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A Cellular Coevolutionary Algorithm
for Image Segmentation

Cor J. Veenman, Marcel J. T. Reinders, and Eric Badkember, IEEE

Abstract—Clustering is inherently a difficult problem, both with domains for which this assumption cannot be satisfied. One of
respect to the definition of adequate models as well as to the opti- these is the image segmentation problem, which we especially
mization of the models. In this paper we present a model for the address in this paper. In (region-based) image segmentation,

cluster problem that does not need knowledge about the number . . ) .
of clusters a priori. This property is among others useful in the pixels are clustered based on their color or texture information,

image segmentation domain, which we especially address. Further, While @ hard constraint is imposed on spatial cluster (segment)
we propose a cellular coevolutionary algorithm for the optimiza- connectivity. Throughout this paper, we will consider the clus-
tion of the model. Within this scheme multiple agents are placed tering problem and the segmentation problem as being similar.

in a regular two-dimensional (2-D) grid representing the image, - accordingly, we consider solution methods for both problems
which imposes neighboring relations on them. The agents coopera- . '

tively consider pixel migration from one agent to the other in order mterchangeably. ) ]

to improve the homogeneity of the ensemble of the image regions ~ Since the clustering problem is a known NP-hard problem,

they represent. If the union of the regions of neighboring agents is deterministic algorithms for the fuzzy C-means and the

homogeneous then the agents form alliances. On the other hand, K-means model use a greedy optimization scheme in order to
if an agent discovers a deviant subject, it isolates the subject. Indfind a suboptimal solution of their criterion function. Many

the experiments we show the effectiveness of the proposed metho hasti L h h . lobal -
and compare it to other segmentation algorithms. The efficiency Stochastic optimization schemes that aim at a global maximum

can easily be improved by exploiting the intrinsic parallelism of have been reported, among which are simulated annealing

the proposed method. methods [9], [24], [32] and evolutionary algorithms [12],
Index Terms—Clustering, distributed genetic algorithms, image  [18]-{20], [27], [36]. As part of some evolutionary approaches
segmentation, modeling. also certain domain specific recombination operators have been

reported [7], [8], [25], [35].
In this paper, we introduce a cluster model which aims at
minimal intra-cluster variability. Additionally, instead of maxi-
LUSTERING is animportant and difficult task in unsupermizing the inter-cluster variability we impose a hard constraint
vised pattern recognition. The clustering problem comes the intra-cluster variability for the union of two clusters. We
down to finding the separation of a set of objects intagmiori  claim that such a constraint is inevitable in order find useful so-
unknown number of subsets while minimizing intra-cluster varjutions to the cluster problem. As a result the proposed model
ability (within scatter) and maximizing the inter-cluster variallows for the clustering of a data set into apriori unknown
ability (between scatter). There is a huge amount of literatus@mber of clusters. Additionally, we specialize the model for
on the subject, ranging from models, algorithms, algorithm pgnage segmentation and proposeediular coevolutionary al-

rameter estimations to cluster validity studies [14], [33]. Thgorithm (CCA) to optimize the image segmentation model in a
clustering methods can be divided up into exclusive and nonefistributed way.

clusive methods [26]. The best-known nonexclusive method isThe outline of the paper is as follows. After first exploring
the fuzzy C-means model [15]. In this method objects are saife characteristics of the clustering problem, we propose a new
clustered such that objects belong to all clusters to a certain dfrster model in Section II. Then, in Section Ill, we specialize
gree. For an overview of fuzzy clustering methods see, for egre model for image segmentation. In Section IV, we describe a
ample, [3] and [4]. In exclusive clustering methods, the objecgevolutionary algorithm for the optimization of the proposed
are partitioned into a number of (crisp) subsets, such that eaabdel. In the experiments in Section V, we demonstrate the ef-
object belongs to exactly one subset. We concentrate on &tiveness of the method and compare its performance to some
clusive clustering methods, among which the K-means modgher image segmentation algorithms, both with synthetic and
(or hard C-means) [28] is the most widely used. As the fuzgatural images. We finalize the paper with a discussion and
C-means model, the K-means model assumes that the numfghe concluding remarks in Section VI.

of clusters is knowra priori. There are, however, numerous

. INTRODUCTION
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Fig. 1. (a) Noiseless 2-D data set consisting of a nested circular structure. In (b) and (c) the same data set is displayed with an increasing arssiant of Ga
noise. The number of distinguishable clusters decreases accordingly.

distance measures. Before going into detail, we first define the
clustering problem.

Given is a data seX = {z1, 2, ..., Ty}, Wherez; is a
feature vector in @-dimensional metric space, ad = | X| is
the number of objects iK' . Then, a valid clustering of in a set
of clustersC = {C4, Cs, ..., Cy}, whereM is the number
of clusters, has the following partition properties:

P-1. Ciiéﬂ),lgigM;

P-2. UM, Ci = X;

P-3. C;nCj=0,i#j,1<4,j< M.

