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A Cellular Coevolutionary Algorithm
for Image Segmentation
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Abstract—Clustering is inherently a difficult problem, both with
respect to the definition of adequate models as well as to the opti-
mization of the models. In this paper we present a model for the
cluster problem that does not need knowledge about the number
of clusters a priori. This property is among others useful in the
image segmentation domain, which we especially address. Further,
we propose a cellular coevolutionary algorithm for the optimiza-
tion of the model. Within this scheme multiple agents are placed
in a regular two-dimensional (2-D) grid representing the image,
which imposes neighboring relations on them. The agents coopera-
tively consider pixel migration from one agent to the other in order
to improve the homogeneity of the ensemble of the image regions
they represent. If the union of the regions of neighboring agents is
homogeneous then the agents form alliances. On the other hand,
if an agent discovers a deviant subject, it isolates the subject. In
the experiments we show the effectiveness of the proposed method
and compare it to other segmentation algorithms. The efficiency
can easily be improved by exploiting the intrinsic parallelism of
the proposed method.

Index Terms—Clustering, distributed genetic algorithms, image
segmentation, modeling.

I. INTRODUCTION

CLUSTERING is an important and difficult task in unsuper-
vised pattern recognition. The clustering problem comes

down to finding the separation of a set of objects into ana priori
unknown number of subsets while minimizing intra-cluster vari-
ability (within scatter) and maximizing the inter-cluster vari-
ability (between scatter). There is a huge amount of literature
on the subject, ranging from models, algorithms, algorithm pa-
rameter estimations to cluster validity studies [14], [33]. The
clustering methods can be divided up into exclusive and nonex-
clusive methods [26]. The best-known nonexclusive method is
the fuzzy C-means model [15]. In this method objects are soft
clustered such that objects belong to all clusters to a certain de-
gree. For an overview of fuzzy clustering methods see, for ex-
ample, [3] and [4]. In exclusive clustering methods, the objects
are partitioned into a number of (crisp) subsets, such that each
object belongs to exactly one subset. We concentrate on ex-
clusive clustering methods, among which the K-means model
(or hard C-means) [28] is the most widely used. As the fuzzy
C-means model, the K-means model assumes that the number
of clusters is knowna priori. There are, however, numerous
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domains for which this assumption cannot be satisfied. One of
these is the image segmentation problem, which we especially
address in this paper. In (region-based) image segmentation,
pixels are clustered based on their color or texture information,
while a hard constraint is imposed on spatial cluster (segment)
connectivity. Throughout this paper, we will consider the clus-
tering problem and the segmentation problem as being similar.
Accordingly, we consider solution methods for both problems
interchangeably.

Since the clustering problem is a known NP-hard problem,
deterministic algorithms for the fuzzy C-means and the
K-means model use a greedy optimization scheme in order to
find a suboptimal solution of their criterion function. Many
stochastic optimization schemes that aim at a global maximum
have been reported, among which are simulated annealing
methods [9], [24], [32] and evolutionary algorithms [12],
[18]–[20], [27], [36]. As part of some evolutionary approaches
also certain domain specific recombination operators have been
reported [7], [8], [25], [35].

In this paper, we introduce a cluster model which aims at
minimal intra-cluster variability. Additionally, instead of maxi-
mizing the inter-cluster variability we impose a hard constraint
on the intra-cluster variability for the union of two clusters. We
claim that such a constraint is inevitable in order find useful so-
lutions to the cluster problem. As a result the proposed model
allows for the clustering of a data set into ana priori unknown
number of clusters. Additionally, we specialize the model for
image segmentation and propose acellular coevolutionary al-
gorithm(CCA) to optimize the image segmentation model in a
distributed way.

The outline of the paper is as follows. After first exploring
the characteristics of the clustering problem, we propose a new
cluster model in Section II. Then, in Section III, we specialize
the model for image segmentation. In Section IV, we describe a
coevolutionary algorithm for the optimization of the proposed
model. In the experiments in Section V, we demonstrate the ef-
fectiveness of the method and compare its performance to some
other image segmentation algorithms, both with synthetic and
natural images. We finalize the paper with a discussion and
some concluding remarks in Section VI.

II. CLUSTER MODEL

In this section, we elaborate on some fundamental character-
istics of the cluster problem. We will not consider the definition
of an appropriate distance measure, which is a known problem
especially when multi-variate features are involved. The charac-
teristics that we focus on are manifest, irrespective of the used
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Fig. 1. (a) Noiseless 2-D data set consisting of a nested circular structure. In (b) and (c) the same data set is displayed with an increasing amount of Gaussian
noise. The number of distinguishable clusters decreases accordingly.

distance measures. Before going into detail, we first define the
clustering problem.

