

Delft University of Technology

Towards Verification of a Denotational Semantics of Inheritance

Mosses, Peter D.

DOI
10.1145/3694848.3694852
Publication date
2024
Document Version
Final published version
Published in
JENSFEST 2024: Proceedings of the Workshop Dedicated to Jens Palsberg on the Occasion of His 60th
Birthday

Citation (APA)
Mosses, P. D. (2024). Towards Verification of a Denotational Semantics of Inheritance. In JENSFEST 2024:
Proceedings of the Workshop Dedicated to Jens Palsberg on the Occasion of His 60th Birthday (pp. 5-13).
ACM. https://doi.org/10.1145/3694848.3694852

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3694848.3694852

Towards Verification of a Denotational Semantics of
Inheritance

Peter D. Mosses
Delft University of Technology

Delft, Netherlands
Swansea University

Swansea, United Kingdom
P.D.Mosses@swansea.ac.uk

Abstract
Jens Palsberg’s first research publication was an OOPSLA ’89
paper, coauthored with William Cook. In that much-cited
paper, the authors identify self-reference as a central feature
of inheritance, and analyze it using fixed points. They then
define both an operational and a denotational semantics of
inheritance, and prove them equivalent. Their proof exploits
an intermediate semantics, obtained by step-indexing the
operational semantics – an early use of the so-called ‘fuel
pattern’.

This paper presents an Agda formulation of the definitions
and lemmas from the OOPSLA ’89 paper. The Agda proof
assistant detected some minor issues when type-checking
the definitions; after they had been fixed, Agda successfully
checked all the steps in the proofs of the lemmas. The Agda
definitions and proofs make the same assumptions as the
OOPSLA ’89 paper about the existence of recursively de-
fined Scott domains, and about the continuity of the defined
functions.

CCS Concepts: • Theory of computation → Denota-
tional semantics; Operational semantics; Object ori-
ented constructs; Type theory.

Keywords: Agda, proof assistant, dependent types, Scott
domains, continuous functions

ACM Reference Format:
Peter D. Mosses. 2024. Towards Verification of a Denotational Se-
mantics of Inheritance. In Proceedings of the Workshop Dedicated to
Jens Palsberg on the Occasion of His 60th Birthday (JENSFEST ’24),
October 22, 2024, Pasadena, CA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3694848.3694852

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1257-9/24/10
https://doi.org/10.1145/3694848.3694852

1 Introduction
In 1989, Jens Palsberg published a paper at OOPSLA, co-
authored with William Cook [5]: A Denotational Semantics
of Inheritance and its Correctness.1 It was the first of Jens’s
many fine research publications, and has more than 500
citations on Google Scholar. It also includes an early practical
application of step-indexing (a.k.a. the fuel pattern [12]) in
formal semantics.
From 1988 to 1992, Jens was a PhD student in Computer

Science at the University of Aarhus, Denmark, and I had the
pleasure of being his supervisor. His thesis Provably Correct
Compiler Generation [18] is based on action semantics (a
hybrid of denotational, algebraic, and operational semantics
[13, 14, 16]) and involves a compiler from action notation to
RISC.

In practice, however, Jens had no need for any supervision,
and it would have been futile to try to restrict his attention
to his thesis topic. He took the opportunity to start a partic-
ularly fruitful collaboration with Dexter Kozen and Michael
Schwartzbach on type inference and object-oriented pro-
gramming languages [2, 10, 17, 20–22], and coauthored with
them the first of his many POPL papers [11].

Fifteen years ago, Jens organized a symposium in connec-
tion with my 60th birthday, and edited the accompanying
Festschrift [19]. I would now like to dedicate the present
paper to Jens on the occasion of his 60th birthday, as a token
of my admiration of his career and accomplishments, and
of my gratitude for having had such a successful first PhD
student.

The idea for this paper occurred to me when I first heard
about the JensFest.2 Although I had no previous experience
of using proof assistants, it looked feasible to reformulate the
elegant definitions from the OOPSLA ’89 paper (hereafter
referred to as CP89) in Agda, and check the proofs mechani-
cally using the Agda proof assistant. I expected that it would
be easy enough to define Agda types corresponding to Scott
domains, and to exploit the continuity of functions defined
by lambda-expressions in Agda. I soon realized that it wasn’t

1The subsequent journal version [6] has the same title. William Cook also
included much of the material in his PhD thesis [4, Ch. 5], acknowledging
the benefit from Jens Palsberg’s work in developing a rigorous proof of the
correctness theorem.
2https://2024.splashcon.org/home/jensfest-2024

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

5

https://orcid.org/0000-0002-5826-7520
https://doi.org/10.1145/3694848.3694852
https://doi.org/10.1145/3694848.3694852
https://2024.splashcon.org/home/jensfest-2024
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3694848.3694852&domain=pdf&date_stamp=2024-10-22

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Peter D. Mosses

quite so straightforward – and that developing Agda proofs
can also be somewhat challenging. . . However, I have now
managed to check the proofs of the four main lemmas from
CP89 in Agda, and it should be possible to check the proofs
of the remaining results in the same way.
The rest of the present paper proceeds as follows. Sec-

tion 2 recalls the origins of fixed-point semantics, and the
main benefits of using Scott domains in semantic definitions.
Section 3 considers how to define fixed-point semantics in
Agda. Section 4 presents Agda definitions that correspond
closely to the operational and denotational semantic defini-
tions in CP89. Section 5 discusses the origins of step-indexing
in programming language semantics, defines the interme-
diate semantics from CP89 in Agda, and presents the Agda
proof of a lemma about its relationship to the denotational
semantics; the proofs of the other lemmas from CP89 are
available as auxiliary material accompanying this paper, to-
gether with the literate Agda source files used to generate
Sections 4 and 5. Section 6 concludes, summarizing what has
been achieved, and indicating what would be needed to com-
plete the verification of the correctness of the denotational
semantics of inheritance in Agda.

2 Fixed-Point Semantics
The denotational semantics of method systems in CP89 is
based on fixed-point semantics. A fixed point of a function
𝐹 is a value 𝑥 such that 𝐹 (𝑥) = 𝑥 . Functions on a set may
have any number of fixed points: e.g., the successor function
on the integers has none, a constant function has a unique
fixed point, and all argument values are fixed points of the
identity function. A fixed-point operator fix is a higher-order
function which, when applied to an argument function 𝐹 ,
returns a fixed-point of 𝐹 , so 𝐹 (fix(𝐹)) = fix(𝐹).
The fixed-point approach to semantics of programming

languages was developed initially by Christopher Strachey in
the early 1960s [27]. Strachey aimed to define the semantics
of program phrases (commands, declarations, expressions,
etc.) as pure mathematical functions, obtaining the semantics
of a compound phrase by composing the semantics of its
subphrases. To define the semantics of loops compositionally,
he used a fixed-point operator (Y). However, although Y(𝑓)
had a clear operational interpretation, based on its unfolding
to 𝑓 (Y(𝑓)), it could not be interpreted as a mathematical
function in ordinary set theory.

