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Abstract
In this study, we compare six commonly used methods for the downward continuation of airborne gravity data. We consider
exact and noisy simulated data on grids and along flight trajectories and real data from the GRAV-D airborne campaign. We
use simulated and real surface gravity data for validation. The methods comprise spherical harmonic analysis, least-squares
collocation, residual least-squares collocation, least-squares radial basis functions, the inverse Poisson method and Moritz’s
analytical downward continuation method. We show that all the methods perform similar in terms of surface gravity values.
For real data, the downward continued airborne gravity values are used to compute a geoidmodel using a Stokes-integral-based
approach. The quality of the computed geoid model is validated using high-quality GSVS17 GPS-levelling data. We show
that the geoid model quality is similar for all the methods. However, the least-squares collocation approach appears to be
more flexible and easier to use than the other methods provided that the optimal covariance function is found. We recommend
it for the downward continuation of GRAV-D data, and other methods for second check.

Keywords Downward continuation · Airborne gravimetry · Gravity · Geoid

1 Introduction

The Gravity for the Redefinition of the American Vertical
Datum (GRAV-D) project aims to cover the US territory
with airborne gravity measurements while extending about
100 km into Canada and Mexico. It is the largest airborne
gravimetric campaign ever undertaken in the world. The
project is to develop a geoid-based vertical datum at the pre-
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cision of 2 cm for much of the country. The flight heights
range from 4 to 11 km with a nominal height of about 6 km
to achieve a minimum spatial resolution of 20 km (GRAV-
D Team 2017a, b; Li et al. 2016). The GRAV-D data need
to be reduced onto the Earth’s surface or geoid when being
combined with terrestrial gravity data by the Stokes method
to determine a gravimetric geoid model. This reduction step
has been termed as the downward continuation (DC). One
intermediate question is: which method is most suitable for
theDCof airborne gravity data, in particular the high-altitude
GRAV-D data? The answer is not yet evident despite studies
and the development of DC methods for many decades.

The DC problem (DCP) is an ill-posed problem (Schwarz
1978; Rummel et al. 1979; Jekeli 1981a, b). Schwarz (1978)
summarizes numerical features of the ill-posed problem as
follows:

(a) The solution does not continuously depend on the given
data, i.e., small changes in the data may cause large
changes in the solution.
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(b) The matrices resulting from the discretization of the
problem will be ill-conditioned, i.e., the condition num-
bers will be large enough to severely amplify data noise.

(c) The accuracy of the solution does not increase with the
grid density, i.e., as the grid size becomes smaller, the
solution error will increase in any norm.

As Milbert (1999) stated, one is faced with the “dilemma
of downward continuation”. If one uses a coarse grid, the
geoid omission error may be dominant; if one uses a fine
grid, the geoid commission error may be dominant, mainly
due to noise amplification during downward continuation.He
showed numerically that 1 mGal zero-mean white Gaussian
noise may be amplified to 47.5 mGal when downward-
continued from an altitude of 4000 mwithout regularization.

There has been a long history of studies dealing with DCP
of airborne gravity data in the context of (quasi-) geoid mod-
eling (e.g., Forsberg 1986, 1987; Novák and Heck 2002,
Novák et al. 2003). There are three classical methods for the
DC of gravity data: i) inverse Poisson, which solves Pois-
son’s integral equation (e.g., Heiskanen and Moritz 1967;
Vaníček et al. 1996; Martinec 1996); ii) Moritz’s analyt-
ical DC (1980); and iii) Least-Squares Collocation (LSC)
(Moritz 1980, 2002; Forsberg 1987, 2002; Tscherning 2013;
Hwang et al. 2007). In recent decades,RadialBasis Functions
(RBF) have becomepopular in local (quasi-) geoidmodeling,
but can also be used straightforwardly for gravity DC (e.g.,
Schmidt et al., 2007; Klees et al. 2008; Lieb et al. 2016;
Li 2018a; Liu et al. 2020). Furthermore, the Spherical Har-
monic Analysis (SHA) method has been adapted for DC of
GRAV-D data (Smith et al. 2013; Holmes 2016). Recently,
the Residual LSC (RLSC) has been developed and applied
to GRAV-D data (Willberg et al. 2019; 2020). A question
naturally arises: do all these methods perform equally?

This paper characterizes the DCP, assesses stability and
equivalence of the six DC methods, and finds suitable DC
methods for DC of airborne gravity data. Section 2 reviews
the DC methods. In Sect. 3 and 4, we apply the DC methods
to simulated and real data, respectively. Section 5 concludes
this study.

2 Downward continuation

2.1 Overview of downward continuationmethods

There are six methods of downward continuation (DC) con-
sidered in this study. The first one is the spherical harmonic
analysis approach currently used at the National Geodetic
Survey (Smith et al. 2013). The basic idea is to convert the
local data into global data by padding zeros outside of the
study area with tapering near the border area to have a grad-

ual transition from nonzero values to zero values. Appendix
A1 provides more information about this method.

The second method is Least Squares Collocation (LSC).
The standard LSC was originally derived for stationary pro-
cesses and, later, extended to weakly stationary processes
(Darbeheshti and Featherstone 2010). The quality of an LSC
solution depends on the correctness of the covariance func-
tion. In the context of gravity field modeling, there are many
previous studies on how to build covariance functions (e.g.,
Kaula 1959; Krarup 1969; Moritz 1972; Tscherning and
Rapp 1974; Forsberg 1987; and Jekeli 2010). The covariance
function that ismost commonly used for airborne gravity data
is the one by Forsberg (1987), see Appendix A2. This study
also includes the newly developed Residual Least Squares
Collocation method (RLSC) (Wilberg et al. 2019; 2020), see
Appendix A3 for more information.

The fourth method is least-squares radial basis function
(RBF) approximation (e.g., Schmidt et al. 2007; Klees et al.
2008). This method has become popular in regional gravity
field modeling due to the quasi-localizing properties of the
RBFs and the advantages of least-squares techniques (e.g.,
Schmidt et al., 2007; Klees et al. 2008; Slobbe 2013; Lieb
et al. 2016; Slobbe et al. 2019; Liu et al. 2020). Once an
RBF model has been fitted to the data, it can also be used for
downward continuation. The detailed formulation is given in
Appendix A4.

The fifthmethod is based on Poisson’s integral and numer-
ically solves a Fredholm’s integral equation of the first-kind
(e.g., Heiskanen and Moritz 1967; Vaníček et al. 1996; Mar-
tinec 1996; Milbert 1999; Novák and Heck 2002; Alberts
and Klees 2004). Several different regularization strategies
of this ill-posed problem can be found in previous studies
(see e.g., Alberts and Klees 2004; Jiang et al 2011; Liu et al
2016; Zhao et al 2018). More comprehensive discussions of
regularization can be found in, e.g., Xu (1992), Xu and Rum-
mel (1994), Kusche and Klees (2002), Kern (2003), and Cai
et al (2004). In this study, the integral equation is discretized
and solved numerically using the method of Huang (2002).
The detailed formulation is given in Appendix A5.

The sixth method included in this study is the Analytical
Downward Continuation (ADC), which was formulated for
the Molodensky boundary value problem by Moritz (1980).
The detailed formulation is given in Appendix A6.

2.2 Noise amplification by downward continuation

It is a standard procedure in gravity field modeling to decom-
pose the gravity field into a reference (normal) field and an
anomalous (disturbing) field. Then, the data are reduced for
the contribution of the reference field and the disturbing field
is estimated from the reduced (residual) data. Well-known
functionals of the anomalous field are gravity anomalies
(representing residual surface gravity data) and gravity dis-
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turbances (representing residual airbornegravity data).Using
spherical harmonics, they may be written as

�g(r , φ, λ) �
∞∑

n�0

(
R

r

)n+2

�gn(φ, λ) (1)

And

δg(r , φ , λ ) �
∞∑

n�0

(
R

r

)n+2

δgn(φ , λ ) (2)

respectively (Heiskanen and Moritz 1967). The triplet
(r , φ, λ) represents spherical coordinates (radius, latitude,
longitude); R the radius of the geoid in spherical approxi-
mation; and �gn and δgn are the Laplace surface harmonics
for gravity anomaly and gravity disturbance, respectively.
Let r � R + HC, and HC is a constant height, then we can
express the gravity disturbance at the constant height of HC
into the surface spherical harmonics

δg(R + HC, φ, λ) �
∞∑

n�0

δgHCn (φ, λ) (3)

where

δgHCn (φ, λ) �
(

R

R + HC

)n+2

δgn(φ, λ) (4)

or

δgn(φ, λ) �
(
R + HC

R

)n+2

δgHCn (φ, λ) (5)

Substituting Eq. (5) into Eq. (2), and let r � R, we obtain
the gravity disturbance on the geoid as

δg(R, φ, λ) �
∞∑

n�0

(
R + HC

R

)n+2

δgHCn (φ, λ) (6)

It can be seen that the gravity disturbance component of
degree n at the height of HC is amplified by a factor of( R+HC

R

)n+2
when it is continued downward to the geoid. For

HC � 6 km and n � 2, 160 (corresponding to a 5’ spa-
tial resolution), the amplification factor is about 8. When
n � 10, 800 (corresponding to a 1’ spatial resolution), the
amplification factor is about 26,000. The same amplification
factors also apply for the error components rendering the DC
unstable. A filtering or regularization method must be used
to control noise amplification at the cost of introducing a bias
into the estimated signal. An effective DC method makes a
tradeoff between noise amplification and bias.