Given is a data set , where is a
feature vector in a-dimensional metric space, and is
the number of objects in . Then, a valid clustering of in a set
of clusters , where is the number
of clusters, has the following partition properties:

P-1. ;
P-2. ;
P-3. .
Additionally, the clusters should reflect the structure of the

data such that objects in the same cluster are similar to each
other and objects from distinct clusters are different from each
other. In order to find a solution to the clustering problem, we
need a quantitative way to distinguish between similar and dis-
similar objects or, in other words, we need to quantitatively dif-
ferentiate between homogeneous and inhomogeneous sets of
objects. In the literature various alternatives have been reported
to approach this task [14], [23], [33].

A common criterion to quantify cluster homogeneity is the
sum-of-squared-error criterion

(1)

where

Without additional constraints (1) has a zero minimum for
. Therefore, in addition to minimizing this criterion,

many cluster models, like the K-means and fuzzy C-means
model, assume the number of clustersto be known before-
hand. There is, however, also a number of methods that among
others assume a certain maximum variability per cluster, such
as the split-and-merge and region growing algorithms in the
image segmentation domain. We claim that objective clustering
is not possible without such additional parameters because of
a scale problem. We use Fig. 1(a) to support this observation.
It is impossible to decide which is the right data clustering
for the data set displayed in the figure: should this data set be

Fig. 2. Image from the Flower-Garden sequence. Also in this natural image
the number of segments is clearly arguable.

partitioned into 1, 7, 49, or even more clusters? For synthetic
data sets with self-similar structures like those displayed here,
the problem is clearly undecidable. This may seem an academic
problem that does not correspond to real life, however, if we
consider the image in Fig. 2, we also see a nesting of structures.
Again the number of clusters (segments) is arguable. For
example, does the image only contain a tree, houses, garden,
and sky, or must a valid segmentation result also include clouds,
bushes, windows, or even smaller segments/clusters like the
flowers and the leaves of the tree?

A typical approach to discover a significant set of clusters is
to minimize (1) for a range of settings of , where

. Then, a cluster validity study [6], [11], [16], [22] can
help in selecting the “true” number of clusters by looking for
sharp knees or local minima in a cluster validity index func-
tion curve, e.g., the Davies–Bouldin index [11]. However, these
index functions can have multiple local minima and knees, or
they sometimes contain no significant transition at all. More-
over, the deepest local minimum or the sharpest knee are by no
means indications of the scale the user expects.

In addition to the scale problem, in many practical situations
the features of the objects are noisy. Because the intra-cluster
variabilityof thedata increasesproportionallywith theamountof
noise, thedeterminationof thetrueclusterborderscanbeseverely
hampered, leading to anoise problem. In some cases the noise
can be reduced by filtering, but the uncertainty principle [34] is a
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limiting factor. That is, by reducing the noise on the features we
alsodecrease theaccuratenessof theestimatedclusterborder.

Both the scale and the noise problem should be properly
handled in a clustering method in order to find objectively good
cluster results. Both aspects are interrelated, since dealing with
one problem affects the other. That is, the smallest possible scale
depends on the effective noise level. Usually, both problems
are implicitly attacked in the same way, which implies that the
assumed optimal scale is the one just above the noise level. We
illustrate this with the data sets shown in Fig. 1(b) and (c). If
noise is consideredas the limiting factor, then Fig.1(b) contains7
clusters and Fig. 1(c), which has even more noise, contains only
one cluster. Once again, also in Fig. 1(b) and (c) the problem is
undecidable, since theoriginaldata is thesameas inFig.1(a).

In the image segmentation domain, in which we are espe-
cially interested, the number of clusters is not knowna priori.
Therefore, we do not want to fix the number of clusters in our
model. However, as already mentioned, both straight minimiza-
tion of the intra-cluster variability and maximization of the inter-
cluster variability lead to undesirable trivial solutions, being
clusters or 1 cluster, respectively. We choose to minimize the
intra-cluster variability while at the same time constraining the
intra-cluster variability of the union of two clusters. In this way,
this intra-cluster variability constraint defines the scale at which
two clusters can be differentiated from each other.

To minimize the intra-cluster variability, we use the sum-of-
squared-error criterion (1). Here, we rewrite (1) such that it fits
better to the model and the presented algorithm in the remainder.
Further, we implement the joint intra-cluster variability con-
straint as a minimum variance for the union of two clusters. This
leads to the following cluster model:

(2)

where

(3)

subject to

(4)

In general, the optimization of this model leads to clusters
having a variance below . However, there are some rare
situations in which the variance of individual clusters can ex-
ceed this limit.

Proposition 1: For the solution to the cluster model as de-
fined in (2)-(4) the following holds: if there exists a cluster
for which the variance exceeds the maximum variance limit

, then all objects of have a distance smaller than
to the center of cluster or they can not be separated

from without violating the joint variance constraint in (4)
with some cluster . That is

(5)

Proof: For the proof we use the inverse implication. So we
prove that the variance of a cluster will not exceed if
all remote cluster objects, that is, cluster objects for which:

(6)

holds are outside the range of another cluster, i.e.:

(7)

Let be the optimal clustering resulting from the minimization
of (2) subject to (4) and . Further, as-
sume that there is a cluster for which .
Then, such that . Espe-
cially all objects for which are can-
didates. Let and form two separate clus-
ters. Now, still and since (7) applies,
also in general . However, since

the minimum . This is contradictory to
the assumptions, so given (6) and (7), there isno cluster for
which .