In 1969, Dana Scott became interested in Strachey’s work,
discovered how to construct amodel of the (untyped) lambda-
calculus [24], and started the development of domain theory.
Domains can be defined recursively (up to isomorphism)
using domain constructors including function spaces. The
elements of function spaces are restricted to continuous func-
tions, which always have a least fixed-point, thereby giving
for any domain 𝐷 an interpretation of Y as a (continuous)
function from the function space 𝐷 → 𝐷 to 𝐷 .

Scott and Strachey presented their resulting framework in
a joint paper in 1971 [25]; it is now referred to as denotational
semantics. Extensive introductory explanations of denota-
tional semantics are given in many textbooks; see [1, 24, 26]
for presentations of the underlying domain theory.

3 Fixed-Point Semantics in Agda
Agda3 is a pure functional language that can be used not only
for programming, but also as a proof assistant for developing
and checking proofs. It supports defining dependently-typed
functions, and mutually-recursive groups of types and func-
tions. I expected that it would be straightforward to define
the denotational semantics of inheritance from CP89 in Agda,
and check the proof of its equivalence to the operational se-
mantics. One of my aims was for the semantic definitions
in Agda to use the same notation as those in CP89, so the
correspondence would be reasonably clear. Another aim was
to avoid use of unsafe Agda features that might lead to incon-
sistencies when checking proofs. I encountered difficulties
regarding the following points.

Types of continuous functions: The denotational se-
mantics in CP89 uses a fixed-point operator fix on a do-
main of continuous functions. Agda does not support
defining a corresponding type of continuous functions
as a subtype of an Agda function type – it is necessary
to encode it as a predicate or a sigma-type.

Recursive type definitions: The semantic domains in
CP89 include Fun = Value → Value where Value
(indirectly) involves Fun. Termination checking of the
corresponding Agda type definition failed.

Recursive function definitions: The method lookup
semantics in CP89 involves mutually-recursive func-
tions where a recursive call is non-structural. Termi-
nation checking of the function definitions failed.

Implicit function applications: Following standard
practice in denotational semantics, both isomorphisms
between domains and injections into sum domains are
left implicit in CP89. Agda required them to be explicit.

Implicit function continuity: Functions defined on
Scott domains using lambda-abstraction and applica-
tion are always continuous. In Agda, it appears that the
only implicit property of functions defined by lambda-
expressions is totality.

The workarounds that have been found for some of the above
difficulties are explained in Section 4. A more principled ap-
proach would be to represent Scott domains as products of
Agda types, as in the DomainTheory modules4 by Tom de
Jong [7, 8], which are included in the TypeTopology library5
developed by Martín Escardó et al. There, a domain is a

3https://github.com/agda/agda
4https://www.cs.bham.ac.uk/~mhe/TypeTopology/DomainTheory.index.
html
5https://github.com/martinescardo/TypeTopology/

6

https://github.com/agda/agda
https://www.cs.bham.ac.uk/~mhe/TypeTopology/DomainTheory.index.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/DomainTheory.index.html
https://github.com/martinescardo/TypeTopology/

Towards Verification of a Denotational Semantics of Inheritance JENSFEST ’24, October 22, 2024, Pasadena, CA, USA

pointed directed-complete poset (dcpo), consisting of a car-
rier type 𝐷 , a partial order on 𝐷 , a distinguished element ⊥
of 𝐷 , and a proof that the partial order is directed-complete
with ⊥ being the least element. An element of the carrier
of the domain of functions between domains 𝐷 and 𝐸 is an
underlying function between the carriers of 𝐷 and 𝐸, to-
gether with a proof of its continuity. Recursive definitions
of domains follow Scott’s original construction of a domain
isomorphic to its own function space [24].

However, that approach appears to have a pragmatic draw-
back, which discouraged its adoption here: every lambda-
abstraction used in the semantic definitions would have to
to be accompanied by an explicit proof of its continuity; and
every function application would have to discard the con-
tinuity proof and apply the underlying function. The extra
notation involved would significantly clutter the Agda for-
mulation of the definitions from CP89. Another Agda library
that supports the use of Scott domains is agda-unimath,6 but
it appears to have the same drawback.

A further possibility might be to exploit the Agda support
for synthetic denotational semantics in guarded dependent
type theory [3], provided that the notational overhead (e.g.,
in the denotational semantics of PCF in [23]) could be elimi-
nated. However, the correspondence between the semantic
definitions in CP89 and the Agda definitions would then be
less direct, and the proof steps required to prove the lemmas
in CP89 might be different.
Caveat: As a novice Agda user, I found it difficult to read

many of the definitions in the cited libraries, and I could
certainly have overlooked some opportunities.

4 Semantic Definitions
This section presents an Agda formulation of the semantics
of inheritance given by William Cook and Jens Palsberg in
CP89 (their OOPSLA ’89 paper) [5, §4.1–4.3]. The semantics
is based on their conceptual analysis of inheritance and self-
reference in terms of fixed points of generators and wrappers.
See their paper for motivation of inheritance, and for their
conceptual analysis of inheritance and self-reference using
fixed points.
Apart from commenting on some differences from the

original semantics, the explanations given together with
the Agda definitions below focus on how various features
are modeled as functions. Readers who are not familiar with
Agda may find it helpful to browse the AgdaWikipedia page7
before proceeding.

The LATEX sources for this and the following section were
generated by Agda from literate Agda specifications (in-
cluded in the auxiliary material accompanying this paper).
Some Unicode characters are displayed as corresponding
LATEX math symbols, and module indentation is omitted.

6https://unimath.github.io/agda-unimath/
7https://en.wikipedia.org/wiki/Agda_(programming_language)

4.1 Agda Standard Library Notation
The Agda definitions given below use the following modules
from the standard library (v2.1).8

{-# OPTIONS –safe #-} – Agda ~ CP89 notation
open import Data.Nat.Base
using (N; zero; suc; _≤_) – N ~ Nat

open import Data.Maybe.Base
renaming (Maybe to _+?; – A +? ~ A + ?

nothing to ??; – ?? ~ ⊥?
maybe′ to [_,_]?) – [f , x]? ~ [f, 𝜆⊥?.x]

open import Data.Product.Base
using (_×_; _,_; proj1; proj2) – A × B ~ A × B

open import Function
using (Inverse; _↔_; _◦_) – A↔ B ~ implicit

open Inverse {{ ... }}
using (to; from) – to from ~ implicit

The declaration open Inverse {{ ... }} above introduces over-
loaded functions to and from for each parameter of the form
{{ i : A↔ B }}. The double braces specify so-called instance
parameters, which are the Agda equivalent of Haskell type
class constraints.