Additionally, the clusters should reflect the structure of the
data such that objects in the same cluster are similar to each £
other and objects from distinct clusters are different from each
other. In order to find a solution to the Clustering problem, ig. 2. Image from the I_:Iower—Garden sequence. Also in this natural image

L L. . L the number of segments is clearly arguable.
need a quantitative way to distinguish between similar and dis-
similar objects or, in other words, we need to quantitatively dif- | . )
ferentiate between homogeneous and inhomogeneous setdgfitioned into 1,7, 49, or even more clusters? For synthetic
objects. In the literature various alternatives have been reporflj2 Sets with self-similar structures like those displayed here,
to approach this task [14], [23], [33]. the problem is clearly undecidable. This may seem an aca_demlc

A common criterion to quantify cluster homogeneity is thgrobl_em that_ does pot .correspond to real life, .however, if we
sum-of-squared-error criterion con§|der the image in Fig. 2, we also see a nespng of structures.

Again the number of clusters (segments) is arguable. For

M example, does the image only contain a tree, houses, garden,
YD e = w(CHP (1) and sky, or must a valid segmentation result also include clouds,
i=1zeC; bushes, windows, or even smaller segments/clusters like the

flowers and the leaves of the tree?
A typical approach to discover a significant set of clusters is
w(Y) = 1 Z z to minimize (1) for a range of settings 8f, wherel < M <
M..x- Then, a cluster validity study [6], [11], [16], [22] can
help in selecting the “true” number of clusters by looking for
Without additional constraints (1) has a zero minimum fasharp knees or local minima in a cluster validity index func-
M = |X|. Therefore, in addition to minimizing this criterion,tion curve, e.g., the Davies—Bouldin index [11]. However, these
many cluster models, like the K-means and fuzzy C-meamslex functions can have multiple local minima and knees, or
model, assume the number of clustd#sto be known before- they sometimes contain no significant transition at all. More-
hand. There is, however, also a number of methods that amamvgr, the deepest local minimum or the sharpest knee are by no
others assume a certain maximum variability per cluster, sueteans indications of the scale the user expects.
as the split-and-merge and region growing algorithms in theln addition to the scale problem, in many practical situations
image segmentation domain. We claim that objective clusteritite features of the objects are noisy. Because the intra-cluster
is not possible without such additional parameters becausevafiability of the dataincreases proportionally with the amount of
a scale problemWe use Fig. 1(a) to support this observatiomoise, the determination ofthe true cluster borders canbe severely
It is impossible to decide which is the right data clusteringampered, leading toroise problemin some cases the noise
for the data set displayed in the figure: should this data set t@n be reduced by filtering, but the uncertainty principle [34]is a

where
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limiting factor. That is, by reducing the noise on the featureswe Proof: Forthe proof we use the inverse implication. So we

also decrease the accurateness of the estimated cluster bordeprove that the variance of a clustéy, will not exceedo?,, . if
Both the scale and the noise problem should be propedil remote cluster objects, that is, cluster objects for which:

handled in a clustering method in order to find objectively good

cluster results. Both aspects are interrelated, since dealing with |z = 1(CL)||> > o2 (6)

one problem affects the other. That s, the smallest possible scale

depends on the effective noise level. Usually, both problerﬂg

Ids are outside the? .. range of another cluster, i.e.:

are implicitly attacked in the same way, which implies that the max
assumed optimal scale is the one just above the noise level. We )
illustrate this with the data sets shown in Fig. 1(b) and (c). If = (30 Var(Cy U {z}) < 04y ) - )

noise is considered as the limiting factor, then Fig. 1(b) contains 7

clusters and Fig. 1(c), which has even more noise, contains ohBt C be the optimal clustering resulting from the minimization
one cluster. Once again, also in Fig. 1(b) and (c) the problemaif(2) subject to (4) and = > ., |Ci|V ar(C;). Further, as-
undecidable, since the original datais the same asin Fig. 1(a). sume that there is a clustéf, for which Var(C,) > o2,..

In the image segmentation domain, in which we are espthen,3z € C, such thalVar(C, — {z}) < Var(C,). Espe-
cially interested, the number of clusters is not knapriori. ~ cially all objectsz for which ||z — u(C,)||*> > o2, are can-
Therefore, we do not want to fix the number of clusters in owtidates. LetC, = C, — {z} and{z} form two separate clus-
model. However, as already mentioned, both straight minimiz&rs. Now, stillVar(C’, U {z}) > o2, and since (7) applies,
tion of the intra-cluster variability and maximization of the interalso in genera¥/ C;: Var(C; U {x}) > o2,,.. However, since
cluster variability lead to undesirable trivial solutions, beMg Var({z}) = 0 the minimumz’ < z. This is contradictory to
clusters or 1 cluster, respectively. We choose to minimize thige assumptions, so given (6) and (7), thenedslusterC,, for
intra-cluster variability while at the same time constraining thehich Var(C,) > o2, .. [ |
intra-cluster variability of the union of two clusters. In this way, Informally, the implication of this proposition is that when a
this intra-cluster variability constraint defines the scale at whialispersed cluster is enclosed by compact clusters, these com-
two clusters can be differentiated from each other. pact clusters may prevent the dispersed cluster from splitting.

To minimize the intra-cluster variability, we use the sum-ofin other words, the presence of the compact clusters makes
squared-error criterion (1). Here, we rewrite (1) such that it fithe cluster separation ambiguous since in that case, the homo-
better to the model and the presented algorithm in the remaindganeity criterion (2) is at odds with the joint variability con-
Further, we implement the joint intra-cluster variability constraint (4).
straint as a minimum variance for the union of two clusters. This |_et us explain this in more detail. SuppaSe= C, U C,, is
leads to the following cluster model: an optimal clustering resulting from the optimization of (2)-(4).