Informally, the implication of this proposition is that when a
dispersed cluster is enclosed by compact clusters, these com-
pact clusters may prevent the dispersed cluster from splitting.
In other words, the presence of the compact clusters makes
the cluster separation ambiguous since in that case, the homo-
geneity criterion (2) is at odds with the joint variability con-
straint (4).

Let us explain this in more detail. Suppose is
an optimal clustering resulting from the optimization of (2)-(4).
Then, generally both clusters will have a variance below .
Now suppose that the variance of clusterexceeds while

is a compact cluster that is near to in feature space.
Since one would expect to be split in
two clusters and leading to a lower squared error while
the joint variance constraint still holds for these two subclusters,
i.e., . However, because of the presence
of the compact cluster the joint variance constraint will be
violated either for or with . Ultimately, not even a
single object can be separated from without violating the
joint variance constraint with , i.e., .
Clearly, such a separation would lead to a lower squared error
because a single object cluster has . Another way
in which the variance of can be lowered is by moving a re-
mote object from cluster to . However, in the proposed
case the squared-error criterion will increase because the dis-
tance between and the cluster center is smaller
than between and the cluster center . Conclud-
ingly, the variance of can neither be lowered by 1) separating
an object because the joint variance constraint will be violated,
nor be lowered by 2) moving an object to another cluster be-
cause the squared error will increase.

Since the cluster variance can both be caused by the distribu-
tion of the data and by the noise in the data acquisition process,
knowledge about the noise can be exploited in this model. We
elaborate on dealing with noise in Section IV, where we describe
a specialized algorithm for image segmentation.
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(a) (b)

Fig. 3. (a) Image containing a background and two “objects,” making three segments in total. (b) Corresponding segmentation graph and a blown up detail, where
xxx has two adjacent verticesxxx andxxx and four contiguous vertices,xxx , xxx , xxx , andxxx .

III. I MAGE SEGMENTATION MODEL

In this section we refine the just introduced cluster model
for the image segmentation problem. The image segmentation
problem is a special clustering problem where the objects are
picture elements (pixels) and the feature vector consists of
the pixel position information together with pixel appearance
information.

The segmentation problem is defined differently from the
cluster problem, since it requires that the segments are spatially
connected. Several segmentation methods only impose a soft
constraint on segment connectivity, e.g., [10], [17], [29], [30].
Accordingly, these methods are merely quantization methods,
though the problems are similar to a certain extent. There are
two additional reasons why we impose connectivity as a hard
constraint. First, connected segments are usually bigger so
that morereliable statisticscan be maintained. Second, the
optimization problem simplifies into aone criterion optimiza-
tion problem, since we do not need to optimize a connectivity
criterion as well. Moreover, we avoid the introduction of
an additional parameter that is needed in case the resulting
multi-criterion optimization problem is solved by weighting a
homogeneity and a connectivity term.

We first define the image segmentation problem as a graph-
partitioning problem. We represent the image as an undirected
graph , where the vertices (graph nodes) represent the ap-
pearance feature vectors of the pixels. For convenience we de-
note the vertices by the appearance feature vectors. The pixel
position information is represented in the edges of the graph.
Further, we definecontiguous verticesas being contiguous on
the image grid, so every vertex has exactly four contiguous ver-
tices.1 We write if and are contiguous. Only
if two vertices are contiguous, there can be an edge connecting
them, which makes them adjacent. That is, every vertex can have
at most four edges to contiguous vertices. In Fig. 3, we illustrate
the relation between contiguous and adjacent vertices.

Definition 1: A segmentation graphis a graph for which the
following holds: if there is a path between two vertices and the
vertices are contiguous, then the vertices are adjacent, i.e., there
is an edge between the vertices.

1If eight connectivity is desired, then a slightly different definition for conti-
guity should be applied.

Every maximally connected subgraph (component) in a can-
didate segmentation graph is a candidate segment, where

(and being the number of segments). A candidate
segment has a set of vertices ,
where is the number of vertices in .

A consequence of the hard connectivity constraint is that (4)
only has to be satisfied forcontiguous components, where com-
ponents and are contiguous: if ,

, with and .
The objective of the segmentation task is to find a segmen-

tation graph that represents homogeneous appearing regions.
In this study we do not consider color images, so the regions
must be homogeneous with respect to their intensities. In the
general cluster model, we stated that a certain variability must
be allowed for to establish a certain cluster scale. However, if
the intensity feature is noisy the image variability caused by
the noise must be incorporated too. So, in addition to the given
intra-cluster variability to establish the desired scale, we assume
that a variability is given due to noise. We measure both variabil-
ities as pixel intensity variance present at the given scale ()
or resulting from the amount of noise (), respectively. Then,

, since the underlying processes (signal and
noise) can be assumed independent.