4.2 Domains
The types and functions declared below as module param-
eters correspond to assumptions about various features of
Scott domains. They are used when defining the semantics
of method systems in Agda.

An element D : Domain is an Agda type corresponding to
a domain used in CP89. Such a type D has a type of elements
〈 D 〉 and a distinguished element ⊥. Further assumptions
about domains will be made in Section 5, when proving
results that involve the partial order on 〈 D 〉.
module Inheritance.Definitions
(Domain : Set1)
(〈_〉 : Domain→ Set)
(⊥ : {D : Domain}→ 〈 D 〉)
(fix : {D : Domain}→ (〈 D 〉 → 〈 D 〉)→ 〈 D 〉)

The function fix is supposed to correspond to the least fixed
point operator on the space of continuous functions on a
domain. To ensure that fix can be applied only to continuous
functions, it would need to take a proof of continuity as an
extra argument.
In practice, however, we intend to apply fix only to func-

tions on 〈 D 〉 that are defined by lambda-abstraction and
application, and these are assumed to correspond to con-
tinuous functions on domains. It is superfluous to pass an
assumption of continuity as an explicit argument – the same
assumption can be made wherever it is needed – so we sim-
ply omit the extra argument from the type of fix.

8https://agda.github.io/agda-stdlib/v2.1/

7

https://unimath.github.io/agda-unimath/
https://en.wikipedia.org/wiki/Agda_(programming_language)
https://agda.github.io/agda-stdlib/v2.1/

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Peter D. Mosses

(?⊥ : Domain)
(_+⊥_ : Domain → Domain → Domain)
(inl : {D E : Domain}→ 〈 D 〉 → 〈 D +⊥ E 〉)
(inr : {D E : Domain}→ 〈 E 〉 → 〈 D +⊥ E 〉)
([_,_]⊥ : {D E F : Domain}→

(〈 D 〉 → 〈 F 〉)→ (〈 E 〉 → 〈 F 〉) →
〈 D +⊥ E 〉 → 〈 F 〉)

?⊥ here corresponds to the 1-point domain written ‘?’ in
CP89; its only element is⊥ (⊥? in CP89).D +⊥ E corresponds
to the notation 𝐷 +𝐸 for separated sums of domains in CP89.
The injection functions inl and inr are left implicit in CP89.
(Case analysis [f , g]⊥ on D +⊥ E is decorated with ⊥ to
avoid confusion with the case analysis for ordinary disjoint
union of Agda types.)

The Cartesian products of types provided by the standard
Agda library support products of domains, regarding a pair
(⊥ , ⊥) as the least element of the product of two domains.

4.3 Method Systems
The method systems defined in CP89 are a simple formal-
ization of object-oriented programming. They abstract from
aspects such as instance variables, assignment, and object
creation. A method system corresponds to a snapshot in the
execution of an object-oriented system.
In CP89, the ingredients of method systems are assumed

to be elements of flat domains; however, the least elements
of these domains are irrelevant, and it is simpler to declare
them as ordinary Agda types instead of domains:

(Instance : Set) – objects
(Name : Set) – class names
(Key : Set) – method names
(Primitive : Set) – function names

Both the operational and denotational semantics of method
systems in CP89 involve the mutually-recursive domains
Value, Behavior, and Fun:

(Number : Domain) – unspecified
(Value : Domain) – a value is a behavior or a number
(Behavior : Domain) – a behavior maps keys to funs
(Fun : Domain) – a fun maps values to values

These domains cannot be defined (safely) as Agda types,
due to the termination check on recursive type definitions.
Scott domain theory ensures the existence of isomorphisms
between the types of elements of these domains when the
elements of 〈 Value 〉→ 〈 Value 〉 are restricted to continuous
functions. However, this restriction is irrelevant for checking
the types of functions on domains, so it is omitted.

{{ isov : 〈 Value 〉 ↔ 〈 Behavior +⊥ Number 〉 }}
{{ isob : 〈 Behavior 〉 ↔ (Key→ 〈 Fun +⊥ ?⊥ 〉) }}
{{ isof : 〈 Fun 〉 ↔ (〈 Value 〉 → 〈 Value 〉) }}
(applyJ_K : Primitive → 〈 Value 〉 → 〈 Value 〉)
where

variable 𝜌 : Instance; m : Key; f : Primitive; 𝜈 : 〈 Number 〉
variable 𝛼 : 〈 Value 〉; 𝜎 𝜋 : 〈 Behavior 〉; 𝜙 : 〈 Fun 〉

In the operational and denotational semantics of method
systems in CP89, elements 𝑓 of the flat domain Primitive
are treated as if they are elements of the function domain
Fun. When checking the corresponding part of the Agda
formulation, the Agda type checker reported this as an error.
The semantic function applyJ_K declared above is assumed
to map elements of Primitive to functions on 〈 Value 〉, and
using it fixed the error (as did the introduction of the function
id in the journal version of CP89 [6]).
In CP89, the inheritance hierarchy is assumed to be a

finite tree. Below, Class is defined as the datatype of all finite
trees. Using a datatype avoids the need for the partial parent
function, and for a predicate for testing whether a class is
the root of the hierarchy.

data Class : Set where
child : Name → Class→ Class – a subclass
origin : Class – the root class

variable 𝜅 : Class

The syntax of method expressions is defined by the inductive
datatype Exp:

data Exp : Set where
self : Exp – current object behavior
super : Exp – superclass behavior
arg : Exp – method argument value
call : Exp→ Key→ Exp → Exp – call method with argument
appl : Primitive→ Exp → Exp – apply primitive to value

variable e : Exp

module Semantics
(class : Instance → Class) – the class of an object
(methods′ : Class → Key→ (Exp +?)) – the methods of a class
where
methods : Class→ Key→ (Exp +?) – no root class methods
methods (child c 𝜅) m = methods′ (child c 𝜅) m
methods origin m = ??