There are three basic methods to compress the errors of
DC: spatial filtering, LSC and the least-squares regulariza-
tion. The first method spectrally filters out errors in gravity
data to stabilize DC (e.g., Jekeli 1981a, b), while the second
and third methods compress the errors by regularization (see
e.g., Rummel et al. 1979). As an example of spectral filtering,
SHA acts as a low-pass filter up to the maximum degree of
SHA to avoid the high-degree noise.

3 Numerical experiments using simulated
data

3.1 Setup of the simulations

Two simulation scenarioswere considered. The first one used
simulated gridded data at a constant altitude (see Fig. 1); the
second one used simulated data along real flight trajectories.
For each scenario, three datasets were generated, which dif-
fer in the superimposed noise: noise-free, zero-mean white
Gaussian noise with a standard deviation (SD) of 1 mGal,
and AR(1) colored noise with autoregressive parameter 0.9,
driven by zero-mean white Gaussian noise with a SD of 0.44
mGal (Brockwell and Davis 1991). The latter ensures a noise
SD of 1 mGal. The Power Spectral Density (PSD) of the two
noise processes, shown in Fig. 2, indicates that the AR(1)
noise process has more power at frequencies below 0.035
[cycles/km] compared to the white Gaussian noise process.

For the simulation using gridded data, a 1’×1’ grid of
gravity disturbanceswas synthesized fromEGM2008 (Pavlis
et al. 2012) in an area of 5°×9° [34°–39°N; 250°–259°E]
at 6200 m altitude (the mean flight height of the MS05
GRAV-D block over the area of Colorado) (Fig. 1). A refer-
encemodel, xGeoid16refA, truncated at different SHdegrees
was used in the Remove-Compute-Restore (RCR) method.
xGeoid16refA was developed at NGS, and is a combina-
tion of EGM2008 and GOCO05s. The model is complete to
degree and order 2159 with some additional coefficients up
to degree 2190, similar to EGM2008. Downward continua-
tion errors were assessed at several grids of different altitudes
ranging from 6000 m down to the surface of the reference
ellipsoid.

For the simulation using real flight trajectories, we gen-
erated gravity disturbances along the flight trajectories of
the GRAV-D’s MS05 campaign in Colorado (cf. Fig. 3)
from EGM2008. The flight altitudes range from 5200 to
7900 m. Note the data gaps in the survey. Different from
the gridded case, the reference field is a combination of the
XGM18 model complete to spherical harmonic degree 760
(which corresponds to an ellipsoidal harmonic degree of 719)
and the Earth2014 model (Rexer et al. 2016) for ellipsoidal
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Fig. 1 Simulated gravity
disturbances from EGM2008 at
an altitude of 6200 m

Fig. 2 One-Sided Welch periodogram of (bandlimited) white noise and
colored noise realizations, respectively. The noise standard deviation is
1 mGal in both cases. The noise realizations were used to generate two
noisy gravity datasets

harmonic degrees 720–2190. Downward continuation errors
were assessed at the location of the 31,358NGS surface grav-
ity points, as shown in Fig. 4. The control dataset exhibits
strong signal variations in the mountainous regions in the
west, and relatively little variations in the flat eastern part.
The mean value is − 6.4 mGal and the standard deviation is
30.9 mGal (cf. Fig. 4).

3.2 Numerical results using gridded data

3.2.1 LSC

The first step of LSC is building the covariance func-
tions as defined by Eq. (24). Figure 5 shows the empirical
covariance functions as well as the corresponding best fits
to residuals with respect to the reference fields of different
maximum degrees by choosing appropriate high-frequency
attenuation depth parameter D, and low-frequency attenu-
ation depth parameter T . The most important part of the
fitting is the part up to the half-power point (or sometimes
the zero crossing). What happens to larger lags, as shown by
the sinusoidal oscillations in the figure, is less relevant for
determination of the covariance function, as the DC effects
are primarily affected by the correlation length of the input
signal.

Once a suitable set of covariance parameters are found,
the LSC prediction is carried out to continue the input grids
from 6200 m altitude to lower altitudes, at which the pre-
dicted values are compared with the corresponding values
synthesized from EGM2008. To speed up the computation,
OpenMP and fully parallelized matrix inversion and multi-
plication subroutines are added to the original GRAVSOFT
program (Forsberg and Tscherning 2014). Due to RAM lim-
itations, the input grid is 2’×2’ that is extracted from 1’×1’
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Fig. 3 Simulated EGM2008 gravity disturbances along real flight trajectories (left panel is for flight altitudes; right panel is for the simulated gravity
disturbances from EGM2008. The mean value is 5.76mGal. The standard deviation is 29.10 mGal. The range is from− 46.71 mGal to 118.96 mGal)

Fig. 4 Simulated gravity disturbances at 31,358 points on the topogra-
phy, which were used as control dataset (mean� − 6.38mGal; standard
deviation � 30.89mGal; min � − 72.73mGal; max � 152.74mGal)

data, while the prediction output is a 1’×1’ grid to be identi-
cal to the outputs from other methods. The 2’×2’ spacing is
still sufficient for this simulation because the true resolution
of simulation input is 5’×5’. The RMS of the differences
are shown in Fig. 6.

The first thing that needs to be pointed out is that LSC
works well for the full field for noise free and noisy datasets.

The DC errors for the noisy datasets is less than 1.5 times of
the DC errors for the noise free dataset. This is explained by
the regularizing effect of the noise covariance matrix (e.g.,
Rummel et al., 1979). TheDCerrors are larger for the colored
noise dataset for both the full field and the residual field
solution (reference field complete to degree 690).

We want to mention that LSC applied to the noise-free
dataset provides a meaningless solution unless an artificial
diagonal noise covariance matrix is added to stabilize the
solution (cf. Eq. (26)).

3.2.2 SHA

Figure 7 shows the degree amplitudes of the (residual) gravity
disturbances after fitting the data over the simulation area into
SHA by using the procedures described in Appendix A1.

We observe that the power of this local field after global
zero padding is completely different from the power of the
global field. For the full field signal (first row, first column),
the peak of the degree variance for the full field data locates
around spherical harmonic degree 55, which is about a wave-
length of 730 km approximating the dimension of the entire
study area. Then the power decreases more or less according
to Kaula’s rule (n−α with n being degree and α a positive
number) toward the higher degrees as expected. There are
obvious spectral components in the low degrees because of
the use of the global function for a representation of space-
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Fig. 5 The empirical covariance functions (red) and the fitted model covariances (green) for different simulated noise-free datasets (red curves are
computed from the data; green curves are the model fits)

limited data. The noise effects are relatively small. The white
noise is more evenly distributed than the colored one in the
spectral domain as expected. Due to the strong signal-to-
noise ratios, they are not being mistakenly taken into the
models so much as to smear the signal. The noisy spectrum
becomes more and more significant when removing a higher

degree reference field, the signal to noise ratio reduces as
there is less signal power in the residual field.

For the residual fields, the corresponding degree ampli-
tudes plots in Fig. 7 show the location of the maximum
degrees removed. They also show the power due to the
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Fig. 6 LSC DC errors as
function of altitude for various
reference fields of different
maximum spherical harmonic
degree (color red, green, and
blue are used for cases of error
free, white noise, and colored
noise, respectively)

GOCO05s updates to EGM2008, especially when a refer-
ence field complete to degree 2190 is used.