IV. A LGORITHM

For the optimization of the cluster model, we propose a
stochastic optimization algorithm. In the literature other sto-
chastic clustering algorithms have been reported that generally
optimize the K-means model or fuzzy C-means model either
using simulated annealing techniques [9], [24], [32] or using
evolutionary computation techniques [12], [18], [27], [36].
Accordingly, these stochastic approaches focus on the opti-
mization of known cluster models. The algorithm we propose,
however, shows more resemblance with the distributed genetic
algorithm (DGA) for image segmentation as introduced by
Andrey and Tarroux [1], [2]. We also dynamically apply local
operators to gradually improve a set of hypothesized clusters.
Important differences, however, are: 1) they do not consider
the statistics of the whole segment in the optimization process,
2) their segments may become disconnected, which violates
the strict definition of the segmentation problem, and 3) the
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selection operator that copies local model parameters and the
segment label applies in a restricted neighborhood regardless
of the color model similarities.

We now present the cellular coevolutionary algorithm (CCA)
to optimize the model described in the previous sections. The
proposed model has two important parameters, being the scale-
derived image variance ( ) and the noise variance (). We
deal with noise by simply pre-filtering the image with a uniform
filter with size . Consequently, the parameter from (4) is
affected in the following way:

(8)

since the total variance changes accordingly.
The proposed algorithm dynamically aims at optimizing (2),

while satisfying (4) as well as the connectivity requirement. Ac-
cordingly, the algorithm has only one essential parameter, being

. The segments are maintained by active entities that au-
tonomously try to optimize local criteria. We call these entities
agentsin order to stress their autonomous behavior. For effi-
ciency reasons, each agent manages the outside border

of the component it represents, where is
the border length. This border is a list of vertices that are con-
tiguous butnot adjacent to the component the agent represents.
In other words, contains candidate vertices with which the
agent’s component can be extended. In the following sections,
we describe how the segments are initially created, how they
evolve during the optimization process, and how the process
terminates.

A. Creation

Let the image have dimensions . Upon initialization
the image is converted into a regular grid with uncon-
nected vertices, hence . Accordingly, the initial
segmentation graph has as many components as vertices. Fur-
ther, agents are created and each component is assigned to an
agent. After creation the evolution process starts.

B. Evolution

The evolution process is a sequence of epochs. During every
epoch all agents (conceptually) act in parallel or alternatively
sequentially in random order. An agent can take one of three ac-
tions. Alliances with neighboring agents are formed if the
parameter allows it. The consequent component merge satisfies
the scale condition (4). If no alliances are possible, an agent
considers subject migration from a neighboring agent if this im-
proves the global criterion (2). Now, no check is done whether
the scale condition is violated. Afterwards (in a later epoch),
subject isolation is considered, if in the course of subject migra-
tions the variance exceeds .

When called in sequential random order, agents are activated
sequentially through a random wheel selection method, i.e., the
most successful agents are more probable to be chosen again.
An agent estimates its probability of success as the ratio of suc-
cessful trials in the last trials. To avoid premature conver-
gence, each agent, whether successful or not, has a basal chance

Fig. 4. Schematic illustration of alliance formation. The agent in the center is
the one that attempts to form an alliance.

(probability ) of being selected. The probability of an agent to
be selected for activation is then given by

(9)

The agent will act in this epoch only if ,
where is a uniformly distributed number in the range

.

Alliance Formation: Component Merge

An agent first tries to form an alliance with any of its neigh-
boring agents. Agents form alliances with their neighbors if the
variance of the union of their components remains under the pre-
defined maximum (4). Accordingly, for all neighbors
the joint component variance is computed

(10)

Where the alliance that results in the lowest joint variance is
selected. That is

(11)

If the variance of the selected alliance satisfies (4), then agent
and become allies; see Fig. 4. We let represent the

alliance by taking ’s component. Then, the neighboring agent
no longer represents a graph component, so it terminates.

Consequently, the number of segmentsdecreases.
If the selected alliance violates (4), then the merge action fails

for agent and the agent considers subject migration.

Subject Migration: Vertex Exchange

The aim of the subject migration is to contribute to the mini-
mization of the global criterion (2). First, a number of candidate
vertices are collected and the one that results in the highest gain
is selected.

Agent collects candidate vertices from its border
by random sampling; see also Fig. 5. It is important to note
that at this point, thegreedof the algorithm can be controlled.
Considering all border objects ( ) as candidates would
make the algorithm very greedy, while taking very few objects
restrains the optimization process.

Once the agent has collected a number of candidate vertices,
it chooses that candidate vertex that delivers the highest positive
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Fig. 5. Schematic illustration of subject migration. The agent in the center is
collecting a number of candidates at its border.

gain with respect to the global criterion (2). To this end, the
following local gain is computed for all candidates:

(12)

where and

(13)

If none of the candidates results in a positive gain, then the
expansion trial fails since it does not contribute to the global
criterion (2). Clearly, this is acooperative negotiation scheme
between agent and its neighboring agents.

