pay signifi-
cantly more for advanced botnet countermeasures.

– Legislation on privacy and net-neutrality limit respectively the observation and policing of private
traffic by a public ISP.

– A public ISP has no direct control over the connected end systems.
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III Estimate the detection performance of these new approaches.

Adhering to these objectives and the addressed knowledge gap in Section 1.3, three
consecutive research questions are formulated:

1. What are distinctive properties of existing network-based C&C detection ap-
proaches and which enterprise-specific properties are potentially suitable for new
detection approaches?
Research Activities:

(a) Exploration of existing representative C&C detection approaches, including
the relevant properties that are used or conditional for successful detection.

(b) Identification of properties that are specific for enterprise networks and that
can lead to new detection opportunities.

2. How can botnets be detected in an enterprise network, anticipating the identified
new characteristic properties of question 1b?
Research Activities:

(a) Design of new detection approaches, based on the identified properties of
Activity 1b.

(b) Compare the new approaches with existing approaches as identified in Ac-
tivity 1a.

3. What detection performance is expected from the newly identified detection ap-
proaches of question 2?
Research Activities:

(a) Identify the most important parameters that express the performance of C&C
detection.

(b) C&C detection modeling and error-related prediction of the approaches, as
proposed in Activity 2a.

(c) Experimental evaluation of the predicted performance, by testing the detec-
tion approaches of Activity 2a

1.4.1. CONTRIBUTIONS
The contributions of this thesis are summarized as follows:

1. We developed an ontology-based faceted classification to systematically identify
and compare botnet countermeasures and botnet traffic detection approaches.

2. We identified inter-traffic causality, causality between user activity and traffic, the
trustworthiness of traffic destinations, and DNS domain degree distribution, as
new properties that can be used for botnet C&C anomaly detection.

3. We developed the CITRIC (CITRIC = Causal Inspection To Recognize Illegal Com-
munication). CITRIC is a framework that analyzes and detects hidden botnet C&C
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communication by building causal relationships between traffic flows, prior traf-
fic flows, and user activity. As a part of the analysis CITRIC can produce Traffic
Flow Causality Graphs, for manual evaluation of complex communication dia-
logues.

4. We proposed and evaluated TFC-detection. TFC is the acronym for Traffic Flow
Causality. Botnet C&C traffic is detected by the observation of direct causes of
traffic flows.

5. We proposed and evaluated UDI-detection. UDI is the acronym for Untrusted
Destination by Identifier. It detects botnet C&C communication by determin-
ing the trustworthiness of contacted destinations by their identifier, such as IP-
addresses and domain names.

6. We proposed and evaluated a DNS-based detection approach, based on anoma-
lies in the degree distribution of domains, derived from DNS traffic in one or mul-
tiple enterprise networks.

1.5. THESIS OUTLINE
The remainder of this thesis is structured by the research questions and activities of
Section 1.3, as shown in Table 1.1.

Table 1.1: Relation between the thesis content and the research questions and activities.

Chap. Outline Research Question & Activities
1 Introduction definition of the research
2 Botnet detection in enterprise networks 1a, 1b, 3a
3 Detection by user activity 2a, 2b, 3b, 3c
4 Detection by causal relationships 2a, 2b, 3b, 3c
5 Detection by trusted destinations 2a, 2b, 3b, 3c
6 Detection by DNS distribution anomalies 2a, 2b, 3b, 3c
7 Concluding remarks evaluation of the research

Chapter 2 covers existing network-based botnet detection approaches and identi-
fies potential properties that can be used in new detection approaches in enterprise
networks. New potential detection approaches, based on the identified properties, are
derived.

Chapter 3, 4, 5, and 6 elaborate the derived anomaly detection approaches of Chap-
ter 2 by presenting detector designs, modeling detection performance, evaluating through
experiments, and discussing limitations. Chapter 3 explores detection by associating
network traffic with user activity. Chapter 4 completes this concept by including traffic
events in a complete causal analysis of network traffic flows. CITRIC, a framework, we
developed for demonstration and evaluation of the detection approach, is presented.
Chapter 5 elaborates UDI-detection. This approach identifies anomalous contacted
destinations by estimation of the destination trustworthiness, derived from the desti-
nation identifier. A modified version of CITRIC is used for experimental evaluation.
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Chapter 6 elaborates DNS-based detection of C&C detection in enterprise networks
and presents detection by anomalies in the degree distribution of visited domains. The
Chapters 3, 4, 5, and 6 take the format of separate research papers, since they are ear-
lier published in proceedings of peer reviewed conferences. We have made adjustments
and additions to the papers, to fit them as consistent chapters in this thesis.

Chapter 7 concludes the thesis by a retrospective evaluation of the complete re-
search and the contributions of the thesis, including an overview of found limitations,
and possible directions for future works.





2
COUNTERING BOTNETS BY THE

DETECTION OF C&C TRAFFIC IN

ENTERPRISE NETWORKS

This chapter starts with the introduction of the fundamentals of NIDSs (Network Intru-
sion Detection Systems), including the most important criteria to evaluate different de-
tection approaches. However this knowledge is not enough for finding new detection ap-
proaches that anticipate specific properties of enterprise networks, because many choices
are involved, not only concerning detection, but the complete countermeasure of which
detection is a component.

Since there are no decisive countermeasures against botnets, multiple diverse counter-
measures must be taken to establish a layered security defense. To assess the diversity
by the most important similarities and differences between botnet countermeasures, a
generic ontology-based faceted classification is presented. The classification system can
be used as an instrument to select countermeasures components in a layered security de-
fense, by their diversity and appropriateness for a specific environment.

Since our research focuses on the detection of botnet traffic, we extend the presented generic
classification of botnet countermeasures with detection-specific facets that cover: mea-
sured features, knowledge, and state. We evaluate detection of sophisticated espionage
bots in enterprise networks by these three facets. With the results we derive new detection
approaches that anticipate on specific properties of enterprise networks and complement
existing detection approaches.

13
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2.1. NETWORK INTRUSION DETECTION
Detection of botnet traffic can be seen as a special type of intrusion detection that dis-
cerns normal traffic from malicious traffic. Detection, based on the observation of traffic
features, is often referred to as network-based intrusion detection or NIDS. In this sec-
tion we discuss common approaches of network-based intrusion detection. A generic
detection model is presented in Figure 2.1. Traffic samples, such as IP packets, or flows,
are fed to the detector. Relevant properties, referred to as features, are extracted from
the traffic samples. The features are submitted as feature vectors to the classification
process. The classification process uses knowledge to make the decision. The decision
is binary, since one class is the intrusion traffic or malicious traffic, and the other class
is the normal or legitimate traffic. In the case of botnets the malicious traffic can be di-
vided in C&C traffic and attack traffic. Examples of attack traffic are: port-scans, spam,
and DDoS attacks.

Figure 2.1: Generic model of a detector.

2.1.1. FEATURE EXTRACTION
In the case of network intrusion detection the data samples typically consist of IP pack-
ets. The accuracy of the classification depends strongly on the selection of appropriate
features. Especially in the case of stealth Command and Control communication, it is a
challenge to identify such features. The large number and the high diversity of features,
proposed in literature, make it difficult to compare detection approaches. Examples of
features are: packet rate, flow size, IP addresses, entropy, time, flow direction, flags, the
presence or absence of payload strings patterns, port numbers, protocols, time stamp,
time interval, etc.

In literature several ad hoc classifications of traffic features are presented, often in-
troduced to explain the mechanism of a particular detection approach. Frequently the
classification is only appropriate for this specific type of detection [49]. An example of a
taxonomy that is not constrained to a particular detection approach, is the taxonomy of
traffic features, proposed by Onut et al. [96]. This taxonomy starts by discerning basic
features of a single packet, from derived features, extracted from multiple packets. It
further differentiates the derived features by the way how packets are selected for the
derived features. Selection criteria are: IP-address, traffic direction, time interval, and
connection. With 26 classes of features, the resulting taxonomy is detailed. To provide
more overview, we propose a simpler classification of traffic-related features that only
distinguishes three classes of features:
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• Header(L2, L3, L4): The features are values of fields in the headers of the datalink
(L2), network(L3) and transport(L4) layer. Examples are: source IP-address, Pro-
tocol (TCP/UDP), destination Port. The parsing of these features is normally done
directly per packet.

• Application data: The features are parsed from the traffic payload. This includes
formal fields of the application layer. Examples are string patterns, DNS replies
and HTTP Cookies. The parsing of these features is normally done per flow or per
connection.

• Metadata: The features are not directly parsed from headers or payloads, but indi-
rectly determined. Examples are time-stamps, momentary packet size, byte count
per flow, packet count per flow, entropy of a message, average packet size, etc.
Metadata often implies aggregation of packets in flows.

2.1.2. KNOWLEDGE
The knowledge, needed for classification, can be obtained and represented in many
ways. If all possible data instances are known, a set of reference vectors can be con-
structed, representing the knowledge. In such a case, classification consists of calcu-
lating the distances between the input vector and each of the reference vectors by cor-
relation and subsequently determining the shortest distance, as shown in Figure 2.2.
In practice, by the diversity of both normal and malicious traffic, it is very difficult to
determine a set of reference vectors that completely covers all normal and malicious
traffic. Since intrusion detection involves a binary classification, it is sufficient to have

Figure 2.2: Detection with known reference vectors.

knowledge of only one of the two traffic classes. If the distance between the input vector
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and reference vector is within a predefined range the known class is chosen. Otherwise
the alternative or reject class is chosen. This results in two basic binary detection ap-
proaches with regard to knowledge: Misuse detection and Anomaly detection:

Misuse detection uses only knowledge of the attack, represented by specific signatures
of known attacks. If traffic does not match the signatures, it is automatically classified in
the reject class as normal. Examples of attack signatures are data patterns in payloads
but also blacklisted ranges of IP-addresses, domain names, and ports. Signatures are of-
ten implemented as rules that allow for a more versatile, and complex matching and the
inclusion of specific actions if a match occurs. This type of detection is often referred to
as: misuse detection, signature detection, or rule-based detection. Figure 2.3 shows the
basic setup. The use of intermediate results of prior traffic instances is modeled with

Figure 2.3: Misuse Detection.

optional state. An example is the SSL state of a connection, as implemented in Snort
[109]. If a proper signature is present, misuse detection can accurately detect a known
attack. This shows also the weak site of misuse detection: In case of new or unknown
malicious traffic there are no signatures present, which results in classification as nor-
mal traffic. To minimize the risk of missing such zero-day malicious traffic, the database
of signatures or rules needs to be continuously updated, anticipating the newest types
of malicious traffic.

Anomaly detection discerns normal traffic from malicious traffic by knowledge of nor-
mal traffic. All traffic that does not match the normal profile, it is placed in the reject
class and labeled as anomalous. Literature describes three basic techniques: statistical,
specification based and machine learning [37][48][49][79].
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• Statistical: A baseline of normal traffic is measured and statistical properties are
stored as a normal profile. New traffic is evaluated on statistical properties and
an anomaly score is calculated from its distance from the normal profile. The in-
volved type of traffic features is metadata. The implementation is often a decision,
or decision tree, based on threshold comparison. If the distance exceeds a certain
threshold, the data sample is classified as anomalous. A method to determine the
threshold by the first and second moment of the measured distances, is Cheby-
shev’s inequality, as proposed by Denning and shown in Equation 2.1 [37].

P (|X − x̄| ≥ n.σ) ≤ 1

n2 (2.1)

x̄ is the first moment, σ the second moment, and n a real number greater than 1.
The formula gives an upper bound of the probability that the value of a stochastic
variable deviates more than nσ of x̄.

• Specification-based: If the normal behavior is limited to a small number of possi-
bilities, the normal profile can be described by rules and optional states. It works
on the mechanism of least principle by classifying all traffic as anomalous if it
does not comply with the predefined rules [49]. This is especially useful to detect
deviations from known policies or protocols. The knowledge is typically manually
constructed by an expert [48]. The implementation consists often of one or more
binary decisions, represented by rules that are defined by an expert. Figure 2.4
shows a basic scheme of specification based detection.

Figure 2.4: Anomaly Detection by predefined specifications.

• Machine-learning: The normal profile is automatically learned by a machine learn-
ing algorithm. In the case of supervised machine learning, the detector learns by a
labeled training set of known normal and anomalous traffic. The training with la-
beled anomalous traffic makes the knowledge of supervised machine learning not
only anomaly-based, but also partly misuse-based. Examples of machine learn-
ing algorithms are: Bayesian networks, neural networks, and artificial immune
systems. Figure 2.5 shows a supervised machine learning detector. In the case of
unsupervised machine learning, the detector will detect anomalies by identifying
outliers in data by clustering algorithms such as K -means [70].
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Figure 2.5: Anomaly Detection with supervised machine learning.
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2.2. EVALUATION OF INTRUSION DETECTION METHODS
Intrusion Detection methods can be assessed on many evaluation criteria. The perfor-
mance with respect to correct classification is one of the most important criteria. It will
be elaborated in Section 2.2.1. Evasion, decision speed, exposure, and implementation
complexity are relevant additional criteria which are often evaluated in literature con-
cerning detection proposals. These will be elaborated in Section 2.2.2.

2.2.1. DETECTION PERFORMANCE
A network intrusion detector classifies traffic instances in two sets: malicious and nor-
mal traffic. In practice this classification will not always be correct. In some cases mali-
cious traffic will be erroneously classified as normal traffic and vice versa. Since a binary
intrusion detector classifies in either malicious or normal classes, and since the deci-
sions can be either true or false, there are 4 potential outcomes. This is illustrated as a
Venn diagram [129] in Figure 2.6.

Figure 2.6: Venn diagram of binary intrusion detection with the actual and detected attacks.

The diagram represents the four potential outcomes as sets:

• True Negatives: The observed data instance does not belong to malicious traffic
and the detector classifies the instance correctly as normal.

• True Positives: The observed data instance belongs to malicious traffic and the
detector classifies the instance correctly as malicious.

• False Negatives: The observed data instance belongs to malicious traffic and the
detector classifies the instance incorrectly as normal.

• False Positives: The observed data instance does not belong to malicious traffic
and the detector classifies the instance incorrectly as malicious.

Another way to represent this is a confusion matrix as shown in Table 2.1 [78]. The error-
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Table 2.1: Confusion matrix

Detection Decision
Malicious (=POS) Normal (=NEG)

Actual class
Malicious (=POS) TP FN
Normal (=NEG) FP TN

related performance of the detection can be expressed as conditional probabilities that
depend on the actual situation. The most popular probabilities are:

1. True Positive Rate (TPR)
Also known in literature as Detection Rate (DR), Sensitivity, Recall, Power, and Hit
Rate. As shown in Equation 2.2, the TPR equals the ratio of correctly detected
malicious traffic events to all malicious events. Ideally the TPR=1.

T PR = #T P

#T P +#F N
= P (POS|M al i ci ous) (2.2)

2. Precision
This is the ratio of correctly classified malicious traffic to all positives. Ideally the
Precision=1 (Equation 2.3).

Pr eci si on = #T P

#T P +#F P
= P (M al i ci ous|POS) (2.3)

3. False Positive Rate (FPR)
The FPR is also known as the False Alarm Rate (FAR) or Significance Level. It is the
ratio of normal traffic events, erroneously classified as malicious, to all normal
traffic. Ideally the FPR=0 (Equation 2.4).

F PR = #F P

#T N +#F P
= P (POS|Nor mal ) (2.4)

4. True Negative Rate (TNR)
Also known in literature as Specificity (SPC). TNR equals 1-FPR, hence it provides
the same information as FPR (Equation 2.5).

T N R = #T N

#T N +#F P
= P (N EG|Nor mal ) (2.5)

In many areas Recall (a synonym for TPR) and Precision are popular classification bench-
marks. A related benchmark is F-Measure, which is the harmonic mean of Precision and
TPR. A disadvantage of Precision (and F-Measure) is its dependency on the fraction of
malicious traffic in the complete observation set. A high concentration of malicious traf-
fic will result in a relatively high Precision, because the number of FP is relatively small
in such a case. In the case of intrusion detection the fraction of malicious traffic in a
complete observation set can vary significantly, depending on the network and obser-
vation time. Therefore in this thesis we will use another parameter or benchmark for the



2.2. EVALUATION OF INTRUSION DETECTION METHODS

2

21

analysis of proposed detectors that is also popular: FPR. We will use it together with DR
(also a synonym for TPR that is commonly used in detector descriptions) The influence
of detector settings on the DR and FPR can be very complex. ROC diagrams (Receiver
Operating Characteristic diagrams) [43] are a simple means to evaluate the influence of
a parameter on DR and FPR. As shown in Figure 2.7 an ROC diagram plots for a specific
setting the DR and FPR. Perfect detection is positioned in the upper left corner.
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Figure 2.7: Example of an ROC diagram.

The straight line with FPR=DR marks completely random detection. In practice, detec-
tion will always have curves above this line. The FPR scale is often logarithmic, because
practical values of FPR are normally very small. A small value of FPR is important, to
prevent an excessive number of False Positives, as the vast majority of the analyzed traf-
fic will be normal traffic.

2.2.2. OTHER EVALUATION CRITERIA
In addition to accuracy, other important evaluation criteria are evasion, decision speed,
exposure, and implementation complexity.

Evasion
If the adversary is aware of an intrusion detection system, he can take countermeasures
to evade or circumvent the detection system. The most important evasion techniques
are:

1. Encryption of the C&C traffic

2. High and random delays between malicious traffic
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3. Flow perturbation, including noise injection

4. Restriction of attack traffic

5. Source IP-address churn

6. Destination flux

7. Imitation of popular traffic

The first 5 techniques are derived from work of Stinson et al [119]. They systematically
evaluated the evadability of bot and botnet detection methods and the amount of effort
involved. Evasion possibilities of well-known detection approaches are qualitatively as-
sessed by their implementation complexity and effects on utility. We added two addi-
tional techniques: destination flux and imitation of popular traffic. Destination flux is
the frequent change of the destination of the C&C servers. This can be done in a simple
way by DNS updates of the involved A record [65]. Additionally the authorative DNS
server can be changed or even the hostname itself [137]. Evasion by imitation of pop-
ular traffic includes the use of popular services, such as services that are used by social
media.

Decision Speed
The type of repressive action after detection depends on the moment of the detection
decision. We distinguish three critical moments that depend on the detector state:

1. Immediate: the detector can decide immediately after capturing the first mali-
cious packet. The malicious communication connection can be completely re-
pressed.

2. After reception of normal traffic: the detector can detect malicious traffic after a
state has been built by other normal traffic. The malicious communication con-
nection can be completely repressed.

3. The detector can detect malicious traffic after reception of other malicious traffic.
The malicious communication connection can therefore only be partly repressed.

Exposure
In addition to evasion, the adversary can attack the countermeasure itself. The extent
to which a countermeasure is visible or reachable by the adversary is often referred to
as the exposure surface. Passive listening network-based detectors have a very small
exposure surface. However, if detection depends on software agents in potentially bot-
infected end systems, the exposure surface will be significantly larger. Virtualization can
reduce the exposure surface in end systems to some extent.

Cost
As with all countermeasures, the involved cost, related with its implementation and op-
eration, must normally be lower than the prevented or mitigated damage [80]. In the
design stage of a detector it is very difficult to assess quantitatively the cost of detection,
but important contributing factors can be identified and qualitatively assessed. Impor-
tant factors include:
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• Processing and memory resources: It is evident that deep inspection of individual
packets requires more processing and memory resources than the analysis of only
aggregated flow attributes. This explains the popularity of flow-based detection
systems. Intensive processing and memory requirements can result in high costs
and poor scalability that affects the feasibility of the detection approach. In such
case the suitability of an approach to be distributed over multiple systems, can
improve the feasibility.

• Knowledge maintenance: This includes knowledge updates of malicious traffic, by
means of new signatures or new training sets. It can also include new knowledge
about normal traffic, for example by means of a new baseline.

• Interception: This involves the complexity of the data capture process. In general
sensors in end systems, for example by software agents, are more complex to in-
stall and maintain, then a sensing mirror port on a central switch in the network.
In some cases the traffic must be intercepted and decrypted in the network. This
will result in processing costs, related with the processor-intensive decryption of
many simultaneous flows, but in costs that are related with the installation and
maintenance of the trust relationships between the intercepting detector and the
observed end systems.

• Costs of false positives: A false positive results in subsequent actions that involve
costs, related with unnecessary repression or further analysis.
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2.3. CLASSIFICATION OF BOTNET COUNTERMEASURES
The discussed properties of network detection systems in Section 2.1, show a complex
design space, which comprises many choices. In addition detection is a component of
a complete countermeasure that includes other design choices, related to aspects, such
as repression and implementation.

Instead of searching for one ultimate decisive countermeasure, a more realistic ap-
proach follows the principle of defense in depth and contributes to a layered security ar-
chitecture, by combining multiple diverse countermeasures that can complement each
other. The appropriateness of a countermeasure for a specific environment and the
diversity between multiple applied countermeasures are important conditions for suc-
cess. The complexity of existing botnet countermeasures and inconsistent vocabulary
make it difficult to compare countermeasures, discover relevant similarities and differ-
ences, and assess its appropriateness for a specific environment. As a solution to this
problem we introduce a classification of generic botnet countermeasures that identi-
fies similarities and differences between countermeasures and supports the selection of
countermeasures that are appropriate for a specific environment, such as a corporate
network, or an ISP (Internet Service Provider). We will present ontology-based faceted
classification of botnet countermeasures in Section 2.3.3 after discussing existing classi-
fications of threats and countermeasures in Section 2.3.1 and classification approaches
in Section 2.3.2. The Sections 2.3.4, 2.3.5, and 2.3.6 elucidate and motivate the proposed
classification. Section 2.3.7 evaluates the model by classifying examples of existing very
diverse countermeasures.

2.3.1. EXISTING CLASSIFICATIONS
Several classifications have been proposed to categorize botnets from different perspec-
tives:

• One of the first botnet-related classifications is of Dagon et al. [31]. They propose
effectiveness, efficiency, and robustness, to classify botnets by their topology.

• Anti-virus company Trend Micro proposes botnet classification by attacking be-
havior, C&C-models, rally mechanisms, communication protocols, observable bot-
net activities, and evasion techniques [86].

• Hachem et al. propose a botnet taxonomy by life cycle. They distinguish the sub-
classes: propagation and injection, C&C, and Application phases. [61].

• Rodriguez et al. present a survey of botnets by a life cycle-based taxonomy [108].

The relation between botnet properties and countermeasures is often complex and does
not directly bring order in existing countermeasures. For example, the same counter-
measure can be applied against different classes of botnets and conversely a particular
botnet class can be successfully defeated by various classes of countermeasures.

A direct classification of countermeasures has been proposed for other logical cyber
security threats. Most notably in the area of DoS-attacks many taxonomies of DoS attack
types and DoS countermeasures have been proposed [6][22][89][116]. The proposed
DoS taxonomies are closely related to taxonomies of the DoS threat itself. If we analyze
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the motivation for a classification of countermeasures, we see the following recurring
arguments:

• With a taxonomy of intrusion response systems, Stakhanova et al. aim at a better
understanding of the problem, exposure of unexplored areas, and provision of a
foundation for organizing research efforts in the field of intrusion response [117].

• Hamadeh constructs a taxonomy of Internet traceback techniques, to provide an
overview in this research area [62].

• Weaver et al. propose a taxonomy of worms, based on target discovery, carrier,
activation, payload, and attackers. The purpose of the taxonomy is a better un-
derstanding of the worm threat [134].

• A taxonomy of countermeasures against worms is described by Brumley et al. [15].
The concept of a design space, that shows degrees of freedom in the design of
countermeasures, is used as a motivation of the taxonomy. Fundamental proper-
ties and working mechanism classify the countermeasures instead of implemen-
tation and specific details.

• Karresand [73] proposes a generic weapon-based taxonomy of malware, claiming
the result of more consistent terms to describe the different types of malware.

In the domain of specific countermeasures against botnets we found three classifica-
tions in literature:

• Feily et al. present a taxonomy of four different classes of passive network-based
botnet detection: misuse-based, anomaly-based, DNS-based, and mining-based
[44]. For a clear view of similarities and differences between countermeasures,
the classification is limited, because in practice a countermeasure can have prop-
erties of more than one class, such as an anomaly-based detector that mines in
DNS payloads.

• Zeidanloo et al. classifies botnet detection in honeypots and Intrusion Detection
Systems [139]. Intrusion detection is classified in the subclasses misuse detection
and anomaly detection. Anomaly detection is classified in host-based and net-
work based active and network-based passive subclasses. The suitability of this
classification for determination of similarities and differences between counter-
measures is limited in a similar way as with the taxonomy of Feily et al.

• A more detailed taxonomy of botnet detection and defense approaches is pro-
posed by Khattak et al. [76]. The strictly unfaceted hierarchical structure of the
proposed taxonomies results in graphs with many repeating classes. In some parts
of the graphs, classes are not consistently repeated. This makes the classification
difficult to use and extend for diversity analysis and synthesis.
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2.3.2. TAXONOMY VERSUS ONTOLOGY-BASED FACETED CLASSIFICATION
The presented work in Section 2.3.1 shows that classification of cyber threats and coun-
termeasures is a common approach for structuring knowledge. The classifications of
the presented work use often the word taxonomy as a synonym for the resulting classi-
fication. We will use the word taxonomy restrictively, to refer to a specific classification
strategy, and oppose it against another strategy to which we will refer as ontology-based
faceted classification.

• We define a taxonomy as a hierarchical model of classes, ordered by inheritance
and represented by a rooted DAG (Directed Acyclic Graph) with classes as ver-
tices and inheritance relationships as edges. An object is classified by identifying
exactly the class in the taxonomy from which it is instantiated. The rooted DAG
structure allows for an easy stepwise selection of the appropriate class, starting
from the root. Taxonomies have two limitations: They only model by a "is-a" re-
lationship and it cannot efficiently model independent properties. For example
if we want to differentiate by a taxonomy DAG between van cars and sedan cars,
but also between diesel cars and petrol cars, the subclasses diesel car and petrol
car are repeated as child classes in both the van and sedan parents. This is shown
in the left diagram of Figure 2.8. One way to avoid this repetition is the modeling
of diesel and petrol as atomic properties in the car-class, but this prevents further
differentiation of cars by properties that depend on fuel types.

• A better classification strategy in this case is an ontology-based faceted classifi-
cation. Gruber et al. defines an ontology as "an explicit specification of a con-
ceptualization" [56]. Ontologies can have a hierarchical structure, similar to tax-
onomies, but class associations are not restricted to an "is-a" relationship [51].
In addition an ontology-based model can contain multiple hierarchical trees as
facets that together classify the object [94]. With a proper choice of highly inde-
pendent facets, each facet can directly identify a significant difference or simi-
larity between countermeasures and a well chosen facet can provide information
about the extent to which a countermeasure fits in a specific environment. In
addition, an accompanying short notation can support a fast overview of the dif-
ferences.

Figure 2.8: Comparison between taxonomy-based classification (left) and ontology-based faceted classifica-
tion (right) of a diesel van.

