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SUMMARY

Aircraft maintenance is the process of overhaul, repair, inspection, or modification of
an aircraft or aircraft systems, components, and structures, to keep these in an airwor-
thy condition. Airlines must perform regular maintenance on their fleet to keep their
aircraft airworthy and, ultimately, prevent any systems or components failures during
commercial operations. Coupled with the rapid growth of the global commercial air-
craft fleet, aircraft maintenance demands have increased significantly in the past few
decades. Since aviation is a very competitive industry, the growing aircraft maintenance
demands and associated operation costs put a huge financial burden on airlines, forc-
ing them to reduce costs while still respecting safety regulations. Therefore, airlines are
laying increasing emphasis on planning aircraft maintenance efficiently.

An efficient planning approach for aircraft maintenance is a dual-edged sword. It
reduces not only the time and effort of organizing maintenance tasks and coordinating
maintenance activities but also increases the time fleet availability for operations and
associated revenues. Before introducing wide-body aircraft in the 1970s, airlines used a
bottom-up, task-oriented approach to plan aircraft maintenance, as then the commer-
cial fleet sizes were small. Nowadays, most airlines adopt a top-down approach, and first
groups the maintenance tasks with the same or similar inspection intervals into a large
task block. These, in turn, are commonly divided into four types and labeled as: A-check
(every 4–6 months), B-check (every 4–6 months), C-check (every 18–24 months), and D-
check (every 6–10 years). After planning the letter checks, airlines further determine the
maintenance tasks to be added or removed in each letter check.

This dissertation innovates the aircraft maintenance planning (AMP) process by pre-
senting a comprehensive digital solution. It replaces the current sequential computer-
aided manual approach with an integrated scheduling methodology to automate the air-
craft maintenance planning process. Given a specific time horizon, it considers all check
types together when making the maintenance check decisions and generates the opti-
mal schedules for all letter checks in one comprehensive solution. After that, it plans
a long-term (3–5 years) task execution plan based on the optimal maintenance check
schedule. These features are integrated into a decision support system (DSS), developed
to facilitate aircraft maintenance planning optimization.

The AMP process includes the aircraft maintenance check scheduling (AMCS) and
maintenance task allocation. AMCS is the first and also the most important step. The op-
timal long-term aircraft maintenance check schedule indicates when a particular main-
tenance task could be performed before it is overdue. This thesis proposes a dynamic
programming (DP) based methodology for AMCS optimization. It aims at minimizing
the wasted interval between letter checks, considering aircraft type, status, maintenance
capacity, and other operational constraints. By achieving this goal, one also limits the
number of checks, and with that, reduces maintenance costs.

The allocation of maintenance tasks to letter checks is the second step in the AMP.
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xii SUMMARY

After obtaining an optimal aircraft letter check schedule using the proposed DP-based
methodology, airlines can add tasks with inspection intervals falling in-between main-
tenance checks for a given letter check. This thesis formulates the second step of AMP as
a time-constrained variable-size bin packing problem (TC-VS-BPP), extending the well-
known variable-size bin packing problem (VS-BPP) by adding deadlines, intervals, and
repetition of routine tasks. It divides the entire long-term optimal maintenance check
schedule into variable-sized bins to which multidimensional tasks are allocated, subject
to the available workforce constraints and task deadlines. A constructive heuristic is pro-
posed based on the worst-fit decreasing (WFD) algorithm to address the TC-VS-BPP. The
output of the TAP is a long-term task execution plan for each maintenance check.

Although optimizing the AMCS and TAP can provide airlines with a long-term op-
timal aircraft letter check schedule and an associated task execution plan, it requires
complete information on aircraft daily utilization and maintenance check time, exclud-
ing future uncertainties. In practice, flight disruptions can impact aircraft utilization,
and the routine maintenance tasks can affect maintenance check elapsed time. All these
factors may cause deviations from the original maintenance check schedule and task
execution plan, requiring the maintenance operators of airlines to regularly adapt the
aircraft maintenance check schedule. Following a manual or deterministic scheduling
approach may result in insufficient hangar availability at specific moments, requiring
the creation of more costly extra maintenance capacity.

This research considers the impact of uncertainty and proposes a lookahead approxi-
mate dynamic programming (ADP) methodology for stochastic AMCS optimization. The
lookahead ADP methodology adopts a dynamic programming framework, using a hy-
brid lookahead scheduling policy. The hybrid lookahead scheduling policy makes the
optimal decision for heavy aircraft maintenance (C- and D-checks) based on determin-
istic forecasts and then determines the light maintenance (A- and B-checks) according
to stochastic forecasts. The proposed lookahead ADP methodology enables mainte-
nance operators of airlines to make optimal aircraft maintenance check decisions with-
out compromising the long-term AMP efficiency.

Furthermore, this thesis considers the practical application of AMP optimization. A
decision support system (DSS) is developed to integrate the deterministic AMCS opti-
mization and associated optimal task allocation. The DSS includes a shift planning func-
tion so that the maintenance planners of airlines can use it to plan the work shift and
have an overview of the tasks within each work shift and corresponding workload for a
short term, i.e., the coming one to two weeks. The DSS was tested and demonstrated in
an operational environment, showing its value for real-life implementation. A case study
using the fleet maintenance data demonstrates that the DSS is capable of providing an
optimal aircraft letter check schedule, a detailed task execution plan, and the work shifts
of the coming two weeks in half an hour for a 4-year planning horizon.

In summary, this dissertation proposes a DP-based methodology for long-term de-
terministic AMCS optimization, a heuristic algorithm for optimal maintenance task allo-
cation of each letter check, a shift planning algorithm to coordinate work shifts and asso-
ciated tasks, a lookahead ADP for stochastic AMCS optimization, and a DSS to integrate
all above AMP functions. From a scientific perspective, this dissertation contributes to
the development of a maintenance scheduling methodology, making the optimal main-



SUMMARY xiii

tenance decision considering its impact on the future. From an application point of view,
this dissertation shows the potential innovation to existing scheduling approaches used
by airlines and the feasibility of automating the AMP process. The proposed models,
methodologies, and the DSS are demonstrated to be promising in real-life AMP applica-
tions and capable of helping airlines make optimal maintenance decisions.

Future research can extend current AMCS and task allocation models to incorporate
condition-based maintenance (CBM) by considering the health prognostics and diag-
nostics and defining the tasks to be performed within each maintenance check. The
introduction of CBM to AMP would change the model to plan the maintenance tasks for
each maintenance check according to real-time monitoring rather than fixed intervals.
This could further increasing aircraft components’ life and reduce aircraft maintenance
operation costs.





ABBREVIATIONS

ADP Approximate Dynamic Programming

AMCS Aircraft Maintenance Check Scheduling

AMP Aircraft Maintenance Planning

AMR Aircraft Maintenance Routing

BF Best-Fit

BFD Best-Fit Decreasing

BPP Bin Packing Problem

CBM Condition-Based Maintenance

DP Dynamic Programming

DSS Decision Support System

DY Calendar Days

FF First-Fit

FFD First-Fit Decreasing

FH Flight Hour

FC Flight Cycle

GUI Graphical User Interface

IATA International Air Transport Association
KPI Key Performance Indicator

MDP Markov Decision Process

MPD Maintenance Planning Document

MPP Maintenance Personnel Planning

MO Month

MRO Maintenance, Repair, and Overhaul

MTS Maintenance Task Scheduling

NF Next-Fit

NFD Next-Fit Decreasing

OAMP Operator Approved Maintenance Program

RUL Remaining Useful Life

TAP Task Allocation Problem

TC-VS-BPP Time-Constrained Variable-Size Bin Packing Problem

VS-BPP Variable-Size Bin Packing Problem

WF Worst-Fit

WFD Worst-Fit Decreasing

xv





CONTENTS

Acknowledgements vii

Summary xi

Abbreviation xv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Gap Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Phase-I Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.2 Phase-II Deterministic AMCS Optimization . . . . . . . . . . . . . 10

1.5.3 Phase-III Optimal Task Allocation . . . . . . . . . . . . . . . . . . 10

1.5.4 Phase-IV Stochastic AMCS Optimization. . . . . . . . . . . . . . . 10

1.5.5 Phase-V Optimization Framework Design . . . . . . . . . . . . . . 10

1.6 Scientific Contributions. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Overview of Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 12

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Deterministic Aircraft Maintenance Check Scheduling Optimization 15

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Literature Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Maintenance Inspection Interval . . . . . . . . . . . . . . . . . . 20

2.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.3 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Maintenance Capacity and Operational Constraints . . . . . . . . . 24

2.4.2 Decision Space. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.3 Definition of State . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.4 State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.5 Constraints Formulation . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.6 Objective Function. . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.7 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . 31

xvii



xviii CONTENTS

2.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5.1 Forward Induction . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Defining Maintenance Check Priority . . . . . . . . . . . . . . . . 35
2.5.3 Thrifty Algorithm for Maintenance Check Scheduling . . . . . . . . 37
2.5.4 Discretization and State Aggregation. . . . . . . . . . . . . . . . . 37
2.5.5 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.1 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.6.2 Maintenance Constraints and Key Performance Indicators . . . . . 42
2.6.3 Optimization Results for 2013-2016 . . . . . . . . . . . . . . . . . 43
2.6.4 Optimization Results for 2018-2021 . . . . . . . . . . . . . . . . . 46
2.6.5 Sensitivity Analysis for 2018-2021 . . . . . . . . . . . . . . . . . . 48

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3 Optimal Task Allocation for Aircraft Maintenance Check Schedule 53
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.1 Maintenance Task Allocation . . . . . . . . . . . . . . . . . . . . 56
3.2.2 The Bin Packing Problem . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Basic Concept and Scope . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.3 Model Considerations . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Task Allocation Framework . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Pre-Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.4.3 Constructive Heuristic . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.1 Optimization Results. . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.2 Flexible Task Allocation Policy . . . . . . . . . . . . . . . . . . . . 71
3.5.3 Algorithm Performance Analysis . . . . . . . . . . . . . . . . . . . 72

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4 Stochastic Aircraft Maintenance Check Scheduling Optimization 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.3 Nomenclature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4.1 State Transition in Stochastic AMCS . . . . . . . . . . . . . . . . . 83
4.4.2 Constraints Formulation . . . . . . . . . . . . . . . . . . . . . . . 86
4.4.3 Objective Function. . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.4 Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . 88



CONTENTS xix

4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.5.1 Approximate Dynamic Programming . . . . . . . . . . . . . . . . 91
4.5.2 Modeling of Uncertainty . . . . . . . . . . . . . . . . . . . . . . . 92
4.5.3 Defining Maintenance Check Priority . . . . . . . . . . . . . . . . 93
4.5.4 Basic Scheduling Rules for Stochastic AMCS . . . . . . . . . . . . . 94
4.5.5 Reference Scheduling Policies . . . . . . . . . . . . . . . . . . . . 94
4.5.6 Lookahead Approximate Dynamic Programming . . . . . . . . . . 95
4.5.7 Algorithm Complexity . . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.1 Maintenance Actions . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6.2 Key Performance Indicators . . . . . . . . . . . . . . . . . . . . . 101
4.6.3 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6.4 Outcomes for the Test Case 2017–2020 . . . . . . . . . . . . . . . . 102
4.6.5 Outcomes for the Test Case 2019–2022 . . . . . . . . . . . . . . . . 104
4.6.6 Practical Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.7 Sensitivity Analysis for 2019–2022 . . . . . . . . . . . . . . . . . . 106

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5 A Decision Support System For Aircraft Maintenance Planning 113
5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.2.1 Long-Term Aircraft Maintenance Planning. . . . . . . . . . . . . . 116
5.2.2 Short-Term Aircraft Maintenance Planning . . . . . . . . . . . . . 116
5.2.3 Concluding Remarks for Literature Review. . . . . . . . . . . . . . 118

5.3 System Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3.1 Database and Input Data . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Optimization Model and Algorithms . . . . . . . . . . . . . . . . . 120
5.3.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . 124

5.4 Demonstration and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 127
5.4.1 Standard AMCS Optimization on Fleet Maintenance Data . . . . . . 127
5.4.2 Evaluation of Aircraft Maintenance Strategies . . . . . . . . . . . . 133

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6 Conclusion 141
6.1 Review of Research Objective . . . . . . . . . . . . . . . . . . . . . . . . 142
6.2 Research Novelty and Practical Contribution . . . . . . . . . . . . . . . . 143
6.3 Research Limitation and Recommendations . . . . . . . . . . . . . . . . 145

Curriculum Vitæ 147

List of Publications 149





1
INTRODUCTION

1.1. BACKGROUND
Aircraft maintenance planning (AMP) is an intricate problem due to its combinatorial
nature and real-life operational constraints. On the one hand, changing weather con-
ditions, flight disruptions, or incidents can affect aircraft utilization, and such impacts
cause deviations from the original maintenance plan. On the other hand, additional
maintenance needs can also affect the time required for maintenance and changes the
maintenance plan. Furthermore, the decision of whether performing a maintenance
task on an aircraft today impacts both the use of the aircraft onwards and the need to ex-
ecute the same task in the future. All these challenges make the AMP generally difficult as
the maintenance operators of airlines have to very often adapt the aircraft maintenance
schedule to the latest aircraft status and operational constraints.

Regular maintenance inspection prevents aircraft components and systems failures
during operations. It involves the overhaul, repair, inspection, or modification of an
aircraft or aircraft systems, components, and structures in an airworthy condition [1].
Nowadays, airlines are increasingly interested in planning aircraft maintenance more ef-
ficiently since it represents one of the main direct operating costs and plays a vital role in
the balance sheet of an airline. In the aviation industry, the spend of global maintenance,
repair, and overhaul (MRO) represents 9%–10% of total operational costs, which was val-
ued at $69 billion, excluding overhead (e.g., lighting, equipment, and any little extras),
for a total number of 27.5K aircraft [2]. This spending is equivalent to $2.5M per aircraft
per year. The savings derived from efficient aircraft maintenance planning can be very
substantial: an optimal aircraft maintenance schedule reduces maintenance costs, in-
creases aircraft availability, which in the end, generates additional revenue. Therefore,
maintenance operators of the airline aim to allocate maintenance checks on the right
aircraft, in the right place, at the right time.

Modern aircraft have thousands of parts, systems, and components that need to be
recurrently inspected or replaced. The maintenance planning document (MPD) of an
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aircraft manufacturer states that each system/component has three usage parameters
to indicate its utilization, calendar days (DY), flight hours (FH), and flight cycles (FC):

• DY: One DY is a full 24-hour period,

• FH: FH is the elapsed time between wheel lift off and touch down, and

• FC: One FC is a complete aircraft take-off and landing sequence.

The MPD also defines the inspection interval of a system/component as its maximum
usage parameters allowed in commercial operation. Maintenance takes place when a
system/component reaches certain DY, FH, or FC thresholds. In real-life applications,
maintenance operators usually group maintenance tasks into letter checks, depending
on the level of detail: A-check, B-check, C-check, and D-check, and each letter check
associates three usage parameters, as shown in Table 1.1.

Table 1.1: Aircraft letter check and corresponding inspection interval [3].

Check Type Interval Type of Maintenance Tasks
A-check 2-3 months External visual inspection, filter replacement, lubrication etc.
B-check Rarely mentioned Tasks are commonly incorporated into successive A-checks
C-check 18-24 months Thorough inspection of the individual systems/components
D-check 6-10 years Thorough inspection of most structurally significant items

The maintenance operators of many airlines plan the aircraft maintenance in three
steps, following a top-down approach, according to their experience:

1) Aircraft maintenance check scheduling (AMCS), usually for the future 3–5 years,

2) Task allocation of each maintenance check, usually for the coming year, and

3) Shift planning, usually for the coming 1–2 weeks.

AMCS is a difficult job, especially for an airline with a large, heterogeneous fleet. The
main problem associated with current practice is that it is a time-consuming and inef-
ficient process based on the scheduler experience. Maintenance operators often spend
several days or weeks scheduling the maintenance check for all aircraft, one after an-
other, according to specific aircraft letter check intervals and the available maintenance
resources of the airline. Limited by the (computer-aided) manual planning approach,
the maintenance operators usually find a maintenance check schedule for a fleet that is
feasible, rather than optimal [4].

Since the maintenance tasks to be executed within each maintenance check are de-
termined based on the aircraft letter schedule, the non-optimal letter check schedule
leads to non-optimal task allocation and corresponding work shifts. Besides, the main-
tenance check schedule is often not capable of being updated quickly due to the lack of
an efficient scheduling tool for AMCS in current-day practice. It inevitably decreases air-
craft utilization and increases aircraft maintenance costs in the long term. Any change
in the maintenance tasks or activities requires the maintenance operators to spend a
considerable amount of time shuffling the maintenance checks, re-organizing the asso-
ciated maintenance tasks and activities, and re-planning the work shifts.
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Following the current widely used top-down practice, the optimization of AMP is to
find the optimal aircraft maintenance check schedule and the associated task execu-
tion plan. It attracts extensive attention from the aviation industry and the scientific
community. Both sides started to collaborate to work on this subject by combining the
optimization knowledge from academia and experience from airlines. In 2015, an EU
project “Airline Maintenance Operations implementation of an E2E Maintenance Ser-
vice Architecture and Its Enablers” (AIRMES, www.airmes-project.eu) was initiated by
the European Commission to optimize end-to-end maintenance activities within an op-
erators’ environment [5], led by a major European airline. One of the work packages
within AIRMES, which is also the goal of this dissertation, is to develop an optimization
framework that can provide maintenance schedule and planning solutions based on op-
erational requirements. In particular, this goal is two-fold:

1) To design methodologies for AMCS optimization and corresponding maintenance
task allocation considering the real-life maintenance constraints, and

2) To design a comprehensive tool to reduce the time spent on the AMP process and
workload of the maintenance operators.

1.2. RESEARCH QUESTIONS
AMCS is the key to aircraft maintenance planning optimization: the maintenance check
indicates the possible periods for the execution of maintenance tasks. The maintenance
tasks to be executed within each check further determine the maintenance tools, work-
force, and shifts. The main challenge of solving AMCS is to understand the dependency
of different check types and estimate the impact of performing a maintenance check on
the future. The aircraft A-/B-/C-/D-checks are closely correlated. As described earlier,
an aircraft has three usage parameters to indicate each check type’s utilization, but all
check types are updated with the same daily FH and FC. For example, a C-check lasts
1–4 weeks; whether or not to start a C-check for an aircraft on a particular day can affect
the start dates of other check types since this aircraft will not be allocated to any flights
during the C-check execution.

On the other hand, the long-term economic and operational benefits of AMCS are
often overlooked. In practice, the heavy maintenance (e.g., C- and D-checks) have rela-
tively larger intervals. The status of an aircraft can deviate a lot from expectation before
the next C-/D-check, which makes it pointless to spend several days or weeks finding
the optimal maintenance check schedule for the entire fleet. Also, there are very few
available studies or methods for this subject. For these reasons, some airlines consider a
shorter horizon when optimizing the maintenance checks, as then they can see tangible
benefits in the nearer future. However, one primary deficiency of this short-term aircraft
maintenance planning is that it can be “greedy” and defer all letter checks to a date that
is as late as possible. If the maintenance planners of an airline skip one letter check,
they may not see any maintenance capacity problem in the coming two or three weeks,
yet the maintenance checks overload can happen a few months later. In other words,
airlines may get a false impression that the maintenance resources meet the needs of
letter checks in a short period, but, as time moves on, the following letter checks can

www.airmes-project.eu
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pile up and cause a soaring demand for maintenance in the future, possibly exceeding
maintenance capacity.

When the AIRMES project started, the airline partner within AIRMES consortium
stated that many European airlines treat the AMCS separately according to letter check
type, from heavy to light maintenance. That is, they first focus on scheduling the C-
/D-check and then the A-/B-check. The idea of decoupling AMCS, according to check
type, significantly reduces the complexity and the time to create a maintenance check
schedule. Yet, it neglects the dependency among letter checks, which can easily lead to
an either infeasible or a very conservative solution. If a solution is infeasible, the main-
tenance operators have to repeat a cumbersome process to shuffle the letter checks to
make it feasible. If a solution is conservative, it increases the number of maintenance
checks, and consequently the maintenance operation costs.

Without an optimal maintenance check schedule, the maintenance operators of air-
lines are likely to plan the maintenance tasks earlier than the estimated due dates (even
in the optimal schedule, the maintenance checks can also start earlier than the estimated
due date, but not as far before as in the non-optimal schedule). In the long term, it results
in more repetitions of executing the tasks and replacing the systems/components more
frequently, reducing the utilization of systems/components and increasing the mainte-
nance operation costs. Moreover, without knowing the optimal maintenance task exe-
cutions within each letter check, it is also difficult for the maintenance operators to plan
the shifts that make full use of the workforce.

The commonly used AMP approaches are mainly depending on the experience of
maintenance operators and, in general, inefficient to support airlines in reducing the
workloads of maintenance operators or the maintenance operation costs. From a scien-
tific perspective, the biggest challenge in AMP is to integrate different letter check types
in the same model formulation and find the unified optimal solution. This requires un-
derstanding two important aspects: first, the correlations among different check types,
and second, the long-term impact of a maintenance decision for a specific check type on
the coming ones of all types. In particular, for the second aspect, the long-term impact of
a maintenance check decision on the future is difficult to capture: airlines usually plan
the flight schedules only a few weeks beforehand, but the maintenance capacity is pre-
defined. Matching the given maintenance capacity with unknown maintenance check
demands has never been done before the AIRMES project.

The challenge in AMP leads to the main research question of this thesis:

How to improve the efficiency of maintenance planning for a fleet of heterogeneous
aircraft, while considering its longer-term impact on future operations, as well as
the uncertainty of daily aircraft utilization and maintenance elapsed time, without
compromising safety?

The main research question is further divided into the following sub-questions:

• How to address the AMCS considering the dependency among different checks?

• What is the optimal maintenance task allocation for each letter check?

• How to address the AMCS considering uncertainties and estimate the long-term
impacts of each maintenance check action?
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This dissertation investigates the possibility of making optimal aircraft maintenance
check decisions by answering the above sub-questions. It shows how the main research
question is tackled step by step, from deterministic to stochastic, and from maintenance
check scheduling optimization to optimal maintenance task allocation for each check.

1.3. GAP ANALYSIS
Although aircraft maintenance check scheduling (AMCS) is the first and foremost step
in aircraft maintenance planning, in general, maintenance scheduling is mandatory not
only for aircraft but also for other vehicle types such as bus, train, and ship to maintain
vehicles in an operable state.

Bus maintenance scheduling (BMS) can be found in Refs. [6] and [7]. These stud-
ies design daily inspection and maintenance schedules for the buses that are due for
inspection to minimize the interruptions in the daily bus operating schedule and max-
imize the utilization of the maintenance facilities. Ref [6] formulated BMS as a clas-
sic mixed-integer programming program model and used commercial solver CPLEX to
solve the problem; the latter employed a multi-agent system to optimize the bus main-
tenance schedule heuristically. Similar to buses, trains also undergo daily maintenance
inspection. Train maintenance scheduling (TMS) is often coupled within the timetable
design, although the primary goal is to optimize train routes, orders, and arrival times
at each station. Refs. [8–10] show a few recent studies on TMS. As in BMS, these works
adopt similar mixed-integer programming formulations and rely on CPLEX to solve the
TMS problems. Unlike BMS and TMS, ship maintenance scheduling (SMS) usually aims
to maximize a ship’s availability. There are very few studies available for SMS in general.
Refs. [11] and [12] model the SMS as constraint satisfaction problems and propose to
use genetic algorithms to address SMS.

Compared with BMS, TMS, and SMS, aircraft maintenance scheduling (AMS) is rel-
atively new since traveling by plane was quite expensive and not very popular before
the 1970s. The AMS had been using the manual approach for many years. Since the
introduction of commercialized wide-body aircraft in the early 1970s, aircraft capacity
increased significantly and made flight tickets affordable for millions of travelers. Mean-
while, the AMS has become increasingly difficult due to the emphasis on efficiency and
lack of an accurate and timely maintenance scheduling tool. Aircraft manufacturers and
airlines started to group maintenance tasks with the same or similar inspection intervals
into a large task block, and that was the beginning of using letter checks (A-/B-/C-/D-
check). Even so, it still took several weeks for planning personnel to create a mainte-
nance check schedule. Air Canada was aware of this issue and was the first to study air-
craft maintenance check scheduling (AMCS). Early in 1977, it presented a priority-based
simulation heuristic to produce a feasible maintenance check schedule considering de-
tailed real-life operational constraints [13]. Because of the rapidly changing of aircraft
utilization and other unforeseen events, Air Canada did not see the value of using com-
putational power to find an optimal solution that could rapidly become obsolete. The
heuristic was very similar to the manual planning approach, shifting conflict checks to
earlier time slots until a feasible solution is found, except that it implemented a lower
bound of utilization to prevent scheduling checks too often. It reduced the time required
to generate a feasible 5-year plan from 3 weeks to a few hours.
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Despite the limitations in [13], this is together with Refs. [14] and [15], the only avail-
able reference devoted to long-term AMCS. The long-term planning still has not been
adequately studied because there was no straightforward method for such a topic, and
it was difficult to model the impact of a maintenance check decision. Besides, due to the
lack of aircraft maintenance data and daily utilization records (especially the historical
maintenance check schedule), it was nearly impossible to formulate the detailed AMCS
model. As a result, most research works about aircraft maintenance focus on short-term
planning, such as A-/B-check scheduling [16, 17], line maintenance planning [18, 19],
or coupled in the literature with the definition of the aircraft routing for the next three
to six days of operations [20, 21], that is, assigning each aircraft to a sequence of flight
legs (a routing) that allows the aircraft to undergo daily checks [22] or even A-/B-checks
[23, 24]. The main reason is that C- and D-checks have intervals of several years, and
the benefits of including C-/D-checks in AMCS are only visible in the long term. Airlines
usually have higher urgency to monitor and optimize short-term activities, such as air-
craft A-/B-check scheduling or routine aircraft inspections, from which they can rapidly
see tangible cost savings and profits. In particular, researchers favor the aircraft mainte-
nance routing problem since they have easier access to short-term flight schedules.