) Then, generally both clusters will have a variance b .
min Z |CilVar(Cy), @ Now suppose that the variance of cluﬁerexceedﬁaa:ﬁvégre
CieC C, is a compact cluster that is near €, in feature space.
where SinceVar(C,) > o2, one would expect’, to be split in
1 two clustersC’ andC? leading to a lower squared error while
Var(Y) = — Z llz — pu(Y)||? (3) thejointvariance constraint still holds for these two subclusters,
Y] TEY i.e.,Var(C,uC”) > o2, ... However, because of the presence
_ of the compact cluster, the joint variance constraint will be
subject to violated either forC’. or C with Cj. Ultimately, not even a
S, 2 single object: can be separated frofi, without violating the
VCi, Gy i 7 J: Var(GiU C)) 2 Oupa: “) joint variance constraint with, i.e.,Var(Cy U {z}) < 02, .-

In general, the optimization of this model leads to clustefslearly, such a separation would lead to a lower squared error

having a variance below? . However, there are some rarédecause a single object cluster fvas-({«}) = 0. Another way

max*

situations in which the variance of individual clusters can e which the variance of’, can be lowered is by moving a re-

ceed this limit. mote object: from clusterC, to C,. However, in the proposed
Proposition 1: For the solution to the cluster model as decase the squared-error criterion will increase because the dis-

fined in (2)-(4) the following holds: if there exists a clustgy ~tance betweem and the cluster center(C, — {z}) is smaller

for which the variance exceeds the maximum variance linthan between: and the cluster center(C; U {z}). Conclud-

sigmaZ, ., then all objects of’, have a distance smaller tharingly, the variance of’, can neither be lowered by 1) separating

max’?

o2 to the center of clustef, or they can not be separatec®n object because the joint variance constraint will be violated,

max

from C, without violating the joint variance constraint in (4)nor be lowered by 2) moving an object to another cluster be-

with some cluster’;,. That is cause the squared error will increase.
Since the cluster variance can both be caused by the distribu-
Var(Co) 2 0ma = Va € C: tion of the data and by the noise in the data acquisition process,
(”z WGP < 02, VIO, knowledge about the noise can be exploited in this model. We

elaborate on dealing with noise in Section IV, where we describe
Var(Cy U{z}) < ol.y) - (5) aspecialized algorithm for image segmentation.
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Fig. 3. (@) Image containing a background and two “objects,” making three segments in total. (b) Corresponding segmentation graph and a blowhegdetai
« has two adjacent verticas andz, and four contiguous vertices; , >, 3, andz,.

lll. I MAGE SEGMENTATION MODEL Every maximally connected subgraph (component) in a can-
f’date segmentation graph is a candidate segrignivhere

In this section we refine the just introduced cluster modéJ . . .
for the image segmentation problem. The image segmentati'o§ i < M (andM being th? number of segments). A candidate
mens; has a set of verticeS;, = V(S;) = {z1, ..., zn, },

roblem is a special clustering problem where the objects ¢ k .
P P gp ) Wi erelN; is the number of vertices if;.

picture elements (pixels) and the feature vector consists N fthe hard fivit traint is that (4
the pixel position information together with pixel appearance consequence of the hard conneciivity constraint is that (4)

information only has to be satisfied fmontiguous componentshere com-
The segmentation problem is defined differently from thgonentgs% aniSQ are.(;]o(r;ng_uc;gsgl idi? If_3V:61S € Cu,
cluster problem, since it requires that the segments are spati Iffhe é.’ zlt.F $f2’t})1N|t L= t(t' 1) ::m K 2 ? f'(d2).
connected. Several segmentation methods only impose a sof] € objeclive ot Ine segmentation 1ask 1S o find a segmen-
constraint on segment connectivity, e.g., [10], [17], [29], [3033‘5;@l graph that represents_homogengous appearing regions.
Accordingly, these methods are merely quantization metho ,thtlsbsttrj]dy we do not cqtnh5|der coLotr |r:r1]age_s,tso t_?e relglotlrﬂ]s
though the problems are similar to a certain extent. There Jpyst be nomogeneous with respect to their intensities. in the
neral cluster model, we stated that a certain variability must

two additional reasons why we impose connectivity as a ha?d : . .
y P y %)allowed for to establish a certain cluster scale. However, if

constraint. First, connected segments are usually bigger . . ! . . -
that morereliable statisticscan be maintained. Second, thé € intensity feature is noisy the image variability caused by

optimization problem simplifies into ane criterion optimiza- the noise must be incorporated too. So, in addition to the given

tion problem, since we do not need to optimize a connectivi{ tra-cluster variability to establish the desired scale, we assume
criterion as ’well Moreover. we avoid the introduction c)fgatavariability is given due to noise. We measure both variabil-

an additional parameter that is needed in case the resuldfg® @S pixel intensity variance present at the given sl (

multi-criterion optimization problem is solved by weighting & esulting from the amount of noise{), respectively. Then,

homogeneity and a connectivity term o2 . = o2+ o2, since the underlying processes (signal and
We first define the image segmentation problem as a grad]‘?—'se) can be assumed independent.
partitioning problem. We represent the image as an undirected

