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Introduction

When airspace congestion, poor weather conditions, or unavailability of crew results in flight delays or can-
cellations, the Airline Operations Control Center (AOCC) must attempt to resolve the airline recovery prob-
lem, comprising of the recovery of flight, aircraft, crew, and passenger schedules (Petersen et al. (2012)). Large
airlines must solve this problem hundreds of times daily to ensure adherence to the planned schedule, all with
the end-goal of minimising disruption-related costs. The process of solving of the airline recovery problem is
referred to as disruption management and represents the operational period directly following the comple-
tion of the airline planning process, as seen in Figure 1.

Strategic < —>._ . Tactical
e Fleet Assignment Aircraft Routing Crew Assignment E Disruption
Development Management
° | | | : | .
(— Long-Term —)( Short-Term )v(— Day of Operations —)

Figure 1: Airline disruption management as part of the larger airline planning process.
Adapted from Bouarfa et al. (2018).

The AOCC aims to preserve the work done on aircraft routing and fleet and crew assignment by monitoring
day-to-day operations and taking action when necessary. Airline disruption management is a real-time pro-
cess governed by (1) the time required to make a recovery decision and (2) the quality of said decision. Due
to strict time limits on decision making, the AOCC has been solving this problem by hand, with experienced
operators capable of intuitively making quick, good quality decisions. In the past two decades, the field of
airline disruption management has made great strides towards the automation of this process and acquiring
much higher quality solutions, enabling airlines to incur lower costs as a result of disruptions. Part II of this
thesis reviews the history and state-of-the-art publications related to the airline recovery problem, extending
the collection of modern literature published by Hassan et al. (2020). Whereas older literature often dealt with
the recovery of a single resource (aircraft, crew, or passengers), the main focus in recent years has shifted to
development of detailed decision-support systems that integrate the recovery of multiple resources.

Starting with the dynamic aircraft recovery formulation of Vos et al. (2015), the department of Air Transport
and Operations at the TU Delft has completed several projects related to airline disruption management,
many of which have been published. Bouarfa et al. (2018) developed a multi-agent system to tackle aircraft
recovery, while Vink et al. (2020) and Hassan (2018) extended the work of Vos et al. (2015) by enabling faster
solution times via use of heuristic and machine learning (ML) based aircraft selection algorithms. Hoeben
et al. (2017) developed a tool to tackle the recovery of crew pairings. The objective of this thesis is to inte-
grate the ML-assisted aircraft recovery formulation developed by Hassan (2018) with a newly-developed crew
recovery formulation and supplement it with a ML classifier used to narrow the scope of the crew recovery
problem. The research question encapsulating the objective of this thesis can be formulated as follows:

How can the use of machine learning methods be applied to the integrated airline recovery problem, and what
are the effects of this integration on the solution quality and solution time?

With the aim of answering the main research question and pinpointing the main steps required to complete
the research project, the following research sub-questions must be answered:

1. How can multiple resources be computationally efficiently integrated into the mathematical formula-
tion of the aircraft and crew recovery problem?



Introduction X

2. Which simplifications to the aircraft and crew recovery problem formulation are acceptable in the con-
text of industry practice?

3. Given the problem formulation, what form of machine learning algorithm and approach best suits the
targeted solution time reduction?

4. How should the two main performance metrics, solution time and solution quality, be balanced during
model assessment?

This thesis is split into three parts. Part I will contain the scientific paper resulting from the thesis research.
This paper contains the bulk of the problem description, modelling approach, and results obtained as part of
the research. Part II will present the literature review done as a prerequisite to the thesis project, elaborating
on the history and progression of the airline recovery problem. Part III will contain the thesis report, which
elaborates the developed model in more detail and presents supplementary material. The framework of the
proposed model is explained in detail in Chapter 1, followed by a more detailed description of the crew re-
covery model in Chapter 2. Chapter 3 contains details on the acquired and generated data used in the case
study. Chapter 4 discusses the model functionality and verification. The development process of the ma-
chine learning classifier used in crew selection is explained in more detail in Chapter 5. A sensitivity analysis
is performed to test the performance of the selection algorithm for various parameters in Chapter 6, followed
by the report conclusions and recommendations for future work in Chapter 7.



|
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Aircraft and Crew Recovery:

a Machine Learning Approach

Andrej Nikolajevi¢

Student No. 4445953, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology

Abstract

This paper presents a machine learning approach to the aircraft and crew recovery problem.
The presented model utilises a two-stage sequential approach recovering the aircraft and flight
schedule first, followed by that of cockpit crew. At each stage, the recovery is assisted via use of
decision tree-based machine learning classifiers to select a subset of relevant aircraft and crew,
reducing the scope of the recovery operation. The aircraft stage is able to directly account for
aircraft maintenance constraints, and indirectly account for the impact of the aircraft recovery
on crew schedules and passenger itineraries. In the crew stage, the model directly accounts for
the common cockpit crew labour constraints set by airlines operating with the US. The combined
performance of the recovery model is evaluated via a case study on the US network of Delta Air-
lines. The results show that the crew selection algorithm can find an optimal solution to the crew
recovery problem in 89% of non-trivial disruption instances, completing in 27 s on average, with
an average objective function value only 5% higher than optimal. When including aircraft recov-
ery results, the proposed approach increased the percentage of instances that obtain a solution
within the AOCC-defined time limit from 47% to 95%, speeding up the average computational
time threefold. The solution to the aircraft and crew recovery problem was globally optimal in
83% of cases, with an average objective function value 11% higher than optimal.

Keywords: Disruption Management, Airline Industry, Irregular Operations, Aircraft Recovery, Crew Recovery,
Passenger Recovery, Integrated Recovery, Combinatorial Optimization, Machine Learning

1. Introduction

Day-to-day airline operations are faced with a large number of differences between planned and actual air-
craft, flight, and crew schedules. These originate from factors such as airspace congestion, poor weather
conditions, and can even have a reactionary cause. Airlines and passengers alike incur large expenses as a
result of disruptions, with estimates by Swiss et al. (2016) of up to $60 billion annually, or 8% of industry rev-
enue. As an airline may face up to several hundred disruptions daily, it is essential that decisions are made
quickly. The Airline Operations Control Center (AOCC) must actively take action to manage these disruptions
in order to restore the original schedule of flights, aircraft, and crew, while ensuring that passengers are trans-
ported to their intended destinations. This is often in the form of flight delays and cancellations, rerouting
of aircraft and crew, or use of reserve crew. These decisions come at the cost of additional fuel expenses,
crew overtime, and passenger monetary compensation. Therefore, the main objective of the airline recovery
problem is to find the minimum-cost solution that recovers the airline schedule back to the original so that
operations may resume as planned. Due to complex inter-dependencies between recovery options, the com-

putational time provided by software solutions is often unfit for operational use. Many airlines still solve the



airline recovery problem by hand, with experienced operators that look for a quick, feasible solution rather
than an optimal one. Research on the airline recovery problem focuses therefore on automating the recovery
decision making process in order to optimize the solution quality and reduce costs incurred by airlines within

the decision-making time limit.

Background

The first instance of the use of software to resolve the aircraft recovery problem was the work of Teodorovi¢
and Guberini¢ (1984). The branch and bound algorithm was used to restore aircraft schedules with the ob-
jective of minimising total delay experienced by passengers. Lettovsky et al. (2000) were among the first to
consider the recovery of crew after a disruption, utilising integer programming to minimise the cost of re-
assigning crew to flights. This paper was the result of the PhD thesis by Lettovsky (1997), which is the first
attempt at integrating the recovery of aircraft, crew, and passengers in a single recovery operation via use of
Benders decomposition. These papers formed a large part of the basis of modern literature on the airline
recovery problem. Since then, the range of recovery options, disturbances, and network sizes has increased
drastically to more accurately reflect the real-life case. Because of this, approaches presented in literature
often exceed the solution times required by the AOCC.

Rosenberger et al. (2003) were among the first to utilise a heuristic selection algorithm to reduce the size
of the aircraft recovery problem with the end goal of decreasing computational time. By exploring only a
part of the solution space, the amount of time required to obtain a solution is drastically reduced. This con-
cept has become a trend in the airline recovery problem, and was applied by Petersen et al. (2012), Vos et al.
(2015), and Vink et al. (2020), among others. Vos et al. (2015) and Vink et al. (2020) approached the aircraft
recovery problem dynamically, solving disruptions as they occur and building upon previously taken actions.
The latter also indirectly accounts for the cost of the recovery decisions on passenger itineraries. In a sim-
ilar way, Hoeben et al. (2017) use a selection algorithm to solve the crew recovery problem with a subset of
crew. Though there is still a focus on the recovery of individual resources (aircraft, crew, passengers), modern
literature places a large focus on integrating multiple resources to provide a more complete airline recov-
ery solution. For a comprehensive overview of historical and recent literature relating to the airline recovery

problem, the reader is referred to the literature reviews of Clausen et al. (2010) and Hassan et al. (2020).

Paper Contribution

This research contributes to the development of an integrated airline recovery solution with the end-goal
of achieving fast, optimal solutions. Three novelties contributing to the field of the airline recovery prob-
lem result from this research. (1) The development of a time-space network based crew recovery model,
enabling flexibility with respect to recovery decisions and accounting for the most common FAA-mandated
cockpit crew labour constraints. (2) The implementation of a machine-learning based crew selection algo-
rithm within the crew recovery stage. Though heuristic selection algorithms have been implemented, the
use of machine learning for crew recovery in this context can consider many more features to make a more
informed decision. (3) The integration of two time-space network based recovery stages to achieve an aircraft
and crew recovery solution that can directly account for the presence of multiple aircraft types, aircraft main-
tenance constraints, crew labour constraints, presence or absence of reserve crew, and indirectly account for

the recovery impact on passengers.

Report Structure
This paper is structured as follows: Chapter 2 describes the problem formulation and main challenges of the

airline recovery problem. Chapter 3 describes the methodology and frameworks used within the proposed



approach to solve the aircraft and crew recovery problem. Chapter 4 describes the acquired and generated
aircraft, flight, crew, and disruption data used within the problem. Chapter 5 presents the development and
evaluation of the machine learning classifier used in the crew recovery stage. Chapter 6 presents the results
of the case study performed on a set of real disruptions experienced by Delta Airlines in February 2015. The

paper concludes with Chapter 7.

2. Problem Formulation

Following a disruption, the flight schedule, and the planned routes of aircraft, crew, and passengers are bro-
ken and must be recovered to resume normal operations. The recovery of the schedules of these four re-
sources constitutes the airline recovery problem. Often, the airline recovery problem is formulated as a
limited-resource, smaller-scale airline scheduling problem, with a time window within which the recovery
operation takes place. It is traditionally solved sequentially, with aircraft and flight schedules being recov-
ered first, followed by those of crew, and finally those of passengers. Restoring the schedule is no trivial task.
Actions taken in recovery of one resource can directly affect the recovery of others, and the trend of increas-
ing levels of detail considered in recent literature often results in solution times that are unfit for operational
use. According to Clausen et al. (2010), in an operational setting, the AOCC requires decisions to be made in
2 minutes or less. Given this strict time limit, many simplifications exist in published literature in order to

bring solution times closer to the needs of the AOCC.

As rules relating to re-scheduling of aircraft are less strict than those relating to crew, the aircraft recovery
problem in particular has received the most attention in literature. When making an aircraft recovery deci-
sion, the differences in aircraft type, planned maintenance, and airport slot restrictions must be considered
by the AOCC. The common actions traditionally taken in aircraft recovery are tail swaps, involving swapping
the aircraft assigned to flights to accommodate changes in schedule, flight delays, and flight cancellations.
Each of these recovery actions can have an effect on the scheduled routes of crew, passengers, and cargo. In
the work of Aktiirk et al. (2014) and Marla et al. (2017), cruise speed control is also considered as a recovery
option. Altering the aircraft cruise speed for a flight can enable the absorption of small delays and provide

additional opportunities for tail swaps if the flight arrives early.

Commercial flights have two types of crew: cockpit crew which operates the flight, and cabin crew responsible
for passenger service. Cabin crew is not subject to stringent labour constraints and is much more readily
available than cockpit crew. The recovery of crew therefore often focuses solely on cockpit crew. Strict work
time and rest constraints often make cockpit crew recovery more complex than that of aircraft. Often times,
no solution is possible when considering only scheduled crew. Therefore, airlines also assign reserve crew to
prevent cancellations and increase the robustness of the flight schedule. Reserve crew duties are those that
consider operation of flights in the case of absence of scheduled crew, and their role is crucial in maintaining
feasible flight schedules. When recovering cockpit crew schedules, flight delays, flight cancellations, crew

swaps, deadheading crew, and use of reserve crew are common recovery options.

Since the 2009 ROADEF Challenge, many publications focus on integrating the recovery of aircraft, crew, and
passengers. This can either be done sequentially, where separate models for recovery of individual resources
are run successively, or in one single recovery operation that considers the recovery of all resources simul-
taneously. The latter has the added benefit of being able to make a decision while evaluating the impact of
recovery actions on all resources. Such approaches were applied by Abdelghany et al. (2008), Petersen et al.

(2012), and Arikan et al. (2017), among others. The disadvantage of such an approach is exponential increase



in computational complexity, making integrated recovery unfeasible for large airlines. Though sequential

recovery achieves better solution times, effects of recovery actions are only evaluated on a per-resource level.

3. Methodology

This paper presents a two-stage sequential aircraft and crew recovery formulation. The model is built upon
the Disruption Set Solver (DSS) formulation originally developed by Vink et al. (2020) and modified by Hassan
(2018). The work presented in this paper extends the random forest (RF) assisted aircraft recovery of Hassan
(2018) with the development and integration of a time-space network based crew recovery model. This model
is supplemented by an extreme gradient boosting (XGB) classifier that selects a subset of crew likely to be used
in the optimal solution with the aim of reducing the solution time. As the entire formulation directly accounts
for the recovery of aircraft and crew, and indirectly accounts for the recovery of passengers, the solution
addresses nearly the entire scope of airline recovery. Throughout this paper, the model is referred to as the
Sequential Disruption Set Solver (SDSS). The SDSS is a two-stage sequential airline recovery formulation

based on binary linear programming (BIP). An overview of the two stages and their components is present in

Figure 1.
Aircraft Recovery Crew Recovery
1 1 | ]
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Start 1 Processing Classifier o Processing Classifier 1
: | | o | I :
: v AR v ]
1 1
1 A.3: Disruption A.4: Post- : 1 C.3: Disruption C.4: Post- : 3
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Figure 1: Flowchart of the two sequential recovery stages of the SDSS.

The SDSS relies on a parallel time-space network approach, where a separate time-space network is gener-
ated for each aircraft and crew. The nodes in a time-space network represent a location and a time for a given
aircraft or crew. Arcs between nodes represent the movement of aircraft and crew through time and space.
Those between two nodes at the same airport represent ground arcs, while those between airports are flight
arcs. A schematic overview of the concept of parallel time-space networks is presented in Figure 2. Within a
time-space network, time is discretized in homogeneous steps, and each aircraft or crew is assigned an origin
and a sink node. Origin nodes represent a fixed start time and location for each aircraft and crew, while sink
nodes represent the scheduled end-location and time within the time window. Nodes corresponding to times
between the origin and sink node times are referred to as intermediate nodes. The advantage of using parallel
time-space networks is that the movement of each individual aircraft and crew can be tracked separately. Ad-
ditionally, aircraft maintenance and crew labour constraints can easily be implemented for specific aircraft

and crew via use of sink nodes.



3.1. Aircraft Recovery 5

u u u u
Q
{g»\ [ ] | | Qb\ | | | |
& S
hy u | u u | u
u u | || [ ] [ ]
| u u | u
N
{5\ [ | N [ u u
& & &
v m n m (¢ u n &
[ | | | ]
A B A B C
Airports Airports

Figure 2: The principle behind parallel time-space networks as shown for aircraft and crew.
Adapted from Vink et al. (2020).

Both the aircraft and crew stages make use of several assumptions simplifying the problem. The four main

assumptions are present in the following list:

1. Time is discretized in homogeneous steps of 10 minutes.
2. Airport capacity and slot constraints are not considered.
3. Disruption information is static.

4. Crew are assumed to work in pairs.

The first assumption refers to the discretization of time time-space networks used in the model. Though most
airlines discretize scheduled departure and arrival times with steps of 5 minutes, a 10-minute discretization
is sufficient for the purposes of airline recovery. Air traffic control is responsible for finding a specific depar-
ture or arrival slot within the 10-minute range. The second assumption refers to delaying flights within the
aircraft recovery stage. Many U.S. airports operate 24 hours a day, and only the largest lack the capacity to
accommodate delay decisions made with no consideration for slot constraints. The third assumption implies
that the information obtained about the disruption in terms of time of occurrence and severity is assumed
not to change. In reality, disruptions may change in severity over time. The final assumption refers to the
modelling of crew within the crew recovery stage. Each two-man cockpit crew is treated as a single resource.
That is, two cockpit crew members assigned to a flight are assumed to always work together as a pair, with
identical schedules and constraints. The following sections will detail the contents of each of the elements

present within the aircraft and crew recovery stages, as well as the stages’ mathematical formulations.

3.1. Aircraft Recovery

The aircraft recovery stage of the SDSS is functionally largely the same as that of Hassan (2018). The changes
made relate to the addition of crew considerations to the aircraft recovery stage, and the restructuring of
the aircraft recovery stage to accommodate the addition of crew recovery. Though a larger focus is placed
on the evaluation of the crew recovery stage, the understanding of the four main elements of the aircraft
recovery stage as presented in Figure 1 is essential to gain an overview of the functionality of the entire SDSS
framework. In the pre-processing stage, the aircraft and crew schedules, as well as the disruption(s), are
loaded and processed. The information required by the aircraft recovery stage can be divided into four main
parts: (1) fleet information, (2) schedule information, (3) disruption information, and (4) cost information.

The details of the exact information provided by each of these parts is present in Table 3.1.
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Table 3.1: Aircraft Recovery Data.

Fleet Data Aircraft Schedule Data Aircraft Cost Data Disruption Data
Aircraft type Flight schedule Direct operating cost ~ Disruption type
Tail number Inter-airport distances Delay cost per minute  Disruption duration
Turn-around-time  Passenger itineraries Cancellation cost Time found out
Aircraft range Minimum connection times Affected flights, aircraft, airports

Passenger capacity

The delay and cancellation costs account for both soft and hard costs, determined based on the work of Cook
etal. (2012), as well as connecting passenger itineraries. The connecting passenger costs are calculated via the
use of a connecting passenger matrix as implemented by Vink et al. (2020). The matrix evaluates the impact of
a delay on the connecting passenger itineraries, and assigns a corresponding soft and hard cost per passenger.
Delay per passenger is measured as the delay at the end-destination. The evaluation of connecting passenger
delay is best explained via the use of Figure 3, where an itinerary from airport A to airport C connects via
airport B. If Flight 1 is delayed by 10 minutes, there is still enough time for the connection to happen. If,
however, the flight is delayed by 20 minutes, the connection is broken and the passenger must connect at
the next flight, or have the outbound connecting flight delayed by 10 minutes. These decisions result in end-
destination delays of 10 and 80 minutes respectively for this itinerary. The delay costs for a particular flight

therefore depend on all passenger itineraries containing that flight.

Flight arc Delay arc > Min. connection time

C o
[}
5
o B o]
=
<

A <}

Time

Figure 3: Calculation of connecting passenger end-destination delay.

The possibility of crew missing a connection due to an aircraft recovery decision is also considered within the
connecting passenger matrix. Similarly to connecting passengers, if a delay or cancellation decision causes a
crew to miss their flight, additional cost is added within the objective function. This ensures crew considera-

tions are present within the aircraft recovery stage, despite the separate nature of the two stages.

The pre-processing phase completes with the generation of features using the fleet, aircraft schedule, and
disruption data which are passed on for classification. The random forest classifier outputs a per-aircraft
probability of use in the optimal solution, which is passed to the disruption solver along with the data loaded
during pre-processing. Here, a subset of aircraft likely to be used in the optimal solution is selected and used
to create a time-space sub-network based on which the aircraft recovery problem is written. The recovery of

aircraft considers tail swaps, flight delays, and flight cancellations as possible recovery options.
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Aircraft Recovery Formulation

This chapter describes the BIP formulation of the aircraft recovery problem. The formulation relies on the
concept of parallel time-space networks to implement constraints at an aircraft level. The following lists
describe the sets, decision variables, non-decision variables, and mathematical model used by the aircraft
recovery. Note that all decision variables are binary, and their description includes only the condition at

which they take a nonzero value.

Sets:

e F - Set of flights i e P - Setofaircraft p * Ns - Set of sink nodes n

e A - Setofairports a ¢ N - Set of all nodes n o T - Setof delay steps ¢

¢ E - Set of aircraft types e ¢ Np - Set of origin nodes n ¢ S - Set of slack variables j
e P - Setof aircraft p * N;j - Set of intermediate nodes n

Decision Variables

*J Fpi~ if p allocated to i L) GFpp - if p uses n-originating ground arc

e 0f Dyt if p allocated to i with delay ¢ LN - if i flown by unscheduled AC

* O, -if i cancelled * s; - slackif infeasible

Variables:

* Bpus - Cost multiplier for business passengers * Cg, - Cost of ground arc originating from n

* Ccanx - Cancellation hard cost per pax * Ccycpy - Unscheduled AC operating penalty

* Cconn;, - Connecting passenger delay cost on i, for ¢ U CDOC,, - Operating cost of p, per block hour

* Cp;, - Delay cost for i, for ¢ * h¢ - Number of AC of type e required at node n
* Cps, - Soft cost for delay time step ¢ * PaxY; - Number of economy passengers on i
* Cpp, - Hard cost for delay time step ¢ e Pax]; - Number of business passengers on i

* Cop,; - Operating cost of flight i with aircraft p e SeatsY; - Number of economy seats on i

* Cc; - Cancellation cost of flight i * Seats]; - Number of business seats on i
Formulation

The ultimate goal of the aircraft recovery process is to restore the disrupted schedule back to its original
state at the minimum cost to the airline. The entirety of the financial considerations included in the aircraft

recovery formulation are represented by the following objective function:

Miny ) Cop,; 0r,;+ ). Y. 2 (Cop,,+Cp,)-8rp,;, + ). Cc;-6c;+ Y. ) Cq,8c,,

pePieF peEPieFteT ieF peP neN )
+ Z Cesen '6Flf + Z sjM
ieF j€S

The firstline in the above function represents the sum of all aircraft-flight related costs: operating a scheduled
flight on-time or with a delay, utilizing ground arcs, and cancelling a scheduled flight. The second line refers
to the necessary slack variables to ensure feasibility and prevent unwanted behaviour from the model such as
changing an aircraft routing or missing an aircraft type at the end of the time window. The objective function
is subject to the following set of constraints:

Sci+ ) (5Fw. +y 5FD,,,,~,,) =1 VieF @)

pepP teT
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5prn71+ Z 5pp‘i+ Z 5FDp,i,t)_(6Gp,n+ Z 6Fp,i+ Z 6FDp,i,t =0 VpePBPneN; 3)

i€Fip i€Fj,,teT i€Four i€Foys,teT
0GF,, + Z 6pp,i + Z 6FD,,,,-', =1 VpePBn=scheduled N, of p 4)
i€Four i€Foyr teT
8GEp 1 + > 8r,, + > 8rp,,;, +$j=1 V¥pePn=scheduled N; of p (5)
i€Fi, i€Fiy,teT
Z 5(;pp'n71+ Z 6Fp,i+ Z 6FDp.i.t +Sj2h2 VYee E,n€ N; (6)
peP(e) ieF;, i€eFj,,teT
6[:’“4 + ;613’,‘1,‘[ _6FL{ =1 VieFp= aircraft scheduled for i @)
re
OF,; + > 0p,;, =0 Vp,iwhere (seats Y, < Pax¥; Aseats]), < PaxJ;) (8)
teT
OF,; + %5%” =0 Vp,iwhere (range, < dist;) 9)
€

Equation 2 ensures that all flights are either flown or time, flown with a delay, or cancelled. The movement
of aircraft between nodes is covered by the intermediate node-balance constraint in Equation 3, ensuring net
flow between all non-origin and non-sink nodes is equal to zero. The constraint in Equation 4 constrains the
net flow out of the origin node to one, while Equation 5 ensures that the flow into the sink node is equal to one.
Note that this sink node constraint is only applied in case of scheduled maintenance. Since no maintenance
tasks are considered in the case study, the secondary sink node constraint present in Equation 6 ensures that
the recovery attempts to end the time window with the required number of aircraft of each type at each airport
and was used for the case study. For each flight not operated by the originally scheduled aircraft, a penalty is
incurred as shown in Equation 7. Equation 8 ensures that flights cannot be flown by aircraft with less than the
booked seat capacity, while Equation 9 ensures that flights can only be flown by aircraft that satisfy the range
requirement between the origin and destination airports.