In a taxonomy a countermeasure is identified by exactly one class. In a faceted classifica-
tion, a countermeasure is identified by multiple classes of different facets that together
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model the specific countermeasure. This allows for efficient and precise modeling of
independent properties. In an ontology-based classification the edges of the DAG are
not restricted to only "is-a" relationships, but can also represent specific semantic rela-
tionships. For our car example we could model the subclasses van and sedan by a "is-a"
relationship. In addition to this facet, diesel and petrol are subclasses that belong to an-
other facet, semantically expressed by the verb "consumes". A specific car is identified
by both facets, for example a Van/Diesel. This is shown in the right diagram of Figure
2.8. The result is a more compact classification without the repetition of classes.

2.3.3. A FACETED ONTOLOGY-BASED CLASSIFICATION OF BOTNET COUN-
TERMEASURES

Inspired by the discussed classifications in the existing work we present a new classifi-
cation system for botnet countermeasure classification to identify similarities and dif-
ferences between countermeasures and select countermeasures for a specific environ-
ment. Our classification meets the following requirements:

1. diversity support: The classification directly identifies differences and similarities
between botnet countermeasures to evaluate diversity in combinations of coun-
termeasures.

2. environment specific: the classification facilitates the selection of botnet counter-
measures for a specific environment or situation, such as an enterprise network;

3. minimal ambiguity: All botnet countermeasures are classified by a simple process
with the use of a consistent vocabulary that results in minimum ambiguity.

4. extendable: the classification is extendable with additional more refined classifi-
cations, to evaluate diversity between botnet countermeasures in more detail.

To meet the requirement of diversity support and minimal ambiguity we do not use
a strict taxonomy but a faceted ontology-based classification as introduced earlier. The
risk of ambiguity is decreased by choosing facets with easy-distinguishable classes and
the representation of facets with all their classes in one graph. Environment-specific
selection of countermeasures is supported by facets that identify the implementation
and the object or activity that is countered. The ontology-based diagram model allows
for further faceted classifications of a class. This makes the classification extendable.

Figure 2.9 presents the proposed ontology of botnet-related countermeasures as a
UML class diagram. Although not primarily intended for representing ontologies, UML
class diagrams have the advantage of being well-known in the Computer Science com-
munity. UML class diagrams have been proposed as a representation for ontologies by
Cranefield et al. [28]. To limit the complexity of the diagram, we do not express cardi-
nality or object constraints. The root of the ontology classifies botnet countermeasures
by three important facets that identify: the object or activity that is countered, the place
where the countermeasure is implemented, and the moment ot time of intervention.
A countermeasure is classified by the combination of appropriate classes for each of
the three facets. For example a Network Intrusion Detection System (NIDS) which can
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detect bot-activity in an enterprise LAN with potential bots, is classified as: Bot, Net-
work, and Reaction. The Reaction class can be further refined by more detailed classes.
Inspired by the Kendall notation in queuing theory [75], we can combine and express
the matching classes in one systematic notation and use letters for the different classes.
Classes of different facets are separated by slashes. In addition brackets, are used to ex-
press hierarchy. The opening bracket must follow immediately after a letter. If multiple
classes in the same hierarchical level apply, the classes are enumerated by a ∧ or ∨ rep-
resenting respectively a logical AND, indicating that all classes must apply, or a logical
OR, indicating that at least one of the classes must apply. Brackets are used to give prece-
dence to a part of the logical enumeration expression. In this case the opening bracket
can only follow immediately after a /, ∧, or a ∨. If none of the classes of a particular facet
apply, a dash "-" is used as a placeholder.

The root classifications are expressed by one letter. All other classifications are ex-
pressed by two letters. If the NIDS of our example does not infiltrate the botnet, detects
by misuse knowledge, and does only alert a detected intrusion, the complete classifica-
tion becomes: B/N/R(Al/Ni/De(Mi)).

2.3.4. MOTIVATION OF THE FACETS "counters" AND "is-implementated-
in"

One of the most basic properties of a countermeasure is the object or activity that is
countered. In case of a botnet the countered object is not trivial because botnets consist
of a combination of components and activities that can be countered. We distinguish in
this facet four different classes:

• Bot Master: The countered object is the criminal individual or organization be-
hind the botnet. Examples are the bot herder, malware developer, mule, etc. Coun-
termeasures focus on criminal investigation and prosecution.

• C&C Infrastructure: The countered object is the C&C infrastructure, consisting of
components, services and communication that unite the bots to a botnet. Exam-
ples are: IRC-servers, HTTP-servers DNS-servers, stepping stones, C&C traffic in
the core of Internet, etc. C&C countermeasures focus on detection, infiltration,
and take down of the partial or complete botnet control structure. C&C counter-
measures can be implemented in the network, but also in hosts that might partic-
ipate in the C&C infrastructure.

• Bot: The countered object is the individual bot that receives instructions and car-
ries out specific tasks. Bot countermeasures focus on the mitigation of specific
bots by detection, shutdown, isolation, recruitment prevention, etc.

• Attack: Attack refers to the criminal activities of a botnet, such as spam, DDoS-
attacks or espionage. Related countermeasures are often implemented in the
vicinity of the victim, for example as perimeter-based defenses in a corporate net-
work, antivirus solutions on a host, or observation and control of money or em-
ployees.

The classes can be combined in some cases. For example the results of C&C traffic
detection can be used to identify bots, but also to identify C&C servers or domains. In
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such a case the classification can be expressed as: B ∨ C. Other examples of counter-
measures that can produce multiple classes per facet are:

• Al ∨ Kn: Detectors can produce at the same time alerts that can immediately be
used for repression, such as the IP-address of a malicious bot, and knowledge that
can be applied in other detectors, such as C&C signatures.

• Mi ∧ An: Infiltration-related detection relies on misuse-related knowledge for the
infiltration itself and produces anomaly-related knowledge, related with the ob-
served activities after infiltration.

Indirect effects are not considered for classification. For example the detection and
shutdown of a bot implicitly represses its attacks, however, it is only classified as a bot
countermeasure, because the cease of attacks from a repressed bot is an indirect effect.
In addition, attacks can still continue from other bots.

The countered object or activity must not be confused with the place of implemen-
tation. For example bot detection can be implemented in a potential bot-infected host,
but also as a separate device in the connected LAN. The place of implementation is im-
portant, since it affects the choice of detection features, repression possibilities, and the
exposure of the countermeasure to the botnet. Therefore, an additional facet, by the
place of implementation, is included in the ontology, which distinguishes between:

• Network: countermeasure implemented in an existing network component or as
a separate appliance

• Host: countermeasure implemented as a software agent in a production com-
puter

• Hypervisor: countermeasure implemented in the host that runs Virtual Machines

• External implementation: countermeasure not implemented in network, host, or
hypervisor as described in the three above classes. Examples are countermeasures
in separate devices, in an organization, or by human activity.

2.3.5. MOTIVATION OF THE FACET "intervenes by"
A botnet attack goes through various stages, such as developing the bot software, or
actually attacking a victim. Every stage enables specific countermeasures. This sug-
gests a time- or stage-related classification. Schiller and Binckley present a detailed life-
cycle consisting of nine stages of an individual bot in a cycle: infection, rally to C&C,
retrieval of antivirus scanner measures, securing the bot, listen to commands, receiving
commands, executing commands, reporting results and abandonment of the host, in-
cluding erasure of evidence [113]. Variations of this cycle can be found in various defense
approaches. Gu et al. assumes a resembling lifecycle as a base for vertical correlation
or dialog correlation [58]. Some details differ, like the presence of a stage that includes
outbound scanning behavior. Leaving out optional stages, and involving the attacker, by
adding stages for planning and evaluation, leads to a more generic lifecycle of the total
botnet, as shown in Figure 2.10. Considering the requirements of our classification, the
botnet life cycle seems a potential candidate for a time-related classification, because it
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Figure 2.10: Generic lifecycle of a botnet.

is botnet-specific with clear boundaries and addressing diverse countermeasures. How-
ever, the life-cycle-based time classification depends on the countered object, as shown
in Table 2.2. This dependency makes the life cycle an unsuitable facet in our taxonomy.

Table 2.2: Dependency of the botnet life cycle on the countered objects.

Time Dependency on the
countered object

Explanation

Planning Bot Master planning is only done by humans
Recruitment Attack recruitment is an attack type
Consolidation - possible in all places
Instruction Bot, C&C bots receive instructions from C&C
Attack Attack QED
Dismantling - possible in all places
Evaluation Attacker evaluation is done by humans

An alternative more object-independent and well-known time-related classification
is the security event-cycle [98]. The stages of a security event divide defense measures
in:

• Preventive measures

• Detective measures

• Repressive measures

• Corrective measures

Unfortunately, a part of this classification lacks consistency, because a botnet attack in-
volves many parties with different perspectives. For example, from the perspective of a
potential victim, the removal of bot software from a host is a preventive measure, but
from the perspective of the owner of the infected host, a corrective measure. Inconsis-
tency also arises by undefined system boundaries. For example an Intrusion Prevention
System (IPS), blocking an IP-scan, can be considered a preventive countermeasure, be-
cause it prevents events to take place inside the area that is protected by the IPS. On the
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other hand, it can be considered as a repressive measure inside a larger area, because it
is blocking traffic, as a result of a detected event. To avoid these inconsistencies, we use
in our ontology only three time-related classes, with clear boundaries:

• Untriggered Preventive measures = Preventive countermeasures that do not rely
on any detection of botnet (related) activities. The word untriggered is used, to
exclude preventive measures that need some kind of event as a trigger, because
this involves implicit detection of botnet-related activity. An example of an un-
triggered preventive countermeasure is the timely updating of software by secu-
rity updates to reduce the risk of infection. Firewalls and Intrusion Prevention
Systems can give rise to confusion, because they can be seen as both preventive
and reactive. The arrival of a packet, can be seen as a trigger, hence we classify
them in our ontology as reactive.

• Reactive measures = countermeasures involving detection of botnet-related events
and direct responses. This includes countermeasures that classify events as nor-
mal or anomalous.

• Corrective measures = measures, related to repair or the preparation of future re-
pair of the botnet-caused damage

2.3.6. REFINEMENT OF REACTIVE MEASURES
The reactive class includes many different countermeasures, varying from a signature-
based IDS to honeypots. In Figure 2.9 the ontology is refined by three facets:

• Trigger: A distinction is made between detective countermeasures and externally
triggered countermeasures. A detective countermeasure measures features and
classifies an event as botnet-related or not botnet-related. An externally triggered
countermeasure receives a signal from another detector or an operator to take
a repressive action or start collecting botnet specific knowledge. We will refine
detection in Section 2.4.

• Interaction with the botnet: Interactive measures participate deliberately in the
botnet as offender, C&C-entity, bot, or victim. This creates special opportunities
for detection, repression, and research. Examples are: honey clients that are in-
tended to become recruited in a botnet, injection of C&C-commands, infiltration
of the criminal organization, a sandbox for evaluation of botnet-related malware.
Non-interactive measures are measures that detect botnet activity, without direct
participation in the botnet. Non-interactive countermeasures can have repressive
responses that mitigate or stop of botnet activities without participation.

• Result: Repressive response involves some direct action with the aim of stopping
or mitigating the botnet-attack or its effects. Examples include: the prosecution of
offenders, blocking traffic, stopping malicious computer processes, exclusion of
hosts by a blacklist. Alerts involve only the signaling of attack-related data that can
directly be used for repression. Examples include IDS alerts. Knowledge involves
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the collection of attack-related data that can be used in other detectors. The con-
struction of blacklists of malicious IP-addresses and domains are an example of
such knowledge.

Interaction with the botnet results often in a combination of detective and repressive
effects. For example, the detection and deflection of an attack by a honeypot as a decoy,
or the infiltration of a botnet to gather intelligence and disrupt by injection of certain
C&C-commands.

2.3.7. EVALUATION OF THE ONTOLOGY-BASED CLASSIFICATION
We evaluated the proposed taxonomy by classifying well known diverse countermea-
sures, ranging from firewall, honeypot to even punishment of criminals. The result is
shown in Table 2.3. The first column briefly mentions the countermeasure with optional

Table 2.3: Examples of countermeasures, classified according to the taxonomy.

Description of the countermeasure Classification
Tracing the money flow [47] M/E/R(Al∨Kn, Ni, De(Mi∨An))
Infiltration by undercover agents M/E/R(Al∨Kn, In, De(Mi∧An))
Arrest of botmasters [77] M/E/R(Re, Ni, Ex)
Deterrence by severe punishment [3][69] M/E/P
Detection of IRC-signatures [52] B/N/R(Al/Ni/De(Mi))
Correlation between C&C streams [59][121] C∨B/N/R/(Al/Ni/De(An))
Detection of suspicious queries to DNS-
blacklists [106]

C/N/R/(Kn/Ni/De(An))

Honeypot, used for C&C infiltration [125] C/H/R/(Re∨Kn/In/De(Mi∨An))
C&C prevention by disabling certain server
ports

C∨B/H/P

NIDS, detection by malicious signatures [109] C∨B/N/R(Al∨Kn/Ni/De(Mi))
NIDS, detection by anomalies [58] C∨B/N/R(Al∨Kn/Ni/De(An))
Software hardening and restriction of user priv-
ileges by kernel wrappers [46]

B/H/P

A stateful firewall, protecting the victim, by the
default blocking all traffic that is initiated from
the outside

A/N/R(Re/Ni/De(An))

A honeypot as a detector and deflector of at-
tacks [103]

A/H/R(Re∧Al/In/De(An))

Resilience against DoS-attacks by deployment
of sufficient servers [40][118]

A/H∧N/P

The use of Captchas, to prevent automated
client actions [132]

A/H/P

Anti Virus Solution on a computer B∨A/H/R(Re/Ni/De(An∨Mi))

references to literature. The second column shows the classification of the countermea-
sure in the proposed short notation.

We conclude that the proposed ontology-based classification meets the requirements
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of Section 2.3.3 because:

• Table 2.3 shows that the ontology-based classification is capable of classifying very
diverse measures in different classes that accurately reflect basic properties of the
countermeasure. The classification per facet and the choice of the facets con-
tribute to a simple classification process with minimal ambiguity or doubt.

• Countermeasures that counter a specific object or intervene during a specific phase
of the threat, can be easily selected by the classification expressed by the accom-
panied short notation. The classification can also directly be used to select coun-
termeasures by a specific implementation. This supports not only the selection
of diverse countermeasure, but also countermeasures for a specific environment.
For example, for the defense of an enterprise network, countermeasures that af-
fect bot (B) and attack (A) can be selected from Table 2.3. A provider of a public
network can select countermeasures that are not host-implemented, if the com-
puters of the clients are not under its administrative control.

• The classification and the accompanied notation can be extended with refined
facets and classes to cover further details. In Section 2.4 the detection class will be
refined.
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2.4. AN OVERVIEW OF EXISTING NETWORK-BASED C&C DE-
TECTION

In this section, we discuss existing work and approaches on network-based botnet de-
tection. We start by mapping the detection principles, as presented in Section 2.1, into
a refinement of the detection-class of Figure 2.9. Figure 2.11 shows the result. The root
class is the detection class of Figure 2.9. The diagram models only network-related de-
tection, but can easily be extended to other detection types. To illustrate this, some
classes are included that are not directly related with network-based detection, such as
the class Host-based Features. In addition, classes use generic names, such as Activity
instead of Traffic for the classes in the state facet.

For further clarification of the facets, we added key words in chevrons to the verb-
based associations in the UML class diagram. The classification is faceted by the mea-
sured features, knowledge, and state. We will discuss each of the three classifiers.

Features
A distinction is made by the type of measured features. We focus on network-specific
features and distinguish classes, according to Section 2.1. Additionally the specific hea-
der fields or application protocols can be added. Instead of including all possible header
fields or protocols in the diagram, we added ’. . . ’ as a placeholder for optional classes
that specify the protocol. The three classes of the Traffic Features are highly related with
evasion possibilities. Extraction of features in application data may be hampered by the
botnet with standard encryption. Features, based on metadata, can easily be manipu-
lated by random delays, flow perturbation, and the injection of noise in packets or flows.
Finally header fields can often be adapted to imitate normal traffic. This includes the
imitation of popular traffic and protocols by the use of the related well-known TCP or
UDP ports. It also includes the periodic change of source and destination IP addresses
to prevent correlation. Host Features are features, that are directly related with the host
(typically the applications and operating system). Other Features are all features, that
are not related with the host or network.

Knowledge
The reference knowledge that is used by the detection for its decision is modeled ac-
cording to Section 2.1. Misuse-related knowledge is obtained from known malicious in-
stances and stored as rules, blacklists, or signatures. The use of misuse-related knowl-
edge introduces directly the problem of zero-day exploits. Special care must be given
to the construction of the knowledge. Misuse-related knowledge must continuously be
updated with the newest types of malicious activities, to minimize the risk of zero-day
exploits. An advantage of detection by misuse knowledge is a low FPR. Anomaly-related
knowledge models the normal activities. A deviation from normal is classified as anoma-
lous. The knowledge of normal activity origins from different sources. In our model we
distinguish: statistics, specification, and machine learning.

• Statistical knowledge requires a baseline of normal activity and optionally mali-
cious activity. For the creation of a baseline of normal traffic, an uninfected net-
work is required.
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• Specification-based knowledge requires rules that specify normal behavior, drawn
up by experts.

• Machine-learned knowledge for network detection is in most cases supervised
and requires a representative training set of both normal and malicious traffic.

State
In addition to knowledge, the detection decision often depends on the momentary state
of the detector. The momentary state is determined by previous normal or malicious
activity. An important group of detectors that require a state, constructed from previous
malicious activity, is the group of detectors that correlate different instances of botnet
traffic. The consequence is that these detectors cannot immediately repress the first
occurring malicious traffic event, since they need preceding malicious activity to classify
the events as malicious. The classification further distinguishes preceding activity from
the same host, often referred as vertical correlation, and preceding activity from other
hosts, often referred as horizontal correlation. Additionally the state can be divided in
C&C activities and attack activities.

2.4.1. CLASSIFICATION OF EXISTING MISUSED-BASED DETECTION
This section classifies different existing misuse-based detection approaches according
to the ontologies of Figure 2.9 and 2.11. All discussed countermeasures are network-
implemented non-interactive detectors that deliver potentially alerts and knowledge to
counter bots or C&C traffic. By the root classification of Figure 2.9 this group of counter-
measures is classified as: B∨C/N/R(Al∨Kn/Ni/De(Mi)). Therefore, we will only specify
the detection-specific part of the notation. Misuse-based detection approaches:

• Snort [109]: De(Tr(He∨Ap∨Me)/Mi/Na) Snort is a misuse-based NIDS. We only
classify the basic version of Snort, which works with signatures that span both
the header and content of packets. Since it depends on misuse knowledge, it is in-
effective against new malicious traffic types. In most cases no additional context
is needed for the decision, which results in an immediate detection decision.

• Rishi [52]: De(Tr(Ap(IRC))/Mi/Na) Rishi is the name of a detection system that
evaluates nicknames of IRC-based C&C traffic by known malicious string patterns.
Its classification shows that is it is a comparable with Snort, but with a more spe-
cialized feature set

• Botzilla [107]: De(Tr(Ap)/Mi/Na) Botzilla actually combines two countermeasures.
The first countermeasure is a sandbox that runs infected bot malware. Traffic sig-
natures are derived from the content of the resulting C&C traffic. This can be
seen as a separate countermeasure, classified by the ontology of Figure 2.9 as:
C/H/R(Kn/In/Ex). The acquired knowledge is used to detect C&C traffic from bots
in a separate detector, of which the detector part can be classified by the ontology
of Figure 2.11 as De(Tr(Ap)/Mi/Na). Since the detection uses signatures of mali-
cious traffic, the knowledge is classified as misuse.

• Cocospot [39]: De(Tr(He∧Me)/Mi/Na) As Botzilla, Cocospot combines two coun-
termeasures. A sandbox is infected by bot malware and traffic signatures are de-
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rived from the traffic size and timing the resulting C&C traffic. In a separate network-
based detector traffic is correlated with the obtained patterns, derived from the
sandbox. Basically the detector used misuse-related knowledge. However, instead
of string matching, statistical footprints related with time and byte size of traffic
fragments are used as features.

• Provex: [110]: De(Tr(Ap∧Me)/Mi/Na) Payloads of potential C&C traffic are decryp-
ted by decryption protocols that are specifically used by botnets . The involved
decryption protocols and keys are extracted from malware samples. In the detec-
tor the payload is statistically evaluated on the likeliness that such an encryption
was applied. Since signatures of known C&C traffic are used in the process, it is
misuse based.

2.4.2. EXAMPLES OF ANOMALY-BASED DETECTION
This section classifies different existing anomaly-based detection approaches accord-
ing to the ontologies of Figure 2.2 and 2.11. For the same reason as with misuse detec-
tion, the generic classification of the countermeasure is again omitted in the notation.
Anomaly-based detection approaches:

• Botminer [59]: De(Tr(He∧Me)/An(St∧Ma)/Ma(Ho/At∧Cc)) Similarities in commu-
nication traffic and malicious traffic are cross correlated to identify C&C traffic
and bots. The correlation requires attack traffic and C&C traffic from different
hosts. Clustering is accomplished by unsupervised machine learning algorithms.

• BotGAD [23]: De(Tr(He∧Ap(DNS))/An(St)/Ma(Ho∧Ve/Cc)) Group activities of bots
in a network are observed. This results in detection of individual bots, but also
of centralized C&C servers. A DNS-based solution that groups hosts with similar
DNS-lookups is presented and evaluated as a case study. The decision is made
comparing similarity related parameters with predefined thresholds, based on
measured normal traffic. Before detection multiple C&C lookups must have taken
place from different bots.

• DNS anomaly detection [130]: De(Tr(Ap(DNS))/An(St)/Ma(Cc)) A combination of
two DNS-based detection approaches that identify high query rates of a specific
domain name or a high number of queries to non-existend domain. Both anoma-
lies are often caused by bots that use a Domain Generation Algorithm (DGA) to
create a resilient lookup mechanism for the C&C server. The approach needs
many instances of C&C DNS traffic to exceed certain predefines threshold.

• Bothunter [58]: De(Tr(He∧Ap∧Me)/An(St)/Ma(Ve/At∧Cc)) Bothunter uses vertical
or dialog-based correlation to detect bot traffic. Since the detection of the dialog is
based on specific knowledge of botnet stages, it is partly misuse-based detection.
At the same time statistical anomaly detection is used to detect traffic of specific
stages. The complete system is complex and requires observation of multiple ma-
licious traffic events before a detection decision can be made.

• Suspicious DNS-blacklists queries [106]: De(Tr(He∧Ap(DNS))/An(St)/Ma(Ho/Cc))
The detection identifies bots that query blacklists for counterintelligence. Fea-
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tures are derived from the number of queries from a specific host and the number
of times the DNS-name of the host itself is queried. Additionally the query rate
over a certain time is evaluated to detect the presence or absence of diurnal ef-
fects.

• IRC-based C&C flow correlation[121]: De(Tr(He∧Me)/An(St)/Ma(Ho/Cc)) The de-
tection is based on derived features of IRC traffic flows. Statistical analysis of time
and topology, by source, and destination addresses are used for detection.

• Detection C&C by temporal persistence [50]: De(Tr(He∧Me)/An(St)/Ma(Ve∨Ho/Cc))
Detection is based on repeated visits to certain destinations, called persistent des-
tinations, by bots. A base line is created of persistent destinations of normal traf-
fic. New persistent destinations are classified as anomalous.

• Detection of Peer to Peer C&C traffic [111]: De(Tr(He∧Me)/An(Ma)/Na) The detec-
tion approach use 17 features to classify peer to peer C&C traffic. Since it uses
supervised machine learning, datasets for training are required.

• Not-a-Bot [60]: De(Ho∧Tr(He∧Me)/An(Sp)/Na) Detection uses digital attestation
to distinguish human-generated traffic from machine generated, such as bot- gen-
erated spam. Detection requires a host-implemented or hypervisor implemented
attester that can monitor user activity of a potentially bot-infected host. The veri-
fier is implemented in the network or related server.
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2.5. NETWORK-BASED C&C DETECTION IN AN ENTERPRISE

NETWORK
In Chapter 1 we described the differences between enterprise networks and public net-
works and discussed the threat of specialized bots, intended for espionage and sabotage
in the enterprise network, that are difficult to detect. This section systematically iden-
tifies enterprise-specific traffic-based detection approaches for such bots. Detection
focuses only on the C&C part of the bot traffic, since there is no guarantee that a bot
produces attack traffic. In addition we assume that sophisticated botnets try to evade
detection by the use of zero day traffic, limitation of the traffic volume, and imitation
of popular traffic types. In order to find effective detection approaches of C&C traffic in
enterprise networks, we will first identify important enterprise-specific characteristics
that influence detection possibilities. With this knowledge each facet of the detection
ontology is evaluated. This delivers a number of desired detection properties. Finally,
we propose new detection approaches that anticipate the desired detection properties.

2.5.1. ENTERPRISE-SPECIFIC CHARACTERISTICS
As discussed in Chapter 1, there are significant differences between enterprise networks
and public networks. We identified four enterprise-specific characteristics that have
influence on the detection possibilities:

1. An enterprise network allows for comprehensive control and restriction of traffic
because:

(a) In a corporate network, the number of different applications and the associ-
ated network traffic types are much more restricted than in public networks.
This makes it easier to define unnecessary traffic.

(b) In contrast to public networks, enterprise networks have more freedom to
implement traffic restrictions, because they are less limited by net neutrality
regulations and the wish of consumers not to restrict their diverse traffic.

2. An enterprise network allows for detailed traffic observation. This includes the
content of traffic by deep packet inspection (DPI). In public networks such ob-
servation is limited by privacy regulations and in addition, technical complexity
limits DPI in the connected home networks.

3. An enterprise network allows for comprehensive control of end systems (hosts)
because:

(a) The intended function of end systems in an enterprise network is better
defined than in public networks. This includes the installed applications,
client-server role, connected hardware and the interaction with a user.

(b) The end systems of an enterprise network are under one administration. In
a public network the control is scattered over the different customers of the
public network.
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4. The administration of a corporate network, aware of security risks, can and will
put more effort in countermeasures then a consumer or a public provider that
connects consumers. If necessary, countermeasures can include significant
changes in hardware, software and procedures.

2.5.2. SELECTION OF CLASSES IN THE DETECTION ONTOLOGY
The facetted classification of Figure 2.11 allows for a systematic selection of classes that
support the detection of sophisticated botnet C&C traffic and optimally make advan-
tage the identified enterprise-specific characteristics. We identify here the most suitable
classes per facet.

• Detection Features: The opportunity of DPI in an enterprise network allows for in-
spection of Application Data. Since corporate application traffic often consists of
DNS and HTTP(S), many bots will use these protocols to mimic normal traffic. In
these cases successful detection can depend on subtle elements of the content.
Even the inspection of encrypted TLS/SSL-traffic by an intercepting proxy is pos-
sible, since a trust relationship between the end systems and the proxy can be es-
tablished by an enterprise PKI (Public Key Infrastructure). The physical presence,
complete control, and well-defined function of many end systems in an enter-
prise network allow for the observation of Other Features, such as actions of users
or connected hardware.