graphG, where theN vertices (graph nodes) represent the ap- IV. ALGORITHM

pearance feature vectors of the pixels. For convenience we defor the optimization of the cluster model, we propose a
note the vertices by the appearance feature vegtoihe pixel stochastic optimization algorithm. In the literature other sto-
position information is represented in the edges of the graphastic clustering algorithms have been reported that generally
Further, we defineontiguous verticeas being contiguous on gptimize the K-means model or fuzzy C-means model either
the image grid, so every vertex has exactly four contiguous Vgfsing simulated annealing techniques [9], [24], [32] or using
ticest We writex; = =z if 21 andz, are contiguous. Only evolutionary computation techniques [12], [18], [27], [36].
if two vertices are contiguous, there can be an edge connecti¢cordingly, these stochastic approaches focus on the opti-
them, which makes them adjacent. That is, every vertex can haygation of known cluster models. The algorithm we propose,
at most four edges to contiguous vertices. In Fig. 3, we illustrai@wever, shows more resemblance with the distributed genetic
the relation between contiguous and adjacent vertices. algorithm (DGA) for image segmentation as introduced by
Definition 1: A segmentation grapis a graph for which the Andrey and Tarroux [1], [2]. We also dynamically apply local
following holds: if there is a path between two vertices and thgperators to gradually improve a set of hypothesized clusters.
vertices are contiguous, then the vertices are adjacent, i.e., th@igortant differences, however, are: 1) they do not consider
is an edge between the vertices. the statistics of the whole segment in the optimization process,
2) their segments may become disconnected, which violates

1if eight connectivity is desired, then a slightly different definition for conti- . o A
guity should be applied. the strict definition of the segmentation problem, and 3) the
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selection operator that copies local model parameters and the
segment label applies in a restricted neighborhood regardless
of the color model similarities.

We now present the cellular coevolutionary algorithm (CCA)
to optimize the model described in the previous sections. The
proposed model has two important parameters, being the scale-
derived image variancerf) and the noise variance{). We
deal with noise by simply pre-filtering the image with a uniform
filter with size . Consequently, the2,, . parameter from (4) is
affected in the following way:

02

Tmax = 05 + ®)
Fig. 4. Schematic illustration of alliance formation. The agent in the center is

since the total variance changes accordingly. the one that attempts to form an alliance.

The proposed algorithm dynamically aims at optimizing (2), - ] -

while satisfying (4) as well as the connectivity requirement. A¢Probabilityr) of being selected. The probability of an agent to

cordingly, the algorithm has only one essential parameter, befpfy Selected for activation is then given by

o2..- The segments are maintained by active entities that au- Pi=(1-7) Si . 9)

tonomously try to optimize local criteria. We call these entities ‘ m

agentsin order to stress their autonomous behavior. For effi- The agent will act in this epoch only i’; > U(0---1),

ciency reasons, each agent manages the outside bBrder whereUU(0- - - 1) is a uniformly distributed number in the range

{z1, ..., B, } of the component it represents, whefg|is [0---1].

the border length. This border is a list of vertices that are con-

tiguous buinotadjacent to the component the agent represerfdliance Formation: Component Merge

In other WordS,Bi contains candidate vertices with which the An agent first tries to form an alliance with any of its neigh-

agent's component can be extended. In the following sectioRgyring agents. Agents form alliances with their neighbors if the

we describe how the segments are initially created, how thgriance of the union of their components remains under the pre-

evolve during the optimization process, and how the procegsfined maximunv2,. . (4). Accordingly, for allk; neighbors

max

terminates. the joint component variance is computed
J?j = VG,’I"(OL' U C]) (10)

Where the alliance that results in the lowest joint variance is
selected. That is

A. Creation

Let the image have dimensiol8 x H. Upon initialization
the image is converted into a regular grid with x H uncon-
nected vertices, henad® = W x H. Accordingly, the initial ke oy
segmentation graph has as many components as vertices. Fur- p = arg i ai;-
ther, N agents are created and each component is assigned to

agent. After creation the evolution process starts.

(11)

a[P the variance of the selected alliance satisfies (4), then agent

A; and A, become allies; see Fig. 4. We |df represent the

alliance by takingd,,’s component. Then, the neighboring agent

A, no longer represents a graph component, so it terminates.
The evolution process is a sequence of epochs. During ev€ignsequently, the number of segmehtsdecreases.

epoch all agents (conceptually) act in parallel or alternatively If the selected alliance violates (4), then the merge action fails

sequentially in random order. An agent can take one of three &+ agentA; and the agent considers subject migration.

tions. Alliances with neighboring agents are formed if g . ] o

parameter allows it. The consequent component merge satishe®iect Migration: Vertex Exchange

the scale condition (4). If no alliances are possible, an agenfThe aim of the subject migration is to contribute to the mini-

considers subject migration from a neighboring agent if this inmization of the global criterion (2). First, a number of candidate

proves the global criterion (2). Now, no check is done whetheertices are collected and the one that results in the highest gain

the scale condition is violated. Afterwards (in a later epochks selected.

subject isolation is considered, if in the course of subject migra-Agent A; collectsb; candidate vertices from its bordét;

tions the variance exceeds , .. by random sampling; see also Fig. 5. It is important to note
When called in sequential random order, agents are activatbdt at this point, thgreedof the algorithm can be controlled.

sequentially through a random wheel selection method, i.e., fensidering all border objects;(= | B;|) as candidates would

most successful agents are more probable to be chosen agaake the algorithm very greedy, while taking very few objects

An agent estimates its probability of success as the ratio of suestrains the optimization process.

cessful trialss; in the lastn trials. To avoid premature conver- Once the agent has collected a number of candidate vertices,

gence, each agent, whether successful or not, has a basal chacb®oses that candidate vertex that delivers the highest positive

B. Evolution
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Fig. 5. Schematic illustration of subject migration. The agent in the centerf#g. 6. Schematic illustration of subject isolation. The agent in the center
collecting a number of candidates at its border. selects the most deviant subject in case its component is too inhomogeneous.