Since segments must satisfy the connectivity constraint,
vertex migrations from one segment to the other that violate
this constraint must be recognized.2 In other words, we have to
check whether the candidate vertex is acut vertex
of . In the Appendix, we describe an efficient cut-vertex
detection algorithm for this problem.

If the neighboring segment becomes disconnected as a
result of the migration (because was a cut vertex), one or
two new agents arecreated that represent the disconnected
components.

Subject Isolation: Vertex Removal

Since the scale constraint was not checked during the sub-
ject migration, it can happen that the variance of the agents’
component can exceed the given maximum . In that case
the agent decides to isolate the most deviant subject (see also
Fig. 6). To this end, the agent first determines the vertex that
has the largest (Eucledian) distance to the mean feature of the
component. Then, a new agent is created to which this vertex
is assigned. This action serves to satisfy the derived property in
(5).

C. Termination

For an algorithm to work in practical situations it has to termi-
nate at a certain point. When no agent was able to successfully
perform any of its actions for a certain number of epochs, we

2Clearly, as contiguous vertices always become adjacent, adding a contiguous
vertex to a component can never divide it up into two components.

Fig. 6. Schematic illustration of subject isolation. The agent in the center
selects the most deviant subject in case its component is too inhomogeneous.

decide that the algorithm has converged. We have to wait for a
number of failed epochs, because of the stochastic border sam-
pling. We use the success counterfor this purpose. So the
algorithm terminates if . Because the variance of a
segment can indeed exceed ; see (5) local oscillations can
occur. To escape from such situations the algorithm also stops
when the agent community has evolved for a maximum number
of epochs .

V. EXPERIMENTS

In order to evaluate the proposed image segmentation
method, we performed two types of experiments. First, we
explored some specific properties of the method to illustrate
how it operates under various conditions and in what sense
it can be adjusted. After that, we did some experiments in
which we compared the CCA performance to other known
image segmentation methods. In all experiments, we set the
success ratio parameters (9) and and the
border sampling parameter . These values are not
very critical so we could fix them for all experiments. If not
stated otherwise we set the filter size , which means that
we did not pre-filter the images. We show the segmentation
results in images, where the color of a segment equals the
mean color of the pixels in the segment. Clearly the setting of

is crucial for the final segmentation results. If not stated
otherwise, an appropriate (optimal) level for was chosen.
A similar procedure was followed for the methods with which
we compared our approach (see Section V-B).

A. Exploring the CCA

First, we show the course of the segmentation process
with the Circle image in Fig. 7(a), in which the pixel in-
tensity changes gradually. For this 128 128 image we
set . In a strict sense this image can hardly be
segmented, since there are no distinct regions to be separated.
However, since gradually changing colors are quite often part
of a natural scene, it is interesting to see how segmentation
algorithms deal with such transitions.

Fig. 7(b)–(e) show some intermediate results of the segmen-
tation process. In Fig. 7(c) it can be seen that after 10 epochs the
final number of segments has been found. The remaining epochs
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(a) (b) (c) (d) (e)

Fig. 7. CCA applied to the Circle image (a) with� = 20 . (b)–(e) Results after 5, 10, 50, 1000 epochs, respectively.

(a) (b) (c) (d) (e)

Fig. 8. Results of applying the CCA segmentation method to the Checkerboard image with various filter sizef and corresponding� settings. (a) Original.
(b) No filter,� = 60 , 1067 epochs. (c)f = 3, � = 20 , 1357 epochs. (d)f = 5, � = 14 , 784 epochs. (e)f = 7, � = 10 , 696 epochs.

(a) (b) (c) (d) (e)

Fig. 9. CCA segmentation results with different scale parameter settings. (a) Original. (b)� = 10 ,M = 72. (c) � = 15 ,M = 7. (d)� = 20 ,
M = 7. (e)� = 25 , M = 3

are used to settle the segment borders. As expected, the final re-
sult in Fig. 7(e) shows a number of clear ring-shaped segments.

Next, we did an experiment to illustrate how to handle noise
properly with the CCA segmentation method. We used a 128

128 Checkerboard image with squares having either pixel in-
tensity 100 or 160. We added Gaussian noise with and

to this image; see Fig. 8(a). Fig. 8(b)–(e) show a
number of segmentation results with different pre-filter settings.
Since the noise level ( ) and the size of the pre-filter
( in Fig. 8) are known, could be adjusted accordingly
using (8). Note that the noise component has been divided by

, since a filtering in both the horizontal and vertical direction
took place. Additionally, was set slightly higher than pre-
scribed in (8), because the variance in the homogeneous regions
increased due to blurring effects of the filter. The figures clearly
show that the pre-filtering results in smoother segment borders.

When we described our model design considerations, we
stated that especially in image segmentation it is not desirable
to have the number of segments as model parameter. Instead, a
scale parameter was introduced to select a maximum allowed
variability per segment. In Fig. 9, we show the results of varying
the scale when applying the CCA segmentation method to a
face image. Clearly, when the value of is increased the
smaller details disappear from the resulting segmented images.

