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Abstract
Manually crafting test suites is time-consuming and
susceptible to bugs. The automation of this pro-
cess has the potential to make this task more ap-
pealing. While current tools like EvoSuite man-
age to obtain high coverages, their generated tests
are not always readable. Recent literature indicates
that Large Language Models (LLMs) could address
readability and comprehension issues. Our objec-
tive in this study is to explore the capabilities of
ChatGPT-3.5-Turbo in enhancing existing Java unit
tests. We have designed an algorithm that sends
multiple prompts to the LLM and overwrites the
test cases with the ones received from GPT-3.5.
Thus, we have assessed its performance by measur-
ing the initial mutation score of the test suite with
the new coverage. The benchmark consists of 16
non-trivial Java classes, on which we performed 80
runs of our algorithm. The results indicate that af-
ter one run, GPT-3.5 increases mutation coverage
by 23% on average for isolated classes. However,
for classes with dependencies, it is less reliable, of-
ten producing code with run-time or compile-time
errors. Through this paper, we hope to emphasize
the importance of ongoing research in this domain
to optimize LLMs for providing better test cases.

1 Introduction
Testing is a crucial aspect of Software Engineering, as it as-
sures the correctness of the program and that it behaves as
intended. However, manually developing test cases that ver-
ify this can be a laborious task, which is time-intensive and
prone to human error [1]. Therefore, the automation of this
process is sought-after, as this would result in less time spent
by a Software Engineer to reason about test cases or perform
debugging.

Previous attempts have been made to automatically craft
test cases, generally by employing fuzz testers: tools that gen-
erate random and unexpected inputs to test a program for vul-
nerabilities. Due to the non-determinism involved and the
ability to produce a large number of inputs, these tools have
emerged as a state-of-the-art technique in exposing software
bugs [2].

Despite the efficacy of fuzz testing, recent advancements
in Artificial Intelligence, particularly in the development of
Large Language Models (LLMs), suggest that these models
might offer unique advantages for automatically generating
tests. LLMs have shown great potential in understanding and
generating human-like text based on vast amounts of data [3].
This capability can be used to create more contextually rel-
evant test cases, potentially surpassing the input generation
capabilities of traditional fuzzers.

In this study, we have explored the potential of OpenAI’s
ChatGPT-3.5-Turbo1 to enhance existing Java unit test cases.
We have devised an algorithm that sends multiple prompts to
the language model and overwrites the original test cases with

1https://openai.com/chatgpt/

the new ones, received from the LLM. We aim to maximize
the mutation score, which measures the effectiveness of a test
suite by determining the percentage of artificially introduced
faults (mutations) it can detect. It often provides a more strin-
gent evaluation than traditional coverage metrics like line or
branch coverage [4], and thus being the metric that we fo-
cused on. The classes that we tested this approach on were
extracted from the SF110 repository2 and the Apache Com-
mons library3. We observed that for isolated classes, GPT-3.5
can improve upon the original test suite, killing 7 additional
mutants on average, for every 9 prompts sent. The LLM per-
forms worse for classes with dependencies, detecting only 2
additional mutants, while also providing crashing code more
frequently.

This paper is structured as follows: in Section 2, we will
discuss the general topic in more detail, alongside the ap-
proaches of previous studies. Section 3 will showcase our
general methodology for automatically improving test suites.
The experimental protocol, benchmark, and other crucial as-
pects will be presented in Section 4. While Section 5 will
discuss the obtained results, Section 6 will address possible
ethical, legal, and scientific considerations. Threats to va-
lidity will be discussed in Section 7. Lastly, Section 8 will
conclude this study and emphasize future directions.

2 Background and Related Works
Our main objective of improving test cases with GPT-3.5
is closely related to the challenge of distinguishing correct
behavior from potentially incorrect behavior given an input,
known as the ”test oracle problem” [5]. Solving the oracle
problem ensures optimal test suites. Although it is an inher-
ently difficult problem, we can attempt to address it by using
mutation score, as it correlates better with test effectiveness
than line or branch coverage [6]. High line or branch cov-
erage can be achieved with trivial assertions, which do not
necessarily contribute to the robustness of the test suite and
are not the focus of this study.