Since AMCS is difficult, instead of solving AMCS at the fleet level, some researchers
dive into optimizing the maintenance task allocation problem (TAP) for one single air-
craft. The idea is to determine the optimal execution of a set of preventive aircraft main-
tenance tasks so that all of them are performed as close to their estimated due dates
as possible. This can be done by combining the maintenance task allocation with air-
craft operation to one single problem [4], or focusing on minimizing the overall number
of maintenance actions and uniformly distributing the capacity and flying hours over a
given time horizon [25], or task clustering [26], or assigning weights on tasks according
to ATA code, maintenance interval, zone, and check type, or even using a bottom-up
task-oriented approach following the rule of “the most urgent task first” or “the most
costly task first/last” [27]. The studies of TAP usually use an aircraft maintenance check
schedule (planned by airlines) as an input or know the start date and available work-
force beforehand (provided by airlines) so that the researchers do not have to plan the
maintenance check schedule own.

Overall, there are very few studies on BMS, TMS, SMS, and AMS/AMCS. Unlike BMS,
TMS, and SMS, aircraft maintenance checks have much larger inspection intervals, and
a maintenance check schedule is usually planned for a longer-term rather than daily
maintenance inspection. An aircraft maintenance check decision can impact aircraft
availability, maintenance capacity, or even fleet utilization in the future. As a result,
when looking at the AMS/AMCS, one usually considers a much larger time window, e.g.,
3–5 years, and the long-term AMCS at fleet level forms a typical large-scale combina-
torial problem. To tackle maintenance scheduling, researchers always resort to the so-
lution approaches for general scheduling problems [28], such as an exact method that
relies on commercial solver [6, 8–10, 29, 30], or customized methods [7, 11–13, 17, 24].
However, for AMCS, as the fleet size increases, the problem size will increase exponen-
tially, and solving AMCS at the fleet level using an exact method can be computationally
expensive. Even for a fleet of 40 aircraft and a 3-year planning horizon, it takes more than
half an hour to find the optimal schedule only for one check type [31]. If one includes
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other check types, it may take hours or days to find the optimal aircraft maintenance
check schedule. Furthermore, not even commercial solvers can guarantee a global opti-
mum. Therefore, it is often meaningless to spend lots of time to run a commercial solver
to find the global optimal solution. In practice, an aircraft maintenance check schedule
that meets the following requirements would be more desirable:

• It is a local optimum,

• It combines all maintenance check types in one single solution, and

• It can be obtained within 10–15 minutes, for a 3–5 year planning horizon.

Once the (local) optimal maintenance check schedule is found, it determines the possi-
ble start dates of each maintenance task. The maintenance task allocation can be treated
as a bin packing problem. Hence, developing a computationally efficient method to ad-
dress AMCS has been the main focus of the thesis.

1.4. RESEARCH OBJECTIVE
The research questions and analysis of research gaps provide insights into the formula-
tion of the main research objective:

To develop a comprehensive maintenance planning optimization framework, in-
cluding aircraft maintenance check scheduling and the associated maintenance
task allocation, that automates and optimizes the aircraft maintenance planning
process without compromising the long-term efficiency.

The main objective is further divided into two sub-objectives:

O-1 Optimize the aircraft maintenance check schedule and task execution plan

O-2 Automate the aircraft maintenance planning process

For Sub-Objective O-1, it covers the following topics:

- Optimize the long-term deterministic aircraft maintenance check schedule,

- Optimize the task execution plan for each maintenance check, and

- Optimize the aircraft maintenance check decision considering uncertainties.

The idea of including uncertainties in AMCS is that the deviation of actual maintenance
check elapsed time from planning can impact the aircraft utilization of future and the
following checks of the entire fleet, which may result in an update of all current or up-
coming maintenance decisions of the next few days or even weeks. Changing main-
tenance decisions often hinders the planning efficiency and increases the workload of
maintenance operators of airlines since they have to re-organize the maintenance tools
and coordinate the workforce. Moreover, changing aircraft maintenance check decisions
can affect the flight plan and lead to extra work for the staff of the operations center since
they may need to re-design the flight schedule or adjust the flight legs and cabin crew.
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Achieving O-1 would allow maintenance operators of airlines to obtain a consis-
tent optimal aircraft maintenance planning solution, from the long-term maintenance
schedules and task execution plans to short-term maintenance check decision updates.
For O-2, the key is to develop a decision-making framework integrating both AMCS and
maintenance task allocation under the same platform. A prominent feature of the model
framework is that the user only needs to load input data via an interface, and then the
model framework automatically generates an optimal solution.

1.5. RESEARCH METHODOLOGY
The lack of efficient optimization algorithms for aircraft maintenance check scheduling
(AMCS) is the main difficulty in improving aircraft maintenance planning (AMP), which
further hinders the associated maintenance task allocation since the task allocation re-
quires the start dates of each maintenance check. The main challenges in addressing
AMCS are:

C.1 No maintenance planning documents and maintenance check and task execution
data are available for researchers since they are usually confidential for the airlines.

C.2 No information about the maintenance capacity (e.g., number of hangars and
workforce composition) or detailed maintenance operational constraints exists.

C.3 No literature exists about current-day AMCS optimization, especially for heavy
maintenance checks (C-/D-checks); researchers have to explore the solution ap-
proaches themselves.

C.4 No aircraft maintenance cost data are available to model the impact of a mainte-
nance check decision properly.

C.5 No maintenance check schedules from airlines are available for validation pur-
poses since these are also confidential for the airlines.

C.6 No information about how often the maintenance operators update an aircraft
maintenance check schedule exists.

C.7 It is difficult to collect historical aircraft utilization data to test the robustness of a
novel maintenance check schedule.

The research methodology of this thesis aims to address these above challenges. As
shown in Figure 1.1, the research methodology is divided into four phases.

1.5.1. PHASE-I PREPARATION
This phase is to address challenges C.1 and C.2. It aims to understand AMCS and the as-
sociated task allocation problem. The first step was to study the historical maintenance
check schedule and task execution plan, and the MPD from aircraft manufacturers. In
this way, we learn how airlines address AMCS and the associated TAP in practice and can
obtain an overview of the workload of each check/task and task execution sequence. The
second step was to review the literature about aircraft maintenance and maintenance re-
lated topics. This step provides some insights into the modeling of aircraft maintenance
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Figure 1.1: The research methodology for aircraft maintenance planning optimization.
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problems. The third step is to identify which type of optimization problems AMCS and
TAP belong to. In the AMCS, the fleet status of a day partly depends on the previous
maintenance check actions and partly depends on the aircraft utilization. Every day, the
maintenance operators face the problem of deciding whether to send an aircraft for a
maintenance check or let it fly for another day, and each decision is associated with a
cost. The state of the fleet at any time is characterized by the usage parameters of A-,
B-, C-, and D-check. The AMCS problem is to determine the policy which minimizes the
expected total cost. Once a maintenance check schedule is found, the TAP then deter-
mines the optimal start dates for a set of maintenance tasks. The goal is to minimize the
total cost for maintenance execution while ensuring that each task is executed before its
expected due date. The last step of Phase-I is to collect and clean the input data for both
AMCS and TAP.

1.5.2. PHASE-II DETERMINISTIC AMCS OPTIMIZATION
Phase-II is the key to AMP optimization and to tackle challenges C.3–C.5. In this phase,
the deterministic AMCS problem is formulated, including defining the proper objective
function and model the operational constraints in detail. After that, it continues to de-
velop the methodology for deterministic AMCS optimization, based on the findings from
the literature review in Phase-I. Two research directions are derived from deterministic
AMCS optimization:

(i) Optimal task allocation of each maintenance check (Phase-III);

(ii) Stochastic AMCS optimization (Phase-IV).

1.5.3. PHASE-III OPTIMAL TASK ALLOCATION
The optimal task allocation (in the context of AMP) is the follow-up of deterministic
AMCS optimization. The Phase-III is to model the TAP, e.g., formulate the objective func-
tions and constraints, based on the optimal maintenance check schedule. After that, it
continues to the development of the optimization algorithm for the TAP.

1.5.4. PHASE-IV STOCHASTIC AMCS OPTIMIZATION
The stochastic AMCS optimization is derived from the deterministic AMCS optimiza-
tion. Phase-IV addresses challenges C.6 and C.7, by including stochastic elements into
the AMCS model, such as the uncertainties in aircraft daily FH, FC, and maintenance
elapsed time. This phase aimed to develop a fast and efficient approach to re-compute
the optimal maintenance check actions for the short term, without compromising the
efficiency of future decisions.

1.5.5. PHASE-V OPTIMIZATION FRAMEWORK DESIGN
Phase-V aimed to design a decision support framework that integrates deterministic
AMCS optimization, optimal task allocation, and stochastic AMCS optimization. Be-
sides, maintenance shift planning is also one of the main focuses. The decision support
framework for AMP is designed to facilitate maintenance planners of airlines making op-
timal maintenance decisions, from long-term AMCS and task allocation to short-term
shift planning and workload estimation.
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1.6. SCIENTIFIC CONTRIBUTIONS
Overall, the contribution of this dissertation is two-fold. First and foremost, it con-
tributes to the methodologies design for aircraft maintenance planning. In particular,
it presents methodologies for aircraft maintenance check scheduling (AMCS) optimiza-
tion and optimal maintenance tasks allocation:

- This dissertation is the first to optimize the long-term deterministic AMCS. It pro-
poses a priority solution to reduce aircraft selection possibilities for maintenance
checks, a thrifty algorithm to infer the impact of a maintenance check decision,
and a discretization and state aggregation scheme to reduce the outcome space.
The corresponding scientific contribution led to the following publication:

Deng, Q., Santos, B. F., and Curren, R. (2020). A Practical Dynamic Programming
based Methodology for Aircraft Maintenance Check Scheduling Optimization. Eu-
ropean Journal of Operational Research, 281(2), 256-273.

- This dissertation is the first to optimize the long-term aircraft maintenance task
allocation. It proposes an optimal algorithm that allocates maintenance tasks to
each aircraft letter check in a reasonable and stable computation time, regardless
of how limited maintenance resources are. The corresponding research led to the
following working paper:

Witteman, M., Deng, Q., and Santos, B. F. (2021). A Bin Packing Approach to Solve
the Aircraft Maintenance Task Allocation Problem. European Journal of Opera-
tional Research (DOI: https://doi.org/10.1016/j.ejor.2021.01.027).

- This dissertation is the first to include uncertainty in AMCS and solve the stochas-
tic AMCS optimization problem. It presents a methodology for re-compute short-
term AMCS decisions without future AMCS efficiency. The development and vali-
dation of optimization methodology led to the following working paper:

Deng, Q. and Santos, B. F. (2021). Lookahead Approximate Dynamic Programming
for Stochastic Aircraft Maintenance Check Scheduling Optimization. European
Journal of Operational Research, submitted.

Besides the scientific innovation, this dissertation also contributes to the practical appli-
cation of aircraft maintenance planning (AMP), especially in the improvement of AMP
efficiency and reducing the workload of AMP personnel:

- It develops the first decision support system (DSS) to optimize the long-term air-
craft maintenance check schedule, task allocation, and short-term work shift plan-
ning. The DSS is capable of computing a 3-year, comprehensive, optimal aircraft
maintenance plan within half an hour. The development of the DSS resulted in the
following working paper:

Deng, Q. and Santos, B. F., and Verhagen, W. J. C. (2021). A Novel Decision Support
System for Optimizing Aircraft Maintenance Check Schedule and Task Allocation.
Decision Support Systems (DOI: https://doi.org/10.1016/j.dss.2021.113545).

https://doi.org/10.1016/j.ejor.2019.08.025
https://doi.org/10.1016/j.ejor.2019.08.025
https://doi.org/10.1016/j.ejor.2021.01.027
https://doi.org/10.1016/j.dss.2021.113545
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1.7. OVERVIEW OF DISSERTATION
For the ease of navigation, this thesis is divided into six chapters. Chapters 2—5 cor-
respond to Phase-II—V of the research methodology. Each of these chapters also in-
cludes a part of the literature study performed in Phase-I. Chapter 2 is the core of this
dissertation. It presents the model formulation for deterministic AMCS optimization
and an associated dynamic programming (DP) based methodology. After the readers
understand the purpose about the deterministic AMCS model from 2, they can continue
with Chapter 3 and Chapter 4. These two chapters discuss two different research direc-
tions derived from deterministic AMCS. Chapter 3 describes the model formulation and
a heuristic algorithm for optimal task allocation for each maintenance check. Chapter
4 presents the model formulation and a lookahead approximate dynamic programming
(ADP) methodology for the stochastic AMCS. Chapter 5 depicts a decision support sys-
tem (DSS) for AMP optimization that integrates the models from Chapter 2—Chapter 4.
The last chapter summarizes this thesis with concluding remarks and gives an outlook
on future work.
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2
DETERMINISTIC AIRCRAFT

MAINTENANCE CHECK

SCHEDULING OPTIMIZATION

The study in this chapter aims to model the long-term, deterministic aircraft maintenance
check scheduling (AMCS) and present the corresponding solution—a practical dynamic
programming (DP) based methodology. The deterministic AMCS model formulation con-
siders aircraft type, fleet status, maintenance capacity, and other detailed operational con-
straints. The DP based methodology adopts the idea of forward induction, incorporating a
maintenance priority solution to reduce the action space, a discretization and state aggre-
gation strategy to trim the outcome space, and a thrifty algorithm to estimate the conse-
quence of performing a maintenance check action. It is the first methodology to optimize
AMCS considering multiple check types in one single problem. The deterministic AMCS
model and corresponding solution are applied to a real-life case study and validated in
collaboration with one of the major European airlines.

The content of this chapter is based on the following research article:

Deng, Q., Santos, B. F., and Curren, R. (2020). A Practical Dynamic Programming based Methodology for Air-
craft Maintenance Check Scheduling Optimization. European Journal of Operational Research, 281(2), 256-
273. To cite this article, please use the DOI https://doi.org/10.1016/j.ejor.2019.08.025.
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2.1. INTRODUCTION
Aircraft maintenance is the overhaul, repair, inspection, or modification of an aircraft
or aircraft systems, components, and structures in an airworthy condition [1]. Regu-
lar maintenance prevents aircraft components and systems failures during operations.
It takes place when an aircraft undergoes certain flight hours, flight cycles, or calendar
months. There are three major types of maintenance: A-check, B-check1, C-check and
D-check. A typical A-check includes inspection of the interior or exterior of the airplane
with selected areas opened (e.g., checking and servicing oil, filter replacement, and lu-
brication) [2]; they are performed approximately every 2 to 3 months. The C-check re-
quires a thorough inspection of individual systems and components for serviceability
and function; it is planned within an interval of 18 to 24 months. The D-check (a.k.a
Structural Check) uncovers the airframe, supporting structure, and wings to inspect the
most structurally significant items; it is carried out every 6 to 10 years. Many airlines
merge D-check into C-check and label it as a heavy C-check. During a C-check or D-
check, the aircraft has to be grounded for several weeks and removed from the revenue
schedule. For the first time, this chapter optimizes the long-term AMCS, integrating mul-
tiple check types in the same problem. We call this problem the aircraft maintenance
check scheduling problem, or for short, the AMCS problem.

Scheduling the maintenance inspection for a large heterogeneous fleet is generally
a demanding and complex problem. In practice, the aircraft maintenance schedules
are usually prepared according to the experience of maintenance operators. The main
problem associated with such a planning approach is that it is time-consuming and can
result in poor solutions. For a large fleet, the maintenance operators need to spend sev-
eral days or weeks planning the maintenance checks one after another according to in-
dividual aircraft inspection intervals and maintenance resources of the airline. If con-
flict maintenance checks occur, the maintenance operator needs to adjust the sched-
ule, constantly moving checks to earlier or later time slots until a feasible schedule is
found. Limited by the manual planning approach, the goal is usually to find a feasible
maintenance schedule for a fleet instead of an optimal one [3]. As a result, the tradi-
tional manual maintenance planning approach inevitably decreases aircraft utilization
and leads to more maintenance checks in the long term, increasing aircraft maintenance
costs. Therefore, an optimized long-term maintenance schedule reduces the number of
maintenance checks and increases aircraft availability, the saving derived from efficient
maintenance planning can be very substantial.

Nowadays, airlines are laying increasing emphasis on improving their aircraft avail-
ability and planning their maintenance in a more efficient way. Aircraft maintenance
represents one of the main direct operating costs and plays an important role on the
balance sheet of an airline. According to [4], 9%–10% of the total cost of an airline goes
to aircraft maintenance. This was equivalent to $295M on average per year per airline [5].
The long-term economic and operational benefits of adopting a more efficient approach
are clear; a typical C-check of A320 family may cost $150k—$350k [2], an A-check cost
around $10k—$15k, while an additional day on operation may represent $75k—$120k of
commercial revenue (depending on the utilization level of aircraft). However, the chal-

1B-checks are rarely mentioned in practice. The tasks included in B-checks are commonly incorporated into
successive A-checks
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lenge is that the maintenance check scheduling problems are several correlated com-
binatorial problems. The decision to schedule or not schedule one maintenance check
on an aircraft today impacts the utilization of the aircraft onwards and, therefore, on the
need to perform maintenance checks in the future. This kind of problem is hard to solve
and is often addressed by heuristics or algorithms [6].

This chapter proposes a dynamic programming (DP) based methodology to solve the
AMCS problem. The main contributions can be summarized in the following:

1) Methodology:

• An innovative and tractable DP-based model formulation is presented, suit-
able to solve real-life, large scale scheduling problems.

• A thrifty algorithm is used to infer future implications of an action taken at
the current stage.

2) Practicality

• The optimization takes the inspection interval of different check types and
detailed operation constraints into consideration.

• It takes less than 15 min to optimize the 4-year A- and C-check schedule for
more than 40 aircraft, rather than days or weeks.

3) Application

• For the first time, the long-term AMCS problem is formulated and optimized
by a single algorithm.

• The formulation is flexible, and other maintenance events can be easily in-
cluded in the proposed model, such as landing gear maintenance or cabin
modification.

The outline of this chapter is as follows: Section 2.2 reviews the literature about air-
craft maintenance planning and solution techniques for scheduling problems. The air-
craft maintenance constraints and AMCS problem formulation are presented in Section
2.3. The DP based methodology for AMCS optimization is discussed in detail in Sec-
tion 2.5. Section 2.6 describes the case study from a European airline. The last section
summarizes the research with concluding remarks and gives an outlook on future work.

2.2. LITERATURE OVERVIEW
Aircraft maintenance check scheduling (AMCS) has been relying on the manual plan-
ning approach for many years. Since the introduction of commercialized wide-body
aircraft in the early 1970s, AMCS has become increasingly difficult due to the empha-
sis on efficiency and lack of an accurate and timely maintenance scheduling tool. It
usually took several weeks for planning personnel to create a maintenance schedule [7].
Air Canada was aware of this issue in the 1970s and developed an aircraft maintenance
operations simulation model (AMOS) to improve maintenance efficiency and reduce la-
bor and material cost [7]. The AMOS tool formulated the AMCS as a discrete integer
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programming problem. According to the author, the problem constraints in AMOS in-
cluded workforce, public holidays, and summer period (when no maintenance was al-
lowed), contractual maintenance duties for other airlines, reliability, and required in-
spection intervals from the maintenance planning document (MPD). Several assump-
tions had been made in AMOS: each maintenance event ties up only one hangar/slot;
the minimum time unit is one calendar day; aircraft is aged by daily flight hours; mainte-
nance events can be postponed from the desired due date within a certain tolerance. Al-
though AMOS works for both A- and C-checks, intending to minimize total unused flight
hours between two successive C-checks, a priority-based simulation heuristic is used to
produce (good) feasible solutions. The author claims that neither mixed-integer pro-
gramming nor dynamic programming is deemed suitable to Air Canada’s environment.
Furthermore, due to the rapidly changing of aircraft utilization and other unforeseen
events, the author did not see the value of using computational power to find an optimal
solution that could rapidly become obsolete. Therefore, a simulation-based approach
was adopted in AMOS, in which the user is the one that chooses the best solution. The
process is very similar to the manual planning approach, shifting conflict checks to ear-
lier time slots until a feasible solution is found, except that a lower bound of utilization
was implemented to prevent scheduling checks too often. Still, the main contribution of
AMOS was to propose a systematic maintenance scheduling approach that could reduce
the time required to generate a 5-year plan from 3 weeks to a few hours [7].

Despite the limitations in AMOS, this is together with Ref. [8] and [9], the only avail-
able reference devoted to long-term aircraft maintenance scheduling. The long-term
planning still has not been adequately studied. In fact, most research works about the
aircraft maintenance topic focus on short-term aircraft maintenance routing, that is, en-
suring that each aircraft is assigned to a sequence of flight legs (a routing) that allows
the aircraft to undergo daily checks, which are needed every two to four days [10]. The
main reason is that aircraft maintenance checks have intervals of several months/years,
and the benefits of an optimal schedule are only visible in the long term. Airlines usu-
ally have higher urgency to monitor and optimize short-term activities, such as aircraft
routing and routine aircraft inspections, from which they can rapidly see tangible cost
savings and profits.

Ref. [11] is one of the first works to address the aircraft maintenance routing prob-
lem. It primarily focuses on the flight schedule design and incorporates the mainte-
nance requirement as part of the constraints. A homogeneous fleet and fixed time in-
tervals between maintenance checks were considered for simplicity. Only A-checks are
considered in this work since C-checks are spaced at relatively large time intervals. The
planned flight schedule minimizes the total maintenance cost and also determines the
maintenance base for the aircraft, which starts and ends in the same city. The problem is
formulated as a min-cost, multi-commodity flow network with integer constraints. Col-
umn generation is applied to obtain an optimized solution. Although the main purpose
of [11] is to design a flight schedule, it is considered as a significant step in maintenance
planning. Several authors have followed this path and continued the research on aircraft
maintenance routing, such as [12], [13], [14] and [15]. For example, Ref. [12] proposed
a hybrid dynamic programming (DP) approach, which recursively searched for the best
maintenance schedule, followed by a greedy algorithm to solve the sequential mainte-
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nance schedule problem. This approach was developed specifically as an on-line fleet
operations management decision support system, focused on providing improved daily
aircraft assignment solutions based on a given aircraft maintenance check schedule.

Ref. [16] is one rare example where the focus has been shifted from flight schedule
design to maintenance scheduling. The authors proposed a mixed random search and
depth first search heuristic to minimize the total costs of A- and B-checks and inappro-
priate aircraft assignments. Unlike other research works that emphasize flight schedule
design and consider aircraft maintenance as a constraint, the flight schedule is given as
input. The goal is to determine when, where, and what type of maintenance check an
aircraft should undergo. Although the main focus is on maintenance scheduling, this
research is still considered as an extension of [11]. C-check scheduling has not been
considered since long-term flight schedules are unknown.

Instead of scheduling letter checks (A-, C- and structural/D-check), an alternative
that reduces maintenance costs and generates profits in the short-term is aircraft main-
tenance task scheduling. This approach reverses the conventional top-down stereo-
typed planning. It schedules tasks individually, which gives flexibility to maintenance
operators to execute the tasks at the most appropriate time [17, 18]. The task-oriented
planning concept and its application are illustrated in [19]. The case study claims that
more than $4M can be saved over 72 days compared with the rigid letter checks. How-
ever, there is little information about the influence of fleet size, maintenance capacity,
and algorithm computation time among the works concerning task-oriented planning
approaches. Since an aircraft can have about 2000-3000 maintenance tasks, the practi-
cality of applying a task-oriented approach to planning a long-term maintenance sched-
ule for a large fleet remains questionable.

In general, the literature on long-term maintenance scheduling is limited, and re-
searchers often resort to solution techniques from more general scheduling problems.
Ref. [20] summarizes a list of objective functions, models, and optimization methods of
scheduling problems. Since scheduling problems usually involve integer decision vari-
ables and linear constraints, the most common approaches to such mixed-integer linear
programming problems are heuristics, which rely heavily on commercial solver such as
CPLEX [21, 22]; the other alternative is dynamic programming (DP).