In Fig. 9(b) most facial features are still visible, since their
segment variance is below the segment variance constraint. In
Fig. 9(c) and (d) the details gradually disappear, while at the
scale in Fig. 9(e) only the background, face, and hair can be
distinguished.

B. Comparison With Other Methods

In the next experiments, we compared the proposed method
to two other typical segmentation methods. The first one is the
“split-and-merge with grouping” algorithm, which has a sim-
ilar model and parameters. The second one is a Markov random
field model-based segmentation algorithm. The latter segmen-
tation method has quite a different model and is often used for
segmentation and restoration. Since obtaining the ground truth
is difficult in image segmentation, comparing segmentation re-
sults is not trivial. Here, we compare the results with respect
to the following qualitative criteria: 1)accurateness: the seg-
ment border represents a true contour. 2)continuity: the segment
border may not contain holes if the object that it represents has a
continuous contour. 3)fragmentation: the union of neighboring
segments must be inhomogeneous.

Before discussing the comparative experiments, we first de-
scribe the other two segmentation algorithms in more detail.
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(a) (b) (c) (d) (e)

Fig. 10. Results of applying the SMG algorithm to the Circle image [Fig. 7(a)] with various� and� parameter settings. (a)� = 0, � = 22. (b)� =

5 , � = 20. (c) � = 10 , � = 20. (d) � = 15 , � = 15. (e)� = 20 , � = 0.

Split-and-Merge With Grouping Segmentation (SMG)

The split-and-merge implementation we use is based on [21]
and [31]. Typically the split-and-merge algorithm uses a scheme
in which a square region is recursively split into four quads if
the homogeneity predicate is false. Merging is allowed if for
neighboring regions the homogeneity predicate is true. The al-
gorithm stops when no splitting or merging is possible. The ho-
mogeneity predicate we use is the Chi-squared test, where the
rejection probability is set to 0.5. The maximum variance
used in this test has similar semantics as the maximum variance
in (4). The specific implementation uses a quad tree structure
for the splitting and merging. Since only merges on the same
level of the quad tree are allowed, a final grouping step is in-
corporated. In the grouping stage all regions that together are
homogeneous are grouped together. Now, regions are homoge-
neous if the distance between their means is below a certain
maximum . Finally, the method usually ends up with many
very small regions at the intended segments borders. These re-
gions are grouped together with their neighboring segments if
their size is relatively small (default 0.2%) with respect to their
largest neighbor. Like the proposed method in this paper, the
split-and-merge algorithm does not need to know the number
of segmentsa priori. Moreover, segment connectivity is always
satisfied, i.e., the computed segment statistics are always based
on connected components. The scale and noise can be regulated
by setting and properly. Clearly, setting very low
yields many small regions, so the actual segmentation is done
in the grouping stage. In this way the algorithm turns into a re-
gion-growing algorithm. The consequences of variations in both
parameters will become clear in the experiments.

Markov Random Field Model-Based Segmentation (MRF)

In Markov random field models for image segmentation, typ-
ically an energy function with two terms is minimized simulta-
neously for all pixels in the image. It is assumed that the number
of color distributions is known together with their meanand
variance . For the natural images, we estimate these values
with a mixture of Gaussians method, though we fix
to make a more fair comparison with the other methods. For
the synthetic images we feed the algorithm the true color dis-
tribution values. Then, one of the terms in the energy function
accounts for the distance between the pixel color and the color
distribution to the pixel color and the other term introduces con-
textual information through the Markov random field (MRF).
That is, the second term imposes the same segment label on

pixels in a certain neighborhood (in this case a second-order
model). The neighborhood term is weighted with a factorto
stress the relative importance of local connectivity and color
matching. Since global optimization of the model is intractable,
several approximations have been proposed [5], [10], [17]. We
use the well-known ICM method, due to [5], which has been
proven to be the most effective method to optimize the MRF-
based model [13]. As remarked earlier, as a consequence of the
optimization of these pixel criteria, this is rather a quantization
than a segmentation method. The scale and noise adaptation is
controlled both by the order of the Markov random field (second
order) and the number of pre-defined color distributions.

Gradual Changing Color

First, we applied the SMG and MRF methods to the synthetic
images that we already used to explore the CCA method in the
previous subsection. For the original SMG method the Circle
image is especially difficult because the intensity changes grad-
ually. Only if the parameter is set to zero the result is sim-
ilar to the CCA outcome [Fig. 10(a)]. When, on the other hand,

is set “properly,” the resulting segments become irregular,
as can be seen in Fig. 10(b)–(e). The MRF method has the best
results when the contextual information is made unimportant
( ) as in Fig. 11(a). Then, the segmentation result is
mainly based on the image intensities. In this case, where there
is no noise, there is strong dependence between image intensity
and segment label. Accordingly, the contextual information is
indeed superfluous or even harmful; see Fig. 11(b)–(e).