4.4 Method Lookup Semantics
The method lookup semantics uses mutually-recursive func-
tions send, lookup, and doJ_K, which can be non-terminating,
They are therefore defined in Agda as the least fixed point of
a non-recursive function g (as in the proof of Proposition 3
in CP89) on a domain Gg that is isomorphic to Dg:

Dg = (Instance → 〈 Behavior 〉) ×
(Class→ Instance → 〈 Behavior 〉) ×
(Exp→ Instance → Class → 〈 Fun 〉)

module _
{ Gg : Domain }
{{ isog : 〈 Gg 〉 ↔ Dg }}
where

8

Towards Verification of a Denotational Semantics of Inheritance JENSFEST ’24, October 22, 2024, Pasadena, CA, USA

g : Dg → Dg

g (s , l , dJ_K) = (send , lookup , doJ_K) where

The behavior of send 𝜌 is to use lookup (to be supplied as
the argument l of g above) to obtain the behavior of 𝜌 using
the class of 𝜌 itself:

send : Instance→ 〈 Behavior 〉
send 𝜌 = l (class 𝜌) 𝜌

The behavior of lookup 𝜅 𝜌 for a subclass 𝜅 depends on
whether it is called with amethodm defined by𝜅: if so, it uses
doJ e K (via argument dJ_K of g) to execute the corresponding
method expression; if not, it recursively looks up m in the
superclass of 𝜅 . The behavior is undefined when 𝜅 is the root
of the inheritance hierarchy, which has been defined to have
no methods:

lookup : Class→ Instance→ 〈 Behavior 〉
lookup (child c 𝜅) 𝜌 =
from 𝜆 m→ [(𝜆 e→ inl (dJ e K 𝜌 (child c 𝜅))) ,

(to (l 𝜅 𝜌) m)
]? (methods (child c 𝜅) m)

lookup origin 𝜌 = ⊥

When applied to a value 𝛼 , the value returned by the function
to (doJ e K 𝜌 𝜅) may be a behavior, a number, or undefined
(⊥):
doJ_K : Exp → Instance → Class → 〈 Fun 〉
doJ self K 𝜌 𝜅 = from 𝜆 𝛼 → from (inl (s 𝜌))
doJ super K 𝜌 (child c 𝜅) = from 𝜆 𝛼 → from (inl (l 𝜅 𝜌))
doJ super K 𝜌 origin = from 𝜆 𝛼 →⊥
doJ arg K 𝜌 𝜅 = from 𝜆 𝛼 → 𝛼

doJ call e1 m e2 K 𝜌 𝜅 =
from 𝜆 𝛼 → [(𝜆 𝜎 → [(𝜆 𝜙 → to 𝜙 (to (dJ e2 K 𝜌 𝜅) 𝛼)) ,

(𝜆 _→⊥)
]⊥ (to 𝜎 m)) ,

(𝜆 𝜈 →⊥)
]⊥ (to (to (dJ e1 K 𝜌 𝜅) 𝛼))

doJ appl f e1 K 𝜌 𝜅 =
from 𝜆 𝛼 → applyJ f K (to (dJ e1 K 𝜌 𝜅) 𝛼)

The only complicated case is for calling method m of object
e1 with argument e2. When the value of e1 is a behavior 𝜎
that maps m to a function 𝜙 , that function is applied to the
value of e2; otherwise the value of the call is undefined. The
undefined cases are not explicit in CP89.
The use of fix below has the effect of making the above

definitions mutually recursive:

𝛾 : 〈 Gg 〉 → 〈 Gg 〉
𝛾 = from ◦ g ◦ to
send = proj1 (to (fix 𝛾))
lookup = proj1 (proj2 (to (fix 𝛾)))
doJ_K = proj2 (proj2 (to (fix 𝛾)))

That concludes the Agda definition of the method lookup
semantics.

4.5 Denotational Semantics
The denotational semantics of method expressions takes
the behavior of the expressions self (𝜎) and super (𝜋) as
arguments, so their evaluation is trivial. The evaluation of
the other method expressions is similar to their method
lookup semantics.

evalJ_K : Exp → 〈 Behavior 〉 → 〈 Behavior 〉 → 〈 Fun 〉
evalJ self K 𝜎 𝜋 = from 𝜆 𝛼 → from (inl 𝜎)
evalJ super K 𝜎 𝜋 = from 𝜆 𝛼 → from (inl 𝜋)
evalJ arg K 𝜎 𝜋 = from 𝜆 𝛼 → 𝛼

evalJ call e1 m e2 K 𝜎 𝜋 =
from 𝜆 𝛼 → [(𝜆 𝜎′ → [(𝜆 𝜙 → to 𝜙 (to (evalJ e2 K 𝜎 𝜋) 𝛼)) ,

(𝜆 _→⊥)
]⊥ (to 𝜎′ m)) ,

(𝜆 𝜈 →⊥)
]⊥ (to (to (evalJ e1 K 𝜎 𝜋) 𝛼))

evalJ appl f e1 K 𝜎 𝜋 =
from 𝜆 𝛼 → applyJ f K (to (evalJ e1 K 𝜎 𝜋) 𝛼)

The recursively-defined function evalJ_K is obviously total,
so there is no need for an explicit fixed point.
According to the conceptual analysis of inheritance in

CP89, the behavior of an instance 𝜌 is the fixed point of the
generator associated with the class of 𝜌 .

The generator for a subclass is obtained by modifying the
generator of its parent class using a wrapper that provides
the behavior of the methods defined by the subclass, given
the behavior of the expressions self (𝜎) and super (𝜋) as
arguments.
The auxiliary operation 𝜎1 ⊕ 𝜎2 combines its argument

behaviors, letting the methods of 𝜎1 shadow those of 𝜎2. The
operation w > p combines the wrapper of a subclass with
the generator of its parent class. See Figure 9 of CP89 for an
illustration of wrapper application.

Generator = 〈 Behavior 〉 → 〈 Behavior 〉
Wrapper = 〈 Behavior 〉 → 〈 Behavior 〉 → 〈 Behavior 〉

⊕ : 〈 Behavior 〉 → 〈 Behavior 〉 → 〈 Behavior 〉
𝜎1 ⊕ 𝜎2 = from 𝜆 m →
[(𝜆 𝜙 → inl 𝜙) , (𝜆 _→ to 𝜎2 m)]⊥ (to 𝜎1 m)

_ > _ : Wrapper → Generator→ Generator
w > p = 𝜆 𝜎 → (w 𝜎 (p 𝜎)) ⊕ (p 𝜎)
wrap : Class→ Wrapper
wrap 𝜅 = 𝜆 𝜎 → 𝜆 𝜋 → from 𝜆 m →
[(𝜆 e → inl (evalJ e K 𝜎 𝜋)), (inr ⊥)]? (methods 𝜅 m)

gen : Class→ Generator
gen (child c 𝜅) = wrap (child c 𝜅) > gen 𝜅
gen origin = 𝜆 𝜎 →⊥
behave : Instance→ 〈 Behavior 〉
behave 𝜌 = fix (gen (class 𝜌))

That concludes the Agda definition of the denotational se-
mantics.

9

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Peter D. Mosses

5 Equivalence
This section presents an Agda formulation of the intermedi-
ate semantics given in Section 4.4 of CP89. The intermediate
semantics is a step-indexed version of the method lookup
semantics. The section starts by recalling the origins of step-
indexing, and concludes by showing the Agda proof of the
first lemma in CP89; the proofs of the other three lemmas
are available in the auxiliary material.