DP was proposed in the 1950s by Bellman, referring specifically to nesting smaller de-
cision problems inside larger decisions [23]. It divides a large and complicated problem
into stages and states. The smaller sub-problems within each state are solved faster than
the initial problem, and the optimal solution can be retrieved by examining the solutions
from all sub-problems. DP was initially applied to single-machine production [24–26]
or single-machine maintenance scheduling problems [27]. For example, the work from
[24], which minimizes the total cost of producing different items from a single machine,
is considered to be one of the first to motivate the application of DP on scheduling prob-
lems. However, it assumes that only one unit can be produced at a time and the demand
rate of units is constant.

As the development of DP, the application has been gradually extended from single-
machine scheduling to multiple-machine scheduling. Most of the DP applications on
multiple machines are related to power generation. One of the examples can be found
in [28]. It presented a study to optimize the cost of multiple reservoir systems over a
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long period considering the uncertainties of water inflow and equipment outage. Even
though piecewise linear functions are introduced in the solution process to estimate
the future operation cost (this avoids recursively computing the actual future operating
cost), the application is still limited to low-dimensional problems, namely, a small num-
ber of reservoirs [29]. When the number of reservoirs increases, the number of decisions,
i.e., how much water should be kept in each reservoir, increases exponentially.

Several conclusions can be drawn from the review of the literature. First of all, Ref.
[7] is the only available reference for long-term AMCS, although no optimization tech-
nique is implemented. Secondly, the long-term AMCS forms a typical large-scale com-
binatorial problem, but there is no standard approach or exact algorithm for such a
problem type. Thirdly, aircraft A- and C-check scheduling on a fleet aggregate level is
analogous to multiple unit scheduling, which can be treated with the similar formula-
tion and solution techniques. Fourthly, DP is capable of dealing with small-scale mixed-
integer/combinatorial problems, but the classic DP is not applicable to large-scale prob-
lems. The rest of this chapter will present a DP based methodology to tackle the long-
term aircraft maintenance check scheduling optimization.

2.3. PROBLEM FORMULATION
This section formulates the AMCS problem, adopting the DP framework. It starts with an
introduction of inspection intervals (2.3.1), followed by a list of assumptions (2.3.2). Af-
ter that it explains the maintenance capacity and some common operational constraints
(2.4.1). The formulation of the AMCS problem is then described, divided into decision
space (2.4.2), definition of state (2.4.3), state transition (2.4.4), constraints formulation
(2.4.5) and the objective function (2.4.6). The final subsection summarizes the optimiza-
tion model formulation.

2.3.1. MAINTENANCE INSPECTION INTERVAL

In the aviation industry, aircraft are aged by daily utilization with respect to 3 different
usage parameters, calendar day (DY), flight hours (FH), and flight cycles (FC). One DY
is a full 24 hours period; FH refers to the elapsed time between wheel lift off and touch
down; and an FC is defined by a complete take-off and landing sequence. The inspection
interval reflects the maximum usage parameters allowed in operation. For example, the
maintenance planning document (MDP) of the AIRBUS A320 family [30] defines that a
C-check interval corresponds to 730 DY, 7500 FH or 5000 FC; and 120 DY, 750 FH or 750
FC for the A-check.

After a maintenance check, the corresponding three usage parameters are set to 0,
and a maintenance cycle is concluded. These maintenance cycles are associated with
labels, referring to different task packages (i.e., A1, A2, A3,... for the A-check and C1, C2,...
for the C-check). The A-check program is commonly divided into 4 cycles, in which A1
has similar task packages as A5, while A2 has similar task packages as A6, and so forth.
The C-check program has 12 cycles and consists of continuous C-checks, whereby every
three checks (i.e., C3, C6, ...), there is a heavier check incorporating tasks from D-checks.

The aircraft MPD also includes an inspection interval tolerance. This tolerance al-
lows operators to fit the maintenance schedule around maintenance capacity, mainte-
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nance operational constraints, and commercial operation demands. However, if toler-
ance is used in one maintenance cycle, the amount of DY, FH, and FC used from the
tolerance needs to be deducted from the maximum usage parameter values for the next
cycle. This guarantees that the maximum usage parameters are verified in the long term.
The inspection interval tolerance should not be included as a planning option, but it is
commonly used in practice to accommodate deviations from the initial schedule.

Although having different usage parameters, different check types within AMCS are
correlated due to two reasons: the first is that when an aircraft is performing a letter
check (e.g., A-check), it will be grounded, and the usage parameters of other check types
(B-, C- and D-checks) are not altered (i.e., the daily utilization of these parameters is
equal to 0). The second reason is that, depending on the usage parameters for the A-
check, it could be beneficial for the airline to merge the A-check within a C-/D-check.
This has the advantage of performing the A-checks without necessarily increasing the C-
/D-check duration and without using an A-check slot. On the other hand, to anticipate
an A-check, merging an A-check within a C-/D-check will increase the number of A-
checks in the long-term.

2.3.2. ASSUMPTIONS
Ref. [7] defined a list of major conditions for maintenance event scheduling, based on
aircraft maintenance practice. This chapter adopts the first six of these assumptions
(A.1–A.6) and add two more (A.7–A.8) necessary to define our approach. A.1–A.7 by far
are commonly used among airlines. A.8 is added due to the fact that airlines do not
have their flight schedule for future 4–5 years, thus flexible aircraft routing is assumed
for long-term maintenance scheduling.

A.1 Minimum time unit of the aircraft maintenance schedule is 1 DY.

A.2 Aircraft ages by DY, daily FH and FC. The daily utilization, as well as the commer-
cial peak seasons, can be estimated per aircraft according to historical data.

A.3 Each A-/C-check ties up only one hangar (slot) for its total duration.

A.4 A-/C-check priority is defined according to the rule of “earliest deadline first”, i.e.,
aircraft which has earlier A-/C-check deadline is given higher A-/C-check priority,
respectively.

A.5 However, when looking at one particular aircraft, C-check has higher priority than
A-check.

A.6 A-check can be merged in C-check, which will not affect the C-check duration or
existing A-check slots.

A.7 The duration of an A-/C-check per check label can be estimated according to his-
torical data or can be specified by airline.

A.8 There is flexibility in aircraft routing to accommodate the A-/C-check and the ge-
ographical location of the hangars does not have to be specified.
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The last assumption is based on the fact that AMCS is a type of strategic problem. The
aircraft routings are still unknown since they are only defined a couple of weeks before
operations. For this same reason, the location of the aircraft at the time of the main-
tenance checks is unknown. Therefore, the geographical location of the maintenance
checks is not considered in this work. Nevertheless, the formulation presented can be
easily adapted to incorporate different hangar locations and constraints regarding the
allocation of a given fleet to specific hangar locations.

2.3.3. NOMENCLATURE
This subsection section presents the nomenclature that is used for the rest of the chapter.

AMCS Model Parameters:
dk Minimum interval between the start dates of two type k checks.
e i

k-DY Maximum DY tolerance of type k check interval of aircraft i
e i

k-FH Maximum FH tolerance of type k check interval of aircraft i
e i

k-FC Maximum FC tolerance of type k check interval of aircraft i
fci ,t Average daily FC usage for aircraft i at day t
fhi ,t Average daily FH usage for aircraft i at day t
I i

k-DY Interval of type k check of aircraft i in terms of DY
I i

kFH Interval of type k check of aircraft i in terms of FH
I i

k-FC Interval of type k check of aircraft i in terms of FC
Pd Penalty for having an aircraft on the ground waiting for a maintenance slot
Pa Penalty for an aircraft using the tolerance
Rk Remaining day threshold of type k check

Other Parameters:
h Hangar indicator
i Aircraft indicator
k Maintenance check type indicator, k ∈ K
N Total number of aircraft
nk The number of hangars for type k check
nact The number of actions on day t
t Indicator of calendar day
T Final day in planning horizon
t0 First day in planning horizon
∆u Increment of fleet utilization for discretization
γ Discount factor
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Decision Variables and Related Attributes:
ai ,t The attributes of aircraft i in the beginning of the day t
At At = {ai ,t | i = 1, 2, . . . , N }
DYk

i ,t Total DY of aircraft i in the beginning of day t for type k check

FCk
i ,t Cumulative FC of aircraft i at t since last type k check

FHk
i ,t Cumulative FH of aircraft i at t for type k check

K Set of maintenance check types, K = {A, B, C, D}

Lk
i

(
yk

i ,t

)
Estimated elapsed time of next type k check with label yk

i ,t

M k
h,t Binary variable to indicate if a type k check can be performed in

hangar h on the day t
M k

t Hangar capacity of type k check, M k
t =∑

h M k
h,t

st State variable
St The set of workable states, St =

{
st

∣∣st workable
}

Rk
i ,t Remaining fly days of aircraft i before the next type k check

yk
i ,t Next maintenance label for of type k check of aircraft i on the day t

zk
i ,t The end date of type k check of aircraft i

δk
i ,t Binary variable to indicate if aircraft i is undergoing a type k check

on the day t
εk-DY

i ,t Extra DY before day t if previous type k check is deferred

εk-FH
i ,t Extra FH before day t if previous type k check is deferred

εk-FC
i ,t Extra FC before day t if previous type k check is deferred

ηk
i ,t Binary variable to indicate if aircraft i is grounded and waiting for a

slot of type k check on the day t
θk

i ,t Tolerance usage indicator of type k check of aircraft i on the day t

χk
i ,t Binary variable to indicate if aircraft i starts a type k check on the

day t
xt Available action on the day t
x∗

t The optimal action among {xt }
X π(st ) Scheduling policy function, xt =X π(st )
π Scheduling policy
Ψ Ψ ∈ {FH, FC}
Ψk

i ,t Ψk
i ,t ∈ {FHk

i ,t , FCk
i ,t }

ψk
i ,t ψk

i ,t ∈ {fhk
i ,t , fck

i ,t }

SX (st , xt ) State transition function from st to st+1, st+1 =SX (st , xt )
uk

i ,t Utilization of aircraft i on day t with respect to type k check

ūk
t Mean utilization of fleet on calendar day t for type k check

Ct (st , xt ) Contribution of choosing action xt on st

Jt ,ūA
t ,ūC

t
(st ) Cumulative contribution on day t when the fleet has mean utiliza-

tion ūA
t and ūC

t for A-check and C-check respectively

J min
t ,ūA

t ,ūC
t

(st ) J min
t ,ūA

t ,ūC
t

(st ) = min
{

Jt ,ūA
t ,ūC

t
(st )

}
Vt (st ) The value of being in a state st
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2.4. MODEL FORMULATION

2.4.1. MAINTENANCE CAPACITY AND OPERATIONAL CONSTRAINTS

This chapter only considers one single maintenance location with multiple maintenance
check hangars, meaning that all aircraft will undergo letter checks in the main hub of
airlines. Although the hangar locations can also be easily incorporated in the constraints
of model formulation, this chapter does not consider this aspect. The main reason is that
the AMCS is a type of strategic problem. There is no long-term aircraft rotation or flight
schedule for verification or validation. Therefore, multiple locations of performing letter
checks would become redundant and only complicate the formulation.

In the AMCS problem, the maintenance check capacity can either be expressed as
person-hour available during a working day or, equivalently, as the maximum parallel
maintenance check allowed per working day (defined as “time slots” or just “slots”). The
capacity for each check type is not always constant over time. Airlines and maintenance,
repair, and overhaul (MRO) service providers usually have operational constraints that
influence the maintenance capacity per day. For instance, during commercial peak sea-
son (e.g., the period of New Year, Easter, summer, and Christmas), airlines usually pre-
fer to operate with the maximum fleet. Performing heavy maintenance, such as C-/D-
checks, will lead to high commercial revenue loss, and it is also common to have reduced
or no checks during weekends and public holidays due to higher labor costs. A final
example is that some maintenance slots are pre-allocated to third-party aircraft. Main-
tenance planners of airlines cannot consider those reserved slots in the AMCS for their
fleet. This chapter defines the capacity M k

h,t for hangar h:

M k
h,t =

{
1 if hangar h is available on day t for type k slots
0 otherwise

(2.1)

This parameter has to be defined per day per hangar for the entire time horizon,
reflecting capacity variations between peak season and off-peak season and between
weekends and regular working days, according to the airline policy. The capacity M k

h,t for
hangar h can also be set equal to zero if hangar h is reserved for a specific maintenance
event, such as replacing landing gears for an aircraft or performing a type k check of a
third-party aircraft.

2.4.2. DECISION SPACE

An action xt of day t is to perform A-checks or C-checks, or do nothing:

xt =
{{
χk

i ,t

}N

i=1

}
k∈K

(2.2)

where, each χk
i ,t is a binary decision variables in which:

χk
i ,t =

{
1 a type k check for aircraft i is planned to start at time t
0 otherwise

(2.3)
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2.4.3. DEFINITION OF STATE
A state vector st is defined by the set of attributes that influence our decisions and the
available maintenance slots of each check type:

st =
{{

ak
i ,t

}N

i=1

}
(2.4)

where, each attribute set ak
i ,t contains the information of aircraft i on day t , with respect

to check type k:

ak
i ,t = {M k

t , zk
i ,t , δk

i ,t , ηk
i ,t ,︸ ︷︷ ︸

Type 1
(
a(1),k

i ,t

) DYk
i ,t ,FHk

i ,t ,FCk
i ,t ,εk-DY

i ,t ,εk-FH
i ,t ,εk-FC

i ,t ,θk
i ,t , yk

i ,t ,︸ ︷︷ ︸
Type 2

(
a(2),k

i ,t

)
Lk

i

(
yk

i ,t

)
, fhi ,t , fci ,t︸ ︷︷ ︸

Type 3
(
a(3),k

i ,t

)
} (2.5)

These attributes are described in 2.3.3 and discussed in the next subsection. They can
be divided into three types, as showed in Table 2.1.

Table 2.1: Different types of attribute within a state st .

Type 1 a(1),k
i ,t Attributes at time t that impact the action xt and are modified only

when a check starts or ends, or when an aircraft is grounded

Type 2 a(2),k
i ,t Attributes at time t that are updated every time based on their value

at time t −1

Type 3 a(3),k
i ,t Attributes at time t that depend on exogenous information

2.4.4. STATE TRANSITION
The transition between states in subsequent time steps depends on the actions taken.
This can be described by a state transition function in which the state st+1 is defined as a
function of the initial state st and the action xt chosen in state st :{

xt =X π(st )

st+1 =SX (st , xt )
for t = t0, t0 +1, ..., T (2.6)

where X π(st ) generates actions based on st according to hangar capacities at day t , M k
t

(k ∈ K ). The state transition function SX (st , xt ) describes how the state vector is up-
dated and expresses the fact that an action taken at time t influences the future main-
tenance activities and capacities. A history of such process, including the sequence of
actions and evolution of state, can be represented as:(

st0 , xt0 , st0+1, xt0+1, st0+2, ..., st−1, xt−1, st , ..., sT , xT , sT+1
)

(2.7)

The main purpose of the state transition is to renew the attributes over the time hori-
zon. The attributes are updated in two phases: pre-decision (Phase 1) and post-decision
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(Phase 2). The goal of the pre-decision phase is to update the hangar capacity and air-
craft availability for time t before any making maintenance check decision, and this pro-
vides the information about how many hangars can be used to perform maintenance
checks and which aircraft is available for operation. In Phase 1, only Type 1 attribute
(a(1),k

i ,t ) is updated and the resulting attributes (ã(1),k
i ,t ) from the pre-decision update is de-

fined as pre-decision attributes. On the other hand, the goal of the post-decision phase
is to update aircraft usage parameters, according to the action xt that made on the day
t . All 3 type attributes will be updated in Phase 2, and this thesis calls the subsequent at-
tributes from Phase 2 update post-decision attributes. Since the attributes of a state are
divided into three types (Table 2.1), the transition of each type of attribute is presented
separately in the following sub-sections.

UPDATE OF TYPE 1 ATTRIBUTES

Phase 1, which is called the pre-decision phase (Figure 2.1), only updates the Type 1 at-
tributes a(1),k

i ,t . This phase checks if at time t is the end day for an ongoing aircraft check.

The results within the pre-decision attributes of type 1 is ã(1),k
i ,t =

{
M̃ k

t , z̃k
i ,t , δ̃k

i ,t , η̃k
i ,t

}
.

The pre-decision update is triggered by verifying if the end date (zk
i ,t ) of an ongoing check

is equal to t −1 (i.e., if zk
i ,t = t −1), for any aircraft in the fleet:

z̃k
i ,t =

{
0 if zk

i ,t = t −1

zk
i ,t otherwise

(2.8)

At the same time, it updates δk
i ,t to δ̃k

i ,t :

δ̃k
i ,t =

{
0 if zk

i ,t = t −1

1 otherwise
(2.9)

If the end date of a type k check for an aircraft i is larger than the current calendar day
t , it means that there is an aircraft check occurring. And the hangar capacity needs to be
updated for time t accordingly:

M̃ k
t =∑

h
M k

h,t −
N∑

i=1
δ̃k

i ,t (2.10)

where M k
h,t is the maintenance capacity per hangar h at time t . The value of η̃k

i ,t is ini-

tialized using ηk
i ,t , namely, η̃k

i ,t = ηk
i ,t .

In Phase 2, or the post-decision phase (see Figure 2.1), the action xt is taken into
account to update Type 1 attributes. For all aircraft that start type k check on day t (χk

i ,t =
1), the values of δk

i ,t and zk
i ,t need to be updated. The zk

i ,t is updated according to:

zk
i ,t+1 =

 t +Lk
i

(
yk

i ,t

)
if χk

i ,t = 1

z̃k
i ,t otherwise

(2.11)
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t −1 t t +1

a(1),k
i ,t−1 , a(2),k

i ,t−1 , a(3),k
i ,t−1

P
h

ase
1

−−−−−→
u

p
d

ate

ã(1),k
i ,t−1 , a(2),k

i ,t−1 , a(3),k
i ,t−1

xt−1−−−−−−→
(Phase 2)

a(1),k
i ,t , a(2),k

i ,t , a(3),k
i ,t

P
h

ase
1

−−−−−→
u

p
d

ate

ã(1),k
i ,t , a(2),k

i ,t , a(3),k
i ,t

xt−−−−−−→
(Phase 2)

a(1),k
i ,t+1 , a(2),k

i ,t+1 , a(3),k
i ,t−1

Figure 2.1: A two-phase attribute update mechanism: Phase 1 (Ph-1) updates the set of pre-decision Type 1

attribute a(1),k
i ,t to ã(1),k

i ,t before making any action; after an action xt is made, Phase 2 (Ph-2) updates ã(1),k
i ,t ,

a(2),k
i ,t and a(3),k

i ,t to a(1),k
i ,t+1, a(2),k

i ,t+1 and a(3),k
i ,t+1.

where Lk
i

(
yk

i ,t

)
is the elapse time for maintenance type k, with label yk

i ,t . Following this

update, the values of δk
i ,t can also be renewed:

δk
i ,t+1 =

{
0 if χk

i ,t = 1

δ̃k
i ,t otherwise

(2.12)

Still in the post-decision stage, in some special cases, aircraft reach their inspection
intervals, and no maintenance check capacity is available. In these undesirable situa-
tions, the aircraft needs to be grounded and put out of operations, waiting for the next
maintenance opportunity, and this happens if the usages parameters for time t+1 of any
aircraft is larger than the respective inspection interval. It first computes the expected
usage parameters of t +1 as follows:

∆DYk
i ,t+1 =

(
DYk

i ,t +1
)

︸ ︷︷ ︸
DYk

i ,t+1

−
[

I i
k-DY +

(
1−θk

i ,t

)
e i

k-DY −εk-DY
i ,t

]
︸ ︷︷ ︸

Actual DY Interval of Type k Check

(2.13)

∆Ψk
i ,t+1 =

(
Ψk

i ,t +ψi ,t

)
︸ ︷︷ ︸

usage parameters of t+1

−
[

I i
k-Ψ+

(
1−θk

i ,t

)
e i

k-Ψ−εk-Ψ
i ,t

]
︸ ︷︷ ︸

Actual Interval ofΨ (Ψ ∈ {FH,FC}) of Type k Check

(2.14)

whereΨk
i ,t+1 ∈

{
FHk

i ,t+1, FCk
i ,t+1

}
,Ψ ∈ {FH, FC} andψk

i ,t+1 ∈
{

fhk
i ,t+1, fck

i ,t+1

}
are used for

convenience. This chapter separates DY from other usage parameters because its uti-
lization update is different from FH or FC. DYk

i ,t , FHk
i ,t and FCk

i ,t are the cumulative DY,

FH and FC since previous type k check till day t ; I i
k-DY, I i

k-FH and I i
k-FC refer to the stan-

dard interval of type k check;
(
1−θk

i ,t

)
e i

k-DY,
(
1−θk

i ,t

)
e i

k-FH and
(
1−θk

i ,t

)
e i

k-FC represent
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the respective tolerance that can be added to the standard interval; and εk-DY
i ,t , εk-FH

i ,t and

εk-FC
i ,t represent the amount of DY, FH and FC tolerance used in previous type k check.

The interval tolerance allows maintenance operators to fit the maintenance sched-
ule around maintenance capacity and constraints, and commercial operation demands.
However, in the case that tolerance is used in one maintenance cycle, the amount of
DY, FH, and FC used from the tolerance needs to be deducted from the maximum us-
age parameter values for the next maintenance check. In this way, it guarantees that the
maximum usage parameters are verified in the long term. The inspection interval tol-
erance should not be included as a planning option. Even so, it is commonly used in
practice to accommodate deviations from the initial schedule.

The aircraft is grounded if any of these previous delta values is greater than 0 and no
maintenance check is being performed on this aircraft:

ηk
i ,t+1 =

{
1 χk

i ,t = 0, max
{
∆DYk

i ,t+1,∆FHk
i ,t+1,∆FCk

i ,t+1

}
> 0

η̃k
i ,t otherwise

(2.15)

UPDATE OF TYPE 2 ATTRIBUTES

Once the action of the day t is known, the update of Type 2 attributes is straightforward.
The aircraft usage parameters are updated according to the following equations:

DYk
i ,t+1 =

(
1−δk

i ,t

)(
DYk

i ,t +1
)

(2.16)

Ψk
i ,t+1 =

(
1−δk

i ,t

)[
Ψk

i ,t +
(
1−δk ′

i ,t

)
ψi ,t

]
(2.17)

where k ′ refers to the check type that is different from k, if k = A-check, k ′ can be any
other check type (B-/C-/D-check) except for A-check. The usage parameters are reset to
0 if a maintenance check of type k was scheduled in the previous time step (i.e., δk

i ,t = 1).
Otherwise, the parameters are either increased by the average daily aging of the aircraft
or kept constant, if a maintenance of the type other than k is scheduled (i.e., δk ′

i ,t = 1).
The update of Type 2 attributes also includes renewing the tolerance usage variables

for each maintenance check type k:

εk-DY
i ,t+1 =

{
max

{
0,Ψk

i ,t − I i
k-DY

}
if χk

i ,t = 1

εk-DY
i ,t otherwise

(2.18)

εk-Ψ
i ,t+1 =

{
max

{
0,Ψk

i ,t − I i
k-Ψ

}
if χk

i ,t = 1

εk-Ψ
i ,t otherwise

(2.19)

whereΨ ∈ {FH, FC}. (2.18) and (2.19) indicate that the status of tolerance usage of a type
k check is the same as the day before if there is no type k check allocated on day t . On
the contrary, if a type k check is scheduled before all usage parameters reach maximum,
then no tolerance is used and εk-DY

i ,t+1/εk-FH
i ,t+1/εk-FC

i ,t+1 are set to 0. If an aircraft has to operate
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over the limit of a type k check, the corresponding εk-DY
i ,t+1/εk-FH

i ,t+1/εk-FC
i ,t+1 are updated ac-

cording to the difference between the cumulative DY/FH/FC and type k check interval.
As a result, the tolerance usage indicators will be renewed:

θk
i ,t+1 =

{
1 if max

{
εk-DY

i ,t+1, εk-FH
i ,t+1, εk-FC

i ,t+1

}
> 0

0 otherwise.
(2.20)

After an action is evaluated, the maintenance labels for both type k checks are up-
dated consequently. The maintenance labels of an aircraft i are updated to the next label
using the following equation:

yk
i ,t+1 =

{
yk

i ,t +1 if χk
i ,t = 1

yk
i ,t otherwise

(2.21)

UPDATE OF TYPE 3 ATTRIBUTES

The Type 3 attributes are exogenous variables that are updated according to lookup ta-
bles, or provided by an airline, or estimated according to historical maintenance and
aircraft utilization data of the airline. They refer to:

• Lk
i

(
yk

i ,t+1

)
is the elapsed time specified by airline.

• fhk
i ,t+1 is estimated according to historical aircraft FH.

• fck
i ,t+1 is estimated according to historical aircraft FC.