Search-Based and Fuzz Testing (SBFT) tools have been a
cornerstone in automatically generating test suites for the past
decades. The most notable one, EvoSuite4, which uses an
evolutionary algorithm, has outperformed other tools, achiev-
ing a median line coverage of 97% on classes extracted from
multiple libraries [7]. While the results are significant, as
EvoSuite’s main focus is on maximizing coverage [8], SBFT
tools in general struggle to understand semantic information,
which can lead to unreadable tests [9].

An alternative to automatically creating test suites is to em-
ploy LLMs, which have the potential to enhance software
test generation. For example, LLMs have proven effective
in improving the readability of Python test cases [10] and
coverage for JavaScript test suites [11]. Fan et al. provide
a comprehensive survey encompassing various software en-
gineering applications of LLMs [12], while Wang et al. fo-
cus specifically on testing [13]. Both studies emphasize the

2https://www.evosuite.org/experimental-data/sf110/
3https://commons.apache.org/
4https://www.evosuite.org/
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prevalence of language models in test generation and im-
provement in the literature. However, Tang et al. demonstrate
that EvoSuite achieves 18.8% more code coverage than Chat-
GPT [14], which underlines the need for continued research
to optimize language models for testing.

Processes that involve LLMs are stochastic due to the un-
predictable nature of these models [15], making the replica-
tion of results a challenging task. Nonetheless, our experi-
ments reflect findings in the literature, as we have observed
that almost two-thirds, if not more, of the LLM-generated
code crashes, depending on the number of prompts sent.
This is similar to the study conducted by Yuan et al., where
only 24.8% of tests created by GPT-3.5 were executable [16],
highlighting the importance of effective prompt engineering.
The results regarding crafting test suites from scratch vary
widely: Siddiq et al. reported as high as 80% coverage on
classes from the HumanEval dataset [17], while achieving
merely 2% on the SF110 repository [8]. However, our fo-
cus is not to generate test suites from scratch but to improve
existing ones. As highlighted by some researchers working
at Meta, the TestGen-LLM tool’s purpose is to aid software
engineers by suggesting potential improvements, not replace
them [18].

Moreover, we acknowledge the work of Dakhel et al.,
which employs an iterative approach similar to ours, aimed
at maximizing the mutation score [19]. Their method demon-
strates promising results, achieving 100% mutation coverage
for up to 70% of the classes tested. While their focus is on
evaluating the effectiveness of Codex and Llama-2-chat, our
study assesses the capabilities of ChatGPT-3.5 in enhancing
test suites. Although we achieved high mutation scores for
certain classes, we did not attain 100% mutation coverage in
any run. Several factors may account for this difference, in-
cluding the use of a different LLM. Additionally, Dakhel et
al. tested Python classes, whereas we focused on Java classes.
The number of iterations may also contribute to the disparity
in performance, as their method involves a maximum of 10
iterations compared to our 9.

3 Approach
In Subsection 3.1, we will showcase why we chose the dy-
namic approach, while in Subsection 3.2 the general method-
ology will be provided. Subsection 3.3 will detail how we
structured our prompts. Implementation details will be de-
scribed in Subsection 3.4.

3.1 Dynamic Approach
To enhance tests and evaluate improvements, various meth-
ods can be utilized, including SBFT tools, LLMs, or a com-
bination of both [20]. When leveraging an LLM, there are
two primary strategies: static and dynamic. Given the longer
response times associated with LLMs, the static approach of-
fers speed, while the dynamic one ensures maximum test cov-
erage due to its iterative nature. Since this study focuses on
maximizing the number of mutants detected, the dynamic ap-
proach is our ultimate goal. By starting with a single initial
prompt in the dynamic approach, we can also evaluate its per-
formance, thereby assessing the static strategy.

A key consideration is the number of prompts sent to the
LLM to achieve a high mutation score: the more iterations
of the dynamic approach needed to increase coverage, the
greater the computational resources and processing time re-
quired. As previously mentioned, LLMs can be unreliable, as
the generated code does not always function properly. Com-
pilation and run-time errors are particularly problematic as
they hinder our ability to assess the model’s performance ac-
curately. To extract a valid mutation score, we employed
ChatGPT-3.5 to fix these issues. Due to its ability to under-
stand language, it can also grasp the errors present in the code.
Consequently, whenever we encountered crashing code, we
extracted the errors from the console and fed them back into
the LLM. This iterative feedback loop, facilitated by the dy-
namic strategy, is another reason for choosing this method.