5.1 Step-Indexing
Theorem 1 in CP89 states the equivalence of the operational
(method lookup) semantics and the denotational semantics:
send = behave. Quoting from CP89:

In the proof of the theorem we use an “inter-
mediate semantics” . . . [15] . . . The semantics
uses 𝑛 ∈ Nat, the flat domain of natural num-
bers. The intermediate semantics resembles the
method lookup semantics but differs in that each
of the syntactic domains of instances, classes,
and expressions has a whole family of semantic
equations, indexed by natural numbers.

The intermediate semantics defines the behavior of an in-
stance by the following functions:

send ′ : Nat → Instance → Behavior (1)
lookup ′ : Nat → Class → Instance → Behavior (2)

do ′ : Nat → Exp → Instance → Class → Fun (3)

The intuition is that send ′
𝑛𝜌 has ‘fuel’ for up to 𝑛 − 1 uses of

self , and the 𝑛th use gives ⊥.
The cited intermediate semantics in [15] is for the lambda-

calculus. There, the indices are taken from the chain cpo of
natural numbers augmented by ∞, and continuity implies
monotonicity. The intermediate semantics gives ⊥ at 0, and
corresponds to the standard (un-indexed) semantics at∞. In
CP89, the use of a flat domain of indices supports testing
whether an index is zero, but monotonicity w.r.t. numerical
order had to be proved.

Perhaps the earliest use of step-indexing was by Christo-
pher Wadsworth, in 1976 [28]. Quoting from [15]:

Wadsworth solved [a] problem in his study of the
𝜆-calculus . . . by labelling expressions 𝑀 (and
their subexpressions) with integers 𝑛, so that
𝑀 (𝑛) denoted the 𝑛th projection of the denota-
tion of𝑀 . Having introduced some extra syntax
to make the levels visible, he then studied the
operational properties of the 𝑀 (𝑛) induced by
this semantics and also their relation to the op-
erational properties of the original𝑀 . Thus one
parameter – the labelling – was used both for
inductions relating to the denotational seman-
tics (the projection levels) and for inductions
relating to the operational semantics.

More recently, abstract versions of step-indexed models of
programming languages have been constructed in the inter-
nal logic of the topos of trees [3], avoiding explicit indices.

5.2 Intermediate Semantics

module Inheritance.Equivalence

The imports and parameters of this module are the same as
those of Inheritance.Definitions, and elided here.
where

open import Inheritance.Definitions
(Domain) (〈_〉) (⊥) (fix) (?⊥)
(_+⊥_) (inl) (inr) ([_,_]⊥)
(Instance) (Name) (Key) (Primitive)
(Number) (Value) (Behavior) (Fun)
{{ isov }} {{ isob }} {{ isof }} (applyJ_K)

module _
(class : Instance → Class)
(methods′ : Class → Key→ (Exp +?))
where
open Semantics (class) (methods′)

The intermediate semantics of method expressions given
in CP89 is a step-indexed variant of the method lookup se-
mantics. It takes an extra argument 𝑛 ranging over Nat (the
set of natural numbers), which acts as sufficient ‘fuel’ for
up to 𝑛 − 1 uses of self: when 𝑛 is zero, the intermediate
semantics is the undefined behavior (⊥). One of the lemmas
proved in CP89 shows that the intermediate semantics at 𝑛
corresponds to the 𝑛th approximation to the denotational
semantics.

The functions used to specify the intermediate semantics
are mutually recursive, in the same way as in the method
lookup semantics. Here, however, the finiteness of the fuel
argument ensures that the functions are total, so they can
be defined in Agda without an explicit least fixed-point:
send′ : N→ Instance → 〈 Behavior 〉
lookup′ : N→ Class → Instance → 〈 Behavior 〉
do′_J_K : N→ Exp → Instance → Class→ 〈 Fun 〉

send′ n 𝜌 = lookup′ n (class 𝜌) 𝜌

lookup′ zero 𝜅 𝜌 = ⊥
lookup′ n (child c 𝜅) 𝜌 =
from 𝜆 m→ [(𝜆 e→ inl (do′ n J e K 𝜌 (child c 𝜅))) ,

(to (lookup′ n 𝜅 𝜌) m)
]? (methods (child c 𝜅) m)

lookup′ n origin 𝜌 = ⊥

Cases of Agda definitions are sequential: putting a case for
zero before the corresponding case for n implies that n is
positive in the latter.
do′ zero J e K 𝜌 𝜅 = ⊥

do′ (suc n) J self K 𝜌 𝜅 = from 𝜆 𝛼 → from (inl (send′ n 𝜌))

10

Towards Verification of a Denotational Semantics of Inheritance JENSFEST ’24, October 22, 2024, Pasadena, CA, USA

do′ n J super K 𝜌 (child c 𝜅) =
from 𝜆 𝛼 → from (inl (lookup′ n 𝜅 𝜌))

do′ n J super K 𝜌 origin = from 𝜆 𝛼 →⊥
do′ n J arg K 𝜌 𝜅 = from 𝜆 𝛼 → 𝛼

do′ n J call e1 m e2 K 𝜌 𝜅 =
from 𝜆 𝛼 → [(𝜆 𝜎 → [(𝜆 𝜙 → to 𝜙 (to (do′ n J e2 K 𝜌 𝜅) 𝛼)) ,

(𝜆 _→⊥)
]⊥ (to 𝜎 m)) ,

(𝜆 𝜈 →⊥)
]⊥ (to (to (do′ n J e1 K 𝜌 𝜅) 𝛼))

do′ n J appl f e1 K 𝜌 𝜅 =
from 𝜆 𝛼 → applyJ f K (to (do′ n J e1 K 𝜌 𝜅) 𝛼)

5.3 Proofs of Lemmas in Agda
The proofs of the lemmas use the following additional mod-
ules from the standard library:
open import Relation.Binary.PropositionalEquality.Core
using (_≡_; refl; cong; sym)

open import Relation.Binary.PropositionalEquality.Properties
open import Relation.Binary.Reasoning.Syntax
open ≡-Reasoning
open import Axiom.Extensionality.Propositional
using (Extensionality)

open import Level
renaming (zero to lzero) hiding (suc)

module _ (ext : Extensionality lzero lzero)
where

Lemma 1 establishes a significant fact about the relation-
ship between the denotational semantics and the interme-
diate semantics of method systems. Its Agda proof exhibits
the equational reasoning steps of the original proof in CP89.
This checks the correctness not only of the stated result, but
also of the steps themselves.