• Knowledge: Many existing detection approaches depend on misuse related knowl-
edge. Although effective against known C&C traffic, additional anomaly knowl-
edge is required to detect zero day traffic. In practice knowledge acquired by
machine-learning also depends on misuse related knowledge, because malicious
samples are part of the training set and the ability to recognize complete new
types of C&C traffic is severely limited by the finite complexity of practical ma-
chine learning. This makes knowledge that origins from Statistics or Specifica-
tion the most interesting classes for detecting zero-day C&C traffic. Most existing
anomaly-based detection approaches are limited to statistics, because it is diffi-
cult to define normal traffic by a specification. However in a corporate network
with its limited traffic diversity, detection of anomalies by specification of normal
traffic is a feasible option.

• State: Many existing C&C detection approaches are based on correlation that re-
quires some kind of prior Malicious Activity, before C&C traffic is detected. In case
of sophisticated bots, intended for espionage, there is no attack traffic. Long de-
lays between malicious activities make the correlation-based detection less fea-
sible because of the required resources for constructing, storing, and using the
state. The amount of required resources can be extensive: the state includes both
normal and malicious activities from the past, since a separation of activities is
not possible before detection. The problem can be mitigated by the use of a state
that remains compact and scales well with an increasing observation interval or
network size. Another disadvantage of detection that relies on previous malicious
activity, is the implication that in the past at least one malicious activity must have
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taken place without detection at that moment. In contrast, detection approaches
that do not require a state (No State) or a state that only depends on Normal Ac-
tivity allow for detection at the first occurring C&C traffic event. This is especially
interesting in a corporate network, where immediate repression of bots and traffic
within the premises is feasible.

To summarize the identification: the following classes as suitable for detection of
sophisticated botnet traffic in enterprise networks:

1. Features, derived from application data, especially DNS and HTTP(S)

2. Features from other sources than the computer network

3. Knowledge related with statistics

4. Knowledge related with specification

5. No state, or a state of normal activities

6. A state of prior C&C traffic, if the state remains compact and scalable

This does not mean that detection, based on these classes, replaces other detection ap-
proaches. It must be seen as an addition. For example, misuse-related detection re-
mains a very important way to detect malicious traffic with a low FPR. The identified
classes can be used to find new effective countermeasures that operate alongside other
detection approaches in a layered security architecture.

2.5.3. NEW DETECTION APPROACHES
We propose three new approaches for C&C detection in an enterprise network, based on
the identified classes. Each approach is described in detail in the chapters 3 to 6. Table
2.4 gives an overview of the detection approaches with the specific detection classes.

• Chapter 3 and 4: Direct causality
B/N∧(H∨E)/R(Al/Ni/De(An))
with De=De(Ho∧Tr(He∧Ap(DNS∧HTTP)∧Me)/An(St∧Sp)/No)
Egress traffic is evaluated on its direct cause. Direct causes are events that im-
mediately trigger a new traffic flow. Chapter 3 starts with an exploration of user
events. By measuring the time between user activity and traffic, automatic traffic
is distinguished from human-generated traffic. Human activity can be measured
by a software agent on the observed computers or by special external hardware
that directly observes activity of the keyboard and mouse of a specific computer.
The identification of user events as direct causes for new traffic is especially inter-
esting for the detection of C&C traffic that uses services of popular social media.
In Chapter 4 the approach is further completed by also including traffic events as
direct causes for new flows. We define and construct TFC Graphs (TFC=Traffic
Flow Causality) that provide an overview of traffic flows and their direct causes. In
this way the root cause of each traffic flow is identified and associated with normal
traffic or C&C traffic. We will refer to the complete approach as TFC detection. The
collection of all normal traffic graphs represents a state that is required to detect
C&C traffic.
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• Chapter 5: Trustworthiness of visited destinations
B/N/R(Al/Ni/De(An))
with DE=De(Tr(He∧Ap(DNS∧HTTP)∧Me)/An(St∧Sp)/No)
Traffic is evaluated on the trustworthiness of the contacted destination identifier,
such as an IP-address, hostname, or URI. If the destination identifier origins di-
rectly from a human, prior traffic from a trusted destination, or a defined set of
legitimate applications, the destination is trusted and its associated traffic is clas-
sified as normal. The required knowledge origins primarily from specification that
defines how legitimate destination identifiers are obtained in a enterprise net-
work. Statistical knowledge is necessary for evaluation of hostnames. We refer
to this detection approach as UDI-detection (UDI=Untrusted Destination Identi-
fier). Chapter 5 also compares UDI detection with TFC-detection and highlights
the important similarities and differences.

• Chapter 6: Domain degree distribution
B/N/R(Al/Ni/De(An))
with DE=De(Tr(Ap(DNS))/An(St∧Sp)/Ma(Cc/Ho))
The degree distribution of resolved DNS-domains is evaluated. Domains with an
unexplained popularity are classified as anomalous. In contrast to the other ap-
proaches, this approach requires a state that includes C&C traffic, before it can
successfully detect new C&C traffic. Only if a minimum amount of bots has con-
tacted a C&C domain, this domain and its traffic can be classified as anomalous.
Since this state only consists of domain names and the number of computers that
queried a domain, this approach allows for scalable distribution over multiple en-
terprise networks.

Table 2.4: Proposed detection approaches and their use of classes that are suitable for botnet detection.

Detection
Approach

DNS/
HTTP

features

Host
features

Statistics Speci-
fication

No
Malicious

State

Compact
Malicious

State
Direct
causality

x x x x x

Trustworthiness
of visited des-
tinations

x x x x

Domain
degree distri-
bution

x x x

In the the chapters 3 to 6 we will also identify and discuss the limitations of each
of the approaches. Detection evasion is and important part of this. In Section 7.1, as
a part of the concluding remarks, we will continue this discussion by combining and
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extending the presented approaches. This leads to proposed future steps as a follow-up
of this study.



3
TOWARDS DETECTION OF BOTNET

COMMUNICATION THROUGH

SOCIAL MEDIA BY MONITORING

USER ACTIVITY

A new generation of botnets abuses popular social media like Twitter, Facebook, and
Youtube as Command and Control channel. This challenges the detection of Command
and Control traffic, because traditional IDS approaches, based on statistical flow anoma-
lies, protocol anomalies, payload signatures, and server blacklists, do not work in this
case. In this chapter we introduce a new detection approach that measures the causal
relationship between network traffic and human activity, like mouse clicks or keyboard
strokes. Communication with social media that is not assignably caused by human ac-
tivity, is classified as anomalous. We explore both theoretically and experimentally this
detection approach by a case study, with Twitter.com as a Command and Control chan-
nel, demonstrate successful real-time detection of botnet Command and Control traffic,
and discuss limitations.

This chapter is a minor revision of the paper with the same title published in the Proceedings of the ICISS2011
Conference [19].
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3.1. INTRODUCTION
Social media, like Twitter, Facebook, and Youtube create a new communication oppor-
tunity for malicious botnets. A Command and Control (C&C) channel is crucial for a
botnet. Bots need regular instructions from the botmaster, for example to initiate or syn-
chronize an attack, upload harvested data, or update the malware [113]. A large number
of countermeasures has been developed and deployed against C&C in general. Botnets
react to these measures by using new communication mechanisms that are harder to
detect and repress [119]. With the arrival of social media based C&C, there are now 4
major C&C-mechanisms:

1. IRC is a simple and proven C&C technique. It is attractive for the botmaster, be-
cause of its simple management, with a real time or “tight” control over the botnet
through a permanently established connection. However especially for this type
of C&C, many countermeasures have been developed. An example is the work of
Cook et al. [27].

2. A more sophisticated C&C-mechanism uses peer-to-peer communication, based
on protocols like Kademlia [33]. The intrinsic decentralized structure is difficult
to counter and the use of peer-to-peer protocols is widespread, due to popular
file sharing and communication protocols, like Bittorrent and Skype. However
the absence of centralized control makes management complex, and due to fire-
walls and NATs, many peers cannot receive incoming connections, resulting in
network of which the availability and stability highly depends on a limited num-
ber of nodes [90].

3. Another C&C-mechanism uses HTTP to exchange information. The popularity of
HTTP makes anomaly detection difficult. In addition, many botnets decentralize
the HTTP-service by fast fluxing A-records, IP-addresses of DNS-servers, or even
domain names [93]. This makes it difficult to bring the service down by IP or do-
main blacklisting [102].

4. A rather new C&C-mechanism uses social media for C&C. A botmaster posts in-
structions as messages on a popular social medium, like Twitter or Facebook. Bots
fetch the instructions by regularly polling certain pages. Examples of such botnets
are: Trojan.Whitewell, that uses Facebook [81], TwitterNET, that uses Twitter [92],
and Trojan 2.0, that uses Google groups [54].

If a botnet imitates the communication patterns of normal users that visit a popular
social medium, detection will become very difficult with conventional network IDS-
techniques, because there are no anomalous addresses, domain names, protocols, or
ports involved and a large fraction of the daily legitimate traffic of normal computers
consists of visits to social media. A further increase of the C&C invisibility is possible
by steganographic techniques, to hide the commands in apparently normal messages,
account flux, by making the bots visit different accounts or even different media, and
SSL/TLS encryption, to impede content inspection in the network. Many social media
offer already HTTPS access as an alternative to the still popular unencrypted HTTP ac-
cess.
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Difficult detection is not the only reason that social media based C&Cs have the po-
tential to become the most important botnet control mechanism on the Internet. Other
beneficial properties from the perspective of the botmaster are: simple implementation,
simple management of applications that read from and write to social media, scalability,
and high availability of the social media services.

In this chapter we address the detection of social media based C&C-traffic, by intro-
ducing a detection mechanism that measures causality between user activity and net-
work traffic. The presence or absence of certain key strokes and mouse clicks is used to
determine if network traffic is user- or botnet- originated.

Section 3.2 gives an overview of related existing work in the areas of botnet C&C-
detection and the observation of user activity in the detection process.

Section 3.3 introduces a detection mechanism that uses mouse clicks and key strokes
as a proof of user commitment to visit a social medium. If egress traffic starts within a
small time window directly after a user event, it is classified as user intended. Traffic
outside this time window consists of both legitimate traffic that is indirectly induced by
user events, and botnet C&C traffic that is not induced by any user event.

The detection mechanism is elaborated with Twitter.com as representative example
of a social medium.

Section 3.4 discusses detection improvements, related with legal automatic traffic
and potential evasion techniques.

3.2. RELATED WORK
Most existing detection approaches in enterprise networks, as discussed in Chapter 2,
have limited results against botnet traffic that carefully imitates user originated visits to
popular social websites, due to the close resemblance to legitimate traffic.

Misuse-based detection, such as Snort [109] is very limited, because it is difficult
to define and find misuse-related signatures of social media C&C. The protocols and
destinations of the social media C&C traffic are also used for legitimate traffic and in
addition the payload can imitate normal application traffic by steganography.

The resemblance to normal traffic also complicates anomaly-based detection. A
mixture of C&C traffic with a large volume of resembling legitimate traffic in the same
network complicates the search of similarities between different instances of C&C traffic
and the search for correlation with attack traffic. If well implemented, it cripples a large
variety of detection approaches, such as Botminer [59] and the approach of Giroire et
al [50]. Detection approaches that anticipate DNS anomalies, such as fast changes in
DNS-records [65], are not effective, because C&C over social media uses DNS in a nor-
mal way.

Honeypots [103] that are recruited in a botnet can detect C&C over social media, be-
cause all activity is anomalous by definition. However, a honeypot itself is not a produc-
tion system, hence after detection, a signature of the malicious traffic must be identi-
fied, derived and distributed for misuse detection. As already mentioned, identification
of traffic signatures of C&C over popular social media can be very difficult.

Another aspect, which is related with the detection mechanism, to be presented in
this paper, is the measurement of user commitment. A CAPTCHA, as introduced by Ahn
et al. [132], is a popular test to remotely distinguish between computer programs and
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users. CAPTCHA’s are often used in Web 2.0 applications, to prevent automated account
creation. Obviously an intensive use of CAPTCHA’s does not promote the accessibility of
a website. As most users do not create a new account every five minutes, the nuisance
is limited in that case. However, the use of CAPTCHA’s for every social medium visit,
results in an unacceptable burden. Of course cryptographic signatures can be used to
relate later traffic with an initial CAPTCHA verification, but it can result in a complex
trust mechanism. Vo et al. [131] propose a system that authenticates physical comput-
ers with social media accounts after an initial CAPTCHA test. However once authenti-
cated, the system does not really prevent botnets to use the account or visit public pages
of users.

Gummadi et al. propose NAB, Not-a-Bot [60]. The system uses TPM-backed attesta-
tions of user activity, that are sent with web- and email requests to an external verifier,
where the decision is made if the traffic is legitimate or not. Gummadi et al. focus pri-
marily on the implementation of the attestation mechanism and give no details of the
time-related detection mechanism. Verification of the detector performance is done in-
directly by combining offline keyboard- and mouse logs with network traces. It shows
that NAB can reduce the rate of intense bot-generated traffic, like DoS and spam. NAB,
can be seen as complementary to our work, by delivering a possible practical imple-
mentation of a trusted agent that attests user events to the actual detector.

Kartaltepe et al. [74] present a systematic overview of the evolution in social media
botnets and discuss the possibilities and limitations of detection approaches. The work
defines a process on a client computer, that does not interact with human input, as self
concealing. This can be a detectable property in a host-based IDS, to identify suspicious
processes. It is different from our approach, that identifies normal traffic to social media
by the direct presence of prior user activity.

3.3. DETECTION PRINCIPLE
Network traffic does not occur spontaneously. Something triggers a traffic flow. In the
case of a visit to a social medium, the trigger is usually a keyboard or mouse event,
caused by a human user. However if a bot visits a social medium to fetch new instruc-
tions, or upload harvested information, the traffic is not triggered by user events, but by
internal state changes of the malware. This allows for detection of botnet traffic to social
media by the absence of user events that could potentially have triggered the traffic.

Figure 3.1 shows a schematic overview of our proposed detection system. Network
traffic (3) is captured from an inserted network bridge. If a traffic flow is initiated to a
social medium, without preceding keyboard events (1) or mouse events (2), the flow is
classified as potential bot-originated by the causality detector.

There are several ways to implement the taps to intercept the keyboard and mouse
events. For example by hooks in the operating system of the client computer that catches
the events. Another possibility is the insertion of a hardware device that monitors the
signals on the bus from the user devices to the client computer. In case of a virtual client
computer, the tap can even be implemented in the hypervisor. The possibility of imple-
menting taps, causality detection, and bridge completely outside the client computer
results in a detector that is less visible and more resistant against direct attacks.

The causality detection works with a small time window that starts directly after a
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Figure 3.1: Schematic overview of a detector which correlates activity of keyboard (1) and mouse (2), with
captured network traffic (3).

user event and discriminates between flows that are caused or not caused by the user
event. It does not depend on known signatures; hence communication of zero day-bots
can also be detected. Moreover, in contrast to most anomaly detection mechanisms,
the classification is real time, resulting in the potential block of a malicious flow at the
moment of the first egress packet.

In the remainder of this section we elaborate on the detection algorithm, estimate
the performance, and show by experiment that it really detects botnet traffic. For the
ease of the explanation, we focus on Twitter.com as a representative example of a pop-
ular social medium, hence all results can be extended to other social media. We assume
that all legal traffic to Twitter.com is directly caused by user events and all bot-originated
traffic is not synchronized with user activity. In Section 3.4 we discuss important ex-
ceptions to these assumptions, like legitimate automatic traffic and detector evasion by
synchronization with user activity.

3.3.1. DETECTION OF BOTNET TRAFFIC TO TWITTER.COM
The detection algorithm proposed in this section is linked to browser access to Twit-
ter.com with Internet Explorer and Firefox. In Section 3.4 we discuss alternative client
scenarios to communicate with Twitter. In the browser scenario we identify three spe-
cific user events that can exclusively trigger Twitter traffic:

• Left mouse click, typically on Twitter link;

• Enter key, typically during login or completion of message or “Tweet”;

• F5-key to reload a page

Normal Twitter traffic always starts with the request of an object from Twitter.com. Ex-
amples of requested Twitter.com-objects are: a timeline with tweets, a search instruc-
tion, or a login. Directly after the loading of the first html-formatted object, additional
objects, like scripts, media, advertisements, and tracking objects are loaded from other
domains, like Twimg.com and Google.com. Bots that use Twitter as a C&C-channel must
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start with a request of a Twitter.com-object, because other sequences are unusual and
raise suspicion. The Twitter.com-object can directly contain C&C instructions or results,
or link to other objects with C&C-related content. Our detection algorithm tests for the
presence of relevant user events within a certain time frame, just before an egress flow
to Twitter.com is initiated. Figure 3.2 shows the relevant timing.

Figure 3.2: Time diagram of a user event that directly results in a visit to Twitter.com. Parameters are defined
in Table 3.1.

A Twitter.com flow is classified as non-bot if the flow is user induced, as illustrated
by the implication:

tg et − tu < Tug → user i nduced (3.1)

A complicating factor is DNS. If the client cache does not contain a valid DNS record
of Twitter.com, a DNS lookup will take place between the user event and the actual visit
to Twitter.com. Figure 3.3 shows the relevant timing for the second more complex sce-
nario. The Twitter.com flow with is now classified as non-bot if the flow is user induced,
as illustrated by the implication:

(tdnsq − tu < Tud )∧ (tdnsa − tdnsq < Tdd )∧ (tg et − tdnsa < Td g ) → user i nduced (3.2)

Figure 3.3: Time diagram of a user events that results in a DNS-lookup, followed by a visit to Twitter.com.
Parameters are defined in Table 3.1.

Detection performance depends largely on a proper value of the defined windows
Tug, Tud, and Tdg. Large windows increase the probability that egress botnet traffic is
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Table 3.1: Description of the parameters, used in the algorithm.

Parameter Description
tu user event(release in left mouse click, press of F5 or Enter key)
tget HTTP GET-request to Twitter.com
tdnsq DNS query to resolve Twitter.com
tdnsa DNS answer to resolve Twitter.com
Tug maximum permitted time between tu and tget

Tud maximum permitted time between tu and tdnsq

Tdd maximum permitted time between tdnsqand tdnsa

Tdg maximum permitted time between tdnsa and tget

coincidentally initiated inside a window, with a false negative as a result. Conversely
small windows increase the probability that user-induced traffic starts just after a win-
dow, with a false positive as a result. The size of Tdd depends on the maximum expected
response time of the DNS-server. The value of Tdd is not critical in the detection process,
because it is not a response time of the potentially infected client computer. Moreover
causality between DNS request and DNS response can also be determined by the UDP
client port or DNS payload instead of timing.

3.3.2. EMPIRICAL ESTIMATION OF OPTIMAL TIME WINDOWS

The optimal value of Tug, Tud, and Tdg is the worst case response time of the involved
client computer. This value is determined by many factors, like the amount of process-
ing involved in the response, hardware capabilities, real time properties of the operat-
ing system, and the actual load of the system. We estimated the values by measuring
Twitter-related response times on a HP DC7900, a main stream Personal Computer, in
a test set up, as in Figure 3.1, but with a logging facility instead of a causality detector.
The keyboard/mouse taps were implemented by a separate microcontroller board, in-
serted in the PS2-cables of both the mouse and the keyboard. Captured events were
signaled to the logging device over a high speed serial connection. All other functions
were implemented in a fast computer with a Linux operating system.

We repeatedly visited the same timeline of a Twitter account with a Firefox browser
under Windows XP. Response times were measured for 3 different user events, both un-
der idle and high load conditions. The latter condition was established by simultaneous
downloads of 5Mb/s+ traffic from 10+ sources. The three user events were: F5 reload,
mouse click (M1), and mouse click with empty DNS-cache (M2). Every measurement
was repeated 100 times. The average and extreme response times for each scenario are
presented in Table 3.2.

Only 2 of the 600 measured response times were above 100ms, with a maximum
response time of 163ms.

3.3.3. THEORETICAL PERFORMANCE OF THE DETECTOR

To determine the Detection Rate (DR) and False Positive Rate (FPR) as defined in Section
2.2.1, we start by an analysis of visits to Twitter.com with a valid DNS cache. This simple



3

52 3. DETECTION OF BOTNET COMMUNICATION BY MONITORING USER ACTIVITY

Table 3.2: Summary of measured response times of Twitter.com visits with a HP DC7900 Windows XP PC. F5
is the response to a F5-reload, M1 is the response to a Mouse click with preloaded DNS-cache and M2 with
empty DNS-cache.

t(ms) Idle t(ms) High concurrent load
Case Interval tmin tav tmax tmin tav tmax

F5 tget-tu,key 0.1 3 163 0.2 15 115
M1 tget-tu,mouse 16 17.6 32.1 16 27 45
M2 tdnsq-tu,mouse 4.7 5.8 7.1 5.3 14 21

tget-tdnsa 0.3 0.6 2.7 0.3 3.2 7.3

Figure 3.4: Example of 3 user events (t1, t2, and t3) with their causal windows with length Tw. Traffic that is
initiated outside these windows is classified as anomalous.

scenario uses only one time window Tw= Tug. At the end of the next subsection we will
extend the analysis for the more complex scenario with DNS-traffic.

Only a Twitter.com flow that starts within the causal window Tw is classified as user-
caused and hence normal. All other Twitter.com flows are classified as anomalous. Fig-
ure 3.4 illustrates a generic example of three causal windows of which two are partly
overlapping. Overlap can take place if the window size is in the order of magnitude of
the minimum time between user events.

Detection Rate Assume multiple events during some observation interval T and de-
fine ti as the moment the i th user event is observed. The boundaries t0 and tn are not
user events, but the respective start and stop time of the observation interval. Let h(t )
be a function that has the value of 0 if t is inside a causal window, and the value of 1 if t
is outside any of the causal windows:

h(t ) =
{

0 i f ∃ i ,0 ≤ t − ti ≤ Tw

1 i f Ø i ,0 ≤ t − ti ≤ Tw
(3.3)

The Detection Rate (DR) is the probability that a bot-originated flow starts outside
any of the causal windows and hence is classified as anomalous.
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DR = P
(
h(t ) = 1|t = r andom st ar t o f C &C f low

)
= 1

T

T̂

0

h(t )d t = 1

T

n∑
i=1

Hi (3.4)

with

Hi =
{

0 i f ti − ti−1 ≤ Tw

ti − ti−1 −Tw i f ti − ti−1 > Tw
(3.5)

We define Tav as the average time between 2 successive user events during the ob-
servation interval. If Tav >> Tw the effect of overlapping windows is negligible and Eq.
3.4 reduces to:

DR ≈ 1− Tw

Tav
(3.6)

Eq. 3.6 shows that the DR is optimal with a small causal window Tw and a large
average time between user events.

To estimate the DR in a worst case scenario, we used the reported results of odomet-
ric measurements of the Workpace RSI-software among 50,000 users during a 4 week
period [123]. The work shows a daily peak of 3400 mouse clicks and 11,600 key strokes
during 2.8 hours. If we assume that 5% or less of the pressed keys is a carriage return or
F5, the average time between user events can be calculated:
Tav = (2.8∗3600)/(3400+11600∗0.05) ≈ 2.5s. Based on 163ms as the maximum mea-
sured response time in Table 3.2, we choose Tw= 200ms, resulting in a detection rate:
DR = 1− (0.2/2.5) = 0.91.

In practice the the average DR is expected to be higher, because:

1. the average time between user events over a day is significantly higher than 2.5
seconds, because most computers are only intensely used during a small part of
the day[123];

2. the effective frequency of left mouse clicks is lower, because the presented fre-
quency also includes right mouse clicks and double clicks[123].

In the more more complex scenario with a DNS-lookup there are two critical windows:
Tud and Tdg. By replacing both windows by one window Tw = Tud+Tdg, the DR is calcu-
lated by the same math. Based on 21+7.3ms as the maximum measured response time
in Table 3.2, we choose Tw = 21+7.3 = 30ms, resulting in a DR of 0.99.

False Positive Rate False Positives are caused by a response time that is larger than the
defined causal window Tw. Eq. 3.7 expresses the resulting False Positive Rate (FPR). It
depends on the distribution of the response time.
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Table 3.3: Experimental results of the detection algorithm during an 8 hours observation of an infected com-
puter, with Tug = Tud = Tdg = 200ms and Tdd =10s.

Parameter Value
total left mouse click rel. events 1620
total Enter key press events 414
total F5 key press events 28
total flows 7170 (1467 bot + 5703 user)
Detection Rate 0.987 (1448 of 1467 illegal flows)
False Positive Rate excluding reloads 0 (0 of 43 legitimate Twitter flows)
False Positive Rate including reloads 0.4 (17 of 43 legitimate Twitter flows)

F PR = P
(
tg et − tu > Tw |user tr i g g er ed f low

)
= 1−

Twˆ

0

p(t )d t (3.7)

The function p(t) is the probability distribution of the response time . The observa-
tions in Section 3.2 did not lead to a well-defined model for this distribution, because
many factors influence the response time of the computer. However it is considered safe
to assume that F PR < 0.01 for the choice Tw = 200ms in the case of the observed com-
puter, because in our tests none of the 600 measured response times exceeded 163ms.

3.3.4. EXPERIMENTAL EVALUATION OF THE DETECTION ALGORITHM
We tested the algorithm in a real situation. The detector of Section 3.1 was implemented
with time windows Tug = Tud = Tdg = 200ms, as explained in Section 3.3, and Tdd = 10s.
In addition to logging, the traffic to Twitter.com, outside the specified time window was
stopped by the realtime insertion of firewall rules. During 8 hours a client computer was
used for text processing, email reading/writing, drawing, browsing, and of course using
Twitter. At the same time the computer was infected by a bot. The used bot was a recent
variant of the Twitternet bot as discovered by Nazario [92]. This variant is also known by
Kasperski lab as Backdoor.Win32.Twitbot.c. It polls every 20 seconds a Twitter account
and uses SSLv1. Of course in this case we could directly detect this flow by the rarely
used SSLv1-protocol and the high query-rate. However, to test the performance of the
our detection mechanism, we only used the algorithm of Section 3.2. Table 3.3 presents
the results of the experiment. The results show a succesful detection of botnet traffic
and support the theoretically derived performance of the detection algorithm.

We provide in Table 3.3 two values for the FPR. The 17 false positives were all caused
by automatic reloads of already open Twitter pages. This results in a very high FPR of 0.4.
However, in the case of an enterprise computer that only provides basic usage of Twit-
ter, the effect of blocking all automatic Twitter traffic does not create a serious problem,
because the user can still update the pages by a manual reload. If we consider all auto-
matic traffic as undesired, the effective FPR in this experiment equals to 0. The issue of
automatic traffic is further discussed in the next section.
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3.4. SPECIAL CASES OF TWITTER TRAFFIC
In the previous sections we have assumed that legal traffic to Twitter.com could only
be triggered by human activity and that botnet traffic was never triggered by human
activity. Unfortunately, in reality the situation is more complex. We elaborate in this
section on two important cases:

• automatic legal traffic by applications that poll Twitter periodically;

• user synchronized botnet traffic to evade detection.