2.4.5. CONSTRAINTS FORMULATION
There are two types of constraints in the AMCS optimization: the interval of each main-
tenance check type and operational constraints. The maintenance operators of airlines
usually schedule the maintenance checks before the corresponding usage parameters
reach maximums. That not being possible, in practice, the airline can make use of the
interval tolerance. The extra DY/FH/FC used from tolerance must be compensated in
the next type k check, as mentioned in Subsection 2.4.4, and this can be described as
follows, for each maintenance check type k, aircraft i , and time t :

DYk
i ,t+1 ≤ I i

k-DY +
(
1−θk

i ,t

)
e i

k-DY −εk-DY
i ,t (2.22)

Ψk
i ,t+1 ≤ I i

k-Ψ+
(
1−θk

i ,t

)
e i

k-Ψ−εk-Ψ
i ,t (2.23)

where Ψ ∈ {FH, FC}; the first term of the right-hand side of each inequality refers to the
standard check interval, the second terms adds the tolerance interval, and the last term
subtracts the tolerance used in the previous check of the same type.

Before instigating a maintenance action, it is necessary to verify whether or not there
are sufficient slots for a type k check in a hangar during the entire maintenance elapse
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time Lk
i

(
yk

i ,t

)
, for all aircraft and hangars available:

χk
i ,t ≤

∑t+Lk
i

(
yk

i ,t

)
τ=t M k

h,τ

Lk
i

(
yk

i ,t

) , k ∈ K , t ∈ [t0,T ] (2.24)

The operational constraints are required to guarantee that the number of maintenance
checks performed in parallel per day does not exceed the hangar capacity, namely:

N∑
i=1

δk
i ,t ≤

∑
h

M k
h,t , k ∈ {A, C} , t ∈ [t0,T ] (2.25)

Some airlines require a minimum number of days (dk ) between the start dates of two
type k checks preparing the maintenance resources, such as tools, workforce, aircraft
spare parts and to avoid parallel peaks of the workload at the hangar, meaning that:

• If dk > 0, there can be at most 1 aircraft starting a type k check at time t .

• If dk > 0 and there is a type k check starting at t , no type k check is allowed to start
in [t , t +dk )

The requirement of the start date can be translated in the following equations:

N∑
i=1

χk
i ,t ≤

 1 if dk > 0 and
N∑

i=1
χk

i ,τ = 0, ∀τ ∈ [t −dk , t )

M k
t otherwise

(2.26)

Note that this chapter uses a generic indicator h to represent a maintenance check
hangar, based on the assumption A.8. If one wants to consider multiple locations of per-
form the aircraft A-/C-check, each hangar h would have to be associated with a location

lh and the decision variable δk
i ,t will be replaced by δlh ,k

i ,t .

2.4.6. OBJECTIVE FUNCTION
When scheduling aircraft maintenance activities, the most common objectives are min-
imization of costs [12, 16] or minimization of the unused flight hours (FH) [7, 14]. This
dissertation considers the second objective. The cost minimization objective was not
considered for three main reasons:

- The available maintenance cost data is unreliable and hard to associate to a spe-
cific maintenance check;

- Maintenance checks are mandatory, and the total maintenance costs of an airline
can only be reduced if the number of aircraft checks over time is also reduced;

- One day of an aircraft out of operations is more costly than the daily cost of a main-
tenance check.
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Therefore, minimizing the unused FH, and consequently, in the long term, reducing the
number of aircraft checks and days on the ground, is considered to be the best objective
for the AMCS problem. For an aircraft i , the value of unused FH in a day t is equal to the
summation of the FH loss due to a maintenance check scheduled for that day:∑

k∈K
χk

i ,t

(
I i

k-FH −FHk
i ,t

)
(2.27)

The contribution function of FH loss on day t is calculated by:

Ct (st , xt ) =
∑

k∈K

N∑
i=1

[
χk

i ,t

(
I i

k-FH −FHk
i ,t

)
+

(
1−χk

i ,t

)
Paθ

k
i ,t +Pdη

k
i ,t

]
(2.28)

where the first term on the right-hand side reflects the unused FH of aircraft i , the second
term is a penalty for aircraft i using an interval tolerance, and the third term is a penalty
for having an aircraft on the ground without doing maintenance.

The penalty Pa is introduced due to the fact that the use of tolerance needs to be
communicated and approved by the local civil aviation authorities. Therefore, tolerance
should not be considered at a scheduling stage or, if inevitable, it should be used as lit-
tle as possible. The second penalty is introduced to reflect the cost of having an aircraft
on the ground and waiting for a maintenance slot since this results in very high costs.
It should always be avoided unless it proves to be unfeasible otherwise. For that rea-
son, the value of Pd should always be of a very large magnitude. Our objective is then
to minimize the sum of the total contributions for all states visited during the time hori-
zon, discounted by a factor γ. That is, it searches for the optimal AMCS policy (π) that
minimizes the contribution of our scheduling decisions over the time horizon T − t0:

min
π

E

{
T∑

t=t0

γt−t0Ct
(
st ,X π (st )

)}
(2.29)

where X π (st ) is the optimal scheduling policy function.

2.4.7. OPTIMIZATION MODEL
After the introduction of state transition, constraints, and objective function, the opti-
mization problem can be described by the following:

min
π

E

{
T∑

t=t0

γt−t0Ct
(
st ,X π (st )

)}
(2.30)

subject to:

Constraints (2.11)− (2.26)

The optimal scheduling policy over the time horizon T can be found by recursively
computing the Bellman’s equation:

Vt (st ) = min
xt

{
Ct (st , xt )+γ

∑
st+1

p
(
st+1

∣∣st , xt
)

Vt+1(st+1)

}
(2.31)
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Figure 2.2: An example of state transition from stage t0 to stage t0 +1 in deterministic AMCS. In this example,
only two check types are considered.

{
xt0 ,i

}
is the set of possible actions and

{
st0+1,i

}
is the set of resulting

states. In deterministic case, the transition probability is 1, thus there is only one resulting state per action.
Similarly from stage t0 +1 on-wards, each st0+1,i has the same number of actions as st0 .

where st+1 = SX (st , xt ) = SX (st ,X π (st )) and p
(
st+1

∣∣st
)

is the probability of transition-
ing from state st to state st+1. The Bellman’s equation expresses the value of being at
each state St .

2.5. METHODOLOGY

The AMCS problem has a structure that follows the Markov Decision Process (MDP). Like
any other MDP, it can be solved using dynamic programming (DP). The AMCS problem
can be divided into stages, each stage referring to one calendar day (indexed by t ). For
each stage, all possible actions xt from a state st need to be evaluated, and the optimal
one x∗

t can be eventually identified. For illustration purpose, this chapter uses Figure 2.2
to depict an example of state transition from stage t0 to stage t0 +1 (deterministic). In
this case, st0 is the initial state. There are two aircraft, 1 A-check slot and 1 C-check slot
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on stage t0. The action vector xt has the following structure:

xt =
 {0,0}︸ ︷︷ ︸

A-Check

, {0,0}︸ ︷︷ ︸
C-Check

 (2.32)

For each aircraft in (2.32), the first number indicates the action of A-check, and the sec-
ond number is for C-check. If an A-/C-check starts, the corresponding number is 1, and
0 otherwise, and this gives nine possible actions on stage t0:

1. no A-check or C-check: xt0,1 = {{0,0}, {0,0}}

2. A-check on aircraft 1 but no C-check: xt0,2 = {{1,0}, {0,0}}

3. A-check on aircraft 2 but no C-check: xt0,3 = {{0,1}, {0,0}}

4. no A-check but C-check on aircraft 1: xt0,4 = {{0,0}, {1,0}}

5. no A-check but C-check on aircraft 2: xt0,5 = {{0,0}, {0,1}}

6. merge A- into C-check for aircraft 1 but no A-check on aircraft 2: xt0,6 = {{1,0}, {1,0}}

7. merge A- into C-check for aircraft 1 and A-check on aircraft 2: xt0,7 = {{1,1}, {1,0}}

8. no A-check on aircraft 1 but merge A- into C-check for aircraft 2: xt0,8 = {{0,1}, {0,1}}

9. A-check on aircraft 1 and merge A- into C-check for aircraft 2: xt0,9 = {{1,1}, {1,0}}

It can be observed that nine possible actions lead to 9 states on stage t0 +1, even for an
example of 1 A-check slot and 1 C-check slot (here it assumed that an A-check could be
merged into a C-check, in the deterministic case, there is only one resulting state per
action). This process repeats as the state transition proceeds, i.e., each state st0+1,i has
nine different actions, and therefore, will have nine outcome states. As the stage moves
forward in time, the number of states within a stage will grow exponentially.

The value associated with each action can be computed using Bellman’s optimality
equations (2.31). However, solving these for all possible actions is not trivial due to three
challenges: the size of the multi-dimensional action vector xt , the length of the multi-
dimensional state vector st , and the very large outcome space. These challenges are well
known as the “curse of dimensionality” [31]. It is easy to understand these challenges
when analyzing the AMCS problem, as the state vector st is a tuple that contains the
states of N aircraft, and each aircraft has 28 attributes for one type of maintenance check.
If one wants to use discretization for each attribute, e.g., to l levels, the total number of
levels to access will be l 28 ×N , just for one stage, requiring a large amount of computer
memory and also makes it difficult to trace decisions backward. In terms of actions, for
each time stage t and capacities M k

t , there are:

∏
k∈K

M k
t∑

mk=0

N !

(N −mk )!×mk !
(2.33)
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possible actions and, if no optimal final state is given, there will be:

T∏
t=t0

∏
k∈K

M k
t∑

mk=0

N !

(N −mk )!×mk !
(2.34)

possible outcomes for the last stage. It means that even for a small case with ten aircraft
and one daily slot available for only two check types, there would be 121 possible actions
on the first day and more than 1.7 million possible actions just after three days.

In classic DP, computing Vt+1(st+1) requires Vt+2(st+2), and to obtain Vt+2(st+2), the
Vt+3(st+3) has to be computed and so forth, until t reaching the final stage T . The afore-
mentioned solution process is called backward induction that, if the final state is not
known, easily becomes intractable even for the small example of 10 aircraft. Hence, this
thesis treat the AMCS problem in a different way, adopting a forward induction approach
which moves from the initial planning stage towards the future.

This section proposes a forward induction DP based methodology to solve the AMCS
problem. It begins with a brief introduction to the forward induction concept in Subsec-
tion 2.5.1. After that, it describes a priority solution that is proposed in dealing with the
multi-dimensional action vector (Subsection 2.5.2). Subsection 2.5.3 presents a Thrifty
Algorithm for AMCS, which estimates the implications of an action at the current stage
on the remaining planning horizon. Subsection 2.5.4 presents the discretization and ag-
gregation approach adapted to implement the algorithm. The last subsection includes
an algorithm complexity analysis.

2.5.1. FORWARD INDUCTION

Forward induction is the process of reasoning forward in time, determining a sequence
of optimal actions from an initial state until the end of the time horizon. It comes from
the observation that the shortest path from an initial node st0 to an end node sT+1 is
equal to the shortest path from the end node to the initial node [32]. That is, determining
the optimal solution for the forward shortest path problem is the same as finding the
optimal solution for the backward shortest path problem, as computed by the backward
induction approach. The idea from the forward induction approach is to move forward
in time, continuously searching for the shortest path between the initial node st0 and the
current node being tested st . This process is repeated until one has determined the best
action for every stage in the time horizon.

Although the forward induction approach would solve the problem of not knowing
the final state of our problem, due to too many intermediate states between the initial
stage and the final stage of the planning horizon, this approach is still inefficient for
AMCS in terms of computation time and storage. For this reason, this thesis incorporates
forward induction with three additional components:

• A maintenance check priorities definition solution

• A thrifty algorithm for AMCS

• A discretization and state aggregation strategy.
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Figure 2.3: Work flow of the DP based methodology. Three main components are incorporated, labeled as
blocks A, B and C. The term ground days refers to the days when an aircraft is grounded and waiting for a
maintenance slot.

These components are labeled as blocks A, B and C respectively, in the work flow di-
agram of forward induction (Figure 2.3). The first component is used to deal with the
multi-dimensional action vector; the second component is used to estimate the conse-
quences of an action on future time steps; the third components is designed to reduce
the outcome space to a manageable size. These three components are explained in the
following subsections.

2.5.2. DEFINING MAINTENANCE CHECK PRIORITY
Given a state st , an action based on st is generated:

xt =X π(st ) (2.35)

Note that xt means performing mk type k check (mk depends on the hangar capacity),
which leads to the following combination of aircraft selection for one check action:

∏
k∈K

N !

mk !(N −mk )!
(2.36)

The number associated outcome states is the same as (2.36).
The number of states can quickly explode due to such a multi-dimensional action

vector (an action on multiple items). One solution to this challenge is to assign priori-
ties to each aircraft. In this chapter, it defines maintenance check priorities (Block A in
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Figure 2.3) according to the rule of “earliest deadline first”. However, to know the dead-
line for a maintenance check, it needs to compute the remaining utilization beforehand.
Since there are three usage parameters for each check type in the AMCS problem, this
gives three different remaining utilization for DY, FH, and FC. A type k check should be
scheduled before any of the remaining utilization goes to 0. In this way, the aircraft re-
maining utilization is defined by the fewest days to the next maintenance check:

Rk
i ,t = min

{
Rk-DY

i ,t , Rk-FH
i ,t , Rk-FC

i ,t

}
(2.37)

The Rk-DY
i ,t , Rk-FH

i ,t and Rk-FC
i ,t refer to the remaining operation days with respect to each

usage parameter and associated interval specified by the MPD:

Rk-DY
i ,t = argmax

r∈N

{
r ≤ I i

k-DY −εk-DY
i ,t −DYk

i ,t

}
(2.38)

Rk-FH
i ,t = argmax

r∈N

{t+r∑
τ=t

fhi ,τ ≤ I i
k-FH −εk-FH

i ,t −FHk
i ,t

}
(2.39)

Rk-FC
i ,t = argmax

r∈N

{t+r∑
τ=t

fci ,τ ≤ I i
k-FC −εk-FC

i ,t −FCk
i ,t

}
(2.40)

where N is the set of natural numbers for k ∈ K . At any given time t , the remaining
utilizations are sorted in ascending order:

R̃k
1,t , R̃k

2,t , R̃k
3,t , . . . , R̃k

N ,t R̃k
i ,t ≤ R̃k

i+1,t , R̃k
i ,t ∈

{
Rk

i ,t

}N

i=1
(2.41)

The aircraft are sent to maintenance check according to this sorted list, while aircraft
with a lower remaining utilization is given a higher check priority. Since the C-/D-check
is more restrictive and demanding in terms of resources, it has a higher priority than an
A-/B-check. In addition to the available slots and maintenance elapsed time of the check
type, the following rules are set for making maintenance check decisions:

No type k check should be scheduled if there is no available hangar for type k check
on day t .

(i)

An aircraft i is allocated a type k check only if its remaining utilization is lower than

the threshold (Rk
i ,t ≤ Rk ) and there are available slots for type k check.

(ii)

If the number of type k check slots is sufficient, the aircraft that has lowest remain-

ing utilization R̃k
1,t = min

{
Rk

i ,t

}
has highest priority of type k check.

(iii)

If aircraft i has a higher type k check priority than aircraft j
(
R̃k

i ,t < R̃k
j ,t

)
but the

slots of type k check are only sufficient to accommodate a type k check for aircraft
j rather than i , swap the priorities of type k check between aircraft i and j .

(iv)

After assigning the maintenance check priorities to each aircraft, the combination of
aircraft selection for maintenance for one maintenance check action and the number of
outcome states is reduced from (2.36) to 1.
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2.5.3. THRIFTY ALGORITHM FOR MAINTENANCE CHECK SCHEDULING
Even after reducing the size of outcome space to one action per state, the number of final
states nT+1

act is tremendous for a large T . It is also necessary to further trim the outcome
space, so that forward induction is tractable.

After an action is performed, the DP arrives at st+1, where st+1 = SX (st , xt ). Many
st+1 states may have the status that some aircraft will have to be grounded to wait for a
maintenance check slot in a future stage τ (τ> t +1). Apparently this is what airlines to
avoid (unless they have no better option), due to the very high cost of parking aircraft
on the ground. Therefore, this thesis proposes to only consider the actions that lead to a
workable state. It describes workability of st+1 by using the following function:

g (st+1) = ∑
k∈K

N∑
i=1

T∑
τ=t+1

ηk
i ,τ (2.42)

A state st+1, resulting from being at state st and taking action xt , is said to be workable
if there exists a sequence of actions xt+1, ..., xT such that no aircraft has to wait on the
ground for an A- or C-check between t +1 and T . That is:

g (st+1) = 0 (2.43)

The DP-based methodology uses a Thrifty Algorithm to check the workability of future
states (Block B in Figure 2.3). That is, for each possible action xt and resulting state st+1,
it uses an algorithm to check if a sequence of actions exist that guarantee (2.43). If that
is the case, st+1 is considered to be workable.

The term thrifty means allocating maintenance checks to aircraft whenever there is
a maintenance opportunity. The Thrifty Algorithm serves the purpose of checking the
workability of a state st . For convenience, the rest of the chapter refers to running the
Thrifty Algorithm to check if (2.43) holds when mentioning “checking workability”.

2.5.4. DISCRETIZATION AND STATE AGGREGATION
After moving one stage ahead in time for a set of workable states st , several workable st+1

states are produced from a combination of st and xt . Define St+1 to be:

St+1 =
{

st+1
∣∣st+1 workable

}
(2.44)

Although the Thrifty Algorithm can help reduce the outcome space by only keeping the
workable st+1, the number of workable st+1 is still not bounded, meaning that the num-
ber of workable states still grows exponentially. This increases the difficulty of saving all
workable st+1 and tracing the actions backwards, especially After the forward induction
move several stages ahead. To prevent the explosion of workable states, it needs to re-
strain the number of workable st+1, from the first stage t0 to final stage T . That is, giving
an upper bound to the number of workable st+1 so that it will not increase exponentially
along t . For such purpose this thesis resorts to discretization and state aggregation.

Discretization is the process of transferring continuous models or variables into dis-
crete counterparts. State aggregation refers to clustering the states that have the same
properties into a group. Here it uses “properties” to differentiate state attributes, which
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are the features that at a fleet level, such as mean utilization of fleet or standard devi-
ation of fleet utilization. This thesis divides the outcome space (a set of workable st+1)
into several disjunct space regions, where each space region is characterized by a unique
tuple of values of some state properties. For the states clustered in the same space re-
gion (having the same tuple of state properties), only one single state will be selected to
represent such a space region and considered in forward induction for the next stage.

Such discretization and state aggregation provides an upper bound to the outcome
space, since the number of workable st+1 is determined by the number of space regions.
One way of collecting workable states is to discretize the AMCS problem according to the
mean utilization of the fleet for each check type, and then categorize the workable states
according to the values of the features:

uk
t+1 =

1

N

N∑
i=1

uk
i ,t+1 (2.45)

where uk
i ,t+1 is the utilization of aircraft i with respect to type k check. This chapter de-

fines individual utilization uk
i ,t as the maximum of the ratios between the current value

of the usage parameters and their respective maximum values, according to the MPD:

uk
i ,t+1 = max

{
DYk

i ,t+1

I i
k-DY −εk-DY

i ,t+1

,
FHk

i ,t+1

I i
k-FH −εk-FH

i ,t+1

,
FCk

i ,t+1

I i
k-FC −εk-FC

i ,t+1

}
(2.46)

for k ∈ K . For each check type k, this thesis also gives upper bound U k
max and lower

bound U k
min to restrict the outcome space region to be discretized, and this significantly

improves algorithm efficiency and reduces required computer memory when optimiz-
ing AMCS for a large fleet. For instance, given a fleet 1000 aircraft, performing a mainte-
nance check on an aircraft will only impact the overall fleet utilization slightly. In such
case, U k

max and U k
min can be chosen close to ūk

t0
.

Since tolerance is not allowed in planning unless no feasible schedule can be found,
the mean utilization of a fleet ranges typically between 0 and 1 (U k

max = 1 and U k
min = 0), a

discretization increment∆u = 0.1 yields 114 space regions in 1 stage, while an increment
of ∆u = 0.01 increases the number of space regions in 1 stage increase to 1014.

Using uk
t+1 to categorize the set of workable st+1 enables us to cover the state prop-

erties of all check types, with each tuple
(
uA

t+1,uB
t+1,uC

t+1,uD
t+1

)
corresponding to one

outcome space region. For each workable state st+1, the algorithm compute the mean
fleet utilization ūk

t+1 for each check type, from (2.45) and (2.46). These features will be
further rounded according to the number of decimal points chosen from ∆u. For exam-
ple, if ∆u = 0.1, ūA

t+1 = 0.345, then ūA
t+1 can be rounded to 0.3. After that, it continues to

compute the cumulative contribution from state st0 to a specific workable state st+1:

Jt+1,ūA
t+1,ūB

t+1,ūC
t+1,ūD

t+1
(st+1) =

{
Jt ,ūA

t ,ūB
t ,ūC

t ,ūD
t

(st )+Ct (st , xt ) t > t0

Ct0

(
st0 , xt0

)
t = t0

(2.47)

where st+1 = SX (st , xt ), Cτ (sτ, xτ) refers to (2.28). If a given space region has no state
within it, a cumulative contribution value of infinity ∞ is assumed for that space region.
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During forward induction, there will be several workable states grouped into the
same outcome space region because of identical ūA

t+1, ūB
t+1, ūC

t+1 and ūD
t+1 after round-

ing. Then, an aggregation procedure is followed: the state with the lowest cumulative
contribution is selected as the representative of its outcome space region, while all oth-
ers are discarded:

s∗
t+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

= argmin
s

{
Jt+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

(s)
}

(2.48)

In the worst case, no st has a subsequent workable st+1, that is, g (st+1) > 0 for all st

and xt =X π(st ), then the DP-based methodology selects only one ŝt+1 according to:

ŝt+1 = argmin
s,ūA

t ,ūB
t ,ūC

t ,ūD
t

{
Jt ,ūA

t ,ūB
t ,ūC

t ,ūD
t

(s)
}

(2.49)

St+1 = {ŝt+1} (2.50)

where the right hand side of (2.49) means choosing the state s among all outcome space

regions
(
uA

t+1,uB
t+1,uC

t+1,uD
t+1

)
. The forward induction then continues from ŝt+1.

The procedure from (2.47) to (2.48) repeats until it loops all possible pairs of {st , xt }
(st workable). Thus far, it completes the discretization and state aggregation, and then
the forward induction moves one stage ahead from t to t + 1. The pseudo code of DP
based methodology is presented in Algorithm 1.

2.5.5. ALGORITHM COMPLEXITY

From the perspective of algorithm complexity, the total number of states in our DP based
methodology is equivalent to the total number of outcomes, given by (2.34):

T∏
t=t0

∏
k∈K

M k
t∑

mk=0

N !

mk ! (N −mk )!
(2.51)

where N is the fleet size, and M k
t is the maintenance capacity of type k check. For two

maintenance check types (A- and C-checks), given a state st at time stage t , following an
action xt , the algorithm has to call the state transition function (2.6) at most T − t0− t +1
times to check whether (2.43) holds (from t to T ). In each stage t , the number of states
depends on the discretization resolution ∆u:

nstate =
(
1+ 1

∆u

)2

(2.52)

Since each state can have at most nact actions, this implies the following relation
between the stage t and the number of state transition:
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Algorithm 1 A dynamic programming based methodology for AMCS optimization.

Step 1: Initialize ∆u (0 <∆u < 1), t ← t0, St ←
{

st0

}
, St+1 ←;

Step 2: Discretize the interval [0,1] with ∆u: 0, ∆u, 2∆u, · · · , 1;
Step 3: For each workable st ∈ St :
Step 3.1: compute and sort the remaining utilization:

R̃k
1,t , . . . , R̃k

N ,t R̃k
i ,t ≤ R̃k

i+1,t R̃k
i ,t ∈

{
Rk

i ,t

}
Step 3.2: For each action xt of st ∈ St :
Step 3.2.1: Compute Ct (st , xt );
Step 3.2.2: Compute st+1 using st+1 =SX (st , xt );
Step 3.2.3: Check whether st+1 is a workable state;
Step 3.2.4: Aggregate st+1 according to

J min
t+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

(s) = min{
ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

} {
Jt+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

(st+1)
}

s∗
t+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

= argmin{s,ūA
t+1,ūB

t+1,ūC
t+1,ūD

t+1}

{
Jt+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

(s)
}

St+1 = St+1 ∪
{

s∗
t+1,ūA

t+1,ūB
t+1,ūC

t+1,ūD
t+1

}

Step 4: t ← t +1;
Step 5: If t ≤ T , go to Step 3;

Else s∗
T+1,ūA

T+1,ūB
T+1,ūC

T+1,ūD
T+1

= argmins

{
JT+1,ūA

T+1,ūB
T+1,ūC

T+1,ūD
T+1

(s)
}

;

x∗
T (sT ) = argxT

{
s∗

T+1,ūA
T+1,ūB

T+1,ūC
T+1,ūD

T+1

=SX (sT , xT )

}
;

Step 6: Recover x∗
T−1, x∗

T−2, ..., x∗
t0+1, x∗

t0
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Day t0: nact (1+T − t0)
Day t0 +1: nstatenact (1+T −1− t0)
Day t0 +2: nstatenact (1+T −2− t0)
· · · · · ·
Day T −2: nstatenact (1+T −T +1)
Day T −1: nstatenact (1+T −T )
Day T : nstatenact (1+T −T −1)

After summing up of all state transitions from t0 to T , it obtains

nact (1+T − t0)+nstatenact

T−t0∑
τ=0

τ= nact (1+T − t0)

[
1+ 1

2

(
1+ 1

∆u

)2

(T − t0)

]
(2.53)

Computing (2.53) gives the maximum number of state transitions in forward induction.
Since each of the state transitions generates a new state, this means that the total num-
ber of states to be visited is equal to the total number of state transitions in forward
induction. Moreover, (2.53) also indicates that the total number of states visited dur-
ing forward induction depends on the maintenance check capacity (nact is determined
by capacity of type k check, M k

t ), and the increment of discretization ∆u and planning
horizon T − t0. Since (2.53) increases quadratically with T , this means that (2.53) can be
much smaller than (2.51) for a large T :

nact (1+T − t0)

[
1+ 1

2

(
1+ 1

∆u

)2

(T − t0)

]
¿

T∏
t=t0

∏
k∈K

M k
t∑

mk=0

N !

mk ! (N −mk )!
(2.54)

2.6. CASE STUDY
In this section, the proposed DP based methodology is evaluated using the aircraft main-
tenance data from a European airline. The airline distributes the tasks within B-check
into successive A-checks (no B-check), and merged the D-checks in C-checks and label
them as heavy C-checks. Hence, there are only A- and C-checks in the evaluation. Two
case studies are presented in this evaluation. The first case uses data from the historical
period from 2013 to 2016. This chapter compares the results obtained by the DP-based
methodology with the A- and C-check schedule executed by the airline. However, this
comparison is somewhat unfair since the airline in the executed schedule had to take
aircraft routing into account and potentially deal with unscheduled maintenance events.
Therefore, the second case focuses on the period of 2018-2021 and compares the results
from the DP based methodology with the maintenance schedule planned by the airline.
This case is also used to support a sensitivity analysis on some of the model parameters.
The data set supporting the case study is available on Ref. [33].