?Oall;ngivrlgIgi;ﬁ’ggﬁ;?;g;ﬁé%?:& cf:cr)l;u;rl||o: ar(gi'd;f; ;r'ns end, thgecide that the algorithm has converged. We have to wait for a

number of failed epochs, because of the stochastic border sam-

Gij = g;j — gij (12) pling. We use the success counterfor this purpose. So the
algorithm terminates i¥ A;: s; = 0. Because the variance of a
segment can indeed exceefl, .; see (5) local oscillations can

gi; =|Ci|Var(C;) + |C;|Var(Cy) occur. To escape from such situations the algorithm also stops

, when the agent community has evolved for a maximum number
gi; = (G| + )Var(C; U {z}) + (1G] = )Var(C; = {=}).  of epochsh,,..
(13)

If none of the candidates results in a positive gain, then the
expansion trial fails since it does not contribute to the global In order to evaluate the proposed image segmentation
criterion (2). Clearly, this is @ooperative negotiation schememethod, we performed two types of experiments. First, we
between agendl; and its neighboring agents. explored some specific properties of the method to illustrate

Since segments must satisfy the connectivity constrailow it operates under various conditions and in what sense
vertex migrations from one segment to the other that violagecan be adjusted. After that, we did some experiments in
this constraint must be recognizedh other words, we have to which we compared the CCA performance to other known
check whether the candidate vertexc V/(S;) is acut vertex image segmentation methods. In all experiments, we set the
of S;. In the Appendix, we describe an efficient cut-vertesuccess ratio parameters ¢8) = 100 andr = 0.01 and the
detection algorithm for this problem. border sampling parameter= | /|B;||. These values are not

If the neighboring segmerf; becomes disconnected as &ery critical so we could fix them for all experiments. If not
result of the migration (becausewas a cut vertex), one or stated otherwise we set the filter sife= 1, which means that
two new agents arereatedthat represent the disconnectegve did not pre-filter the images. We show the segmentation

wherez € C; and

V. EXPERIMENTS

components. results in images, where the color of a segment equals the
) o mean color of the pixels in the segment. Clearly the setting of
Subject Isolation: Vertex Removal o2 is crucial for the final segmentation results. If not stated

Since the scale constraint was not checked during the satherwise, an appropriate (optimal) level fef,. . was chosen.
ject migration, it can happen that the variance of the agen#s'similar procedure was followed for the methods with which
component can exceed the given maximaify,. . In that case we compared our approach (see Section V-B).
the agent decides to isolate the most deviant subject (see also
Fig. 6). To this end, the agent first determines the vertex tha&t Exploring the CCA
has the largest (Eucledian) dista_nce to the mean featgre of th%irst, we show the course of the segmentation process
f:omp(_)nent. Th_en, a new agent is cr_eated to WhICh this ver%ﬁh the Circle image in Fig. 7(a), in which the pixel in-
is assigned. This action serves to satisfy the derived propert){érglsity changes gradually. For this 128 128 image we

®). seto2, . = 202. In a strict sense this image can hardly be

segmented, since there are no distinct regions to be separated.

However, since gradually changing colors are quite often part
For an algorithm to workin practical situations ithas to termipf 5 natural scene, it is interesting to see how segmentation

nate at a certain point. When no agent was able to successfdiyorithms deal with such transitions.

perform any of its actions for a certain number of epochs, werjg. 7(h)—(e) show some intermediate results of the segmen-

2Clearly, as contiguous vertices always become adjacent, adding acontigu@gon process. In Fig. 7(c) it can be seen that after 19 epOChS the
vertex to a component can never divide it up into two components. final number of segments has been found. The remaining epochs

C. Termination
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@) (b) © (d) (e)

Fig. 7. CCA applied to the Circle image (a) witt%,,. = 202. (b)—(e) Results after 5, 10, 50, 1000 epochs, respectively.

(b) (© (d) (e)

Fig. 8. Results of applying the CCA segmentation method to the Checkerboard image with various filfeasizeorresponding? _ _ settings. (a) Original.
(b) No filter, o2, = 60?2, 1067 epochs. (cf = 3,02, = 202, 1357 epochs. (df = 5,02, = 142,784 epochs. (ef = 7,02 = 102, 696 epochs.

max max max max

(b) (d)

©
Fig. 9. CCA segmentation results with different scale parameter settings. (a) Origing], (b)= 102, M = 72.(c)o2, =152, M =7.(d) o2,
M=7. (6)02 =252, M =3

max

(e)

= 202,

are used to settle the segment borders. As expected, the finalmeFig. 9(b) most facial features are still visible, since their

sultin Fig. 7(e) shows a number of clear ring-shaped segmerstsgment variance is below the segment variance constraint. In
Next, we did an experiment to illustrate how to handle noidéig. 9(c) and (d) the details gradually disappear, while at the

properly with the CCA segmentation method. We used a 128ale in Fig. 9(e) only the background, face, and hair can be

x 128 Checkerboard image with squares having either pixel idistinguished.

tensity 100 or 160. We added Gaussian noise with 0 and

o = 602 to this imé?ge? see Fig_. 8("’.1)' Fig. 8(b)7(e) ShO_W 8. Comparison With Other Methods

number of segmentation results with different pre-filter settings.