3.4.1. AUTOMATIC LEGAL TRAFFIC
Automatic notifications, which were blocked in the experiment, are an example of le-
gal automatic traffic to Twitter.com. In the case of Twitter we identify three important
groups of legal automatic traffic:

• If a timeline or a search page of Twitter.com is loaded, the browser polls approx-
imately every 30 seconds Twitter.com for new messages. New messages result
default in a notification, but the page with the new content is not automatically
loaded.

• A timeline or hash tag can be polled as RSS-feed. An agent loads a certain Twitter
page in RSS-format periodically. Update frequencies are low (typically once a day
for IE and once an hour for Firefox).

• A timeline or hash tag can also be polled by special agents like Tweetdeck. These
applications periodically load timelines or search results of Twitter.com in .json,
.xml, or .rss format.

In the absence of direct user activity, our detector will classify these traffic types as
botnet-originated. We explore here some solutions to deal with this false positive prob-
lem but restrict ourselves to solutions that can be implemented on the network in the
neighborhood of the client.

1. The most rigorous solution is instantly blocking this type of traffic, as we did in
the experiment. In an enterprise network with computers that run a limited num-
ber of well defined applications this can be a viable option for the Twitter case,
because employers can still use Twitter, but only manually.

2. A more elegant solution is complete inspection of the received traffic content. In
this way legitimate triggers for new traffic (in addition to the user events) can be
identified. This solution will be worked out in Chapter 4.

3. Additionally a white list can be applied, allowing automatic traffic to certain loca-
tions of Twitter.com. This can only work if the majority of this list is automatically
maintained. For example the detector can allow Twitter locations that have suc-
cessfully been visited by earlier user events. Also CAPTCHA’s can be used, as a
condition to manually add locations to the whitelist.
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3.4.2. EVASION BY USER SYNCHRONIZED BOTNET TRAFFIC
The presented detector can only detect botnet traffic if the traffic is not synchronized
with user activity. However it is possible to design a bot that holds the C&C traffic until
a suitable user event takes place. In that case the detector will erroneously classify the
traffic as human originated with a false negative as a result. We will refer this type of
evasion as piggybacking.

At first glance, piggybacking on user events appears to be a technique that results in
an increased C&C visibility that leads to new detection possibilities instead of evasion.
In the area of keylogger detection, synchronisation between malware and keystrokes is
a property that is used in detection approaches [97]. However we assume here that the
bot will sparsely produce C&C-traffic, synchronized with user events. We discuss here
some solution directions for piggybacking, related to Twitter.

1. Detection evasion by piggybacking requires the observation of user events. A
host-IDS can detect background processes that poll or hook user events. In the
case of enterprise computers, with well-defined applications this does not have
to lead to many False Positives. The malware can evade this type of detection by
disrupting the detection process or by modification of the programs that run le-
gitimately in the foreground, however, this raises extra evasion difficulties for the
bot.

2. A more complete observation of user activity, allows the detector to estimate the
probability of traffic generation after a user event. This is possible by defining
states that belong to certain user behavior. For example a high number of key-
strokes in a short time can reveal that the user is text-processing. If Twitter traffic
is started after the Enter-key and at the same time new key strokes are observed,
the traffic can be classified as anomalous. Another detectable anomaly is the typ-
ing of a non-Twitter URL, directly followed by traffic to Twitter. Of course a sophis-
ticated bot can wait until the right conditions are met, but in those circumstances
there is a high probability of two simultaneous flows to Twitter.com, the bot flow
and a user flow, which is again a detectable anomaly. The left mouse click is an
attractive event for a bot to synchronize, because it is the most important trigger
of legitimate Twitter traffic. Again observation of earlier and later events can lead
to detection of an anomalous situation. For example in case of a double click,
the bot has to start its communication before it can observe the possible second
mouse click, because if it waits to long, the traffic will be outside of the causal win-
dow. The result is a detectable anomaly. Also the presence of other user activity
immediately after the mouse click can indicate anomalous traffic.

3. The observation of received traffic content can be involved in the detection deci-
sion. An example of a detectable anomaly by this approach is the situation that
a webpage is loaded that does not contain a link to Twitter and directly after a
completion a mouse click is followed by a connection to Twitter.

The solution directions show that evasion by piggybacking also causes new detection
possibilities. We will come back on piggybacking and evasion in Chapter 4.
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3.5. CONCLUSIONS
In this chapter we explored a detection approach that can detect botnet C&C-traffic to
Twitter.com, by observing only causal relationships between observed network traffic
and observed user events that potentially can trigger traffic to Twitter.com. The three
observed user events that can trigger a visit to Twitter.com are: the Enter key press, the
Left Mouse Button release, and the F5 key press. Theory, combined with empirical data,
predict an acceptable detection rate and false positive rate. An experiment with real user
traffic and botnet traffic supports the capability of this approach to detect and option-
ally block immediately C&C-traffic traffic to Twitter in the case of enterprise computers
with restricted applications. The detection approach is limited to traffic to Twitter.com,
related with certain use cases. With its focus on user activity and Twitter-specific scenar-
ios, this chapter must be seen as a first exploration of detection by causal relationships.
The next chapter elaborates traffic flow causality in addition to causality between user
activity and traffic. This results a in a more generic detection approach that is capable
of detecting a large variety of botnets by building Traffic Causality Graphs.





4
DETECTION OF COVERT BOTNET

COMMAND AND CONTROL

CHANNELS BY CAUSAL ANALYSIS

OF TRAFFIC FLOWS

The C&C communication of a botnet is evolving into sophisticated covert communica-
tion. Sophisticated techniques, such as encryption, steganography, and recently the use
of social network websites as a proxy, often impede timely detection of botnet traffic by
the existing techniques, as discussed in Chapter 2. The concept of causality between user
activity and traffic, explored in Chapter 3, is extended in this chapter to a more generic
causality model between traffic flows and between traffic flows and user activity.

Identifying the direct causes of traffic flows, allows for real-time specification-based anom-
aly detection of C&C traffic of many C&C traffic types. In addition it allows for offline
forensic analysis of traffic. The proposed causal analysis of traffic is experimentally with
traffic that included various types of Command and Control traffic.

This chapter is a minor revision of the paper with the same title published in the Proceedings of the CSS2013
Conference [20].
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4.1. INTRODUCTION
The success of existing C&C detection techniques is often due to the presence of noisy
attack traffic, as DDoS attacks, spam, and network scans. However, as discussed in
Chapter 1, botnets can use sophisticated covert C&C communication that produces
minimal noise. This is particularly true for espionage bots that infiltrate an enterprise
network: there is no or very limited attack traffic and the C&C communication can be
hidden by the imitation of popular traffic types, including the use of social networks as
a proxy as described in Section 3. Secrecy can even further be enhanced by steganogra-
phy and encryption. If these techniques are applied in the right manner and not related
with other observable attack behavior, detection of C&C communication can become
extremely difficult [91].

In this chapter, we introduce a new approach to detect covert communication by
identifying direct causal relationships between network flows and prior events. We will
refer to this type of detection as Traffic Flow Causality detection or TFC detection. TFC
detection can be deployed as a network IDS. It addresses the common situation of typ-
ical client computers, as PCs or mobile devices, located in a LAN of a corporate net-
work, and protected from the Internet by a stateful firewall as shown in Figure 4.1. TFC
detection inspects passively the network traffic per computer. TFC detection includes
the observation of user activity, as introduced in Chapter 3, obtained from the mouse
and keyboard by additional hardware or a software agent, and transported to the TFC
detector by a separate channel. An infected computer will regularly produce traffic by

Figure 4.1: Deployment of TFC-detection in a LAN.

“phoning home” to a malicious entity in addition to the legitimate traffic. We assume
this situation throughout the paper.

The captured traffic can be organized as bidirectional flows: an aggregation of all IP-
packets between two computers, on both sides identified with a unique IP-address and
a Layer 4 port. A stateful firewall forces all bidirectional flows to initiate from the client
computer. Traffic flows are often caused by other traffic or user activity. An example is
the visit to a website: A mouse click can trigger a DNS flow, followed by a HTTP flow to
the resolved IP-address. The downloaded HTML object contains URLs of other HTTP
objects that can result in new HTTP flows with or without intermediate DNS flows. The
flows can be organized by their causal relationships, in a tree-shaped graph, as shown
in Figure 4.2. We will refer to this type of graph as a Traffic Flow Causality graph or TFC
graph. In addition we will refer to the first flow of a tree as the root flow and the tree itself
as a TFC tree. If a new flow starts, it will be either a child, connected to an existing tree,
or the root flow of a new tree. The result is a forest of TFC trees, growing on the event of
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Figure 4.2: Scenario of a visit to the website Example.com by a mouse click with the TFC graph of the resulting
traffic flows (vertices) and their direct causes (edges).

each new flow.

A TFC graph can be constructed by observing traffic and user activity, as mouse
clicks and key strokes. An important step in the construction process is the selection
of the most suitable event as the direct cause of a new flow, since there can be multiple
events that qualify as potential cause of a new flow. We have developed for this selection
the Optimal Cause Selection algorithm or OCS-algorithm. It evaluates the time between
an event and a new traffic flow, and for some events, the presence of a reference to the
destination of a new flow in the payload of prior traffic. If a root flow, initiated from a
client computer, is not caused by user activity, it must be caused by an automatic pro-
cess. This can be legitimate traffic, such as an automatic update of a normal applica-
tion, but it can also be the C&C traffic of a bot instance. A root flow and its offspring
are classified as anomalous, if the root flow is not caused by user activity. In addition,
a whitelist can prevent anomaly classification of traffic that is caused by known legiti-
mate automatic processes. This method allows for the detection of all types of “phone
home” traffic. The detector does not need a state of prior malicious traffic, which makes
it suitable immediate detection of one single C&C traffic flow, as described in Section
2.5.2.

Section 4.2 gives an overview of related work. Section 4.3 elaborates the construc-
tion of TFC graphs and the associated anomaly detection by the OCS algorithm. Section
4.4 presents CITRIC, a self-developed framework that implements TFC detection and
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visualization of TFC graphs. Section 4.5 describes experiments, conducted with CIT-
RIC and traces of normal and botnet C&C traffic. Section 4.6 elaborates evasion and
improvements. Section 4.7 and 4.8 summarize conclusions and future work.

4.2. RELATED WORK
Our work involves anomaly detection by identifying direct causes of traffic flows, ob-
tained from passively captured network traffic and user activity. There are many pro-
posed and implemented anomaly detectors that analyze captured network traffic. We
compare here our work with other work that involves associations between traffic flows.

Cui et al. present Binder [29], a detection approach that also measures causal rela-
tions between user events and traffic events. Zhang et al. propose a similar approach,
called CR-Miner[140]. CR-Miner constructs Traffic Dependency Graphs that resembles
our TFC graphs. However, both Binder and CR-Miner have fundamental differences
with our approach:

• Both depend on host-internal information, as process IDs. Our TFC-detection
captures passively traffic outside the observed host. Even the capture of user
events can be implemented in hardware, outside the software environment of the
host.

• CR-Minor constructs dependency trees by the Referer field in the HTTP header. To
prevent tampering, CR-Minor signs from within the browser each HTTP header.
This requires a browser that is not compromised by malware. However on an in-
fected computer, the risk of browser compromise is significant. Another problem
is that legitimate HTTP requests do not always specify the Referer field. In con-
trast our approach identifies direct causes by time measurements and matches
between the destination of a new flow and a reference in the payload of an earlier
flow. Forgery of the destination of a new flow by malware is difficult, since it will
result in failed communication with the remote malicious instance.

• Our TFC graphs include all flows per host, including DNS, which allows a more
complete analysis of covert communication.

Burghouwt et al. demonstrate the detection of a Twitter-based C&C channel by
causally relating Twitter.com traffic with user events [19]. Our TFC detection extends
this work, by identifying causal relationships between flows. In addition TFC detection
does not depend on Twitter specific properties.

Karagiannis et al. present Blinc to classify traffic flows by their originating applica-
tions [72]. They use graphlets to represent flows that share L4 ports or addresses. Unlike
our approach, no causal relationships are evaluated.

Iliofotou et al. introduce Traffic Dispersion Graphs that present connection patterns
between different hosts [68]. Our TFC graphs are different, because they represent flows
and causal relationships instead of hosts and connections.

Asai et al. map causal relations between flows in Traffic Causality Graphs to profile
application traffic [5]. The resulting graphs are constructed without the use of destina-
tion references in the payload, resulting in a high uncertainty of the identified causal
relationships. In addition user events are not taken into account.
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4.3. CAUSAL ANALYSIS OF FLOWS AND ANOMALY DETECTION
A bidirectional flow or dialogue is the aggregation of IP-packets, exchanged between a
local and remote computer, and identified by the 5-tuple {prot, IPlocal, IPremote, portlocal,
portremote }, referring to the IP addresses and port numbers of the local and remote com-
puter. RFC5103 [127] refers to these bidirectional flows as biflows. The direction of a
bidirectional flow is defined as the direction of the first packet. Since in the remainder
of this paper all traffic flows are bidirectional, the adjective “bidirectional” will be omit-
ted. In this section we present the algorithm that identifies causal relationships between
flows, and detects anomalous flows by the cause of the root flow.

4.3.1. THE DIRECT CAUSE OF A FLOW
We define the direct cause of a traffic flow as the event that ultimately triggers the flow.
In addition, there can be multiple indirect causes or additional preconditions that must
be satisfied. If a web page shows a hyperlink and a user clicks on the link, the induced
flow is directly caused by the mouse click and indirectly caused by the already open web
page with the hyperlink.

Traffic events are the most common direct cause of a new traffic flows. An example
is the reception of an IP-address in a DNS reply that is used immediately as destination
of a new HTTP flow. Flows that are caused by traffic events contribute to the branches
of trees, but can never be a root flow.

User events are certain user actions by mouse, keyboard, touch screen or another
input device. Popular actions that can cause new traffic flows are the release of a mouse
button and the press of the Enter key. Flows, directly caused by a user event, are always
root flows.

Process events are state transitions in software processes that trigger automatically
new flows, such as a software update or a check for new email. Most legitimate flows,
caused by automatic processes, are well known per host and their destinations can be
defined in a whitelist. Flows, directly caused by a process event, are always root flows.

Server events are new flows, initiated from external computers to the observed com-
puter. This is only possible if incoming connections are allowed. Since this is normally
blocked for clients behind a stateful firewall, we will not elaborate further on this event
type.

A traffic flow is classified as anomalous if the direct cause is a process event, and the
remote address or hostname is not whitelisted. Exact determination of the direct cause
of a flow requires detailed analysis of the program execution of all processes inside the
observed host. This is complex, platform dependent, and entails a high risk of detec-
tion and compromise by the malware. The solution for this problem is the selection of
direct causes from traffic events and low level user events, both captured outside the
monitored host. If no direct cause can be selected from the observed traffic and user
events, and if the remote host is not whitelisted, then the flow is classified as malicious.
However, the host-external approach is less accurate, because in some cases the direct
cause of a new traffic flow must be selected from multiple available candidate causes.
If the wrong cause is selected, a root flow can erroneously be absorbed as a branch in
a tree or associated with a user event. The absorption of a malicious root flow in a tree
of legitimate flows or its association with user event, results in a False Negative. On the
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other hand, if a direct cause is not found, a flow can erroneously be dispersed as a root
flow of a new tree. This can result in a False Positive.

4.3.2. OPTIMAL SELECTION OF THE DIRECT CAUSE
To select from the traffic and user events the most likely direct cause of a new flow, with
minimal absorption and dispersion risk, we developed the Optimal Cause Selection Al-
gorithm or OCS Algorithm.

Algorithm 4.1 OCS Algorithm for TFC graph building and anomaly detection.

for each new f l ow do
if ( f i ndDN SEvent (X .I Pr emote ,Tdns )) then

cause = DN SEvent ; addToFoundTr ee(X );
else if f i ndU RLEvent (X .namer emote ,Tur l ) then

cause =U RLEvent ; addToFoundTr ee(X );
else if f i ndUser Event (X ,Tuser ) then

cause =U SEREV E N T ; cr eateTr ee(X );
else if f i nd HT T PSEvent (X ,Tht t ps ) then

cause = HT T PSEV E N T ; addToFoundTr ee(X );
else if f i nd HT T PEvent (X ,Tht t p ) then

cause = HT T PEV E N T ; addToFoundTr ee(X );
else if i sW hi teLi sted(X ) then

cause =W H I T ELI ST ; cr eateTr ee(X );
else

cause =U N K NOW N ; cr eateTr ee(X ); si g nal Anomal y(X );
end if

end for

For every new flow the OCS algorithm tries to find a direct cause by searching in suc-
cession through different types of events that have occurred in a defined time window
before the start of the new flow. The algorithm differentiates traffic events in four differ-
ent types. Combined with user events, OCS distinguishes five different types of events:

1. DNS Event: The detector caches recently captured DNS-lookups. If a new flow X is
non-DNS, the function f i ndDN SEvent (X .I Pdest , Tdns ) searches in its cache for
a DNS translation that matches the remote address X .I Pr emote . If the most recent
matching DNS-record is received within the time window Tdns before the start of
the new flow X, the event is chosen as direct cause of X. Flow X will become a child
of the DNS-flow that carried the record and automatically inherits the normal or
anomalous classification of the related tree.

2. URL Event: The detector caches the hostnames of URLs, parsed from recently
captured HTTP-payloads. If a new flow X is non-DNS, the remote IP address is
first translated to a hostname, X .namer emote , by the DNS-cache. If the new flow
is DNS, the hostname in the DNS-request is chosen as X .namer emote . Then the
function f i ndU RLEvent (X .namer emote ,Tur l ) searches for a cached URL with a
matching hostname. If the most recent matching URL is received within the time
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window Tur l before the new flow X, the event is chosen as direct cause of X. Flow
X will become a child of the HTTP-flow that carried the URL and automatically
inherits the normal or anomalous classification of its tree.

3. User Event: Mouse clicks and specific key presses, as the Enter key are seen as
events that can trigger new flows. An agent captures and sends user events from
the observed computer to the detection system. Software implementation of the
agent increases significantly the exposure to the malware. Malware with root priv-
ilege can suppress or mimic user events. The exposure can be reduced by the im-
plementation of the agent in a hypervisor [60], or in hardware that reads the elec-
trical connection of input devices [19]. The function f i ndUser Event (X ,Tuser )
selects the most recent event as direct cause of flow X if it is within Tur l . The flow
is classified as a user caused root flow.

4. HTTPS Event: An HTTPS event is defined as a sudden decline of the received IP
packet size in a flow. This occurs typically when the last part of a requested object
is received. It does not necessarily indicate the termination of the flow, because
in the case of a persistent connection, as in HTTP1.1, other object requests and
replies can follow within the same flow. The completion of an object downloaded,
indicated by a sudden decrease of the packet size, can initiate a new flow X that
depends on the received object.
The function f i nd HT T PSEvent (X ,Tht t ps ) searches for the most recent HTTPS
event that occurred within the time window Tht t ps before the start of the new flow.
If a HTTPS event is found, Flow X will become a child of the HTTPS-flow and will
automatically inherit the normal or anomalous classification of the tree.

5. HTTP Event: Similar as HTTPS, but with packet size decrease in HTTP traffic.

If no suitable event types are found and the remote destination is not whitelisted, the
flow is classified as an anomalous root flow. In practice not all URLs will be identi-
fied in the payload. Typical causes of missed URLs are: TLS-encryption of the pay-
load, as HTTPS, client caching of a prior received HTTP messages, and complex scripts
that compose URLs from received code and data. This can result in tree dissection and
false positives. OCS solves the problem of missed references by searching for the more
generic HTTP and HTTPS events, after an unsuccessful search for a URL event. Since
this search is only based on time and not on string matching, the related expiration
windows Tht t ps and Tht t p must be kept as small as possible, to reduce the risk of false
negatives by absorption. For simplicity OCS evaluates only traffic reference events in
DNS and HTTP traffic. However, this type of cause evaluation can be extended to other
less popular traffic types that carry references in the payload, such as SIP traffic that
carries IP-addresses for media streams.

4.3.3. DETECTION PERFORMANCE
In some cases TFC-detection can miss anomalous flows, by selecting the wrong event
as direct cause. This is especially the case for the HTTP, HTTPS, and user events that
are merely selected by their presence within a time window. The probability that an
HTTP, HTTPS, or user event is erroneously selected as the direct cause of a malicious
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flow, starting at a random moment, can be approximated by Twi ndow . fevent if
Twi ndow << 1/ fevent with f defined as the average frequency of HTTP, HTTPS, or user
events. A True Positive is only possible if none of the event types is selected as a direct
cause. The probability of erroneously selecting DNS or URL events is relatively small,
because in addition to the presence of the event in a time window before the start of the
flow, there must be a match of an IP address or a hostname. Assuming mutual indepen-
dence between all events, the DR, as defined in Section 2.2.1, is estimated by Equation
4.1. We also assume that there is no intelligent evasion, by bots that piggyback on cer-
tain events by waiting for a suitable moment and optionally using popular servers in the
C&C communication. We will discuss this type of evasion in Section 4.6.1.

DR ≈ (1−Tuser . fuser Event ).(1−Tht t p . fht t pEvent ).(1−Tht t ps . fht t psEvent ) (4.1)

Equation 4.1 shows that the DR benefits from small time windows. The frequency of
user events can be minimized by optimal selection of only those user events that are
really potential triggers of a new flow. Other solutions to improve the DR by removing
the HTTP and HTTP factors are discussed in Section 6.

4.4. CITRIC: PRACTICAL IMPLEMENTATION OF TFC GRAPH

CONSTRUCTION AND DETECTION
TFC graph construction and detection is evaluated by our self-developed framework,
called CITRIC (Causal Inspection To Recognize Illegal Communication). The main com-
ponents of CITRIC are:

• Traffic sensor: Device that captures passively real time internet traffic in PCAP
format.

• User event sensor: Either a hardware device that is inserted between keyboard,
mouse, and the computer, or a software agent to capture and signal user events.

• Flow aggregator: A software object that constructs bidirectional flows of captured
IP-packets. When a packet is captured and the flow already exists, flow parameters
are updated. In case of a new flow, the aggregator calls the appropriate analyzers,
to place the flow in a tree.

• DNS analyzer with cache: A software object that analyses DNS traffic and caches
name-to-IP translations.

• HTTP analyzer: A software object that searches for potential URL events, received
in HTTP traffic. In addition it searches for generic HTTP and HTTPS events by
monitoring the payload size between two consecutive ingress packets of the same
flow. All potential events are temporarily stored in a cache.

• Cause Analyzer: The central software object that constructs TFC graphs by the
OCS algorithm with adjustable time windows.

• Anomaly detection alert: A software object that logs important events and alerts
detected anomalies
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All components, with the exception of the user event sensor, are implemented in C++ on
a Linux computer that bridges all LAN traffic. In addition to real-time capture, CITRIC
can analyze files with prerecorded traffic in PCAP format, including signaled user events.

4.4.1. IMPLEMENTATION ISSUES AND SOLUTIONS
During development many implementation-specific issues had to be solved. The most
important issues are summarized below.

1. Some operating systems use for DNS flows the same client port or a limited set
of client ports. This creates a risk that different DNS queries are aggregated in the
same flow. To prevent this, the DNS transaction number is added to the flow tuple,
to keep the tuple unique.

2. Virtual hosting and Content Delivery Networks use IP addresses with multiple
hostnames, resulting in ambiguity of the translation of an IP address to a host-
name by cached DNS records. This is solved by first expanding the search for po-
tential causal relationships to all possible names that map to the same IP of a new
flow, and then choosing the most recent URL that refers to any of the hostnames.

3. In some cases scripts construct host names by combining strings. When there
is no exact match between a hostname and the cached URLs, CITRIC will test a
match of at least the 4 last characters of the second level domain name. In case of
a well-known public suffix, such as .co in .co.uk, this partial match is expanded to
the third level domain name.

4. To accomplish a fast search of matching destinations and references, hash tables
are used. For the described experiments the hash is 8 bit, resulting in a 256 times
smaller average seek time than in the case of a linear search. Similar hash tech-
niques are implemented for fast DNS search by IP address and flow search by tu-
ple.

5. Many popular websites only deliver gzipped HTTP replies. CITRIC can unzip and
merge chunked HTPP replies.

6. If a DNS query fails or the answer takes too long, some DNS clients will swiftly
repeat the question, resulting in multiple DNS flows that query the same name.
This can lead to multiple root flows, instead of one. This is solved by combining
identical queries that start within a small time window.

CITRIC is explained in more detail in Appendix A. The source is made publicly available
[17].

4.5. EXPERIMENTAL EVALUATION
We have evaluated TFC detection experimentally by running CITRIC with four different
traces of traffic, captured in a controlled environment.

The first trace is used for the evaluation of False Positives and contains the com-
plete captured traffic from visits to the 30 most popular websites of the Internet. Visits
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Table 4.1: Overview of the three different traces, infected with botnet traffic.

Bot C&C type Injected in Top30 trace
Kelihos HTTP [35] 10 x DNS and HTTP flow
Tbot Peer to Peer [26] 10 x TCP flow, port 9001
Twebot Twitter as proxy [92] 10 x DNS, HTTP, and HTTPS flow

to popular websites result in many additional traffic flows, caused by advertisements,
mesh-ups, scripts, etc. The number and variety of direct causes tests the TFC detection
under difficult circumstances. Missed causes will result in false positives. The popu-
lar websites were derived from the rankings of Alexa [2] and Google [53]. All doubles
were removed and of the remaining sites only the 30 most popular were used. Each visit
started by typing the name in the browser address bar, followed by at least one typical ac-
tivity, as a login on Facebook, a search in Google, etc. Traffic was captured and stored in
PCAP-format by Gulp [112], a capture tool with a low probability of packet loss. The vis-
iting computer was a laptop with a fresh installation of Windows 7 and a Firefox browser
with plugins for Flash and Java. At the start of the capture both the web cache and DNS
cache were emptied. A software agent, installed on the visiting host, captured mouse
clicks and key strokes and transmitted every event as a special UDP-packet. Hence the
events were automatically part of the captured traffic. The resulting trace, to which we
will refer as Top30, contains 113505 packets, representing 4179 flows. The most popular
protocols are DNS, HTTP and HTTPS. Since we assume that the captured traffic is not
contaminated with malicious traffic, every detector alert is a false positive.

The other traces, intended for the evaluation of the C&C detection, are composed of
the Top30 trace with injected C&C traffic. For each trace we infected a clean Windows 7
instance with real malware and manually isolated exactly one representative tree of the
captured C&C traffic. The malicious tree was injected in the Top30 trace at ten different
equidistant times. We developed for the injection special software that could modify
packet timestamps, IP-source addresses, and colliding ephemeral L4 port numbers of
the malicious traffic. The result was a consistent trace with exactly ten separated C&C
trees, during the thirty legitimate website visits. We composed in this way three infected
traces in PCAP format, each with a different type of C&C traffic as shown in Table 4.1.