2.6.1. TEST CASES
The test fleet is the Airbus A320 family (A319, A320 and A321) operated by the airline,
consisting of 45 aircraft. These three aircraft types happen to share the same A- and
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C-check intervals and tolerances, in terms of same flight hours, flight cycles and calen-
dar days (Table 2.2). The planning horizon is 4 years in both cases. For 2013-2016, this
starts from January 1st of 2013 to December 31st of 2016, while 2018-2021 the planning
horizon goes from September 25th of 2017 to December 31st of 2021. For both cases the
initial data contains the information for aircraft average monthly utilization; initial fleet
status, in terms of DY, FH and FC, and utilization of tolerance in previous inspections;
maintenance slots available per day; and average elapsed time of the multiple A- and
C-checks labels. The average daily utilization of the aircraft is computed per month and
per aircraft type, according to the historic flight data from the airline. On average, it is
estimated that the A320 family fleet has a daily utilization of 10.5 FH and 4.7 FC per day.

Table 2.2: A- and C-check intervals and tolerance for the Airbus A319, A320 and A321 [30].

Check Type Calendar Days Flight Hours Flight Cycles

Inspection intervals
A-Check 120 750 750

C-Check 730 7500 5000

Tolerance
A-Check 12 75 75

C-Check 60 500 250

2.6.2. MAINTENANCE CONSTRAINTS AND KEY PERFORMANCE INDICATORS
The maintenance schedule needs to follow a set of operational and capacity constraints,
namely, for the A-check:

- there is 1 A-check slot per day from Monday to Thursday during IATA winter (from
the last Sunday of October to the last Sunday of March);

- during IATA Summer (from the last Sunday of March to last Sunday of October),
there is an extra A-check slot on Tuesdays (2 slots on Tuesday);

- from 2018 onwards, there are 2 A-check slots on Tuesdays (all year) and 2 A-check
slot on Wednesdays during IATA Summer;

- there are no A-checks on Fridays, weekends, or public holidays;

- an A-check lasts 1 day and can be merged into a C-check without increasing the
C-check elapsed time or affecting the existing available A-check slots.

For the C-check:

- there can be a maximum of 3 C-checks ongoing in parallel;

- there are a minimum of 3 days between the start dates of two C-checks, for re-
source availability reasons (i.e., dC = 3);

- C-check works are interrupted during weekends and public holidays;

- no C-check can be scheduled during the commercial peak seasons (except some
extraordinary occasions in which the airline is forced to have additional slots to
avoid aircraft waiting on the ground for a C-check).
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Since there are at least three days between two start dates of two successive C-checks,
there could be at most 1 C-check starting on a day. The maximum of 2 A-checks on a
Tuesday and considering the possibility of merging A-checks into C-check, leads to the
combination of daily A- and C-check capacities with 12 possible actions.

The commercial peak seasons of the airline are defined to be between June 1st and
September 30th, two weeks before the New Year’s and one week after, and the weeks
before and after Easter. The days of the year are converted into calender days where,
e.g., the New Year’s Day is set as day 1 and Christmas is day 359 of the year (or day 360 if
it is a leap year).

To discuss the results, this chapter uses a set of key performance indicators (KPIs) for
each type of maintenance check. These are the average FH of the fleet, the total number
of checks, the total amount DY/FH/FC used as tolerance, and computation time during
the planning horizon. For deterministic problems, the transition probability is made
p

(
st+1

∣∣st
) = 1 in (2.31). RA and RC are set to 21 and 365, meaning that an aircraft can

only be scheduled an A-/C-check if the corresponding remaining operation days is lower
than 21/365 days. Since no information is given for discount factor γ, this chapter sets
γ= 1 and the penalty of using tolerance Pa and Pd in (2.28) are given to be 108, and this
avoids using tolerance in forward induction and grounding the aircraft in the situation
of no A- or C-check slot.

The airline schedules the aircraft A- and C-checks separately. The aircraft C-checks
are scheduled first with a time horizon of 4-years, followed by planning the A-checks for
the next year. In both cases, the airline follows a greedy approach to schedule the checks
as close as possible to the end of their intervals. The common conflicts resulting from
this approach are then manually solved by the maintenance planner, which anticipates
the dates of the checks until a feasible plan is obtained. This manual process is a puzzle,
hard to solve for the AMCS close to the peak seasons during which no C-checks can be
scheduled, and this results in a sub-optimal schedule that takes a couple of days of work
to be fully developed from scratch.

Besides, if an aircraft uses tolerance before undergoing a maintenance check, the
extra DY/FH/FC used intolerance must be subtracted from the next maintenance check
interval. Namely, the interval to its next A-/C-check becomes shorter. For instance, the
A320 family has an A-check interval of 750 FH (see Table 2.2), if an aircraft has to fly 770
FH before undergoing an A-check, then the amount of tolerance used is 770−750 = 20
FH, and the next A-check interval will be 750−20 = 730 FH (this rule has already been
considered in the problem formulation (2.22)—(2.23)).

2.6.3. OPTIMIZATION RESULTS FOR 2013-2016
The proposed algorithm is first evaluated for the planning horizon of 2013-2016. Table
2.3 shows a comparison of KPIs between the airline schedule and the DP schedule. It is
observed that the average FH increases for both A- and C-checks. For the A-check, there
is a growth of 10.4 FH on average per aircraft, which equates to approximately an extra
day in commercial operation per aircraft per A-check cycle. This increase has an impact
on the number of checks needed for four years. There is a reduction of more than 7% for
both A- and C-checks, equivalent to 60 fewer A-checks and seven fewer C-checks. From
the perspective of the maintenance cost, assuming that airlines spend on average $70K—
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$350K [2] on a C-check and $10K—$15K on an A-check, the results from the proposed
DP-based methodology can result in maintenance costs saving of approximate $1.1M—
$3.4M for the fleet of A320 family.

Table 2.3: Descriptive statistics of KPIs for 2013-2016 (∆u = 0.1 in the DP-based method). For the term “Toler-
ance Events”, if an aircraft uses tolerance (DY/FH/FC) in planning, it is counted as 1 tolerance event.

Type KPI 2013-2016 Airline DP-based Method. Difference

C-Check

Average FH 6795.9 6798.7 0.04%

Total FH Tolerance 2230 349.2 -84.3%

Tolerance Events 17 1 -94%

Extra C-Check Slot 73 0 -100%

Total C-Check 89 82 -7.9%

A-Check

Average FH 690.8 701.2 1.5%

Total FH Tolerance 1277 457.4 -64.2%

Tolerance Events 72 34 -52.8%

Extra A-Check Slots 101 0 -100%

Total A-Check 818 758 -7.3%

Since it takes 10-30 days to complete a C-check and one day for an A-check, seven
reduced C-checks and 60 reduced A-checks are equivalent to approximately 130—270
more days of aircraft availability for revenue generation. One day of operation generates
$75K—$120K of revenue and 130—270 more days available for commercial use means
an additional $9.8M—$32.4M of revenue for an airline.

The optimized schedule uses tolerances of 349.2 FH and 457.4 for the A- and C-check
scheduling, respectively. These are 84% and 64% less than the FH tolerances used by
the airline. More importantly, the optimized schedule reduces the frequency of using
tolerance (if an aircraft uses tolerance, it is counted as one tolerance events), from 17 to
1 for C-check, and from 72 to 34 for A-check. Recall that using interval tolerance needs
to be approved by the national aviation authority, and it is a troublesome process that
should not be used recurrently.

It can be observed from Figure 2.4 and 2.5 that the optimized schedule generated
by the DP-based methodology concentrates the aircraft FH of A- and C-check close to
its corresponding inspection interval. For the A-check, 17% of the checks are scheduled
with 95% of the interval used, while for the airline, this value was double, up to 34%. A
similar result is obtained for the C-check, where these values are 23% and 43% for the
optimized schedule and the airline schedule, respectively. As a result of the greedy ap-
proach followed by the airline, the airline has a large number of A- and C-checks sched-
uled very closed to their interval limit. However, the airline achieved this by using toler-
ance in 9% of the A-checks and 19% of the C-checks; by scheduling other checks with a
quite low interval utilization; and by creating A- and C-check slots, not considered in the
optimized schedule, to solve occasional critical situations with several aircraft with high
utilization. Note that the optimized results only used tolerance in the checks at the be-
ginning of the time horizon. It was not possible to schedule these checks without using
interval tolerance, given the initial state of the fleet and the maintenance slots available.



2.6. CASE STUDY

2

45

(a) Airline Schedule (b) Optimized Schedule

Figure 2.4: Comparison of aircraft FH with respect to A-check between schedule of airline and the optimized
schedule.

(a) Airline Schedule (b) Optimized Schedule

Figure 2.5: Comparison of aircraft FH with respect to C-check between schedule of airline and the optimized
schedule.
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Table 2.4: Results of A- and C-check scheduling optimization from different discretization resolution, com-
pared with the C-check schedule from Airline.

KPI (2018-2021) Airline ∆u = 1 ∆u = 0.1 ∆u = 0.01

Objective Value [FH] — 1.2140×105 1.1524×105 1.1371×105

C-Check Avg. FH < 6600 6558.1 6615.2 6634.7

Total C-Checks 96 86 88 85

C-Check Tol. DY > 48 18 18 18

C-Check Tol. FH > 490 135.3 135.3 135.3

C-Check Tol. FC 0 0 0 0

Tolerance Events 6 4 4 4

A-Check Avg. FH — 714.3 717.6 714.5

Total A-Checks 895-920* 881 877 881

Tolerance Events — 0 0 0

Merged A- and C-Check — 19 18 19

Computation Time [s] ≥ 3 Days 504.9 510.3 20243.5

*Airline Estimation

2.6.4. OPTIMIZATION RESULTS FOR 2018-2021
Although the proposed DP based methodology appears to outperform the planning ap-
proach of the airline, based on the KPIs showed in Table 2.3, this comparison is unfair
since the airline has to take aircraft routing into account and deal with all kinds of un-
scheduled maintenance events. To verify and validate the proposed DP based method-
ology together with the maintenance planners from the airline, this chapter uses it to
subsequently generate an optimized A- and C-check schedule for future 2018-2021, and
then compare this schedule with the one made by the maintenance planners.

In this test case, both the maintenance planners of the airline and the DP-based
methodology plan the 4-year maintenance check schedule using the same input, aver-
age aircraft daily utilization, operational constraints, and excluding unscheduled main-
tenance events and aircraft routing. This subsection compares the KPIs for C-check
from both schedules and the optimization results of different discretization resolutions
(∆u = 1, 0.1, and 0.01). Given that the airline only plans the A-check for the coming year,
no A-check metrics were compared. The optimized schedules of different discretization
resolutions (both A- and C-checks use the same ∆u in discretization) are obtained using
parallel computing function on a quad-core workstation.

Again it can be seen that the proposed DP based methodology outperforms the plan-
ning approach of the airline in terms of KPIs. The optimized schedules reduce the num-
ber of C-checks, varying from 8.3% (for ∆u = 0.1) to 11.4% (for ∆u = 0.01), while the
same amount of tolerance is used in all three optimized schedules. The tolerance and
the number of tolerance events from the optimized schedule are significantly less than
what the airline planned. The use of this tolerance is inevitable for aircraft that, at the
starting date of the optimization, are already closed to the C-check interval. The num-
ber of A-checks vary from 877 (for ∆u = 0.1) and 881 (for ∆u = 1 and ∆u = 0.01), when
the airline estimates around 895 to 920 A-checks for these four years. The number of A-
merged in the C-checks has little variance among three discretization resolutions.

Besides, an overall trend is found where the level of discretization impacts the so-
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Figure 2.6: (a) correlation between discretization level (resolution) and objective value; (b) correlation between
discretization level (resolution) and algorithm computation time.

lution quality and algorithm computation time, as illustrated in Figure 2.6a and Figure
2.6b. In terms of optimality, as expected, the smaller ∆u is, the better the results are.
However, the KPI’s presented in Table 2.4 are no significantly different between the three
∆u values tested, indicating that good results can be obtained even with low discretiza-
tion resolution, and this happens because most workable states are in a limited range of
the outcome space. A few of the space regions from our discretization do have a workable
state after aggregation. Nevertheless, there is a trade-off between optimality and com-
putation efficiency. The objective function consistently reduces when the discretization
resolution is increased. However, the computational times sharply increase when the
discretization resolution is below ∆u = 0.1.

Furthermore, decreasing ∆u results in longer computation times. This happens be-
cause the number of outcome space region increases with decreasing ∆u, e.g., there are
121 outcome space regions when ∆u = 0.1, and 10201 regions for ∆u = 0.01. As a result,
the number of representative states of the outcome space region in each stage also in-
creases. In this case study, it is observed that each state transition requires about 0.023s.
For the case∆u = 0.1, it takes 510.3s to obtain an optimized schedule using parallel com-
puting on a quad-core workstation, meaning that the actual computation time should
be about 2141.2s. In particular, during 2141.2s, there are about 2141.2/0.023 = 9.31×104

state transitions for 1461 stages (from Jan 1st 2018 to Dec 31st 2021). The actual compu-
tation efforts are still much less than the worst case calculated from (2.53):

comp. time = 0.023×nact (1+T − t0)

[
1+ 1

2

(
1+ 1

∆u

)2

(T − t0)

]

= 0.023×7×1461×
[

1+ 1

2
×112 ×1460

]
≈ 2.08×107 (s) (2.55)

The shorter actual computation time than the worst case is due to the checking of work-
ability and state aggregation, where it only keeps some workable states in each stage,
which in the end are sufficient to generate an optimized schedule.
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Table 2.5: Sensitivity analysis for having different A- and C-check slots in 2018-2021, the discretization resolu-
tion is set to ∆u = 0.1. No A-check tolerance was used in the scenarios tested.

KPI (2018-2021) Scenario 0 Scenario 1 Scenario 2 Scenario 3

Objective Value [FH] 1.1524×105 0.8934×105 1.0623×105 0.7719×105

C-Check Avg. FH 6615.2 6635.0 6699.3 6790.5

Total C-Checks 88 85 85 86

C-Check Tol. DY 18 18 0 0

C-Check Tol. FH 135.3 135.3 23.6 23.6

C-Check Tol. FC 0 0 0 0

A-Check Avg. FH 717.6 738.5 716.5 739.8

Total A-Checks 877 856 890 863

Merge A- and C-check 18 7 22 10

Computation Time [s] 510.3 1780.2 743.0 2625.5

2.6.5. SENSITIVITY ANALYSIS FOR 2018-2021
This subsection investigates the impact of some airline capacity constraints on the re-
sults of the AMCS problem, relative to the following four scenarios:

- Scenario 0: the baseline scenario, as pre-computed in the previous subsection;

- Scenario 1: conditions from Scenario 0 and one additional A-check slot on Friday,
weekends, and bank holidays (i.e., one A-check slot every day of the week, plus an
extra slot on Tuesdays and Wednesdays during IATA Summer);

- Scenario 2: conditions from Scenario 0 and three additional C-checks on weekends
and bank holidays (i.e., three C-check slots every day of the week during off-peak
seasons, reducing the elapsed time of the C-checks);

- Scenario 3: conditions from Scenario 0, Scenario 1, and Scenario 2 combined.

The results, shown in Table 2.5, indicate a natural improvement of the average air-
craft utilization and total maintenance checks when increasing either the A-check or the
C-check slots. By increasing the number of maintenance slots, it also increases the main-
tenance check opportunities, given more flexibility in planning the maintenance check
closer to their due date. For example, compared with Scenario 0, the objective value
in Scenario 3 is reduced by 33%, and the average FH of aircraft is increased by 2.7% and
3.1% for C-check and A-checks, respectively. Consequently, there are two fewer C-checks
and 14 fewer A-checks scheduled for Scenario 3 when compared with Scenario 0. For the
scenarios involving more C-check slots, it is observed that the results are improved by
the fact that more maintenance opportunities exist to merge A-checks and C-checks. In
fact, Scenarios 2 and 3 have around 500 to 600 fewer days on the ground than Scenarios 1
and 2 respectively. These are days when the aircraft can be used in operation to generate
revenue. Furthermore, it is interesting to notice the interdependence between A- and
C-checks when analyzing the results from Scenario 1. Although only additional A-check
slots are added, the results for the C-checks also improve since more A-check slots create
more A-check maintenance opportunities. Adding A-check slots gives more flexibility to
schedule some of the C-checks that in Scenario 0 were anticipated to enable the merge
with an A-check.
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The consideration of extra aircraft maintenance capacity has to be analyzed by the
airline by comparing the additional costs of these extra slots and the benefits of having
fewer maintenance checks and higher aircraft availability. This analysis is outside the
scope of this thesis, but these results are crucial to the airline in assessing such capacity
increases (or reductions) scenarios.

2.7. CONCLUSION

A practical dynamic programming (DP) based methodology for the long-term aircraft
maintenance check scheduling (AMCS) problem is presented. It integrates all check
types, including the operational constraints and maintenance capacity for specific days.
The goal was to minimize the total wasted FH interval between checks, hereby increasing
aircraft availability in the long run.

The proposed methodology followed a forward induction approach, incorporating a
maintenance priority solution to deal with the multi-dimensional action vector, as well
as a discretization and state aggregation strategy to reduce outcome space at each time
stage. Besides, a Thrifty Algorithm was used to estimate the consequence of an action
at the current stage on the remaining planning horizon. All these adaptations in the DP
framework are novel compared with the classic dynamic programming. The proposed
methodology is capable of optimizing AMCS in a matter of minutes for multiple years
horizon and heterogeneous aircraft fleets. It is suitable for practical implementation. It
can be used not only for scheduling but also, for example, to predict if an airline has
sufficient maintenance capacity in the future; or to assess if it is beneficial to expand
maintenance capacity with additional hangar slots.

The proposed DP based methodology is evaluated using the case-study of an A320
family fleet from a European airline. Comparing the optimized A- and C-check sched-
ules with the schedule of the airline, it can be inferred that the proposed methodology re-
duces the total number of A- and C-check, potentially resulting in the long run in main-
tenance cost savings of about $1.1M-$3.4M for a fleet of about 40 aircraft. Besides, the
reduction of A- and C-checks implies extra days of aircraft availability for revenue gen-
eration. An estimation of $9.8M-$32.4M can be generated when the proposed method-
ology is applied to historical data.

This study is the first to address the AMCS optimization problem despite its relevance
for practice, despite its relevance for practice. It opens the door for future research on the
topic. For instance, future research can consider the uncertainty associated with both
the maintenance check elapsed time and aircraft utilization. These uncertainties will
affect not only the schedule robustness but also the computational time needed to find
such optimal schedules. One such improvement can be achieved by using approximate
dynamic programming, extending the DP-based methodology adopted in this chapter.
Another research opportunity is the consideration of the task allocation problem (i.e.,
the problem of defining the tasks to be performed on each aircraft check) as part of the
AMCS problem. Although this would significantly increase the complexity of the prob-
lem, it would extend the AMCS problem to good benefits, producing an optimal inte-
grated check and task schedule.



2

50 REFERENCES

REFERENCES
[1] Minister of Justice, Canadian Aviation Regulations 2012-1, Part I - General Provi-

sions, Subpart 1 - Interpretation, (2012), (Accessed on September 28, 2017).

[2] S. P. Ackert, Basics of Aircraft Maintenance Programs for Financiers, (2010), (Ac-
cessed on September 28, 2017).

[3] C. Van Buskirk, B. Dawant, G. Karsai, J. Sprinkle, G. Szokoli, and R. Cur-
rer, Computer-aided aircraft maintenance scheduling, Tech. Rep. (Institute for
Software-Integrated Systems, 2002).

[4] P. Horder, Airline Operating Costs, http://www.dea.univr.it/documenti/
Avviso/all/all520253.pdf (2003), (Accessed on November 15, 2018).

[5] IATA’s Maintenance Cost Task Force, Airline Maintenance Cost Executive Commen-
tary Edition 2019, (2019), (Accessed on September 11, 2020).

[6] A. Steiner, A Heuristic Method for Aircraft Maintenance Scheduling under Various
Constraints, in 6th Swiss Transport Research Conference (Monte Verità, Ascona,
2006).

[7] N. J. Boere, Air Canada Saves with Aircraft Maintenance Scheduling, Interfaces 7, 1
(1977).

[8] M. Etschmaier and P. Franke, Long-Term Scheduling of Aircraft Overhauls, in AGI-
FORS Symposium (Broadway, Great Britain, 1969).

[9] H. Bauer-Stämpfli, Near Optimal Long-Term Scheduling of Aircraft Overhauls by Dy-
namic Programming, in AGIFORS Symposium (Benalmadena, Spain, 1971).

[10] P. Belobaba, A. Odoni, and C. Barnhart, Global Airline Industry (John Wiley and
Sons, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United King-
dom, 2009).

[11] T. A. Feo and J. F. Bard, Flight Scheduling and Maintenance Base Planning, Manage-
ment Science 35, 1415 (1989).

[12] W. E. Moudani and F. Mora-Camino, A Dynamic Approach for Aircraft Assignment
and Maintenance Scheduling by Airlines, Journal of Air Transport Management 6,
233 (2000).

[13] N. Papakostas, P. Papachatzakis, V. Xanthakis, D. Mourtzis, and G. Chryssolouris, An
approach to operational aircraft maintenance planning, Decision Support Systems
48, 604 (2010).
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3
OPTIMAL TASK ALLOCATION FOR

AIRCRAFT MAINTENANCE CHECK

SCHEDULE

In this chapter, the aircraft maintenance planning optimization continues, shifting the
focus from long-term deterministic AMCS to task allocation. The task allocation in the
aircraft maintenance domain refers to optimally allocating tasks in predefined mainte-
nance checks. It determines the optimal start dates of aircraft maintenance tasks to per-
form all preventive tasks as close to their due dates as possible, given an optimal letter
check schedule. This dissertation is the first to propose a fast constructive heuristic algo-
rithm to optimize the long-term aircraft maintenance task allocation. A case study of a
European airline shows that the heuristic algorithm is capable of generating a 4-year task
execution plan for a fleet of 45 aircraft in less than 15 minutes, while the optimality gap is
within 5% from the solution obtained by a commercial solver.

This chapter is based on the master thesis of M. Witteman [1], supervised by the Q. Deng. The content of this
chapter leads to the following paper:

Witteman, M., Deng, Q., and Santos, B. F. (2021). A Bin Packing Approach to Solve the Aircraft Maintenance
Task Allocation Problem. European Journal of Operational Research. To cite this article, please use the DOI
https://doi.org/10.1016/j.ejor.2021.01.027.
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3.1. INTRODUCTION
Modern airliners have thousands of parts, systems, and components that need to be re-
currently maintained after undergoing certain flight hours (FH), flight cycles (FC), calen-
dar days (DY), or months (MO). The FH, FC, DY, and MO are known as usage parameters,
and their maximums allowed in operation are defined as inspection intervals. The opti-
mal allocation of the maintenance tasks to the best maintenance opportunities is a chal-
lenging problem solved daily by maintenance planners. The most common approach
followed is to group tasks into maintenance checks (e.g., A-, B-1, C- and D-check) to
ensure a consistent maintenance program in which all tasks are performed before their
associated due dates. A typical A-check includes inspection of the interior or exterior
of the airplane with selected areas opened, e.g., checking and servicing the oil, filter re-
placement, and lubrication [2]. C-check requires thorough inspections of individual sys-
tems and components for serviceability and function. D-check2 uncovers the airframe,
supporting structure, and wings for inspection of most structurally significant items.