Figure 8 shows the DC errors for the SHA method. This
method models the gravity field with an inherent lowpass
filtering process, which effectively stabilizes DCP. It man-
ifests a direct way to compress the large DC errors of
high-frequency so that the SHA DC errors are at the com-
parable magnitude between the noise free and two types of
noise input data. The colored noise results show larger errors
than the white noise ones because of the differences in their
spectral distribution of noise (see Fig. 2). Interestingly, this
method “works well” even when the “local” coefficients do
not match the “global” coefficients. For example, for the case
when the reference field is complete to degree 2190, the RMS
value of the DC error from 6200 m to the ellipsoid is 0.0189
mGal, much smaller than the RMS of the original residual
gravity disturbances (i.e., the differences between the full
field EGM2008 and xGeoid16refA), which is 0.298mGal.
Because we know the differences between EGM2008 and

xGeoid16refA range from degree 2 to 280, the residual coef-
ficients higher than degree 280 are due to the space-limitation
of the data. If the residual coefficients are only used up to
degree 280 in the restore step, the RMS mismatch increases
from 0.0189 mGal to 0.0431 mGal (red vs red dash lines
in the bottom-right graph of Fig. 8). Though the RMS val-
ues in this case are very small, we know that the “residual
coefficients” are not spectrally ‘real’ in a global sense.

3.2.3 Inverse Poisson

The Poisson DC has been performed using the three sets of
simulation input data with the threshold RMS values at 0.001
mGal and 1.0 mGal. These thresholds represent the accuracy
of input data without and with noise, respectively. The itera-
tive solutions are convergent for the noise free case regardless
the small grid size of 1’ and the large altitude of 6200 m.
When the 1 mGal white and colored noise are included, the
iterative solutions do not converge with the threshold RMS
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Fig. 7 Degree amplitudes of the
SHA models from the
simulation input data after
removing xGeoid16refA
truncated at various spherical
harmonic degrees (color red,
green, and blue are used for
cases of error free, white noise,
and colored noise, respectively.
Black curves are the true values
directly computed from the
models. Dashed green curves
are the differences between
white noise and noise free data.
Dashed blue curves are the
differences between colored
noise and noise free data)

Fig. 8 SHA downward
continuation errors as function
of altitude for various reference
fields and input datasets (color
red, green, and blue are used for
cases of error free, white noise,
and colored noise, respectively.
Dashed red line is for the case of
using coefficients just up to
degree 280)

123



Characterization and stabilization of the downward continuation problem... Page 9 of 24 18

Fig. 9 Inverse Poisson
downward continuation errors as
function of altitude for different
reference fields and input
datasets (color red, green, and
blue are used for cases of error
free, white noise, and colored
noise, respectively. Solid curves
use threshold 0.001mGal.
Dashed curves use threshold
1mGal)

values of 0.001 mGal when the maximum number of itera-
tions is 1000. The noise level is amplified by a factor of 2 and
3 in magnitude when the maximum iterations are set equal to
100 and 1000, respectively. This reflects the ill-conditioning
of the inverse Poisson problem for the chosen set-up. Setting
the threshold value to 1.0 mGal makes the solutions conver-
gent leading to an error level which is one order of magnitude
higher than the input noise level. The resulting DC errors
from 6200 m to lower altitudes are evaluated and shown in
Fig. 9 with the maximum number of iterations set to 100.
DC errors have been estimated with both the full simulation
field shown in Fig. 1 and the residual fields with respect to
xGeoid16refA truncated at different degree.

In the case of noise free input data and a threshold of 0.001
mGal, the DC errors shown as red lines are smaller than 1
mGal for the full field DC, and smaller than 0.1 mGal for the
residual fields. When a threshold of 1 mGal is set with the
noise free input, the errors shown as red dash lines increase to
severalmGal suggesting that the signal of omission below the
level of 1mGal is significantly amplified in the DC solutions.
In the case of white and colored noise input data with the
threshold of 0.001 mGal, the noise levels are amplified more
than 100 times in the DC results. This suggests that filtering
high-frequency noise is essential before the DC is applied;
otherwise, it may fail. The threshold of 1 mGal effectively
reduces the DC errors to a fewmGal, though this is still large.
Again, it points out the necessity of filtering noisy input data

before DC when using the inverse Poisson method (see e.g.,
Alberts and Klees 2004). It is noticeable that the white noise
causes larger DC errors than the colored noise. This can be
explained by the fact that the PSD of white noise is much
larger than that of the AR(1) noise at higher frequencies (cf.
Fig. 2). There are a few sharp turning patterns in the error
curves when using a 0.001 mGal threshold, which are due to
numerical round-off errors.

3.2.4 Moritz’s ADC

DC errors for Moritz’s ADC have been estimated for the 5th
order approximation. The results are shown in Fig. 10. In the
case of noise free data, the DC errors are at the mGal level.
However, in the case of noisy input data, the DC errors are
10 to 100 times larger than the input noise level. Similar to
the Inverse Poisson, the white noise causes much larger DC
errors than the colored noise. There is no effective way to
control the amplification of noise by the method itself other
than truncating the ADC series Gn to a lower order, and a
pre-filtering process is necessary before ADC is used.

3.2.5 Least-squares RBF

We only examine the extreme case, which is DC from 6200
to 0 m, and study the amplification pattern of DC errors.
Input data are the gravity disturbance residuals with respect
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Fig. 10 ADC downward
continuation errors as function
of altitude for different reference
fields and input datasets (color
red, green, and blue are used for
cases of error free, white noise,
and colored noise, respectively)

Fig. 11 RBF downward continuation errors without (left column) and with (right column) regularization applied. Top row: white noise input dataset;
bottom row: colored noise input dataset
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to the reference model, xGeoid16refA, truncated at degree
190. RBFs band-limited to degrees 190–2190 were fitted
using ordinary least-squares to the noise-free, white-noise
and colored-noise datasets, respectively. We used Tikhonov
regularization with unit regularization matrix. The regular-
ization parameter was determined using method B in (Xu
1992), which minimizes the trace of the mean square error
matrix. For error-free data, the DC errors range from − 5
to 5 mGal with a standard deviation of 1 mGal. Figure 11
shows the DC errors for the white noise and colored noise
datasets, respectively. The magnitude of DC errors is signif-
icantly lower than those of the Inverse Poisson and Moritz’s
ADC.We also tested Poissonwavelets of order 3 (Holschnei-
der and Iglewska-Nowak 2007) located on a Fibonacci grid
with an average distance between the RBF centers of 7.0 km
at a depth of 50 km below the Earth’s surface, which yields
similar results.

3.2.6 Remarks

The statistics of DC errors for the simulation using
xGeoid16refA complete to degree 190 and DC to the sur-
face of the reference ellipsoid are shown in Table 1. It is
worth pointing out that these numerical experiments with
the gridded data are more on characterizing and stabilizing
DCP rather than ranking theories on which these methods
are based. On the one hand, the inverse Poisson and Moritz’s
methods clearly show how the noise input led to the diver-
gentDC results because of the ill-posed nature ofDCP.On the
other hand, LSC uses the noise variance-covariance matrix
and the least-squares RBF uses the band-limited fitting and
Tikhonov regularization, to give stable DC results, while
SHA effectively constrains the amplification of DC errors
by limiting the maximum degree of the SH expansion. In
principle, the least-squares regularization can be applied to
the inverse Poissonmethod aswell. However, it is not as com-
putationally efficient and feasible compared to LSC and RBF
because the resulting large linear system of equations poses a
numerical challenge to formand solve for (e.g., Huang 2002).
Note that RLSChas not been used for the gridded data experi-
ment because of the numerical complexity. Instead, it is used
for the following case of experiments along real flight tra-
jectories (Sect. 3.3) for which the covariance matrices were
calculated for an earlier study (Willberg et al. 2020).

3.3 Numerical results using data along real flight
trajectories

The simulation data in sub-Sect. 3.1 are used in this case
simulation. Both simulated airborne and surface gravity dis-
turbances have the same spectral content as EGM2008, with
the data at the flight level being smoother than the surface

data, as a natural consequence of the attenuation of gravity
field variations with altitude.