The Agda standard library defines the following notation
for equational reasoning:

• x ≡ y asserts the equality of x and y;
• begin starts a proof;
• ≡〈〉 adds a step that Agda can check automatically;
• ≡〈 t 〉 adds a step with an explicit proof term t; and
• □ concludes a proof.

lemma-1 : ∀ n e 𝜌 c 𝜅 →
do′ (suc n) J e K 𝜌 (child c 𝜅) ≡
evalJ e K (send′ n 𝜌) (lookup′ (suc n) 𝜅 𝜌)

The restriction to the class child c 𝜅 ensures that it is not the
root class; in CP89, the use of parent(𝜅) as an argument of
typeClass in the statement of Lemma 1 leaves this restriction
implicit.
The proof of this lemma is a straightforward structural

induction:
lemma-1 n self 𝜌 c 𝜅 =
begin do′ (suc n) J self K 𝜌 (child c 𝜅)

≡〈〉 (from 𝜆 𝛼 → from (inl (send′ n 𝜌)))
≡〈〉 evalJ self K (send′ n 𝜌) (lookup′ (suc n) 𝜅 𝜌)
□

lemma-1 n super 𝜌 c (child c′ 𝜅) =
begin do′ (suc n) J super K 𝜌 (child c (child c′ 𝜅))
≡〈〉 (from 𝜆 𝛼 → from (inl (lookup′ (suc n) (child c′ 𝜅) 𝜌)))
≡〈〉 evalJ super K (send′ n 𝜌) (lookup′ (suc n) (child c′ 𝜅) 𝜌)
□

lemma-1 n super 𝜌 c origin =
begin do′ (suc n) J super K 𝜌 (child c origin)
≡〈〉 (from 𝜆 𝛼 → from (inl ⊥))
≡〈〉 evalJ super K (send′ n 𝜌) (lookup′ (suc n) origin 𝜌)
□

lemma-1 n arg 𝜌 c 𝜅 =
begin do′ (suc n) J arg K 𝜌 (child c 𝜅)
≡〈〉 (from 𝜆 𝛼 → 𝛼)
≡〈〉 evalJ arg K (send′ n 𝜌) (lookup′ (suc n) 𝜅 𝜌)
□

The equational reasoning proof steps in the inductive case
for calling a method are quite complicated in Agda. This is
mainly due to the case analysis required in the semantics of
method calls to make the semantics type-correct (these cases
are left implicit in CP89). The use of rewrite below succinctly
verifies the correctness of the case analysis:

lemma-1 n (call e1 m e2) 𝜌 c 𝜅
rewrite (lemma-1 n e1 𝜌 c 𝜅)
rewrite (lemma-1 n e2 𝜌 c 𝜅) = refl

The inductive case for applying a primitive function is rela-
tively simple, and concludes the proof of Lemma 1.

lemma-1 n (appl f e1) 𝜌 c 𝜅 =
begin
do′ (suc n) J appl f e1 K 𝜌 (child c 𝜅)

≡〈〉
(from 𝜆 𝛼 →

applyJ f K
(to (do′ (suc n) J e1 K 𝜌 (child c 𝜅)) 𝛼))

≡〈 use-induction 〉
(from 𝜆 𝛼 →

applyJ f K
(to (evalJ e1 K (send′ n 𝜌) (lookup′ (suc n) 𝜅 𝜌)) 𝛼))

≡〈〉
evalJ appl f e1 K (send′ n 𝜌) (lookup′ (suc n) 𝜅 𝜌)

□
where
use-induction =
cong from (ext 𝜆 𝛼 →
cong (𝜆 X→
applyJ f K ((to X) 𝛼)) (lemma-1 n e1 𝜌 c 𝜅))

The Agda proofs of the remaining lemmas are available in
the accompanying auxiliary material.

lemma-2 : ∀ 𝜅 n 𝜌 → gen 𝜅 (send′ n 𝜌) ≡ lookup′ (suc n) 𝜅 𝜌

11

JENSFEST ’24, October 22, 2024, Pasadena, CA, USA Peter D. Mosses

iter : {D : Domain}→ N→ (〈 D 〉 → 〈 D 〉) → 〈 D 〉
iter zero g = ⊥
iter (suc n) g = g (iter n g)

lemma-3 : ∀ n 𝜌 → iter n (gen (class 𝜌)) ≡ send′ n 𝜌

lemma-4-send′ : ∀ n 𝜌 →
send′ n 𝜌 ⊑ send′ (suc n) 𝜌

lemma-4-lookup′ : ∀ n 𝜅 𝜌 →
lookup′ n 𝜅 𝜌 ⊑ lookup′ (suc n) 𝜅 𝜌

lemma-4-do′ : ∀ n e 𝜌 c 𝜅 →
do′ (suc n) J e K 𝜌 (child c 𝜅) ⊑
do′ (suc (suc n)) J e K 𝜌 (child c 𝜅)

5.4 Remaining Results
WhenAgda proofs of the remaining propositions and correct-
ness theorem from CP89 have been developed, they are to
be made available at https://github.com/pdmosses/jensfest-
agda.

module _
{ Gg : Domain }
{{ isog : 〈 Gg 〉 ↔ Dg }}
(lub : {D : Domain}→ (𝛿 : N→ 〈 D 〉) → 〈 D 〉)
where

interpret : Instance→ 〈 Behavior 〉
interpret 𝜌 = lub (𝜆 n → send′ n 𝜌)

proposition-1 : ∀ 𝜌 → interpret 𝜌 ≡ behave 𝜌
proposition-2 : ∀ 𝜌 → behave 𝜌 ⊑ send 𝜌

proposition-3 : ∀ 𝜌 → send 𝜌 ⊑ interpret 𝜌
theorem-1 : ∀ 𝜌 → send 𝜌 ≡ behave 𝜌

6 Conclusion and Future Work
The definitions and proofs in the OOPSLA ’89 paper (CP89)
[5] are elegant, clear, and convincing. However, I started
wondering whether it might simplify the proofs to use the
chain cpo of natural numbers (augmented by ∞) for step-
indexing, instead of the flat domain of natural numbers. I
realized that I would need to validate any claims using a
proof assistant; I had no previous practical experience with
any, but this seemed a good opportunity to learn Agda. The
present paper is essentially a progress report; completion of
the Agda verification of the remaining results is future work.
In published presentations of semantic definitions, it is

common practice to leave some notational details implicit.
CP89 is no exception: it leaves injections into sum domains
implicit, and doesn’t mention the isomorphisms between
recursively defined domains. To type-check the semantics
in Agda, however, all injections and isomorphisms had to be
made explicit.

The proofs in CP89 naturally focus on the important steps,
and skip over tedious low-level details. Moreover, some as-
sumptions in CP89 are stated informally, e.g., “parent defines
the inheritance hierarchy, which is required to be a tree”,
and “the root of the inheritance hierarchy doesn’t define
any methods” [5, §4.1]. Agda provides plenty of assistance
by automating low-level details in proofs, but to check the
proofs, these assumptions had to be formally specified.