3.2 General Overview
By using multiple iterations, we were able to take full ad-
vantage of the LLM to either fix the faulty code generated
by GPT-3.5 or further increase the mutation coverage. Each
prompt was unique: the initial prompt included the source
code and the initial test suite, while subsequent prompts pre-
sented the outcomes of the LLM’s responses and requested
improvements.

Initially, we manually extracted the source code and its
corresponding test suite. Assuming that the initial test cases
work correctly, we focused solely on determining the muta-
tion score. The first prompt, containing the source code, test
suite, and mutation score, was sent to GPT-3.5. The LLM’s
responses always included updated code due to our prompt
design.

The iterative process began by overwriting the current test
suite with the code from the LLM’s response and recording
the results (crashes or mutation scores if the code worked cor-
rectly). We then decided whether to continue or stop the algo-
rithm based on the number of prompts sent, halting the pro-
cess if this number exceeded the threshold of 9.

If the algorithm continued, we compiled and ran the test
suite, automatically extracting its mutation coverage or any
console errors. These results were used to craft the next
prompt, which was sent to GPT-3.5, continuing the iterative
improvement process. Figure 1 details the top-level architec-
ture of our approach.

3.3 Prompt Engineering
Crafting an effective prompt is crucial when working with an
LLM, as the quality of the prompts directly affects how well
the task is communicated to the language model. We have
observed that by including more details in the prompt, we
can greatly improve the performance of our algorithm.

Initially, we simply asked ChatGPT-3.5 to provide addi-
tional test cases to increase the mutation score. The results
were not favorable, as the test cases would often fail for vari-
ous reasons, such as crashing assertions or missing the correct
package. In the case of classes with dependencies, the tests
failed to compile due to incorrect lambda expressions or is-
sues with inferring the types of generic arguments. These er-
rors will be addressed in more detail in Section 5. The struc-
ture of the provided tests would also vary from response to
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Figure 1: The top-level architecture of the algorithm demonstrates the crafting of the initial prompt, the iterative loop
utilized in the dynamic approach, and the generation process for subsequent prompts.

response, and sometimes, the response would not even con-
tain code. Parsing these responses proved to be challenging,
if not impossible, in case there would be no test cases pro-
vided. By being more explicit and asking the LLM to provide
the entire code, we managed to mitigate these issues. An ex-
ample of an initial prompt is the following:
I have Java classes and JUnit tests for them.
I am interested in their mutation score and how
to improve it. Currently, I have 1 Java class.
This is the XClass.java class:
"package bytevector;
public class XClass {

int value;
public XClass(int value) {

this.value = value;
}
public int getValue() {

return value;
}

}"
These are the test cases:
"package bytevector;

import org.junit.Test;
import static org.junit.Assert.assertEquals;

public class XClassTest {
@Test
public void test_get() {

XClass x = new XClass(0);
assertEquals(0, x.getValue());

}
}"
I use Pitest to compute the mutation score,
which currently is: 0.0. Can you provide me
with the entire code for the tests, such that
the mutation score is improved? Please include
the package on the first line

To address the problem of crashing assertions, we enumer-
ated the errors encountered while running the tests in a subse-
quent prompt and asked GPT-3.5 to fix them. While this did
not guarantee the absence of incorrect assertions, it increased
the likelihood of receiving proper test cases in subsequent re-
sponses. An example of a prompt which contains an error is

the following:
I have included your suggestions in the test
suite. I get the following errors: XClassTest.
test_get:10 expected:<1> but was:<0>. Can you
provide me with the entire code for the tests,
such that the errors are fixed? Please include
the package on the first line

Interestingly, we observed that to increase the mutation
score, it was necessary to send at least two prompts. Often,
the first prompt resulted in new test cases with incorrect asser-
tions. The second prompt’s role was to enumerate the prob-
lems and allow the LLM to fix them. However, if the number
of errors was high, the LLM would generally fail to fix them,
even after multiple identical prompts were sent. Because of
this, we decided to limit the number of errors in the prompt
to three, which resulted in fewer crashing test suites.