SHA, inverse Poisson, and ADC require gridded data.
Here we constructed a 1’×1’ grid of flight altitudes, with
the node altitudes obtained by interpolation from the alti-
tudes of the nearest flight trajectory data points by LSC. To
allow for a fair comparison with the other methods, the sig-
nal covariance function used in least-squares interpolation
was estimated from the flight track data. It should be noted
that the inverse Poisson and ADC results were computed
in two steps. First, the gridded residual gravity disturbances
were downward continued to the surface of the reference
ellipsoid. Then, residual gravity disturbances at the surface
points were computed by the forward Poisson method. The
SHA results were computed in a different two-step proce-
dure. First, a spherical harmonic gravitational model was
developed, and then the results were synthesized from the
model. LSC, RLSC, and RBF directly operate on the flight
line data without interpolation to the nodes of a grid.

The error statistics are shown in Table 2. For noise free
data, the error standard deviations range from 0.13 mGal
(RBF) to 0.69 mGal (LSC + ADC). Note that using LSC on
the full signal gives a worse standard deviation of 0.96 mGal.
The spatial distribution of the errors is heterogeneous with
largest errors in mountainous regions. The RLSC solution
did not perform better than the LSC solution, though the
method was developed to improve over LSC (Willberg et al.
2019). For the SHAmethod, truncating the coefficients below
degree 300,where the globalmodel should be dominating the
spectrum, almost doubles the DC error (0.35–to 0.63 mGal)
in the error free case because of the space-limited data.

For white noise data, LSC, RLSC, and RBF provide
comparable results (0.93–1.01 mGal DC error standard
deviation). The other threemethods have error standard devi-
ations which are 30–50% larger. Unlike the simulation case
with the gridded data, the inverse Poisson and ADC solu-
tions are affected by the white noise only at a moderate
level demonstrating that the LSC gridding before downward
continuation has a stabilizing effect. This is in line with the
findings in Alberts and Klees (2004).

For colored noise data, Moritz’s ADC with the LSC grid-
ding provides the smallest error standard deviation (1.59
mGal); the error standard deviations for the other methods
range from 1.91 mGal (LSC, LSC + SHA, LSC + inverse
Poisson) to 2.13 mGal (RLSC). The solutions based on
colored noise data have significantly larger error standard
deviations than the solutions based on white noise data. We
explain this by the fact that the noise power at the long wave-
lengths is significantly above thewhite noise power. TheLSC
DC errors for the three scenarios of input error (error-free,
white noise and colored noise) are shown here in Fig. 12 to
illustrate the distribution of DC errors.
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Table 1 Simulated gridded data:
statistics of DC errors from
6200 m altitude to the surface of
the reference ellipsoid. The
reference gravity field is
xGeoid16refA complete to
degree 190

Methods Noise free White noise Colored noise

Mean SD Mean SD Mean SD

LSC − 0.02 1.16 − 0.02 2.86 − 0.05 3.78

SHA − 0.00 1.16 0.00 1.41 0.00 2.04

Inverse Poisson1mGal − 0.00 3.55 − 0.01 11.21 − 0.00 8.00

Inverse Poisson0.001mGal − 0.00 0.09 − 0.05 93.06 0.09 75.11

ADC 0.05 4.13 0.05 190.09 0.05 75.97

RBFShannon − 0.02 0.83 − 0.03 2.09 − 0.04 2.86

RBFBlackman 0.00 0.32 − 0.06 2.76 − 0.06 2.99

RBFPoisson 0.00 0.01 0.00 2.13 0.01 4.10

Units in mGal

Table 2 Simulated data along
flight trajectories: statistics of
DC errors at the 31,358 surface
gravity points (unit: mGal)

Methods Noise free White noise Colored noise

Mean SD Mean SD Mean SD

LSC 0.00 0.32 0.00 1.01 0.09 1.89

LSC on full signal − 0.01 0.96

LSC + SHA 0.00 0.35 0.03 1.48 0.09 1.91

d/o>300 0.05 0.63 0.03 1.58 0.11 2.00

LSC + Inverse Poisson 0.01 0.32 0.03 1.46 0.09 1.91

LSC + ADC 0.03 0.69 0.03 1.46 0.07 1.59

RBFblackman 0.00 0.13 0.05 1.31 0.09 1.97

RBFPoisson − 0.02 0.42 − 0.04 0.96 − 0.07 2.59

RLSC − 0.02 0.32 0.04 0.93 − 0.05 2.13

A common feature of the DC errors for these methods is
the correlation with the spatial variation of the gravity field
itself. The stronger horizontal gravity gradient the field is, the
larger the DC errors. One explanation is that the attenuation
of gravity signals at the high flight levels leads to the loss of
detail at altitude, which is magnified along with instrumental
noise in the DC process. We speculate that less loss may
be achieved by the use of RCR (Remove-Compute-Restore;
see appendix A3) scheme with high-quality and extra-high
degree EGMmodels, which regainmore details in the restore
step. This appears to be the case for the LSCmethod as shown
in Table 1, Fig. 12 (top panel) demonstrates for the case of
noise free input. It is clear that the LSC method only “breaks
down” in several rare spotswhere the observations have gaps.

4 Numerical experiments using real data

We further evaluate the performance of the various DCmeth-
ods using the airborne data set used in the Colorado 1 cm
geoid experiment project (Wang et al. 2021; Sanchez et al.
2021). The Colorado GRAV-D airborne data are decimated
to every 8 s, which result in 35,587 airborne data. The
same combination of XGM18 and Earth 2014 model as used

in the flight-trajectory simulation of Sect. 3.1 was used as
the reference field and subtracted from the airborne gravity
disturbances to generate gravity disturbance residuals. It is
worth noting that the spectral band of the airborne data is lim-
ited (Li 2009, 2011). If their spectral content is different from
the spectral content of the control surface gravity data, all the
methods will be subject to the same errors. The NGS shared
surface gravity data in the Colorado experiment project are
used as control data set. Note that all the duplicated surface
points in that study are removed. A combination of XGM18
and Earth 2014 were removed from the surface data so that
the residuals are comparable with the downward continued
residuals of the GRAV-D data.

Prior to the comparison with the downward-continued air-
borne gravity data, the surface gravity control dataset was
corrected for the high-frequency contribution of topography
using the RTMmethod (Forsberg 1984). The surface gravity
anomalies are converted into gravity disturbances by using
EGM2008 geoid values. In general, this evaluation is the
same as the simulation in sub-Sect. 3.3 except for that the
datasets are real and are identical to those inWillberg (2020).

The DC errors are summarized in Table 3 for all the six
methods. Strictly speaking, the GRAV-D data are not directly
comparable with the surface gravity data because the for-
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Fig. 12 LSC downward
continuation errors for various
input datasets. From top to
bottom: noise-free, white noise,
and colored noise

mer are band-limited due to the high altitude and along-track
filtering applied while the latter are surface point observa-
tions. In the case of errors negligible in observation and
computation, the difference between them largely reflects
the omission error of GRAV-D data. Otherwise, the residuals
comprise the omission error, observational error, and compu-
tational error. Again, only the LSC results are illustrated here
in Fig. 13. As it can be seen, large errors are mostly associ-
ated with higher topography in the region of study where the
omission error tends to dominate.

Table 3 shows the statistics of the differences between
the downward-continued airborne gravity data and the con-
trol surface gravity data. The standard deviations range from
11.4 to 11.9 mGal depending on the method used. This large

standard deviation cannot be explained by the downward
continuation errors as the results in Sect. 3.2 have shown.
A significant error source is the omission error of the air-
borne data compared to the control surface gravity data. A
more realistic estimate of the downward continuation error
could be obtained when applying topographic reductions
(e.g., provided by the RTM method) to both datasets. For
airborne gravity data this would require information about
the lowpass filter used in the gap-free airborne gravity data
pre-processing. This information is, however, not accessi-
ble to the authors of this study. In an attempt to reduce the
spectral gap between the control surface gravity datasets and
the airborne gravity dataset, we applied various RTM cor-
rections to the former. By varying the smoothness of the
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Table 3 Real data experiment:
statistics (mean and standard
deviation, SD) of the differences
between the downward
continued airborne data and
control surface gravity data
before and after RTM and
harmonic correction applied to
the control surface gravity data
(units: mGal)

Methods Mean SD

Before RTM After RTM Before RTM After RTM

SHA
d/o>300

2.7
2.3

− 1.0
− 1.5

11.6
11.5

5.5
5.6

LSC 2.7 − 1.0 11.5 5.4

Inverse poisson1 2.7 − 1.0 11.5 5.4

Inverse Poisson 2 2.7 − 1.1 11.6 5.8

ADC 2.7 − 1.1 11.5 5.5

RBF 2.2 − 1.5 11.4 5.4

RLSC 2.4 − 1.3 11.9 5.4

Fig. 13 Differences between LSC downward continued residual air-
borne data and residual surface gravity data. NoRTMcorrection applied

RTM surface, we generated a whole bunch of RTM cor-
rected control surface gravity data. Finally, we chosen the
RTM surface which provided the smallest RMS difference
to the downward-continued airborne data. Figure 14 shows
the RMS differences as function of the spherical harmonic
degree of the RTM surface. The smallest RMS difference
is in the band between spherical harmonic degrees 2500 and
3000. After applying the RTM correction (and harmonic cor-
rection whenever the surface points were located below the
RTM surface) to the control surface gravity data, the stan-
dard deviation of the differences to the downward-continued
airborne gravity data reduced to 5.4–5.8 mGal, depending on
the method (cf. Figure 14 and Table 3).