To determine the optimal start date of the tasks, it is common in practice to adopt
a sequential process: first, schedule the A-, C- and D-checks and then allocate main-
tenance tasks to each check. Although some tasks can quickly be packaged into these
letter checks, a large number of other tasks (more than 70% for an Airbus A320 aircraft)
are dephased from the intervals of these checks. It means that they either have to be al-
located to a more frequent letter check or manually allocated by maintenance operators
to different maintenance events based on the suitability of the task to that check and the
urgency of performing the task in due time. In practice, both approaches are conducted
according to the experience of maintenance planners, leading to inefficiencies.

The task allocation problem (TAP) in aircraft maintenance refers to the process of
optimally allocating tasks in predefined maintenance checks. It determines the optimal
start dates of aircraft maintenance tasks so that all preventive tasks are performed as
close to their due dates as possible. TAP is complicated because of its combinatorial na-
ture, and it has to be solved for the entire fleet at the same time. In real-life applications,
multiple aircraft checks can be scheduled in parallel, and tasks allocated to these checks
will share the maintenance resources. For example, Figure 3.1 illustrates a case for five
C-checks overlapping in time. Maintenance resources include material, equipment, and
a set of labor hours from different skills. Furthermore, the allocation process is intri-
cate because the maintenance tasks involved in these checks are usually associated with
different intervals and elapsed time.

This chapter proposes a novel approach to efficiently address the TAP, which can
quickly solve the problem without compromising the solution quality. Maintenance
plans are frequently being affected by flight schedule disruptions or the need for un-
scheduled maintenance tasks, and they constantly need to be revised or even re-planed
[3]. Inspired by the bin packing problem (BPP), this chapter considers pre-scheduled air-
craft maintenance checks to be bins of different (time) dimensions and sharing a multi-
dimensional capacity, referring to the multiple types of labor skills involved in the execu-
tion of the tasks. The items are the tasks that need to be packed in the bins, and they are

1B-checks are rarely mentioned in practice. The tasks that could be included in B-checks are commonly incor-
porated into successive A-checks.

2Many airlines merge D-check into C-check and label it as a heavy C-check or structural check.
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Figure 3.1: Snapshot of maintenance overlap situation between aircraft.

also subject to time constraints that limit the bin options. This chapter formulates the
problem as an extension of the variable size bin packing problem (VS-BPP) [4] in which
items are repeated within time intervals, and bins have a variable time dimension. This
extension of the VS-BPP is named time-constrained VS-BPP (TC-VS-BPP). This formu-
lation is more complicated than the classic BPP and is classified as strongly NP-hard [5].
Therefore, we present a constructive algorithm to solve this problem efficiently. We test
this heuristic in a case study using data from a major European airline and compare the
results with those obtained using an exact method. The main contribution of this re-
search can be summarized in the following:

• This work is the first to formulate the TAP as a bin packing problem and solve it
with an efficient constructive algorithm.

• For the first time, the classic VS-BPP formulation is extended to consider time in-
tervals for allocating repeated items and variable time dimensions for the bins.

• This research adapts the worst-fit decreasing algorithm for the classic BPP to effi-
ciently solve the TC-VS-BPP. The resulting constructive algorithm is validated with
a real case study and benchmarked against the solution obtained using a commer-
cial linear programming solver.

The outline of this chapter is as follows: Section 3.2 gives an overview of the relevant
literature on maintenance related TAPs and bin packing problems (BPPs). The formula-
tion of the TC-VS-BPP for aircraft maintenance is described in Section 3.3. Section 3.4
presents a task allocation framework and an associated heuristic algorithm. Section 3.5
shows a case study from a European airline and the algorithm performance analysis. The
last section summarizes the research with concluding remarks and gives an outlook on
future work.

3.2. RELATED WORK
This section briefly discusses previous works. It divides the literature overview into two
subsections. The first subsection reviews the research works dealing with the TAP for
aircraft maintenance, with different perspectives and methodologies. The second sub-
section discusses the literature on the bin packing problem.
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3.2.1. MAINTENANCE TASK ALLOCATION

In one of the initial studies on TAP of aircraft maintenance, Ref. [6] combined the air-
craft maintenance task allocation with aircraft operation to one single problem. The
authors presented a two-stage system that supports maintenance chiefs in planning
both aircraft operations and maintenance activities. The first stage assigns the planes to
flight operations using a custom-built, multi-level greedy search algorithm. The second
stage schedules all maintenance activities according to a constraint satisfaction prob-
lem. The authors tested the system with 17 jets, and results indicate that the system can
schedule 3750 maintenance activities for a 3-month planning horizon within 20 min-
utes. The authors also state that the goal was to plan the activities given various con-
straints: calendar-based actions have to be done within a specific time window; usage-
based actions have to be done when the usage clock on a part or subsystem reaches
a particular value; personnel has to be available to do the job (mechanics can only do
jobs that they are qualified for), and maintenance jobs have to be inspected by a qual-
ity/safety inspector and so forth. However, this initial work does not optimize the main-
tenance schedule given that support for the flight operation was the top priority.

In contrast to Ref. [6], Ref. [3] presented a heuristic for aircraft maintenance plan-
ning, aiming at minimizing the overall number of maintenance actions and uniformly
distributing the capacity and flying hours over a given time horizon. The main idea was
to split the whole process into sub-processes that could be handled computationally fast
at the same time. Determining the optimal position of the maintenance actions was the
least difficult one, whereas the balancing step was the most challenging one. Even under
various settings and constraints, the proposed algorithms have shown to work reliably,
fast, and with good optimization results. According to the case study for a 5-year time
horizon, the number of tasks scheduled per fleet was around 50–500. The time to com-
pute a new maintenance plan was about 15 minutes.

In practice, many airlines adopt the top-down approach by appropriately grouping
maintenance tasks into large packages and fitting them into letter checks. Ref. [7] fol-
lowed this approach and developed a maintenance item allocation model (MIAM) to
cluster aircraft maintenance tasks into packages. The MIAM first simulates the aircraft
utilization, calculates when a maintenance item turns due, and then fits each mainte-
nance item into a package. The authors use the concept of de-escalation to assess the
quality of their MIAM, which can be interpreted as the loss associated with maintenance
items being performed more frequently than necessary. The authors proposed a transla-
tion of the de-escalation into additional labor costs essential in the long-term to perform
extra maintenance activities. According to a case study of a Boeing 737-NG aircraft, the
authors claimed that introducing an initial de-escalation, i.e., performing the first base
maintenance before its due date, leads to a lower de-escalation labor cost over time. The
authors obtained the best result for an initial de-escalation of 30 days, leading to a sav-
ings of 248 labor hours (or e13,902) for a single aircraft. The importance of Ref. [7] is
that it provides an alternative of assessing maintenance costs using the causal relation-
ship between expense and labor hours.

Maintenance operation costs, in more detail, include the costs of maintenance tools,
labor hours, and aircraft spare parts. Each maintenance task associates a cost. Since
there are 1000-3000 tasks involved in aircraft maintenance, and many tasks can be per-
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formed in parallel, one of the biggest challenges is to execute the right maintenance task
at the right time. Assigning priorities to maintenance tasks, such as the rule of “the most
urgent task first”, can significantly reduce problem complexity. Ref. [8] considered this
aspect and presented an optimization method for aircraft maintenance task allocation
integrating simulations of aircraft life-cycles. In a real-life application, the authors ob-
tained the best results when sorting the tasks by cost (labor hours) in descending order.
In this way, the optimizer allocated the most expensive tasks to maintenance opportu-
nities closer to the end of the lives of the components.

From an efficiency perspective, finding the best maintenance opportunities and al-
locating maintenance tasks one after another is exceptionally time-consuming. Since
each task has some basic properties to indicate similarities, such as ATA code, mainte-
nance interval, zone, and check type, it is convenient to combine several similar tasks
into a package and reduce the total number of tasks. Ref. [9] followed this idea and gave
different weights on properties to indicate task similarities. Based on engineering expe-
rience, weighting factors 0.05, 0.8, 0.05, and 0.1 are assigned to ATA code, maintenance
interval, zone, and check, respectively. The authors solved the TAP of an airline using
a fuzzy C-means clustering algorithm. Although convergence and improvements were
both achieved, the authors stated there are still some pitfalls that need to be investigated,
such as the influence of model parameters on solution quality and convergence rate.

In general, the literature on TAP, especially for a long term planning horizon, is very
limited. Some of them address TAP on aircraft level [7, 9], while others on fleet level
[3, 6, 8]. Even in the research work of TAP in fleet level, the authors tackled task alloca-
tion of each aircraft independently, and eventually looped over the entire fleet. Further-
more, none of those related works has assessed the optimality of the proposed models
or heuristics. There is no comparison of how close the solution from proposed models
or heuristics to the local/global optimum.

3.2.2. THE BIN PACKING PROBLEM
Despite the various task allocation models and methods discussed before, the TAP of
aircraft maintenance is very analogous with the bin packing problem (BPP), where for
TAP, the maintenance opportunities are equivalent to bins, and maintenance tasks are
considered as items. The keys to solving BPP are bin selection and item allocation. For
bin selection strategies, Ref. [10] lists four fundamental and widely used algorithms,
next-fit (NF), first-fit (FF), best-fit (BF), and worst-fit (WF):

• Next-Fit (NF): If the item fits in the same bin as the previous item, put it there.
Otherwise, open a new bin and put it in there.

• First-Fit (FF): Put each item as you come to it into the oldest (earliest opened) bin
into which it fits. Only open a new bin if an item does not fit into any previous bin.

• Best-Fit (BF): Put items in bins in a way that it maximizes the utilization of the bins
that already have been opened.

• Worst-Fit (WF): Put each item into the emptiest bin among those with something
in them. Only start a new bin if the item does not fit into any bin that has already
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been started. If there are two or more bins already started which are tied for emp-
tiest, use the bin opened earliest from among those tied.

If all items are the same size, there is no difference in the four algorithms. Since
items are very likely to have different sizes, the allocation of items to bins becomes in-
tricate and time-consuming. And this may involve shifting bin contents continuously
until the item list is empty. Thus, some researchers proposed prioritizing the items be-
fore putting them in bins. Ref. [11] has suggested some alternatives to the FF and BF. The
author states that if the items are sorted in descending order (i.e., the largest item goes
first), the worst-case behavior of bin packing problems can be significantly improved.
Therefore, it is now a common step to prioritize items before allocation when solving
the BPP. The resulting algorithms are the equivalent first-fit decreasing (FFD) and best-
fit decreasing (BFD) algorithms. Similarly, there are also next-fit decreasing (NFD) and
worst fit decreasing (WFD) algorithms.

In practice, not only items can have various sizes, but also bins can have different
capacities, and this leads to variable-sized BPP (VS-BPP). VS-BPP is an extension of the
classic BPP, in which bins no longer have the same size, and the cost of a bin is propor-
tional to its size [4]. VS-BPP is more challenging since putting items in bins affects the
selections of opening new bins later on and item allocations and vice versa. VS-BPP is
NP-hard [12]. Researchers tend to solve it using approximation algorithms instead of
finding the exact global optimum. [4] listed some algorithms for VS-BPP, such as next-
fit using largest bins only (NFL), and first fit decreasing using largest bins and at the end
repack to smallest possible bins (FFDLR). The authors also showed that allowing repack-
ing small bins and shifting bin contents improves algorithm efficiency. And the FFDLR
has better worst-case performance than NFL because there is no repacking in the NFL.
Ref. [4] further developed a new algorithm first fit decreasing using the largest bins, but
shifting as necessary (FFDLS) to dynamically shifting bin contents during the construc-
tion of packing. Case studies prove that with dynamically shifting bin contents, FFDLS
outperforms both NFL and FFDLR in the worst cases.

While Ref. [4] is one of the first works in VS-BPP, research in this topic continues
and flourishes in many other studies [12–15]. The main focus of these studies is on the
development of algorithms, yet there is no deadline for putting each item in bins. VS-
BPP in scheduling, especially maintenance planning, is very distinct from other fields
due to time constraints. For example, each maintenance task associates a due date. In
VS-BPP, it is equivalent to imposing a deadline for each item (each item has to be put in
a bin before a specific time). Besides, and some tasks have to be performed repeatedly.
Once the task is executed, we can anticipate the next arrival time of the same task.

The arrival times of items and item allocation deadlines make the aircraft mainte-
nance scheduling related VS-BPP unique and more complex. Some researchers catego-
rize the VS-BPP, in which each item has an associated arrival time and allocation dead-
line, as time-constrained VS-BPP (TC-VS-BPP). In one of the very few available refer-
ences, Ref. [16] presents a Markov Chain Monte Carlo (MCMC) heuristic to address the
TC-VS-BPP in a working paper. The main difference between TC-VS-BPP and VS-BPP is
that in TC-VS-BPP, the arrival times of the items have specific patterns, e.g., a probability
distribution in Ref. [16], and each item has to be allocated before a particular dead-
line. The MCMC heuristic is a combination of local search and Monte Carlo sampling.
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It starts with a simple greedy approach to obtain an initial feasible solution. In this step,
the authors create two non-ordered lists for bins and items, respectively, and apply the
FF algorithm to put items in bins. After that, the authors use MCMC to improve the ini-
tial feasible solutions iteratively. One interesting finding from Ref. [16] is that when time
constraints are introduced, smaller and faster bins are preferred to meet the deadlines.
But in the classical VS-BPP, items are often concentrated in few high capacitated bins.
Two main features in TC-VS-BPP, arrival times of the items and deadlines of the items
[16], are also common in maintenance scheduling. Since most of the maintenance tasks
have deadlines and follow periodic patterns, once a task is performed, we can already
anticipate its next execution.

The review of the literature on TAP, BPP, VS-BPP, TC-VS-BPP, and corresponding so-
lution techniques indicates that an aircraft maintenance TAP is similar to TC-VS-BPP
in the model formulation in terms of maintenance capacity constraints, availability of
each maintenance hangar, the different costs in task execution, workloads of perform-
ing tasks, task execution intervals, and deadlines of the maintenance tasks, meaning that
the solution strategies, such as NFD/FFD/BFD/WFD, to BPP/VS-BPP/TC-VS-BPP, can be
used to address TAP. We propose a constructive heuristic based on the WFD algorithm
to solve the long-term aircraft maintenance TAP. The main reason is that more than 55%
of the tasks belong to heavy maintenance, and we want to let the available workforce
address as many heavy maintenance tasks as possible in aircraft C-/D-checks. In our
problem, we are not trying to reduce the number of bins being used — these were al-
ready predefined in the maintenance schedule and as a consequence of the overlapping
of multiple checks in time. Furthermore, we want to spread the tasks over the multiple
bins in such a way that we avoid resource limitations at any point. So the idea is always to
allocate the item to the bin with the minimum load (or higher resources available). Since
our work focuses on practical application, instead of worst-case performance analysis,
we compare the results from the heuristic to a solution from exact methods.

3.3. PROBLEM FORMULATION
In this section we define the TC-VS-BPP for aircraft maintenance task allcoation. We
start the section with specifying the problem and its scope (subsection 3.3.1), followed
by a description of the assumptions followed (subsection 3.3.2). In subsection 3.3.3 we
introduce some model considerations, including the concept of time segment and the
generation of the task items in our TC-VS-BPP. Finally, in subsection 3.3.4 we present the
optimization model formulation.

3.3.1. BASIC CONCEPT AND SCOPE

TASK CLASSES

In the aircraft maintenance context, maintenance tasks can represent regular mainte-
nance jobs needed for the continuous airworthiness of the aircraft or repairing works
that need to be performed to correct malfunctions or damage. Accordingly, the tasks
can be divided into two main classes [17]:

• Routine Tasks: these are the regular tasks outlined in a Maintenance Planning
Document (MPD) provided by the aircraft manufacture or defined by the airline
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in their Operator Approved Maintenance Program (OAMP). These tasks have to be
scheduled within certain fixed intervals, specified in terms of usage parameters
such as FH, FC, and calendar days. A routine task has to be performed before one
of the usage parameters reaches the specified interval.

• Non-Routine Tasks: these are non-scheduled tasks that can result from defaults
or damage identified when executing a routine task, pilot reports, or abnormal
events such as hard landings or ground damages. They can also represent abnor-
mal maintenance interventions suggested by, e.g., the aircraft manufacturer (ser-
vice bulletins) or the regulatory body (airworthiness directives). When generated,
these tasks are also associated with a time window for their execution. And this
time window can vary from having to perform the task before the next flight to a
couple of weeks after they were generated.

TASK INTERVALS

The aircraft maintenance tasks, regardless of being routine or non-routine, have to be
allocated to a maintenance event. These events include line maintenance inspections
(i.e., performed at the ramp or remote stands during the turn-around time of the aircraft)
and hangar inspections. In this article, we only consider the latter and ignore the small
tasks usually performed during line maintenance inspections.

WORKFORCE

The available workforce constrains the task allocation to maintenance check; each main-
tenance task is associated with the workforce requirements to perform the task. The
maintenance workforce is divided per skill types (e.g., engines and flight control sys-
tems, avionics, aircraft metallic structure, and painting technicians). It is limited per day
or shift, according to the daily workforce schedule. In this study, the availability of the
workforce per skill is an input to the model. The number of hours needed per skill type
is a characteristic of the task, which can only be allocated to a maintenance opportunity
if there is enough workforce for all skill types involved in task execution.

TIME HORIZON

Given that routine tasks have to be scheduled based on intervals and that these intervals
are re-started every time the tasks are performed, the TAP should consider a time hori-
zon that is large enough to cover at least two following task executions. The reason being
that, otherwise, a possible action could be to delay the first task as much a possible, dis-
regarding the possibility of executing the tasks the next time. And this can result in a
poor or unfeasible solution in the long-term. For this reason, given that some tasks hav-
ing very large intervals (i.e., some are not performed every year), a multi-year planning
horizon is adopted.

SEQUENTIAL APPROACH

To plan hangar inspection tasks, we follow a sequential approach, consistent with the
practice of most airlines, that is, we assume that the aircraft maintenance check schedul-
ing (AMCS) was solved beforehand and that an optimal letter check schedule is provided.
According to this schedule, each check is considered as a maintenance opportunity to
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perform a maintenance task. Consequently, the goal of the TAP is to allocate the main-
tenance tasks to the opportunities that are as close as possible to their due dates.

3.3.2. ASSUMPTIONS
This research is subject to the following assumptions:

A.1 There are sufficient aircraft spare parts and available maintenance tools, without
constraining the optimal allocation of tasks.

A.2 The optimal allocation of tasks is constrained by the workforce available. The op-
timal distribution of tasks per shift or worker is not considered in the TAP.

A.3 A-check tasks can be performed in a C-check, but not the other way around.

A.4 Non-routine tasks generated while executing other tasks can also be performed
during the same check, this is considered by augmenting the task duration and
workforce needed according to “non-routine rates” estimated from historical data.

The first two assumptions are reasonable, considering that the TAP is a long-term
problem and spare parts, maintenance tools and equipment, and workforce are planned
following the maintenance schedule. Assumptions A.3 and A.4 are common in practice.
The first, because the resources, skills, and time needed to perform most heavy main-
tenance (C-/D-check) tasks are not compatible with the planning of light maintenance
checks (A-/B-check). The second, because the differing tasks from a hangar check can
result in pressure to perform these tasks another day, eventually causing disruptions in
operations. Therefore, airlines usually prefer to pre-allocate a time and workforce buffer
in each maintenance check to execute these non-routine tasks.

3.3.3. MODEL CONSIDERATIONS

TIME SEGMENTS

In practice, maintenance operators are typically confronted with situations of overlapped
maintenance checks, in which several aircraft undergo the same type of maintenance
check at the time and therefore competing for the limited maintenance resources. Fig-
ure 3.2 depicts an example of such a schedule, and five aircraft are scheduled to perform
C-checks maintenance between Apr 21st and May 30th. During these overlap periods,
resources have to be shared, constraining the optimal allocation of tasks.

We divide the planning horizon depicted in Figure 3.2 into time segments. A time
segment is created every time the overlap conditions change. In Figure 3.2, the overlap
of checks change on Apr 24th and 30th, May 12th, 15th, 18th, 21st and 30th. Therefore, we
create seven time segments: Apr 21st–24th, Apr 24th–30th, Apr 30th–May 12th, May 12th–
15th, May 15th–18th, May 18th–21st and May 21st–30th. Each time segment of an aircraft
is considered to be a bin, with a given duration (in days) and constrained by the labor
available on these days for each given skill type. For example, AC-1 has four bins, T4–T8;
AC-5 has only one bin, T3; AC-16 has four bins, T1–T4; AC-17 has five bins, T2–T6; AC-21
has two bins, T6 and T7. It is worth mentioning that all the bins and their associated sizes
are defined based on the maintenance check schedule and kept open. Unlike the classic
BPP, we do not need to open a bin when we allocate items (tasks). For the rest of the
chapter, when we refer to TC-VS-BPP, we also imply that all the bins are predetermined.
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Figure 3.2: Overlapped maintenance checks are divided into several time segments.

TASK ITEMS AND MAINTENANCE OPPORTUNITIES

Most routine tasks have to be scheduled more than once for the same aircraft over the
time horizon considered. For example, a task that has to be performed in every A-check
(about every 7-8 weeks), may have to be executed 38 times in a 5-year horizon. In our ap-
proach, we consider each occurrence of these tasks to be an item in our TC-VS-BPP. That
is, a routine task that has to be executed at most N times in the planning horizon will be
translated into N tasks items in our optimization model. To do so, we have to estimate
the maximum number of repetitions in the planning horizon. Table 3.1 illustrates our
approach for a given task of a specific aircraft. In this example, the maintenance task has
to be performed every ten weeks, while the aircraft A-checks are performed every seven
weeks. There are five maintenance events during the time horizon for the execution of
the task (four aircraft A-checks and one aircraft C-check, presented in chronological or-
der). This task can be executed from at two times (only in A2 and A3) to five times (in
every maintenance check), which can be translated as five task items in the task allo-
cation. The procedure for creating task items and defining the respective maintenance
opportunities can be summarized as follows:

- Step 1: The maintenance opportunities for the first execution of the task are deter-
mined, according to the state of the task at the start of the planning horizon and
its inspection interval.

- Step 2: If the earliest maintenance opportunity for the previous task item is the last
maintenance event in the planning horizon, we stop. Otherwise, we create a new
task item (next execution).

- Step 3: For the new task item (new execution),

◦ Step 3.1: the first maintenance opportunity is the maintenance event right
after the earliest maintenance opportunity from the previous task item;

◦ Step 3.2: the last maintenance opportunity is the last maintenance event,
within the planning horizon, that can be considered before the end of its
fixed interval.

◦ Step 3.3: all maintenance events between the first and last maintenance op-
portunities are considered in the set of maintenance opportunities.

- Step 4: Go back to Step 2.



3.3. PROBLEM FORMULATION

3

63

Table 3.1: Illustration of the maintenance opportunities for repeated items of one maintenance task with an
inspection interval of 10 weeks (Task 11–15 represent the 1st–5th execution of the same task). The value of
“1” indicates that the associated maintenance check (column) is a possible maintenance opportunity for the
execution (row).

Task A1 A2 C1 A3 A4 Fictitious

Execution week 1 week 8 week 12 week 15 week 22 opportunity

Task 11 1 1 0 0 0 0

Task 12 0 1 1 1 0 0

Task 13 0 0 1 1 1 1

Task 14 0 0 0 1 1 1

Task 15 0 0 0 0 1 1

For the task items which can potentially be allocated to a maintenance check after
the end of the planning horizon, we create a fictitious maintenance opportunity (bin).
The fictitious bin is needed because, eventually, not all task items have to be allocated
within the planning horizon to keep the aircraft airworthy. The fictitious bin is added on
the day right after the end of the planning horizon, associated with infinite resources and
no costs, and it is considered as a bin for all task items that can be scheduled after the end
of the planning horizon. This step-wise approach, repeated to all maintenance tasks,
will result in a list of task items Nk per aircraft k and the respective set of maintenance
opportunities Ri ,k associated with each task i in the list.

There are several task execution plans for the example presented in Table 3.1. Each
plan is associated with a de-escalation cost, depending on the letter checks that the task
is executed. We can choose a high-cost plan in which the task is executed in every main-
tenance check (i.e., five times in the planning horizon) or a low-cost plan in which the
task is executed only twice, during the A1 and the A3 checks. Even for two plans with the
same number of total executions of a task, the de-escalation is different. For instance,
performing the task in A2, C1 and A3 results in a de-escalation cost of:

(10−8)+ [10− (12−8)]+ [10− (15−12)] = 15 weeks (3.1)

Executing the task in A2, A3 and A4 results in a de-escalation cost of:

(10−8)+ [10− (15−8)]+ [10− (22−15)] = 8 weeks (3.2)

It can be seen from (3.1) and (3.2) that the latter execution plan has a lower de-escalation
cost, and the goal of task allocation is to find the task execution plan with the lowest cost,
given the resources available and the urgency of other tasks “competing” for the same
maintenance opportunities.