Another issue we encountered was the stagnation of the
mutation score despite prompts asking GPT-3.5 to increase
the number of mutants killed. To address this, we had to be
more specific once again. We refined our prompts to be more
explicit about the task by also adding terms like ”changing
logical operators” or ”altering arithmetic operators” to prop-
erly describe the type of mutants we wanted to detect. An
example of a subsequent prompt that asks the LLM to further
improve the mutation coverage is the following:
I have included your suggestions in the test
suite. Using PiTest, the current mutation score
is 0.0. I need to further improve this score by
adding more robust and comprehensive test cases
Can you suggest additional test cases to include
in the test suite to improve the mutation score?
Please ensure the new test cases are designed to
cover edge cases, exceptional conditions, and any
missed scenarios. Here are the specific types of
changes I would like to focus on: changing logi-
cal operators, altering arithmetic operators,
boolean mutations, relational mutations, numeri-
cal mutations, string mutations, return value mu-
tations, increment/decrement mutations, statement
mutations. The goal is to catch as many mutations
as possible. Please provide only the entire code
(with the old and new test cases), and make sure
to include the package on the first line
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3.4 Implementation Details
The project is divided into two parts: the Java source code
accompanied by the test suite, and the Python scripts which
automatically run and improve the tests. The dependency be-
tween PiTest5 and the program is managed by Maven6.

In one script, the mutation score is determined using PiTest
and Python’s subprocesses, which enable us to extract the
mutation score for the present classes. Another Python script
overwrites the current test cases with improved ones and
sends prompts to ChatGPT-3.5 via OpenAI’s endpoint. The
third script is responsible for creating the prompts and the last
one can run the Java tests normally and catch any errors.

The version of Python we used is 3.9.18, and for Maven we
used 3.9.6, which facilitated easy dependency management
for the project. We used Java version 21.0.1, although any
version that properly supports the classes and test cases would
suffice. Additionally, we used the default settings for PiTest.

4 Study Design
In Subsection 4.1, we will highlight the three proposed re-
search questions that we have addressed. The benchmark of
classes will be explored in Subsection 4.2, and the experi-
mental protocol will be described in Subsection 4.3.

4.1 Research Questions
Our main objective is to assess the performance of GPT-3.5
in improving Java unit tests. Generally, to determine the ef-
fectiveness of tests, line or branch coverage metrics are em-
ployed. However, as discussed earlier, having a high line or
branch coverage does not necessarily indicate a thoroughly
tested source code. Therefore, mutation coverage was the
metric we utilized to assess the efficacy of test suites.

To verify the capabilities of GPT-3.5, we have devised
three research questions:

• RQ1: To what extent can the static approach improve
the mutation coverage for Java unit tests?

• RQ2: To what extent can the dynamic approach improve
the mutation score for Java unit tests?

• RQ3: How many prompts are required for the dynamic
approach, in order to maximize the mutation coverage?

To address the first question, we will investigate whether
the number of mutants killed increases after the initial itera-
tion of the algorithm. For the second question, we will verify
whether the mutation score improves with each iteration. Fi-
nally, for the third question, we will determine which iteration
shows the largest improvement.

4.2 Benchmark
To obtain a comprehensive analysis of GPT-3.5’s capabilities,
we assessed it on a diverse set of classes. Table 1 presents
statistics for each class: each row corresponds to a different
class considered in this study. The last three rows represent

5https://pitest.org/
6https://maven.apache.org/

three groups of classes with dependencies that we have ex-
plored; for these groups, the statistics (number of lines, ini-
tial mutation score, and number of mutants) were aggregated.
The second column shows the number of lines in each class,
while the third column presents the baseline mutation score
before any improvements. The fourth column depicts the to-
tal number of mutants. The fifth column indicates whether
the tests were manually written; if the checkmark (✓) is miss-
ing, the tests were generated by EvoSuite. The final column
indicates whether the classes were taken from SF110; if the
checkmark (✓) is missing, the classes were extracted from
the Apache Commons library. As stated earlier, we devised
two scenarios - classes with dependencies and classes without
dependencies - due to the differing results obtained for each.