3.2. Crew Recovery

Upon completion of aircraft recovery, the solution is passed on to the crew recovery stage, where the crew
schedules are repaired. This stage starts with the recovered schedule of the aircraft recovery. In a similar four-
fold data split, the crew recovery stage requires: (1) crew information, (2) crew schedule information, (3) crew
cost information, and (4) disruption information. The latter in particular is different from that of the aircraft
recovery, as the disruptions are evaluated in the crew recovery stage are based on the changes made during
aircraft recovery. If, given a single flight delay as input, the solution of the aircraft recovery stage is to delay n
flights, the disruptions in the crew recovery stage are the n delays used in the aircraft recovery solution. The
crew recovery therefore often resolves more simultaneous disruptions than the aircraft recovery does. The
exact data present in each of the four information blocks the crew recovery is present in Table 3.2
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Table 3.2: Crew Recovery Data.

Crew Data Crew Schedule Data Crew Cost Data Disruption Data
Crew aircraft type Recovered flight schedule Crew direct operating cost Changed flight arcs
Crew number Assigned flights Crew penalty costs Change type
Flight hours remaining Scheduled sink airport Crew affected
Duty hours remaining ~ Duty sink airport Flights affected

Reserve crew data

Upon receiving the recovered aircraft and flight schedule, the changes are processed and features are gener-
ated per crew-pair. These are passed on to the XGB classifier, which outputs a per-crew probability of being
used in the optimal solution. The disruption solver uses these probabilities to create a crew time-space sub-
network, and each crew’s origin and sink nodes are determined based on regulations. Based on this, the

recovery problem is written solved, and the updated schedule is presented to the user.

As the aircraft recovery stage considers flight delays as a recovery option, the addition of flight delay opportu-
nities within the crew recovery stage could lead to unanticipated changes in the aircraft schedule, requiring
are-iteration of the aircraft recovery. This is a limitation of the sequential approach, as no aircraft consider-
ations are present in the crew stage. As such, the consideration of delays is only present within the aircraft
recovery stage. The crew recovery stage considers crew swaps, crew deadheading, the use of reserve crew,
and flight cancellations as recovery options. Deadheading crew refers to transporting crew as passengers on
a flight so that they may take over a missed flight or reach their end-of-duty destination, adding additional
recovery options to the recovery solution. If a crew swap results in a crew being unable to reach its end-day
airport, the model may choose to deadhead the crew there or use reserve crew instead of swapping scheduled
crew. When no crew can be assigned to a flight at all, the flight is cancelled.

Crew Recovery Formulation

In a similar manner to that of aircraft recovery, the BIP formulation of the crew recovery problem utilises par-
allel time-space networks to enable constraints at a crew level. The sets, decision, and non-decision variables
used are similar in formulation to those of the aircraft recovery problem and are present in the following lists.
Note that all decision variables are binary, and their description includes only the condition at which they
take a nonzero value.

Sets:

e F - Set of flights i * N;j - Set of intermediate nodes n
¢ A-Setofairports a ¢ N - Set of sink nodes n

¢ N - Set of all nodes n e K- Set of crews k

* Np - Set of origin nodes n

Decision Variables:

* Ok, -if kallocated to i * dcx; -if i is cancelled

* 06, - if k uses n-originating ground arc * s - slackif sink constraint violated

* 0pH,; - if k deadheaded on i * sp1y - slackif scheduled flight time is exceeded

* §g - if i flown by unscheduled crew
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Parameters:

* Cg, - Cost of ground arc originating from n. * Cgr - Penalty if scheduled flight time exceeded

* Cky, - Operating cost of crew k on flight i * Ccx; - Cancellation cost of flight i

* CpH,; - Deadhead cost of crew k on flight i e FT; - Flight time of flight i

* Coc - Penalty if flight flown by non-scheduled crew e FTLj - Flight time remaining within TW for crew k
* Cgy - Penalty if sink node constraint violated e FTM;j - Maximum additional flight time for crew k
Formulation:

The aim of the crew recovery problem is to minimise the costs of disruptions incurred by the crew schedule.
These are in the form of crew operating costs, crew deadhead costs, and flight cancellation costs. These are
present in the following objective function:

Min } 3 (Cri; Ok + Comy, - Opmy) + Y, Y Co, 06K, + 2 Cox0cx, + ) Coc 0k + ), Csv sk
keKieF keK neN ieF ieF keKk

+ ) Crr- sty
keK

(10
The final three elements of the objective function refer to the slack and penalty variables necessary to pre-
vent unwanted behaviour and ensure problem feasibility. These are the original crew penalty, the sink-node
penalty, and the scheduled flight time penalty. The original crew penalty is applied whenever a flight is flown
by a different crew than scheduled. The sink-node penalty is applied whenever a crew does is not at their
scheduled end-location at the end of the time window. The scheduled flight time penalty is applied when-
ever a crew exceeds their total scheduled flight time due to recovery actions. The way these function within

the minimization problem is governed by the following set of constraints:

Scx;+ ), 0k, =1 VieEVecE 1n
keK,
6GKk,n—1+ Z (6Kk,i+6DHk,i))_(6GKk,n+ Z (6Kk,i+6DHk,i) =0 VkEK,nEN,- (12)
i€Fiy, i€Fyur
Sk, + Y 6k, +6pm,,)=1 VkeK,n=scheduled N, of k (13)
i€Four
8GKna + ), Ok, +6pH,)+sk=1 VkeK,n=scheduled N, of k (14)
iEFan
61(,“. -0 =1 VieFk= crewscheduled for i (15)
Y Ok, FT;<FTLy+FTMj-spr, VkeK (16)
ieF

Equation 11 ensures that all flights are either assigned a crew or cancelled. The node-balance between inter-
mediate nodes is governed by equations Equation 12. The origin node net out-flow is ensured by Equation 13,
while the sink node net in-flow is governed by Equation 14. The sink node constraint is applied for every
crew-pair due to labour constraints. For each flight operated by a crew different than originally scheduled,

the objective function incurs a penalty as shown in Equation 15. Finally, the total flight time of a crew within



the time window is kept within limits by Equation 16. Within the time window, crew labour and end-of-time-
window location constraints are implemented with a parallel time-space network approach by identifying
origin and sink nodes during preprocessing. The violation of these constraints is assigned an appropriate

penalty in the objective function.

4, Data set

Five separate datasets were required to implement the SDSS. The flight and passenger schedules, as well
as disruption data used are identical to those processed by Hassan (2018). This flight schedule data was
obtained from the United States Bureau of Transportation Statistics online public database. The 2015 U.S.
flight schedules of Delta Airlines were isolated and used for the entirety of model development and testing.
The flight schedules were supplemented with passenger itineraries with data from Barnhart et al. (2014).
Delta Airlines was chosen due to its large fleet size and hub-and-spoke operating model. Delta operates 26
different aircraft types on an average of 2400 daily domestic flights and 150 domestic destinations. The flight
schedule contains per-flight information on the scheduled time of departure (STD) and scheduled time of
arrival (STA), the tail number assigned to the flight, origin and destination airport, and flight number. The
passenger data contains the number of economy and business passengers booked on the flight, as well as
the flight load factor. Disruption data consists of a disruption type, disruption duration, disruption cause,
a time at which the disruption is found out (TFO), and affected flights, aircraft, and airports. To enable the
integration of crew into the SDSS, initial and reserve crew schedules are required for the crew recovery stage.

Due to the confidentiality of crew schedules, an initial crew schedule was generated using the acquired flight
data. A series of successive flights operated by a crew within a single work day is referred to as a crew duty
(Barnhart et al. (2003)). A series of successive duties starting and ending at the crew base is referred to as a
crew pairing. The crew schedule generation consisted of first combining individual flights into duties, and
then combining individual duties into pairings. The scheduling of cockpit crew is subject to stringent regula-
tions due to possibilities of fatigue deteriorating crew performance capability. The generation of duties and
pairings was done with the baseline regulations set out by the Federal Aviation Administration (2011), as well
as those listed by Delta Airlines (2020) in the publicly available crew scheduling handbook. These contain
the common cockpit crew regulations respected by Delta Airlines in crew scheduling and recovery within the
domestic U.S. flight network. The main regulations considered for the generation of crew duties and pairings
are present in the following list. Note that exact restrictions for the first two are dependent on the number of

flights within a duty and the duty start time.

¢ The maximum scheduled length of a duty period ranges from 9 to 14 hours.

¢ The maximum scheduled flight time within a duty period ranges from 8 to 9 hours.

¢ Crew may not be scheduled to more than 60 duty hours in any consecutive 168-hour (7-day) period.

¢ Crew may not be scheduled to more than 190 duty hours in any consecutive 672-hour (28-day) period.
¢ All crew must have a consecutive 10-hour rest between any two duties.

¢ All crew must have a consecutive 30-hour rest period within any consecutive 168-hour (7-day) period.

A greedy forward-heuristic approach was used to generate crew duties and pairings. When iterating through
all flights, the algorithm takes the list of already constructed duties and evaluates whether assigning a flight to
a duty is possible with respect to crew work time regulations. Upon finding a compatible duty, the algorithm
assigns a flight to it. The duties are sorted in order of ground time at the flight origin airport prior to departure,
meaning that a crew that has arrived at the flight origin airport two hours prior to departure will always have
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priority over one that arrived 30 minutes prior to departure. If no duty is found, one is created and assigned
the flight. This approach, ensures that tight connections are avoided as much as possible when multiple crew

are available for a certain flight. A schematic representation of the duty generation algorithm is present in

Figure 4.
¢ Yes
Select duty from Does assignment .
. . . . 0 More duties
Start |—>»  SelectFlight = —> available at flight —>» offlightto duty —>» . —
. . available to check?
origin, STD respect regulations? -
Yes No
Yes
N .
End |je— More ﬂlghts?left 0 «— Update duties ~<€——Assign flight to duty ey <
assign? duty

Figure 4: Flowchart of the heuristic crew duty generation algorithm.

Upon completion, a pairing generation algorithm assigns the generated duties to pairings in a similar way.
Each duty is evaluated in terms of regulation compatibility with available pairings. If no compatible pairing
is found, one is generated and the duty is assigned to it. Together, these two algorithms generate the com-
plete crew schedule. Although the schedule is heuristically generated, it provides a necessary baseline for
use within the crew recovery problem. The generated schedule is added to the flight and passenger sched-
ule, supplementing each flight with an assigned crew, as well as that crew’s end-of-duty airport, remaining

scheduled duty and flight times, and maximum allowable duty and flight times.

The reserve crew schedule, generated on the method proposed by based on the work of Bayliss et al. (2012),
isloaded separately and contains information on the reserve crew base, duty start and end times, and aircraft
type operated. If the probability of scheduled crew being unavailable for a flight is known for the entire
schedule, a fixed number of reserve crew can be assigned in a way that minimises the total probability of
crew unavailability over the entire schedule. For this research, it is assumed that crew absence for a certain
flight can only be caused by the cancellation of the crew’s previous flight, or a delay of the previous flight to
the point where the flight considered is missed. Knowing the probabilities of these two independent events
allows for assigning each flight a probability of missing scheduled crew. A random forest classifier was trained
with Delta Airlines on-time performance (OTP) data for the period 2012-2014 to obtain cancellation and delay
probabilities per flight. This classifier is used exclusively for the generation of disruption probabilities and is
not called as part of the SDSS.

5. Machine Learning Classifier

Both the aircraft and crew recovery problems can consider several hundreds of their respective resource when
attempting to restore a schedule. In most cases, though, the schedule of only a small subset of aircraft or
crew is changed. Many papers utilise heuristic selection algorithms in an attempt to select the aircraft or
crew that are likely to be used in the optimal solution, such as those of Hoeben et al. (2017) and Vink et al.
(2020). In this way, the problem can be formulated using only a small subset of resources, decreasing the
solution time. The use of a machine learning-based selection algorithm, however, can consider many more
features of each aircraft and crew when evaluating their utility with respect to the final solution. Two machine

learning classifiers are used to reduce the solution space in each of the SDSS’s two stages. For the aircraft

12
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recovery, the machine learning classifier is identical to that used by Hassan (2018). Namely, a random forest
(RF) classifier is used to decide which subset of aircraft are likely to be used in the recovery solution. For
the crew recovery stage, another decision tree based algorithm has been developed that selects a subset of
crew likely to be used in the crew recovery solution. Both the aircraft and crew selection classifiers were
trained using disruption solution data of Delta’s January 2015 schedule. This chapter will mainly focus on the
description of the crew selection machine learning classifier. The development of the crew selection classifier
consisted of identifying an appropriate classification algorithm, identifying appropriate evaluation methods,

feature engineering, and hyperparameter optimization. The development process is summarized in Figure 5.

Analyse data & Obtimi
Start |—> Select ML Classifier — identify evaluation —> Generate features ——>» ptimise
. hyperparameters
metrics
End Add appropriate ¢ Trend present? ¢ Chec.k.m1§sed Evaluate
features Yes classifications Performance

No

Figure 5: Flowchart of the classifier development process.

Given a set of crews, the target output of the classifier would be a selection of those likely to be used in the
optimal solution, i.e. those classified by the algorithm as 'True’. The selection of a good binary classifica-
tion algorithm is therefore key in obtaining good results. Literature utilising machine learning in a similar
way, such as the works of Kruber et al. (2017), Bonami et al. (2018), and Hassan (2018), consistently rated the
performance of random forest and support vector machine-based classifiers as best. The validity of these
conclusions is strengthened by the work of Olson et al. (2017), where the performance of 13 commonly-used
classifiers is evaluated and compared on a set of 165 classification problems. These have been evaluated
based on 10-fold cross-validation balanced accuracy. Though the results indicate that support vector ma-
chines (SVM) and random forests (RF) generalise particularly well across a variety of classification problems,
the use of gradient tree boosting consistently outperforms that of either. For this research, the gradient tree
boosting approach has been implemented via the use of the extreme gradient boosting (XGB) library as part
of the scikit-learn Python library. The following sections expand on the generation and engineering of fea-
tures, model training and evaluation, and hyperparameter optimization performed as part of the classifier

development.

5.1. Feature Engineering

As the classifier is able to learn exclusively from the data it is provided, this data must be processed in a way
that makes the classifier most likely to learn the rules behind the classification. The quality of the classifier
therefore depends heavily on the features it is given. Feature engineering was an iterative process that relied
upon generation of features, model training and evaluation, and identification of properties of crew that were
identified as false negatives, as previously shown in Figure 5. A total of 126 features are used for classification
in the final model. The following list contains the description of 14 of the main features used in the classifier.

The remaining 112 features are derived from the 14 main features and were omitted for brevity.
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Table 5.1: Features used for training the XGB classifier.

Feature Variable Type Description
c_at_crit* Boolean True if crew is at critical location at critical time
c_at_d_origin* Boolean True if candidate crew is at origin of disrupted flight
c_at_d_destination* Boolean True if candidate crew is at destination of disrupted flight
critical_time* Integer Critical time as measured in minutes after the start of the TW.
d_type_canx* Boolean True if disruption is a cancelled flight
d_duration* Integer Length of disruption in minutes (0 if cancellation)
future_fl to_next* Boolean True if crew has future flight to destination of disrupted flight
future_fl_to_end* Boolean True if crew has future flight to end airport of disrupted crew
ac_family Integer Aircraft family, label (integer) encoded.
reserve_crew Boolean True if candidate crew is reserve crew.
c_time_start Integer Time of candidate duty start within the TW in minutes from TW start time.
c_time_end Integer Time of candidate duty end time within the TW in minutes from TW start time .
tw_start Integer TW start time in minutes from midnight.
tw_end Integer TW end time in minutes as sum of TW start time and TW length.

In the above table, an important feature is c_at_crit, representing whether a candidate is present at the
critical location at the critical time. These represent the time and location where a flight’s originally scheduled
crew will not be present to operate it due to a broken schedule, as shown in Figure 6. A crew with this schedule
will be able to operate Flight 2 if Flight 1 is not delayed, or delayed by 10 minutes. In these two cases, no critical
location or time is present. If Flight 1 is delayed by 20 minutes or more (or cancelled), the crew will not be able
to operate Flight 2, forcing a crew reassignment. Therefore, the origin airport and scheduled departure time
(STD) of Flight 2 are identified as the critical location and time respectively, as shown by the red octagon on
the figure. Action must be taken to recover the schedule at this point: Flight 2 must be cancelled or assigned

a different crew.
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Figure 6: Flowchart of the heuristic crew duty generation algorithm.

Four additional features exists for each of the first three features in Table 5.1. These describe the location of
the crew with respect to the critical location/disruption origin/disruption destination in the past and were
omitted from the feature list for brevity. The subscripts _1h, _2h,_3h,and _before are added to represent
the presence of a candidate crew at the specified location 1 hour, 2 hours, and 3 hours before the disruption, as
well at any time in the past respectively. The feature c_at_crit_before, for example, describes whether

the candidate is scheduled to be located at the critical location at any point prior to the critical time.

As the crew recovery may resolve multiple disruptions at once, additional features must be added to repre-
sent candidate information with respect to individual disruptions. The only information the recovery solu-
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tions used in the training provide is whether a crew had their scheduled changed in the solution or not. It is
therefore difficult to determine without manual examination of every recovery solution whether the use of a
crew within the recovery solution was directly related to a single disruption, multiple disruptions, or was used
to take over flights of non-disrupted crew that were used within the recovery solution. Therefore, for all the
features marked with an asterisk (*) in the above list, including the additional 12 features that supplement the
first three, a 6-fold split is made to describe properties of a candidate crew with respect to a multiple disrup-
tions. These are supplemented with the subscript _n, for n € {1,2,3,...6} to represent candidate information
with respect to the first six disruptions solved within the disruption set. More than six simultaneous disrup-
tions were present in only 0.2% of disruption scenarios. Despite this, when more than six disruptions are
present, the sixth of the supplementary features considers the candidate information with respect to all dis-
ruptions from the sixth to the final disruption present. If seven disruptions are present in a certain scenario
and the value of c_at_crit_before_6 for the sixth is False while that for the seventh is True, the final
value of the feature is True. In this way, enough detail is provided to the disruption model to learn the rela-
tionship between the disruption properties and how they affect the crew’s use in the solution, while reducing

the feature space to a reasonable size.

5.2. Training & Evaluation

The input to the machine learning classifier consists of the disruption data and its properties with respect
to each crew, while the target output is a binary classification indicating whether the crew is used in the
disruption recovery. Up to several hundred crew-pairs are considered at once, while most solutions require
schedule changes for under 5 total crews to obtain the best solution. The majority class (i.e. those labelled as
"False’) highly outweigh the minority class, making the dataset imbalanced. To avoid the classifier receiving

insufficient information about the minority class, class imbalance must be addressed during training.

In literature, four methods are commonly used to address this issue: (1) undersampling, (2) oversampling,
(3) synthetic minority oversampling techniques (SMOTE), and (4) cost-sensitive learning. Undersampling
involves the selective or random removal of majority class instances, while oversampling involves selec-
tive or random replication of minority class instances. Though oversampling techniques generally perform
better than undersampling (Mohammed et al. (2020)), both contain some bias and may remove instances
containing important information or add instances containing redundant information. Chawla et al. (2002)
present SMOTE as an alternative, which adds synthetic examples of the minority instance to the training
dataset. These are generated based on instances of the minority class already present within the dataset.
Cost-sensitive learning assigns a difference in ’cost’ for classification, where an incorrectly classified instance
of the minority class is penalised more heavily during training than that of the minority class (Ling and Sheng
(2010)). For the XGB classifier used in the crew stage, the best performance was yielded by the use of exclu-
sively cost-based learning. Class imbalance is therefore still maintained in the training dataset, but addressed

during the learning process.

Model performance must also be evaluated accounting for the imbalance present in the training dataset. To
illustrate the reasoning behind this, some of the most common metrics of classifier performance are listed
in Table 5.2. Accuracy, for example, is unsuitable as an evaluation metric for imbalanced datasets. If the
minority class makes up 0.1% of the dataset, a classification algorithm that classifies all input as that of the
majority class would have an accuracy of 99.9%. This kind of classifier is not useful, as likely no knowledge of
either class is present.
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Table 5.2: General metrics for evaluation of classifier performance.

Metric Formula Description
TP+TN . . . .
Accuracy TPITNSFPIEN  Correct classifications over total classifications.
Precision % Correct positive classifications over total positive classifications.
Recall % Correct positive classifications over total actual positive instances.
ecifici TN+TEP orrect negative classification over total actual negative instances.
Specificit IN Correct negative classificat total actual negat t
FP+FN

Error rate TPITNiFPIFN  Incorrect classifications over total classifications.

Assuming the minority class is positive, as is the case in this problem, recall is an important metric to con-
sider. To avoid the same problem faced with the exclusive consideration of accuracy, a balance must be made
between recall and precision. This can be done with the use of a precision-recall curve. A precision-recall
curve contains useful information for imbalanced datasets with a positive minority class, as the number of
true negatives (TN) is not considered. Therefore, the relevant metrics are the ratio of correct positive classifi-
cations over the total number of instances of the positive class, and the ratio of correct positive classifications
over the total number of positive classifications. The area under the precision-recall curve, representing the
collective recall and precision performance of the classifier across a range of probability thresholds, has been
taken as the objective for model evaluation.

5.3. Hyperparameter Optimization
When initialising and training the XGB classifier, several options with respect to how the algorithm will learn
must be specified. These parameters, their respective functions, and final values used in the classifier are

present in the following table.

Table 5.3: Hyperparameter values post-Bayesian optimisation.

Parameter Description Final Value
n_estimators  Total number of trees within the classifier. 329
max_depth Maximum depth of a single tree. 44
gamma Minimum loss reduction required to make a further partition on a leaf node of the tree. 0.791
learning rate Step size shrinkage used in update to prevent overfitting. 0.086

The interaction between these parameters is unpredictable and must be evaluated should we want to reach
close-to-optimal performance. A time-efficient method of optimising model performance is the use of Bayesian
optimisation, which has proven to arrive at near-optimal hyperparameter combinations in much fewer iter-
ations than exhaustive methods such as grid search (Snoek et al. (2012)). A probabilistic model selects the
best hyperparameter values, x*, from a range of allowable values, X, and evaluates their performance given

an objective function, f(x). In equation form, this is represented by Equation 17.

x* = argmingex f(x) 17)

Bayesian optimisation uses previously evaluated hyperparameter combinations to construct a surrogate model
of the objective function used to estimate the impact of certain parameters on the objective function. This is
done by mapping hyperparameters to a probability of a certain score, i.e. obtaining P(score|x). The surro-

gate function is initialised by evaluating a set of randomly selected hyperparameter combinations on the real



objective function, after which the model is able to determine the next set of hyperparameters to evaluate via
the use of a selection function.

During Bayesian optimization, evaluation must be performed on several datasets to ensure model perfor-
mance generalises on unseen data. Given that the dataset used in this research is limited, a good way to en-
sure generalisation is via the use of k-fold cross validation. Assuming k folds or equal splits of data, the classi-
fier is trained on k — 1 folds and evaluated on a single fold. This is repeated for each fold and the performance
of the algorithm between the k folds is averaged to ensure generalisation. For this research, Bayesian hyper-
parameter optimization was performed with 10-fold cross validation, 100 initialisation iterations, and 1000
iterations optimising the hyperparameters. With the objective of maximising the area under the precision-
recall curve, this resulted in the hyperparameter values presented in Table 5.3. The performance of the clas-
sifier on the validation data is represented in Figure 7 and Figure 8 in the form of a precision-recall (PR) curve
and receiver operating characteristic (ROC) curve, the latter of which shows the a comparison of the true and

false positive rates the classifier obtains for varying thresholds.
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Figure 7: PR curve for the trained classifier on Figure 8: ROC curve for the trained classifier on
validation data. validation data.

On both figures, the dashed gray line represents the performance of a classifier that randomly generates the
probability of classification. The classification is positive when the randomly generated probability is less
than or equal to the ratio of the number of instances of positive class to all the instances present in the dataset.
As the validation dataset had 902 instances of the positive class and 263692 of the negative, this value is
around 0.0034. Note that the y-axis of the PR curve is scaled logarithmically. As expected, the classifier greatly
outperforms the random selection. Past a False positive rate of around 0.43 in the ROC curve, the classifier is
able to correctly identify 99% of the optimal crews used in the validation. This recall percentage is associated

with a precision of around 0.0078.

6. Case Study

The SDSS is tested on the domestic network of Delta Airlines, on flight, crew, and disruption data as explained
in Chapter 4. The evaluation of the model is performed on Delta’s schedule and disruptions during the first
7 days of February 2015, consisting of 1482 disruption scenarios. Of particular interest during the evaluation
of model performance are two factors: (1) the percentage of runs that have achieved the optimal solution for
both the aircraft and crew stages, and (2) the percentage of runs that complete in under 120 seconds. The

solution times presented show the time required to arrive from an initial disruption to a disruption solution
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and include time required for pre-processing, problem writing, and post-processing. The first part of the
case study will focus on the performance of the developed crew recovery stage. The case study will conclude
with the evaluation of the combined use of the aircraft and crew recovery stages. The SDSS was implemented
in Python using Gurobi 9.0.3 as the LP-solver. Computational evaluation for the case study was performed
on a computer with a quad-core Intel i7-6700HQ processor and 16 GB of RAM. The following sections will
elaborate the parameters and assumptions used during the case study, the results of the crew recovery stage,

and the combined results of the aircraft and crew stages.