3.3.4. PROBLEM FORMULATION

NOMENCLATURE

Sets

i : task indicator
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K : set of aircraft

Nk : set of task items for aircraft k (k ∈ K )

Tk : set of time segments for aircraft k (k ∈ K )

Ri ,k : set of time segments for task item i (i ∈ Nk ) of aircraft k (k ∈ K )

J : set of skills

Oi ,k unit set with the task item that follows task item i (i ∈ Nk ) of aircraft k (k ∈ K )

Parameters

c t
i ,k : cost of allocating task item i (i ∈ Nk ) from aircraft k (k ∈ K ) to maintenance

opportunity belonging to time segment t (t ∈ Tk )

GR
j
t : amount of available labor hours of skill type j ( j ∈ J ) at time segment t

GR j
i ,k : amount of labor hours of skill type j prescribed to perform task item i of

aircraft k

σ j ,l : “non-routine rate” indicating the amount of labor hours needed from skill
type l for every labor-hour prescribed from skill type j (note: σ j , j ≥ 1.0 ∀ j ∈ J )

d i ,k : maximum number of days between rescheduling task item i (t ∈ Tk ) for air-
craft k (k ∈ K )

d t : number of days from the start of the planning horizon till maintenance oppor-
tunity belonging to time segment t

f hi ,k : maximum number of flight-hours between rescheduling task item i for air-
craft k

f ht : number of accumulated flight-hours from the start of the planning horizon
till maintenance opportunity belonging to time segment t

f c i ,k : maximum number of flight-cycles between rescheduling task item i for air-
craft k

f c t : number of accumulated flight-cycles from the start of the planning horizon
till maintenance opportunity belonging to time segment t

O_d ayi : total days of aircraft operations from the start of the planning horizon
to the due date of performing task item i, following the task fix interval and if no
resource constraints are considered

i nter vali : average fix interval for task item i measured in days

l abor _r ate j : labor rate, per hour, of skill type j ( j ∈ J )

other _cost si ,k : non-labor costs associated with task item i (i ∈ Nk ) of aircraft k
(k ∈ K ), such as costs of spare parts and tooling
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Decision variables

x t
i ,k : 1 if task item i is assigned to maintenance opportunity belonging to time seg-

ment t for aircraft k, and 0 otherwise

MIXED INTEGER LINEAR PROGRAMMING (MILP) FORMULATION

Given a long-term aircraft maintenance check schedule, this chapter formulates the TAP
as a 0-1 MILP model.

min
∑

k∈K

∑
i∈Nk

∑
t∈Ri ,k

c t
i ,k ×x t

i ,k (3.3)

Subject to: ∑
t∈Ri ,k

x t
i ,k = 1 ∀i ∈ Nk ∀k ∈ K (3.4)

∑
k∈K

∑
i∈Nk

∑
j∈J

GR j
i ,k ×x t

i ,k ×σ j ,l ≤GR
l
t ∀t ∈ Tk ∀l ∈ J (3.5)

∑
m∈Rp,k

d m ×xm
p,k −

∑
t∈Ri ,k

d t ×x t
i ,k ≤ d i ,k ∀i ∈ Nk ∀p ∈Oi ,k ∀k ∈ K (3.6)

∑
m∈Rp,k

f hm ×xm
p,k −

∑
t∈Ri ,k

f ht ×x t
i ,k ≤ f hi ,k ∀i ∈ Nk ∀p ∈Oi ,k ∀k ∈ K (3.7)

∑
m∈Rp,k

f cm ×xm
p,k −

∑
t∈Ri ,k

f c t ×x t
i ,k ≤ f c i ,k ∀i ∈ Nk ∀p ∈Oi ,k ∀k ∈ K (3.8)

x t
i ,k ∈ {0,1} ∀k ∈ K ∀i ∈ Nk ∀t ∈ Tk (3.9)

The objective function (3.3) aims at minimizing the total maintenance costs, which
reflect the de-escalation costs associated with scheduling the task earlier than its due
date and, consequently, having to perform the task more frequently in the future. To
compute these costs, we estimate the due date to allocate the task item beforehand. For
example, if a maintenance task is to replace an aircraft component, based on its previ-
ous execution date and the associated maintenance interval, we simulate the utilization
of the component using the average aircraft’s daily utilization. In this way, we can esti-
mate the next due date of replacing this component and its ideal maximum utilization
O_d ayi . The de-escalation costs can then be calculated by comparing how earlier the
task item is allocated when compared with its desired day [8]:

c t
i ,k = O_d ayi −d t

i nter vali
×

[∑
j∈J

(∑
l∈J

GR l
i ,k ×σl , j

)
× l abor _r ate j +other _cost si

]
(3.10)
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The de-escalation costs indicated by (3.10) is a reference cost used as a proxy of the goal
of scheduling the tasks as later as possible, or as less frequent as possible. In (3.10), the
cost of allocating task item i of aircraft k to maintenance opportunity t is a function
of the wasted interval of the task (first term), the labor hours required to perform the
task (second term), the labor hours cost per labor skill (third term) and additional costs
associated with maintenance task i such as the cost for materials or expensive tooling
(last term). And this formulation aims at allocating tasks to the maintenance opportu-
nity closer to its due date while giving a higher priority to labor-intensive tasks and tasks
involving many labor skills or high additional costs.

Constraints (3.4) guarantee that each task item is allocated exactly once, either to a
maintenance event or to the fictitious maintenance event after the planning horizon.
Constraints (3.5) make sure that the available labor hours for each skill type is not ex-
ceeded in each of the maintenance time segments. The left-hand side of these con-
straints sums the labor hours needed to perform each task item, including the work-
force needed to perform the task and, eventually, associated “non-routine” tasks. These
two sets of constraints are the ones that define the classic VS-BPP. The other three set
of constraints (3.6)–(3.8) are the features of TC-VS-BPP and also ones that represent the
maintenance time-intervals. They imply the arrivals and deadline of tasks. Constraints
(3.6) guarantee that a subsequent task item is scheduled within the number of days de-
fined in the fix interval for the respective task, while constraints (3.7) and (3.8) reflect the
fix interval in terms of flight-hours and flight-cycles, respectively.

3.4. TASK ALLOCATION FRAMEWORK

The same as BPP, TC-VS-BPP is also NP-hard [18]. Optimal solutions to small TC-VS-
BPPs can be obtained using exact methods. Still, unfortunately, when the size of the
problem grows, the running times of these exact methods become prohibitive, especially
for practical implementations. For this reason, we propose a constructive heuristic to
solve the TAP efficiently. The proposed approach is an iterative process based on the
WFD algorithm. To the TAP for aircraft maintenance, we start by sorting the tasks from
the multiple aircraft into decreasing order of priority and then allocate those tasks one
after another to the suitable bin that has a lower load. In this section, we provide details
on the proposed constructive heuristic, explaining the general framework, including the
input data (Subsection 3.4.1), the necessary pre-computation (Subsection 3.4.2) and the
algorithm itself (Subsection 3.4.3).

3.4.1. INPUT DATA

Four sets of input data are needed to formulate and solve the TAP. The first set con-
sists of maintenance task information present in the OAMP for the considered aircraft
fleet. This information is not necessarily limited to maintenance tasks described in the
MPD. It could include additional maintenance tasks as required by the airline, service
bulletins, airworthiness directives, deferred defects, or modifications [17]. Furthermore,
information about the last executed date of the routine tasks is used to calculate the first
due-date of the maintenance task. The second set includes the estimated daily aircraft
utilization, in DY, FH, and FC, of each aircraft for the entire time horizon. For the short
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term, these values could be obtained using aircraft routes or flight schedules, while in
the long run, the most common approach is to use average aircraft utilization per day of
the week, per month, or season. It is convenient, however, to use the same input values
used to produce the maintenance check schedule. The third set of input is the available
workforce per skill type, per day, for the entire time horizon. Again, detailed daily sched-
ules could be provided for the short term, while the average workforce per day can be
used for the longer term. The last set of data used is the A- and C-check schedule, defin-
ing the starting dates and duration of all checks in the planning horizon for each aircraft
in the fleet.

3.4.2. PRE-COMPUTATION

A set of pre-computation steps are necessary before initiating the constructive task al-
location algorithm. These steps can be divided into task items and bins related pre-
computations. Starting with the task items related steps, maintenance tasks from the
same aircraft that have identical intervals, in terms of FH, FC, and DY, are clustered to-
gether to reduce the number of tasks to be considered. For the resulting tasks, a set of
task items are created, following the procedure explained in Subsection 3.3.3. The fol-
lowing step is to compute the due-dates for the first item of the maintenance tasks. And
this is done by considering the initial state of each task (i.e., number of FH, FC, and DY
since its previous execution), the task intervals as defined by the OEM or airline, and the
simulation of the aircraft utilization over time. Some tasks, such as deferred defects or
modifications, can be input already with fixed due dates instead of task intervals.

For the bin related steps, the checks schedule is used to divide the maintenance op-
portunities into bins, as explained in Subsection 3.3.3. The bins are variable in size and
discrete, composed by a set of days. After that, we continue to convert the labor power
obtained per day into labor power available per bin.

3.4.3. CONSTRUCTIVE HEURISTIC

A constructive heuristic based on WFD is proposed for task allocation. The pseudo-code
of the heuristic is presented in Algorithm 2, while the main procedures of the heuristic
are explained next.

SORT TASK LIST

After uploading the input data, the first procedure is to sort the task items list according
to the priorities of the items included in the list. The prioritization is done according to
a prioritization function p(i ) that classifies each task item i . This prioritization function
divides task items into three classes:

• High Priority – these are items from maintenance tasks that have an interval equal
to the interval of the aircraft checks. The allocation process for these items is trivial
since those tasks have to be allocated to all equivalent checks in the schedule. This
strategy of starting the allocation process with these tasks follows the scheduling
practice observed in practice, assigning the workforce necessary to these tasks be-
fore starting the allocation of maintenance tasks with more flexibility.
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• Medium Priority – these are the maintenance tasks dephased from the aircraft
checks intervals. Each of these tasks has an interval length larger than the A-check
interval (e.g., the task in Table 3.1) and hence they will not necessarily be allocated
to every maintenance check.

• Low Priority – these are the maintenance tasks with a low frequency of occurrence.
They are dephased from the aircraft checks by, at least, being able to skip at least
one A-check from any day within the planning horizon. These tasks have some
flexibility, and they can be allocated at last.

The tasks within each of these classes are sorted by the maintenance costs, as ex-
pressed in the second and third terms in (3.10).

TASK ITEMS LOOP

Task item loop (TIL) is the main procedure of the algorithm. The goal is to choose
the best maintenance opportunity that minimizes the maintenance costs, as defined in
(3.10), and to select from the bins the one that less compromises the best allocation of
subsequent task items. After sorting all the task items according to their costs, the first
task item has the highest priority; the second task item has the second-highest priority,
and so forth. We define a list of bins that would allow a feasible allocation of task item i
before the associate task interval is expired according to the maintenance check sched-
ule. A fictitious bin (t0) is added to this list of bins in case none of the available bins has
enough resources to allocate the task item. Other than that, we will not create any new
bin during the task allocation.

After that, we sort the available bins for task item i according to the maintenance
resources within bins in descending order. Namely, the bin with the most resources is
always the first to assign the task in it. After that, the allocation of each task item follow-
ing a “worst bin” selection process in the fourth step. Therefore, the TIL procedure gives
a higher preference to the bins closer to the due date of the task item and, among these
bins, to the ones that have more available maintenance resources.

ALLOCATION OF TASKS TO BINS

The next procedure is to allocate the task items to a bin, following the sorted list of bins.
If the bin under consideration has enough available labor hours for the necessary skills
to perform the respective maintenance task, we allocate an item to the bin. In this case,
we subtract the labor hours consumed to execute the task from the total available labor
hours from that bin. The next step is to check the need to remove the task that has been
allocated. For a routine task, we simulate the evolution of usage parameters after alloca-
tion and estimate its new date according to aircraft daily utilization. If the next due date
is beyond the end of the time horizon, we just remove the task from the task item list.
For a non-routine task, since they are not recurrently performed, we generate a new due
date after the end of the planning horizon. For the case of running out of bins to which
the task can be allocated, we generate an alert and put the task into fictitious bin t0. This
fictitious bin includes all the tasks that have not been allocated to any available bin, and
we will inform the maintenance controller and let them address those tasks.
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Algorithm 2 Task Allocation Algorithm
1: N ← set of task items from all aircraft, N =∪Nk

2: GR
j
t ← available labor hours from skill j in bin t

3: GR
j
i ,k

← amount of labor hours of skill j prescribed to perform task item i of aircraft k

4: σ j ,m ← “non-routine rate” from skill m from every hour of skill j

5: procedure SORT TASK ITEMS LIST

6: Sort and reindex N so that p(i1) ≥ p(i2) ≥ ... ≥ p(in ) . Prioritization of task items
7: end procedure

8: procedure TASK ITEMS LOOP

9: while N 6= ; do
10: Select i from N . Select the first task in the list
11: Ri ← Ri ,k ∪ t0 . Add t0 as a fictitious opportunity

12: Sort and reindex Ri so that
∑
j∈J

GR
j
ti ,1

≥ ∑
j∈J

GR
j
ti ,2

≥ ... ≥ ∑
j∈J

GR
j
ti ,n

13: procedure ALLOCATE TO BIN

14: n ← 0
15: while n < |Ri | do
16: n ← n +1
17: if GR

j
t ≥ ∑

j∈J
GR

j
i ,k

×σ j ,m ∀m ∈ J then

18: Allocate i to ti ,n

19: Set GR
j
ti ,n

=GR
j
ti ,n

− ∑
j∈J

GR
j
i ,k

×σ j ,m ∀m ∈ J

20: Compute next due-date for task item i
21: if Next due-date not within time horizon then
22: N ← N \ {i } . Remove the maintenance task
23: else
24: Sort Task Items List
25: end if
26: break
27: end if
28: if n = |Ri | then . In case of no allocation possible
29: Allocate i to t0
30: Report Alert
31: end if
32: end while
33: end procedure
34: end while
35: end procedure
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3.5. CASE STUDY
In this section, we present a case study on a major European airline and illustrate the
applicability of the TAP approach. The input data includes aircraft utilization, a 4-year
maintenance schedule generated by the dynamic programming based methodology de-
scribed in the paper of Ref. [19], task information from a heterogeneous fleet of 45 air-
craft, and an associated estimation of available workforce per day. Our airline partner
currently follows a manual process to allocate the aircraft maintenance tasks to checks,
supported by a digital solution that keeps track of the open tasks and suggests a prior-
itization of maintenance activities. There are two maintenance planners in the airline
doing this job for the entire fleet.

We consider eight skill types and that the productivity factor of each worker is equiv-
alent to 4.8 productive labor hours per day, following the airline practice. The remaining
hours of the labor shift are dedicated to transitioning meetings between work shifts, col-
lection of materials or equipment, obtaining information about the maintenance task,
reporting, and ancillary activities.

The results from this case study are discussed in subsection 3.5.1, followed by an
analysis of the current airline practice of not performing any aircraft C-check tasks in an
A-check (subsection 3.5.2). In Subsection 3.5.3, we validate the results obtained using
the proposed task allocation heuristic. We suggest assessing the algorithm performance
by comparing it with the solution obtained when using an exact method for solving
the MILP presented in Section 3.3.4. Furthermore, all results obtained by the proposed
heuristic were validated by the maintenance planners of the airline partner.

3.5.1. OPTIMIZATION RESULTS
We apply the proposed task allocation algorithm to the case study, following the airline
current policy of not allowing to allocate C-check tasks to A-check maintenance oppor-
tunities. The problem was solved in less than 14 minutes by the algorithm. The outcome
is a 4-year, fleet-wide task allocation plan that satisfies labor-hour constraints and tasks
fix intervals. The plan includes around 85 thousand task items, from which 24% of them
are C-check tasks, and 76% are A-check tasks. Despite this, the C-check tasks consume
about 65.5% of the labor hours allocated to perform the tasks. The algorithm achieves
an average de-escalation of 205 days for C-check tasks and 19.3 days for A-check tasks.

Figure 3.3 shows the distribution of labor hours per skill for the maintenance of all
aircraft in the fleet for the full planning horizon. There is significant diversity in the re-
quired labor hours among the aircraft, and the difference in aircraft age, the number of
C-check events in the maintenance schedule, and the differences in terms of aircraft uti-
lization cause this diversity. For instance, aircraft AC-41 is phased-out a few days after
the start of the planning horizon, while AC-24 is phased out one and half years after the
beginning of the planning horizon, following a minor C-check and 10 A-checks. Simi-
larly, it is possible to identify the aircraft that perform a C-check early in the planning
horizon and hence have to undergo three C-check before the end of the planning hori-
zon. And this applies to aircraft AC-25, AC-26, and AC-29.

To analyze the maintenance plan in more detail, we decided to focus on the over-
lap situation presented in Figure 3.2. The allocation of labor hours per time segment is
depicted in Figure 3.4. In this figure, there are eight bars per time-segment, represent-
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ing the eight different skill types. We observe that the first six time-segments consume
all the available labor hours of the Group 2 skill type. And this restricts the allocation of
tasks requiring labor hours from Group 2 skill for AC-5, AC-16, and AC-17 since these air-
craft will have a fully constrained overlap situation. And this forces some of the A-check
tasks from these aircraft to be allocated to a previous A-check. Similarly, there are also
C-check tasks being anticipated at an earlier C-check. In the latter case, it means that
some components are inspected or replaced about two years earlier than intended.

Figure 3.3: Labor hours distribution per aircraft and skill type.

3.5.2. FLEXIBLE TASK ALLOCATION POLICY
In this subsection, we question the current airline policy of not allocating any C-check
task to A-check maintenance opportunities, even though we observe that there is a sur-
plus of labor hours in the A-checks scheduled. Several small C-check tasks would fit in
an A-check, in terms of time and resources needed. For this reason, we performed a
simulation in which these C-check tasks are allowed to be allocated to A-check oppor-
tunities. We carry out the analysis considering different thresholds for the size of these
tasks. After discussing with maintenance planners from the airline, we agree on using
the labor hours needed for the task as the reference metric for task size, and to consider
a threshold varying from zero to 2.5 labor hours.

The simulation results (presented in Figure 3.5) indicate that the de-escalation of
C-check tasks can be reduced from 205 days to 132 days when allowing C-check tasks
within 2.5 labor hours to be executed on A-check opportunities. From the results, it
can also be concluded that the marginal gain of extending the threshold reduces as the
threshold increases in value. In fact, it can be inferred from Figure 3.5 that, for this air-
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Figure 3.4: The amount of labor hours used for each skill type during the time segments within the overlap
situation. Each time segment has eight different bars and each bar represent a particular skill type (Group 1,
Group 2,..., Group 8).

Figure 3.5: Average wasted RUL in days for increased C-check task labor hours thresholds.

line, after a labor hours threshold of 2.0 or 2.5, there are barely any benefits of extending
this threshold. The reason being that very few C-check tasks consume more than 2.5 la-
bor hours and can still be allocated in an A-check without compromising the allocation
of the A-check tasks to their best A-check opportunities.

3.5.3. ALGORITHM PERFORMANCE ANALYSIS

To analyze the performance of the task allocation algorithm, we compare it with the per-
formance of an approach using an exact method to solve the TAP formulated in subsec-
tion 3.3.4. To provide a more detailed comparison, we decided to vary the productivity
factor of the workforce, from the initial considered 4.8 labor hours per day to a restricted
case of 3.2 labor hours per day.

To compute solutions with the exact method in a reasonable time for the more re-



3.5. CASE STUDY

3

73

Table 3.2: Simulation results of performance analysis.

Productivity Computational time (s) Solution Gap

Labor hours MILP solver Heuristic Heuristic vs. Solver

4.80 1,135 773 0.03%

4.72 1,148 775 0.03%

4.64 1,154 776 0.03%

4.56 1,159 778 0.04%

4.48 1,168 779 0.05%

4.40 1,172 787 0.11%

4.32 1,181 792 0.23%

4.24 1,186 798 0.36%

4.16 1,187 803 0.54%

4.08 1,195 811 0.81%

4.00 1,639 818 1.17%

3.92 1,821 822 1.44%

3.84 1,903 828 1.61%

3.76 2,570 835 1.43%

3.68 3,097 839 1.90%

3.60 3,857 846 2.45%

3.52 4,702 851 2.88%

3.44 5,679 861 3.38%

3.36 8,243 866 3.89%

3.28 13,828 871 4.47%

3.20 17,636 879 4.95%

stricted cases, we follow an iterative process for the creation of task items and mainte-
nance opportunities for each maintenance task (Subsection 3.3.3). That is, we initially
run the MILP, then add new items and maintenance opportunities for those task items
that had the constraints violated and rerun the MILP until the problem becomes feasi-
ble. For the 4.8 labor hours case, the MILP formulation resulted in 1.15 million decision
variables and 373 thousand constraints. The task allocation algorithm is coded in Python
3.7, while the exact method is addressed using the commercial solver Gurobi. The results
from both approaches are computed on an Intel Core i7 2.6 GHz laptop with 8GB ram.

We summarize the results in Table 3.2. Each line of Table 3.2 compares the compu-
tation times and presents the optimality gap for a given productivity factor between two
different approaches, where the results obtained from the solver is used as a reference.
While the computation time of the exact method (MILP solver) explodes with the de-
crease of the productivity factor, the same does not happen to the proposed heuristic
algorithm. The proposed heuristic is 30% faster than the exact method for the default
productivity factor of 4.8 labor hours, and the optimality gap is only 0.03%. Even though
the productivity labor hours decrease to 3.2, the optimality gap is still within 5%.
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It is worth mentioning that for the most constrained test case, the exact method re-
quires about 4.9 hours to compute the optimal solution, while the proposed heuristic
needs less than 15 minutes. In summary, from a perspective of solution quality, the so-
lution gap between the heuristic algorithm and the optimal solution is within 5% for all
test cases. For cases where the productivity factor was higher than 4.0 labor hours, the
solution gap is below 1%. And this confirms that the heuristic is capable of producing
good solutions in minutes for a realistic TAP with a fleet of 45 aircraft.

3.6. CONCLUSION
The task allocation problem (TAP) of aircraft maintenance is defined as assigning tasks to
their optimal maintenance opportunities. In this research, we formulate TAP as a time-
constrained variable-size bin packing problem (TC-VS-BPP), in which we treat main-
tenance opportunities as bins and the tasks as items, and there are time constraints
on both bins and items. TC-VS-BPP is NP-hard and, therefore, challenging to solve for
large case instances. For this reason, we proposed a constructive heuristic to solve the
TAP (TC-VS-BPP). The proposed approach is an efficient iterative process based on the
worst-fit decreasing (WFD) algorithm. According to a real-life case study on a hetero-
geneous fleet of 45 aircraft, the heuristic is more than 30% faster than an exact method,
while the solution gap is smaller than 0.1%. For the most restricted test case, the solution
from the heuristic is only 5% worse than the solution obtained from the exact method,
while being much faster. The computation time of TAP is essential in the aircraft main-
tenance domain since changes to the priority/urgency of existing tasks or new (non-
routine) tasks can require running the proposed constructive heuristic many times per
day. Therefore, an algorithm that runs in a reasonable and stable computational time,
regardless of how restrictive is the problem, is something very useful.

During the case study, We are told that some airline technicians work just part-time
at the hangar, and we overestimated the maintenance capacity if we set the productivity
labor hours to 8 (all technicians are working full time, 8 hours a day). The maintenance
capacity constraint (3.5) is not the main restriction during the task allocation process.
Since there is no other data to support sensitivity analysis, we change the productivity
labor hours to test the proposed heuristic in a more constrained context.

The research presented in this chapter is also one of the requirements from the air-
line, continuing the work of aircraft maintenance check scheduling optimization de-
scribed in [19]. The methodology in [19] first determines the optimal start dates of all
maintenance checks for the entire fleet, and the optimal maintenance check schedule
indicates in which checks a maintenance task can be allocated. Otherwise, it is very
time-consuming to know when, which aircraft, and what maintenance tasks should be
performed without a maintenance check schedule. The maintenance task allocation re-
sults are the task execution plans for all maintenance checks, which help the technicians
execute the right task, on the right aircraft, at the right time.

We structure the task allocation problem of aircraft maintenance as a bin packing
problem (BPP) so that it can be solved quickly using the worst-fit decreasing algorithm.
Whenever unscheduled aircraft maintenance tasks occur, we can use the methodology
presented in [19] to obtain a new maintenance check schedule, and then apply the task
allocation framework to update the tasks accordingly. The task allocation framework
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is suitable for real-life applications. It can provide near-optimal solutions to the TAP,
significantly reducing the workload currently required in practice for the creation of
maintenance plans. Besides, given that it runs in minutes, it can potentially be used
to dynamically adjust the task allocation plans given flight schedule disruptions during
operations or emergency of unscheduled tasks during the execution of maintenance in-
spections. Furthermore, the task allocation framework can be used to test or analyze
different maintenance concepts or policies, as demonstrated in Subsection 3.5.2.