Since the noise leveb = 60?) and the size of the pre-filter  In the next experiments, we compared the proposed method

(f in Fig. 8) are knowng?,  could be adjusted accordinglyto two other typical segmentation methods. The first one is the

using (8). Note that the noise component has been divided ‘1split-and-merge with grouping” algorithm, which has a sim-

f2, since a filtering in both the horizontal and vertical directioilar model and parameters. The second one is a Markov random

took place. Additionallyg2 . was set slightly higher than pre-field model-based segmentation algorithm. The latter segmen-

scribed in (8), because the variance in the homogeneous regitati®n method has quite a different model and is often used for

increased due to blurring effects of the filter. The figures clearBegmentation and restoration. Since obtaining the ground truth

show that the pre-filtering results in smoother segment bordeisdifficult in image segmentation, comparing segmentation re-
When we described our model design considerations, welts is not trivial. Here, we compare the results with respect

stated that especially in image segmentation it is not desirabdethe following qualitative criteria: 1xccuratenessthe seg-

to have the number of segments as model parameter. Insteatheat border represents a true contouc@)tinuity the segment

scale parameter was introduced to select a maximum allowsalder may not contain holes if the object that it represents has a

variability per segment. In Fig. 9, we show the results of varyingpntinuous contour. Jyjagmentationthe union of neighboring

the scale when applying the CCA segmentation method tesegments must be inhomogeneous.

face image. Clearly, when the value ®f . is increased the  Before discussing the comparative experiments, we first de-

smaller details disappear from the resulting segmented imagegibe the other two segmentation algorithms in more detail.
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@ (b) (© (d) (e)
Fig. 10. Results of applying the SMG algorithm to the Circle image [Fig. 7(a)] with vasigys ands,, parameter settings. (&}, = 0,6, = 22.(b)o2,_ . =

max

52,8, = 20.(c)o2,, = 102,68, = 20.(d)o2,, = 152,86, = 15.(e)o2,, = 202,68, =0

max max max

Split-and-Merge With Grouping Segmentation (SMG) pixels in a certain neighborhood (in this case a second-order

. . . . ). Th ighborh i igh ithaf
The split-and-merge implementation we use is based on [ﬂ del). The neighborhood term is weighted with a fagtdo

41311, Tvoically th lit-and laorith h ess the relative importance of local connectivity and color
an [. ] Typically € spiit-and-merge algorithm USes a sche eatching. Since global optimization of the model is intractable,
in which a square region is recursively split into four quads

the homogeneity predicate is false. Merging is allowed if f everal approximations have been proposed [S], [10], [17]. We

neighboring regions the homogeneity predicate is true. The fie the well-known ICM method, due to [5], which has been

thm st h litt . ivle. The h oven to be the most effective method to optimize the MRF-
gonthm stops When no Spltting or merging 1S possibie. 1€ Ny, ga 4 mogel [13]. As remarked earlier, as a consequence of the
mogeneity predicate we use is the Chi-squared test, where

aci bability is set 1o 0.5. Th ! jande imization of these pixel criteria, this is rather a quantization
rejection probabllity 1s seto ©.5. The maximum vanangg.. .5, 5 segmentation method. The scale and noise adaptation is

'Whtrolled both by the order of the Markov random field (second

in (4). The specific implementation uses a quad tree structlg%er) and the number of pre-defined color distributions.
for the splitting and merging. Since only merges on the same

level of the quad tree are allowed, a final grouping step is igs 5 qual Changing Color

corporated. In the grouping stage all regions that together are

homogeneous are grouped together. Now, regions are homo_gé:-irStv we applied the SMG and MRF methods to the synthetic
neous if the distance between their means is below a certil}ges that we already used to explore the CCA method in the
maximums,. Finally, the method usually ends up with manyprevious subsection. For the original SMG method the Circle
very small regions at the intended segments borders. TheseT29€ i eepeciallzy difficult because the intensity changes grad-
gions are grouped together with their neighboring segmenté‘ﬁ‘”y- Only iftheo?; parameter is set to zero the result is sim-
their size is relatively small (default 0.2%) with respect to the"‘;lr tothe CCA outcome [Fig. 10(a)]. When, on the other hand,
largest neighbor. Like the proposed method in this paper, tfieax IS S€t “properly,” the resulting segments become irregular,
split-and-merge algorithm does not need to know the numif&t €an be seen in Fig. 10(b)—(e). The MRF method has the best
of segments priori. Moreover, segment connectivity is a|WaysresuIts when t_he eontextual information is made _ummporta.nt
satisfied, i.e., the computed segment statistics are always baébg= 0-1) @s in Fig. 11(a). Then, the segmentation result is
on connected components. The scale and noise can be regul§taily based on the image intensities. In this case, where there
by settings2,,.. ands, properly. Clearly, setting?2,,. very low is no noise, there is strong dependence between image intensity
yields many small regions, so the actual segmentation is dc_ﬁ“ﬂ-:d segment label. Accordingly, the contextual information is
in the grouping stage. In this way the algorithm turns into a réldeed superfluous or even harmful; see Fig. 11(b)—(e).
gion-growing algorithm. The consequences of variations in bolt\lh isv |
parameters will become clear in the experiments. oISy Image