6.1. Model Parameters & Evaluation

The SDSS uses several user-defined parameters that define the costs, constraints, and scope of the problem.
For the aircraft recovery stage, these are present in Table 6.1, while those for the crew recovery stage are
present in Table 6.2. Most of the penalty parameters have been defined in Chapter 3. Note that C.4,, and
C.scn in the aircraft recovery parameters refer to the fixed cost of cancellation per passenger and cost of a

routing change per aircraft, respectively.

Table 6.1: Parameters used for the aircraft recovery stage. Table 6.2: Parameters used for the crew recovery stage.

Parameter Value Parameter Value

TW Length 12 hours Coc $2000

Time Step 10 minutes Crr $25000

Ceanx $250 Csy $50000

Cesch $1000 Csvg $10000

Big-M $1000000 Cpn $200

Max Delay 8 hours Selection Dynamic

Selection Top 50% Sink Constraint  Per Crew

Sink Constraint ~ AC Type

The recovery time window is taken as the time from the TFO of the disruption until 12 hours after the start of
the last disruption. The reserve crew sink node penalty, Csyy, is only incurred when the reserve crew is used
and does not return to base before the end of their reserve duty. In essence, since reserve crew is there to be
used in case of no available crew, their use is not penalised if they are able to return to their starting base. The
penalties applicable to the crew recovery stage have been set such that they provide a hierarchy of desired
actions. For example, the cost of reserve crew violating a sink node constraint is five times greater than the
cost of non-scheduled crew operating a flight, Coc. The model will therefore only have reserve crew violate a

sink node constraint if it negates the need for more than five crew swaps.

The aircraft and crew recovery stages use different methods for selecting their respective subsets of resources.
From the RF classifier used in the aircraft recovery, the probabilities of use in the optimal solution are sorted
in descending order, and the top 50% of aircraft are selected. The aircraft recovery selection therefore always
cuts the number of aircraft in half. The XGB classifier used in the crew recovery stage uses a probability
threshold as a baseline for selecting crews. All crews with a probability above the threshold are selected. For
selections exceeding 100 crews, the selection is reduced to either the top 100 or top 50% of the crews, as seen
in Equation 18. Here, s represents the number of crews in the final selection, while n represents the number

of crews considered prior to selection.

n
s= max(E, 100) (18)

For example, a selection of 120 crews would be reduced to 100, while a selection of 240 crews would be re-



6.2. Crew Recovery 19

duced to 120. In this way, more room for error is given to the classifier for selections of under 100 crews, while
the larger selections are given a reasonable reduction. For all selections containing 100 crews or less, the crew
recovery solution time was consistently under 20 seconds.

The aircraft and crew stages also apply two different sink node constraint types. Because no maintenance
constraints are considered as part of the case study, aircraft are only constrained by the number of each
required per airport at the end of the time window. Each crew, on the other hand, has its own end-of-duty
time and location. The KPIs used in the evaluation of both the aircraft and crew stages are present in the
following table. Some KPIs are applicable to the crew stage only.

Table 6.3: Key performance indicators used in the evaluation of SDSS solutions.

Abberviation Name Unit Description
Sol.T. Solution Time [s] Solution time required to solve disruption
Crew Crews Considered [#] Number of crews considered in the recovery model
Disr.C. Disruption Cost [$]  Cost of disruption solution, excluding scheduled costs.
Opt.S. Optimal Solutions [#]  Number of runs that obtained optimal solutions.
Canx Cancellations [#]  Number of flight cancellations.
SNV Sink Violations [#] Number of sink node constraint violations.
DH Deadheads [#] Number of crew deadheads.
Swap Crew Swaps [#]  Number of crew swaps.
RCU Reserve Crew Used [#] Number of reserve crews used.
U60 Runs Under 60 s [#] Number of runs that achieved a solution in under 60 seconds.
U120 Runs Under 120 s [#]  Number of runs that achieved a solution in under 120 seconds.
6.2. Crew Recovery

The disruptions in the crew recovery stage consist of the recovery actions taken by the aircraft stage. The
crew recovery stage therefore always deals with a number of disruptions greater than or equal to that of air-
craft recovery. These are solved via the use of all scheduled and reserve crew, and again via the use of the
classifier-based sub-network generation. The computational time and results of these two will be referred
to as the optimizer and SDSS results respectively. The number of simultaneous disruptions solved by the
crew recovery stage and their respective type(s) are present in Figure 9. Note that the bar labelled ’cancel-
lations’ also includes runs where both a cancellation and any number of delays are present, while the bars
representing the number of delays include no cancellations.
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Figure 9: Number of simultaneous disruptions experienced Figure 10: Distribution of delays within the disruptions
by the crew recovery stage and their types. experienced by the crew stage.
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The optimal solutions to the disruption set consisted of 945 trivial runs and 537 non-trivial runs. Trivial runs
for the crew recovery stage are defined as those that do not result in any recovery action or penalty, i.e. those
that have a recovery cost of zero. If a flight cancellation, for example, causes a crew to miss its sink node, the
run is not considered trivial as the solver must attempt to swap the crew’s schedule or deadhead the crew
back to base. The trivial runs were therefore only those where a set of disruptions can be absorbed by a given
crew schedule with no changes. These are evaluated before the optimizer starts. If no crew duty is broken,
only the disrupted crews are selected and forwarded to the solver. In this way, the trivial runs can consistently
be solved in under 2 seconds. For the non-trivial runs, the performance of the SDSS crew recovery stage is
summarized in the following table. The solution time, number of crews considered, and disruption cost were
averaged for the non-trivial disruption solutions. The remainder of the KPIs presented are totals over the
non-trivial disruption solutions. The cancellation numbers presented in the table refer only to cancellations

made as a recovery decision in the crew stage, and not those that came from the aircraft recovery.

Table 6.4: Summary of non-trivial crew recovery results compared to optimizer.

Sol.T. Crew Disr.C. OptS. Canx SNV DH Swap RCU U60
Optimizer 65.6 261.5 65860 537 24 601 584 1599 230 269
SDSS 26.7 1387 68958 479 25 640 493 1540 233 520

The use of the SDSS cut the solution time of crew recovery by around 60%, while the quality of the solution did
not decrease significantly. The average objective function value increased by only 4.7%. Though the number
of cancellations, sink node violations, and reserves used increased, the SDSS solutions have a decrease in the
number of crew swaps. This is likely a result of considering less crews in the sub-optimal disruption scenarios.
A selection that is missing crew that is used in a swap can lead to a sink node violation or use of additional
reserve crew. The SDSS manages to find the optimal solution for 89.2% of non-trivial cases. With respect
to the solution time, the violin plot present in Figure 12 shows a large overall reduction. The bulk of runs
complete in under 60 seconds. How each run performs with and without the use of the ML classifier is shown
in Figure 11. Here, the red points indicate a sub-optimal solution was obtained as a result of the classifier
use, and the dotted line presents a 1:1 ratio of optimizer to SDSS time. Ideally, all points should be to the
right of the dotted line. With the exception of a few outliers under 25 seconds, the solution time is greatly
reduced. These outliers are caused by an insufficient reduction of the solution space of the ML classifier, as

any selection containing 100 or less crews will not be further reduced.
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6.3. Aircraft and Crew Recovery

Though the crew recovery results are promising, the overall performance of the SDSS depends on the com-
bined solution time and quality of the aircraft and crew stages. These will be evaluated in this section for
all 1482 disruption scenarios for Week 1 of February 2015, as well as separately for the non-trivial crew sets.
The solution times of each stage, their respective number of optimal solutions, and solution costs will be
compared. A non-optimal SDSS solution can originate from either the aircraft or crew recovery stage. If the
aircraft recovery classifier selects a sub-network that does not contain the optimum, the sub-optimality is
considered to originate from the aircraft recovery. If, however, the aircraft recovery classifier does select a
sub-network containing the optimal solution, and the crew recovery classifier does not, the sub-optimality
originates from the crew recovery. The following table summarizes the performance of the aircraft and crew

SDSS stages for the 537 non-trivial crew runs.

Table 6.5: Summary of full SDSS results compared to optimizer for non-trivial crew runs.

Sol.T. Disr.C. Opt.S. Canx U120
Optimizer 166.7 123141 537 132 251
SDSS 56.0 136586 445 145 508

On average, the SDSS provides solution times three times faster than that of the optimizer. Solution quality
performs worse when comparing the overall solution to the crew-only solution, with 17.1% of cases being
non-optimal. Of these 92 cases, 56 were caused by the crew solution being sub-optimal, 34 were caused by the
aircraft solution being sub-optimal, and 2 were caused by both stages acquiring a sub-optimal solution. The
average disruption cost increased by only 10.9% for all runs. More importantly, the percentage of disruption
sets solved in under 120 seconds increased from 46.7% to 94.6%, indicating that the SDSS is likely to conform
to AOCC solution time requirements in a large majority of cases. For the 29 full SDSS runs that exceed the 120
second time limit, the solution time is dominated by the aircraft recovery in 25 cases, and in 4 cases by the
crew recovery. The relationship between the optimizer and full SDSS solution times of the non-trivial crew
runs is present in Figure 13, while the overall distribution of solution times is present in Figure 14. Note that

in the latter, the y-axis is cut off at 500, as the longest run is solved in over 1000 seconds.
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Figure 13: Scatter plot comparing solution times Figure 14: Solution time distribution for Optimizer
between specific runs of the optimizer and SDSS. and SDSS.

To gain an understanding of the overall performance of the SDSS, the following table summarizes the results

compared to the optimizer for all disruption scenarios. This includes trivial runs of both the aircraft and crew
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stage. Despite some scenarios having trivial solutions, an airline recovery solution would be called to resolve
all disruptions. Therefore, the comparison is still relevant. As the crew recovery stage always obtains the
optimal solution for its trivial runs, any increase in number of non-optimal solutions and flight cancellations

originates exclusively from the aircraft recovery stage. The following table summarizes the main KPIs.

Table 6.6: Summary of full SDSS results compared to optimizer for all runs.

Sol.T. Disr.C. OptS. Canx U120
Optimizer 90.3 49362 1482 144 1068
SDSS 29.4 54641 1381 159 1453

When considering all 1482 scenarios, the SDSS manages to resolve 93.1% optimally. The 10 additional sub-
optimal solutions include two additional cancellations and originate from the aircraft recovery. Around 98%
of scenarios are solved in under 120 seconds. This means that all scenarios with a trivial crew recovery solu-

tion are solved within the AOCC time limit.
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Figure 15: Scatter plot comparing solution times Figure 16: Solution time distribution for Optimizer
between specific runs of the optimizer and SDSS. and SDSS.

A summary of the overall difference between the use of the optimizer and SDSS is present in Table 6.7. Here,
the main KPIs obtained via the use of the SDSS are presented as a percentage of those obtained by the opti-
mizer. The non-trivial (NT) case results are especially relevant as the trivial runs are always solved optimally

for crew recovery.

Table 6.7: Summary of SDSS results compared to optimizer.

Disruptions Recovery %Sol.T. %Disr.C. %Opt.S. %Canx %U60 %U120
NT Crew 40.7 104.7 89.2 104.1 193.3 -
All Crew 31.0 104.7 96.0 104.1 139.1 -
NT Aircraft and Crew 33.7 110.9 82.9 109.8 - 202.4
All Aircraft and Crew 325 111.3 93.1 110.4 - 136.0

6.4. Discussion
In most non-trivial crew disruption scenarios, the SDSS is able to greatly improve the performance of the
optimizer crew recovery stage. Though 58 sub-optimal instances are present, they contain only a single ad-

ditional cancellation. The influence of the XGB classifier on the number of cancellations within the crew



stage, therefore, is much lower than that of the RF classifier on the aircraft stage, which results in 14 addi-
tional cancellations. As a cancellation is the only decision within the crew stage that prompts a re-iteration
of the aircraft recovery stage, the low number of additional cancellations indicates promising performance.
The use of the SDSS enables airlines to recover the schedules of aircraft and crew quickly and near-optimally.
The proposed approach is able to correctly select all crew used in the optimal solution 89% of the time. When
selecting both aircraft and crew, the subset contains all those used in the optimal solution 83% of the time.
Depending on the computational resources available to the AOCC, the SDSS formulation could prove to be a

valuable primary recovery solution.

Despite the good performance of the SDSS selection classifiers, most mistakes made during classification are
known. For the aircraft recovery selection, the RF classifier struggles to correctly identify candidates that do
not share ground time with the disrupted aircraft. The XGB classifier used in the crew recovery selection also
struggles to correctly identify crew members for specific cases where a large number of crew are used in the
final solution. When non-disrupted crew take over flights of disrupted crew, leaving their originally scheduled
flights with no crew, the classifier struggles to identify the crew used to operate the crew-less non-disrupted
flight. These issues indicate that the feature space used in the development of these two classifiers could
benefit from additional feature engineering.

Alarge number of sink-node violations is present in non-trivial SDSS crew recovery solutions. Unlike aircraft,
crew members cannot freely be swapped in routing. Stranded crew will eventually have to be recovered,
and though the crew recovery stage attempts to do so within the time window considered, a good solution
often requires a larger time window, or a larger flight network. The AOCC would have to address the crew
violating their sink node constraint, ideally with a secondary recovery operation utilising a large time window.
This secondary recovery operating could use the entire flight network of all flights to increase the number of

deadhead opportunities, as the AOCC decision making time limit likely does not apply to this case.

The number of sink node violations also points to another issue: An aircraft recovery model that does not
fully consider crew in its recovery solution can make globally sub-optimal solutions. Though the aircraft
stage identifies a solution as optimal, it does not consider the impact of this decision on the crew recovery
stage, where flight schedules are fixed. This leaves little room for flexibility in crew recovery, and is likely
the cause of the large number of sink node violations. A fully integrated recovery solution that evaluates the
quality of decisions while considering both aircraft and crew constraints in a single optimization would not
face the same issue. However, a parallel time-space network approach treating aircraft and crew as separate

resources would increase the problem size drastically.

Due to the presence of a separate time-space network for each aircraft and crew, the solution times presented
are largely comprised of problem writing time. In particular, for both the aircraft and crew stages, the writing
of intermediate node-balance constraints takes up a large amount of time. Though solution times are greatly
improved via the use of the two selection algorithms, restructuring the problem formulation, its implemen-
tation within the code, or the use of different programming languages or solvers could help further reduce

the solution time.

7. Conclusion

The goal of this research was to develop an operational tool that enables real-time use of a software-based
aircraft and crew recovery solution. This paper demonstrates that the use of machine learning to reduce the

scope of the airline recovery problem can result in near-optimal solutions that require only a fraction of the
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solution time. The proposed approach is a two-stage sequential recovery of aircraft and crew based on the
concept of parallel time-space networks. Passenger and crew considerations are present within the aircraft
recovery stage, where tail swaps, flight delays, and flight cancellations are considered as recovery options. The
crew recovery stage considers crew swaps, deadheading crew, use of reserve crew, and flight cancellations as
recovery options. Two machine learning classifiers trained on optimal disruption solutions are used to select
subsets of aircraft and crew likely to be used in the optimal solution. By considering only a fraction of aircraft

and crew, a smaller problem is solved and solution time is reduced.

For instances with non-trivial crew recovery solutions, the results of the performed case study show that
the proposed approach is able to select a subset of aircraft and crew containing all those used in the final
solution in a majority of cases, while increasing the overall cost by an average of 11%. More importantly,
the solution time obtained using the selection is, on average, three times faster than using all aircraft and
crew. The selection algorithms are able to increase the percentage of instances that obtain a solution for the
aircraft and crew recovery problem within the AOCC time limit from 47% to 95%. For large airline networks,
the two-minute decision making time limit means that controllers often only have time to search for a single
feasible solution rather than an optimal one. Controllers can therefore benefit from the proposed approach
by automating the decision-making process and being able to evaluate thousands of possible solutions when

recovering aircraft and crew schedules.

Several limitations exist in the proposed approach and should be considered in future research. First, the
limited consideration of passengers and crew within the aircraft recovery stage should be addressed. Ideally,
this would be done by integrating aircraft, crew, and passenger recovery into a single formulation. Second,
though the machine learning classifiers used by both recovery stages perform well, the selection still causes
non-optimal solutions in some cases. To address this, further feature engineering is required for both the
aircraft and crew stage. The evaluation of different machine learning algorithms for the purpose of selection
could also prove useful. Finally, the solution times of both the aircraft and crew stages are dominated by
problem writing, rather than solving. This is caused by the large number of constraints required to implement
a parallel time-space network approach. Investigation into whether the proposed approach benefits from
using different programming languages or solvers, as well as code restructuring could prove useful in further

reducing the solution time.
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The Airline Recovery Problem: An Exploratory

Review of Practical Challenges

Andrej Nikolajevi¢
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Abstract

Airline disruption management (ADM) remains an integral part of the airline operations process.
The practical challenges associated with its automation usually relate to a trade-off of compu-
tational time and solution quality. This paper presents state-of-the-art methods used in airline
disruption management as presented in literature relating to aircraft, crew, and passenger recov-
ery. The possibilities of integration of machine learning and mathematical methods that exploit
the structure of large recovery problems are also discussed. The goal is to provide a critical review
of the state-of-the art literature with an aim to discover new possibilities in the implementation

of ADM software solutions.

Keywords: Disruption Management, Airline Industry, Irregular Operations, Aircraft Recovery, Crew Recovery,

Passenger Recovery, Integrated Recovery, Combinatorial Optimization, Machine Learning

1. Introduction

Day-to-day operations in the airline industry are hindered by differences between scheduled and actual per-
formance. These are caused by disruptions such as poor weather conditions, airport congestion, or aircraft
mechanical issues, among others. Disruptions create great expenses for airlines and passengers alike and
disrupt the original schedule of the airline, preventing a regular day of operations. The Airline Operations
Control Center (AOCC) must actively take action to manage these disruptions in order to restore the origi-
nal schedule of flights, aircraft, and crew, while ensuring that passengers are transported to their intended
destinations. Actions include cancellation and delays of flights, rerouting aircraft, reassigning crew, and reac-
commodating passengers. These come at the cost of additional fuel expenses, crew overtime, and passenger
monetary compensation. The main objective of airline disruption management (ADM) is therefore to solve
the airline recovery problem, i.e. to find the minimum-cost solution that recovers the initial airline schedule

so that operations may resume as planned.

In the third quarter of 2019, 27.8% of European flights departed late according to EUROCONTROL!. Amadeus
estimates the total annual costs due to irregular operations at over $60 billion? annually, making up over 8% of
the annual industry revenue. Clearly, the financial impact of disruptions is very significant. Many disruptions,
such as weather conditions, cannot be prevented. However, a solution which is able to incorporate the many
different factors present in ADM and automate some of the decision making could drastically reduce the costs

incurred by airlines, while ensuring passenger satisfaction.

IEurocontrol Library: https://www.eurocontrol.int/library
2Amadeus: https://amadeus.com/documents/en/airlines/white-paper/shaping-the-future-of-airline-disruption-management. pdf
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Figure 1.1: Total number of airline recovery problem related publications in the period 1984-2019,
adapted from Hassan et al. (2018).

Since the early efforts of Teodorovi¢ and Guberini¢ (1984), a plethora of literature that attempts to solve the
airline recovery problem has been published. Clarke (1998) present the first literature review on state-of-the-
art decision support systems used in ADM. Kohl et al. (2007) describe an overview of the ADM challenges,
along with details and reasoning of the decision-making processes involved in ADM. Several publications be-
ing implemented in a major airline are cited as potential solutions. Ball et al. (2007) list promising models on
schedule, aircraft, passenger, and crew recovery. They also cite robust scheduling as a preemptive disruption
management strategy. Clausen et al. (2010) provide an extensive overview of state-of-the-art ADM solutions.
This includes descriptions of network types as well as classification of literature per type of recovery: aircraft,
schedule, passenger, crew, and a combination of two or more aspects. A focus was also made on problem
dimensions, data types, and solution time due to the more sophisticated nature of recovery problem formu-
lations. More recently, Hassan et al. (2018) extended the work of Clausen et al. (2010) by providing a compre-
hensive updated collection of relevant publications for the period 2009-2018. They note that the interest in
ADM within the academic community is on the rise, with roughly the same number of papers published from
1984-2009 as 2009-2018. Figure 1.1 shows the number of ADM-related publications up to 2019. Note that the
patterned publications indicate that the literature has been covered in previous reviews. So far, 2017 has seen
the highest number of relevant publications at 10. Since the review by Hassan et al. (2018), 9 new papers have
been published on the topic of ADM. Along with the relevant predecessors, these will be discussed in the first
part of the literature review.

Due to the scale of airline operations, the size of airline recovery problems can easily get large enough that
most methods proposed in literature are simply not fit for real-time use by the AOCC. State-of-the-art solvers
implement many algorithmic decisions that require a lot of computational time to reach a solution. In ad-
dition, the recovery problem is often repetitive in the sense that the problem structure is very similar from
case to case, but with a difference in input. Such solver decisions and problem structures may benefit from a

machine learning (ML) assisted approach. The combined use of ML and optimization methods is not a new



concept. Although combinatorial optimization (CO) has been used extensively to improve the performance
of ML methods, the reverse is a relatively new area of research with few practical implementation examples.
Recently, Bengio et al. (2020) presented a literature review on the state-of-the-art in implementing ML meth-
ods to assist in combinatorial optimization. The various types of implementation methods are elaborated
on, and relevant literature presented. The second part of this paper will focus on an exploratory study of
promising methods integrating ML and CO in an effort to highlight new possibilities in their implementation

in airline recovery problems.

This paper is structured as follows: Chapter 2 describes the methodology used to find relevant publications.
Chapter 3 gives a brief introduction into the more practical aspects of the airline recovery problem and dis-
cusses the relevant literature. Chapter 4 gives an overview of machine learning methods and contains a review
of the state-of-the art with respect to machine learning methods used in combination with combinatorial
optimization. Finally, Chapter 5 concludes the paper and discusses the possible ways to bring the state-of-

the-art closer to implementation in the real life case.

2, Literature Search & Objectives

The purpose of this paper is to review the state-of-the-art in terms of airline disruption management as pre-
sented by published scientific literature, with the end goal of defining a research question to pursue within
a follow-up MSc Thesis project. The publications discussed in this paper were discovered via use of Google
Scholar, SCOPUS, and the Web of Science online databases. Publications were selected for review based on
impact (citation count) and relevance, as well as forward and backward snowballing of impactful papers.
The entirety of the research history was accounted for in order to gain an overview of the historical trends
in implementation, but due to the presence of several literature reviews on the topic, only the most relevant
are presented in this paper. For papers relating to the airline recovery problem, several keywords have been

identified as providing good results in terms of relevant literature. They are present in the following list.

Keywords: airline recovery, aircraft recovery, crew recovery, pairing recovery, passenger recovery, schedule recov-

ery, integrated recovery, disruption management, irregular operations, airline, aircraft

Combined use of "AND’ and 'OR’ conditions for these keywords resulted in 197 papers relating to the airline
recovery problem. For papers relating to use of machine learning methods in combinatorial optimization,

the relevant keywords are present in the following list.

Keywords: combinatorial optimization, linear programming, integer programming, MILE MIQR MIB compu-

tational time, computational performance, solution time, machine learning

In a similar fashion, these keywords resulted in 407 papers combining the use of machine learning and com-
binatorial optimization. Many of these focused on using CO to improve ML performance, whereas the main

interest of this paper focuses on the reverse use. Only papers showing promise for implementation in the



context of the airline recovery problem are discussed in this paper.

3. The Airline Recovery Problem

In order to get to an initial operating schedule, airlines implement a sequential scheduling process. The flight
schedule is first determined, followed by the assignment of fleets to individual flights and the generation of
flight sequences. Anonymous groups of flight and cabin crew are assigned to flight sequences, and individual
crew members are assigned to groups. Finally, individual aircraft are assigned to flights belonging to their

fleet. For more detail on the airline scheduling process, the reader is referred to Clausen et al. (2010).

After a disruption, the planned routes of aircraft, crew, and passengers are broken and must be recovered to
resume normal operations. Often, the airline recovery problem is formulated as a limited-resource, smaller-
scale airline scheduling problem. Traditionally, it is solved sequentially, in a manner similar to the scheduling
problem. Due to the complex inter-dependencies between recovery options, the computational time pro-
vided by state-of-the-art solvers is often unfit for operational use. The AOCC requires solutions in 2 minutes
or less due to the ever-changing nature of the state of operations (Clausen et al. (2010)). This is why many air-
lines still solve the airline recovery problem by hand, with experienced operators that look for a quick, feasible
solution rather than an optimal one. Most of the research on the airline recovery problem focuses therefore
on fully or partly automating the disruption management decision making process in order to optimize the
solution quality and reduce costs incurred by airlines within the given timeframe. Exact optimization meth-

ods and metaheuristic approaches have been the two most common approaches in literature.