What we are interested in is the computational error of
DC caused by each method. As the residual results from
all the methods are subject to the same omission error and
observational error, a lower level of residuals indicates a bet-
ter agreement with the surface gravity data. The residuals
shown in Table 3 are similar among all six methods, and the

Fig. 14 RMS of the differences between the downward continued air-
borne data and theRTM-reduced control surface gravity data as function
of the spherical harmonic degree of the RTM surface. Note that airborne
gravity and control surface gravity data were already reduced from the
effect of the XGM2108 and Earth2014 models

differences are not significant enough to tell which method is
the best when taking in consideration the observational errors
from the GRAV-D and surface data, which are estimated to
be typically 1–2 mGal for each source.

However, LSC has an advantage because it combines reg-
ularization and DC into one step through a 3D covariance
function and provide comparable results with the other meth-
ods. Unlike LSC, RLSC is built upon covariance matrices
computed from the reference GGM. RBF is also attractive
because it is a local method and can directly operate on scat-
tered data; only in case of larger data gaps, interpolation may
be necessary to obtain optimal results. An effective check to
the LSC DC is the combination of LSC gridding and Pois-
son DC to detect systematic biases by LSC alone. Though
the Inverse Poisson can start from scattered points too, it has
been shown that it is better to start from gridded data (Alberts
and Klees, 2004). For the SHA method, truncating the coef-
ficients below degree 300 increases the SHA DC error.

The geoid models were computed from the gravity distur-
bances downward-continued to the surface of the reference
ellipsoid as (see Appendix B)

N (�) � ζ0(�) + ζ1(�) + ζRef(�) + dζ (�) + CT(�) (7)
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where ζ0 and ζ1 are the degree-0 and degree-1 terms, respec-
tively (Sánchez et al. 2021; Wang et al. 2021); ζRef is the
height anomaly on the reference ellipsoid (GRS80), which
is synthesized from XGM18 and the synthetic topographic
geopotential model predicted from Earth2014; and

dζ (�) � R

4πγ (�)

∫

σ0

SMDB(ψ)

×
[
�gAirborne

(
�

′) − �gRef
(
�

′)]
dσ (8)

where γ (�) is the normal gravity on the reference ellip-
soid; SMDB amodified degree-banded Stokes kernel function
which spans from spherical harmonic degree 210 to 2160
with transitional bands of 60 and 120 degrees at the low and
high ends, respectively (Huang and Véronneau 2013). �gRef
is the gravity anomaly on the reference ellipsoid synthesized
from XGM18 and the synthetic topographic geopotential
model predicted from Earth2014 too. The full airborne grav-
ity disturbance continued onto the reference ellipsoid is
transformed into the gravity anomaly by

�gAirborne(�) � δgAirborne(�) − 0.3086NCGG2013(�) (9)

The term CT transforms the height anomaly evaluated on
the reference ellipsoid into the geoid height.

The resulting geoid models are validated using the
GSVS17 GPS-levelling data in the region of study (van
Westrum et al. 2021). The results are shown in Fig. 15. As
it can be seen that all the methods have a similar perfor-
mance except for two cases. The case of Poisson1 gives a
slightly poor agreement, in which the DC threshold value is
set as 1 mGal to reflect the data error. The other case is for
SHA300, in which the spherical harmonic model is truncated
to degree 300. These geoid validation results are consistent
with the gravity ones shown in Table 3.

The bias of~62 cm originates from two sources. One is
NAVD88, which is defined at the tide gage in Rimouski,
Québec on the lower St. Lawrence River. NAVD88 has a
tilt ranging from − 0.199 m to 1.328 m (Li 2018b). The
GSVS17 levelling line is constrained to one bench mark
of NAVD88. The other is the choice of equipotential sur-
face. This study selects the equipotential surface defined
by WNA

0 � 62636856m2s−2, which represents the best fit
of mean sea level for the North American region (Véron-
neau and Huang 2016; Huang et al. 2019; and Huang and
Véronneau 2005). This equipotential surface is about 0.26 m
lower than the IAG-endorsed surface, which is defined by
W IHRS

0 � 62636853.4m2s−2. Like the GPS ellipsoidal
heights for GSVS17, the geoid models in this study refer
to the reference ellipsoid is GRS80 (Moritz 1980). All of the
related quantities (Amin et al 2019) are shown in Fig. 16.

Fig. 15 Geoid model differences (model-GNSS/Leveling) with respect
to the GSVS17 validation data

From Eq. (2–181) of Heiskanen and Moritz (1967), we
have:

N � −
(
WNA

0 −UGRS80
0

)

γ
+
Tgravity

γ
(10)

From Fig. 16, we have:

N � −WRimouski
0 + t ilt −UGRS80

0

γ
+
TGPSLeveling

γ
(11)

Equation (10) minus Eq. (11) gives:

dN � WRimouski
0 + tilt − WNA

0

γ
+
Tgravity − TGPSLeveling

γ

(12)

The first term in Eq. (12) gives the bias term. The second
term gives the de-biased geoid model residuals.

5 Summary and conclusions

Downward continuing airborne gravity data from flight
heights onto the surface of the Earth or a level surface, from
scattered points into regular sampled grids, enables the direct
use of the classical geoid procedures that is based on Stokes’s
integrals. However, this downward continuation procedure is
not a trivial task due to the instability of this procedure. Four
classical DC methods and two relatively newer approaches
have been tested using both simulated data and real data.

For the simulation tests, both regular sampled grids and
scattered points are used in two scenarios of noise. If the
data are regularly sampled and noise free, all methods per-
form reasonably well, except for an artificial noise term
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Fig. 16 The origin of the bias in the GNSS/Leveling comparison

which needs to be added to LSC to reduce the impact of the
ill-conditioned signal covariance matrix on the downward-
continued gravity data. These ideal data sets are used to verify
the correctness of the developed software that can be shared
on request. For the SHA approach, all of the spectrum of
the real gravity field is distorted. The reason is that when
fitting an SH model to a space-limited dataset, the power in
the signal is distributed over all frequency (i.e., over the SH
coefficients) providing a power spectrum which differs com-
pletely from the power spectrum of the global dataset. The
least-squares constraint does not control the spectrum when
minimizing the residuals. This casts a heavy doubt on any
method that tries to directly combine a global gravity field
and local gravity field in the spherical harmonic domain.

In the white noise and colored noise cases, the perfor-
mances of all methods are degraded; the inverse Poisson
becomes unstable, while Moritz’s ADC diverges. However,
the covariance matrix in LSC and the linear solver in SHA
can still control the noise effects to reasonable magnitudes.
For the LSC, an accurate estimation of the noise level is
equally important as the estimation of the covariance func-
tions. The tests on the gridded data prove that there are no
major problems in the developed software, i.e., no bugs in
the codes.

For the simulated tests on scattered points, the RBF gives
the best results in the error free case. Even in the white and
colored noise cases, RBF still performs reasonably well if
the data is band-limited. Further improvements are expected
when using a more careful RBF network design and a better
regularized weighted least-squares estimator instead of the
ordinary least-squares estimator (e.g., Slobbe 2013; Slobbe
et al. 2019).

In the real data tests, the residual gravity disturbances are
not band-limited in the spectral range after removing the
GGM and Earth2014. This is a typical situation in airborne
data applications, where the goal is to exactly detect prob-
lems in medium-wavelength gravity field variations. In the
Colorado case, the different methods gave similar results,
mainly due to the unavoidable errors in airborne data, and
the relatively high flight level.