Next, we applied the algorithms to the noisy Checker-
board image in Fig. 8(a). The SMG algorithm clearly has
problems with this image. We varied the?,  parameter
In Markov random field models for image segmentation, tygeetweerns2, .. = 0 and the true variance of the Gaussian noise

max

ically an energy function with two terms is minimized simulta¢o?,,,. = 60%), and adjusted,, as to achieve the best possible
neously for all pixels in the image. It is assumed that the numbsggmentation result. The results achieved wih, = 60

of color distributions is known together with their meapand fit quite well to the original noiseless image [Fig. 12(e)]. We
variances?. For the natural images, we estimate these valuemist, however, note that the regular block pattern of the image
with a mixture of Gaussians method, though wedfx= o2, definitely favors the split-and-merge algorithm. With lower
to make a more fair comparison with the other methods. Fef, .. values irregular borders occur and, as a consequence of
the synthetic images we feed the algorithm the true color ditie greedy chaining of small regions, many extra irregular seg-
tribution values. Then, one of the terms in the energy functianents occur; see Fig. 12(a)—(e). Also the MRF method is able
accounts for the distance between the pixel color and the cotoffind useful segmentation results for the Checkerboard image.
distribution to the pixel color and the other term introduces coltowever, when the3 parameter is (too) low, the segments
textual information through the Markov random field (MRF)are strongly fragmented (connectivity violated) and wieis

That is, the second term imposes the same segment labehayh, blurring or smearing effects occur; see Fig. 13(a)—(e).

Markov Random Field Model-Based Segmentation (MRF)
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.
@) (b) © (d) (e)

Fig. 11. Results of applying the MRF algorithm to the Circle image [Fig. 7(a)] with varibparameter settings. (&) = 0.1. (b) 3 = 0.2. (c) 8 = 0.3.
(d)3=04.(e)3 = 0.5.

(b) (© (e)
Fig. 12. Results of applying the split-and-merge segmentatlon method to the Checkerboard i |mage wntm&ggmmjé settings. (ap2

=0,6, = 55.

max

(b) o2, =102,6, = 55.(c) 02, = 202,86, = 55.(d) o2, = 502,6, = 45. ()02, = 602,65, =

Fig. 13. Results of applylng the MRF model-based segmentation method to the Checkerboard image wity\settngs an(;u1 = 100, p> = 160, and
0?2 =02=60%. (08 =0.1.(b)3=0.2.(c)3 =0.3.(d)3 =04.(e)3 = 0.5.

Natural Images SMG method) some details seem missing, like the small white

Finally, we applied all three algorithms to a number of natur&f€2 on top of the Orca’s head. When we measured the corre-
images. In the natural images a number of difficult aspects %qondlng areas it appeared that the variance was indeed below

image segmentation come together, like noise, gradual chand §g|venamax, hence, the details should indeed not be visible
colors, and large and small objects. For all algorithms we cho®gthis scale
those parameter settings that turned out to be the best for eachhe image from the Flower-Garden sequence (Fig. 2) has
of them. Thegd parameter of the MRF algorithm was fixed taboth very large segments (the tree) as well as many small seg-
B = 0.3. We usedr2,, . of the SMG equal te2 . of the CCA ments (the flowers). The MRF model-based method shows the
to select a certain scale. Additionally, we 8éf, . = 0 to turn expected smearing effects; see Fig. 15(a). We had to lower the
the SMG into a region-growing algorithm. In all cases the small-region-removal parameter of the SMG method to 0.01%
parameter of the SMG algorithm is adjusted accordingly.  in order to prevent all flowers from being removed. Besides,
We started with the Orcaimage in which the (splashing) wateith o2, = 152 the same blocking artefacts occurred as be-
and the sky contain gradually changing colors; see Fig. 14(fjre; see Fig. 15(b). Configured as a region grower,(. = 0)
Further, there are some well-defined large and small segmethis SMG results are better [Fig. 15(c)], though in all cases small
on the Orca. Like in the Circle image the MRF algorithm crenoisy regions remain. These are not always easy to see in the
ates artefacts in the gradually changing colors, as can be seefigures. The CCA method gives segmentation results with both
Fig. 14(b). Besides, it creates many very small regions arouswhall details and large homogeneous regions.
the Orca, which is, however, hard to see in the figure. WhenFinally, we applied the algorithms to a noisy image
o2, is set to the proper scale value, the SMG algorithm h#Sig. 16(a)]. The results are similar to those obtained with the
contour artefacts; see Fig. 14(c). The SMG with,, = 0 Checkerboard image. That is, the MRF has good segmentation
makes nice contours, but has some artefacts resulting from tesults apart from the smearing effects [Fig. 16(b)] and the
chaining of small regions, like the light-gray areas on the trur8MG has again blocking artefacts [Fig. 16(c) and (d)]. As
of the Orca and the light-gray region above its fin; see Fig. 14(dxpected, the SMG with2, = 0 [Fig. 16(d)] and the CCA
The CCA has a good segmentation result, except that (as for fRgy. 16(e)] give similar irregular contours.
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(d) (e

(a) Shows the Orca image. In (b)—(e) the segmentation results are shown with different algorithms and parameter settings. (a) Oritfi], (b)M