Exact optimization methods are those which guarantee a solution that is the global optimum. These are often
written in the form of mixed-integer programming (MIP) problems and are solved via use of commercial
solvers. As the airline recovery problem is NP-hard, the computational time required to get the optimum
solution increases exponentially with the problem size, often making them unfit for real-time use by the
AOCC. Much of the published literature therefore utilizes algorithms that reduce the scope of the recovery
problem. Metaheuristic methods are also utilized, either in combination with exact optimization methods or
individually. Due to extensive literature reviews published by Clausen et al. (2010) and Hassan et al. (2018),
only the most significant works in the period 1984-2017 will be mentioned. These were selected based on
impact (number of citations) and novelty of the approach. For the years 2018-2019, all relevant papers not

discussed in aforementioned reviews are presented to provide an overview of new publications.

Section 3.1 will present an overview of the pioneering works relating to the airline recovery problem. Section
3.2 will present recent literature focusing on aircraft and schedule recovery. Section 3.3 will present litera-
ture on crew recovery, and literature integrating two or more resources (aircraft, passengers, crew) will be

presented in Section 3.4.

3.1. Initial Efforts

Teodorovi¢ and Guberini¢ (1984) were the first to attempt to restore airline schedules after a disruption with
an objective to minimize total passenger delay. They used branch and bound on a 3-aircraft fleet with 8 flights
and modelled passengers explicitly. This work was later extended by Teodorovi¢ and Stojkovi¢ (1990) with a
14-aircraft fleet and 80 flights. The primary objective was to minimize the total number of cancelled flights,

with total passenger delay being used as a secondary objective. Teodorovi¢ and Stojkovi¢ (1995) extend this
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model by including crew considerations. The model was tested on over 1000 different randomly generated
scenarios with varying fleet and flight numbers and varying disturbance types. These models were largely

based on connection networks, as defined by Clausen et al. (2010).

Many works were also based on the concept of time-space networks, where each node in the network corre-
sponds to both a location and a point in time. Jarrah et al. (1993) developed two network flow models as part
of United Airlines-backed research that consider flight delays, cancellations, and aircraft swaps as possible
recovery options. Thengvall et al. (2003) were the first to implement parallel time-space networks to enable
modelling of multiple fleets, where a separate time-space network is created fleet. As an alternative to time-
space networks, time-band networks were first utilized for the aircraft recovery problem by Bard et al. (2001)

to present a more compact network formulation.

The paper by Argiiello et al. (1997) was one of the first to consider a metaheuristic approach to the airline
recovery problem by utilizing a greedy randomized adaptive search procedure (GRASP) to repair aircraft
routings. The local-search algorithm selects an incumbent solution and then generates a list of candidate
neighboring solutions, from which one is randomly selected. The algorithm selects the better solution and
re-iterates.

Lettovsky et al. (2000) were some of the first to consider the reassignment of crew duties after disruptions.
The crew recovery problem was formulated as an integer programming set-covering model that re-assigns
crews to flights while minimizing associated costs. The first approach to integrate the full scope of disrupted
resources (aircraft, crew, passengers) was the PhD dissertation by Lettovsky (1997). The author integrated
aircraft schedule, crew, and passenger recovery via use of Benders decomposition of the individual resource

recovery sub-problems controlled by a master problem.

These papers formed a large part of the basis of modern literature on the airline recovery problem. Since then,
the range of recovery options, disturbances, and network sizes has increased drastically. Although exact opti-
mization algorithms have been developed, a lot of the latest literature incorporates the use of metaheuristics

or scope-limiting algorithms in order to come closer to the solution time required by the AOCC.

3.2. Aircraft Recovery

Much of the early literature relating to the airline recovery problem focuses on aircraft and schedule recovery.
This focus simplifies the recovery problem, enables a sequential approach, and ensures that aircraft sched-
ules, as the most cost-impactful asset, are recovered first. After a disruption, the aircraft recovery problem
aims to restore the planned schedules of flights and aircraft by means of e.g. flight delay or cancellation. De-
spite recent pushes for integration of all resources involved in the recovery problem, aircraft recovery remains

an active field of research.

3.2.1. Exact Optimization Methods

Rosenberger et al. (2003) formulate the aircraft recovery problem as a set-partitioning problem that includes
airport slot constraints. The model incorporates an aircraft selection heuristic that is used to select a subset
of aircraft. The subset is used to preemptively generate the possible spectrum of new routes, which is then
optimized over the set-partitioning problem with flight cancellation and delay as the possible recovery op-

tions. Several variants of the model are presented with different objectives minimizing delay, cancellations,
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and estimated costs of crew and passenger recovery. Results are presented for a recovery solution of 500
days of simulated airline operations, with solution times up to 9 minutes. However, intra-fleet recovery is not

considered and no individual disruption solution times are presented.

Andersson and Virbrand (2004) also base their approach on a set-partitioning formulation, but enable intra-
fleet recovery. The model utilizes Dantzig-Wolfe decomposition and is solved via two different solution tech-
niques. The first utilizes a column generation (CG) approach, while the second makes use of a Lagrangian
relaxation heuristic. Both methods show similar performance and were tested on real data with 30 aircraft
and 98 to 215 flights. Solution times under 10 seconds are generally present, but larger instances require

times of up to 1100 seconds.

Eggenberg et al. (2010) present a column generation-based model for the aircraft recovery problem that mod-
els each aircraft individually. A time-band network approach is utilized, and the use of parallel recovery net-
works enables the implementation of maintenance constraints per individual aircraft. A formulation of the
model is also applied to the passenger recovery problem. The aircraft recovery formulation is tested on real
data from Thomas Cook Airlines, with 242 flights and 16 aircraft. A dataset based on the real data is also gen-
erated to test the scaleability of the model, with 760 flights and 100 aircraft. Most instances are solved in a

minute or less, with the exception of the largest real case which exceeds 1 hour.

Aktiirk et al. (2014) were the first to consider aircraft cruise speed control as a recovery option. In most lit-
erature, even a 10-minute delay would propagate throughout the flight network. By increasing cruise speed,
small delays could be absorbed at the cost of additional fuel. Increasing cruise speed for early arrival also gen-
erates additional tail swap options which could drive down the cost of the recovery operation. The authors
use a conic-quadratic optimization approach due to the non-linear relationship between cruise speed and
fuel burn. The model is tested on two datasets extracted from the U.S. Department of Transport database.
These two schedules contain 114 and 207 flights, and 31 and 60 aircraft respectively. For the most computa-
tionally expensive case, the solution time does not exceed 250 seconds. The paper concludes that incorpo-

rating cruise speed control as a recovery option could lead to significant reductions in recovery costs.

Vos et al. (2015) presented a dynamic framework named the Disruption Set Solver (DSS). The framework
recovers the aircraft schedule as disruptions occur, and the recovery actions taken are accounted for when the
next disruption occurs. The formulation utilizes parallel time-space networks allowing for explicit modelling
of individual aircraft. A candidate aircraft selection algorithm is used to limit the scope of the recovery, and
the model is tested on four different cases with fleet data from Kenya Airways. In 93.3% of cases, the model
finds the solution in less than 10 minutes. A comparison is made between the solutions of the DSS and of
a static model where all the day’s disruptions are known upfront. The paper concludes that the use of static

disruption scenarios results in underestimation of costs and overestimation of feasible schedule recovery.

3.2.2. Metaheuristics

Love et al. (2005) used a local search heuristic to solve the aircraft recovery problem. The approach enables
aircraft swaps and ferry flights and utilizes steepest ascent hill climbing (or steepest ascent local search, SALS)
to get from an initial solution to a local optimum. The objective was to maximize (estimated) airline profit.
The model is tested on real data from British Airways with a single fleet of 80 aircraft and 344 flights. Solution
times for different weighing of airline costs range from 3.8 to 9.4 seconds.
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Qiang et al. (2009) make use of a combination of a greedy randomized adaptive search procedure (GRASP)
and simulated annealing to explore the solution space. This reduces the probability of falling into local op-
tima and improves the efficiency of neighborhood selection. The objective of the algorithm is to minimize the
total delay time experienced by passengers. A test performed on one disruption scenario with a single-fleet

of 30 aircraft and 149 flights resulted in a solution time of 57 seconds.

Guimarans et al. (2015) present a large neighborhood search algorithm based on a constraint programming
formulation. A simulation-based approach that demonstrates the stochasticity of real-life disruptions is used
to test the discovered solution for robustness. If a solution is deemed too easily disruptable in many of the
simulated scenarios, it is rejected. This presents a large advantage with respect to deterministic recovery
solutions, which do not account for the future 'disruptability’ of the solution. The model is tested on three
real flight networks with 9 to 40 aircraft and 49 to 163 flights. For the largest case, the solution time is just

under 5 minutes.

Zhao and Chen (2018) developed a weight-table based heuristic to solve the aircraft recovery problem under
temporary airport closure disturbances, e.g. due to bad weather. To reduce computational time, a heuristic
is used to weigh the possibility of an aircraft swap improving the objective value. The problem is iteratively
solved with the highest-weighed aircraft-flight swap options. After each iteration, the weights are adjusted.
Flight cancellation is only included as a last-resort measure and thus carries a large penalty in the objective
function. Results indicate feasibility of application for a single-fleet, 6-aircraft network, but no computational

times are presented.

Liang et al. (2018) present a column-generation based heuristic approach to the aircraft recovery problem.
They integrate airport capacity and maintenance constraints. In addition, maintenance flexibility is imple-
mented as a possible recovery option alongside flight delays, flight cancellation, and aircraft swaps. A novelty
is modelling continuous delay options instead of discrete. The model is tested on 8 different scenarios with
small, medium, and large fleets and flight schedules. A comparison is made between the performance of dis-
crete and continuous delay models. Computational times generally stay under 6 minutes for all cases. The
paper concludes that the benefit of modelling of delay as continuous is twofold: (1) the runtime is at least
as fast as the discrete version, with large-scale cases being up to 260 times faster, and (2) the costs associ-
ated with recovery are reduced. It is also noted that implementation of flexible maintenance could reduce
recovery costs by 20-60%.

Lin and Wang (2018) present a two-stage fast variable neighborhood search (FVNS) algorithm for the aircraft
recovery problem under airport closure. In the first stage, a feasible flight plan is restored by delaying all
flights. In the second stage, the algorithm searches within the local solution space for better solutions. The
difference between FVNS and other neighborhood search algorithms is that, once the optimal solution is up-
dated, the FVNS continues searching from the same neighborhood. FVNS also does not consider potentially
bad solutions, thus reducing the search space. The model is tested on two separate flight networks from a
Taiwanese airline, both operating 70 flights. The solution time is in the order of milliseconds for the used
dataset. However, the disruption scenarios are limited and the global optimum solution is not provided as
reference. Table 3.1 presents an overview of discussed aircraft recovery literature. Note that only the largest

case dimensions and solution times are presented.
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Table 3.1: Overview of literature related to aircraft recovery.
Maint. = Maintenance Constraints, Canx = Cancellations, R = Real-life, G = Generated

Paper Approach/Novelty Functionalities Data Case Dimensions CPU
Maint. Swap Canx Retime Multi-Fleet Aircraft Fleets Flights (sec)
Rosenberger et al. (2003)  Set-Partitioning Y Y Y Y N G 96 3 469 16
Andersson (2006) DW N Y Y Y N R 30 2 215 1139
Love et al. (2005) SALS N Y Y Y N R 80 1 344 12
Qiang et al. (2009) GRASP N Y Y Y N G 30 1 149 57
Eggenberg et al. (2010) CG Y Y Y Y N R 100 1 760 63
Aktiirk et al. (2014) Cruise Speed N Y N Y Y R 60 6 207 202
Vos et al. (2015) Dynamic Solving Y Y Y Y N R 43 1 - 900
Guimarans et al. (2015) LNS N Y Y Y N R 48 1 294 178
Zhao and Chen (2018) Weight Table N Y Y Y N R 6 1 41 N/A
Liang et al. (2018) CG Y Y Y Y N G 44 1 638 356
Lin and Wang (2018) FVNS N Y Y Y N R 12 1 70 1

3.3. Crew Recovery

In the sequential recovery approach, crew recovery comes after the remainder of the schedule has been recov-
ered. After aircraft have been re-assigned to different flight schedules, the crew duties are broken. The crew
duties must then be restored such that the repaired flight schedule is feasible. Due to strict international reg-
ulations on flight and work time for cockpit crew, crew recovery adds a lot of complexity to the airline recovery
problem.

3.3.1. Exact Optimization Methods

Abdelghany et al. (2004) present a cockpit crew recovery model that incorporates flight delay as a possible re-
covery option. Other recovery options include crew swapping, deadheading, and utilizing reserve or standby
crew. Crew members are assigned to flights using a MIP formulation, and the objective is to minimize total
delay. The model is tested on real data from a U.S. airline and assumes 18 disrupted crew and 12 candidate
crew. The solution is obtained in under 2 minutes.

Hoeben et al. (2017) used a dynamic approach to recover cockpit crew under disruptions. Similarly to Vos
et al. (2015), disruptions are solved as they occur. A repaired flight schedule is used as input after which the
infeasible crew pairings are identified. The model clusters groups of candidate crew based on aircraft and
flights operated to reduce problem size. The formulation enables generation of schedules for individual crew
members, which enables distinction between captains and first officers. Model performance is evaluated
on a set of four disruption scenarios using data from Kenya Airways. Each disruption scenario is a set of
disruptions occurring at different times of day. For all scenarios, the average solution time per disruption
ranges from 4.9 to 8.2 seconds, while the entire scope of disruptions are consecutively solved in 27.2 to 49.4
seconds, providing solutions fit for operational use. The use of the crew selection algorithm enables 3 to 4

times faster computational times, while differing from the global optimum with a maximum of 21%.

Haouari et al. (2019) present a compact formulation of the daily crew pairing problem. A non-linear MIP
formulation incorporating crew regulations is linearized using techniques developed by Sherali and Adams
(1994). The model is tested on real data from major European and Asian airlines with to 336 flights and 29
to 172 crew. In most instances, the model performs the optimization in under 1 minute. However, multiple
large outliers in the order of thousands of seconds exist, and no clear relationship between problem size and
computational time is present.
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3.3.2. Metaheuristics

Yu et al. (2003) presented a modified version of the model developed by Wei et al. (1997) which has been im-
plemented for use at Continental Airlines. The model uses a multi-commodity flow formulation and the same
depth-first search procedure developed by Wei et al. (1997). The objective is to minimize the cost associated
with recovery of crew and flight cancellations. Several recovery options are presented to the operator, which
then selects the best solution. The model is tested on various disruption scenarios and fleet sizes, with the
largest test case taking 442 seconds to obtain a solution. The authors report that the implementation of this
system saved Continental Airlines approximately $40 million in 2001 alone. It should be noted that, due to
the sequential recovery process used by most airlines, enabling flight cancellation at the crew recovery stage

may prompt a re-iteration of the aircraft recovery problem following the crew recovery.

Castro et al. (2009) use a distributed multi-agent system in which agents perform different roles within the
AOCC. The agents compete in finding the best solution to the crew recovery problem. Objectives included
minimizing total associated costs, as well as including cost of increasing passenger satisfaction. Though the

solution times were around 25 seconds, no case dimensions are presented.

Chen et al. (2013) present a multi-objective genetic algorithm based approach to the integrated crew pairing
and crew rostering scheduling problem. This work was later adapted for the crew roster recovery problem in
Chen and Chou (2017). The objectives include minimizing the number of changes from initial schedule and
the largest duty time change. A variant of the non-dominated sorting genetic algorithm II (NSGA-II) is used,
and data is tested on a real-world schedule with simulated disruptions. Although the algorithm presents
multiple feasible solutions to the user, details on computational time are not present. Table 3.2 shows an
overview of discussed crew recovery literature. Note that only the largest case dimensions and solution times
are presented.

Table 3.2: Overview of literature related to crew recovery.
Deadh. = Deadheading, R = Real-life, G = Generated

Paper Approach Crew Functionalities Data Case Dimensions CPU
Swap Deadh. Retime Reserve Fleets Flights Crew (sec)
Yu et al. (2003) MCF Y Y N Y R 1 = = 442
Castro et al. (2009) MAS N Y N G - - - 25
Abdelghany et al. (2004) MIP Y Y Y Y R - - 121 120
Hoeben et al. (2017) MILP Y N Y Y R - - - 8
Chen and Chou (2017) NSGA-II Y Y Y Y G 1 12 5 -
Haouari et al. (2019) Linearization N N N N R 1 336 172 2831

3.4. Integrated Recovery

The sequential recovery approach many airlines and researchers take has two disadvantages: (1) the quality
of the solution may be suboptimal, and (2) the solution feasibility of secondary recovery stages is not guaran-
teed. To prevent this, the entire scope of recovery options, including the inter-dependencies between aircraft,
passenger, and crew recovery must be accounted for in a single, global-level optimization. In 2009, the French
Operational Research and Decision Support Society (ROADEF) hosted a disruption management challenge
aiming to integrate recovery of aircraft and passengers. This resulted in numerous publications and gave the
airline recovery problem much exposure in the scientific community. Since then, many publications relating



3.4. Integrated Recovery 10

to the airline recovery problem have focused on integrating two or more resources in a single optimization

(aircraft, crew, passengers).

3.4.1. Exact Optimization Methods

Bratu and Barnhart (2006) present an integrated model considering only flight delay and cancellation as re-
covery options. The presence of reserve crew and aircraft is assumed to maintain solution feasibility. Two
models are presented: one with passenger delay costs being approximated, and one where passengers are
being explicitly modelled. The explicit modelling of passengers results in computational times up to 25 times
higher than the approximated case. The model was tested on a four-fleet, 302 aircraft data set, and computa-

tional times range from 201 to 5042 seconds.

Abdelghany et al. (2008) present an integrated aircraft and crew recovery formulation that accounts for re-
covery of both cockpit and cabin crew. A simulation-based approach is used to classify flights likely to be
disrupted due to a ground delay program (GDP). The schedule aircraft and crew is then (preemptively) re-
covered using a rolling horizon approach with the objective to minimize total recovery cost. A test including
encompassing 522 aircraft, 1360 pilots, 2040 flight attendants serving 1100 daily flights results in a maximum
solution time of 46 seconds. The low runtime compared to the large problem size is aided by the assumption

of a single fleet and presence of reserve crew.

Arikan et al. (2017) propose a network flow model that accounts for transport of aircraft, crew, and passengers.
Cruise speed control is incorporated via use of conic quadratic optimization, similarly to Aktiirk et al. (2014),
and the problem size is kept within limits by means of constructing partial networks containing only flight
arcs that are likely to be used in the final solution. The model is tested on a flight network of a major U.S.
airline operating 1442 daily flights and 402 aircraft. The considered disruptions were varying times of delay
for a given flight, as well as varying closure times of a hub. The solution times exceed 1000 seconds for the
largest disturbances. The authors note that, especially in large networks, cruise speed control can be used as

avaluable recovery option.

Marla et al. (2017) incorporate cruise speed control by creating alternative flight plans corresponding to
higher cruise speed with pre-determined cost. Similarly to Vos et al. (2015), the authors use parallel time-
space networks to model aircraft individually, but include passenger recovery. The solution is dynamic, i.e.
disruptions are solved as they occur. The objective is to minimize the cumulative cost of additional fuel,
delays, and cancellations. The model is tested on a 250 flight network. To comply with AOCC-required per-
formance, the runtime is limited to 2 minutes. The MIP gap of the largest recovery operations was 13-15%.
The authors note that the inclusion of cruise speed control reduces both the cost of the recovery operation
and the propagation of delays throughout the flight network. However, a model without alternative flight

plans was consistently solved in under 2 minutes.

Vink et al. (2020) also utilize parallel time-space networks and a similar aircraft selection algorithm to that of
Vos et al. (2015), but with a candidate selection based on aircraft location rather than ground time. The focus
of the paper is enabling operational use. Passengers are implicitly modelled, and maintenance constraints
are considered. An initial trivial solution is found within seconds and presented to the user. The model then
re-iterates the recovery problem by adding a single candidate aircraft per iteration and presents the updated

best solution once solved. This enables the model’s real-time use by the AOCC, as the operator will always
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have a feasible solution to act on if the runtime ends up being too high. The model is tested on 10 different
disruption scenarios consisting of 2 to 6 disruptions occurring at different times of the day. The selection
algorithm found the best solution in 50 seconds or less, and the final solution was identical to the dynamic
global optimum (optimizing with all aircraft) in 90% of the cases. On average, the solutions presented by the
model were obtained in 22.1 seconds and were only 6% more expensive than the dynamic global optimum.

3.4.2. Metaheuristics

Bisaillon et al. (2011) present a large neighborhood search approach for the integrated aircraft and passen-
ger recovery problem. This model won the 2009 ROADEF Challenge. Starting from a feasible solution, the
model iteratively builds and destroys the solution space in search of a better solution and stops after a pre-
determined time limit or after a certain number of iterations showed no improvement. The work of Sinclair
et al. (2014) improved the algorithmic structure of the previous approach and resulted in faster and higher
quality solutions. Sinclair et al. (2016) extend this by implementing a column generation heuristic used post-
optimization and is the only one of the three works to find the best solution for all cases presented in the
ROADEEF dataset within 10 minutes.

Petersen et al. (2012) propose a solution to the integrated recovery problem using a decomposition approach
similar to that of Lettovsky (1997). Separate recovery sub-problems relating to schedule, aircraft, crew and
passengers are developed and linked via Benders decomposition. A column generation algorithm is em-
ployed along with a candidate aircraft selection algorithm to reduce problem size. The model is tested on real
data from a U.S. airline operating around 800 daily flights and two fleets. Three different disruption scenarios
are considered: 50%, 75% and 100% reduction in hub flow rate (arrivals and departures). For the largest case,
the solution time is in excess of 30 minutes. A comparison between the integrated and sequential approach
concluded that although the solution time for a sequential approach is slightly lower, the integrated approach
provides lower recovery costs. In addition, the integrated approach resulted in a feasible solution in 100% of
the cases, while the sequential approach only managed to do so for 75% of the cases. This is due to the ten-
dency of the sequential recovery approach to make choices in the high-level recovery problems (aircraft &
schedule) that do not consider compatibility with lower level problems. Table 3.3 shows an overview of all

discussed integrated recovery literature. Note that only the largest case dimensions and solution times are

presented.
Table 3.3: Overview of literature related to integrated recovery.
Maint. = Maintenance Constraints, Canx = Cancellations, R = Real-life, G = Generated
Paper Elements Approach Functionalities Data Case Dimensions CPU
AC Pax Crew Maint. Swap Canx Retime Multi-Fleet Aircraft Fleets Flights (sec)
Bratu and Barnhart (2006) Y Y N MIP Y Y Y Y Y G 302 4 - 201
Abdelghany et al. (2008) Y N Y MIP Y Y Y Y N R 5222 1 1100 46
Bisaillon et al. (2011) Y Y N LNS Y Y Y Y N R 256 1 1423 600
Petersen et al. (2012) Y Y Y BD Y Y Y Y Y R 2 800 1080
Sinclair et al. (2016) Y Y N LNS, CG Y Y Y Y N R 618 1 2178 1315
Arikan et al. (2017) Y Y Y Cruise Speed Y Y Y Y Y R 402 - 1254 480
Marla et al. (2017) Y Y N Cruise Speed N Y Y Y N R N/A 1 250 120
Vink et al. (2020) Y Y N Dynamic Solving Y Y Y Y N R 100 1 600 50
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3.5. Discussion
Although integration of more resources and recovery options has been proven to achieve more realistic and
higher quality solutions, individual recovery problems are still an active area of research. The aircraft recovery

problem remains the component with the highest research interest.

Early literature often focused on objectives that would only intuitively help the airline recovery process, such
as minimizing total delay, number of cancellations, or number of deviations from the original schedule. These
objectives are not the best metric of the effectiveness of the disruption management process as they do not
capture the complete financial impact of the solution. A noticeable trend in more recent literature is the
formulation of objectives which aim to quantify the direct and indirect costs of delays, cancellations, and
other recovery methods. Though precise quantification is impossible due to the involvement of factors such
as passenger experience quality and loss of future business, reasonable estimates can ensure that solving the

airline recovery problem ultimately focuses on optimizing airline business performance.

A relatively recent addition to the solution of the airline recovery problem is the idea of dynamic solving,
i.e. restoring schedules progressively as disruptions occur and building on previously taken recovery actions.
This clearly more accurately reflects the real-life situation but brings to light a new issue: solutions obtained
as disruptions occur only account for the current state of airline operations, i.e. they build upon local optima.
Ideally, a model making decisions in real time should be able to quantify (at least in terms of probability) the
quality of its solution with respect to possible future disruptions, making the recovered schedule more robust.
Some literature presented acknowledges the potential of this method, but not enough focus is placed on this
aspect of airline operations. Though robust recovery of an airline schedule has its benefits, the ultimate goal
of recovery is to restore the original schedule. If the original schedule is not generated with the same degree of
robustness as the recovery solution, a robust recovery simply restores the schedule to its less-robust original
state. In this case, generation of the original schedule with the same degree of robustness may prove more
useful than a robust recovery operation. The evaluation of the effectiveness of this approach over the long-
term could prove that the robustness of a recovery solution is a significant contributor to cost reduction in

the recovery process.