We note that due to the lack of band-limited data, the cur-
rent implementation of RBF cannot efficiently distinguish
signal from noise, which is also true for inverse Poisson. The
afore-mentioned improvements may provide a significantly
better RBF solution. We also note that both the simulated
tests and the real tests do not show significant numerical
improvement from LSC to RLSC, though the latter has
some theoretical advantages, but also requires more intense
computational effort to establish the complicated covariance
matrices. This casts a doubt on the practical application of
this improved LSC method for airborne gravity data.

The geoid models are computed from the DC results from
all themethods, and are validated by theGSVSGPS-levelling
data. They show a similar agreement around 3 cm r.m.s.,
with LSC performing marginally better than the other meth-
ods. Giving the rough topography in the Colorado areas this
is a good result, but also highlights the limits of high-level
airborne gravity data in terms on reaching a 1 cm-geoid
as a stand-alone data source without supplementary surface
gravimetry data.
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Appendix A

The derivation of the equations of downward
continuation of airborne gravity data using various
approaches

Spherical harmonic analysis (SHA)

In spherical approximation, band-limited (full/residual)
gravity disturbances from airborne gravimetry can be mod-
elled as

δg(r , φ , λ ) ≈ −∂T

∂r

� GM

R2

n2∑

n�n1

(
R

r

)n+2

(n + 1)

×
n∑

m�0

(c̄nm cos(mλ) + s̄nm sin(mλ)) p̄nm (sin φ) (13)

where T is the gravity disturbing potential; GM is the product
of the Universal gravitational constant and the assigned ref-
erence mass; R is the mean Earth’s radius; pnm are the fully
normalized associated Legendre functions of degree n and
orderm; {cnm, snm} are the Stokes’s coefficients to be solved
from the airborne gravity disturbances δg; and the limits of
n1 to n2 define the bandwidth of the airborne gravity distur-
bances.

However, solving for all coefficients {cnm, snm} from air-
borne data given inside a local area is not possible; in fact,
there are infinitely many solutions to this problem. To foster
one particular solution, one may assume zero gravity data
outside the local area.

This treatment will definitely reduce the power in the
spherical harmonic coefficients because of applying the
global function for a representation of space-limited data.
This set of coefficients are no longer representing the true
gravity field of the Earth, especially outside the study region

(Jekeli 2016). An intuitive explanation is that all the data of
the world implies that {cnm, snm} are zeros, except only a
small amount of regional data says they are not zeros. Note
that the spherical harmonic functions, pnm(sin φ) cos(mλ)

and pnm(sin φ) sin(mλ), are global functions; using regional
data, it is impossible to estimate all spherical harmonic coef-
ficients.

In addition to the theoretical shortcomings of using SHA
to downward continue airborne data, numerically, Eq. (13)
cannot be established directly on the original airborne sur-
vey point i(ri , φi , λi ) in order to utilize the EGM208 block
diagonal engine to quickly solve the 4 –million spherical
harmonic coefficients. In practice, the point airborne data
has to be reduced from the flight altitude onto a grid on
the surface of a larger (in terms of semi-major axis) refer-
ence ellipsoid that is located in the mean flight height in
order to solve the spheroidal harmonic coefficients quickly by
using the well-known block diagonal method (Pavlis 1998),
which are then transformed into spherical harmonics by using
Jekeli’s method (1988). Finally, the spherical harmonic coef-
ficients are scaled back to the desired system. The details of
spheroidal harmonic analysis and their transformations to the
spherical harmonic are well-known and will not be repeated
here.

In theGRAV-Dairborne gravity data, the flight heights can
vary by several thousandmeters in a typical survey campaign.
The real flights are not on a mean flight height as assumed
by some algorithms. A novel iterative scheme (Smith et al.
2013) described by the following steps was developed to
downward continue the real data from varying flight heights
on to an inflated ellipsoid whose mean radius is Rbig, and its
surface is located at the numerical mean flight height. Then
the spherical harmonic coefficients are scaled back by using
the ratio between Rbig and R .

(1) First, let’s assume the residual airborne gravity distur-
bances are given on the surface of an inflated ellipsoid
and solve the spherical harmonic coefficients:

{
cT 0nm, sT 0nm

}

� F−1
0

{
δg

0
(ri − h, φi , λi ) � δg(ri , φi , λi )

}
, (14)

where δg
0
(ri − hi , φi , λi ) are the pseudo gravity dis-

turbances on the reference ellipsoid; F−1
0 {·} represent

spherical harmonic analysis operator for the block diag-
onal method (for simplicity of description the steps
to transform the ellipsoid harmonics into spherical
harmonics are neglected, but it is applied in the com-
putation);

(2) Then, the following two terms are generated for the next
iteration.
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The first term is called the misclosure:

δgM1 � F (ri ,φi ,λi )
0

{
cT 0nm, sT 0nm

}
− δg, (15)

where F0{·} is the spherical harmonic synthesis operator
(SHS) at the original airborne survey points at the real
altitudes based on

{
cT 0nm, sT 0nm

}
. Basically, this term shows

the errors in the spherical harmonic coefficients due to the
assumption made in step (1).

The second term is the DC term:

δgDC1 � F (ri ,φi ,λi )
0

{
cT 0nm, sT 0nm

}
− F (ri−hi ,φi ,λi )

0

{
cδ0
nm, sδ0

nm

}

(16)

(3) Based on the DC term, a new observation as shown in
Eq. (17) is assumed to be given on the surface of the
bigger ellipsoidal surface for the next round of SHA as
shown in Eq. (18).

δg
1
(ri − hi , φi , λi ) � δg(ri , φi , λi ) − δgDC1, (17)

{
cT 1nm, sT 1nm

}
� F−1

1

{
δg

1
(ri − h, φi , λi )

}
, (18)

Another misclosure term is obtained by:

δgM2 � F (ri ,φi ,λi )
1

{
cT 1nm, sT 1nm

}
− δg, (19)

(4) In this step, the DC term of the misclosure term is com-
puted according to:
{
cT 2nm, sT 2nm

}
� F−1

2

{
δgM2

}
, (20)

δ�gDC2 � F (ri ,φi ,λi )
2

{
cT 2nm, sT 2nm

}

− F (ri−hi ,φi ,λi )
2

{
cT 2nm, sT 2nm

}
, (21)

(5) Finally, the original airborne gravity is reduced from
the flight trajectories onto the surface of the inflated
ellipsoid by:

δg
3
(ri − hi , φi , λi ) � δg

1
−

(
δgM2 − δgDC2

)
, (22)

Finally, the spherical harmonic coefficients for the original
airborne data are given as
{
cTnm, sTnm

}
� F−1

3

{
δg

3

}
, (23)

Note that a gridding step is still needed to interpolate the
scattered airborne gravity data onto the nodes of a grid (one
data grid and one DEM grid) to start the iterations described
above.

Least squares collocation (LSC) method

Forsberg’s (1987) covariancemodel is basedon apower spec-
tral model for a planar residual gravity field, matching the
Kaula rule up in themain band frequencybandup to a “depth”
parameter D (equivalent to the use of a Bjerhammar sphere,
but twice the magnitude). This gives rise to a gravity covari-
ance functionCδg,δg of shape− log(z + r), where z� z1 + z2 +
D is a height parameter, and r the slant range between the two
covariance points. To avoid singularities in the geoid terms
for a fully self-consistentmodel, several log-terms are needed
to be combined through a deeper “compensation depth” T,
giving a relatively complicated expression of form

Cδg,δg
{
P(φi , λi , hi ), Q

(
φ j , λ j , h j

)}

� σ 2

3 log(D + T ) − 3 log(D + 2T ) + log(D + 3T ) − log(D)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 log

(
D + T + hi + h j +

√
s +

(
D + T + hi + h j

)2
)

−3 log

(
D + 2T + hi + h j +

√
s +

(
D + 2T + hi + h j

)2
)

+ log

(
D + 3T + hi + h j +

√
s +

(
D + 3T + hi + h j

)2
)