4.5.1. EMPIRICAL DETERMINATION OF THE OPTIMAL WINDOWS SIZES
The accuracy of a TFC graph depends on the size of the five time windows as defined
in Section 4.3.2. To minimize the FPR, all windows must be chosen as large as possi-
ble. However, Equation 4.1 shows that an increase of Tuser , Tht t ps , and Tht t p results
in a decrease of the DR, because these windows, in contrast to Tur l and Tdns , are not
accompanied with a string match condition. This does not imply that Tdns and Tur l

can be chosen arbitrarily large, because this will decrease the DR, if the covert channel
uses a popular server as intermediary, as explained in Section 4.3.3. For the determina-
tion of the optimal value of Tdns the unnormalized cumulative distribution of the DNS
delay, C DFdns (T ) has been obtained by measuring in the clean Top30 trace the time
between each DNS reply and the first usage of the IP address in the A-record. We use
an unnormalized distribution function to express the results directly as flows. Delays,
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during which one or more user events take place, are excluded, because in those cases it
is not clear what triggers the new flow. As shown in the graph of Figure 4.3, the resulting
C DFdns (T ) bends sharply to an almost horizontal line at T=1ms, indicating that most
DNS related delays are smaller than 1ms. About 90% of 726 measured delays is less than

 1
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Figure 4.3: Cumulative flow distributions and root flows as a function of the applied time window. C DFdns (T )
and C DFur l (T ) are the unnormalized cumulative distribution functions of flows that are respectively caused
by a prior DNS or a prior HTTP flow. RF (Tur l ) is the number of identified root flows with varying window
Tur l . RF1(Tur l ) does not apply an HTTPS window, RF2(Tur l ) applies an HTTPS window of 500ms. Other
settings can be found in the text.

2ms. We choose Tdns =500ms as an optimal time window, because the 6 flows with de-
lays above 500ms are all related with DNS prefetches from distant websites that loaded
very slowly.

To obtain an optimum value for Tur l , C DFur l (T ) is measured in a similar way as de-
scribed for C DFdns (T ). In this case the distribution does not show a sharp bend. This
implies that we need a large window size Tur l to identify all flows that are caused by a
received URL. However, a large size of Tur l increases the risk that user caused root flows
are absorbed in other trees, since the OCS algorithm, evaluates the URL events before
user events. Although this does not affect directly the FPR, the constructed TFC graph
will become less accurate. To analyze this effect, the algorithm was run for different
values of Tur l , with Tdns set on 500ms, and all other time windows set to zero. Fig-
ure 4.3 shows the number of root flows by RF1(Tur l ). Manual inspection revealed that
the undesired absorption of user caused root flows occurs at window sizes above 10s. To
prevent this, Tur l is set to 10s. However, with this window size, URL-based relations with
a delay of more than 10s are missed. We solved this problem by adding a second find-
URLEvent() test with a window size of 30s immediately after the findUserEvent() test.
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Manual inspection also revealed that the observed long delays are caused by missed
references in HTTPS traffic and to a more limited extent by missed references in HTTP
traffic. To compensate for the missed references in HTTPS traffic Tht t ps is set to 500ms.
With this value there is no absorption of user caused root flows by prior HTTPS events.
To visualize the effect of the applied HTTPS window, the algorithm was run again for
different values for Tur l , with Tdns =500ms, Tht t ps =500ms, and with the other windows
equal to zero. RF2(Tur l ) shows the number of root flows. Compared to RF1(Tur l ) the
number of flows is lower. The steepest point of the RF2(Tur l ) curve is around t=20s.
Finally we ran the OCS-algorithm for different values of Tuser . The False Positive Rate
(FPR) can directly be derived from the number of detected anomalous flows, since the
Top30 trace did not contain malicious flows. The expected Detection Rate (DR) for the
Top30 trace was indirectly calculated by Equation 4.1. Figure 4.4 shows the influence of
Tuser on the FPR and DR in an ROC graph. In general, an ROC graph shows the effect
of a parameter on the DR and FPR of a detector [43]. The ROC curves of three different
setups are displayed:

• Setup 1: Detector with Tdns =500ms, Tur l =10s/30s, Tht t ps =500ms, Tht t p =0s. Opti-
mum at Tuser =100ms with FPR=0.005 and DR=0.95.

• Setup 2: Detector with Tdns =500ms, Tur l =10s/30s, Tht t ps =500ms, Tht t p =50ms.
Optimum at Tuser =100ms with FPR=0.0017 and DR=0.85.

• Setup 3: All windows zero except Tuser . Unsuitable for detection
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Figure 4.4: ROC graph of TFC detection with different settings and a varying Tuser .
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Table 4.2: Experimental performance of TFC detection with 4 different traces.

Trace FP TP FPR DR
cleanTop30 7 - 0.0017 -
Top30+Kelihos 7 8 0.0017 0.8
Top30+Tbot 7 8 0.0017 0.8
Top30+Twebot 7 7 0.0017 0.7

The ROC graph shows that Setup 3 is totally unusable. The reason that we tested Setup
3 is to show that a simplified algorithm, that only evaluates user events as direct causes,
does not work. The ROC graph of Setups 1 or 2, shows that TFC detection can optimally
detect covert channels for Tuser =100ms. In all cases only the communication of the user
event agent was whitelisted.

4.5.2. TFC DETECTION OF REAL C&C TRAFFIC

The Detection Rate (DR) of Section 4.5.1 was indirectly estimated by the non-overlap-
ping accumulated time of the open windows in the clean Top30 trace and was not really
measured with malware. Therefore we also tested TFC detection with the three malware
infected traces. The applied window sizes are equal to Setup 2 of Section 4.5.1 with
Tuser =100ms. Table 4.2 shows the results. The observed DR is close to the estimated
value of Section 4.5.1. False Negatives are the result of (1) the absorption of malicious
root flows in legitimate traffic, caused by the non-zero windows Tht t p and Tht t ps , and
(2) the wrong classification of root flows as user-caused, by the non-zero window Tuser .
One malicious tree of the TweBot C&C traffic was absorbed in a legitimate tree with by
a URL to Twitter.com. The experiments show that TFC detection performs, as predicted
in Section 4.3 and it detects real C&C traffic, including the covert traffic of social media
based C&C.

4.5.3. VISUALIZATION OF THE TFC GRAPHS

TFC graphs reveal causal relations between flows. This can be used in forensic situa-
tions to isolate a tree of related flows. We have built a tool as an extension of CITRIC to
visualize each tree separately by post-analysis of the CITRIC logs. Flows are represented
by the vertices, annotated with the most important properties as destination and proto-
col. Direct causes are represented by the edges, annotated with the event type and the
delay between parent and child. The cause of the root flow is indicated as an extra an-
notated vertex with specification. Optionally colors can indicate the protocol. Figure 4.4
shows an automatically generated image of a visit to Google.com. The tree starts with a
user event. After some DNS and HTTP redirection flows, the main page and additional
objects are loaded. A large number of DNS stubs in one of the branches of the tree is
caused by browser DNS prefetching.
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4.6. EVASION AND RELATED IMPROVEMENTS OF TFC DETEC-
TION

Discovery of TFC detection by malware is difficult, because both traffic and user activity
are captured passively and can completely be implemented outside the software envi-
ronment of the observed computer. If the malware is aware of TFC detection, it can
adapt its communication to evade detection by piggybacking on legitimate events. The
malware monitors traffic or user events and waits for a suitable moment to initiate com-
munication. In general successful piggybacking requires specific privileges, to monitor
in the background network traffic and user activity. Monitoring these type of events is
an anomalous activity that can be detected by a host IDS, especially in the case of com-
puters in enterprise networks with well defined legitimate applications.

4.6.1. SOLUTIONS AGAINST PIGGYBACKING

Piggybacking on HTTP and HTTPS events can be prevented by removing these events
from the OCS algorithm. HTTPS events were introduced, to compensate the inability of
the OCS-algorithm to inspect the payload of HTTPS traffic for the more selective URL
events. This problem can be more fundamentally solved by a TLS/SSL interception
proxy that is trusted by the observed client computers. If a client computer uses the
certificate of the proxy, all communication can be decrypted in the LAN or proxy, and
the more selective findURLEvent() function can find potential URL events, making the
findHTTPSEvent() superfluous.

HTTP events were introduced to compensate the inability of finding all potential
destination references in the HTTP payload. Sometimes URLs are on-the-fly composed
by client scripts. Improvement of the search for destination references in HTTP traffic
can be achieved by feeding the received payloads to an environment that emulates the
browser engine of the client, to compose references in a similar way as the browser. This
would make the findHTTPEvent() superfluous.

With the removal of the HTTPS and HTTP events, it still remains possible to pig-
gyback on user events. A possible solution is a more complete observation of the user
input, to estimate the likelihood that a particular root flow is generated by a particular
user event. An example is the search of potential host and object names in the typed
input from the user, and matching these with destinations of new flows. This is not
possible with mouse clicks on hyperlinks, but inspection of recently received hyperlinks
and whitelisting can limit the number of possible new destinations after a click. A totally
different solution is the replacement of the direct capture of user events by alternative
heuristics that select the direct cause of a root flow by the likelihood that a destination
reference is clicked or typed by a user. This is a component of the UDI-detection ap-
proach that will be presented in Chapter 5.

Piggybacking on URL and DNS events is much more difficult than the other events
types, because the malicious and legitimate communication must now simultaneously
visit the same destination. This can be the case when popular websites, as social media,
are used as proxy. This type of piggybacking can be countered by not only matching
the hostname, but also the path and object of the URL reference. An example is the
matching of Twitter.com/tlab32768 instead of Twitter.com. It is highly unlikely that both
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malware and legitimate processes visit the same resource on the same host within a
short time interval. This type of solution will be further discussed in Chapter 5.

4.7. CONCLUSIONS
By identifying the direct cause of traffic flows, it is possible to organize the traffic in tree-
shaped graphs and detect C&C communication by anomalous causes. The OCS algo-
rithm selects the optimal direct cause for each new traffic flow from passively captured
traffic events and user events. Experiments with representative popular HTTP traffic
and different types of malicious C&C traffic support the effectiveness of TFC detection.
While TFC detection allows for real-time detection of all types of covert traffic, it is par-
ticularly suitable for detection of covert botnet C&C to popular websites.

In addition to real-time detection, the visualization of the constructed TFC graph
can be used in forensic analysis.

TFC detection is a typical enterprise-specific countermeasure that anticipates the
enterprise-specific characteristics of Section 2.5.2. Control over the network allows for
the capture of URLs and IP-addresses, as Application Data in the payload of HTTP and
DNS. Control over the hosts and the connected hardware allows for the measurement
of user activity. Causality depends only on knowledge that origins from specification
and statistics. Finally it does not require a state that depends on prior malicious activ-
ity, hence immediate detection of one single C&C instance is possible. This allows for
complete repression of all C&C traffic.

Although user events need to be captured in addition to network traffic, the risk of
compromise by the malware of infected hosts can be kept low by an implementation
outside the software environment of the observed computers. A complete host-external
hardware implementation minimizes the risk, but introduces deployment complexity.
In some enterprise environments, such as a VDI environment, the external observation
of user events is relatively easy, because all user activity transported over the network[88].

While FTC detection can successfully and feasibly detect malware, evasion of the
detection is possible by starting C&C traffic in a time window directly after after a spe-
cific event. Different types of detection enhancements are possible to impede such an
evasion.
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DESTINATIONS

Although the causal detection of Chapter 4 is capable of real-time detection of low volume
C&C traffic, even if popular traffic is imitated, deployment is difficult in some enterprise
networks, because of the required observation of user events.

In this chapter we present an alternative approach that is also capable of detecting Com-
mand and Control traffic in an enterprise network. Instead of causality, the trustworthi-
ness of the traffic destinations is used for classification. If the destination identifier of a
traffic flow origins directly from: human input, prior traffic from a trusted destination, or
a defined set of legitimate applications, the destination is trusted and its associated traffic
is classified as normal.

In addition to the real-time detection of zero day malicious traffic, this approach does not
depend on time measurements and special agents for the observation of user events. This
results in a less complex implementation, a low exposure to malware by the completely
passive host-external traffic monitoring and the prevention of evasion by piggybacking.
Experimental evaluation demonstrates successful detection of diverse types of Command
and Control Traffic.

This chapter is an extended version of the paper with the same title, published in [21]
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5.1. INTRODUCTION
As discussed in Chapter 1 and 2, it is crucial for an organization to identify infected
computers in its premises. Infected computers can attack other computers, steal sen-
sitive information and disturb critical production processes. Infected computers are
often bot instances that participate in a botnet. In addition to normal traffic, they pro-
duce malicious traffic, consisting of occasional connections or phone home calls to a
C&C (Command and Control) entity on the Internet and optionally they generate attack
traffic, such as DDoS and spam.

In this paper we present a new approach to detect botnet activity in an enterprise
network. Similar to the approaches of Chapter 3 and 4, this is an anomaly-based ap-
proach that does not depend on misuse-related knowledge, such as signatures [109] or
blacklists of malicious hosts [16][38]. Also similar to the approaches of Chapter 3 and 4,
no prior botnet activity is required in contrast to many other anomaly-based approaches
that evaluate correlation between different malicious traffic flows [57].

Instead of evaluating causal relationships between traffic and user events, this ap-
proach is based on trust of traffic destinations. Trust is a complex concept and can be
defined in many different ways. We use a context-specific definition of trust, derived
from a more generic definition from Olmedilla et al. [95]. In our context, which is an
enterprise network with inside potentially bot-recruited computers, we define trust as
the measurable belief of the organization that a specific entity does not collude in a bot-
net. We assume that the organization trusts its employees and a defined set of legiti-
mate software applications if deployed on an uninfected computer. On the other hand,
the enterprise computers with the installed OS and software instances, are not trusted,
since they can be compromised and recruited in a botnet. Traffic destinations are ini-
tially not trusted, because they can be part of a C&C infrastructure that is contacted by
an inside bot. However, a destination becomes trusted by transitivity, if its identifier ori-
gins from another trusted entity. The identifier of a destination can be an IP-address,
name, URI, or any other data that is used to direct the traffic to a remote computer or
resource.

Evaluation of the origin of destination identifiers enables the detection of C&C traf-
fic. Traffic is classified as normal, if the destination identifier origins directly from: hu-
man input, a legitimate application, or the received content from a trusted destination.
All other destination identifiers are not trusted and the associated traffic is classified as
anomalous.

We will refer to this anomaly detection approach as Untrusted Destination by Identi-
fier Detection or UDI Detection. Section 2 describes the details of UDI detection. Section
3 presents a practical implementation for experimental evaluation. Section 4 evaluates
UDI detection by experiments with real traffic. Section 5 elaborates evasion possibil-
ities. UDI detection is compared with other work in Section 6. Finally Section 7 con-
cludes and proposes future work.

5.2. UDI DETECTION APPROACH
For UDI detection we assume the typical scenario of client computers in a segment of
an enterprise network, protected by a stateful firewall, that blocks all traffic that is ini-
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tiated from outside. This enforces inside bots as the initiator of all C&C communica-
tion(phone home). All traffic from and towards the inside computers is passively cap-
tured and evaluated by the UDI detector as shown in Figure 1. To limit the number of
detection decisions, the UDI detector organizes all traffic in flows by protocol, source
and destination IP address, and UDP/TCP port numbers. In Chapter 4 we worked with
bidirectional flows, to optimally explain the concept of causality. In this chapter we use
the more common definition of a unidirectional flow that refers to an ingress or egress
flow. This definition allows for a better explanation of the detection mechanism.

The stateful firewall assures that each ingress flow is associated with exactly one
existing egress flow with swapped IP addresses and ports. The detector evaluates the
egress flows on trust of their destinations. An egress flow is only classified as normal
if its destination is trusted. Ingress flows inherit the trust and anomaly state of their
associated egress flows.

Figure 5.1: Schematic overview of UDI detection.

For each new egress flow, trust is determined by the the origin of its destination iden-
tifier in the three consecutive decision stages of Figure 1.

The first stage tests if the destination identifier is present in a predefined set of legit-
imate destinations, used by trusted applications. This typically includes destinations of
servers for software updates, browser home pages, and local management traffic. Flows
to these destinations are classified as normal and not further evaluated.

The second stage tests if the destination identifier matches a reference that was re-
ceived in the payload of prior ingress flows from a trusted destination. Examples of
such references are URLs in HTTP content and IP-addresses in DNS replies. If the desti-
nation identifier matches a reference, the destination is trusted, and the associated flow
is classified as normal and not further evaluated. If there is no match, the destination
identifier is forwarded to the third stage.

The third stage evaluates the remaining destination identifiers on the likelihood of
being directly inputted by a human. We assume that humans normally enter destina-
tions that can be distinguished from machine-originated input by differences in com-
plexity and surprisal. For example, humans will normally not type very long names or
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IP-addresses. These and many other features can be used in heuristics to differentiate
between human and machine origin. If the destination identifier is estimated as hu-
man input, the destination is trusted and its flow is classified as normal and not further
evaluated. The remaining destinations identifiers represent untrusted destinations that
belong to flows that are likely automatically generated by illegal processes.

The combination of the three stages results in a system that can immediately detect
botnet phone home traffic, even if it has a low volume and uses popular traffic types,
to stay below the radar of existing Intrusion Detection Systems. The passive monitor-
ing and real-time classification of UDI detection, allow for implementation in an edge-
router, or a network Intrusion Prevention System, to prevent any contact between an
inside bot and outside C&C entities.

The necessary deep packet inspection of all received traffic payloads and the man-
agement of a set of known trusted legitimate destinations, are especially feasible in en-
terprise networks. Deployment in the networks of public ISPs with connected consumer
devices and home networks is more difficult, due to the high diversity of consumer end
systems, the lack of control and transparency in consumer networks, and privacy regu-
lations.

5.2.1. LOGICAL DESTINATION IDENTIFIERS

Before further elaborating UDI detection, we present a more precise definition of the
destination identifier of a flow, and will refer to this as the logical destination identifier
or ldi. We assume a local computer that initiates an egress flow X to a remote destination
that is identified by ldiX , as defined by Equation 1.

ldiX = host-idX + resource-idX (5.1)

• The host-id identifies the contacted remote host of flow X. It is determined by the
destination IP address of the flow as shown in Equation 2. A computer normally
acquires a destination IP address by the translation of a hostname, performed by
a translation service, in most cases DNS. If the translation is observed before flow
X, the host-id will be the hostname. In all other cases it is directly the IP-address.

host-idX =
{

hostname(IPdest ,X ) i f hostname(IPdest ,X ) 6= 0

IPdest ,X i f hostname(IPdest ,X ) = 0
(5.2)

In this formula IPdest ,X is the destination address in the IP-header of egress pack-
ets of flow X. The function hostname()delivers the IP address, if a valid translation
exists from hostname to IP address. Otherwise hostname() is 0.

• The resource-id in Equation 1 identifies a specific resource of the remote host. It
is extracted from the payload of the egress flow. If not present in the payload, the
resource-id is defined as zero. An example of a resource-id is the path/querystring,
used in a HTTP GET request. In this particular example the complete ldi is very
similar to a URI. A completely different example is an ICMP flow of a ping. In this
case the resource-id in the ldi is zero.
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The basic assumption of UDI detection is the low probability that a trusted destination
belongs to the C&C infrastructure of a local bot-infected computer, or provides ldi’s of
the C&C infrastructure. However this assumption does not hold for trusted destinations
that deliver translation services, such as corporate DNS-servers. Malware from infected
computers can contact the DNS-server for resolving a hostname of a C&C server. In such
a case the trust stateof the DNS-server should not transfer to translated destinations.
Therefore the ldi of an egress DNS flow is defined by the query sent to the resolver for
translation (Equation 3).

ldiX = queryX i f X = DN S f l ow (5.3)

This means that a DNS flow, towards a DNS-server with a query that refers to an un-
trusted destination, is classified as anomalous. If an anomalous DNS flow is not imme-
diately blocked, the received IP-addresses in the DNS answer are not placed in the list
of trusted received traffic references, despite the fact that they are delivered by a trusted
corporate DNS server. DNS is by far the most important protocol that generates resolver
flows, but there are other protocols that can be regarded as resolvers or translators, such
as the Bittorrent Tracker Protocol, that resolves hashes of file names to IP-addresses of
peers.

5.2.2. FORWARD REFERENCE EXTRACTION
We define a forward reference as a data element in the payload of an ingress flow that
can be used as the ldi of a future flow. It can range from a URL in a HTTP hyperlink to
an IP-address in a DNS A-record. The adjective forward is used, to emphasize that the
reference refers to the ldi of a future flow. It should not be confused with the Referer field
in an egress HTTP request that refers back to the server that delivered the URL of the new
request in a prior flow. For UDI detection all potential forward references in received
payloads are stored in a list. The size of the list is limited by defining a maximum allowed
validity time of unused forward references. In addition the complete list of references,
received by one local computer can be cleared after a reboot of that computer.

Forward references are important in UDI detection, because they transfer the trust
state from the destination of a prior flow to the destination of a new flow. This is illus-
trated in Figure 2.

5.2.3. THE UDI DETECTION ALGORITHM
The three stages of Figure 1 identify ldi’s of trusted destinations. After the three stages,
the remaining ldi’s represent destinations that are not trusted and their associated flows
are classified as anomalous. Algorithm 1 shows the complete detection procedure.

• isEgress(X) is true if X is an egress flow

• IdentifyDestination(X) extracts the ldi from flow X according to equation 1 or equa-
tion 3 for respectively non-resolver or resolver flows.

• isLegitimate(), isReferenced(ldi), isUserSubmitted() are the tests of the three con-
secutive stages of Figure 1.
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Figure 5.2: The remote destination B of egress flow F3, identified by ldiB is trusted, because it was referenced
in a prior ingress flow F2 of trusted destination A.

Algorithm 5.1 UDI detection algorithm

for each new f l ow X do
if i sE g r ess(X ) then

ldi = i denti f yDesti nati on(X );
if i sLeg i t i mate(ldi ) or i sRe f er enced(l di ) or i sUser Submi t ted(ldi ) then

X .St atus = NORM AL;
else

X .St atus = ANOM ALOU S;
si g nal Anomal y(X );

end if
else

X .St atus = g etSt atusO f Associ atedF low(X );
if X .St atus = NORM AL then

extr actFor w ar dRe f er ences(X );
end if

end if
end for

• getStatusofAssociatedFlow(X) is NORMAL or ANOMALOUS, depending on the state
of the associated egress flow of ingress flow(X).

• extractForwardReferences(X) will extract and store the forward references from trusted
payloads.

5.2.4. DETECTION ERRORS
To elaborate UDI detection errors, we firstly introduce two classifications for ldi’s.

1. A malicious ldi is the ldi of a destination that is used by a bot for a connection to
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its C&C. All other ldi’s are in this context non-malicious.

2. A trusted ldi is the ldi of a destination that is classified by the UDI detector as
trusted. An egress flow with a trusted ldi is normal. An egress flows with an un-
trusted ldi is anomalous. An ingress flow inherits the normal or anomalous status
from its associated egress flow.

In the ideal situation the UDI Detection algorithm will classify exactly all malicious ldi’s
as untrusted, and all non-malicious ldi’s as trusted. However practical imperfections of
the detector will introduce classification errors, resulting in False Negatives and False
Positives. We treat here the two most important error sources: partial ldi-matching and
selection of human-input features.

• Partial ldi-matching: The first and second stage of UDI detection use a list with
respectively legitimate destinations and forward references. False Positives and
False Negatives are directly related with the accuracy of the lists. An incomplete
list increases the probability of false positives. To keep the list of legitimate des-
tinations short and maintainable, it is convenient to use partial matching: only
a part of the ldi has to match for classification as trusted. The match could be
limited to the host-id of the ldi or even to just the domain-name of the host-id. A
problem of partial matching, is the increased probability that malicious ldi’s are
erroneously classified as trusted, because of a partial match.

The second stage uses a list of forward references, obtained from the payloads of
ingress flows. Extracting complete forward references from payloads can be very
complex. For example URLs in HTTP are often relative or dynamically composed
from different elements in the payload by a client script. If the detector does not
fully emulate the involved browser, this leads to missed forward references, that
can cause false positives. Partial matching can also in this case reduce the false
positives, however with an increased risk of false negatives, as in the first stage.

• Selection of human-input features: The heuristics to test the likeliness that the ldi
is from human input, depends on a proper selection of features. Literature sug-
gests many features to classify anomalous names [137] [85] [9] [82] [11], but non
of the proposed feature sets is perfect, with false decisions as a result. A signifi-
cant advantage of UDI detection is the removal of many non-human ldi’s, such as
references in prior flows, by the two preceding stages.

The complex design choices, make it difficult to derive a simple quantitative predictive
model of the FPR and DR, as defined in Section 2.2.1. Instead we evaluated empirically
the behavior of UDI detection and the resulting FPR and DR. Other causes of errors,
related with detection evasion, are discussed in Section 5.5.

5.3. DETECTOR IMPLEMENTATION
We constructed a basic UDI detector as a proof of concept and evaluated its accuracy
in experiments with real traffic. We implemented the UDI detection algorithm in our
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framework CITRIC that we also used for evaluation of TFC detection. Two network in-
terfaces make the system applicable as a bridge in a LAN and allow for real-time inspec-
tion with optional removal of bridged traffic by the detector. The bridge can also be
configured as a stateful firewall. In addition to real-time detection, the captured traffic
can be stored in pcap format for offline evaluation by CITRIC. The traffic is in this case
captured by Gulp [112], a capture tool with a low probability of packet loss. Tables of for-
ward references, ldi’s, and flows are in CITRIC implemented with hash tables, to speed
up the search for existing flows and ldi’s. Tables, intermediate results, and detection de-
cisions are extensively logged for later manual evaluation. Further details of CITRIC can
be found in Appendix A. The source is publicly available [17].

5.3.1. PARTIAL ldi-MATCHING
To limit the complexity of payload parsing in this proof of concept, only the payloads of
DNS and HTTP are inspected for forward references and partial ldi-matching is applied,
as explained in Section 2.4. The extracted forward references are limited to the host-id
part of Equation 1. The ldi-matching in the 2nd stage for DNS host names is limited to
the TLD and at least 4 characters of the second level domain. If the second level domain
is a well-known public suffix, such .co in .co.uk, 4 characters of the third level domain
name are also included.

5.3.2. NAME-BASED CRITERIA
For the function isUserSubmitted() of Algorithm 1, we derived three name-based fea-
tures from [9], [11], and [82] to test if an ldi origins directly from a human:

1. number of characters ¹ C

2. number of non-letter characters ¹ N

3. top level domain ∈ {set of popular human-input TLDs}

The result of isUserSubmitted() is only true, if all three conditions are true. The optimal
value of C, N and the set of popular human-input TLDs depends on the behavior of the
local average user. In particular the set of TLDs depends on the nationality of the user
and the location of computer. For example in The Netherlands the TLD .nl is popular,
along with some international TLDs, such as .com and .org.

5.4. EXPERIMENTAL EVALUATION
The experimental evaluation of UDI detection has two objectives:

1. Determine the performance of practical UDI detection with different types of C&C
traffic. The FPR is determined by feeding the UDI detector in a controlled envi-
ronment with a defined set of real non-malicious traffic. The DR is determined by
feeding the detector with various types C&C traffic, embedded in non-malicious
traffic.