A large variety of real-life constraints applicable to the airline recovery problem are considered in the pub-
lished literature. Maintenance constraints can often play a critical role in limiting the solution space yet are
commonly left out for the sake of simplifying the problem or increasing computational performance. Crew
constraints in particular are prone to simplifications due to the complexity of modelling them explicitly. This
is the case with many of the constraining factors of the airline recovery problem, such as airport slot con-

straints or the presence of multiple fleets for which aircraft and crew swaps cannot be performed.

Similarly, though a large variety of recovery options are presented in literature, no currently available pub-
lication includes the full scope of recovery options. Cruise speed control, for example, is a relatively recent
addition to the recovery options considered in literature that enables not only the absorption of small delays,
but arriving earlier in order to introduce additional recovery options. In the case of a flight cancellation, it
may also be financially sensible for an airline to re-book disrupted passengers to a flight offered by a com-
peting airline instead of booking hotel rooms for all passengers and introducing an additional flight the next
day.



Although many different constraints and recovery options are present in practice, considering all of them in
a software-driven airline recovery solution would require levels of processing power that are not currently
commercially available. For example, including passenger reallocation to a flight from a competing airline
would require the inclusion of the entire network of flights of all airlines. This trade-off of model complexity
and solution time is a clear topic of discussion in the presented publications due to the requirements set by
the AOCC.

Modern literature often tackles this trade-off with the inclusion of a form of scope-limiting algorithm that
generates a subset of recovery options likely to contain the optimal solution. Though good quality solutions
can be achieved with these methods, these algorithms are often heuristic and thus do not always result in the
optimum. Another approach is to provide the AOCC with at least a single feasible solution in the required
time limit, which is then iteratively improved upon as better solutions are found. This approach ensures that
the AOCC will at least be able to make use of the software for every disruption, even though the quality of the
solutions obtained in the time limit may not be good.

4. Machine Learning & Combinatorial Optimization

Mixed-integer programming has become a powerful tool for solving real-life problems. Due to advances in
processing power and continuous addition of heuristics in commercial solvers, we are able to to solve MIP
problems millions of times faster than just a few decades ago (Bixby et al. (2004)). Despite this, the NP-hard
nature of most MIP problems remains a barrier to their use in real-time settings where solution times are key.
The airline recovery problem is a clear example of such a case, where the AOCC is continuously working to
resolve disruptions as they occur and must have a solution within minutes. Clearly, the literature presented

in the previous chapter has a large focus on bridging this gap.

In the past decade, machine learning has emerged as an extensive set of techniques that are able to extract
relevant information from sets of data which have no clear mathematical formulation. As the airline recov-
ery problem is still largely being solved manually via use of skilled operators, machine learning provides the
possibility to automate a part or all of that expert intuition. This chapter will discuss the main concepts of ma-
chine learning, its use in combination with optimization techniques, and related literature that implements
or shows promise for implementation in the airline recovery problem. The nature of this part of the paper
is exploratory. That is, papers presented will not always be directly related to the airline recovery problem.
However, only papers with topics or conclusions relevant to the issues faced in the airline recovery problems
will be discussed. For a more in-depth review of the spectrum of possibilities in using machine learning to
assist in combinatorial optimization, the reader is referred to Bengio et al. (2020).

The following sections present an overview of preliminary knowledge used in the remainder of the paper.
First, the concepts of combinatorial optimization are presented, followed by those of machine learning. Then,

three different outlines for their combined use are presented.

4.1. Combinatorial Optimization
Combinatorial optimization problems are constrained problems aiming to minimize a certain function. The
constraints present restrictions on the solution space, and they can define the relationship between vari-

ables. Decision variables represent the decisions to be made in the solution space, and the objective func-
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tion defines the formulation of variables to be minimised. Linear and non-linear constraints and objective
formulations correspond to linear programming (LP) and quadratic programming (QP), respectively. If some
variables are constrained to only integer values, then the problem is of a mixed-integer linear (MIL) or mixed-

integer quadratic (MIQ) formulation.

The use of mixed-integer linear programming (MILP) formulations is especially widespread due to their abil-
ity to model a variety of problems. Unlike MILPs, LP formulations are easily solvable in theory and in practice.
The difficulty of solving MILP formulations comes from the integer requirement on certain decision vari-
ables. A branch and bound (B&B) approach is commonly applied to solve MILP problems. This algorithmic
approach starts with relaxing the MILP formulation, i.e. solving the equivalent LP problem without integer
requirements. The feasible region of the LP problem contains the feasible region of the MILP problem. B&B
branches on one of the fractional LP-solution variables (nodes). This means that the relaxed formulation is
re-solved twice: firstly by constraining the fractional variable to its upper, then to its lower integer bound. This
process is reiterated until the best solution satisfying all integer constraints is found. Many modern solvers
use large collections of heuristic methods to speed up the computational process. The reader is referred to

Lodi (2010) for an in-depth description of B&B and other algorithms utilized by modern MILP solvers.

4.2. Machine Learning

Machine learning is generally split into three main parts: supervised, unsupervised, and reinforcement learn-
ing. In supervised learning, a machine learning algorithm attempts to optimize a provided function such that
it best relates a given input to a given target output. The process of learning refers to the calibration of that
function. As both the input and respective target output are provided, the algorithms are said to be 'super-
vised’. The loss function relates the difference between the actual and predicted output, and the aim is to
minimize its value over a certain ’training’ dataset. A common challenge with supervised learning algorithms
is generalization of performance, i.e. ensuring that the algorithm’s performance on training data is similar to
that of any test data within the problem domain. If an algorithm performs much better on training data than
unseen test data, it is said to overfit. Learning the training data too well can result in noise and outliers in the
data being learned as concepts, which can generalize poorly. On the other hand, learning the training data

too loosely can lead to poor model performance on both training and test data.

Reinforcement learning (RL) assumes the presence of a software agent and an environment it interacts with.
This is modelled as a Markov decision process. At each time step, the agent is free to take action with respect
to its environment and then enters a new state. Based on this state, the agent receives a reward. The aim
of the agent is to maximise the sum of future rewards, called the return. The agent then learns the expected
value of this return over multiple training instances. A large challenge in RL is setting up a suitable reward

function such that the agent does not get stuck in local optima and has sufficient indication of progress.

In unsupervised learning, no target output is provided to the model. Unsupervised learning is used to clus-
ter elements of large datasets with no apparent relationship. As unsupervised learning lacks a target output,
measuring the performance of an unsupervised ML algorithm is difficult. Due to the lack of publications
combining CO and unsupervised learning, especially in a way relevant to the airline recovery problem, the

focus of this paper will remain on supervised and reinforcement learning. For more information on the theo-
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retical side of ML and more specifically RL, the reader is referred to textbooks by Deisenroth et al. (2020) and
Sutton and Barto (2018) respectively.

4.3. End-to-End Learning

The goal of end-to-end learning is to have a machine learning algorithm that directly solves an optimiza-
tion problem given a certain input. To enable end-to-end learning in CO problems, both the input data
and target output (i.e. optimal solution) must be provided to the model. End-to-end algorithms are able to
provide solutions orders of magnitude faster than traditional solvers, though they offer no guarantee of so-
lution optimality or feasibility. Given the often large number of training instances required for a high quality
end-to-end model and the long computational time required to solve large NP-hard CO problems, creating a
well-functioning end-to-end algorithm can take a lot of time. A schematic representation of an end-to-end

learning algorithm is presented in Figure 4.1.

Problem
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Figure 4.1: Schematic representation of end-to-end learning.

Kirschner and Realff (1999) presented one of the early works related to end-to-end learning. Namely, a
decision-tree based binary classification ML algorithm was trained to simulate a MILP formulation that se-
lects the optimal waste containers to be processed at nuclear waste plants. Given features correlated to the
impact on the objective function of the MILP model, the ML model was able to correctly classify 88% of waste
containers as either to be processed or not, and significantly outperformed random selection methods. How-
ever, the inclusion of unfavourable containers negatively impacted the overall objective function value, which
was significantly worse than that of the MILP solution. The authors state that the use of a ML classifier that
predicts the usefulness of a variable within a MILP formulation may be a better option to improve perfor-
mance in similar problems, as it more easily avoids the issue of infeasibility. This topic will be elaborated on

in the next section.

Larsen et al. (2019) present a regression feedforward neural network approach to solve a stochastic load plan-
ning problem dealing with the assignment of containers to train slots. This problem, much like the airline
recovery problem, must be solved in real time. A well-solved deterministic MILP formulation exists for this
problem, which provides a reasonable solution time. However, the case considered is done under uncertainty
of container weights, making a pure MILP formulation unsuitable for use. Therefore, the authors provide ex-
act solutions of an approximated MILP model that accounts for the stochasticity of the problem as the target
output to the ML model. While a solver can take up to a full minute to provide a solution, the ML model con-
sistently provides it in a millisecond or less, and it is generally similar in quality to that of the deterministic
model. However, a large disadvantage of such end-to-end approaches is the lack of guarantee of solution fea-
sibility. For the best-performing model tested, 2.5% of solutions fell outside of constraint limits, while for the
worst up to 38.6% of solutions were infeasible. Despite being unsuitable for direct operational use, this paper

indicates that ML algorithms used in end-to-end learning are able to implicitly learn some of the constraints
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of a model by seeing many examples.

Bertsimas and Stellato (2019) also presented a neural network-based approach to solve online (real-time,
computing time restricted) MIP problems. The method exploits the repetitive problem structure of online
MIQ problems to redefine optimization as a multiclass classification problem that learns the logic behind
the optimal solution. The resulting model is compared to results obtained by Gurobi. The time required
by the ML algorithm to compute a solution stays consistent with increasing problem size at around 1ms.
Gurobi presents times one to two orders of magnitude slower. However, the ML model is farther off from the
optimal solution as the problem size increases. The scale of problems tested is also relatively small, implying
a relatively simple problem structure that may easily be learned by the classifier. For large scale problems
such as the ARP, the question of scalability remains unanswered.

Hondet et al. (2018) present a reinforcement learning approach based on Q-learning to solve the aircraft
recovery problem. It considers two possible actions that the agent can take given a disrupted aircraft: swap
or do not swap aircraft. The number of swap options at each decision are limited to prevent too many possible
actions, slowing convergence of the model. The reward the agent receives is the negative of the final cost of
the disruptions. The model is trained over 20 000 training instances and its performance is compared to that
of the idle case (i.e. do not swap any aircraft). For heavily disrupted scenarios, the agent performs better than
the idle case, whereas it is outperformed by the idle case for mild disruptions. The authors note that due to
the large number of scenarios possible, a reinforcement learning algorithm applied to aircraft recovery might
take orders of magnitude more training instances to be effective. This is especially true if more recovery
options are to be presented to the agent, such as delaying other flights or cruise speed control. The use of a

reinforcement learning agent to directly solve the airline recovery problem has not yet shown promise.

4.4. Pre-Optimization Machine Learning

As suggested by Kirschner and Realff (1999), another way to utilize ML in combination with CO is to have a
ML algorithm learn meaningful properties of CO problems with the goal of reducing computational time. A
machine learning algorithm can be used to provide the CO problem with information such as which prepro-
cessing techniques may be useful given the problem structure, or which subset of the solution space is likely

to contain the optimal solution. This is presented schematically in Figure 4.2.
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Figure 4.2: Schematic representation of pre-optimization ML.

A clear example of this structure was provided by Kruber et al. (2017). The authors utilize use multiple binary
classification algorithms from the scikit-learn library to evaluate whether applying Dantzig-Wolfe (DW) de-
composition on a MIP problem will reduce its computational time. The MIP problem characteristics, such
as number of variables, proportion of variable types, and number of constraints are used as features, among

others. Over all instances, the random forest (RF) classifier performed best and was able to correctly identify
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whether a DW approach would speed up solution time in 64.9% of cases. It is unclear whether the use of this

classifier reduces the average computational time over all cases considered.

With the end-goal of faster computation, Bonami et al. (2018) utilize a machine learning classifier on a quadratic
programming problem to predict whether linearization of the problem would be useful. Similarly to Kruber
etal. (2017), the problem characteristics are used as features on multiple binary classification algorithms from
the scikit-learn library. The support vector machine (SVM) and RF algorithms performed best, and showed

significant improvements in computational time with respect to default CPLEX settings.

Fischetti et al. (2019) utilise ML in a somewhat different context with respect to computational time. Five
different ML classifiers from the scikit-learn library are trained to estimate whether a MILP problem will be
solved within a given time limit. Given the problem properties as features, RF was the best performing al-
gorithm with a precision and recall of 96%. In the context of airline recovery, this information could be very
valuable to the AOCC. Namely, given a recovery operation, a classifier can predict whether the CO formula-
tion will provide a solution within the given time limit or not. In the latter case, the solution can be obtained
manually by an operator, ensuring action is taken before the 2 minute time limit.

With respect to the airline recovery problem, Hassan (2018) developed a random forest classifier for the air-
craft recovery problem. The enitre recovery formulation is similar to that of Vink et al. (2020), where the can-
didate aircraft selection algorithm is based on machine learning rather than a heuristic approach. A smaller
sub-network is generated with the candidate aircraft for which the aircraft recovery problem is solved. The
model is tested on a total 565 different disruption scenarios, applied to a dataset of Delta Airlines flights with
2200 daily flights, 147 airports, and 8 fleets totalling 827 aircraft. On average, the system finds a solution within
48 seconds, with 180 seconds being required for the largest case. The optimal solution is found in 81.3% of
the tested cases, and only 4 additional cancellations are present as a result of the selection algorithm. The
author mentions that the proposed approach to the airline recovery problem could be extended to add crew

while maintaining a compact problem size.

4.5. In-the-Loop Machine Learning

A machine learning algorithm can continuously be called by the CO problem to assist in decisions made
during the solution process. An example of such a structure is shown in Figure 4.3. Such algorithms have
been applied on the many heuristic decisions made by modern solvers. For example, selecting an unexplored
branching node (branching), as well as deciding whether to proceed exploring the selected node (pruning)
are often a heuristic decision. Machine learning could therefore be applied in this context to make better
choices with respect to which node to branch on. The process of utilizing machine learning to approximate

good branching decisions is called learning branching.

He et al. (2014) apply an imitation learning policy for pruning and branching. The solver is based on sim-
ple B&B methods and imitates an Oracle that knows the optimal solution and only expands on nodes which
contain it. For different problems are tested and their performance compared between the developed model,
SCIP, and Gurobi. The authors conclude that given a runtime limit, the developed model outperforms both
SCIP and Gurobi in computational time, optimality gap, and integrality gap. Furthermore, in one of the tested

problems, neither Gurobi nor SCIP were able to find a feasible solution in the required time, unlike the devel-



4.5. In-the-Loop Machine Learning 18

oped model.
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Figure 4.3: Schematic representation of in-the-loop ML.

Similarly, Alvarez et al. (2017) implement imitation learning to approximate strong branching decisions. Strong
branching is the most efficient branching strategy in terms of total number of nodes explored. However, the
calculation time required to evaluate which node to branch can sometimes be longer than branching on
multiple nodes. The authors report results that can, depending on the problem, outperform CPLEX. How-
ever, certain problems do not benefit at all from the approximated strong branching approach. Gasse et al.
(2019) also approximate strong branching decisions via the use of convolutional neural networks. Similarly,
the authors conclude that, in some cases, the imitation of strong branching could be faster than commercial

solvers.

Dai et al. (2018) developed a reinforcement learning framework that learns the structure of CO problems
on graphs and creates end-to-end heuristics that aim to replace the entirety of the CO solving process. Q-
learning is trained over node branching decisions made by CPLEX. The focus of the paper is on online CO
problems, as the structure of the problem is key in learning the correct branching decisions. The algorithm
shows good performance on several common CO problems, including the Minimum Vertex Cover, Maximum
Cut and Traveling Salesman problems. Furthermore, the algorithm develops several greedy heuristics that

have not been investigated before and may be a good addition to commercial solvers.

Generally, learning branching is still at an early stage in terms of commercial application. For an in-depth
survey of learning branching literature and its success and failure in application, the reader is referred to the
review by Lodi and Zarpellon (2017). Table 4.1 presents an overview of the various approaches and goals of the
ML use in discussed literature. Note that, when multiple ML algorithms were used, only the best performing
one was identified in the ML Type field.



Table 4.1: Overview of literature related to use of ML to assist in CO.
E2E. = End-to-end, PO = Pre-optimization, ITL = In-the-loop

Paper Approach ML Type Goal
Kirschner and Realff (1999) E2E Decision Trees Replace CO
He et al. (2014) ITL Imitation Learning Learn Branching Decisions
Kruber et al. (2017) PO Random Forest Evaluate DW Utility
Alvarez et al. (2017) ITL Imitation learning Learn Strong Branching Decisions
Dai et al. (2018) ITL Q-Learning Learn Branching Decisions
Bonami et al. (2018) PO Random Forest Evaluate Linearization Utility
Hondet et al. (2018) E2E Q-Learning Replace CO
Hassan (2018) PO Random Forest Reduce Solution Space
Gasse et al. (2019) ITL Graph Convolutional Neural Networks Learn Strong Branching Decisions
Fischetti et al. (2019) PO Random Forest Evaluate Computational Time
Bertsimas and Stellato (2019) E2E Neural Networks Replace CO
Larsen et al. (2019) E2E Neural Networks Replace CO

4.6. Discussion

With faster computational time as the end-goal, some publications combining the use of ML and CO focus
on the implementation of ML to directly output a solution, i.e. leave out CO solvers. The advantage of end-
to-end approaches is that they do not require the use of a commercial solver once the ML algorithm has
been trained. Although this has been a promising solution to small-scale online applications, the level of
complexity of airline recovery problems would require immense sets of input and output data to train the ML
model. Obtaining exact, optimal solutions (i.e. target data) is a very computationally expensive process, and

the lack of guarantee of a feasible solution could prove very problematic in real-time application.

The use of ML before initiating the optimization is perhaps most promising to address some of the heuristic
scope-limiting algorithms present in airline recovery literature. ML algorithms that make decisions to change
problem structure, solution space, and identification of best heuristics to use have all been implemented in
recent literature and may be able to generalize well over a vast array of CO problem types. These types of ML
applications can also run into similar problems as that of the end-to-end algorithms, especially when in use
for reduction of the solution space. However, fine tuning and reasonable amounts of training instances can

much more easily prevent these issues than in the case of end-to-end learning.

In-the-loop learning, although proven feasible and sometimes effective, is still far from operational applica-
tion feasibility. The limited amount of models that outperform commercial solvers indicates that there is still
room for research. However, it is a potential future addition to commercial solvers used in online applica-
tions. It should be noted that although three separate techniques have been mentioned to classify literature,
there is no limitation on their combined use. For example, a scope-limiting algorithm can be used in the pre-
optimization stage, while an in-the-loop algorithm can be used during the optimization stage to help with
branching decisions.
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5. Conclusion & Research Questions

In the context of combinatorial optimization, recent machine learning literature proposes a number of meth-
ods that seem suitable for integration with the airline recovery problem. Though end-to-end and in-the-loop
machine learning may be feasible in their application, the use of ML prior to starting the recovery operation

seems to be the most promising of the three to address the needs of the AOCC in a real-time setting.

The solution times required by the AOCC have led to the inclusion of large simplifications in most of the pub-
lished airline recovery literature, often relating to airport slot constraints, multi-fleet constraints, and crew
labour regulations. Furthermore, the scope of recovery actions is often limited in most literature, whereas
many others are present in daily operations. Due to model formulations, cruise speed control in particular
is often left out as a recovery option. Full compatibility of the solution with real-life operations, therefore,

remains an issue.

These simplifications are helped by the fact that even a good (sub-optimal) solution can improve upon the
current disruption management process. Throughout the publications presented in this paper, the majority
of the scope of the airline recovery problem, including its constraining factors and recovery options, is well-
documented. With the ongoing exponential growth in computing power, perhaps the future will enable a
relatively simplification-free application of an airline recovery solution. As a business, airlines will strive
for optimality in the long term rather than accept satisfactory performance. This factor will likely be the

backbone of airline disruption management research for years to come.

The research question resulting from this literature review can therefore be formulated as follows:

How can the use of machine learning methods be applied to the airline recovery problem, and what are the

effects of this integration on the solution quality and solution time?

With the aim of answering the main research question and pinpointing the main steps required to complete

the follow-up research project, the following research sub-questions must be answered:

1. What is the most computationally efficient way to incorporate multiple resources into the mathemati-
cal formulation of the ARP?

2. Which simplifications to the ARP formulation are acceptable in the context of industry practice?

3. Given the problem formulation, what form of machine learning algorithm and approach best suits the

targeted solution time reduction?

4. How should the two main performance metrics, solution time and solution quality, be balanced during

model assessment?

Answering all four sub-questions should give a clear idea on what the answer to the main research question
is, which will hopefully result in another significant contribution to the domain of airline disruption manage-

ment.
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Model Framework

This chapter will provide more detail into how the Sequential Disruption Set Solver (SDSS) functions. The
framework of the aircraft recovery stage remains largely identical to that of Hassan (2018), with the exception
of the addition of the loading of scheduled and reserve crew data during the pre-processing phase and in-
clusion of crew considerations within the connecting passenger matrix. The four main parts constituting the
aircraft recovery stage are present in Figure 5.7. In this figure, bullet points marked with an asterisk (*) repre-
sent those that were changed as part of this research. Starting with a disruption scenario, the aircraft recovery
stage loads the relevant aircraft schedules and processes disruption information into features. These are
passed on to the RF classifier which outputs a per-aircraft probability of use within the optimal solution. The
disruption solver uses these probabilities to make a selection, and write and solve the linear programming
formulation of the aircraft recovery problem. The solution is sent to post-processing, and finally forwarded
to the crew recovery stage. As the specifics of the aircraft recovery stage have been elaborated on in detail by
Hassan (2018), this chapter will focus on the details of the crew recovery stage.
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Figure 1.1: SDSS aircraft recovery stage framework.

Much like the aircraft recovery stage, the crew recovery stage is divided into four main parts: (1) pre-processing,
(2) classification, (3) LP-solving, and (4) post-processing. An overview of the crew recovery stage as part of the
entire SDSS formulation is present in Figure 1.2. Each of these parts will be elaborated on in the following four
sections. The crew recovery process begins with the actions taken by aircraft recovery, which are transformed
into relevant input data during the pre-processing phase.
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Figure 1.2: SDSS crew recovery stage framework.

1.1. Pre-processing & Classification
During the pre-processing phase, the changes made to the schedule by the aircraft recovery stage are loaded
and processed into disruptions within the crew schedule. The original disruptions to the aircraft and flight
schedule are also considered, as they are included in the solution. The crew schedule is passed on from the
aircraft recovery stage where it was loaded, and the machine learning classifier for crew selection is loaded.
The feature space is also generated during this step, as shown in Figure 1.3.

Aircraft Recovery
Solution
New schedule
Crew schedule
Crew schedule . . .
Load flight, crew, Process changes Generate Feature Disruptions
Crew cost data —>» . . ===
. - and cost data to disruptions Space Feature space
Time window :
- Settings
Settings

Figure 1.3: SDSS crew recovery stage pre-processing flowchart

The disruptions in the crew schedule originate from the changes made during the aircraft recovery stage and
can be of two types: (1) delays to flight arcs and (2) flight arc cancellations. The aircraft recovery stage also
considers tail swaps as recovery options, but these occur as a result of a delay or cancellation. The effect
of tail swaps on the crew schedule is therefore already captured in the said delay and/or cancellation. In
essence, the crew recovery stage assigns crew to flight arcs, with no regard for the aircraft flying them, as these
have already been assigned in the previous stage. Following the acquisition of the disruptions, the feature
space is generated by processing each crew’s scheduled flights and duty and flight times with respect to the
disruptions. Before the classification, the feature space consists of a dataframe with a layout similar to that
of Table 1.1, though it lacks the target vector Y. For each candidate crew C, the value of each of the model’s n
features is determined. These are then passed on to the machine learning classifier for classification.

Table 1.1: The post-classification feature space.

£ B F F, Y
C | vip v 13 VLn | Y11
Co | 121 V12 V23 V2an | Y11
C3 | v31 V12 U33 Vo | Y11
Com | Um1 VUm2 VUmg3 Umn | Ymn
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As no flight delay opportunities exist within the crew recovery stage, an evaluation of whether crew duties are
broken is performed within the feature space generation. If no duties are broken and the changed schedules
can be absorbed by scheduled crew, the solution is identified as trivial, and only the crew scheduled to operate
the disrupted flights are passed to the solver. When this is not the case, the classifier uses the generated
feature space to output a per-crew probability of being used in the optimal solution, as seen in Figure 1.4.