It is well known [9] that running a specification can reveal
unsuspected errors and omissions in presentations of seman-
tic definitions and proofs. The Agda type-checker revealed
the following minor issues, which stemmed from Figs. 14,
16, and 17 of CP89:

• The primitive 𝑓 in the syntax of method expressions
is used as a function in the semantics.9

• The value of 𝑒1 in a message-passing expression 𝑒1𝑚 𝑒2
might be either a behavior or a number, but it is applied
to𝑚 in both cases.

• The value of parent(𝜅) is in Class + ?, but it is used as
an argument supposed to be in Class. The semantics
of super should check that root(𝜅) isn’t true.

Checking the reformulated proofs of Lemmas 1–4 using
Agda revealed only the missing cases related to the type
mismatches mentioned above. Reformulating the proofs of
the remaining results and checking them using Agda is future
work; but even when that has been completed, it will verify
only that the results stated in CP89 are sound relative to the
various assumptions made in the Agda modules. To verify that
the results are unconditionally sound, it would be necessary
to discharge the assumptions by providing definitions for
all the declared symbols, which might require the use of
guarded type theory.

Section 3 discusses issues with exploiting some available
Agda libraries for Scott domain theory. Scott domains have
some significant advantages over Agda types: domains can
be recursively defined (up to isomorphism) without the need
for guards, and functions defined on domains using lambda-
expressions are automatically continuous. Perhaps some fu-
ture version of Agda could support declaring particular types
to be Scott domains, with built-in notation for the partial
order on their elements, their bottom elements, and least
fixed-points?

Acknowledgments
The anonymous reviewers of the submitted version made
helpful comments and suggestions for improvement. Casper
Bach Poulsen, Cas van der Rest, and Jesper Cockx gave me
expert advice on how to use Agda; Casper also provided the
two most complicated proof steps for Lemma 2, and Jesper
drew my attention to the Agda support for guarded type
theory and synthetic denotational semantics.

9The journal version [6] of CP89 already fixed this issue.

12

https://github.com/pdmosses/jensfest-agda
https://github.com/pdmosses/jensfest-agda

Towards Verification of a Denotational Semantics of Inheritance JENSFEST ’24, October 22, 2024, Pasadena, CA, USA

References
[1] Samson Abramsky and Achim Jung. 1995. Domain Theory. In

Handbook of Logic in Computer Science. Oxford University Press.
https://doi.org/10.1093/oso/9780198537625.003.0001

[2] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. 1993. Type
inference of SELF. In ECOOP’93 - Object-Oriented Programming, 7th
European Conference, Kaiserslautern, Germany, July 26-30, 1993, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 707), Oscar Nierstrasz
(Ed.). Springer, 247–267. https://doi.org/10.1007/3-540-47910-4_14

[3] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and
Kristian Støvring. 2012. First steps in synthetic guarded domain theory:
step-indexing in the topos of trees. Logical Methods in Computer Science
Volume 8, Issue 4 (Oct. 2012), 45 pages. https://doi.org/10.2168/lmcs-
8(4:1)2012

[4] William R. Cook. 1989. A Denotational Semantics of Inheritance. Ph. D.
Dissertation. Brown University. https://cs.brown.edu/research/pubs/
theses/phd/1989/cook.pdf

[5] William R. Cook and Jens Palsberg. 1989. A denotational semantics
of inheritance and its correctness. In Conference on Object-Oriented
Programming: Systems, Languages, and Applications, OOPSLA 1989,
New Orleans, Louisiana, USA, October 1-6, 1989, Proceedings, George
Bosworth (Ed.). ACM, 433–443. https://doi.org/10.1145/74877.74922

[6] William R. Cook and Jens Palsberg. 1994. A denotational semantics
of inheritance and its correctness. Inf. Comput. 114, 2 (1994), 329–350.
https://doi.org/10.1006/INCO.1994.1090

[7] Tom de Jong. 2021. The Scott model of PCF in Univalent Type Theory.
Math. Struct. Comput. Sci. 31, 10 (2021), 1270–1300. https://doi.org/10.
1017/S0960129521000153

[8] Tom de Jong. 2022. Domain Theory in Constructive and Predicative
Univalent Foundations. Ph. D. Dissertation. University of Birmingham.
https://etheses.bham.ac.uk/id/eprint/13401/

[9] Casey Klein, John Clements, Christos Dimoulas, Carl Eastlund,
Matthias Felleisen, Matthew Flatt, Jay A. McCarthy, Jon Rafkind, Sam
Tobin-Hochstadt, and Robert Bruce Findler. 2012. Run your research:
on the effectiveness of lightweight mechanization. In Proceedings
of the 39th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (Philadelphia, PA, USA) (POPL ’12). As-
sociation for Computing Machinery, New York, NY, USA, 285–296.
https://doi.org/10.1145/2103656.2103691

[10] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1992. Effi-
cient inference of partial types. In 33rd Annual Symposium on Founda-
tions of Computer Science, Pittsburgh, Pennsylvania, USA, 24-27 October
1992. IEEE Computer Society, 363–371. https://doi.org/10.1109/SFCS.
1992.267754

[11] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. 1993.
Efficient recursive subtyping. In Conference Record of the Twenti-
eth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, Charleston, South Carolina, USA, January 1993,
Mary S. Van Deusen and Bernard Lang (Eds.). ACM Press, 419–428.
https://doi.org/10.1145/158511.158700

[12] Conor McBride. 2015. Turing-completeness totally free. In Math-
ematics of Program Construction, Ralf Hinze and Janis Voigtländer
(Eds.). Springer International Publishing, Cham, 257–275. https:
//doi.org/10.1007/978-3-319-19797-5_13

[13] Peter D. Mosses. 1992. Action Semantics. Cambridge University Press.
https://doi.org/10.1017/CBO9780511569869

[14] Peter D. Mosses. 1996. Theory and practice of action semantics. In
Mathematical Foundations of Computer Science 1996, 21st International
Symposium, MFCS’96, Cracow, Poland, September 2-6, 1996, Proceedings
(Lecture Notes in Computer Science, Vol. 1113), Wojciech Penczek and
Andrzej Szalas (Eds.). Springer, 37–61. https://doi.org/10.1007/3-540-
61550-4_139

[15] Peter D. Mosses and Gordon D. Plotkin. 1987. On proving limiting
completeness. SIAM J. Comput. 16, 1 (1987), 179–194. https://doi.org/
10.1137/0216015

[16] Peter D. Mosses and David A. Watt. 1987. The use of action semantics.
In Formal Description of Programming Concepts - III: Proceedings of
the IFIP TC 2/WG 2.2 Working Conference on Formal Description of
Programming Concepts - III, Ebberup, Denmark, 25-28 August 1986,
Martin Wirsing (Ed.). North-Holland, 135–166.