We selected five standalone classes - classes without de-
pendencies - that initially had low mutation scores. These
are ByteVector, Utils, BooleanComparator, CommandLine,
and Queue. Except for BooleanComparator, all were ex-
tracted from the SF110 repository. These classes involve
boolean, numerical, and string manipulations, as well as
loops, which allow for a variety of mutants. Additionally, we
examined whether manually written tests versus EvoSuite-
generated tests impact the LLM’s effectiveness. We observed
that when improving upon existing tests for all these classes,
there was no noticeable difference in performance, regardless
of whether the tests were manually crafted or not.

We also studied classes with dependencies, exploring three
groups of classes, all from the Apache Commons library.
The first group included ComparatorChain and Compara-
torUtils. In this group, there was no inheritance; Comparator-
Chain simply utilized some functions from ComparatorUtils,
and vice-versa. The second group comprised AbstractCol-
lectionDecorator (abstract), TransformedCollection, Trans-
former (interface), and NOPTransformer. This group allowed
us to assess GPT-3.5’s ability to understand inheritance de-
pendencies and generate test cases accordingly. The third
group consisted of FixedSizeList, BoundedCollection (in-
terface), Unmodifiable (interface), UnmodifiableIterator, and
AbstractSerializableListDecorator (abstract). These classes
had dependencies and involved a significant amount of nu-
merical manipulations.

All of these classes differ in scope and size. Through this,
we hoped to achieve an extensive understanding of how well
ChatGPT-3.5 can improve test suites.

4.3 Experimental Protocol
Before employing the dynamic approach for a particular
class, we had to preprocess the classes with dependencies.
Firstly, we organized the initial tests into a single class by
copying all of the test cases into one file. This reduced the
size of the prompts and allowed the LLM to focus on a single
test suite.

Additionally, we limited the number of dependent classes
to five. This was necessary for the third group of classes
with dependencies, which originally contained seven classes.
The results for all seven classes were unsatisfactory, with 84
out of 90 responses from the LLM producing crashing code.
To address this, we removed two classes, AbstractListIter-
atorDecorator and AbstractCollectionDecorator, by deleting
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Table 1: The table showcases for every class or group of classes the lines of code, initial mutation coverage (before
any improvements), the total number of mutants, and whether the initial test suite was manually written or generated
by EvoSuite. It also indicates whether the classes were extracted from SF110 or the Apache Commons library.

Class Number of lines Initial mutation score Total number of mutants Manual written tests SF110

ByteVector 294 15 138 ✓
Utils 175 21 24 ✓ ✓

BooleanComparator 190 35 24 ✓
CommandLine 198 41 32 ✓

Queue 232 38 34 ✓
Group 1 593 27 29 ✓
Group 2 462 29 38 ✓
Group 3 404 10 52 ✓

any override annotation. Whenever a function from these re-
moved classes was called, we replaced those calls with the
actual implementation of the functions.

These preprocessing steps improved the reliability of GPT-
3.5 for the classes with dependencies. The standalone classes
required no preprocessing.

We applied the dynamic approach to all of these classes,
conducting 10 separate runs of our algorithm for each class.
For each run, we sent 9 prompts and recorded the outcome
for each response. Therefore, each run yielded 10 results: the
initial mutation score and the outcomes of the 9 subsequent
prompts. These outcomes indicated whether the tests crashed
or the mutation score changed. The results will be explored
in Section 5.

Generally, it takes about 1 minute to run PiTest for a class
and its corresponding test suite, craft the prompt based on the
mutation score, send it to GPT-3.5, receive a response, and
extract the code from it. Therefore, one entire run could take
9 or 10 minutes.

While our primary focus was to maximize the mutation
score, this was not possible whenever we received crashing
test cases. As a result, fixing these cases with ChatGPT-3.5
became a priority. We observed that most errors in the ex-
tracted classes could be fixed with only a few prompts, never
requiring more than 9 prompts to resolve a bug. This is the
reason for using 9 iterations for each run in our experiments.

5 Results and Discussion
In Subsection 5.1 we will explore the performance of GPT-3.5
for the isolated classes, whereas for Subsection 5.2 the results
for classes with dependencies will be considered. A discus-
sion about the results and their significance can be found in
Subsection 5.3.