Crew schedule
Disruptions Calculate Generatesubset _ __ | Crew subset
Feature space probabilities of crew, flights Flight subset
Settings

Figure 1.4: SDSS crew recovery stage classifier flowchart

Several ways of classification are presented to the user within the settings, the more basic of which is a fixed
probability threshold. The user-defined probability threshold classifies a crew positively (True) or negatively
(False) if the probability of their use in the optimal solution as determined by the classifier are above and
below the threshold respectively. During evaluation, some large disruption cases were not reduced by a sig-
nificant amount via the use of the threshold alone. This has been addressed via the addition of a further
reduction of the initial selection, which is present as the second classification option within the user-defined
settings. Namely, any selection that is larger than 100 crews and does not reduce the number of crews by at
least 50% is revisited. The crews are sorted by probability of use in the optimal solution, and either the top 100
or top 50% of crews are selected, whichever is larger. 100 crews was chosen as a sufficient reduction as disrup-
tion sets with 100 crews or less were generally solved in under 20 seconds. With this selection, crew members
likely to be used within the optimal solution are identified, and the classifier passes on the set of these crews
and their scheduled flights to the disruption solver, where they will be used to generate a sub-network. The
quality of this selection algorithm is evaluated during the sensitivity analysis.

1.2. Disruption Solver

The disruption solver takes the processed disruptions, settings, and the subset of the crew and flight sched-
ules as input, and uses it to create and solve the LP formulation of the crew recovery problem. The schedules
are used to create a time-space sub-network containing only the relevant flights and crews as identified by
the machine learning classifier. This is followed by a per-flight and per-crew cost calculation, and finally by
the writing and solution of the LP problem, as seen in Figure 1.6.

Crew subset Create reduced Calculate per-
Fh'ght su.bset e R Write and sqlve ___ . Crew recovery LP
Disruptions LP formulation solution
- network crew costs
Settings

Figure 1.5: Determination of origin and sink nodes for crews entering or exiting the time window.

During the generation of the time-space network, each crew’s specific origin and sink nodes are identified.
The way this is done can be seen in Figure 1.6. For crew starting before the time window and entering it via a
flight, such as Crew I on the figure, the origin node is considered the arrival node of the flight. The sink node
is determined as the node at which the crew reaches its maximum allowable duty time. If a crew’s maximum
allowable duty time allows them to work outside of the time window, the sink node is the last node within the
time window at the location of the last ground arc used, as seen on the figure for Crew II. For crews whose
duties start and end within the time window, the origin and sink nodes are identified as the departure node
of the first and arrival node of the final flight, respectively.
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Figure 1.6: Determination of origin and sink nodes for crews entering or exiting the time window.

Once the time-space network is generated, the per-flight and per-crew costs are calculated for use in the LP
model objective function. These contain the operating cost of crew on each flight, flight cancellation costs, as
well as the penalty costs for each of the penalties incurred by the crew LP model. The five types of penalties
the crew model incurs are:

1. Crew swap penalty - incurred when a flight is operated by non-scheduled crew.

2. Flight time limit penalty - incurred when crew exceeds the daily scheduled flight time to an amount no
greater than the maximum legal allowable flight time.

3. Sink node violation penalty - incurred when a crew is not located at its designated airport(s) at its des-
ignated sink time.

4. Flight cancellation penalty - incurred upon flight cancellation and equal to the estimated flight cancel-
lation cost as calculated by the aircraft recovery stage

The order in which these penalties are sorted also corresponds to the order of their impact on the objective
function from lowest to highest. Following the cost calculation, the decision variables and objective func-
tion are written, along with the corresponding constraints. The solution obtained by the disruption solver is
passed on to the post-processing phase, where the aircraft and crew recovery process is completed.

1.3. Post-processing

The post-processing phase aims to write the solution into a schedule and provide the user with useful in-
formation regarding the solution via the use of time-space network graphs and key performance indicators
(KPIs). Following the LP solution, the values of the decision variables must be converted into crew schedule
decisions. The decision variables also provide insight into the main KPIs used to evaluate the solution. These
are present in Table 1.2. In essence, the cost of the reserve crew solution is based on the values of the five
penalties the model uses. The quality of solution can therefore be compared in terms of the number of can-
celled flights, number of swaps, number of flight time violations, and number of scheduled and reserve crew
sink violations, as well as by the final objective function value.
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Table 1.2: Key performance indicators used in the evaluation of the crew recovery stage solutions.

Abberviation Name Unit Description

Sol.T. Solution Time [s] Solution time required to solve disruption
Crew Crews Considered [#] Number of crews considered in the recovery model

Disr.C. Disruption Cost [$] Cost of disruption solution, excluding scheduled costs.

Opt.S. Optimal Solutions [#1  Number of runs that obtained optimal solutions.
Canx Cancellations [#] Number of flight cancellations.
SNV Sink Violations [#] Number of sink node constraint violations.

DH Deadheads [#] Number of crew deadheads.

Swap Crew Swaps [#  Number of crew swaps.
RCU Reserve Crew Used [#] Number of reserve crews used.
U60 Runs Under 60 s [#] Number of runs that achieved a solution in under 60 seconds.
U120 Runs Under 120 s [#]  Number of runs that achieved a solution in under 120 seconds.

The KPIs are stored, after which a time-space network graph is generated to graphically display the changes
made to the schedule. This is the final step of the crew recovery stage and therefore the SDSS. a flowchart of
the post-processing stage of the SDSS is shown in Figure 1.7.

Crew recovery LP Convert DVs to Create time- Complete recover
VeryLt schedule —>» Calculate KPIs —>» space solution ---- P . Y
solution L. solution
decisions plot

Figure 1.7: Flowchart of post-processing within the crew recovery stage.



Crew Recovery Formulation

This chapter describes the detailed binary integer programming (BIP) formulation of the crew recovery prob-
lem. To avoid overlap with the work of Hassan (2018), only the developed crew recovery formulation has been
elaborated on. The SDSS relies on the concept of parallel time-space networks to implement constraints at a
crew level. This means that the movement of each crew through time and space is tracked and constrained
separately, as each crew has, in essence, its own time-space network. The constraints between parallel time-
space networks ensure that a single flight is always operated by a single crew. As the aircraft recovery stage
relies on a formulation with similar logic, the explanations presented here can easily be extrapolated to the
formulation of the aircraft recovery problem. The following lists describe the sets, decision variables, non-
decision variables, and mathematical model used by the crew recovery.

Sets:

* F-Setofflights i ¢ N;j - Set of intermediate nodes n
e A-Setofairports a * N - Set of sink nodes n

e N-Setofall nodes n e K- Set of crews k

¢ Np - Set of origin nodes n

In the above list, the sets of origin, sink, and intermediate nodes are defined at a crew level, i.e. each crew has
its own set of the three node types. These sets enable constraining different crews to different start and end
locations and times, and are created during the pre-processing phase. The set of crews K also includes reserve
crews. The following decision variables are used in the crew recovery model. As all the decision variables are
binary, their explanation contains a description of the condition at which they take on a positive value.

Decision Variables:

* bk, -if kallocated to i * dcx;-if iis cancelled
* 06, - if k uses n-originating ground arc * s - slack if sink constraint violated
* 8pH,, - if k deadheaded on i * spry - slackif scheduled flight time is exceeded

* §g - if i flown by unscheduled crew

As the decision variables imply, the three actions a crew may take between their origin and sink node are (1)
flying a flight, (2) being deadheaded (flying as a passenger) on a flight, or (3) being on the ground. é¢y; is
present as a decision variable in the case no crew may be assigned to a flight. If this is the case, the flight is
cancelled. The remaining variables define the slack variables used for maintaining problem feasibility and
penalising unwanted behaviour. The variables for constraining the origin and sink nodes ensure that a crew
starts and ends their duty at their designated times and locations. Each crew has a penalty associated with
missing their sink node, though this cost is lower for reserve crew than regularly scheduled crew. Finally, each
flight not flown by its scheduled crew is penalised with the aim of minimising the number of flights not flown
by originally scheduled crew. Each of these variables is associated with a cost in the objective function, and
the parameters used to determine it are present in the following list.
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Parameters:

* Cg, - Cost of ground arc originating from n. * Crgr - Penalty if scheduled flight time exceeded
* Ck;, - Operating cost of crew k on flight i * Ccyx; - Cancellation cost of flight i

* CpH,,; - Deadhead cost of crew k on flight i e FT; - Flight time of flight i

e Coc - Penalty if flight flown by non-scheduled crew FTLy - Flight time remaining within TW for crew k

e Cgy - Penalty if sink node constraint violated * FTMj - Maximum additional flight time for crew k

Though ground arc costs are set at zero for this research, their addition is necessary to ensure proper move-
ment of crew through time and space. The FT; and FT Ly parameters are used to constrain the flight time
of crew within the time window. The aforementioned decision and non-decision variables are used to create
the objective function. The aim of the crew recovery problem is to minimise the costs of disruptions incurred
by the crew schedule, in the form of crew operating costs, crew deadhead costs, and flight cancellation costs.
These are present in the following objective function:

Min Z Z (CKk,i '5Kk,i + CDHk,i '5DHk,i) + Z Z Ca, '5GKk,n + Z Cex-bcx;

keKieF keK neN ieF
Flight operating/deadhead costs Ground arc costs Cancellation costs
(2.1)
+y Coc-0x + Y. Csv-sc+ Y, Crr-Spry
ieF keK keK
Slack costs

The first element represents the costs incurred by assigning crew to operate or be deadheaded on flights. The
second and third elements represent the costs of assigning crew to ground arcs and cancelling flights, respec-
tively. The final element represents the slack costs that penalise the model for taking unfavorable actions.
This is done only when the penalty cost is lower than the other options available for recovery. The way these
elements function within the minimization problem is governed by the following set of constraints:

Scx,+ ), 0k, =1 VieEVecE (2.2)
keK,

Equation 2.2 forces all flights to either be assigned a crew or cancelled. The following three constraints en-
sure the node-balance of the time-space network. Equation 2.3 ensures that the net flow between any two
intermediate (i.e. not origin or sink) nodes is equal to zero. This means that a crew may not begin or end their
duty at any node other than the origin or sink node respectfully. To supplement this constraint, Equation 2.4
ensures that the net flow out of the origin node is equal to one, while Equation 2.4 constraints the net flow
into the sink node at one.

6G[(k,1171 + Z (5[(“ +6DHk,i)) — (6@](,6'" + Z (6[(,” +6DHk,i) =0 VkeK,neN; (2.3)
ieF, i€Four
Sk, + Y 6k, +6pm,,)=1 VkeK,n=scheduled N, of k (2.4)
i€Fou;
86K+ 2. Ok, +0pmH,)+sc=1 VkeK,n=scheduled Ns of k (2.5)
iEF[N,l

Equation 2.6 ensures the value of 6z is equal to one whenever a flight is operated by a non-scheduled crew.
In this way, a penalty is added to the objective function for every crew swap performed.

Ok, —0x =1 VieFk= crewscheduled for i (2.6)

Finally, the following constraint ensures that the flight time of a crew within the time window does not exceed
the allowable flight time. If the flight time within the time window exceeds the scheduled flight time, a penalty
is added to the objective function.

Y Ok, FT;<FTLg+FTM-spy, VkeK @.7)
ieF
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Within the time window, crew labour and end-of-time-window location constraints are easily implemented
within a parallel time-space network approach. During the pre-processing phase, the origin and sink nodes
are determined, and relevant OF penalties are assigned depending on how strict the sink node penalty is.



Data set

Five separate datasets were required to implement the SDSS: the flight schedule, the passenger data, the
disruption data, the crew schedule, and the reserve crew schedule. This chapter will present details on how
each of them was acquired and processed, and what kind of information it provides. The entirety of the data
is tied to the US flight schedule of Delta Airlines in the first quarter of 2015. Delta Airlines has the world’s
second largest flight network, operating 26 different aircraft types to 150 US destinations, with an average
of 2400 daily flights. As the airline recovery problem is NP-hard, difficulties meeting AOCC-defined solution
time limits are highlighted best for large-scale networks. The following sections describe each of the five
datasets acquired and generated for use within the SDSS.

3.1. Flight & Disruption Data

The flight and passenger schedules, as well as the disruption sets were acquired from the work of Hassan
(2018). This flight schedule data was obtained from the United States Bureau of Transportation Statistics
online public database. The 2015 U.S. flight schedules of Delta Airlines were isolated and used for the entirety
of model development and testing. The flight schedules were supplemented with passenger itineraries with
data from Barnhart et al. (2014). The data contained the number of passengers on different O-D pairs, and
STD and STA of different flights. Using the flight data, around 90% of passenger statistics were matched to
their respective flights. For flights where no matching passenger statistics were identified, the average load
factor on that particular O-D pair was used. The flight and passenger data used contains properties as shown
in Table 3.1. Note that, in the initial dataset, per-flight information on delays and their cause was available.

Table 3.1: List of information provided by flight schedule. Adapted from Hassan (2018)

Property Description

Flight Number Delta Airlines flight number, in the form of DL1111. Note that
flight number is not unique.

Tail Number Unique tail number of aircraft scheduled to operate flight.
Origin Airport Flight origin airport, as identified by three letter IATA code.
Destination Airport Flight destination airport, as identified by three letter IATA code.
Scheduled Time of Depar- Flight scheduled departure time as measured in Coordinated
ture (STD) Universal Time (UTC).
Scheduled Time of Arrival Flight scheduled arrival time as measured in Coordinated Univer-
(STA) sal Time (UTCQC).

Passengers Economy Class  Number of economy class passengers booked on flight.

Passengers Business Class ~ Number of business class passengers booked on flight.

The delay information provided by the original Delta Airlines flight schedule was used to create a set of dis-
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ruptions to be resolved within the SDSS. This set of disruptions was obtained from Hassan (2018). Though
disruption duration and cause were present, the information regarding when the AOCC was made aware of
the disruptions (time found out, TFO) was artificially generated. Each delay contains six properties, as shown
in Table 3.2.

Table 3.2: List of information provided by disruption set.

Property Description
Flight Number Flight number of the disrupted flight.
Tail Number Tail number of the disrupted flight.

Type Type of disruption: delay or aircraft unavailability.
Cause Disruption cause: NAS, weather, airline delay.
Duration Disruption duration in minutes.

Origin Airport  Origin airport of disrupted flight.

3.2. Initial Crew Schedule

The difficulties in long-term crew scheduling due to uncertainty and regulation-induced complexity has led
to proprietary crew scheduling models for each airline, all of which remain a confidential part of their busi-
ness. To establish an initial cockpit crew schedule to recover, therefore, one must be generated. The schedul-
ing of cockpit crew in particular is subject to stringent regulations due to possibilities of fatigue deteriorating
crew performance capability. Within the US, baseline regulations which by law must never be broken are set
out by the Federal Aviation Administration (2011). Each airline can then choose to extend these regulations
with stricter, airline-specific ones, which are not legally binding. Delta’s crew regulations were obtained from
the publicly available crew scheduling handbook (Delta Airlines (2020)). These regulations contain the most
common cockpit crew regulations respected by Delta Airlines in crew scheduling and recovery within the do-
mestic U.S. flight network. These were used to develop a crew schedule generation algorithm, as well as to
allow flexibility in recovery options when augmented operations (disrupted schedules) occur. The main crew
regulations considered within the SDSS are:

¢ The maximum allowable scheduled length of a duty period ranges from 9 to 14 hours depending on
number of scheduled flights and duty start time.

e The maximum allowable duty period length in the case of augmented operations can be increased to
up to 17 hours depending on the type of aircraft and original start time of duty.

¢ The maximum allowable scheduled flight time within a duty period ranges from 8 to 9 hours depending
on duty start time.

¢ The maximum allowable flight time may be extended to 13 hours for augmented operations.

¢ Crew may not be scheduled to more than 60 duty hours in any consecutive 168-hour (7-day) period.

¢ Crew may not be scheduled to more than 190 duty hours in any consecutive 672-hour (28-day) period.
¢ All crew must have a consecutive 10-hour rest between any two duties.

¢ All crew must have a consecutive 30-hour rest period within any consecutive 168-hour (7-day) period.

A greedy forward-heuristic approach is used to generate crew duties. Starting with the first flight in the sched-
ule, the algorithm checks the possibility of adding the flight to an existing duty. If the flight cannot be added
to any existing duty due to violation of labour constraints, a new duty is generated, and the next flight is
evaluated. When a compatible duty is found for a flight, the flight is immediately added to it. The duties are
sorted in order of ground time at the flight origin airport prior to departure, meaning that a crew that has
arrived at the flight origin airport two hours prior to departure will always have priority over one that arrived
30 minutes prior to departure. In this way, unnecessarily tight connections or large ground times are avoided.
A schematic representation of the duty generation algorithm is present in Figure 3.1.
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Figure 3.1: Flowchart of the full crew generation algorithm.

Upon completion of the duty generation, the pairing generation algorithm is called, as shown in the lower half
of Figure 3.1. The algorithm attempts to add each duty to an existing pairing while respecting regulations. If
no compatible pairing is found, one is generated and the duty is assigned to it. Once all the pairings are
generated, the initial crew schedule is complete. The crew schedule is written to the flight schedule on a
per-flight basis, and supplements the flight information with that present in Table 3.3.

Table 3.3: List of information provided by scheduled crew data.

Property Description
Crew Number Unique crew number used as an identifier, e.g. 111.
End Airport The scheduled end-of-duty airport for the crew.
Flight Time Total flight time crew has accrued after operating flight.
Duty Time Total duty time crew has accrued after operating flight.
Maximum Flight Time Maximum allowable flight time per regulations.
Maximum Duty Time = Maximum allowable duty time per regulations.

3.3. Reserve Crew Schedule

In addition to the regular crew schedule, airlines also assign reserve crew to prevent cancellations and in-
crease the robustness of the flight schedule. Though many modern airlines use mixed-duty schedules where
a crew is scheduled for regular operations and may have a reserve duty within the schedule, this thesis pa-
per assumes only the presence of separate scheduled and reserve crew. Reserve crew duties are those that
consider operation of flights in the case of absence of scheduled crew. The role of reserve crew is crucial in
maintaining feasible flight schedules for airlines and their assignment is not trivial. A reserve crew schedule
is generated based on the work of Bayliss et al. (2012). Namely, if the probability of scheduled crew being
unavailable for a flight is known for the entire schedule, a fixed number of reserve crew R can be assigned in
a way that minimises the total probability of crew unavailability over the entire schedule. The reserve crew
generation utilises the following parameters:
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P - Vector containing the initial probabilities of scheduled crew absence for each departure
P’ - Vector containing the updated probabilities of crew absence after reserve assignment
X - Vector containing the start times for each of the assigned reserve crew duties

L - Matrix containing flights each assigned reserve crew can directly cover

R - Number of reserve crew available for scheduling

N - Number of flights in the schedule

The evaluation of the quality of a reserve crew schedule can be evaluated by the sum of vector P/, that is the
total probability that a crew will be missing for a flight over the entire schedule. Minimising this objective
has experimentally proven to provide the best results in practice. A MIP-based formulation of this problem
would be difficult to solve within the entire flight network, as, given a fixed number of reserve crew R and
fixed number of flights N, the solution space scales with Equation 3.1:

N!
R!I(N-R)!
A greedy backwards heuristic approach is therefore used to evaluate the impact of reserve crew placement on
the entire network. This approach is shown to obtain results within 0.8% of the optimum. For reference, the
results obtained by the worst performing heuristic, the uniform distribution of reserve crews based on num-
ber of flights, obtain a 13% higher objective function value. The algorithm is initiated with the assumption
that every flight has an associated reserve crew duty that starts at its STD, i.e. with R’ = N. For each flight, the
maximum static crew duty period is used as a baseline for determining which future flights operated by the
same aircraft family and originating from the same airport can also be flown by this reserve crew, assuming
it is not used to replace scheduled crew at its 'initiation’ flight. These flights are contained within the matrix
L. Let Pr denote the probability of having a reserve crew available and Pm denote the probability of a flight
missing a scheduled crew. For a given reserve duty’s first flight, the probability of reserve crew presence Pr
is 1. The probability of this reserve crew being present for the next flight is therefore 1 — Pm. The cumulative
probabilities of presence of reserve crews for a flight are determined under the assumption that each prob-
ability of crew unavailability is an independent event. Given a fixed number of flights NV, an initial number
of reserve crews R’ = N, and a fixed-number of reserve crews R, the algorithm evaluated the removal of a
single reserve crew on the objective function. The reserve crew associated with the smallest increase in the
sum of P’ is removed, after which the remaining crews are reevaluated. The algorithm stops once the desired
number of reserve crew R is reached.

Number of feasible solutions = 3.1

Reserve crew is assumed to be generated prior to knowledge of the disruptions faced during the period
present in the dataset. The evaluation of the model in practice during development could lead to design-
ing a reserve crew schedule that fits particularly well to the disruption faced. For this reason, theoretical
performance as evaluated by the sum of P’ is used as the primary metric. The value of R was set to 20% of
the number of duties in the schedule. This number is realistic relative to the corresponding real-life case, as
some airlines have up to 30% of their crew scheduled as reserve for a day. The theoretical performance of the
reserve crew generation algorithm did not improve significantly with the use of a higher percentage.

The biggest difficulty in the application of the proposed formulation is initialising the vector P. It is assumed
that scheduled crew absence for a certain flight can only be caused by the cancellation of the crew’s previous
flight, or the delay of the previous flight to the point where the flight considered is missed. Therefore, the
probability of a crew missing a flight is based on two mutually exclusive events: (1) the probability of previous
flight cancellation Pc, and (2) the probability of previous flight delay past the maximum allowable delay Pd =
dmax- In this case, the only information required to initialise the vector P are the values of Pc and Pd for all
scheduled flights. To obtain these probabilities, a random forest classifier was trained with Delta Airlines OTP
data for the period 2012-2014. This classifier is used exclusively for the generation of disruption probabilities
and is not called as part of the SDSS. The features used to train the model are determined per flight and are:

e AC_family - aircraft family of the assigned aircraft * origin - origin airport of the flight
* quarter - quarter of the year for STD * destination - destination airport of the flight
¢ day_month - day of the month for STD e std- STD of the flight

¢ day_week - day of the week for STD ¢ sta - STA of the flight
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The target array contains 37 boolean columns. The first is the classification of whether the flight was cancelled
or not. The remaining target columns represent the classification of whether the flight experienced an arrival
delay greater than or equal to d, Pd = d, where d € {10,20,30...360}. A schematic view of how the probability
of a scheduled crew being missing is present in figure Figure 3.2. A 20 minute delay or cancellation of Flight 1
would result in the scheduled crew being unavailable for Flight 2. If we assume the probability of cancellation
Pc at0.05, and the probability of a delay of 20 or more minutes Pd = 20 at 0.02, then the combined probability
of the scheduled crew being missing Pm is the sum of the two i.e. 0.07. The vector P is constructed by
evaluating these values over the entire schedule.
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Figure 3.2: Influence of delay and cancellation probabilities on crew absence.

Once the reserve duties are created, they are combined into pairings in a similar way to the pairing generation
of the initial schedule. Namely, duties are ordered by start times and grouped together if the combination
respects the crew schedule regulations set out by Delta. Note that for reserve pairings, a maximum of five
duties are assigned per crew. The information provided by the reserve crew schedule is present in Table 3.4

Table 3.4: List of information provided by reserve crew data.

Property Description
Reserve Number Unique crew number used as an identifier, e.g. R111.
Base The scheduled reserve base for the crew.
Aircraft Family Aircraft family operated by crew.
Duties Number of duties scheduled for crew.
Start Time Start time for each duty scheduled for crew.

End Time End time for each duty scheduled for crew.




Model Verification

This chapter presents the ways the verification of the crew recovery formulation of the SDSS. The main focus
is on ensuring correct functionality of the mathematical formulation as solved by the MILP solver. This was
done by evaluating the model solutions on artificially generated disruptions where a solution is easily identi-
fied as optimal by the user. The generation of the initial and reserve crew schedules is also evaluated in this
chapter. Section 4.1 provides a look into the main aspects of the SDSS crew recovery model to be verified, as
well as a few generated examples. Section 4.2 describes the ways the generated crew schedules were verified.

4.1. Crew Model Verification

To verify that the model is able to make the right decisions, each of its recovery options was tested to ensure
it functions as expected. Several artificial scenarios were used to evaluate the ability of the model to perform
crew swaps, use reserve crew, deadhead crew, and cancel flights. These were evaluated by hand and com-
pared to the results of the optimizer. The optimizer can use a combination of four actions to recover the crew
schedule: (1) swap crew schedules, (2) use reserve crew, (3) deadhead crew, and (4) cancel flights. To min-
imise unwanted behaviour, appropriate penalties have been implemented for flight cancellation, utilisation
of reserve crew, and absence of crew at their sink nodes. Though flight time penalties are also implemented,
testing indicated that flight time is very rarely a limiting factor in the application of crew recovery. The param-
eters used for the evaluation of the artificial disruption scenarios are present in Table 4.1. In these scenarios,
the hourly operating cost, C,), and the flight cancellation cost, Cy, are assumed to be constant.

Table 4.1: Parameters used for the crew recovery verification.