[17] Nicholas Oxhøj, Jens Palsberg, and Michael I. Schwartzbach. 1992.
Making type inference practical. In ECOOP ’92, European Conference
on Object-Oriented Programming, Utrecht, The Netherlands, June 29 -
July 3, 1992, Proceedings (Lecture Notes in Computer Science, Vol. 615),
Ole Lehrmann Madsen (Ed.). Springer, 329–349. https://doi.org/10.
1007/BFB0053045

[18] Jens Palsberg. 1992. Provably Correct Compiler Generation. Ph. D. Dis-
sertation. University of Aarhus. https://doi.org/10.7146/dpb.v21i422.
6736 DAIMI Report Series PB-422.

[19] Jens Palsberg (Ed.). 2009. Semantics and Algebraic Specification, Essays
Dedicated to Peter D.Mosses on the Occasion of His 60th Birthday. Lecture
Notes in Computer Science, Vol. 5700. Springer. https://doi.org/10.
1007/978-3-642-04164-8

[20] Jens Palsberg and Michael I. Schwartzbach. 1991. Object-oriented
type inference. In Proceedings of the Sixth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, OOPSLA
1991, Phoenix, Arizona, USA, October 6-11, 1991, Andreas Paepcke (Ed.).
ACM, 146–161. https://doi.org/10.1145/117954.117965

[21] Jens Palsberg and Michael I. Schwartzbach. 1991. What is type-safe
code reuse?. In ECOOP’91 European Conference on Object-Oriented Pro-
gramming, Geneva, Switzerland, July 15-19, 1991, Proceedings (Lecture
Notes in Computer Science, Vol. 512), Pierre America (Ed.). Springer,
325–341. https://doi.org/10.1007/BFB0057030

[22] Jens Palsberg andMichael I. Schwartzbach. 1992. Safety analysis versus
type inference for partial types. Inf. Process. Lett. 43, 4 (1992), 175–180.
https://doi.org/10.1016/0020-0190(92)90196-3

[23] Marco Paviotti, Rasmus Ejlers Møgelberg, and Lars Birkedal. 2015. A
model of PCF in Guarded Type Theory. Electronic Notes in Theoretical
Computer Science 319 (2015), 333–349. https://doi.org/10.1016/j.entcs.
2015.12.020 The 31st Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXXI)..

[24] Dana Scott. 1972. Continuous lattices. In Toposes, Algebraic Geome-
try and Logic (Lecture Notes in Mathematics, Vol. 274), F. W. Lawvere
(Ed.). Springer, Berlin, Heidelberg, 97–136. https://doi.org/10.1007/
BFb0073967 Also: Tech. Monograph PRG-7, Oxford Univ. Computing
Lab., Programming Research Group (1971). https://www.cs.ox.ac.uk/
files/3229/PRG07.pdf.

[25] Dana Scott and Christopher Strachey. 1971. Toward a mathematical
semantics for computer languages. In Proc. Symp. on Computers and
Automata (Microwave Research Inst. Symposia Series, Vol. 21). Poly-
technic Inst. of Brooklyn, 19–46. Also: Tech. Monograph PRG-6,
Oxford Univ. Computing Lab., Programming Research Group (1971).
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf.

[26] Michael B. Smyth and Gordon D. Plotkin. 1982. The category-theoretic
solution of recursive domain equations. SIAM J. Comput. 11, 4 (1982),
761–783. https://doi.org/10.1137/0211062

[27] Christopher Strachey. 1966. Towards a formal semantics. In Formal
Language Description Languages for Computer Programming, Proc. IFIP
Working Conference, 1964. North-Holland, 198–220.

[28] Christopher P. Wadsworth. 1976. The relation between computational
and denotational properties for Scott’s 𝐷∞-models of the lambda-
calculus. SIAM J. Comput. 5, 3 (1976), 488–521. https://doi.org/10.
1137/0205036

Received 2024-06-09; accepted 2024-07-12

13

https://doi.org/10.1093/oso/9780198537625.003.0001
https://doi.org/10.1007/3-540-47910-4_14
https://doi.org/10.2168/lmcs-8(4:1)2012
https://doi.org/10.2168/lmcs-8(4:1)2012
https://cs.brown.edu/research/pubs/theses/phd/1989/cook.pdf
https://cs.brown.edu/research/pubs/theses/phd/1989/cook.pdf
https://doi.org/10.1145/74877.74922
https://doi.org/10.1006/INCO.1994.1090
https://doi.org/10.1017/S0960129521000153
https://doi.org/10.1017/S0960129521000153
https://etheses.bham.ac.uk/id/eprint/13401/
https://doi.org/10.1145/2103656.2103691
https://doi.org/10.1109/SFCS.1992.267754
https://doi.org/10.1109/SFCS.1992.267754
https://doi.org/10.1145/158511.158700
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1007/978-3-319-19797-5_13
https://doi.org/10.1017/CBO9780511569869
https://doi.org/10.1007/3-540-61550-4_139
https://doi.org/10.1007/3-540-61550-4_139
https://doi.org/10.1137/0216015
https://doi.org/10.1137/0216015
https://doi.org/10.1007/BFB0053045
https://doi.org/10.1007/BFB0053045
https://doi.org/10.7146/dpb.v21i422.6736
https://doi.org/10.7146/dpb.v21i422.6736
https://doi.org/10.1007/978-3-642-04164-8
https://doi.org/10.1007/978-3-642-04164-8
https://doi.org/10.1145/117954.117965
https://doi.org/10.1007/BFB0057030
https://doi.org/10.1016/0020-0190(92)90196-3
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1007/BFb0073967
https://www.cs.ox.ac.uk/files/3229/PRG07.pdf
https://www.cs.ox.ac.uk/files/3229/PRG07.pdf
https://www.cs.ox.ac.uk/files/3228/PRG06.pdf
https://doi.org/10.1137/0211062
https://doi.org/10.1137/0205036
https://doi.org/10.1137/0205036

	Abstract
	1 Introduction
	2 Fixed-Point Semantics
	3 Fixed-Point Semantics in Agda
	4 Semantic Definitions
	4.1 Agda Standard Library Notation
	4.2 Domains
	4.3 Method Systems
	4.4 Method Lookup Semantics
	4.5 Denotational Semantics

	5 Equivalence
	5.1 Step-Indexing
	5.2 Intermediate Semantics
	5.3 Proofs of Lemmas in Agda
	5.4 Remaining Results

	6 Conclusion and Future Work
	Acknowledgments
	References