2. Demonstrate that each of the three stages contributes significantly in the reduc-
tion of the total FPR. In the case of a non-malicious flow, one of the stages has to
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classify the ldi as trusted. If a stage does not classify an ldi as trusted, it is passed
to the next stage. The fraction of remaining ldi’s, passed from a stage x to the next
stage, is expressed by Hx in Equation 4;

Hx = #l dist ag e x,not tr usted

#ldist ag e x,non mal i ci ous
(5.4)

After the third stage the flows of the remaining untrusted ldi’s are classified as
anomalous. Since we assumed normal traffic, these are the False Positives. Equa-
tion 5 expresses the FPR (False Positive Rate).

F PR = Ht = H1.H2.H3 (5.5)

Although the three stages are derived from a coherent model that is based on the
origin of ldi’s, it is difficult to exclude hidden dependencies in sieving properties
between the stages. This can result in a stage that does not a have a net contri-
bution in the reduction of untrusted ldi’s. By changing the sequence of the stages,
the ratios per stage H1, H2 , and H3 can change, by dependencies in sieving prop-
erties of the proceeding stages, but the overall FPR will not change. If one of the
three stages has no net contribution, placement as the third stage will equal the
ratio H3 to 1.

5.4.1. CONTROLLED ENVIRONMENT
We evaluated False Positive behavior, True Positive behavior, and the dependency be-
tween stages, of the UDI detector with traces of both normal traffic and malicious C&C-
traffic. All traffic was produced by, and captured from computers in a controlled envi-
ronment:

• The normal traffic was generated by the use of popular applications and the visits
to popular websites from computers with a freshly installed operating system and
software.

• The C&C traffic was generated from computers, infected with real well-known
botnet malware.

Due to corporate regulations and law, it is difficult in a large enterprise network to cap-
ture, store, and analyze traffic with complete payloads for experimental evaluation and
review of the detection approach. Evaluation of UDI detection in just a small sample
of an enterprise network is feasible, but results in a high risk that the traffic is very ho-
mogeneous with a limited number of different destinations. UDI-detection will then
produce an optimistic False Positive behavior, caused by the fact that the production
of new destinations is relatively low. In addition the probability of infection by various
types of bots with sophisticated phone home traffic is small, resulting in unreliable in-
formation about the True Positive behavior. By testing in a controlled environment, we
could evaluate UDI detection more accurately because:

• By the selection of a wide variety of legitimate applications, including many pop-
ular websites that result in abundant traffic to referred destinations, the False Pos-
itive behavior is evaluated under difficult conditions. This prevents a to optimistic
estimation of the FPR.
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• By the selection of different types of botnet traffic, combined with clean legitimate
traffic, the malicious part of the traffic is precisely known, resulting in an accurate
evaluation of the True Positive detection per type of C&C traffic.

5.4.2. EVALUATION OF FALSE POSITIVES AND STAGE CONTRIBUTION

For evaluation of the False Positive performance, traffic was generated by 40 selected
cases of preinstalled applications and web applications, all commonly used by students
of our university. Although some of the applications, used by students, are not expected
to be present in a corporate environment, we chose for this selection, to test the detector
under difficult conditions by a wide variety of applications. Examples of the cases are:
Email with a stand-alone client and a webclient, participation in several social media,
usage of Google Maps and Street View, planning of a journey by Dutch public transport,
communication by WhatsApp, games and downloading. Depending on the case, the
traffic was produced by a Windows 7, Linux, or Android device. The applied list of legit-
imate ldi’s was kept as small as possible and consisted only of: the IP-addresses in the
same local subnet, the domain names of OCSP servers of well-known certificate author-
ities, and the domain names of servers that were configured in the installed legitimate
applications for automatic updates, home-pages, etc. DNS and browser caches of the
evaluated systems were cleared before the experiment, to start synchronized with the
UDI detector, as needed for a proper functioning of the referenced destination evalua-
tion.

All collected traces were evaluated by the detector. The parameters of the function
isUsersubmitted() were chosen: C=20, N=3 and {.com, .org, .net, .nl, .uk, .de, .gov} ∈ TLD.
Two particular cases resulted in an excessive number of false positives (F PR > 0.5). They
were isolated from the other traces and further manually examined. The first case was
a download with Bittorrent. Since our implementation of UDI detection cannot extract
the peer IP addresses of encrypted tracker information, all peer to peer connections
were classified as anomalous. The second case was an Android game that connected
continuously to different destinations. Since both cases are not representative for cor-
porate usage, they were excluded from further FPR calculation. We will discuss these
types of false positives and possible solutions in Section 5.

The traces of the remaining 38 cases contain 24362 flows with 54% HTTP, 8% of
HTTPS, 36% DNS, and 2% of other traffic. Since all cases were produced with freshly
installed software, we assume no C&C traffic. Consequently every flow, classified by
the detector as anomalous, is regarded as a False Positive. The FPR was calculated by
the fraction of the False Positives in the total number of flows and resulted over all 38
cases in an FPR of 0.0026 (64 False Positives in 24362 flows). Additional analysis re-
vealed that web traffic to Content Delivery Networks and advertisement-related traffic
were responsible for the majority of the false positives. The ldi’s were referred in prior
encrypted HTTPS payloads that could not be inspected by our implementation of the
UDI detector. Nevertheless the number of False Positives caused by this shortcoming
remained relatively low, because HTTPS-objects often share the same domain name as
the referring web page. Also many entry pages are not encrypted but contain references
of ldi’s to https-objects. We will also further elaborate this in Section 5.5.
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The individual effect of each of the three ldi evaluating stages is evaluated, by placing
each particular stage in turn as the last stage and measuring the ldi Ratio, H, as defined
in Equation 5.4. The results are shown in Table 1. All stages reduce the net FPR, since

Table 5.1: Measured ldi ratios of the last stage (H3) and the combined preceding stages (H1.H2) for different
sequences. L=Legitimate ldi state, R=Referenced ldi stage, U=Human Input stage.

Last Stage (H3) H3 H1.H2

U 0,28 0,0097
R 0,0038 0,70
L 0,083 0,032

all H3-values are significantly smaller than 1. This supports our model of the ldi ori-
gin in UDI detection. Table 1 also demonstrates that the referred ldi stage is the largest
contributor to the reduction of False Positives, since its ldi ratio is the smallest. The
small contribution of the name complexity filter, is caused by the fact that only a small
number of flows have an ldi that is directly typed by the user.

5.4.3. EVALUATION OF TRUE POSITIVES
For analysis of True Positives, traces with a mixture of normal traffic and malicious com-
mand and control traffic were composed. This approach results in a well defined ground
truth situation. The malicious traffic consisted of C&C traffic of well-known bot mal-
ware. Five botnet instances were selected to cover different types of C&C traffic:

1. HTTP-based C&C by Kelihos [35] with DNS and HTTP-traffic

2. Peer-to-peer-based C&C by Storm [66] with Kademlia-based UDP-traffic

3. Social medium-based C&C by Twebot [92] with HTTP and HTTPS web traffic to a
Twitter timeline.

4. TOR-based C&C by TBOT [26] with TOR TCP traffic on port 9001

5. DNS-based C&C by Morto [87] with DNS traffic to ms.jifr.co.cc.

For the normal traffic we used the Top30 trace that was also used for the evaluation
of TFC detection (Section 4.5). In the same way three of the five C&C traces were also
used in the TFC detection experiments. The normal traffic the TOP30 trace was gener-
ated by visits to the 30 most popular global websites, derived from Alexa [2] and Google
[53]. For each website visit, a typical functionality of the website was used, such as a
login, a search, playing a clip, or a product selection. All traffic was captured and col-
lected in one trace from a PC with a fresh Windows 7 installation with a Firefox browser,
including popular plugins. Since we work ni this chapter with unidirectional flows in-
stead of bidirectional flow all flow numbers are doubled. The trace contains 8358 flows
(or 4179 biflows). Due to the popularity of the websites, the trace is a representative
sample of web traffic. In addition popular websites truly test the effectiveness of the
implemented referring ldi stage, because the received HTML objects contain a massive
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number of forward references that cause auxiliary flows, such as media, advertisements,
and mesh-ups. Missed references can result in false positives.

The applied list of legitimate ldi’s was limited in this experiment to just the IP-addresses
in the same local subnet and the domain names of OCSP servers of well-known certifi-
cate authorities.

For each C&C trace, the flows of one representative call-home effort, were manually
isolated from captured traffic. With a self-developed tool we injected 10 copies of a C&C
traffic sample in the normal traffic. Our tool modified the packet positions and times-
tamps of 10 injected C&C copies to spread the phone communication equally over the
entire observation interval of the 8358 legitimate flows. In addition the tool modified
IP-addresses and port numbers of the C&C traffic to create one consistent trace with
both normal and C&C traffic, originating from the same computer, without conflicts in
the used ephemeral TCP and UDP ports. Table 2 shows the number of measured True
Positives and the resulting DR of the traces with injected C&C flows. For reference the
trace without C&C traffic is also evaluated.

Table 5.2: Measured FPR and DR of UDI detection with 1 clean and 5 infected traces.

trace phone home calls malicious flows TP FP DR FPR
Top30 clean 0 0 0 16 - 0.0019
Top30+Kelihos 10 40 40 16 1 0.0019
Top30+Storm 10 20 20 16 1 0.0019
Top30+Twebot 10 60 0 16 0 0.0019
Top30+TBOT 10 20 20 16 1 0.0019
Top30+Morto 10 20 20 16 1 0.0019

All injected flows of Storm and TBOT are detected because the ldi’s are not from
known trusted applications, unreferenced, and bare IP-addresses. The phone home
calls of Kelihos start with a DNS lookup of a hostname in the .ru domain. These DNS
flows and the traffic to the resolved IP-address are therefore classified as anomalous, re-
sulting in a DR of 1. The injected DNS-only C&C traffic by Morto is detected by the query
of ms.jifr.co.cc. Similar to the lookup of the .ru domain, the ldi is not from a known le-
gitimate application, neither from prior trusted traffic, nor from human input. The C&C
traffic from Twebot is not detected, because the ldi is Twitter.com, which is a simple
name that could have been entered by a human. Additionally Twitter.com is referred by
other legitimate traffic. The inability to detect C&C traffic that uses popular hostnames,
is caused by the partial ldi-matching that excludes the resource-id from the evaluation.
A solution for this problem is proposed in the next Section.

5.5. EVASION OF UDI DETECTION AND SOLUTIONS
There are several ways for a bot to evade UDI detection. One approach is directly demon-
strated in our experiments: by using a popular server as C&C, there is a high probability
that the detector will classify the ldi as trusted. This is caused by partial ldi-matching, as
demonstrated in our experiments with Twebot. The complete ldi of the C&C in our ex-
periment was Twitter.com/tlab32768, including the timeline of a malicious account, but
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due to partial ldi-matching, the malicious resource-id was omitted and only the host-id
Twitter.com was evaluated. This resulted in classification as trusted, because other ob-
jects of Twitter.com were already referenced by prior flows and additionally Twitter.com
can origin from user input by its low complexity. The solution is a complete ldi match
instead of a partial. This requires two techniques:

1. encrypted payload inspection A significant part of modern traffic uses TLS, such
as HTTPS. The encrypted payload prevents the extraction of resource-id’s from
egress flows, and forward references from ingress flows. Complete ldi-matching
would then result in a large number of false positives. In our experiments this
was reduced by partial ldi-matching. However a better solution is the insertion of
an SSL/TLS-interception proxy. By the installation of a public-key certificate on
clients in an organization, a trust relationship can be established between the ob-
served computers and the proxy that enables decryption of TLS-traffic, without
certificate warnings of browsers [71]. Resource id’s and forward references can
now completely be extracted from the decrypted traffic. This allows for complete
ldi-matching and prevents false negatives by the use of popular hosts. The ap-
pliance of an SSL-interception proxy changes the detector from a passive into an
active device, since traffic is intercepted, decrypted, and encrypted. Although this
theoretically results in more exposure of the detector to bots, it is our belief that it
will not increase significantly the risk of compromise.

2. browser emulation Modern websites use complex client scripts that can construct
URL’s by dynamically combining different elements from ingress payloads and
even user input. This complicates the complete extraction of ldi’s and forward ref-
erences with an increased risk of false positives. As explained, partial ldi-matching
is a simple solution for this, but introduces evasion possibilities by inaccurate
matching. A solution is the extraction of complete forward references in the UDI-
detector by emulation of the clients browser.

It is evident that both techniques include complex and processing-intensive payload
analysis that requires further research.

UDI detection can also be evaded by completely different techniques:

1. The botnet controls a trusted destination. This is for the botnet a complex type of
evasion because it has to recruit at least two instances: a local computer as the
inside bot and an external host with a trusted destination. Additionally in case of
a takedown it would be difficult to replace the C&C destination.

2. The botnet acquires a hostname that can origin from human input. This also raises
problems for the botnet, since human-friendly hostnames are often occupied,
and again in case of a takedown, the replacement is difficult. In our experiment
we only used three simple static rules to classify ldi’s from human input. The use
of more features and machine learning can result in a more accurate classification
that can adapt to specific situations.

3. The botnet does not phone home. Nagaraja et al. proposed a botnet that piggy-
backs C&C messages in pictures that were exchanged between members of social
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media [91]. In this model there are no phone home connections, which makes it
undetectable for UDI detection. However it requires the recruitment of at least
two instances that exchange content by a popular social medium. Generally this
is a difficult condition to achieve, with again problems in case of a takedown.

5.6. RELATED WORK
The combination of legitimate destination evaluation, referenced destination evalua-
tion, and human input evaluation, distinguishes UDI detection from the other detection
approaches.

5.6.1. WORK RELATED WITH FLOW ANALYSIS IN CONSECUTIVE STAGES

Detection of C&C traffic by flow-based analysis over several consecutive stages is a com-
mon approach. Strayer et al. propose a behavior-based detection system of IRC-based
C&C [121]. Like our method they apply several consecutive stages to isolate the mali-
cious traffic, with the first stage as a coarse filter to reduce processing in the other stages.
However, unlike our UDI detection, the approach focuses on IRC and uses statistical
flow-based and topological properties that depend on the presence of multiple infected
bots.

Walsh et al. describe a first pass filter that uses simple statistical flow attributes to
select flows for further analysis [133]. They only focus on this first filtering stage instead
of a complete detector.

5.6.2. WORK RELATED WITH LOGICAL DESTINATION REFERENCING

The second stage of our UDI detector tests if the ldi of a new flow is referenced in the
received payloads of prior flows. Zhang et al. propose CR-miner [140], a system that
evaluates traffic dependencies between connections and user events, to determine ma-
licious automatic traffic. CR-miner associates a new connection with earlier references
and user input. In contrast to our method CR-miner is implemented in the observed
computer itself, since it needs user and process properties for classification. This sig-
nificantly increases the exposure level to potential malware. In addition CR-minor uses
a different method for associating flows: the Referer field in the HTTP header of a new
connection is used to determine if the flow was previously referenced by another flow.
This method is only applicable for HTTP traffic that supports this field and it can be
easily manipulated by malware, since it is produced by an application in a potentially
infected computer. Our method is not sensitive for this type of tampering, because
forward references are captured from payloads of ingress flows that origin from other
computers and because ldi’s cannot be manipulated, without changing the egress flow
destination.

Burghouwt et al. use causal relationships between flows to detect botnet C&C traffic
[20]. Instead of the destination, the direct cause of a flow determines if communication
is initiated by malware. Unlike UDI detection this demands for the accurate measure-
ment of the delay between certain events and induced new flows. Another difference is
the required monitoring of user events by a software agent or a hardware device.

Whyte et al. present a detector of scanning worms by determining IP-addresses
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that are not earlier seen in DNS-replies or received HTTP-data [135]. This can be seen
as a special case of flow referral, that isolates flows with unreferenced destination IP-
addresses, as is often seen with worms.

5.6.3. WORK RELATED WITH HUMAN INPUT EVALUATION
Several name-based properties of hostnames and URL’s have been proposed, to detect
malicious destinations. Since there is not a unique name-based property that can de-
cisively classify anomalous names, the proposed techniques use multiple lexographical
and non-lexographical features, often combined with machine learning. Alphanumer-
ical frequencies are used in work of Yadav et al. [137] and Mc Grath et al. [85]. Length
of hostnames and substrings is used in work of Mc Grath [85]. et al. and Bilge et al. [9].
The number of dots and other delimiters in URL’s are used by Ma et al. [82] and Blum
et al. [11]. Our human-input evaluation is different in two ways from other approaches.
Firstly the human-input classification in UDI detection is preceded by a stage that re-
moves all traffic with referred destinations. This reduces the FPR. Secondly most name-
evaluating detectors produce a list of malicious names for blacklisting. UDI-detection
can classify in real-time and allows for an immediate drop of an anomalous flow.

5.7. CONCLUSIONS
UDI detection detects different types of stealth C&C phone home communication in an
enterprise network by the trustworthiness of contacted destinations. The destinations
of egress traffic flows are classified as trusted or untrusted by three consecutive stages
that evaluate the origin of the involved ldi (logical destination identifier).

With its capability of immediate detection of just a single C&C flow, this approach
can complement existing network-based anomaly detection approaches in enterprise
networks. The initial set of trusted destinations, which can be seen as specification-
based knowledge, is feasible to maintain in a typical enterprise network.

Partial ldi matching allows for a relatively simple and feasible UDI-detector imple-
mentation. The results of experiments with C&C traffic of real bots and normal traffic
support the detection approach with a low FPR and an accurate detection of various
types of C&C traffic.

The evasion possibilities, discussed in Section 5.5, are all related with the partial ldi-
matching in our proof of concept. UDI detection with complete ldi matching, will solve
this problem, however its implementation is much more complex by the required SSL
traffic interception, payload parsing by browser emulation, and the evaluation of more
user related features by an appropriate machine-learning algorithm.
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DETECTION OF BOTNET COMMAND

AND CONTROL CHANNELS BY

ANOMALOUS DEGREES OF DNS
DOMAINS

DNS-based detection of Command and Control traffic is an attractive approach because
DNS is a popular Command and Control component and its traffic is relatively easy to
capture and evaluate.

In this chapter we introduce a new DNS-based detection approach, that detects botnet
collusion by the degree of queried domains. An important property of our detection ap-
proach is scalability, which allows for observation of large groups of computers over mul-
tiple networks.

We evaluate evasion possibilities, derive a theoretical model of the expected degree dis-
tribution with its related False Positive Rate, and test the detector with captured Internet
traffic.

This chapter is a revision of the paper with the same title published in the Proceedings of the ICITST2010
Conference [18].
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6.1. INTRODUCTION
DNS-based detection of botnet Command and Control (C&C) traffic is an attractive de-
tection component in enterprise networks. This can be explained by three factors:

• DNS is used in many botnet C&C infrastructures. By its popularity, DNS traffic
does not raise suspicion. DNS supports phone home communication. This is
important, because in enterprise networks most computers, including bots, are
guarded by stateful firewalls and NAT, which only permit connections that initiate
from inside to outside. Another advantageous C&C property of DNS is the avail-
ability of techniques that complicate repression of central C&C servers, such as
DGA (Domain Generation Algorithm) [9] and IP fast-fluxing [93]. We will discuss
DGA in Section Section 6.3.3.

• In an enterprise network it is relatively easy to capture all DNS traffic. One way to
accomplish this, is to allow only DNS queries through an enterprise DNS server.
Such a policy is easily enforced by internal firewall rules. This facilitates the in-
spection of all DNS traffic in or in the proximity of the enterprise server.

• The payload of DNS-traffic is relatively easy to evaluate, because it is relatively
small, highly structured in predefined fields, and not encrypted.

We propose a new detection approach of C&C DNS traffic that evaluates the degree
of queried domains. We define the domain degree as the number of different comput-
ers within a network that successfully query, by A or AAAA records, the IP-address of a
hostname from a remote domain. Popular domains will have a relatively high degree.
We assume that a botnet has significantly more bots than active C&C domains. This in-
fluences the degree of the malicious domains. If enough bots contact the same domain,
its degree can raise to a detectable level. False positives, caused by the popularity of well
known legitimate domains can be reduced by additional filtering. The measurement of
the domain degree allows for a relatively easy aggregation over a very large enterprise
network or a combination of multiple enterprise networks. Detection does not only
identify C&C domains, but also the IP-addresses of bots that query the domains.

Section 6.2 of this chapter discusses related work. Section 6.3 elaborates the concept
of domain degree, the accumulation over different networks, and the expected accuracy
of the proposed detection approach. Section 6.4 compares measurements of the degree
distribution of real traffic with theory. Section 6.5 discusses evasion techniques and
countermeasures. Section 6.6 summarizes the most import results.

6.2. RELATED WORK
Many DNS-based detection approaches of botnet C&C or other malicious traffic have
been proposed. We will discuss here important work that covers different types of ap-
proaches.

Zdrnja et al. propose passive monitoring of DNS traffic and relate it with historical
information, to detect Spam domains. They describe anomalies, like non-existent do-
mains, typo squatter domains, A-records with a high number of changing IP-addresses,
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and record reputation. The approach uses anomalies in the content of the DNS-records
and not domain degree [138].

Ramachandran et al. propose detection by the measurement of reconnaissance
lookups in DNS-based blacklists[106]. This does not directly detect the C&C traffic of
a botnet.

Choi et al. [23] describe a detection mechanism, called BotGAD. Like our approach,
BotGAD searches groups of computers that contact periodically the same domain. BOT-
GAD collects IP-addresses of these computers per contacted domain, to construct groups
and determines similarity between those groups in different time intervals. Unlike Bot-
GAD, our detection system does not depend on the periodic measurements in different
time intervals, nor the correlation between groups of IP-addresses of the DNS clients.
The correlation of IP-addresses of all involved DNS-clients requires a processing effort
that makes BotGAD less scalable than our approach.

Bilge et al. propose Expose, a detection system that uses 15 different features, de-
rived from the DNS payload [9]. It can detect special domain names, that are generated
by DGA (Domain Generation Algorithm). The feature set does not include IP-adresses
of the querying bots, which is necessary for the determination of the domain degree.

Villamarin et al. propose the detection of botnet DNS traffic to non-existent do-
mains by NX-replies, which is an indication of DGA-produced domain names [130]. Our
approach does not depend on features that are direct indicators of DGA.

6.3. DETECTION BY DOMAIN DEGREE
Detection is accomplished by observing the DNS-traffic of a large group of potentially
infected computers and counting per queried DNS domain the number of different
computers that successfully resolve an IP-address. We assume that a malicious domain
is queried by multiple infected bots, which results in an unexpected popularity of that
domain. Of course the malicious domain will not be the only popular domain. By filter-
ing well-known legitimate domains, we expect that malicious domains become distin-
guishable from the remaining domains by their degree. Before we explain the complete
detection approach, we will first elaborate the distribution of the domain degree.

6.3.1. DISTRIBUTION OF THE DOMAIN DEGREE
Figure 6.1 shows a network of three domains that are requested by an observed pop-
ulation of 8 computers. The word network does not refer here to computer networks,
such as enterprise networks, but to a type of graph that represents associations between
DNS-clients and requested domains. The nodes or vertices of the network represent the
computers in the observed population and also the queried domains. The links or edges
represent the DNS requests by the clients. From graph theory, we define the degree as
the amount of computers in the observed population that successfully query a domain
during a defined time interval. If C is the total number of observed computers, and k is
the degree of a specific domain, the value of k will be limited by:

1 ≤ k ≤C . (6.1)

The degree is at least 1, because only domains are considered which are requested by
at least one computer during the observation interval. If all computers visit the same
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Figure 6.1: Network consisting of an observed population of computers and the domains, queried at least one
time during some time interval.

domain, this domain will have a degree of C. In practice the degree of a domain is a
statistical property, that is related with the number of observed clients, the observation
time and popularity of the domain.

Barabási and Albert discovered that many networks are scale free with a power law
decay in the distribution of the degrees [7]. One of the investigated networks was the
World Wide Web, with the web pages as vertices and the links from other pages as edges.
The degree distribution shows a power law decay, with a power of -2.1 which is typical
for a scale free network. An explanation for this distribution is preferential attachment
[7]. In the case of web pages this means that if a web page has a relatively high degree
by its popularity, the degree will likely grow faster then the degree of less popular pages,
because it is better known and easier to find. The World Wide Web is by far the most
important way to navigate on the Internet to resources. Most URLs contain a domain
name, hence making it plausible that the degree distribution of domains shows a similar
power law decay. Therefore we propose the hypothesis that all domains, contacted by
the observed computers, including bots and non-bots, will have a power law distribu-
tion in their degrees, estimated by:

P (k) ≈ A.k-λ|0 ≤ k ≤C
P (k) = 0|k >C

(6.2)

- C = the total number of observed computers
- λ= the power with a value close to -2
- A = a probability-normalizing constant, forcing the sum of all probabilities to 1.
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6.3.2. DETECTION PROCESS
Our detection approach captures recursive DNS traffic between the resolvers (DNS
clients) and the DNS server in an enterprise network. If a domain is requested for the
first time and a valid reply is returned, the detector will store the domain name in a ta-
ble. The IP-address of the requesting client is also stored in the table, associated with
the requested domain. If the same computer successfully requests the domain again,
the detector will not take any action, because the IP-address is already registered. How-
ever if another computer successfully requests the same domain, its IP-address will also
be stored in the associated list. In this way the number of IP-addresses that belong to
a particular domain, is the degree of that domain. The use of the same malicious do-
main by multiple bots will result in relatively high degree. Ideally if the degree is above
a predefined threshold, the domain is classified as anomalous. The associated list of
IP-addresses will also reveal all potential bots that queried the anomalous domain. Un-
fortunately there is a complication in this detection approach. Many popular legitimate
domains have a degree that is significantly higher than the degree of a C&C domain. Ad-
justing the degree threshold to a value that detects the C&C domains, will cause a high
number of False Positives by legitimate domains that have a higher degree. We define
the FPR (False Positive Rate) as the ratio of False Positive domains to the total number
of non-C&C domains. This is equivalent with the probability that a non-C&C domain di

has a degree ki above the threshold kth:

F PR = F P

T N +F P
= P (ki > kth |di ∉C &C ) . (6.3)

FP = number of False Positives
TN+FP = number of True Negatives and False Positives = total number of non-C&C do-
mains

Because we only consider non-C&C domains, the FPR of the detector equals the
cumulative probability P (k > kth) of the distribution of Equation 6.2:

F PR = P (ki > kth |di ∉C &C ) =
∞∑

k=kth+1
(P (k) =

C∑
k=kth+1

A.k−λ . (6.4)

- kth is the preset degree threshold. The detection of malicious domains that are only
requested by a few bots, requires a very low kth . This results in many false positives by
popular non-malicious domains.
- C = the total number of observed computers
- λ= the power with a value close to -2
- A = a probability-normalizing constant, forcing the sum of all probabilities to 1.