Noisy Image

Next, we applied the algorithms to the noisy Checker-
board image in Fig. 8(a). The SMG algorithm clearly has
problems with this image. We varied the parameter
between and the true variance of the Gaussian noise
( ), and adjusted as to achieve the best possible
segmentation result. The results achieved with
fit quite well to the original noiseless image [Fig. 12(e)]. We
must, however, note that the regular block pattern of the image
definitely favors the split-and-merge algorithm. With lower

values irregular borders occur and, as a consequence of
the greedy chaining of small regions, many extra irregular seg-
ments occur; see Fig. 12(a)–(e). Also the MRF method is able
to find useful segmentation results for the Checkerboard image.
However, when the parameter is (too) low, the segments
are strongly fragmented (connectivity violated) and whenis
high, blurring or smearing effects occur; see Fig. 13(a)–(e).



312 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 12, NO.3, MARCH 2003

(a) (b) (c) (d) (e)

Fig. 11. Results of applying the MRF algorithm to the Circle image [Fig. 7(a)] with various� parameter settings. (a)� = 0:1. (b) � = 0:2. (c) � = 0:3.
(d) � = 0:4. (e)� = 0:5.

(a) (b) (c) (d) (e)

Fig. 12. Results of applying the split-and-merge segmentation method to the Checkerboard image with various� and� settings. (a)� = 0, � = 55.
(b) � = 10 , � = 55. (c) � = 20 , � = 55. (d) � = 50 , � = 45. (e)� = 60 , � = 25.

(a) (b) (c) (d) (e)

Fig. 13. Results of applying the MRF model-based segmentation method to the Checkerboard image with various� settings and� = 100, � = 160, and
� = � = 60 . (a)� = 0:1. (b) � = 0:2. (c) � = 0:3. (d) � = 0:4. (e)� = 0:5.

Natural Images

Finally, we applied all three algorithms to a number of natural
images. In the natural images a number of difficult aspects of
image segmentation come together, like noise, gradual changing
colors, and large and small objects. For all algorithms we chose
those parameter settings that turned out to be the best for each
of them. The parameter of the MRF algorithm was fixed to

. We used of the SMG equal to of the CCA
to select a certain scale. Additionally, we set to turn
the SMG into a region-growing algorithm. In all cases the
parameter of the SMG algorithm is adjusted accordingly.

We started with the Orca image in which the (splashing) water
and the sky contain gradually changing colors; see Fig. 14(a).
Further, there are some well-defined large and small segments
on the Orca. Like in the Circle image the MRF algorithm cre-
ates artefacts in the gradually changing colors, as can be seen in
Fig. 14(b). Besides, it creates many very small regions around
the Orca, which is, however, hard to see in the figure. When

is set to the proper scale value, the SMG algorithm has
contour artefacts; see Fig. 14(c). The SMG with
makes nice contours, but has some artefacts resulting from the
chaining of small regions, like the light-gray areas on the trunk
of the Orca and the light-gray region above its fin; see Fig. 14(d).
The CCA has a good segmentation result, except that (as for the

SMG method) some details seem missing, like the small white
area on top of the Orca’s head. When we measured the corre-
sponding areas it appeared that the variance was indeed below
the given , hence, the details should indeed not be visible
at this scale.

The image from the Flower-Garden sequence (Fig. 2) has
both very large segments (the tree) as well as many small seg-
ments (the flowers). The MRF model-based method shows the
expected smearing effects; see Fig. 15(a). We had to lower the
small-region-removal parameter of the SMG method to 0.01%
in order to prevent all flowers from being removed. Besides,
with the same blocking artefacts occurred as be-
fore; see Fig. 15(b). Configured as a region grower ( )
the SMG results are better [Fig. 15(c)], though in all cases small
noisy regions remain. These are not always easy to see in the
figures. The CCA method gives segmentation results with both
small details and large homogeneous regions.

Finally, we applied the algorithms to a noisy image
[Fig. 16(a)]. The results are similar to those obtained with the
Checkerboard image. That is, the MRF has good segmentation
results apart from the smearing effects [Fig. 16(b)] and the
SMG has again blocking artefacts [Fig. 16(c) and (d)]. As
expected, the SMG with [Fig. 16(d)] and the CCA
[Fig. 16(e)] give similar irregular contours.
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(a)

(b) (c)

(d) (e)

Fig. 14. (a) Shows the Orca image. In (b)–(e) the segmentation results are shown with different algorithms and parameter settings. (a) Original. (b) MRF� =

15 , � = 0:3. (c) SMG� = 15 , � = 5. (d) SMG� = 0, � = 15. (e) CCA� = 15 .