Parameter Value

Cop $500
Coc $2000
Ccx $250000
Csy $50000
Csvy $10000
CpH $200

These penalties are applied on a set of six artificial disruption scenarios generated with the aim of testing the
functionality of the MILP formulation of the crew recovery stage. The following table contains information
on each scenario, the number of scheduled and reserve crew present, as well as the number of delays and
cancellation present as disruptions. Throughout the following scenario evaluations, note that the graphic
representations consist of relatively small time-space networks. In each plot, the line style of each flight arc
represents which crew was scheduled to operate the flight. The line colour represents which crew operated
the flight, or whether it was cancelled. Though results per scenario are presented in a single time-space plot,
each scheduled or reserve crew operates within a separate time-space network.
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Table 4.2: Overview of disruption scenarios tested.

Scenario Crews Reserve Crews Delays Cancellations

D1 1 0 1 0
D2 2 0 1 0
D3 2 0 0 1
D4 1 1 1 0
D5 2 1 1 0
D6 1 0 1 0

Scenario D1 is graphically represented in Figure 4.1. Turnaround times are included in the length of the flight
arcs and are assumed at 20 minutes for all flights. Crew I is scheduled to Fly Flights 1 and 2. A 20-minute
delay of Flight 1, represented as Flight arc 1d in the figure, breaks the schedule of Crew I. The sink node for
Crew I is set at the last node within the time window at Airport A. The solver is called to make a decision on
how to restore the schedule.

Original Schedule Operated by Crew 1 Cancelled =
10 min > ” '
C o o o o o
j2i
g
a B o o o o o o o
k=
<
A o o o o o o o

>
>

Time

Figure 4.1: Artificial disruption scenario D1.

As the figure shows, the solver chooses to fly Flight 1 and cancel Flight 2. In this case, this is clearly the
optimal solution as flight delays are not considered in the crew stage. The cancellation of Flight 2 also results
in Crew I missing their scheduled sink node at Airport A. The total objective function value is $300250, $250
of which is for the 30-minute flight, and $300000 for penalties incurred for the missed sink node and flight
cancellation. A breakdown of these costs is present in Table 4.3. This table also contains the costs of other
disruption scenarios considered in this section.

Table 4.3: Overview of disruption scenario solutions and their respective costs.

Scenario Objective Operating Swap Reserve Sink  Cancellation Deadhead Disruption

D1 $300250 $250 $0 $0 $50000 $250000 $0 $300000
D2 $5250 $1250 $4000 $0 $0 $0 $0 $4000
D3 $1200 $1000 $0 $0 $0 $0 $200 $200
D4 $60583 $583 $1000  $10000  $50000 $0 $0 $61000
D5 $52117 $917 $1000 $0 $50000 $0 $200 $51200
D6 $583 $583 $0 $0 $0 $0 $0 $0

In Scenario D2, the same delay from Scenario D1 is considered. A second crew, Crew II, operating two addi-
tional flights, 3 and 4, is also present in the network. Scenario D2 is graphically represented in Figure 4.2. The
solid lines represent flight arcs scheduled for Crew I, while dashed lines represent arcs scheduled for Crew
II. Upon having its schedule broken by a 20-minute delay in Flight 1, Crew I cannot operate Flight II. Crew
II, however, can, and is chosen by the solver to operate Flight II. Flight 4 is left without a crew, and Crew I is
assigned to it. In this way, by swapping the scheduled crew of two flights, no cancellations are required and
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both crews end up at their sink node locations. The objective function for this scenario is $5250, of which
$1250 are made up of 150 minutes of operating costs. The remaining $4000 in the objective function value
comes from the two crew swaps performed for the two flights. These are incurred for every flight operated by
a non scheduled crew. In this scenario there are two. These two examples show correct decision making by
the solver for crew swaps and flight cancellations. One of the benefits of using a time-space network based
approach is the addition of the option to deadhead crew. The following scenario, D3, attempts to have the
model deadhead crew.
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Figure 4.2: Artificial disruption scenario D2.

In Scenario D3, the same set of disruptions and crew as that of D2 is considered. However, it is assumed
that a cancellation of Flight 2 was a result of the aircraft recovery stage. This means that operating Flight 4 is
still an option for Crew I, but also for Crew II. This scenario is shown in Figure 4.3. The solver selects Crew
II to operate Flight 4, and deadheads Crew I to airport A on the same flight. In this way, no swap costs are
incurred, and Crew I is still able to reach its sink node. The objective function value for this scenario is $1117.
This consists of $917 of operating costs for 110 minutes of flight time, and a $200 cost for deadheading a single
crew-pair. Despite the disruptions experienced during this scenario being seemingly worse, the disruption
cost is lower than that of scenario D2. As the cancellation of flight 2 comes as a disruption to the schedule and
not as a decision, the cancellation costs of Flight 2 have already been included in the aircraft recovery phase.
The costs present are only those that result from the crew recovery.
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Figure 4.3: Artificial disruption scenario D3.
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Disruption scenarios D4 and D5 aim at verifying the correct use of reserve crew and application of relevant
penalties. Namely, the use of reserve crew is penalised only if the reserve crew does not return back to base
during its duty period. In this sense, the reserve crew use is penalised in the same way a sink-node penalty is
applied. Scenario D4 assumes the presence of the initial disruption scenario of D1, i.e. a single crew whose
schedule is broken due to a 20-minute delay in Flight 1. A single reserve crew is available at Airport C at the
start of the time window. This is shown in Figure 4.4. Here, the solver decides to operate Flight 2 with the
only available crew, R1. Crew I remains at Airport C, and crew R1 remains at Airport A, both missing their sink
nodes. The objective function value of this solution is $61583. Flight costs amount to $583 of that, $50000
is incurred as a penalty for violating the sink node constraint of Crew I, and an additional $10000 is incurred
for using reserve crew but not returning them back to base. As Flight 2 is not operated by scheduled crew, an
additional swap penalty of $1000 is applied.
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Figure 4.4: Artificial disruption scenario D4.

Scenario D5 aims to demonstrate how the model allows freedom in the use of reserve crew in the case that
they do not violate their sink node constraint. In essence, it is identical to Scenario D4, with the addition
of a flight operated by Crew II from Airport A to Airport C. This is shown in Figure 4.5. The addition of this
flight enables a deadhead of crew R1 back to airport C. As a a result of this, the objective function value of this
disruption scenario is $52116.7.
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Figure 4.5: Artificial disruption scenario D5.
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Disruption costs are $51200, where $50000 comes from Crew I violating its sink node constraint, $1000 comes
from the crew swap on Flight 2, and $200 comes from deadheading crew R1 back to base via Flight 3. The re-
maining $916.7 consists of the operating costs for the three flights. In this application of the reserve crew
penalty, the reserve crew is deadheaded back to base and is able to continue its duty. No penalty is therefore
incurred as a result of its use. The final disruption scenario, D6, aims to verify the trivial solution check used

within the SDSS formulation. As flight delays aren’t considered as a recovery option, the SDSS can check for
broken crew duties during preprocessing. An example where a disruption occurs but no crew duties are bro-
ken is present in Figure 4.6. In this scenario, a 20-minute delay of Flight 1 does not break the crew schedule.
This means that the crew schedule does not need to change, and the solver outputs a disruption cost of $0,
with an objective function value of $583, consisting of only operating cost. In the SDSS, these types of disrup-
tions are identified during preprocessing. The solver is called using only the crews of the disrupted flights,
and the crew schedule is updated with the trivial solution to consider the delay(s) present. With scenario D6,
all recovery options of the crew recovery mathematical formulation are verified.
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Figure 4.6: Artificial disruption scenario D6.

4.2. Crew Schedule Verification

The crew schedules generated based on the initial flight schedule must also be verified to ensure correct func-
tionality. Though a simple algorithm was made to verify adherence of each crew pairing to regulations, the
functionality of the crew schedule was also verified within the SDSS. By initiating the SDSS crew recovery
stage for all disruptions within the disruption set and removing them prior to creating the time-space net-
works and calling the solver, the problem passed on to the solver is one where only the initial schedule is
present, and no duties should be broken. For all the runs tested, the solver returned only the trivial solution,
indicating the crew schedule functions as expected. Note that this test was not performed with the use of the
broken crew duty check the SDSS applies to identify trivial runs, but rather by calling the solver and having it
obtain a solution that considers all crews.

The aforementioned test also considers the presence of reserve crews. To verify that the generated reserve
crews are a useful asset to the SDSS formulation, the disruptions experienced by the crew stage were solved
twice: with and without the consideration of reserve crew in the solution. The results of this evaluation are
present in the following table.
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Table 4.4: Summary of non-trivial optimizer results for disruption scenarios with and without reserve
crew.

Sol.T Crew DisrC Canx SNV Swap RCU U60
Without Reserves  78.8  232.1 113960 78 713 3104 0 213
With Reserves 65.6 261.5 65860 24 601 1599 230 269

Clearly, the use of reserve crew is a valuable asset in crew recovery. The use of reserve crew reduced the
number of cancellations from 78 to 24, and the number of sink node violations from 713 to 601. Despite
adding more crew to consider, the computational time of the reserve crew-free solutions is over 13 seconds
higher on average. This is likely due to the higher number of cancellations, swaps, and sink node violations.
As the solver must weigh multiple options with a large objective function impact instead of being able to make
a lower-impact decision (use of reserve crew), the computational time increases. The use of reserve crew
reduces the average disruption cost by over 40%, enabling the SDSS to obtain much higher quality solutions.
These results also show why assuming reserve crew are available at all times is not valid. Though the reserve
crew schedule present in this research has its limitations, the realistic consideration of reserve crew with
respect to the schedule is a valuable asset of the SDSS.



Machine Learning Classifier

This chapter provides more detail on the steps taken to develop the machine learning classifier used for se-
lection of crew. Machine learning is a specific application of artificial intelligence aiming to generate a system
with the ability to learn from experience without being explicitly programmed to do so. It is generally divided
into three parts: (1) supervised learning, (2) unsupervised learning, and (3) reinforcement learning. A super-
vised learning approach assumes the presence of labelled input and output data. The process initiates with a
function aiming to correlate the input to the output by processing the input data, observing the output, and
adjusting the corresponding function weights. Unsupervised learning considers machine learning applied to
datasets with no labels or target output. This is useful when attempting to cluster elements of large datasets
with no apparent relationship. Finally, reinforcement learning utilises a software agent interacting with an
environment. Through a series of decisions, each of which results in a user-defined reward, the agent aims to
learn the best steps to take such that the sum of future rewards is maximised. As the data used for this research
is fully labelled, supervised learning was used for the entirety of the selection algorithm development.

The data available for training consists of a set of disruptions, set of crews, and a resulting solution, or selec-
tion of crews whose schedules are changed as a result of the disruption. The most logical implementation
of machine learning for identifying the most likely crews within the optimal solution is that of binary classi-
fication. Crews likely to be used in the optimal solution are classified by the algorithm as 'True’, while those
classified as 'False’ are discarded. On average, around 1.2% of crew schedules are changed in the optimal so-
lution. However, this number includes crew that is disrupted directly which can be identified easily without
the use of a machine learning classifier. The main interest in using machine learning to identify the correct
crew selection comes from non-disrupted crew that are used to recover a certain disruption. Only 0.43%
of crews in the data are of such a type. This dataset is therefore highly imbalanced, with the negative class
making up the majority. A summary of the process of algorithm development is present in Figure 5.1.
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Figure 5.1: Flowchart of the classifier development process.

Starting with the selection of a suitable classifier, the data used is analysed to identify relevant evaluation
metrics. An initial set of features relating to disruption location, disruption time, disruption duration, and
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disruption type were used to initiate the process of feature engineering. This feature set is optimised for
hyperparameters and its classification performance is evaluated on test data. Using this test data, wrongly
classified instances of the positive class were identified, and the solutions containing these instances were
manually examined. When a trend or feature was identified that was not present in the feature set, it was
added and the process was reiterated. The machine learning classifier development completes when no clear
trends are present. The following sections will elaborate on the process of algorithm selection, model evalu-
ation and training, and the final classifier properties.

5.1. Algorithm Selection

As a single missing crew in a selection could lead to non-optimal results, the selection of a good binary clas-
sification algorithm greatly influences the final results of the work. The aircraft recovery stage of the SDSS
utilises a random forest classifier to select relevant aircraft. During the qualitative analysis of machine learn-
ing classifiers done by Hassan (2018), however, an effective tie between boosted trees and random forests was
identified in terms of potential for use with the aircraft recovery problem. Olson et al. (2017) compared the
performance of 13 commonly-used classifiers available within the scikit-learn library. A 10-fold cross valida-
tion balanced accuracy approach was used to rank these across a set of 165 different classification problems.
The ranking is present in Figure 5.2.

Though relatively recent literature still incorporates RF- and SVM-based classifiers, tree boosting has emerged
as aversatile classification algorithm that is able to cope with a large variety of data. Chen and Guestrin (2016)
originally proposed the concept of extreme gradient boosting, a specific implementation of tree boosting,
which was later made publicly available as XGBoost within the scikit-learn library. Some recent papers, such
as those of Chang et al. (2019) and Zhang et al. (2021), rate the performance of XGBoost as better than that of
Random Forests. However, a general consensus is that random forests generalise better for default settings.
Because of this, hyperparameter optimization must be performed for a large number of iterations. Classifier
performance is also heavily dependent on the problem structure. That is, a classifier that generalises well to a
variety of problems does not guarantee the best performance on a given problem type. The performance of a
specific machine learning classifier on a specific problem type is not easy to predict. As random forests have
already been applied with success on the aircraft recovery problem by Hassan (2018), and due to the suc-
cess of XGBoost within many recent machine learning competitions' and its promising potential in recent
literature, it was selected as the main machine learning classifier to be used in this research.
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Figure 5.2: Average ranking of ML classification algorithms over 165 problems. Adapted from Olson
etal. (2017).

1XGBoost: Machine Learning Challenge Winning Solutions - https://github.com/dmlc/xgboost/tree/master/demo
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5.2. Model Evaluation & Training

Evaluation of binary classification algorithms is most commonly based on threshold metrics according to
Hossin and Sulaiman (2015). In binary classification, a classifier namely outputs a probability that a certain
instance is of the positive class. Given a certain probability threshold, all instances with a probability value
greater than or equal to the threshold are classified as the positive class, while the rest are classified as the
negative class. In this way, some important threshold metrics for classification can be extracted, as shown in
the confusion matrix of Figure 5.3.

True Label

Positive Negative

True Positive (TP) False Positive (FP)

Positive

Predicted Label

False Negative (FN) | True Negative (TN)
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Figure 5.3: Confusion matrix for binary classification.

The four metrics presented in the above figure can be manipulated to provide more detail into how a classifier
functions. Different metrics are valuable for different problem types, and the most commonly used ones are
shown in Table 5.1. Though these are individually valuable, all are threshold dependent. When evaluating a
classifier, performance across a range of thresholds provides better insight into the predictive capabilities of
a classifier.

Table 5.1: General metrics for evaluation of classifier performance.

Metric Formula Description
TP+TN : . : .
Accuracy TPITNSFPIEN  Correct classifications over total classifications.
Precision % Correct positive classifications over total positive classifications.
Recall % Correct positive classifications over total actual positive instances.
Specificity % Correct negative classification over total actual negative instances.
FP+FN : : : :
Errorrate  prNarpirn  Incorrect classifications over total classifications.

Two common ways to do this are by using a receiver operating characteristic (ROC) curve or a precision-recall
(PR) curve. The ROC curve shows a comparison of the true positive rate of a classifier compared to the false
positive rate across a variety of probability thresholds. The PR curve shows a comparison between a classifier’s
precision and recall across a variety of probability thresholds. As the calculation of neither precision or recall
is based on the number of true negatives, a PR curve is a useful tool in evaluating classifier performance where
there is a relatively high presence of negative instances. By calculating the total area under the ROC and PR
curves, classifier performance across a variety of thresholds can be compared with a single numerical value.

When using these metrics to compare performance between different classifiers, training and evaluation
should ideally be performed on several datasets to avoid bias. When limited data is available, a good way
to do this is via the use of k-fold cross validation. Namely, assuming k folds or equal splits of data, the classi-
fier is trained on k — 1 folds and evaluated on a single fold. This is repeated for each fold and the performance
of the algorithm between the k folds is averaged to ensure generalisation. An overview of 3-fold cross val-
idation used within a ML model evaluation is graphically represented in Figure 5.4. The content below the
training data block represents the 3-fold train-test split of the training data. The content below the test data
block represents the final data used for validation. This is used only in the final stage of model evaluation, i.e.
only when the entirety of feature engineering and hyperparameter optimization is completed.
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Figure 5.4: Schematic representation of 3-fold cross validation as part of a classifier evaluation
process.

When training a classifier on imbalanced datasets, there is a risk of the classifier lacking sufficient information
on the minority class to acquire useful knowledge. To avoid this, a common approach is to restructure the
data by over or undersampling it to introduce class balance. Oversampling refers to the selective or random
replication of the minority class to achieve class balance. Undersampling refers to the selective or random re-
moval of the majority class to achieve class balance. The difference between the two is illustrated in Figure 5.5
and Figure 5.6.

-

[~

Original Dataset Oversampled Dataset Original Dataset Undersampled Dataset
Figure 5.5: Schematic representation of oversampling Figure 5.6: Schematic representation of
to achieve class balance. undersampling to achieve class balance.

Though class balance is achieved upon the use of these methods, replication and removal of data risks addi-
tion of noise or removal of useful information. To avoid such issues, Chawla et al. (2002) propose an interpo-
lation method called synthetic minority oversampling technique (SMOTE) that constructs artificial instances
of the minority class based on information present in the dataset. When SMOTE is used, the artificial in-
formation is used in combination with real data to train the classifier, which is evaluated exclusively on real
data. The use of cost-sensitive learning is another technique addressing class imbalance within a dataset.
Unlike the aforementioned methods, cost-sensitive learning does not alter the dataset directly. Instead, a
user-defined penalty is defined for classifying instances of the minority class. In this way, the classifier places
a larger focus on learning about the minority class during training.

5.3. Hyperparameter Optimization

Several user-defined parameters must be set when initialising the training of the XGB classifier. These pa-
rameters define key classifier properties that ultimately affect classification performance. The interaction
between these parameters varies for every feature set. Therefore, an evaluation of the interaction of these
parameters is necessary in order to select their values. A simple way to do this is to use a grid search. For
n hyperparameters, grid search would perform an exploration of an n-dimensional parameter space. With
a range of values for each parameter to take on, the performance of all combinations of different parameter
values is tested and the best combination is selected. This quickly becomes impractical in the case of large
ranges of values per hyperparameter, as the computational time required to assess all possible combinations
can be excessive. Furthermore, k-fold cross validation must be performed at each combination of hyperpa-
rameter values to ensure generalisation. For m hyperparameters, each with a set of possible values of length
n, a k-fold cross-validated dataset would require the training of m" - k separate algorithms. A more efficient
alternative to grid search is Bayesian optimization, where a probabilistic model selects the best hyperpa-
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rameter values, x*, from a range of allowable values, X, and evaluates their performance given an objective
function, f(x). In equation form, this is represented by Equation 5.1

x* = argmingex f(x) (5.1)

The advantage of Bayesian optimisation is that, unlike grid search, it accounts for the entire history of hyper-
parameter evaluation and uses it to construct a surrogate model of the objective function. This model is used
to estimate the impact of certain parameters on the given objective function by mapping hyperparameters
to a probability of a score, i.e. obtaining P(score|x). The surrogate function is initialised by evaluating a set
of randomly selected hyperparameter combinations on the real objective function, after which the model is
able to determine the next set of hyperparameters to evaluate via the use of a selection function. The most
common criterion for the selection function is that of expected improvement, i.e. determining which combi-

nation of parameters is expected to yield the largest improvement in the objective function value compared
to the current-best value, as formalised by Equation 5.2.

EI(x) = E(max(f(x) - f,0)) (5.2)

By selecting the combination of hyperparameters with the best expected improvement, Bayesian optimisa-

tion is able to obtain near-optimal hyperparameter combinations in much fewer iterations than grid search
(Snoek et al. (2012)).

5.4. Classifier Properties

This section contains information about the final properties and performance of the classifier. The iterative
feature selection process described at the beginning of this chapter resulted in a total of 126 features, most

of which are described in detail in Appendix A. The 20 most important features and their relative importance
are shown in Figure 5.7.
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Figure 5.7: Top 20 most important features used in the XGB classifier.

The three most important features relate to the critical time and location. When a disruption such as a flight
cancellation causes a crew to be unable to reach the origin airport of their next scheduled flight prior to its
departure, this origin airport and STD are identified as the critical time and location. Candidate crew that are
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scheduled to be located at the critical location at or prior to the critical time are therefore able to take over the
flight whose scheduled crew is missing. The fourth feature on the list represents whether a candidate will fly
to a disrupted crew’s end-of-duty airport at or after the STD of the disrupted flight. Although this feature was
designed to be used for deadhead decisions, it could also be valuable to the classifier for crew swap decisions.
Generally, as a disruption scenario often contains a low number of disruptions, the most important features
are those relating to the first three in the dataset.

Addressing class imbalance was performed exclusively using cost-sensitive learning, which outperformed
oversampling, undersampling, and SMOTE. Using the area under the precision-recall curve as the objective
function, Bayesian hyperparameter optimization was performed with 100 initialisation iterations and 1000
optimization iterations. 10-fold cross validation was used to compare results between iterations, and the
final parameters and their optimised values are present in Table 5.2.

Table 5.2: Optimal hyperparameter values post-Bayesian optimisation.

Parameter Description Final Value
n_estimators  Total number of trees within the classifier. 329
max_depth Maximum depth of a single tree. 44
gamma Minimum loss reduction required to make a further partition on a leaf node of the tree. 0.791
learning rate  Step size shrinkage used in update to prevent overfitting. 0.086

With these hyperparameter values, classifier performance across a number of probability thresholds was
evaluated. The precision-recall curve of the final classifier as evaluated on the validation dataset used in
the case study is present in Figure 5.8. For the same data, a comparison between recall and specificity is
made across a variety of thresholds in Figure 5.9.
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Figure 5.8: PR curve for the trained classifier on

validation data. Figure 5.9: Recall and Specificity curves for varying

probability thresholds on validation data.

At a specificity of around 0.4, the classifier is able to correctly identify 100% of crews used in the optimal
solution. Though this indicates good model performance, it also illustrates the need for a further reduction
in the number of selected crews. If, given a set of 300 crews with similar features, the classifier selects 250, the
reduction provided by the selection will likely not contribute significantly to the reduction of solution time.
To prevent this, several methods of using the classifier output are evaluated in a sensitivity analysis in the
following chapter.



Sensitivity Analysis

Though the performance of the crew recovery model is satisfactory, model parameters can be tweaked to
reduce the overall solution time or increase the solution quality. This chapter will present a sensitivity analysis
done on the selection algorithm. There are two ways to use the aircraft recovery solution in the crew recovery
stage: (1) by taking the schedule of the sub-network created by the aircraft recovery stage or (2) by taking the
entire flight network and creating a separate sub-network for the crew stage only. The issue with the former
is that, if the aircraft recovery selection uses only two aircraft to find a solution, the crew stage receives only
the crew operating those aircraft. As a flight delay may cause crew unavailability due to duty time constraints,
this approach may result in neglecting valuable recovery options provided by crew operating different flights.
All crews are therefore be considered in the crew recovery stage prior to the initiation of the ML classifier.
The selection algorithm used in the case study uses a classifier threshold with a 99% recall rate. Any selection
made with the threshold that contains less than 100 crews is accepted. If a selection contains 100 or more
crews, the selection algorithm reduces the selection to the maximum of half the original crew size and 100.
The maximum size of the selection is shown in Figure 6.1. 100 crews was selected as a sufficient reduction as
disruption instances containing 100 crews or less were consistently solved in under 20 seconds.
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Figure 6.1: Maximum size of final selection relative to initial number of crews considered.

To compare the performance of different selection algorithms, the case study was evaluated via the defined
KPIs for multiple ways of selection. The performance was evaluated on a selection based on the top 20%,
30%, 40%, 50%, and 60% of crews. This was supplemented by a classifier threshold-only based selection,
where the selection was done by taking all crews above a certain threshold for a 99%, 95% and 90% recall rate
of the classifier. The selections resulted in the results presented in Table 6.1 for the instances tested on the
case study disruption set.
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Table 6.1: Summary of results for all selection algorithms tested.