To solve the presented problem we introduce the filtering of well-known domains.
Some well-known domains, such as Google.com will have a very high degree, due to their
popularity. With a list of such domains, they can be classified as normal, despite their
high degree. There are several heuristical approaches to compose such a list:
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1. The use of a public list of well-known domains: An example is the Alexa-ranking
[1]. Alexa.com maintains a list of popular domains, measured by browser toolbars
that are world-wide installed on a large group of computers. An API delivers the
absolute ranking of a specific site. We assume that a malicious domain that is
used by a limited number of sophisticated bots is not present in the ranking. Of
course the botnet could use or hijack a very popular domain, such as the domain
of a popular social medium. We will discuss this type of evasion and other types
of evasion in Section 6.3.3.

2. The use of a custom list of locally popular domains: A custom list contains domains
that have local popularity. These domains can be derived from network specific
properties, such as the legitimate applications in the network or the nationality
of its users. The limited diversity of computers and traffic in enterprise networks
support this approach.

3. The use of a baseline: A special list of popular domains can be constructed by an
initial measurement and analysis of DNS requests.

It is evident that the suggested filter approaches can also be combined, to identify and
exclude more domains from the degree evaluation.

To obtain a detectable degree of a malicious domain, sufficient bots must be present
in the observed network. By aggregation of observed degrees over multiple enterprise
networks the average number of bots that visit the same domain will increase. Aggrega-
tion will also increase the degree of well-known popular domains, but these are removed
by the proposed filter step.

Detection by degree distribution scales very well over a large enterprise network and
even a large group of enterprise networks. Within each enterprise network it requires a
monitoring system, consisting of a table of requested domains, with the associated IP-
addresses of the requesting clients. The system can be implemented in the enterprise
DNS server. The tables of different DNS servers or even different enterprise networks
can be aggregated in a central system. Not all information has to be delivered to the
central system: a list of domains with the degree of each domain is sufficient. In each
network, different clients are contributing to the degree of a domain, hence the central
system does not need to know the IP-addresses of the individual clients for correct accu-
mulation of the degrees per domain. The necessary storage and associated processing
in the central system will scale linearly with the number of contributing enterprise net-
works.

6.3.3. DETECTION EVASION
Most of the evasion-strategies proposed by Stinson et al. [119], such as encryption,
packet- or flow-level noise, and even IP-churn are ineffective against our detector ap-
proach, because there is no dependency on traffic content, flow characteristics, or IP-
addresses. However there remain several evasion possibilities:

• The use of a C&C mechanism without DNS. This evasion is trivial, because the
detection observes the degree of DNS domains. However, the botmaster will loose
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an attractive C&C option, because DNS provides a simple, popular, and robust
service.

• Long and irregular delays between attacks and the C&C communication. This re-
quires a large observation interval or a large number of observed hosts, to capture
multiple visits to a C&C domain. If the observation interval is too short, it will
result in a lower detection probability, because not every bot in the observed pop-
ulation contributes to the degree value of the C&C domain. However, this eva-
sion technique will reduce the utility of a bot, because its control becomes less
responsive. The calculation of degrees per DNS server and the easy limited size
of aggregated information over different DNS servers allows for long observation
intervals.

• Multiple DNS domains. It is in the advantage of the botmaster to use different
C&C domains. If the bots spread their phone home contact over the domains, the
degree of each domain will be small. In this way, the botmaster can keep its C&C
domains below radar. The spread over several domains can be done in several
ways:

– Creation of sub domains in a (second level) domain. If the botmaster con-
trols a domain, it is possible to create an almost unlimited number of sub-
domains. But this strategy is not effective against detection, because the de-
tector can aggregate all subdomains to one high-level domain as shown in
Fig. 6.2. This accumulates the degrees of the subdomains into one large
value, that is easier to detect.

Figure 6.2: Example of the aggregation of many subdomains with small degree to one second-level domain
with the accumulated degree.
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– Acquisition of many second-level domains: Although this evades the described
aggregation, it is not attractive for the botmaster, because the acquisition
and management of second level domains involves costs. Hence the deploy-
ment of many of such domains reduces the utility of the botnet.

– Creation of free dynamic DNS domains in multiple second level domains:
C&C domains can be created as a dynamic third level DNS domain that is
offered for free by many DDNS providers. To avoid a suspicious high de-
gree by aggregation in one DDNS domain, the domains can be spread over
several second level DDNS names for example: mybotdomain.dyndns.org,
mybotdomain.no-ip.org, etc. However, the creation and maintenance of a
large number these free domains can be a burden, because many providers
use request forms with CAPTCHAs, demand confirmation from unique email-
addresses, and regular usage. In addition we expect that the queries of legit-
imate DDNS domains in an enterprise, if queried at all, are limited to a few
specific subdomains that can be classified as normal by a predefined list.

– Creation of URL shortening services: URLs can be encoded by URL shorten-
ing services, such as bitly.com [10]. A botnet can use this service to contact
a malicious domain or IP-address of the server by a legitimate well-known
server of the shortening service. However, the shortening service delivers
only the complete URL of the requested shortened URL. The bot still has to
resolve the embedded malicious domain by DNS. The botnet can evade this
second lookup, by shortening a URL that contains an IP-address instead of a
malicious domain. However, the use of IP-addresses without DNS result in
an anomaly, which can be detected by other techniques, such as UDI detec-
tion, as presented in Chapter 5.

– Domain flux by DGA: Domain flux is a technique that changes domain names
instead of IP-addresses. Bots, like Conficker [102] and Torpig [120] use a DGA
(Domain Generation Algorithm), to periodically generate a list of domains
and attempt to contact the domains in the generated list. If the contact fails,
they try another name in the list until success. The botmaster only has to
registrate a small number of domains in the list, so there is not the prob-
lem of high costs. For the defender it is difficult to predict which domain
is used. Since eventually the bots will only contact a small number of do-
mains, our detection mechanism is not evaded. Domain flux also introduces
vulnerabilities to a botnet. The high number of failed domain contacts is a
detectable anomaly[138]. In addition, reverse engineering of the generation
algorithm can result in the hijack of a botnet by claiming some of the unre-
served domains. Stone et al. describe this method in [120].

6.4. EXPERIMENTAL EVALUATION
We evaluated the FPR of the detection approach with real traffic. In our experiments we
have three objectives:

• Comparison of the degree distribution in a real network with the modeled scale
free degree distribution of equation 6.2.
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• Evaluation of the effectiveness of filtering popular domains.

• Estimation of the False Positive Rate as a function of the degree threshold kth

We captured the DNS-traffic on the campus of a Dutch university in a part of the net-
work that connects about 400 private computers of on-campus student housing with
the Internet. The DNS traffic was offline analyzed by a set Perl scripts, we developed.

After 24 hours, the total number of computers with DNS-activity in the network was
351. Together they queried successfully 17908 different domains. We consider a cap-
tured DNS-reply with a valid A-record as a successful contact, assuming that a computer
only resolves domains with the intention of a subsequent visit. It is likely that the trace
will contain some C&C traffic. In our evaluation we neglect the effect of botnet traffic on
the FPR measurements, by assuming that all traffic is non-C&C. As a result the measured
FPR will be slightly higher than the real FPR, because a small fraction of the Positives are
in fact True Positives. At the end of section 6.4.2 we will come back on this aspect.

6.4.1. MEASUREMENT AND COMPARISON OF THE DEGREE DISTRIBUTION
Figure 6.3 shows the probability distribution of the measured domain degrees. The dou-
ble logarithmic scale reveals a straight line that indicates a power law decay of approx-
imately -2.1. Also plotted, is the theoretical curve, based on equation 6.2 with λ=-2.1.
The noise in the right part of the experimental curve is caused by the limited number of
domains, with a high degree.

Figure 6.3: Graph of the observed and theoretical probability of domain degrees, with 351 observed computers
that queried 17908 domains in 24 hours

Figure 6.4 shows the cumulative degree distribution, derived from the measured prob-
ability. In the same figure, the theoretical cumulative degree distribution, calculated by
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Figure 6.4: Graph of the observed and theoretical cumulative degree distribution of domain degrees, with 351
observed computers that queried 17908 domains in 24 hours.

Equation 6.4, is also plotted. The exponential drop in the right part is caused by the
maximum degree of 351. The maximum relative error between the theoretical and ex-
perimental cumulative probability is 0,4. The correspondence between the experimen-
tal and theoretical graph supports our hypothesized scale free degree distribution. Table
6.1 shows the 10 domains with the highest observed degree. As expected, the domains
are all well-known legitimate domains.

Since we neglect here the potential presence of real C&C traffic, the cumulative de-
gree distribution equals the FPR, expressed by equation 6.4. The high degree of the well-
known legitimate domains, makes detection unfeasible. For example a chosen thresh-
old of 5 will cause an FPR of 0.08 or 1487 to False Positives of the 17908 domains.

6.4.2. THE EFFECT OF FILTERING POPULAR DOMAINS

The high FPR of the last Section, shows the necessity of the proposed identification of
popular legitimate domains. We refer to this step as filtering, because the identified
popular domains are excluded from further degree evaluation.

The effect of filtering well-known domains from our campus data set was evalu-
ated by using the Alexa-ranking [1] to determine the popularity of a domain. Alexa.com
maintains a list of popular domains, measured by a toolbar that is world-wide installed
on a large group of computers. Of all observed domains in our data set 95% was ranked
in the global top 1000000 list of Alexa. Figure 6.5 shows the probability distribution of
the remaining domains. Figure 6.6 shows the resulting FPR, again assuming that all de-
tected domains are legitimate domains. Compared to Figure 6.4, it shows that the filter
stage significantly decreases the FPR. If we take again a threshold of 5 as an example,
the resulting FPR is 0.0011 or 19 False Positives. Table 6.2 shows 10 detected domains
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Table 6.1: The 10 domains with the highest domain degree in the captured DNS traffic.

Degree Domain
341 google.com
331 doubleclick.com
327 google-analytics.com
324 msn.com
322 microsoft.com
319 live.com
312 atdmt.com
308 2mdn.com
301 hotmail.com
299 youtube.com

Figure 6.5: Graph of the observed probability of domain degrees after excluding well-known domains

with the highest degrees.
The domain names of the positives reveal that the number of False Positives can be

further reduced by additional processing. For example the in-addr.arpa domain is used
for DNS translation of IP-addresses to names, and therefore not part of the Alexa rank-
ing. Another example is the presence of equal second level names with only different
TLD’s. Also the Alexa.com domain itself was not ranked by Alexa during the analysis of
our experiments.

In our evaluation we neglected the presence of real C&C traffic. To evaluate this
choice, we searched with other techniques for the presence of malicious domains:

• Manual analysis of the names of all DNS domains in the data set revealed DNS-
queries with second level DGA names. The queried DGA-domains were not ac-
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Figure 6.6: Observed FPR as function of the threshold k, after excluding well-known domains

tive, because none of the queries succeeded in a successful answer. Since the
degree calculation of our detector is only based on successful connections, the
DGA-domains were not identified by the detector. This is not a problem because
this noisy type of C&C traffic can easily be detected by other methods [9][130].

• 29 of the domains in the data set, known to Alexa, were present in public black-
lists [83]. Obviously the detector did not detect these domains, since they were
removed by the Alexa filter.

• At least 1 of the 19 detected domains was suspicious. It was a DDNS domain with
a DGA-like third level domain name. Since we had no access to the associated ob-

Table 6.2: The 10 domains with the highest domain degree in the captured DNS traffic after removal of the
well-known popular domains by the Alexa.com ranking

Degree Domain
31 creative-serving.com
30 neatoentertainment.com
21 alexa.com
17 respstatic.com
15 gtkg.net
14 gtkg.org
14 rbi-nl.com
13 crossmediafix.com
10 in-addr.arpa
10 msgpluslive-update.net
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served client computers we could not verify if this was indeed C&C-related. The
“catch” of only one suspicious domain in 19 detected domains seems disappoint-
ing, however, we cannot exclude the presence of other C&C domains in the detec-
tion result, because we could not extend our research to the observed machines.

The experimental results show that the addition of the Alexa filter results in a low False
Positive Rate of only 19 domains over 24 hours at a detection threshold of 5. The results
also show that this approach must be combined with other DNS-based approaches,
such as DGA-analysis and blacklists. Since we do not know the exact ground truth situ-
ation in this experiment, it is difficult to draw conclusions about an observed DR (Detec-
tion Rate) of our detector in this experiment.

6.5. CONCLUSIONS
Domains, queried during a defined time interval by a observed group of computers,
show a scale free degree distribution with a power law decay. Many domains are only
queried by just one observed computer and a limited number of domains are queried
by many observed computers.

If a network contains multiple bots that use DNS and query the same C&C domain,
this domains will have a degree that is larger then 1. Evaluation of the domain degree
of all queried domains can detect these domains if well-known legitimate domains are
removed. An important success factor is the number of observed computers. A large
number of observed computers will increase the probability of observing multiple bots
visiting the same botnet.

This technique complements existing DNS anomaly detection approaches, such as
queries to unusual or non-existing domain names. It will not only identify the names
of malicious domains, but also the IP-addresses of bots that query the domains. Ad-
ditionally there is no dependence on misuse-related knowledge, such as signatures or
blacklists.

The capture of data and processing is relatively simple and allows for high scalability,
when the results of multiple networks are combined, to span a larger group of observed
computers. The exchanged information, which can be seen as a state of normal and
malicious activity, as defined in Chapter 2, is very compact, because it is limited to only
the queried domains and their locally measured degrees.

Experimental evaluation of domain degrees in real traffic, with the removal of well-
known popular domains by the Alexa ranking, supports the feasibility of the described
detection approach alongside other DNS-based detection approaches.





7
CONCLUDING REMARKS

This final chapter looks back at the research questions of the first chapter and the extent
to which they are answered by the results, presented in this thesis. This chapter also looks
forward to future work.
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7.1. RESEARCH OBJECTIVES, SUBSEQUENT RESEARCH ACTIV-
ITIES, AND RESULTS

Our research aimed for new network-based C&C detection approaches that anticipate
specific properties of enterprise networks. In this chapter we will structure the results of
the research activities by the research questions of Chapter 1.

1. What are distinctive properties of existing network-based C&C detection approaches
and which enterprise-specific properties are potentially suitable for new detection ap-
proaches?
For a systematic overview and comparison of botnet countermeasures and botnet traffic
detection in particular, we developed an ontology-based faceted classification in Chap-
ter 2. Classification is conducted by identifying the appropriate class per facet. By a
proper choice of the facets, the classification for each facet is highly independent from
the classification by other facets, which facilitates the classification process. The under-
lying ontology can be represented by a class diagram that delivers a compact overview
of all classes with the facets as semantic associations. The diagram can be refined with
new classes by existing facets, new facets, or subfacets. With this approach we devel-
oped a generic ontology of botnet countermeasures (Figure 2.9) and a refined ontology
of network-based C&C detection approaches (Figure 2.11). Both ontologies allow for the
classification of highly diverse countermeasures in classes that accurately reflect the im-
portant distinctive properties of a particular countermeasure. The detection ontology
classifies detection by three important facets:

1. Features, derived from the observations

2. Knowledge, used as a reference for normal or malicious instances

3. State, constructed by prior events and in some cases required for classification

We classified representative existing network-based detection approaches by this botnet
detection ontology. The resulting overview reveals a number of frequently occurring
properties in the existing approaches:

• Features are often limited to traffic headers and flow-related metadata

• Knowledge is often misuse related, consisting of signatures of known botnet traf-
fic. In the case of anomaly-based traffic detection, the knowledge of normal traffic
is often defined by a baseline for statistical analysis or by a training set for analysis
by machine learning.

• Correlation between malicious traffic instances, such as C&C traffic and attack
traffic from one or multiple hosts, is a popular anomaly-based approach. It re-
quires a momentary state that is defined by preceding malicious traffic.

Our proposed classification of botnet detection allows for a systematic selection of classes
and related properties that support the detection of sophisticated C&C traffic in typical
enterprise networks. We identified four properties of enterprise networks that allow de-
tection of infiltrated sophisticated bots with stealth C&C traffic:
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1. Enterprise networks allow for comprehensive control and restriction of traffic.

2. Enterprise networks allow for detailed traffic observation, including Deep packet
Inspection (DPI) and the decryption of TLS/SSL traffic by an interception proxy.

3. Most network-connected end-systems in an enterprise network, such as comput-
ers, printers, and mobile devices have limited hardware and software diversity and
allow for comprehensive control.

4. Administrations of enterprise networks can and will take advanced countermea-
sures against recognized security risks, including significant changes in hardware,
software, and procedures.

These properties enable specific classes per facet as shown by the ontology of Figure
2.11.

• Detection Features: DPI (Deep Packet Inspection) allows for detection features
that are derived from transported application data. In addition, the limited hard-
ware and software diversity and the ability of an enterprise to take advanced coun-
termeasures against security risks, make it feasible to capture non-traffic features
by special external hardware or by the host system of a virtualized environment,
such as a hypervisor.

• Knowledge and State: The comprehensive control and restriction of traffic and
the limited hardware and software diversity of end systems allow for anomaly-
based detection by the specification of normal traffic. The observation of normal
traffic in enterprise networks enables the construction of a momentary state that
predicts potential future normal traffic.

2. How can botnets be detected in an enterprise network, anticipating the identified new
characteristic properties?
In this thesis three new C&C detection approaches for enterprise networks are pro-
posed. They anticipate the specific properties of an enterprise network by implement-
ing the identified classes, obtained from research question 1. The approaches do not
replace but complement traditional misuse- and anomaly-based detection approaches,
including traffic detection by known botnet signatures and traffic detection by correla-
tion of malicious traffic. The new detection approaches, proposed and evaluated in this
thesis are:

1. C&C anomaly detection by the identification of direct causes of a new traffic flow
(TFC-detection, Chapter 3 and 4)
- Generic classification: B/N∧(H∨E)/R(Al/Ni/De(An))
- Detection classification: De(Ho∧Tr(He∧Ap(DNS∧HTTP)∧Me)/An(St∧Sp)/No)
The assumption is that C&C traffic is machine-generated and therefore not di-
rectly caused by human activity or other legitimate traffic. To demonstrate this
we developed and implemented the OCS algorithm, that selects the optimal di-
rect cause for each new traffic flow by its relation with prior traffic and user ac-
tivity. The selection process includes both time measurements between events
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and semantic relationships between different flows. All flows and causes can be
organized in a Traffic Flow Causality graph or TFC graph as trees. The first flow
of each tree is the root flow. The direct cause of this root flow is used for the clas-
sification of normal and anomalous traffic. Experiments with a proof of concept,
implemented in CITRIC, and mixtures of captured clean diverse traffic and cap-
tured C&C traffic demonstrate that this approach can detect successfully single
instances of various types of covert C&C traffic with a limited number of False
Positives. The detection is real-time and does not require any preceding botnet
traffic. If deployed in an IPS, detected C&C communication can be immediately
and completely blocked. A limitation of the approach is that future bots can evade
detection by piggybacking on certain events by synchronization. There are solu-
tions for this problem, which we will discuss Section 7.2.

TFC-detection depends on the identified properties of enterprise networks. The
limited diversity and comprehensive control of end systems in enterprise net-
works, combined with the ability to take advanced countermeasures, support the
feasibility of described observation of keyboard and mouse activity. In addition,
the ability of Deep Packet Inspection in enterprise networks enables the evalua-
tion of semantic relationships. The comprehensive control and restriction of traf-
fic reduces diversity in causal relationships, which increases the feasibility of the
approach.

2. C&C anomaly detection by the trustworthiness of visited destinations (UDI-detection,
Chapter 5)
- Generic classification: B/N/R(Al/Ni/De(An))
- Detection classification: De(Tr(He∧Ap(DNS∧HTTP)∧Me)/An(St∧Sp)/No)
In this approach the origin of the destination identifier of each new traffic flow is
determined. Examples of destination identifiers are IP-addresses, hostnames, or
URLs. The assumption is that the destination identifier of botnet C&C traffic does
not origin from well-known legitimate applications, prior traffic from trusted des-
tinations, or human input. Similar to TFC-detection this approach evaluates se-
mantic relations between traffic flows, by searching in the traffic payload for desti-
nation references of future traffic. However, unlike TFC detection, UDI-detection
does not use time intervals to select direct causes. Similar to TFC-detection this
approach evaluates user input but it does not require the observation of user in-
put devices. UDI-detection evaluates the destination identifier of a traffic flow on
its likeliness of being typed by a human. UDI-detection was tested in a similar way
as TFC detection and successful real-time detection of single instances of various
types of covert C&C traffic was demonstrated. The simplified implementation of
UDI detection as a proof of concept in CITRIC resulted in limitations, related with
C&C traffic to popular destinations, such as social media. We will discuss solu-
tions as future work in Section 7.2. Similar to TFC-detection, UDI-detection an-
ticipates the ability of Deep Packet Inspection in enterprise networks, combined
with the comprehensive control and limited diversity of traffic and end systems.
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Table 7.1: Overview of observed detection accuracy, C&C traffic types, and evasion possibilities of the pro-
posed detection approaches.

Detection
Approach

FPR DR C&C traffic Evasion Possibilities

TFC detection 0.0017 1 >0.7 DNS/HTTP, P2P,
Social Media

piggybacking on certain
user and traffic events

UDI detection 0.0026 2 1 DNS/HTTP,
DNS, P2P, TOR

C&C by popular Social
Media, the use of
user-friendly destination
identifiers

Detection by
domain degree
anomalies

0.0011 3 - DNS the use of popular
domains, continuous
change of existing C&C
domains

3. C&C detection by anomalies in the distribution of the domain degree (Chapter 6)
- Generic classification: B/N/R(Al/Ni/De(An))
- Detection classification: De(Tr(Ap(DNS))/An(St∧Sp)/Ma(Cc/Ho))
The detector observes the payloads of DNS traffic and determines of each resolved
domain the relative popularity, expressed by its degree, which is the number of
end systems in an enterprise network that request successfully the IP-address of
a domain. If the degree of a domain is unexpectedly high, it is regarded as an
anomaly. A scale free model of the degree distribution is presented. Observation
of diverse DNS traffic in a real network support this model. The scale free distri-
bution shows that only a small number of well known domains are responsible for
most false positives in this detection approach. This can be prevented by taking
account of well known domains. The degree observation allows for easy accu-
mulation over multiple enterprise networks. Detection is limited to C&C traffic
that uses DNS to resolve the hostname of a C&C server. For identification of the
individual bots the source address in the queries must be correct. This is easily
enforced within an enterprise network. In addition, all end systems in an enter-
prise can be forced to use the internal official DNS service. This simplifies the
observation and mitigates the risk of a botnet-colluding DNS-server.

3. What detection performance is expected from the newly identified detection approaches
of question 2?
The FPR (False Positive Rate) and DR (Detection Rate) of the detection approaches are
empirically evaluated. The FPR and DR are popular and appropriate conditional prob-
abilities to express detection accuracy, because they do not depend on the ratio of C&C

1Traffic generated in a controlled environment. For details consult Chapter 4.5.
2Traffic generated in a controlled environment. For details consult Chapter 5.4.
3Normal traffic is DNS traffic, captured from a student housing network of 400 end systems. DR is not mea-

sured. For details consult Chapter 6.4.
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traffic and normal traffic. Table 7.1 gives an overview of the observed detection perfor-
mance, including the type of C&C traffic that is detectable by the approach and poten-
tial evasion possibilities. The detection approach of Chapter 3, which was only based
on human activity, is omitted, because it is only an explorative step towards de TFC ap-
proach that includes observation of human activity. The observed values of the FPR
and DR support the underlying models of the detection approaches, as presented and
elaborated in the Chapters 3 to 6. In real enterprise networks the expected FPR can be
significantly lower than the observed FPR in our experiments because the normal traf-
fic of both the controlled environment and the student housing network is extremely
diverse.

7.2. FUTURE WORK
This last section will give an overview of future work which is related to this study. This
involves short and medium term work that directly arises from the research results and
long term work that takes a much broader approach to the botnet problem.

7.2.1. SHORT TERM WORK
This study presents three new approaches to detect C&C traffic in enterprise networks.
The ability to detect various types of C&C traffic with a relatively low FPR and in a dif-
ferent manner than existing approaches, allows for the implementation in practical In-
trusion Detection Systems alongside other existing approaches. However with respect
to TFC and UDI detection there are some important notes to make:

1. A practical implementation of TFC and UDI detection requires a TLS/SSL inter-
ception proxy as described in the Sections 4.6.1 and 5.5. Due to implementation
complexity and time constraints, this proxy was not applied in the experiments.
The resulting misses of forward references in the encrypted payloads were com-
pensated by heuristics, such as the observation of HTTPS events in the case of
TFC detection (Section 4.3.2) and partial LDI matching in the case of UDI detec-
tion (Section 5.3.1). However, analysis of the detection errors in our experiments
indicates that a TLS/SSL proxy could significantly improve the FPR and DR of both
TFC and UDI detectors. Moreover, the recent increase in popularity of encrypted
traffic makes such a proxy not only an improvement but an important condition
to obtain satisfying results. The commercial availability of TLS/SSL interception
proxies makes the required effort to combine it with TFC and UDI detection more
an engineering and implementation effort than a research effort.

2. Evasion by future botnets that are aware of the detection approaches is possible.
As described, bots can evade TFC detection by synchronizing on certain events,
bots can evade UDI-detection by using popular servers as intermediary, and bots
can evade the DNS-based approach by not using DNS at all. The evasion prob-
lem, which in general applies to all existing countermeasures, does not make the
presented approaches useless because (1) not all bots will immediately use the
required evasion techniques and (2) evasion can be made more complex by com-
bining methods that require different evasion approaches. The determination of
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optimal detection combinations to improve the DR an impede evasion, involves
both short term and long term applied research. The faceted classification of bot-
net countermeasures and detection approaches can contribute to such research
because it allows for a systematic comparison of different countermeasures.

3. Practical implementation requires conditions that can only be met in certain en-
terprise networks. Most notably TFC detection requires a special device or agent
to capture user events. TFC and UDI detection require a defined initial state of the
observed computers which can be realized by a periodic reboot of the involved
computers. TFC and UDI detection require knowledge of automatic legitimate
traffic that is initiated from known software applications.

7.2.2. LONG TERM WORK
TFC and UDI detection have in common that each new traffic flow is associated with
a state that is determined by elements of prior received traffic or user input. In the
case of TFC detection this state requires knowledge of previous user events and traf-
fic events as direct causes. In the case of UDI detection this state requires knowledge
of received destinations. The assumption is in both cases that a computer or computer
network is a deterministic causal system. With sufficient knowledge of past events a
state can be determined that explains or even predicts all network activity in the near
future. The present implementation of TFC and UDI detection does not collect enough
knowledge of past events to completely determine such a state, however combination
and extension of these methods can further approach this situation. We will describe
the improvements step-by-step, starting from the present UDI-detection system:

1. Inspection of all traffic by TLS/SSL interception proxy as proposed in the short
term work.

2. Accurate construction of the application state in the detector, especially by browser
emulation. This results in the determination of the full ldi’s of egress traffic and
the extraction of all potential full forward references.

3. Instead of the statistical analysis of the name complexity of the ldi, the complete
user input is evaluated. Potential forward references or parts of forward references
(such as typed URLs or potential parts of URLs) are collected from the user input,
similar to the references in received payloads.

4. In addition to the match between a forward reference and the ldi of a new flow,
the time interval between the reception of a forward reference and its usage as ldi
in a new flow, must meet certain conditions before a new flow is associated with
the prior activity.