− log

(
D + hi + h j +

√
s +

(
D + hi + h j

)2
)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

where σ 2 is the data variance; D is the depth to the high
frequency attenuation layer; T is the thickness to bottom
layer, low frequency attenuation; and s � √

x2 + y2 the
planar distance (approximated here with x � 111.11km ×(
λi − λ j

)
cosφ and y � 111.11km × (

φi − φ j
)
cosφ; hi

and h j are the flight height in km).
The covariance between gravity disturbance, δg, and

height anomaly, ζ, based on the covariance model of gravity
anomalies is (Forsberg, 1987):
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Cδg,ζ
{
P(φi , λi , hi ), Q

(
φ j , λ j , h j

)} � − 1

γ

σ 2

3 log(D + T ) − 3 log(D + 2T ) + log(D + 3T ) − log(D)

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√
s +

(
D + hi + h j

)2 −
(
D + hi + h j

)
log

(
D + hi + h j +

√
s +

(
D + hi + h j

)2
))

−3

(√
s +

(
D + T + hi + h j

)2 − (
D + T + hi + h j

)
log

(
D + T + hi + h j +

√
s +

(
D + T + hi + h j

)2
))

+3

(√
s +

(
D + 2T + hi + h j

)2 − (
D + 2T + hi + h j

)
log

(
D + 2T + hi + h j +

√
s +

(
D + 2T + hi + h j

)2
))

−
(√

s +
(
D + 3T + hi + h j

)2 − (
D + 3T + hi + h j

)
log

(
D + 3T + hi + h j +

√
s +

(
D + 3T + hi + h j

)2
))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(25)

Given the covariance function, the prediction of gravity
anomalies and height anomalies including error variances
using LSC can be implemented by the well-known colloca-
tion equations:

δ̂g
pred � Cδgpred,δgobs

(
Cδgobs,δgobs + Dn,n

)−1

⎡

⎢⎢⎢⎢⎢⎢⎣

δgobs1
δgobs2
...
...

δgobsn

⎤

⎥⎥⎥⎥⎥⎥⎦
,

(26)

D{δ̂gpred} � Cδg,δg − Cδgpred,δgobs
(
Cδgobs,δgobs + Dn,n

)−1

CT
δgpred,δgobs

, (27)

ζ̂ pred � Cζpred,δgobs
(
Cδgobs,δgobs + Dn,n

)−1

⎡

⎢⎢⎢⎢⎢⎢⎣

δgobs1
δgobs2
...
...

δgobsn

⎤

⎥⎥⎥⎥⎥⎥⎦
, (28)

D{ζ̂ pred} � Cζ,ζ − Cζpred,δgobs

(
Cδgobs,δgobs + Dn,n

)−1

CT
ζpred,δgobs

, (29)

where Cζ,ζ � 1
γ 2

[ 3
4 zr +

( 1
4r

2 − 3
4 z

2
)
log(z + r)

]
.

In the planar approximation, the covariance model is
described only by three parameters, i.e., gravity variance
σ 2, high-frequency attenuation depth parameter D, and
low-frequency attenuation depth parameter T . Due to its sim-
plicity, it is widely used in processing airborne gravity data
(Forsberg et al. 1996, 1999, 2000, 2003). However, the sim-
plified covariance function cannot always yield a good fit of
the data in the remove-compute-restore scenario, especially
for the geoid part, as the covariance functions have difficul-
ties to approximate the negative covariances coming from
removing a reference field (which again is a consequence of
the planar approximation).

A.3 Residual LSC

Residual least-squares collocation is a modified form of LSC
(Willberg et al. 2019) in the context of remove-compute-
restore (RCR). In RLSC, the covariance modeling is taken
from the global gravity field modeling (GGM) and forward
topographic modeling instead of empirical parameterization.
The general form of RLSC reads as (Willberg et al. 2019):

s �
(
Cm
ŝl̂
+ Ct

ŝl̂

)(
Cll + Cm

l̂l̂
+ Ct

l̂l̂

)−1(
l − l̂m − l̂t

)
+ ŝm + ŝt ,

(30)

where s is the signal, l is the observable, and the super-
scripts m and t are representing information from GGM and
topography, respectively. The circumflexes indicates the cor-
responding quantities are a-priori estimates from GGM and
topographic modeling. l̂m, l̂t are linked to the remove step,
ŝm, ŝt are linked to the restore step.

From Eq. (30), we can see that RLSC uses separated
error covariance matrices C to describe signal correlations
from every input source. In particular, Cm·̂̂· includes the full
covariance information from a high-resolution GGM, which
is not included in LSC. Accordingly, it considers accuracies
and correlations of the high-resolution GGM and models
the gravity field of the Earth as anisotropic and location-
dependent (up to the maximum degree of the GGM). This
more realistic representation of the gravity field should gen-
erally improve the quality of a regional gravity field model.

A more detailed differentiation between LSC and RLSC
is explained in Willberg et al. (2019), which also highlights
corresponding similarities to specific realizations of LSC that
already include accuracy information from a GGM in differ-
ent forms (e.g., Haagmans & van Gelderen, 1991; Pail et al.
2010).

123



18 Page 20 of 24 X. Li et al.

Radial basis function (RBF)

The (residual) gravity disturbing potential is written as

δT
(
rp, φp, λp

) � GM

R

QL∑

q�1

αq

n2∑

n�n1

(
R

rp

)n+1

× bn
√
2n + 1pn

(
�rp · �rq∣∣�rp

∣∣∣∣�rq
∣∣

)
(31)

where bn is a set of parameters that control the type of RBF
(Schmidt et al. 2007), which determine the spectrum of the
RBF, �rq denotes the location of the center of the RBF,pn
is the 4π -normalized Legendre polynomial of degree n, and
αq are the parameters to be estimated from the data, and
QL is the total number of coefficients. Then, in spherical
approximation, the residual gravity disturbance is given by:

δδg
(
rp, φp, λp

) � −∂δT

∂rp
� GM

R2

QL∑

q�1

αq

×
n2∑

n�n1

(
R

rp

)n+2

bn(n + 1)
√
2n + 1pn

(
�rp · �rq∣∣�rp

∣∣∣∣�rq
∣∣

)
, (32)

Eq. (32) provides the functional model for the estima-
tion of the RBF parameters using ordinary least-squares
techniques. Note that the computation of residual gravity dis-
turbances at the Earth’s surface requires an extra synthesis
step once the RBF parameters have been computed. Concep-
tually, using least-squares to estimate the RBF parameters
allows the use of the original data along the flight directory
without any spatial interpolation prior to the estimation of the
RBF coefficients. This convenience avoids all of the compli-
cated data pre-processing needed in steps (1) to (5) in A.1.
Furthermore, the spatial concentration of a RBF allows for a
parameterization of a regional gravity field requiring much
less coefficients compared to the use of spherical harmonics
(e.g., Klees et al. 2008; Lieb et al. 2016; Li 2018a).

The performance of the RBF least-squares approach crit-
ically depends on the definition of the RBF network, i.e.,
the location, including the depth (for some types of RBFs),
and distribution of the RBFs. There are many ways to find
a suitable RBF network (e.g., Schmidt et al. 2007, Klees
et al. 2008, Eicker et al. 2013, Naeimi 2013, Lin et al. 2019,
Foroghi et al. 2018). In this study, we use the nodes of a
Reuter grid to position the RBFs horizontally (Eicker et al.
2013, Naeimi 2013, Lieb et al. 2016, Klees et al. 2018, Klees
et al. 2019).