VI. CONCLUSIONS

In this paper we presented a cluster model for which the
number of clusters does not have to be knowna priori. Instead of
the number of clusters, we introduced a scale parameter. We jus-
tified this choice among others from the image segmentation do-
main, which we especially addressed. We specialized the cluster
model for the image segmentation problem and presented acel-
lular coevolutionary algorithm(CCA) to optimize it in a dis-
tributed way. In the experiments, we showed the effectiveness of
the method and compared it to two other well-known segmenta-
tion methods. Both the Markov random field model based seg-
mentation method (MRF) and the split-and-merge-and-group
(SMG) scheme have quite a number of parameters, some of

which we estimated and fixed and others which we varied in
the experiments. Though it is hard to draw conclusions without
trying all combinations of parameter settings, the proposed CCA
is clearly simpler since it has only one essential parameter. The
advantage of such a simple model is that it is both easier to tune
and to optimize. Having said this, we conclude the following.
The MRF method implements segment connectivity as asoft
constraintand uses a weighting factorto stress the importance
of connectivity. Especially in case of noise and gradual segment
transitions, connectivity must be stressed since the pixels are not
linked based on intensity only. However, the experiments show
that setting too high results in smearing and blurring artefacts
and setting it too low results in fragmented segments, though
it has to be noted that the MRF artefacts are not only caused
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(a) (b)

(c) (d)

Fig. 15. (a)–(d) Show segmented images resulting from applying different algorithms with several parameter settings to an image from the Flower-Garden
sequence. Fig. 2 shows the original image. (a) MRF� = 15 , � = 0:3. (b) SMG� = 15 , � = 20. (c) SMG� = 0, � = 15. (d) CCA
� = 15 .

by the MRF model, but also by the (ICM) model optimization
scheme. The right trade-off between connectivity and correct
border estimation can be hard to find. Though connectivity is a
hard constraint for the SMG method, this method also has signif-
icant artefacts. First, it strongly needs a small-region elimination
step. This is a problem if the image indeed contains small and
large segments. Further, if the value, which serves to de-
fine segment homogeneity, is set properly, then strong blocking
effects occur. On the other hand, when it is set very low the
SMG method is actually a region-growing algorithm. Then, the
results are usually quite good, though borders can be irregular
and the grouping procedure has order dependence and chaining
artefacts. As regards the SMG method with low values,
the CCA tends to result in somewhat irregular contours when
the image is noisy. However, if an estimate of the amount of
noise is known, the proposed method prescribes to pre-filter the
image and to adjust accordingly, which indeed results in
smoother contours. Another problem that the CCA method suf-
fers from is that small regions can be absorbed by large homo-
geneous regions. This is a consequence of the variance-based
scale constraint in the proposed model. The SMG method lacks
the same problem in the merging and grouping steps. Other cri-
teria can be developed to prevent this, though it remains a diffi-
cult issue.

There are a number of possible extensions to the proposed
method. First, the efficiency of the CCA needs improvement,
especially if image sequences are to be segmented. The algo-
rithm uses multiple agents that locally optimize a criterion. Ac-

cordingly, parallel computer architectures can be exploited very
effectively. In image sequences the efficiency can be further im-
proved by starting the evolution with the resulting agent con-
stellations from the previous image. Additionally, it would be
very interesting to estimate a texture model for each segment.
This is far from trivial since the determination of textured seg-
ments conflicts with finding small segments. Another appealing
idea is to develop a similar algorithm for the general clustering
problem. The main difficulty in that respect is to exploit locality,
which is especially easy in the image domain.

APPENDIX

CUT VERTEX DETECTION ALGORITHM

Detecting whether a segment component becomes discon-
nected after the deletion of a verteximplies detecting whether

is a cut vertex of a segment component. The vertex degree
of is at most three, because otherwise it could not be
contiguous to another component. If the vertex degree ,

cannot be a cut vertex, we are done. For the other cases, we
only need to know if there is a path between every pair of adja-
cent vertices of which does not include itself. If there is no
such path, the graph will be disconnected after the deletion of

, i.e., it is a cut vertex.
First set the visit state of all vertices in to .

Search depth first, starting at an arbitrary adjacent vertex, say
, of and visit all adjacent vertices of every visited vertex.

The searching stops when another (arbitrary) adjacent vertex of
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(a)

(b) (c)

(d) (e)

Fig. 16. (a) Shows an MRI image with extra artificial noise. In (b)–(e) the segmentation results are shown with different algorithms and parameter settings.
(a) Original. (b) MRF� = 15 , � = 0:3. (c) SMG� = 15 , � = 10. (d) SMG� = 0, � = 15. (e) CCA� = 15 .

, say , is found or all connected vertices to are visited.
While searching, set the visit state of vertices to and
skip those vertices that have already been visited ( ).
If no path from to an adjacent vertex of is found, then is
a cut vertex.

Otherwise, if there is one more adjacent vertex, say, start
searching from this vertex and continue until a vertex is found
with or until all connected vertices to are vis-
ited. Again mark evaluated vertices while searching, but now set

and skip those vertices that already have .
Only if there was no path to a vertex with then is a
cut vertex.

Additionally, we speed up the algorithm considerably by
using depth-first search with iterative deepening, because
usually the path connecting adjacent vertices is very short.
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