5.1 Standalone classes
We first considered the five classes without dependencies. As
highlighted in Table 1, the classes vary in scope and size:
a certain mutation score for the ByteVector class will not
be equivalent to the same score for the BooleanComparator
class, due to the much larger number of mutants in ByteVec-
tor. Therefore, to compare the runs between these classes and

how effective GPT-3.5 was in detecting mutants, we only ex-
amined the number of mutants killed, rather than the mutation
score. Furthermore, as each test suite has a different num-
ber of initial mutants detected, we plotted only the additional
number of mutants killed by the LLM. Thus, we considered
the baseline number of mutants killed to be 0 in our figures,
to properly compare the performance of ChatGPT-3.5. We
aggregated the outcomes for every iteration of our algorithm
and every run and class. The mean and median values of the
number of mutants killed by the LLM can be viewed in Fig-
ure 2. Whenever the test suite would crash, we would not in-
clude a mutation score of 0 in the statistic with the number of
mutants killed: we would only represent the cases where the
program functioned properly. Figure 3 showcases the number
of times the test suite present in the LLM’s response crashed.
Moreover, Table 2 illustrates comparisons between the means
of mutation score distributions. We employed Welch’s t-test
due to differences in variances and calculated the effect size
using Cohen’s d to quantify the magnitude of the variations
between distributions, aiding in the interpretation of the sig-
nificance of our results.

We observe in Figure 2 that both the mean and median val-
ues exhibit a consistent upward trend, with the number of de-
tected mutants peaking in the final iteration of the algorithm.
Additionally, by the ninth iteration, we have noted a general
decrease in the number of crashes compared to earlier stages.

For Welch’s t-test, we selected a significance threshold (α)
of 0.05 and compared the p-value with α to determine statis-
tical significance. We compared the distribution obtained for
the ith iteration with the baseline distribution, which contains
only zeros in our case. For every comparison, we observed
statistical significance between distributions, as the p-values
were lower than α, leading us to reject the null hypothesis that
the means of the distributions are equivalent. Notably, across
comparisons from the second to the eighth iteration, we ob-
serve an upward trend followed by a subsequent decline, as
indicated by the effect size (Cohen’s d).

Based on these plots, we can address the original research
questions. Sending only one prompt likely does not lead to
an increase in the mutation score, as emphasized by the me-
dian being zero. However, the likelihood of receiving func-
tional code remains high. When multiple prompts are sent,
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Figure 2: Box plots for the number of mutants killed by ChatGPT-3.5 for the standalone classes. The X-axis represents
the number of prompts sent to GPT-3.5, while the Y-axis showcases the number of mutants killed. One box spans
from the first quartile (Q1) to the third (Q3), its length denoting the interquartile range (IQR). The whiskers extend
from the edges of the box to the smallest and largest values within 1.5 times the IQR from Q1 and Q3, respectively.
The red diamond presents the average number of mutants detected. The line inside a box showcases the median (Q2),
while the outliers are depicted as dots

Figure 3: Mean and median values of number of crashes for the standalone classes’ tests. The X-axis represents the
number of prompts sent to GPT-3.5, while the Y-axis showcases the number of crashes

Table 2: Comparisons of mutation score distributions between iterations using Welch’s t-test. The second row showcases
the value of Cohen’s d, while the third row presents the p-value. Each column represents the comparison between
distributions: the ith column shows the comparison between the initial distribution (iteration 0) and the distribution
obtained from the ith iteration

Comparison 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9
Cohen’s d 2.8552 4.2378 2.8945 4.9287 3.2755 4.7274 4.0135 6.5928 8.7453
P-value 0.0082 0.0004 0.0118 0.0001 0.0051 0.0002 0.0009 0.000002 0.000000019

although the reliability of the code decreases (as the chance
of receiving crashing code increases), there is a noticeable
increase in the number of mutants killed. Lastly, for maxi-
mizing the mutation score, sending 9 prompts emerges as the
optimal approach.