T CcC DC OS CX SNV SwP RCU U60
Optimizer 65.6 261.5 65860 537 24 601 1599 230 269

SDSS 26.7 138.7 68958 479 25 640 1540 233 520
T60% 316 1563 67649 491 25 616 1571 241 490
T50% 25,6 130.0 69135 475 25 642 1554 238 521
T40% 20.0 103.8 70057 448 28 646 1505 233 533
T30% 15.0 77.7 72745 437 30 663 1541 228 537
T20% 9.8 519 77513 402 35 707 1461 220 537
R99% 55.2 2478 66444 535 25 605 1596 244 305
R95% 41.4 1855 68670 517 27 617 1533 234 386
R90% 325 148 70227 497 29 631 1515 233 430

The results imply that the dynamic selection algorithm has the best balance of solution time and quality.
Though R99% selection results in a 92.5% optimality rate, there are five additional cancellations as a result
of the sub-optimal solutions. This implies an aggressive reduction in solution space for disruption cases
which are not as simple as the classifier identifies them. The percentage of solutions under 60 seconds also
reduces to only 80.1%, and the average disruption cost increases by 6.6%, likely as a result of the additional
cancellations. A similar case is present with the fixed top 60% selection, where optimality and percentage of
sub-60 second solutions are both around 91%. The most aggressive selection algorithms show a near-100%
rate of sub-60 second solutions. T40% selection, for example, has a lower average disruption cost than that of
R90%, and solves the problem in under 60 seconds in over 99% of instances. The number of optimal solutions
is lower, however. The use of T30% and T20% show a steep drop in solution quality. T20% in particular has an
average disruption cost over 11% higher than that of the optimal. Depending on whether an airline prioritises
speed or solution quality, any of these settings could be used instead of the dynamic selection used in the case
study. The comparison of average solution times, average number of crew considered, and average disruption
costs for all of these are present in Figure 6.2 and Figure 6.3
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Figure 6.3: Solution times and disruption costs for

Figure 6.2: Solution times and number of crews X . .
8 different selection algorithms.

considered for different selection algorithms.

These plots show two trends for the effects of selection algorithm use. The more crews that a selection algo-
rithm considers, the more time is required to solve the disruption. Similarly, the more crews are selected, the
more likely it is that the selection contains the optimal solution. Figure 6.3 paints a good picture of the trade-
off of solution time and solution quality present in the field of airline disruption management. In essence,
the faster a solution is obtained, the less likely it is that it is the optimum. Solution speed and solution quality
are therefore inversely proportional.



Conclusion and Recommendations

This chapter presents the main conclusions and recommendations for further research resulting from this
thesis. Section 7.1 presents the conclusions based on the results obtained from the Delta Airlines case study.
The limitations of the Sequential Disruption Set Solver (SDSS) and recommendations for future research are
discussed in Section 7.2. Finally, the research questions presented at the beginning of the document are
revisited in Section 7.3.

7.1. Conclusions

This work presented a machine learning approach to the aircraft and crew recovery problem. The proposed
approach consists of a two-stage sequential recovery operation where the aircraft schedule is first recovered,
followed by that of crew. Through the use of decision-tree based machine learning classifiers, the proposed
approach reduces the number of aircraft and crews considered within a recovery operation with the end-goal
of achieving faster solution times. Starting with the aircraft recovery stage developed by Hassan (2018) a time-
space network based crew recovery formulation was developed and supplemented with an extreme gradient
boosting (XGB) classifier. This classifier used features describing the characteristics of candidate crew with
respect to disruptions in an attempt to identify those likely to assist in the recovery solution.

The performance of the SDSS was evaluated in a case study using the domestic flight network of Delta Air-
lines. When considering crew recovery, the developed XGB classifier was able to correctly select a subset of
crew containing all those used in the optimal solution in 89% of non-trivial cases, finding a solution in 27
seconds on average. This solution time corresponds to 40% of the time required to solve the crew recovery
problem when considering all crews. Despite finding a non-optimal solution to the crew recovery problem in
11% of cases, the use of the selection algorithm increased the disruption cost by only 5%.

When considering both aircraft and crew recovery for non-trivial crew solutions, the combined use of the
two selection algorithms resulted in optimal selections of aircraft and crew in 83% of cases. The solution
time provided by the SDSS was 56 seconds on average, corresponding to 34% of the time required when
considering all aircraft and crews. The use of the selection algorithms increased the percentage of solutions
obtained within the AOCC-required time limit from 47% to 95%, while increasing the average disruption cost
by 11%.

7.2. Recommendations

From the research done as part of the SDSS development and testing, three distinct areas of improvement
were identified. They relate to the XGB classifier used in the crew recovery stage, the formulation of the SDSS
as a whole, and the solution time results obtained during testing. These will be evaluated in three separate
subsections.
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Extreme Gradient Boosting Classifier

Though the use of the XGB classifier in crew selection resulted in large reductions in solution time without
significant deterioration of solution quality, integration with the aircraft recovery stage still leads to solution
times greater than 120 seconds. More aggressive crew selection methods have proven to decrease solution
quality, sometimes significantly, and a trend exists with failing to identify crew optimally in disruption in-
stances where large amounts of crew are used in the solution. If a recovery solution prompts a non-disrupted
crew to take over a flight scheduled for a disrupted crew in favour of their own, the non-disrupted crew’s
scheduled flight is left without crew. As the feature space is unable to provide the classifier with sufficient
information for these cases, further feature engineering can enable better classifier performance and more
aggressive reductions in crew selection.

XGB has proven to work well with the proposed crew recovery formulation. Classifier performance can vary
greatly with problem type, however. In essence, how well a classification algorithm will perform on a given
problem is difficult to predict without actual implementation, and this is one of the reasons XGB was chosen
for this research. Comparable or better performance may be yielded by support vector machine classifiers,
random forests, or neural networks. For this reason, benchmarking different machine learning algorithms is
recommended.

Recovery Formulation

Though the recovery formulation of the SDSS provides a complete solution to aircraft and crew recovery,
passenger itineraries and cabin crew schedules are not recovered. This means that only a part of the airline
recovery problem is addressed with the SDSS. Furthermore, sink node violations present in the crew recovery
stage can prove difficult to handle in the long run. Namely, if a recovery solution is unable to bring a crew
back to their end-of-duty location, the crew can be left stranded. The AOCC would have to take action to
prevent this, ideally in the form of a secondary recovery operation. Assuming the same strict time limits do
not apply for this recovery operation, the problem scope could include a large time window and the entire
flight network to provide more deadhead opportunities.

The presence of sink node violations is caused in part due to the mostly-separate nature of the two recovery
stages. As the aircraft recovery solution only partially accounts for the implications of recovery actions on
crew, preventable flight cancellations and sink node violations are present as part of the recovery. The only
way to address these issues is via the direct integration of aircraft and crew within a single recovery opera-
tion. The increased computational complexity associated with this is likely to pose a large challenge to the
operational applicability of such an approach, however.

Solution Time

Of the 1482 disruption scenarios tested during the case study, 29 exceed the 120-second decision making time
limit. The solution time of both the aircraft and crew stages is dominated by the problem writing time rather
than solving. In particular, the intermediate node-balance constraints applied to both stages as part of the
parallel time-space network approach can greatly influence the solution time of the SDSS. Without changing
the problem formulation or code structure, the only way to resolve this is with the use of more aggressive
selection of candidate aircraft and crew. As the sensitivity analysis performed in this research proved that this
can lead to solutions with higher cost, this should ideally be done after a re-iteration in feature engineering
for both aircraft and crew stages.

7.3. Remarks on Research

This research project investigated the utility of machine learning in reducing the solution time of the aircraft
and crew recovery problem. Four research sub-questions were posed with the aim of pinpointing the steps
necessary to answer the main research question. The remainder of this section will discuss the answers to
these four questions prior to providing an answer to the main research question.

1. How can multiple resources be computationally efficiently integrated into the mathematical formulation of
the aircraft and crew recovery problem?
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Initial work on this project focused on solving the integrated aircraft and crew recovery problem within a
single recovery operation. Though a working mathematical formulation was developed, the solution times it
provided greatly exceeded the AOCC-defined decision making time limit, one of the main constraints of the
airline recovery problem. For this reason, the recovery of aircraft and crew was approached sequentially. To
prevent complete separation of the two stages, crew and passenger considerations are present in the aircraft
recovery stage. Reasonable solution times were obtained without the use of selection algorithms, indicating
an efficient integration of the two resources within the SDSS.

2. Which simplifications to the airline recovery problem formulation are acceptable in the context of industry
practice?

Though the sequential approach to aircraft and crew recovery may sometimes obtain non-optimal solutions,
itis a commonly applied approach by AOCC controllers in daily operations. The main simplifications applied
to the aircraft recovery problem often involve the absence of maintenance constraints, which present a large
restriction in recovery options in the real-life case. Though no maintenance data is considered within the
performed case study, the SDSS formulation is able to account for maintenance constraints should data be
available. In crew recovery, the most common simplification is the assumption of presence of reserve crew
whenever no crew is available. In reality, reserve crew are a limited resource, and their assignment is a difficult
task. Despite the fact that reserve crew data is artificially generated, the presence and absence of reserve
crew are accounted for in the SDSS formulation. With the possible exception of the assumption that cockpit
crew work in pairs, the remainder of the simplifications applied within the SDSS do not create significant
differences with respect to the real life case.

3. Given the problem formulation, what form of machine learning algorithm and approach suits the targeted
solution time reduction?

With respect to the developed crew recovery formulation, a binary classification algorithm provides the most
intuitive solution. The developed classifier uses extreme gradient boosting to identify crew members likely
to assist in the recovery solution. The data provided by this classifier is used to create a sub-network of crew
used to reduce the problem size and therefore the solution time. Several methods of sub-network selection
were evaluated and the best-performing one tested, providing promising results.

4. How should the two main performance metrics, solution time and solution quality, be balanced during
model assessment?

Assuming a hard time limit of 120 seconds, an airline recovery solution should aim to make a decision that
minimises cost in that time limit. Therefore, though the SDSS is able to respect the AOCC-defined time limit
in 98% of all 1482 disruption scenarios tested, there is a possibility of the time limit being exceeded before a
recovery decision is made. The origin of these issues is the large number of constraints required to implement
a parallel time-space network approach, which results in large problem write times. Despite the limitations
of the SDSS, the results stemming from this research provide an answer to the main research question, which
was formulated as follows:

How can the use of machine learning methods be applied to the aircraft and crew recovery problem, and
what are the effects of this integration on the solution quality and solution time?

This research project demonstrated that the use of machine learning can be applied to the aircraft and crew
recovery problem to provide solutions within AOCC-defined time limits. The use of machine learning to
select a subset of aircraft and crew resulted in a threefold reduction in required solution time while incurring
costs only 11% higher than optimal.
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XGB Classifier Features

The following table contains the features used in training the XGB model used in the crew recovery stage. Note
that features ending in _1 marked with an asterisk (*) also exist with the suffix _2, _3, _4, and _5 to represent
their value with respect to the second, third, fourth, and fifth disruptions being solved within the disruption
set. Their descriptions were omitted for brevity. The final feature presented in the table is the target output.

Table A.1: List of features used in XGB model training.

Feature Name Type Description

c_time_start Integer Duty start time of candidate crew as measured in minutes from
time window start time.

c_time_end Integer Duty end time of candidate crew as measured in minutes from
time window start time.

tw_start Integer Time window start time as measured in minutes from midnight
on day of first departure in time window.

tw_end Integer Time window start time as measured in minutes from midnight
on day of first departure in time window.

ac_family Integer Aircraft family, label encoded.

type_canx_1* Boolean  Represents whether first disruption is a cancellation.

type_canx_6 Boolean  Represents whether sixth or any subsequent disruption is a can-
cellation.

t_del_1* Boolean  Represents whether first disruption is a delay.

t_del_6 Boolean  Represents whether sixth or any subsequent disruption is a delay.

d_dur_1* Integer Delay duration in minutes for first disruption.

d_dur_6 Integer Maximum delay duration in minutes for sixth or any subsequent
disruption.

c_at_org 1* Boolean  Represents whether candidate is at origin airport of first dis-

rupted flight at time of disruption.

c_at_org 6 Boolean  Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight at time of disruption.

c_at_org lh_1* Boolean  Represents whether candidate is at origin airport of first dis-
rupted flight within 1 hour prior to disruption.

c_at_org_lh 6 Boolean  Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 1 hour prior to disruption.

c_at_org 2h_1* Boolean  Represents whether candidate is at origin airport of first dis-
rupted flight within 2 hours prior to disruption.
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Table A.1 continued from previous page

Feature Name Type Description

c_at_org 2h 6 Boolean  Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 2 hours prior to disruption.

c_at_org 3h_1* Boolean  Represents whether candidate is at origin airport of first dis-
rupted flight within 3 hours prior to disruption.

c_at_org 3h 6 Boolean  Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 3 hours prior to disruption.

c_at_org_before_1* Boolean  Represents whether candidate is at origin airport of first dis-
rupted flight at any point prior to disruption.

c_at_org_before_6 Boolean  Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flightat any point prior to disruption.

c_at_dest_1* Boolean Represents whether candidate is at destination airport of first dis-
rupted flight at time of disruption.

c_at_dest_6 Boolean  Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight at time of disruption.

c_at_dest_1h 1% Boolean Represents whether candidate is at destination airport of first dis-
rupted flight within 1 hour prior to disruption.

c_at_dest_1h_6 Boolean  Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 1 hour prior to disruption.

c_at_dest_2h 1* Boolean Represents whether candidate is at destination airport of first dis-
rupted flight within 2 hours prior to disruption.

c_at_dest_2h_6 Boolean  Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 2 hours prior to disrup-
tion.

c_at_dest_3h 1% Boolean Represents whether candidate is at destination airport of first dis-
rupted flight within 3 hours prior to disruption.

c_at_dest_3h_6 Boolean  Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 3 hours prior to disrup-
tion.

c_at_dest_before_1* Boolean Represents whether candidate is at destination airport of first dis-
rupted flight at any point prior to disruption.

c_at_dest_before_6 Boolean  Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flightat any point prior to disruption.

c_at_crit_1* Boolean  Represents whether candidate is at critical location of first disrup-
tion at the critical time.

c_at_crit_6 Boolean  Represents whether candidate is at critical location of sixth or any
subsequent disruption at the critical time.

c_at_crit_lh_1* Boolean  Represents whether candidate is at critical location of first disrup-
tion within 1 hour prior to the critical time.

c_at_crit_1h_6 Boolean Represents whether candidate is at critical location of sixth or any
subsequent disruption within 1 hour prior to the the critical time.

c_at_crit_2h_1 Boolean  Represents whether candidate is at critical location of first disrup-
tion within 2 hours prior to the critical time.

c_at_crit_ 2h 6 Boolean Represents whether candidate is at critical location of sixth or

any subsequent disruption within 2 hours prior to the the criti-
cal time.




Table A.1 continued from previous page

Feature Name Type Description

c_at_crit 3h_1 Boolean Represents whether candidate is at critical location of first disrup-
tion within 3 hours prior to the critical time.

c_at_crit_3h_6 Boolean  Represents whether candidate is at critical location of sixth or
any subsequent disruption within 3 hours prior to the the criti-
cal time.

c_at_crit_before_1 Boolean Represents whether candidate is at critical location of first disrup-
tion at any time prior to the critical time.

c_at_crit_before_6 Boolean  Represents whether candidate is at critical location of sixth or any
subsequent disruption at any time prior to the the critical time.

future_fl next 1 Boolean Represents whether candidate is scheduled to fly to the origin air-
port of the disrupted crew’s next scheduled flight after STD of first
disrupted flight.

future_fl_next 6 Boolean  Represents whether candidate is scheduled to fly to the origin
airport of the disrupted crew’s next scheduled flight after STD of
sixth or any subsequent disrupted flight.

future_fl _end_1 Boolean Represents whether candidate is scheduled to fly to the end-of-
time-window airport of the disrupted crew after STD of first dis-
rupted flight.

future_fl_end_6 Boolean  Represents whether candidate is scheduled to fly to the end-of-
time-window airport of the disrupted crew after STD of sixth or
any subsequent disrupted flight.

crit_time_1 Integer Critical time of first disruption as measured in minutes from time
window start time.

crit_time_6 Integer Minimum critical time of sixth or any subsequent disruption as
measured in minutes from time window start time.

reserve_crew Boolean  Represents whether candidate is a reserve crew.

result Boolean  Represents whether candidate has schedule changed in optimal

solution.
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Draft Integrated recovery model

This appendix contains a draft of an integrated recovery model that simultaneously recovers aircraft and
crew. Note that this model has not been verified or validated. In essence, the use of this model removes the
inefficiencies of the sequential approach in terms of solution quality. By directly being able to consider the
financial impact of recovery while accounting for both aircraft and crew constraints, the integrated recovery
model should be able to acquire higher quality solutions. The following sections describe the sets, decision
and non decision variables used, as well as the proposed mathematical formulation of the model.

Sets

e P - Setof aircraft p * Np - Set of origin nodes n

* K- Set of crew * Np - Set of intermediate nodes n

* F - Set of flights i * Ns - Set o sink nodes n

e E - Set of aircraft types e e T - Set of delay steps ¢

* A-Setofairports a * S - Set of slack variables j

e N - Set of all nodes n .

Decision Variables

Aircraft Decision Variables: Crew Decision Variables:

* 6p,, -If pallocated to i * 0k, - If kallocated to i

* 6rp,,, - If p allocated to i with d * 8kpy,, - If kallocated to i with ¢

* O¢, -Ifi cancelled * 8GF,, - If k uses n-originating ground arc
* 0GF,,, - If p uses n-originating ground arc L) K - If i flown by unscheduled crew

* p - If i flown by unscheduled AC * si - Slack if sink constraint violated

* sg. - Slackif infeasible. * spr, - Slack if scheduled flight time is exceeded

. 6DHk,i - If k deadheaded on i
* OpHDy,;, - If k deadheaded on i with ¢
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Variables

Aircraft Variables: Crew Variables:

* Cop,, - Operating cost of p on i * Cop,,; - Operating cost of k on i

* Cp,, - Delay cost of for i, ¢ * Cppy, - Deadhead cost of k on i

* Cc; - Cancellation cost for i * Coc - Unscheduled crew operating penalty
* Cg, - Cost of ground arc originating from n ¢ Csy, - Sink node violation cost for k

* he,, - Number of AC of type e required at node n

Crr - Flight time exceeded penalty

* Ccycy - Unscheduled AC operating penalty FT; - Flight time of i

Objective Function and Constraints
The following equation encompasses the entirety of the financial considerations present in the integrated
aircraft and crew recovery operation:

Min Z Z COPp,i -51:,“, + Z Z Z (COPW + CDi,t) '5FDp,i,t + Z Z C(;n '5(;1:’9," + Z Cci '5Cf
pePieF pePieFteT peP neN ieF

+ . > |Copy,; Ok, + CpHy, - OpH,; + ) (Copy; 0kDy;, + CoHy, OpHD )|+ ). ) C6,06G,  (B.D)
keKieF teT keK geG

+ Cesen O+ D sj M+ ZCOC'(SK;"' Y. Csv-sc+ Y, Crr-Spry
ieF jeS ieF keK keK

In the above function, the first line is the sum of all aircraft-flight related costs: operating a scheduled flight
on-time or with a delay, utilizing ground arcs, and cancelling a scheduled flight. The second line contains
the crew-flight costs: operating and deadheading crew on an on-time flight, operating and deadheading crew
on a delayed flight, and utilizing ground arcs. Finally, the third line refers to the necessary slack variables to
ensure feasibility and prevent unwanted behaviour from the model. These are: missing an aircraft or crew
type at an airport at the end of the time window, changing an aircraft or crew routing, and violating crew flight
time constraints. Equation B.2 ensures all flights are flown, delayed, or cancelled.

Sc,+ Y, (6Fw. +) 6FDW) =1 VieF (B.2)
pepP teT

The following two constraints ensure that if a flight is flown by an aircraft p, a single crew k must be assigned

to the flight. Two separate constraints are required to ensure that each flight and delayed flight arc can only

deadhead crew if it is flown.

8r,;= ) 0k, VYpEPRViIeF (B.3)
keK
8FDy;, = kZ 6kpy., VYPERVieEVteT (B.4)
eK

Deadheading crew on cancelled flights is prevented with the following constraint:

Y. Gpm,,+ ) Opup,,, <M-(1-8c,) VieF (B.5)
keK teT

Equation B.6 ensures the the net flow between intermediate nodes is always equal to zero for all aircraft.
Equation B.7 ensures the net flow out of the aircraft origin node is equal to one, while Equation B.8 ensures
the net flow into the aircraft sink node is equal to one.

5Gp,n—1+ Z 5prl.+ Z 5FDn,i,t)_(6Gp,n+ Z 6Fp,i+ Z 6FDn.i.t =0 VpePneN; (B.6)

i€Fi, i€Fip,teT i€Four i€Fyys,teT



8G,,+ Y. O, + Y. Orp,;, =1 VYpePn=scheduled N, ofp (B.7)

i€Four i€Fyys,teT

Z 6GFp_n71+ Z 6Fp.i+ Z 6FDp,i,t +Sj2h,91 VYee E,ne N; (B.8)
peP(e) i€F;, i€Fjp,teT
For every flight operated by a non-scheduled aircraft, a penalty is incurred in the objective function as gov-
erned by the following constraint.

OF,; + Z 6p,;,—0p =1 VieFp= aircraft scheduled for i (B.9)
teT !

Similarly to the logic followed in the aircraft node-balance constraints, the following three constraints govern
the net flow between intermediate, origin, and sink nodes of crew.

8GKgpr T ) Ok, +Opm, )+ Y. Okpy;, +ODHD,,
ieFi, i€Fip,teT

(B.10)
_(5GKk,n+ Z (5Kk,i+6DHk,i)+ Z 6KDk,i,t+6DHDk,i,t):0 VkeK,ne N;

i€Fyur i€Foys,teT

6GKIc,n + Z (5](“ +6DHk,i) Z (5](])“'[ + 6DHDk,i,t =1 VkeK,n=scheduled N, of k (B.11)

i€Foyur i€Fyy,teT

5k+5GKk,,,,1 + Z (6Kk,i+6DHk,i)+ Z (6KDk,i,t+6DHDk,i,t) =1 VkeK,n=scheduled N of k (B.12)

iEF]Nn iEF]Nn,l’ET

For all flights operated by non-scheduled crew, a penalty is incurred in the objective function according to
the following constraint.

8k, + D Okpy,;, —0x =1 VieFk= crewscheduled for i (B.13)
teT !

The following constraint ensures that crew flight time within the time window remains less than or equal to
the time maximum allowable time limit. In the case that the scheduled flight time is exceeded to an amount
no greater than the legal limit, a penalty is incurred in the objective function.

Y Ok, + Y 0kpy,,) FTi<FTL+FTM-spr, VkeK (B.14)
ieF teT
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Crew Cost Data

This appendix elaborates on the costs assigned to each of the constituent elements of the crew recovery stage
of the SDSS. Crew operating costs for U.S. airlines are assumed to be based almost exclusively on the number
of flight hours operated by crew member. This is true within the considered model, as the secondary objec-
tives of swapping, using reserve crew, ending up at the sink node, and not cancelling flights are all quantified
based on a qualitative weight. Though crew wages per airline are officially confidential information, cockpit
crew members regularly leak such information to enthusiast websites that can help aspiring pilots weigh their
options. The cockpit crew wages are based on the type of aircraft, as well as the number of years of experience
in flying the specific type of aircraft. For the fleet of Delta Airlines, these are present in Table C.1 and were
obtained from the online database of Airline Pilot Central'.

Table C.1: Hourly wages per crew member for each of the aircraft fleets used within Delta’s domestic
U.S. network. These are displayed for years of experience with given fleet as captain/first officer.

Experience B717 B737 B747 B757 B777 A320 A330 A350 MD88/90 B717
12 $354/$242  $354/$242  $339/$232 $334/$228 $334/$228 $296/$202 $286/$195 $284/$194 $274/$187 $269/$184
11 $351/$240 $351/$240 $336/$229 $332/$226 $332/$226 $293/$200 $283/$193 $282/$192 $272/$186 $266/$182
10 $349/$237  $349/$237  $334/$227  $329/$224 $329/$224  $290/$198 $281/$191 $280/$191 $270/$183  $263/$179
9 $346/$234  $346/$234  $331/$224  $327/$221 $327/$221 $287/$194 $279/$189 $278/$188 $268/$181 $260/$176

8 $343/$232  $343/$232  $329/$222 $324/$219 $324/$219 $285/$192 $277/$187 $276/$186 $266/$179 $258/$174
7 $341/$226  $341/$226  $326/$217 $322/$214 $322/$214 $283/$188 $275/$183  $273/$182 $264/$175 $256/$170
[ $338/$220  $338/$220 $324/$211 $319/$208 $319/$208 $281/$183 $273/$178 $271/$177 $262/$171 $254/$166
5 $335/$215 $335/$215 $321/$206 $317/$203 $317/$203  $278$178  $270/$173  $269/$173 $260/$166 $252/$162
4 $333/$210  $333/$210 $318/$201 $314/$198 $314/$198 $276/$174 $268/$169 $267/$168 $257/$162 $250/$158
3 $330/$205 $330/$205 $316/$196 $312/$194 $312/$194 $274/$170 $266/$165 $265/$164 $255/$159 $248/$154
2 $327/$175 $327/$175 $313/$168 $309/$165 $309/$165 $272/$145 $264/$141 $263/$141 $253/$136 $245/$131
1 $325/$92 $325/$92 $311/$92 $307/$92 $307/$92 $269/$92 $262/$92 $261/$92 $251/$92 $243/$92

For the work done in this thesis, each crew pair was assumed to consist of one captain and one first officer,
both with 6 years of work experience. The cancellation cost of a flight is equal to that determined by the
aircraft recovery, with an additional penalty incurred in the case of crew being missing at its sink airport.

Lirline Pilot Central: Delta Airlines hourly wages - https://www.airlinepilotcentral.com/airlines/legacy/delta_air_lines
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