Fig. 14.
152, 8 = 0.3. (c) SMGo2,__ = 152,65, = 5. (d) SMGe2,,, = 0,6, = 15. () CCA0?2

2 =152
VI. CONCLUSIONS which we estimated and fixed and others which we varied in
the experiments. Though it is hard to draw conclusions without
In this paper we presented a cluster model for which thieying all combinations of parameter settings, the proposed CCA
number of clusters does not have to be knavmiori. Instead of is clearly simpler since it has only one essential parameter. The
the number of clusters, we introduced a scale parameter. We jadvantage of such a simple model is that it is both easier to tune
tified this choice among others from the image segmentation diod to optimize. Having said this, we conclude the following.
main, which we especially addressed. We specialized the clustee MRF method implements segment connectivity aofa
model for the image segmentation problem and presentett a constraintand uses a weighting factgrto stress the importance
lular coevolutionary algorithm(CCA) to optimize it in a dis- of connectivity. Especially in case of noise and gradual segment
tributed way. In the experiments, we showed the effectivenesginsitions, connectivity must be stressed since the pixels are not
the method and compared it to two other well-known segmentaked based on intensity only. However, the experiments show
tion methods. Both the Markov random field model based sefipat setting3 too high results in smearing and blurring artefacts
mentation method (MRF) and the split-and-merge-and-groapd setting it too low results in fragmented segments, though
(SMG) scheme have quite a number of parameters, someitdias to be noted that the MRF artefacts are not only caused
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Fig. 15. (a)—(d) Show segmented images resulting from applying different algorithms with several parameter settings to an image from the ddower-Gar
sequence. Fig. 2 shows the original image. (a) MRE, = 152, 3 = 0.3. (b) SMGo2_ = 152,46, = 20.(c) SMGo2_ = 0,6, = 15.(d) CCA
2

5 max max
— 15
UIIIE\X - 1 0.

by the MRF model, but also by the (ICM) model optimizatiortordingly, parallel computer architectures can be exploited very
scheme. The right trade-off between connectivity and corregftectively. In image sequences the efficiency can be further im-
border estimation can be hard to find. Though connectivity ispgoved by starting the evolution with the resulting agent con-
hard constraint for the SMG method, this method also has sigrstellations from the previous image. Additionally, it would be
icant artefacts. First, it strongly needs a small-region eliminatiamery interesting to estimate a texture model for each segment.
step. This is a problem if the image indeed contains small aitlis is far from trivial since the determination of textured seg-
large segments. Further, if thé . value, which serves to de- ments conflicts with finding small segments. Another appealing
fine segment homogeneity, is set properly, then strong blockiiga is to develop a similar algorithm for the general clustering
effects occur. On the other hand, when it is set very low thoblem. The main difficulty in that respect is to exploit locality,
SMG method is actually a region-growing algorithm. Then, thehich is especially easy in the image domain.

results are usually quite good, though borders can be irregular
and the grouping procedure has order dependence and chaining
artefacts. As regards the SMG method with loyy, . values,

the CCA tends to result in somewhat irregular contours when
the image is noisy. However, if an estimate of the amount of Detecting whether a segment component becomes discon-
noise is known, the proposed method prescribes to pre-filter thected after the deletion of a vertexmplies detecting whether
image and to adjust? .. accordingly, which indeed results inz is a cut vertex of a segment componénfThe vertex degree
smoother contours. Another problem that the CCA method saffz € V(.S) is at most three, because otherwise it could not be
fers from is that small regions can be absorbed by large homumntiguous to another component. If the vertex dedfe¢ = 1,
geneous regions. This is a consequence of the variance-basednnot be a cut vertex, we are done. For the other cases, we
scale constraint in the proposed model. The SMG method lackdy need to know if there is a path between every pair of adja-
the same problem in the merging and grouping steps. Other @ent vertices ok which does not include itself. If there is no

teria can be developed to prevent this, though it remains a diffich path, the graph will be disconnected after the deletion of
cult issue. z, i.e., itis a cut vertex.

There are a number of possible extensions to the proposedFirst set the visit state of all vertices I(S) to state = 0.
method. First, the efficiency of the CCA needs improvemerfiearch depth first, starting at an arbitrary adjacent vertex, say
especially if image sequences are to be segmented. The algQ-of z and visit all adjacent vertices of every visited vertex.
rithm uses multiple agents that locally optimize a criterion. AcFhe searching stops when another (arbitrary) adjacent vertex of

APPENDIX
CuT VERTEX DETECTION ALGORITHM
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(b) (©)

(d) (e

Fig. 16. (a) Shows an MRI image with extra artificial noise. In (b)—(e) the segmentation results are shown with different algorithms and patargster set

(a) Original. (b) MRFo2, = 152, 3 = 0.3. (c) SMGg2

max max

= 152,46, = 10. (d) SMGs¢2,__ = 0,6, = 15.(e) CCAc2, = 152

max max

x, Sayas, is found or all connected vertices &9 are visited.  Additionally, we speed up the algorithm considerably by
While searching, set the visit state of verticestate = 1 and using depth-first search with iterative deepening, because
skip those vertices that have already been visitedi¢ = 1). usually the path connecting adjacent vertices is very short.
If no path froma; to an adjacent vertex af is found, then is
a cut vertex. REFERENCES
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