5.2 Classes with Dependencies
We will now consider the three groups of classes with depen-
dencies. A similar overview of GPT-3.5’s performance has
been made, where in Figure 4 the number of mutants detected
can be visualized, while the number of crashes is depicted in
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Figure 4: Box plots for the number of mutants killed by ChatGPT-3.5 for the classes with dependencies. The X-
axis represents the number of prompts sent to GPT-3.5, while the Y-axis showcases the number of mutants killed.
One box spans from the first quartile (Q1) to the third (Q3), its length denoting the interquartile range (IQR). The
whiskers extend from the edges of the box to the smallest and largest values within 1.5 times the IQR from Q1 and
Q3, respectively. The red diamond presents the average number of mutants detected. The line inside a box showcases
the median (Q2), while the outliers are depicted as dots

Figure 5: Mean and median values of number of crashes for the three groups of classes. The X-axis represents the
number of prompts sent to GPT-3.5, while the Y-axis showcases the number of crashes

Table 3: Comparisons of mutation score distributions between iterations using Welch’s t-test. The second row showcases
the value of Cohen’s d, while the third row presents the p-value. Each column represents the comparison between
distributions: the ith column shows the comparison between the initial distribution (iteration 0) and the distribution
obtained from the ith iteration

Comparison 0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-8 0-9
Cohen’s d -2.3210 -0.9465 -0.9780 0.5074 -1.0000 2.0714 2.6790 3.6275 1.5903
P-value 0.0348 0.3686 0.3658 0.6334 0.3739 0.0771 0.0366 0.0110 0.1726

Figure 5. Table 3 showcases comparisons between the muta-
tion score distributions. Once again, we have tried to verify
whether the means of these distributions are significantly dif-
ferent, and performed Welch’s t-test accordingly.

We have noticed that the LLM removed some test cases

for the first iterations, as exemplified in Figure 4, where we
observe that fewer mutants have been killed. Even though the
highest median value was achieved by sending 8 prompts, the
reliability of the code is very similar to other iterations (as the
program crashes 8 out of 10 times).
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Once again, for Welch’s t-test, we selected a significance
threshold (α) of 0.05. We observed that for every iteration
between the second and sixth, as well as the ninth, the p-
value is greater than α; for them, we fail to reject the null
hypothesis that the distributions share the same mean. This is
also indicated by the effect size being closer to 0.

The original three questions can be answered according to
these plots. The static approach would not yield a better mu-
tation score, as fewer mutants would be detected. We can
improve the mutation coverage with the dynamic strategy by
sending at least 6 prompts. Lastly, we observe that while
the means obtained for the eighth and ninth iterations are
very similar, the median is higher by sending only 8 prompts.
Thus, to maximize the mutation score, we generally need to
perform 8 iterations of our algorithm.

5.3 Discussion
In the case of the isolated classes, we observe a common pat-
tern between the second and eighth iterations: the LLM ini-
tially provides wrong test cases, in the following prompt we
enumerate the errors present, and in the subsequent response
the test cases are fixed. This is the reason why we see an
upward trend, followed by a downward one in Table 2. Ini-
tially, it may seem that the LLM removes some test cases,
as emphasized by the downward trends. However, generally,
this is not the case: with each response that has a working
code, we see an increase in mutation scores. For the odd-
numbered prompts - where the downward trends are usually
noticed - we have fewer working test suites. Because more
test suites may result in a higher mutation score overall, we
notice the upward trends with the even-numbered prompts;
this is also exemplified by Figures 2 and 3. An exception is
a particular run of the ByteVector class, where we see a very
high number of mutants killed at the first, sixth, and seventh
iterations, as showcased by the outliers. While this occurred
only once, it could be the case that the LLM can perform bet-
ter on larger classes, as a greater number of mutants can be
killed. Nonetheless, as more and more prompts are sent, we
see a convergence at the ninth prompt, where both the muta-
tion score is maximized, and the number of crashes is not as
high as for the previous prompts. This is also highlighted in
Table 2, by the highest effect size. Given that, on average, 7
mutants are eliminated when 9 prompts are sent, this results
in a 23% increase in mutation coverage, primarily because
most classes contain between 24 and 34 mutants.

Another notable aspect is that crashing test suites typically
encounter errors at run-time rather than compile-time, often
derived from incorrect assertion values. These assertions are
generally trivial to correct, and in most instances, doing so
leads to an improved mutation score. Hence, even when en-
countering a crashing test suite through automated genera-
tion, manual intervention at the final stage can increase the
mutation score even further.