After setting up the system, the observation equations can
be written as a Gauss-Markov Model (Schaffrin 2006):

E(y) � Aξ , D(y) � σ 2
0 P

−1, (33)

where y is a m × 1 column vector that contains the resid-
ual gravity disturbances, A is a m × k design matrix with
k � QL number of basis functions used, and ξ is a k × 1
vector comprising the RBF parameters. The regularized ordi-
nary least-squares solution is given by (Eq. 78 Schmidt et al.
2007):

ξ̂ �
(
AT P A + κomI

)−1
(ATPy), (34)

where the optimal regularization parameter κom is com-
puted using Algorithm B in (Xu 1992) and

D{ξ̂} � σ 2
y

(
AT A + κomI

)−1(
AT A

)(
AT A + κomI

)−1
,

(35)

The downward continued gravity disturbance is simply
given by:

ŷ � Adc ξ̂ ; D
{
ŷ
} � AdcD

{
ξ̂
}
AdcT , (36)

Inverse Poisson method

The formula for the upward continuation of a harmonic func-
tion rpδg

(
rp, φp, λp

)
at flight altitude P (rp, φp, λp) from a

spherical surface (σR

(
Q

′)
) is given by the Poisson integral

as (e.g., Alberts and Klees 2004):

rpδg
(
rp, φp, λp

) � 1

4πR2

¨

σR

Rδg
(
r

′
q , φ

′
q , λ

′
q

)

℘

⎛

⎝R,
�rp · �r ′

q
∣∣�rp

∣∣
∣∣∣�r ′
q

∣∣∣
, rp

⎞

⎠dσR

(
Q

′)
, (37)

where ℘

(
R,

�rp ·�r ′
q

|�rp|
∣∣∣�r ′
q

∣∣∣
, rp

)
is the Poisson kernel given by

℘

⎛

⎝R,
�rp · �r ′

q
∣∣�rp

∣∣
∣∣∣�r ′
q

∣∣∣
, rp

⎞

⎠ �
∞∑

n�0

(
R

rp

)n+1√
2n + 1pn

⎛

⎝ �rp · �r ′
q

∣∣�rp
∣∣
∣∣∣�r ′
q

∣∣∣

⎞

⎠

�
∞∑

n�0

2n + 1

(
R

rp

)n+1

Pn

⎛

⎝ �rp · �r ′
q

∣∣�rp
∣∣
∣∣∣�r ′
q

∣∣∣

⎞

⎠ � R
r2p − R2

l3
,

(38)

The distances between P
(
rp, φp, λp

)
and Q′

(
r

′
q , φ

′
q , λ

′
q

)

is

l �
√√√√r2p + R2 − 2r R

�rp · �r ′
q

∣∣�rp
∣∣
∣∣∣�r ′
q

∣∣∣
�

√
r2p + R2 − 2�rp · �r ′

q (39)
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Thus, the relationship between the observed gravity dis-
turbances at altitude and the counterparts on the geoid in a
spherical approximation is given by:

δg(P) � R2

4πrp

¨

σR

δg
(
Q

′)r2p − R2

l3
dœR

(
Q

′)
(40)

Solving δg
(
Q

′)
from δg(P) is called theDCof the gravity

disturbance or the inverse Poisson problem. In general, it
belongs to the Fredholm integral equation of the first kind in
mathematics, which is ill-posed due to the amplification of
noise when dealing with a high-resolution field. It is essential
to stabilize the PoissonDCusing regularization or smoothing
(see e. g. Martinec 1996).

For the DC of airborne data, the inversion is done for
a regional area using a regional dataset. It is well-known
that the missing data outside the data area (the far-zone) has
limited impact on the solution over the area of interest if
the data are reduced for the contribution of a global gravity
model.Hence, it is not necessary tomodify thePoisson kernel
in the case of the remove-compute-restore (RCR) scheme. In
the case of RCR, a one-degree cap has been shown to be
sufficient (Huang 2002).

After selecting an inner zone cap size, it remains to dis-
cretize the integral and solve the linear system of equations.
The inner zone (ψ < ψ0) contribution of the (residual) grav-
ity disturbance at point p can be expressed by numerical
discretization of the integral in Eq. (40) as.

δgp
i �

M∑

j�1

Bi jδg
q ′
j (41)

where

Bi j

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

R
4πri

σ j℘
(
R, cos(ψi j ), rp

)
ifψi j ≤ ψ0; andi 	� j

R
r d

l
(
rp, ψ0, R

) −
K∑

j�1, j 	�i
Bi j ifψi j ≤ ψ0; and i � j

0 if ψi j > ψ0

(42)

dl
(
rp, ψ0, R

) � 1

2

[
r + R

r

(
1 − r − R

l

)]
(43)

and the integral area on a unit sphere isσ j � �φ�λcos(φ).
Eq. (40) can be expressed in a matrix representation as

� g, which is then solved by direct computations, or the
following iterations (Huang 2002):

f � A f + g (44)

where A � I − B, I being an identity matrix. Eq. (44) shows
the sums of the observed downward continued gravity dis-
turbances and correction terms. The iteration in Eq. (44) can
start from

f 0 � g (45)

Followed by, f 1 � A f 0 + g, f 2 � A f 1 + g,…, f i �
A f i−1 + g, and f i+1 � A f i + g.

The dimension of the linear system in Eq. (44) depends
on the discretization step and data coverage, and can become
very large. In order to avoid solving a huge system of linear
equations, a block-wise approach is adopted to solve the DC
for a block of 1°×1° at a time without overlapping. No tile
pattern is found in the DC results. Each side of the block is
extended at least 1° in spherical distance to avoid edge effects.
The iteration stops when the RMS differences between two
consecutive solutions are smaller than a specified thresh-
old value. The RMS differences correspond to the solution
residuals of the previous iteration, as shown by Kingdon and
Vaníček (2011). In this study, the threshold RMS difference
and residual are set to 0.001 and 1.0 mGal, respectively, for
the convergence of the inverse Poisson method.

Moritz’s analytical downward continuation

Moritz’s ADCmethod (Moritz 1980, Sect. 45) was originally
derived to continue the gravity anomaly from the telluroid to
the point level for the determination of the height anomaly by
Molodensky’s theory. The DC correction is expressed as the
sumof a series of terms. TheG1 term represents the first order
approximation, i.e., a linear gradient DC correction. When
theDCof the data iswell-posed, the higher-order terms atten-
uate rapidly to lead to a convergent correction. Otherwise the
series becomes numerically divergent when the DC problem
is numerically ill-posed, and must be truncated empirically
to produce an approximate result.

In this study, we apply it to the DC of airborne grav-
ity disturbance. The computational equations (Huang 2002,
Sect. 5.2) are shown below.

δg
(
rg, φp, λp

) �
∞∑

n�0

Gn (46)

G0
(
rp, φp, λp

) � δg
(
rp, φp, λp

)
(47)

Gn
(
rp, φp, λp

) � −
n∑

r�1

Hr Lr
(
Gn−r

(
rp, φp, λp

))
(48)

where the L operator is given by:

L
(
G
(
rp, φp, λp

)) � R2

2π

¨

σR

G(Q) − G(P)

(2R sin
(

ψ
2

)
)3

dσR(Q)
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− 1

R
G
(
rp, φp, λp

)
(49)

Empirically the DC is truncated to order 5 so that a
potential divergence manifest itself, and can be controlled
numerically for an ill-posed case.

Appendix B

Method for computing a geoidmodel
from band-limited downward continued airborne
gravity data

Using the remove-compute-restore (RCR) Stokes–Helmert
scheme, a geoid model is computed from the gravity dis-
turbances given on the surface of the reference ellipsoid by
(Huang and Véronneau 2013):

N (�) � N0(�) + N1(�) + NH(�) + δNPITE(�) (50)

where N0(�)andN1(�) are degree-0 and -1 terms; the last
term stands for the primary indirect topographical effect
on the geoid, and the Helmert co-geoid components above
degree-1 can be expressed as

NH(�) � NHRef(�) + dN (�) (51)

NHRef(�) � ζRef(�) − δNDTE(�) (52)

dN (�) � R

4πγ (�)

∫

σ0

SMDB(ψ)dgH
(
�

′)
dσ (53)

When the residual geoid height is determined to the same
spectral band as the reference field, the direct topographical
effect (DTE) on the airborne data are computed to the same
band as the reference field. Then we have

dgH(�) � [�gAirborne(�) − δ�gDTE(�)]

− [�gRef(�) − �gDTE(�)] (54)

or

dgH(�) � �gAirborne(�) − �gRef(�) (55)

Therefore, Eq.(53) can be re-written as

dN (�) � dζ (�) � R

4πγ (�)

∫

σ0

SMDB(ψ)

×[�gAirborne(�) − �gRef(�)]dσ (56)

Considering Eq. (51–56) and the degree-0 and degree-1
terms for the geoid height are equal to the same terms for the

height anomaly on these reference ellipsoid, Eq. (50) can be
re-written as

N (�) � ζ0(�) + ζ1(�) + ζRef(�) + dζ (�) + CT(�) (57)

where

CT(�) � −δNDTE(�) + δNPITE(�) (58)

The CT(�) term is given in (Huang and Véronneau 2015,
equations A9–10), which converts the height anomaly evalu-
ated on the reference ellipsoid to the geoid height. Note that
Sjöberg (Eq. 23, 2007) derived an equivalent equation to (10)
to the 3rd order approximation, and named it the topographic
bias with a negative sign.
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