These modifications eliminate the need for error-prone heuristics, such as partial ldi-
matching or the use of only time to make an association between a new traffic flow and
observed activity. Piggybacking by synchronization with user or traffic events becomes
very difficult, because in addition to synchronization the bot must also use an ldi that
equals to one of the forward references of prior normal activity. Evasion by the use of
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popular webservices as intermediary is also difficult, because instead of only the host-
name or IP-address, the complete URL must have been referenced in prior legitimate
activities. We belief that a significant research effort is required to obtain the knowledge
for the outlined improvements.

Here, at the end of this dissertation on detection in enterprise networks, we want
to briefly mention very different solution directions that aim for a complementary and
structural long term solution of botnets, malware, and IT-related APTs in general. This
directions include: attack prevention, forensics, analysis of the cybercrime-related econ-
omy, regulation, security by design, and offensive responses. Major research efforts in
such directions, such as outlined in the National Cyber Security Research Agenda [13],
are required. In the long term the proposed research can bring solutions that result
in less dependency on the large variety of detective/repressive approaches. At least
until that moment it remains wise to continue with improvements of existing detec-
tion/repression approaches and the quest for new detection/repression approaches.
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A
APPENDIX: CITRIC

This appendix gives an overview of the CITRIC framework. We developed this framework
as a tool for the experimental evaluation of TFC and UDI detection.

A.1. AN OVERVIEW OF CITRIC
CITRIC(Causal Inspection to Recognize Illegal Communication) is a detection frame-
work, developed for the experimental evaluation of TC and UDI detection. It can ana-
lyze live traffic from an interface or offline from a pcap file. Its most important function
is associating new traffic flows with previous traffic flows or user events by the TFC and
UDI algorithms. Malicious traffic is detected by CITRIC in the experiments, as described
in Chapter 4 and 5. In addition it produces a rich set of analytical information about the
classification process and related traffic properties. CITRIC is written in C++. The main
tool is the detection and analysis tool, called CITRIC. Other included tools are: showFGG
for postprocessing logfiles to produce graphical representations of TFC graphs, PCAP-
Mix for advanced mixing of different traces, and scripts to automate multiple offline
runs of CITRIC with different settings. A separate agent, installed on an observed com-
puter, monitors user activity and sends mouse clicks and key strokes in UDP packets to
CITRIC. CITRIC has been built and used for experiments on a 64 bit Ubuntu 12.04 Linux
platform. With two network interfaces, the system can be inserted in a LAN as a bridge
for live inspection of the forwarded traffic. Optionally CITRIC can drop traffic by firewall
rule insertion in IPTables. In the experiments of Chapter 4 and 5 we use CITRIC offline
with prerecorded traces.

To approach as much as possible realtime performance all data is stored in RAM
during processing. Heap variables and objects are initialized, immediately after starting
CITRIC. Log files are only written to persistent storage at the completion of CITRIC.
During processing only one threat is active that initiates event-driven actions from a
main event loop.

The amount of existing software that we could reuse was very limited for several
reasons. To illustrate this we give here a few examples:
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• Many implementations of network protocols, such as curl [30], assume that the
software runs on a node that plays an active role in the communication (the client
or server). Since CITRIC is passively listening to a dialog in which it is not partici-
pating, reuse requires a significant reprogramming effort of such solutions.

• We experienced problems with the TCPdump/Wireshark libraries [124]. It can not
properly unzip HTTP chunks, there is no support for biflows, and it is not designed
for real-time performance, resulting in packet loss during live analysis. Therefore
we only used the pcap library for the basic capture of traffic interfaces and files.

• Some lesser known existing components were not mature enough to (re)use. We
considered some components, but quickly came to the conclusion that reuse would
cost to much effort. It is also very difficult to add extra code for extraction of the
desired analytical information because this requires complete knowledge of the
reused solution.

This forced us to build the framework almost completely from scratch. The reused li-
braries are limited to: pcap, zlib, pcre, and graphviz.

The CITRIC source with sample configurations and sample pcap files is made pub-
licly available at https://github.com/pb12/CITRIC [17].

A.2. THE MOST IMPORTANT OBJECTS OF CITRIC
We discuss here the most important objects of CITRIC

• PCAP and PacketAnalyzer
PCAP is a wrapper around the pcap library. If a new packet is available, either from
a live interface or a file, PCAP will make the complete IP-packet available. Packe-
tAnalyzer parses the IP, TCP, UDP and ICMP headers of each packet and extracts
all fields that are relevant for CITRIC, including the pcap-added time-stamp. Valid
packets are further processed by the FlowAggregator

• FlowAggregator
FlowAggregator checks if the captured packet is a new flow by the 5-tuple
(Pr otocol , I Pi ng r ess , I Peg r ess ,Por ti ng r ess ,Por teg r ess ). 1. The ingress or egress di-
rection is determined by the IP-address of the observed computer. This IP-address
is known to CITRIC. If the tuple has not been seen before, FlowAggregator stores
the most important parameters in a flow object. The flows are bidirectional: both
ingress and egress packets with swapped IP addresses and ports are considered to
belong to the same flow. The direction of the composed bidirectional flow is de-
fined as the direction of the first packet, hence an observed client computer will
normally only produce egress flows. Each flow is stored as an object in a linked
list that allows for fast insertion of new flows and fast deletion of expired flows.
If a new flow is added, its direct cause and the origin of its egress IP address is
searched by an object called CauseAnalyzer. When a packet of an existing flow

1In case of ICMP traffic the ID and Sequence fields are used instead of the port fields, to support ICMP echo
traffic
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arrives, its application payload is further examined by specialized helper objects.
Currently a DNSHelper and HTTPHelper are implemented.

• DNSHelper and HTTPHelper
The helpers are specialized objects that parse the DNS or HTTP payload. The
objective is to find traffic-related events and forward references (IP-addresses,
hostnames) to potential future traffic. The DNSHelper parses the DNS-answer to
identify the IP-addresses and names in received A-records. Since DNS is a highly
regular and relatively simple protocol, the parsing process is a straightforward
selection of the appropriate fields, as defined by the DNS protocol. DNS anal-
ysis results are stored in a list of DNS objects that represents the DNS cache of
CITRIC. Discovered forward references are submitted as DNS events with times-
tamps and additional data to an Eventcollector that manages and stores all events.
HTTPHelper works in a similar way as DNSHelper for HTTP but the parsing pro-
cess is substantially more difficult. We will discuss the details in Section A.4. The
HTTP events that signal an identified forward reference are called URLevents. In
addition, HTTPHelper can signal HTTP and HTTPS events that have no forward
reference, but indicate completion of an answer. The HTTP and HTTPS events
support the heuristics of TFC-detection for the cases that forward references are
missed. All events are submitted to the EventCollector.

• CauseAnalyzer
This object implements the TFC and UDI detection algorithm. If a new flow is
detected, a search is conducted for a matching direct cause or ldi reference by
the CauseAnalyzer by the TFC or UDI algorithms. The direct causes are not only
traffic events, but also user events, obtained from the special UDP traffic of the
remote user agent. For UDI detection the ldi of root flows is examined on length,
format(IP or name), the number of special symbols, and the TLD.

CauseAnalyzer also collects and logs a large number of additional information,
related with the classification process. The classification results can trigger alarm
messages and optionally firewall actions. Pointers to direct causes and the re-
lated parents are stored as attributes in the related Flow object. Each flow without
a direct cause or reference is classified as root flow. Root flows, not caused by
user events or with complex names are classified as anomalous, as described by
respectively TFC and UDI detection. The root flow and its descendants will be
associated with a Tree object that collects related statistics.

A.3. THE STORAGE OF FLOWS, DNS RECORDS AND EVENTS
For each captured IP packet a search is made in the list of existing flows, to find out if
a flow with the same 5-tuple (or swapped 5-tuple) already exists. Since the number of
flows can grow very large, efficient adding, removing and especially searching of flows
is important. This is achieved by three techniques:

• For fast creation of new flow and deletion of closed or expired flows, the flows are
organized in doubly linked lists that allow for easy insertion and removal, without
sorting steps.
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• To prevent malloc-related delays during packet processing, the complete storage
is allocated as a large array of of flow objects during initialization of CITRIC. Only
the valid flows are incorporated in a linked list.

• To increase the search speed, a hash table is used that divides the flows over 1024
different and relatively small linked lists, instead of one large linked list. The
hash is calculated by a bitwise XOR of the last 10 bits of the source IP, destination
IP, source Port, and destination Port. We choose this hash because the calcula-
tion requires minimal time and the hash values approach a normal distribution if
enough different destinations are involved. A hashtable maps the hash to the first
flow of the appropriate linked list of flows. This reduces the average search time
by a factor 1024.

The storage of DNS goes in a almost similar way. For each resolved IP-address, a hash
is constructed by the 10 least significant bits, to increase search speed. The storage of
events is slightly different:

• Events are stored in ringbuffers instead of a linked list. A linked list is not neces-
sary in this case, because events arrive and expire chronologically. If the buffer is
large enough to store all events of the related maximum time window, there is no
problem that new events overwrite the oldest events. The ringbuffer allows for a
search back in time, starting from the newest event.

• The ringbuffers are created during initialization of CITRIC, to prevent malloc-
related delays.

• To increase the lookup speed, a hash table is used that divides events over 256
different ringbuffers. The hash is here calculated by a modulo-256 bytewise sum-
mation over the IP-address or second level domain name.

The size of the memory that has to be reserved for storage of flows and events depends
on the amount of time we want to observe. CITRIC uses an average of 2kB per bidi-
rectional flow, including related events, DNS-cache, analysis data etc. The measured
average processing time per packet is 9 us (processing on 1 Intel E7 core of 3.2GHz).

A.4. SEARCHING IN THE HTTP PAYLOAD
Searching forward references (IP-address or hostname) in HTTP is relatively difficult.
There are several causes:

• HTTP is used for the transport of a high variety of payload types. Some character-
based payloads, such as html and javascript, can contain forward references. Other
payloads, such as an image, do normally not contain forward references.

• CITRIC has to reconstruct as a passive listener the HTTP dialog between client
and server. This is complex because the exact response of a HTTP client to a re-
ceived payload is difficult to predict. One of the reasons is the existence of dif-
ferent versions of html, javascript and other payload types. In addition there are
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many browser engines that work differently and even the same browser can re-
sponse differently, depending on the platform. Moreover, the HTTP server will
also respond differently to different types of browsers.

• There are many features in HTTP that complicate the search:

– HTTP1.1 supports multiple request per bidirectional flow

– Most HTTP character-oriented responses are compressed by GZIP or DE-
FLATE

– Most HTTP character-oriented responses are encoded in chunks

Decompression and interpretation of chunk encoding is not trivial. We observed
differences and irregularities, depending on the used webbrowser and the visited
webserver.

• The HTTP answer is normally spread over multiple packets. Modern browsers can
prefetch data of URLs, received in HTTP answers packets, even before the answer
is complete. This means that CITRIC must do the same.

• Forward references are sometimes difficult to recognize. There is no fixed format
or label that exclusively marks forward references.

To solve the presented difficulties, without the need for a complete browser emulation,
CITRIC implements a hierarchical FSM (Finate State Machine) for each HTTP flow, to
efficiently search for forward references.

• One FSM follows the HTTP dialog per flow by observing the packet size of ingress
and egress HTTP packets. It can exactly determine the start, continuation and end
of an HTTP answer. If an answer starts or continues, the FSM will call a routine
that actively searches for forward references. If the answer finishes or exceeds
a maximum size, the FSM transitions to a state that waits for a new answer. If
the volume suddenly decays, the FSM generate an HTTPS or HTTP event without
forward references.

• The search routine uses its own FSM to process the HTTP answer. The FSM de-
scribes the state of the HTTP answer parsing in two hierarchies. The most impor-
tant primary states are HEADER, BODY and PARSED to respectively indicate the
states of HTTP header parsing, payload parsing, and completion of parsing.

• The HEADER state has substates, related with the momentary field that is re-
ceived.

• The BODY state has substates, related with the momentary reception of a poten-
tial reference. The most important state are IDLE, CHAR_RECEIVED and DOT_
RECEIVED. The IDLE state indicates that the previous received character is not
allowed in the allowed character set of DNS (letters, numbers, dash, or dot). The
CHAR_RECEIVED state indicates that the last received byte or bytes are letters,
numbers, or a dash. The DOT_RECEIVED state indicates that the last received
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char is a dot. After the transition of CHAR_RECEIVED to another state, a routine
is called that tests if the last received characters match a valid TLD (Top Level Do-
main as defined by the IANA [67]), preceded by a dot and DNS-allowed characters.
In this way all potential hostnames are discovered.

The processing of the payload and updating of the states is done byte-by-byte. The
described FSMs and a buffer with the 256 most recently received bytes represent the
complete state that CITRIC requires to parse an HTTP answer that is fragmented over
multiple packets. The parsing process is completely independent of the size of each
fragment! In CITRIC the processing is even more complex than described here, with ad-
ditional states, to support compression and chunking. For these details we refer to the
source code [17].

A.5. SETTINGS AND LOGS
CITRIC is configured for specific experiments by a configuration file that contains:

• All event related time windows (TFC detection).

• Settings for statistical analysis of the ldi name (UDI detection).

• A switch between IDS and IPS mode (The IPS mode is only possible with CITRIC
live running on a inserted Linux bridge, because it inserts firewall rules).

• A switch to add the DNS-ID in the flowtuple (required to distinguish DNS flows in
some Windows implementations that use only one or a limited number of ephemeral
ports for DNS).

• a whitelist of IP addresses and ranges

• a whitelist of domains and hostnames.

The choice between live mode or offline mode is done automatically by the name of the
traffic source in the command line. If it ends with the .pcap extension it is assumed to
be a prerecorded trace. In all other cases it is assumed to be a device. The output of
CITRIC is delivered by 9 separate files that support extensive analysis:

• <file>.stats: Provides the aggregated results of the classification and detection pro-
cess. This includes the applied settings, the total number of flows, packets by pro-
tocol, the number of events, identified direct causes, root flows and of course the
anomalous flows.

• <file>.log: Log that provides all flows with cause, statistics, and tree classification
(used during postprocessing for graphical representation).

• <file>.tree: Dump of all trees with statistical information and references to the root
flow

• <file>.event: Dump of the event ringbuffers with the most recent captured poten-
tial events
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• <file>.dns: Dump of the CITRIC DNS cache with timestamps and DNS flow info

• <file>.flow: Dump of all flows. It provides more detailed information than the .log
file

• <file>.http: HTTP-specific information of the HTTP-flows

• <file>.dnsstats: Log with observed times between DNS causes and new flows for
statistical analysis

• <file>.urlstats: Log with observed time between URL causes and new flows for
statistical analysis





SUMMARY

Botnets play an important role in modern Internet-related cybercrime. A botnet con-
sists of a group of infected computers, referred to as bots. The bots are remotely con-
trolled and deployed in malicious activities, such as DDoS attacks, spam, and espionage.
Clever design of the botnet C&C (Command and Control) infrastructure, combined with
the adaptability of the bot and its attacks make botnets a universal cybercrime tool. This
is reflected in the large number of discovered botnets and botnet-related incidents.

This dissertation aims to explore new and specialized C&C detection approaches
for enterprise networks. An enterprise network is here defined as a computer network
that is exclusively used by one organization. Specialized bots can attack enterprise net-
works with the aim to spy, to disrupt processes, or to manipulate processes and infor-
mation. Detection of such bots and their C&C traffic is often difficult because they work
below the radar of AntiVirus and intrusion detection systems, typically by the imita-
tion of normal traffic, combined with the sparse and irregular production of C&C traf-
fic. Detection is also difficult because bots that specifically target enterprise networks
for espionage and manipulation do not produce noisy attack traffic, such as the traf-
fic of typical DDoS attacks and spam distribution. Despite these detection difficulties,
network-implemented detection is an attractive addition to host-implemented detec-
tion, because there is a minimal exposure to malware and a high independence of the
observed platforms.

The first part of the research consists of an exploration of existing representative bot-
net countermeasures and C&C detection approaches. By a new ontology-based faceted
classification of botnet countermeasures we achieve a systematic overview of existing
botnet countermeasures and botnet traffic detection in particular. The faceted classifi-
cation of detection methods also facilitates the translation of enterprise characteristics
to specific properties that allow for specialized detection of the described covert C&C
traffic. Enterprise networks differ from public networks by (1) their limited diversity
in traffic types and connected end systems, often enforced by comprehensive control
over the internal network, (2) the technical and juridical possibilities for Deep Packet
Inspection, and (3) the preparedness of the network administration to put significant
effort in mitigation of identified APTs (Advanced and Persistent Threats), related with
espionage or sabotage. We derive from these differences a set of enterprise-specific de-
tection properties, including Deep Packet Inspection and user activity as detection fea-
tures, specification of normal traffic as detection knowledge, and a required detection
state with no or minimal dependence on previous botnet traffic. Based on these de-
rived enterprise-specific properties three new detection approaches are presented and
evaluated.

The first detection approach, referred to as TFC detection (TFC=Traffic Flow Causal-
ity), detects C&C traffic by the direct causes of egress traffic. Two types of direct causes
are observed: user events and traffic events. By measuring the time between user
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activity and traffic, machine-generated traffic is distinguished from human-generated
traffic. The identification of user events as direct causes for new traffic enables the
detection of C&C traffic that uses services of popular social media. Traffic events are
events, derived from received traffic, such as received DNS answers and received links
in HTTP traffic. These events can also trigger new traffic. We introduce TFC Graphs
(TFC=Traffic Flow Causality) that provide by the construction of trees an overview of
traffic flows and their direct causes. In this way traffic flows of the same tree are associ-
ated with a root cause that is associated with normal traffic or C&C traffic. This approach
results in real-time specification-based anomaly detection of various C&C traffic types.
In addition it allows for offline forensic analysis of traffic. Experiments with CITRIC, a
detection framework we have developed, demonstrate successful detection of different
types of C&C traffic. Evasion of the detection by piggybacking on events is discussed in
the evaluation.

The second approach, referred to as UDI-detection (UDI =Untrusted Destination
Identification), detects C&C traffic by the estimation of the trustworthiness of egress
traffic destinations. If the destination identifier of a traffic flow does not origin directly
from: human input, prior traffic from a trusted destination or from a defined set of
trusted applications, the destination is not trusted and its associated traffic is classi-
fied as anomalous. In contrast to TFC detection, UDI detection does not depend on
time measurements and the observation of user events. This results in a less complex
implementation. The experiments demonstrate successful detection of various types of
C&C traffic. Similar to TFC detection, UDI detection allows for real-time repression of
anomalous traffic. Evasion by the use of popular servers as intermediary is discussed in
the evaluation.

The third approach detects DNS-based C&C traffic by the degree distribution of re-
solved DNS-domains. Domains with an unexpected high degree are classified as anoma-
lous. In contrast to the two other approaches, this method requires a certain volume of
C&C traffic, before it can detect the C&C traffic. As soon as a sufficient number of bots
has resolved the same C&C domain, the domain is classified as a C&C domain and the
requesting DNS clients are identified as bots. Since the required state only consists of
domain names and the number of computers that queried a domain, this detection ap-
proach allows for scalable distribution over multiple enterprise networks. We derive
a theoretical model of the expected degree distribution with the related False Positive
Rate of the proposed detection approach. By the analysis of traffic, captured in a large
network, we support the model and evaluate detection possibilities.

The ability of all three approaches to detect botnet C&C traffic differently from exist-
ing techniques and with a relatively low FPR allows for implementation in intrusion de-
tection systems of enterprise networks alongside existing anomaly-based and signature-
based detection approaches, to improve diversity. The combination of TFC and UDI
detection and improvements of the event observation can further reduce evasion pos-
sibilities.
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Botnets spelen een belangrijke rol in de hedendaagse internet-gerelateerde cybercrime.
Een botnet bestaat uit een groep geïnfecteerde computers, ofwel bots. Deze bots wor-
den op afstand bestuurd en ingezet voor illegale activiteiten, zoals DDoS-aanvallen,
spam en spionage. Slim ontwerp van de botnet C&C-infrastructuur (C&C=Command
and Control) in combinatie met de aanpasbaarheid van bots en hun aanvallen, maken
botnets tot een universeel instrument in cybercrime. Dit is terug te zien in het grote
aantal ontdekte botnets en het grote aantal botnet-gerelateerde incidenten.

Dit proefschrift richt zich op de verkenning van nieuwe en gespecialiseerde vormen
van C&C-detectie in bedrijfsnetwerken. Met een bedrijfsnetwerk wordt een netwerk be-
doeld, dat exclusief gebruikt wordt door één organisatie. Gespecialiseerde bots kun-
nen bedrijfsnetwerken aanvallen met als doel te spioneren, bedrijfsprocessen te ver-
storen of bedrijfsprocessen en informatie te manipuleren. Detectie van dergelijke bots
en hun C&C verkeer is vaak lastig omdat ze onder de radar blijven van Antivirus- en
inbraakdetectie-systemen, in het bijzonder door imitatie van normaal verkeer, gecom-
bineerd met beperkte en onregelmatige C&C communicatie. Detectie is ook lastig om-
dat bots die zich specifiek richten op bedrijfsnetwerken, geen luidruchtig aanvalsver-
keer produceren, zoals bij DDoS-aanvallen en spam distributie. Ondanks deze detec-
tieproblemen, is netwerk-geïmplementeerde detectie een aantrekkelijke toevoeging op
host-geïmplementeerde detectie vanwege de minimale blootstelling aan malware en de
onafhankelijkheid van de geobserveerde platforms.

Het eerste deel van het onderzoek bestaat uit een verkenning van bestaande repre-
sentatieve botnetmaatregelen en C&C detectiemethodes. Door middel van een zelfont-
wikkelde ontologie-gebaseerde gefaceteerde classificatie van botnetmaatregelen wordt
een systematisch overzicht verkregen van bestaande botnetmaatregelen en botnet ver-
keersdetectie in het bijzonder. De gefaceteerde classificatie van detectiemethodes faci-
liteert ook de vertaling van bedrijfsspecifieke kenmerken naar detectie-eigenschappen
voor C&C verkeer. Bedrijfsnetwerken verschillen van publieke netwerken door (1) hun
beperkte diversiteit in verkeerssoorten en aangesloten eindsystemen, vaak opgelegd
door vergaande controle over het interne netwerk, (2) de technische en juridische mo-
gelijkheden voor Deep Packet Inspection en (3) de bereidheid van de netwerkbeheerder
om een grote inspanning te leveren voor het beperken van APT’s (Advanced and Per-
sistent Threats) op het gebied van spionage en sabotage. We leiden uit deze verschillen
een aantal bedrijfsspecifieke eigenschappen af, waaronder: Deep Packet Inspection en
gebruikersactiviteit als detectie features, specificatie van normaal verkeer als detectie-
kennis en een vereiste detectietoestand die niet of minimaal afhankelijk is van vooraf-
gaand botnet verkeer. Op basis van deze eigenschappen worden vervolgens vier nieuwe
detectiebenaderingen voorgesteld en uitgewerkt.

De eerste methode, TFC=detectie (TFC=Traffic Flow Causality), detecteert C&C ver-
keer door de directe oorzaak van uitgaand verkeer te bepalen. Directe oorzaken zijn:
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gebruikers- en verkeersgebeurtenissen. Door de tijd te meten tussen gebruikersactivi-
teit en verkeer wordt machine-gegenereerd verkeer onderscheiden van mens-gegene-
reerd verkeer. Hierdoor kan o.a. C&C verkeer gedetecteerd worden, dat gebruik maakt
van populaire sociale media. Verkeersgebeurtenissen worden afgeleid uit ontvangen
verkeer, zoals DNS antwoorden en links in http verkeer. Deze gebeurtenissen kunnen
ook nieuw verkeer veroorzaken. We introduceren TFC-graven (TFC=Traffic Flow Causa-
lity) die door de constructie van boomstructuren overzicht geven in verkeersstromen en
hun directe oorzaken. Hiermee worden verkeersstromen binnen een boom gekoppeld
aan een “root”-oorzaak, die geassocieerd wordt met normaal of botnet verkeer. Deze
aanpak resulteert in real-time specificatie-gebaseerde anomaliedetectie van uiteenlo-
pende soorten C&C verkeer. Daarnaast is ook offline forensische verkeersanalyse mo-
gelijk. Experimenten met CITRIC, een zelfontwikkeld detectie en analyse framework,
tonen succesvolle detectie aan van met zeer uiteenlopende soorten C&C verkeer. Ont-
wijking van de detectiemethode door middel van meeliften komen aan de orde bij de
evaluatie.

De tweede methode, UDI detectie (UDI=Untrusted Destination Detection), detec-
teert C&C verkeer door de betrouwbaarheid te schatten van de bestemmingen van uit-
gaand verkeer. Als de bestemmings-identifier van een verkeersstroom niet afkomstig is
uit menselijke input, uit eerder verkeer van een vertrouwde bestemming of uit een vast-
gestelde verzameling van vertrouwde legale applicaties, dan wordt de bestemming niet
vertrouwd en het geassocieerde verkeer geclassificeerd als abnormaal. In tegenstelling
tot TFC detectie, is er geen afhankelijkheid van tijdsmetingen of de directe observatie
van gebruikersactiviteit. Dit resulteert in een eenvoudigere implementatie. Experimen-
ten demonstreren succesvolle detectie van uiteenlopende soorten C&C verkeer. Net als
TFC-detectie, biedt UDI-detectie de mogelijkheid voor real-time repressie van abnor-
maal verkeer. Ontwijking door gebruik te maken van populaire servers komt aan de
orde bij de evaluatie.

De derde methode detecteert DNS-gebaseerd C&C verkeer door de graaddistributie
van opgevraagde DNS domeinen te bepalen. Domeinen met een onverklaarbaar hoge
graad worden geclassificeerd als abnormaal. In tegenstelling tot de twee andere detec-
tiebenaderingen, vereist deze methode een bepaald volume aan botnetverkeer, voordat
dit gedetecteerd kan worden. Zodra genoeg bots hetzelfde C&C domein hebben op-
gevraagd, zal het domein gedetecteerd worden en kunnen de betrokken DNS-clients
als bots geïdentificeerd worden. Deze detectiemethode is geschikt voor schaalbare dis-
tributie over meerdere bedrijfsnetwerken. We leiden een theoretisch model af van de
verwachte graaddistributie met de daaraan gerelateerde False Positive Rate van deze
detectiemethode. Door middel van de analyse van verkeer dat gemeten is in een groot
netwerk, wordt het model ondersteund en mogelijke C&C detectie geëvalueerd.

Het vermogen van alle drie de benaderingen om C&C verkeer te detecteren op een
andere wijze dan bestaande methodes en met een relatief lage False Positive Rate, maakt
toepassing mogelijk in intrusion-detectiesystemen van bedrijfsnetwerken, naast bes-
taande anomalie-gebaseerde en signature-gebaseerde methodes, waarmee de diversi-
teit vergroot wordt. De combinatie van TFC- en UDI-detectie en verbeteringen in de
observatie van gebeurtenissen kan de mogelijkheden om detectie te ontwijken verder
beperken.
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