The results are worse for the other classes as GPT-3.5 is
not able to properly understand the dependencies, this be-
ing showcased by the higher number of times when the code
fails to run. When dependencies are involved, we also have
compile-time errors regarding wrong lambda expressions, or
when the LLM fails to explicitly specify the type parame-

ter when calling a generic method. Interestingly, there have
also been a few crashes where GPT-3.5 performed parenthe-
ses mismatch. Moreover, the number of run-time errors was
also abundant, due to wrong assertions, but also null pointer
and class cast exceptions. In contrast to the case with classes
without dependencies, in this case, the errors are not as easy
to fix. Additionally, when the errors are manually repaired,
the mutation score is usually not improved.

From our results, we believe that ChatGPT-3.5 can be em-
ployed and successfully increase the mutation score when
there are no dependencies involved.

6 Responsible Research
In Subsection 6.1, we will discuss how we handled any pos-
sible ethical issues. Matters related to legal considerations
will be approached in Subsection 6.2, and Subsection 6.3 will
showcase how we maintained scientific integrity throughout
this project.

6.1 Ethical Considerations
Transparency should be a cornerstone of every research en-
deavor. We have prioritized this aspect while assessing the
performance of the tests provided by GPT-3.5. We analyzed a
multitude of Java classes, primarily focused on numerical and
string manipulations. Therefore, none of the classes contain
sensitive information. As no personal data was used, compli-
ance with the General Data Protection Regulation (GDPR) is
assured.

6.2 Legal Considerations
The Java classes employed in our research were taken from
the SF110 and Apache Commons databases. Both of these
databases are publicly available and consist of open-source
software, ensuring that their use complies with relevant legal
standards and licensing agreements. We have adhered to all
licensing requirements associated with these resources, pro-
viding proper attribution where necessary. Furthermore, the
results and data generated from this research were made avail-
able by the terms of these licenses, promoting transparency
and collaboration within the research community.

6.3 Scientific Integrity
We are committed to maintaining the highest standards of sci-
entific integrity throughout our research. All methodologies
and results have been documented comprehensively to ensure
reproducibility. We reported our findings honestly, including
any limitations and negative results, to provide a complete
and accurate representation of our research outcomes. By
sharing every step of our approach, we facilitate further re-
search and validation by other researchers in the field.

7 Threats to Validity
Validity is crucial in research to ensure that study results and
interpretations are accurate and credible. Construct valid-
ity relates to how well a study measures the theoretical con-
structs it intends to assess, ensuring that the evaluation tech-
niques align accurately with the intended concepts. Internal
validity focuses on establishing a causal relationship between
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variables within the study, minimizing the influence of con-
founding factors. External validity concerns the generaliz-
ability of study findings to other settings, addressing whether
the results can be applied beyond the specific conditions of
the study. Lastly, conclusion validity involves the accuracy
of the inferences drawn from the study results, ensuring that
conclusions are logically supported by the data and statistical
analyses, and not overly influenced by chance or biases.

To mitigate potential threats to construct validity, we used
weak mutants, a well-established metric for fault detection.
For internal validity, we addressed GPT-3.5’s potential bias
towards certain classes by extracting classes from two repos-
itories with different coding styles. To enhance external va-
lidity, we included classes of varying sizes and scopes to im-
prove generalizability. For conclusion validity, we minimized
the impact of GPT-3.5’s non-determinism by performing 10
runs for each class or group of classes.

8 Conclusion and Future Work
Testing is vital for ensuring software correctness, and the au-
tomation of it leads to less time spent on this process. We
have assessed GPT-3.5’s performance in automatically aug-
menting test suites for Java classes. We have observed a dif-
ference between standalone classes and classes with depen-
dencies: while GPT-3.5 can improve test cases for isolated
classes, it struggles to understand dependencies. We have
noticed that a higher number of prompts sent usually trans-
lates to a higher number of mutants detected, as generally,
the ninth prompt maximized the mutation score in the case
of single classes. As expected, the dynamic approach outper-
formed the static one in terms of mutation coverage.

In the future, we plan to perform a similar analysis for a
dynamically typed programming language, such as Python. A
comparison between the results obtained for Java and Python
classes would showcase how much of an impact static typing
has on the LLM’s ability to produce reliable code. Moreover,
performing a similar study using a higher-performing model,
such as GPT-4 or GPT-4o, would allow us to assess the overall
impact of LLMs more accurately.
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