Future research on this work may consider the stochasticity associated with the TAP
problem, or explore the uncertainty related to, e.g., the emerge of “non-routine tasks” or
the aircraft utilization over the planning horizon. And this could enhance the robustness
of the outcoming task execution plan. Furthermore, a stochastic approach could extend
the current work to consider health prognostics and diagnostics, investigating the pos-
sibility of incorporating condition-based maintenance in the proposed framework. An
alternative interesting future research direction is to integrate the maintenance check
schedule optimizer with the task allocation framework proposed. And this could im-
prove the overall quality of the maintenance plan, including checks schedule and task
allocation per check.
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4
STOCHASTIC AIRCRAFT

MAINTENANCE CHECK

SCHEDULING OPTIMIZATION

This chapter presents a stochastic model for aircraft maintenance check scheduling. In-
stead of knowing all aircraft daily utilization and maintenance check elapsed time during
the entire planning horizon in the deterministic model, this information is only revealed
the day after a current stage or after a maintenance check starts. To address the stochastic
aircraft maintenance check scheduling, this chapter presents a lookahead approximate
dynamic programming methodology, which infers the impact of a maintenance check de-
cision using both future deterministic and stochastic demands. A real-life case study of a
European airline shows that the proposed methodology can reduce the frequency of cre-
ating extra aircraft maintenance capacity while improving aircraft utilization compared
with the estimation from the airline’s planning approach.

The content of this chapter is based on the following research article:

Deng, Q. and Santos, B. F. (2021). Lookahead Approximate Dynamic Programming for Stochastic Aircraft Main-
tenance Check Scheduling Optimization. submitted to European Journal of Operational Research.
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4.1. INTRODUCTION
Stochastic aircraft maintenance check scheduling (AMCS) is one of the next steps of the
deterministic AMCS. Different from maintenance task allocation presented in Chapter 3,
the stochastic AMCS still focuses on optimizing the aircraft maintenance check sched-
ule. In addition to the detailed operation constraints in deterministic AMCS, the stochas-
tic AMCS also considers the uncertainties. The uncertainties in AMCS mainly come from
two sources: aircraft utilization and maintenance check elapsed time.

• Aircraft utilization is affected by weather conditions or flight disruption. In prac-
tice, bad weather conditions can shorten the life of some aircraft components or
systems, and this further limits the time for commercial operations and force an
aircraft to undergo maintenance earlier than planned. Flight disruptions, such as
flight delays or flight cancellations, can also impact daily aircraft utilization, caus-
ing the deviation from the original aircraft maintenance plan.

• Despite flight disruptions, the maintenance schedule is affected by the elapsed
time of maintenance checks. The maintenance planners allocate aircraft to main-
tenance slots on specific days for letter checks. One maintenance slot is one day
of availability of a hangar for performing aircraft maintenance. The maintenance
slots needed for a letter check are estimated based on the mean maintenance
check elapsed time. For a specific maintenance check, the elapsed is usually un-
certain in practice. It can be a few days longer than the estimation because of the
non-routine maintenance tasks. These non-routine tasks include, e.g., replace-
ment of major components (aircraft engines or landing gears), airworthiness di-
rectives [1], engineering orders [2], deferred tasks, non-scheduled maintenance
tasks that result from faults, and additional maintenance need found when exe-
cuting the routine task. The non-routines can be up to 50% of the workload per-
formed during a maintenance check [3, 4]. Most non-routine tasks are only known
a few weeks or days before a maintenance check starts and some during the air-
craft maintenance check execution.

Although Chapter 2 proposed a solution to the long-term deterministic AMCS, how-
ever, one of the limitations is that the optimization model described in Chapter 2 as-
sumes complete information and does not include future uncertainty. The stochastic
AMCS has not been tackled so far, not even adequately studied. Since it is impossible
for airlines to follow a long-term aircraft maintenance schedule without adjustment in
general, maintenance planners have to update the maintenance schedules from time to
time due to flight disruptions or changes in maintenance tasks execution.

This chapter proposes a fast, short-term decision-making solution to cope with un-
certainties and respond to changes in aircraft maintenance activities promptly, without
comprising the long-term benefit. The research work described in this chapter is the
continuation of our previous MPO solution extending the AMCS to a stochastic frame-
work that considers uncertainty associated with aircraft daily utilization and mainte-
nance check elapsed time. This chapter presents a lookahead approximate dynamic
programming (ADP) methodology and uses it, for the first time, to address the stochastic
AMCS. The contributions include:
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• Methodology: The hybrid policy of the lookahead ADP methodology is original and
novel. It uses deterministic forecasts to estimate the number of extra maintenance
slots in the future for heavy maintenance and stochastic forecasts to estimate ad-
ditional maintenance slots for frequent light maintenance.

• Application: The proposed methodology is more robust than the previous deter-
ministic approach present in the literature, in terms of fewer additional mainte-
nance slots.

• Practicality: It takes only seconds to determine the optimal maintenance check
for the next day, significantly reducing the time needed for updating the letter
check schedule. The proposed lookahead ADP methodology can help mainte-
nance planners develop and adapt the short-term aircraft letter check schedules
within seconds without compromising the long-term efficiency of the solution.

4.2. STATE OF THE ART
Several publications address the aircraft maintenance related problems considering the
stochastic elements. The earliest one can be traced back to 1966, Ref. [5] provided a
unified view of maintenance from the theoretical perspective and its application on air-
craft equipment. This technical report mainly focuses on the aircraft component level,
and the primary source of uncertainty is the failure rate of aircraft equipment. The opti-
mization model and associated solution techniques described are dedicated to individ-
ual aircraft systems or components. It is worth mentioning that the fleet size of airlines
was much smaller back then since traveling by plane was expensive and dangerous in
the 1960s [6], and the maintenance programs were process-orientated [7].

Other than finding optimal maintenance policies for aircraft systems or components,
some research works focus on minimizing the total time needed for aircraft maintenance
activities considering uncertainties. Ref. [8] applied tabu search on the coordination of
aircraft maintenance activities to reduce the duration of all project activities, which was
shown efficient for both deterministic and stochastic problems. The main idea behind
the tabu search is to apply local search to improve an initial sequence of maintenance
activities. But different from the classic tabu search, the authors introduced multiple
tabu lists and randomized short-term memory to prevent solutions from being revisited,
which significantly improved algorithm efficiency. Besides, multiple starting schedules
were used to diversify local search to improve the optimality. To evaluate the perfor-
mance of the tabu search, the authors compared the results from the tabu search and
simulated annealing. The outcomes showed that tabu search outperformed simulated
annealing in terms of a better maintenance schedule and shorter computation time.

Ref. [9] was aware that airline planning models did not explicitly consider stochastic
elements in operations, which often led to discrepancies between initial schedule and
actual performance. To better capture the impact of uncertainty on daily airline opera-
tions (e.g., flight planning, crew paring, and maintenance scheduling), SimAir was devel-
oped to simulate and evaluate plans and recovery policies. SimAir consists of three mod-
ules: a random event generator to give random disruption, such as late arrival, ground
time delay, or unscheduled maintenance delay; a recovery module to propose a recovery
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policy (revised schedule); a controller module to determines if a flight should be can-
celed due to disruption and whether or not a recovery policy should be accepted. The
recovery module adopts a relatively trivial push-back strategy. For instance, if an un-
scheduled maintenance event causes a flight delay, the departure time of the flight will
be deferred until the unscheduled maintenance tasks are finished. Although there were
not many optimization techniques involved in this study, Ref. [9] still provides some
insights on how random disruptions affect the daily operation of airlines and how air-
lines recover from disruptions. And this also prompts us to develop a dynamic optimal
decision-making model for AMCS.

As mentioned in Ref. [9], stochastic simulation is a way of capturing uncertainty,
particularly essential in aircraft maintenance operations. The reason is straightforward:
aircraft system or component failure appears to be random, and the maintenance ac-
tivities are tightly coupled with each other in a sequence. Any delay in executing a task
can have snowball effects on the following maintenance activities, which may eventu-
ally lead to a maintenance delay. Ref. [10] applied stochastic modeling and simulation
on aircraft line maintenance (maintenance near the gate or terminal between aircraft
arrival and departure) to investigate the potential of improving maintenance manage-
ment. And this research aimed at minimizing the total number of technicians working
overtime under the uncertainty of maintenance activities. The authors applied a genetic
algorithm to address the problem. The results from stochastic optimization indicated
that the workload was likely to be better spread across shifts.

Aircraft maintenance operations are often plagued by planning difficulties because
of maintenance activities and flight arrival. Aircraft maintenance delay or bad weather
often results in late departure and, in the end, late arrival of a flight. Some airlines have
been trying to plan a robust aircraft maintenance schedule or maintenance personnel
rosters in the past few years. For example, Ref. [11] proposed a model enhancement
(ME) algorithm for planning robust aircraft maintenance personnel rosters cope with
stochastic flight arrival. The optimal aircraft maintenance personnel rosters minimize
the total labor costs while achieving a certain service level. The main idea was to use
stochastic simulation to simulate the flight arrivals and allocation of maintenance ca-
pacity to flights for several weeks. And this helps airlines to identify the flights that often
cannot be maintained in time. Based on the simulation results, the algorithm adjusted
workforce configuration by adding workforce to reduce the average number of flights
that cannot be maintained; after that, a mixed-integer programming model was formu-
lated and addressed by commercial solver CPLEX. The proposed algorithm was tested
using the data from Sabena Technics (an aircraft maintenance company located at Brus-
sels Airport) and shown to provide robust and promising solutions. Following the path
of Ref. [11], this chapter uses simulation to simulate aircraft utilization and maintenance
elapsed time, which gives an estimation of when an aircraft needs to be maintained and
how long a maintenance check lasts.

Several other studies about operational aircraft maintenance can be found in Refs.
[12–15], yet none of them deal with AMCS. Based on our findings during the literature
review, we draw the following conclusions. First of all, many papers propose robust
short-term operational aircraft maintenance plans, recovery policies, or maintenance
personnel rosters to cope with uncertainty. However, to our best knowledge, there is
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no literature found about AMCS optimization except for Ref. [16]. Secondly, stochas-
tic simulation is a useful method to predict incidents (e.g., system failure, unscheduled
maintenance, or flight delay). The simulation outcomes can provide insights about un-
certainty and help maintenance planners make better aircraft maintenance check deci-
sions. Lastly, even if one manages to find the optimal letter check schedule, it will most
likely fail during real-life operations because of the rapid changing of aircraft utiliza-
tion and maintenance environments, which requires lots of time or effort to recreate a
new schedule. Since maintenance planners may need to update the letter check daily, it
would be desirable to have a stochastic AMCS model to provide the optimal letter check
decision every 24 hours according to the actual fleet utilization.

4.3. NOMENCLATURE

AMCS Model Parameters:
dk Minimum interval between the start dates of two type k checks.
fci ,t Average daily FC usage for aircraft i at day t
fhi ,t Average daily FH usage for aircraft i at day t
I i

k-DY Interval of type k check of aircraft i in terms of DY
I i

kFH Interval of type k check of aircraft i in terms of FH
I i

k-FC Interval of type k check of aircraft i in terms of FC
K Collection of letter check type, K = {A-check, B-check, C-check, D-check}
N Total number of aircraft
nact The number of actions on day t
nsample The number of sample paths generated by Monte Carlo sampling
Rk

lb Lower-bound of expected remaining utilization for type k check
tl A time period for approximation of future cost for A-/B-check
th A time period for approximation of future cost for C-/D-check
T Final day in planning horizon
t0 First day in planning horizon
W The set of all sample paths
ωt New information that arrives on day t
λ Daily penalty for having an additional slot for type k check
π Scheduling policy
ξ A large number to prevent the waste of an available maintenance slot
γ Discount factor

Other Parameters:
h Hangar indicator
i Aircraft indicator
k Indicator for maintenance check type
t Indicator of calendar day
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Main Decision Variables:
χk

i ,t Binary variable to indicate if aircraft i starts type k check on t

xk
t Available action with respect to type k check on day t , xk

t =
{{
χk

i ,t

}}
xt Available action on day t , xt =

{{
χk

i ,t

}}
k∈K

x∗
t The optimal action among {xt }

X t The set of possible actions of day t , X t =
{
X π (st )

}
X π(sk

t ) Scheduling policy function, X π(sk
t ) = {

X π
k

(
sk

t

)}
k∈K

State Related Decision Variables:
ak

i ,t The attributes of aircraft i in the beginning of day t for type k check
ai ,t The attributes of aircraft i in the beginning of day t
At At = {ai ,t | i = 1, 2, . . . , N }
Ct (st , xt ) Contribution of choosing action xt on st

C k
t (st , xt ) Contribution of choosing action xt on st with respect to type k check

DYk
i ,t Total DY of aircraft i in the beginning of day t for type k check

FCk
i ,t Cumulative FC of aircraft i at t since last type k check

FHk
i ,t Cumulative FH of aircraft i at t for type k check

Li

(
yk

i ,t

)
Mean estimated elapsed time of next check with label yk

i ,t of aircraft i

M k
h,t Binary variable to indicate if type k check can be performed in hangar

h on day t
M k

t Hangar capacity of type k check, M k
t =∑

h M k
h,t

sk
t State variable with respect to type k check

st Pre-decision state variable, st =
{

sk
t

}
k∈K

ŝt Post-decision state variable before new information arrives
Rk

i ,t Remaining utilization of aircraft i before the next type k check

yk
i ,t Next maintenance label for of type k check of aircraft i on day t

zk
i ,t The end date of type k check of aircraft i

δk
i ,t Binary variable to indicate if aircraft i is undergoing type k check on

day t
ηk

i ,t Binary variable to indicate if aircraft i needs an extra slot of type k
check on day t

Ψ Ψ ∈ {FH, FC}
ψ Ψ ∈ {fh, fc}
SX (st , xt ) Transition function from st to ŝt+1, ŝt+1 = SX (st , xt ) before arrival of

new information
SW (st ,ωt ) Transition function from ŝt to st , st = SW (ŝt ,ωt ) when the new infor-

mation is known
Vt (st ) The value of being in a state st
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4.4. PROBLEM FORMULATION
The AMCS problem has already been presented in Chapter 2. This chapter adopts the
same definition of maintenance interval and assumptions. The nomenclature and cor-
responding description can be found in 4.3.

4.4.1. STATE TRANSITION IN STOCHASTIC AMCS
The state vector st is a set of attributes that influence our decisions, and this set also
includes available maintenance slots of each check type:

st =
{{

sk
t

}∣∣k ∈ K
}

, K ∈ {A-check, B-check, C-check, D-check} , sk
t =

{{
ak

i ,t

}N

i=1

}
(4.1)

where, each ak
i ,t contains the information of aircraft i on day t of check type k:

ak
i ,t =

{
M k

t , zk
i ,t (ωt ),δk

i ,t ,ηk
i ,t ,︸ ︷︷ ︸

Type 1

DYk
i ,t ,FHk

i ,t ,FCk
i ,t , yk

i ,t ,︸ ︷︷ ︸
Type 2

(4.2)

Li

(
yk

i ,t

)
, fhi ,t , fci ,t ,∆Lωi

(
yk

i ,t

)
,∆fhωi ,t+1,∆fcωi ,t+1︸ ︷︷ ︸

Type 3

}
(4.3)

Table 4.1: Different types of attribute within a state st .

Type 1 a(1),k
i ,t Attributes at time t that impact the action xt and are modified when there is new

information or after a maintenance check starts

Type 2 a(2),k
i ,t Attributes at time t that are updated every time based on their value at time t −1

Type 3 a(3),k
i ,t Attributes at time t that depend on exogenous information and can be estimated

according to historical aircraft utilization and maintenance data

These attributes can be divided into three types, as showed in Table 4.1, and the un-
certainties come from the attributes of Type 3, the aircraft utilization, and maintenance
check elapsed time. For aircraft utilization, maintenance planners of airlines only ob-
tain the exact aircraft FH and FC at the end of the day. For the actual maintenance check
elapsed time, it is only known when a letter check starts. Even so, in the model for-
mulation, we use the average value based on the historical daily utilization of fleet and
elapsed time of letter checks. To serve our purpose for the stochastic AMCS, we adapt
the post-decision state vector ŝt+1 before the arrival of new information:

ŝt =SX (st , xt ) (4.4)

where SX denote the state transition function without knowing any new information. In
stochastic AMCS, this chapter assumes that the new information {ωt }T+1

t=t0+1 is revealed
when a letter check starts or an aircraft ends its daily operation, then it updates ŝt :

st+1 =SW (ŝt ,ωt+1) (4.5)
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t −1 t t +1

sk
t−1 =

{
a(1),k

i ,t−1 , a(2),k
i ,t−1 , a(3),k

i ,t−1

}

x
t−

1
−−−→
(P-2)

A
rrival

−−−−−→
o

f
ω

t

ŝk
t−1 =

{
â(1),k

i ,t−1 , â(2),k
i ,t−1 , â(3),k

i ,t−1

} ωt−−−→
(P-1)

sk
t =

{
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i ,t , a(2),k
i ,t , a(3),k

i ,t

}

x
t

−−−→
(P-2)

A
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o

f
ω

t+
1

ŝk
t =

{
â(1),k
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} ωt+1−−−−−→
(P-1)

sk
t+1 =

{
a(1),k

i ,t+1 , a(2),k
i ,t+1 , a(3),k

i ,t+1

}

Figure 4.1: A two-phase attribute update mechanism: Phase 1 (P-1) updates the set of pre-decision attributes
ŝk

t to sk
t before defining any action; after performing an action xt , Phase 2 (P-2) updates sk

t to ŝk
t+1.

where SW is the transition function to update ŝt+1 according to the actual elapsed time
of daily FH. A history of such a process, including the sequence of actions and evolution
of states, can be represented as:(

ŝt0−1,ωt0 , st0 , xt0 , ŝt0 ,ωt0+1, ..., st−1, xt−1, ŝt−1,ωt , st , ..., sT , xT , ŝT ,ωT+1, sT+1, ...
)

(4.6)

The reason of including the post-decision state ŝt0−1 as the initial state and initial
information ωt0 in (4.6) is that some aircraft might be undergoing maintenance checks
in the initial state, ωt0 is equivalent to knowing when those initial ongoing maintenance
checks will be completed on the day t0. The state transition from t to t +1 can be sum-
marized in the following equations:

st =SW (ŝt−1,ωt )

xt =X π(st )

ŝt =SX (st , xt )

for t = t0, t0 +1, ..., T (4.7)

As shown in Figure 4.1, the state transition updates the attributes over the time hori-
zon in two phases: pre-decision (Phase 1) and post-decision (Phase 2). The new infor-
mation,ωt , arrives at the beginning of day t . The pre-decision phase (before making any
new decision) renews the hangar capacity, aircraft availability, and utilization for time t .
It updates either the elapsed time or updates the aircraft utilization based on actual FH
and FC (according to the new information ωt ). This indicates, e.g., how many hangars
can be used to perform maintenance checks on the day t , which aircraft is available
for operation, and when an ongoing maintenance check will be finished. In the post-
decision phase, we update the aircraft usage parameters of each check type according to
its actual daily utilization, and we also update the hangar occupation according to actual
maintenance check elapsed time. Since we divide attributes of a state into three types,
the transition of each type is presented separately in the following sub-sections.
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UPDATE OF TYPE 1 ATTRIBUTES

In Phase 1 (pre-decision phase in Figure 4.1), we first check if t is the end day for an
ongoing aircraft check before any action, or give the actual end date of a type k check if
it starts at t −1 (we assume the actual elapsed time is only known when the check starts,
namely, the new information arrives at t ), for all aircraft:

zk
i ,t (ωt ) =


0 if ẑk

i ,t−1 = t −1

ẑk
i ,t−1 +∆Lωi (yk

i ,t−1) if χk
i ,t−1 = 1

ẑk
i ,t−1 otherwise

(4.8)

where∆Lωi

(
yk

i ,t−1

)
follows a certain distribution and its value depends on the realization

ωt . If the end date of a type k check for an aircraft i is larger than the current calendar
day t , it means the check is still ongoing. Therefore we update δ̂k

i ,t−1 to δk
i ,t :

δk
i ,t =

{
0 if zk

i ,t = 0

δ̂k
i ,t−1 otherwise

(4.9)

The hangar capacity (available maintenance slots) also needs to be updated for time t
accordingly:

M k
t =∑

h
M k

h,t −
N∑

i=1
δk

i ,t (4.10)

where M k
h,t is the maintenance capacity per hangar h at time t . The the number of addi-

tional slots of type k check, ηk
i ,t , is updated according to the current capacity M k

h,t :

ηk
i ,t =−min

{
0, M k

t

}
(4.11)

In Phase 2 (post-decision phase in Figure 4.1), the action xt is taken into account to
update Type 1 attributes. For all aircraft that start type k check on day t (χk

i ,t = 1), the

values of zk
i ,t and δk

i ,t need to be updated. The zk
i ,t is updated according to:

ẑk
i ,t =

{
t +Li

(
yk

i ,t

)
if χk

i ,t = 1

zi ,t otherwise
(4.12)

Note that Li (yk
i ,t ) is the mean elapsed time according to historical maintenance check

data. Following this update, the values of δk
i ,t can also be renewed:

δ̂k
i ,t =

{
1 if χk

i ,t = 1

δk
i ,t otherwise

(4.13)
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UPDATE OF TYPE 2 ATTRIBUTES

Once the action of the day t is known, the update of Type 2 attributes is trivial. The
aircraft usage parameters are updated according to the following equations:

DYk
i ,t+1 =

(
1−δk

i ,t

)(
DYk

i ,t +1
)

(4.14)

And the aircraft FH and FC are renewed according to new information ωt :

Ψk
i ,t+1 =

(
1−δk

i ,t

)(
Ψk

i ,t +
(
1−δk ′

i ,t

)[
ψi ,t +∆ψi ,t+1(ωt+1)

])
, Ψ ∈ {FH,FC}, ψ ∈ {fh, fc}(4.15)

where k ′ refers to the check type that is different from k, if k = A-check, k ′ can be any
other check type (B-/C-/D-check) except for A-check. The usage parameters are reset to
0 if a maintenance check of type k was scheduled in the previous time step (i.e., δk

i ,t = 1).
Otherwise, the parameters are either increased by the average daily aging of the aircraft
or remain the same, if a maintenance of the type other than k is scheduled (i.e., δk ′

i ,t = 1).
∆ψi ,t (ωt ) follows a certain distribution and ψi ,t is the mean daily utilization of aircraft i
according to airline estimation.

After an action is determined, the maintenance labels for both type k checks are up-
dated consequently. The maintenance labels of an aircraft i are updated to the next label
using the following equation:

yk
i ,t+1 =

{
yk

i ,t +1 if χk
i ,t = 1

yk
i ,t otherwise

(4.16)

UPDATE OF TYPE 3 ATTRIBUTES

The Type 3 attributes are exogenous variables that are updated according to lookup ta-
bles, or provided by an airline, or estimated according to historical data of airline. They
refer to:

• Li

(
yk

i ,t

)
is the mean elapsed time from historical maintenance data.

• fhi ,t and fci ,t are estimated according to historical aircraft FH and FC.

• ∆Lωi

(
yk

i ,t

)
, ∆fhωi ,t+1 and ∆fcωi ,t+1 follow certain distributions respectively, and their

values all depend on the realization of ωt+1. We assume that the new information
ωt+1 arrives on day t +1.

4.4.2. CONSTRAINTS FORMULATION
There are two types of constraints in the AMCS optimization: maintenance check inter-
vals and operational constraints. The maintenance checks are usually scheduled before
the corresponding usage parameters reach maximums. This can be described as follows,
for each check k, aircraft i , and time t :

DYk
i ,t +1 ≤ I i

k-DY (4.17)

Ψk
i ,t +ψi ,t ≤ I i

k-Ψ (4.18)
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whereΨ ∈ {FH, FC} andψ ∈ {fh, fc}. This assessment is made on day t based on the mean
daily FH and FC, before any new information arrives. If an aircraft reaches its maximum
utilization but there is no maintenance slot available, an additional slot will be created
to cope with extra maintenance demand.

Before instigating an action, we need to verify whether or not there are sufficient
maintenance slots for a type k check in one of the hangars during the entire mean main-

tenance elapse time Li

(
yk

i ,t

)
:

χk
i ,t ≤

∑t+Li

(
yk

i ,t

)
τ=t M k

h,τ

Li

(
yk

i ,t

) , k ∈ K , t ∈ [t0,T ] , h ∈ {
the set of hangars for type k check

}
(4.19)

Li

(
yk

i ,t

)
is estimated according to historical data. Note that the actual maintenance

elapsed time of a type k check can be larger than Li

(
yk

i ,t

)
, if additional slots are needed

for an ongoing check, they will be created and updated according to (4.11).
Some airlines require a minimum number of days (dk ) between the start dates of two

type k checks to prepare the maintenance resources, such as tools, workforce, aircraft
spare parts and to avoid parallel peaks of workloads at the hangar, meaning that:

• If dk > 0, there can be at most one aircraft starting a type k check at time t .

• If dk > 0 and there is a type k check starting at t , no type k check is allowed to start
in [t , t +dk )

The requirement for the start date can be translated in the following equations:

N∑
i=1

χk
i ,t ≤

 1 if dk > 0 and
N∑

i=1
χk

i ,τ = 0, ∀τ ∈ [t −dk , t )

M k
t otherwise

t ∈ [t0,T ] (4.20)

It is worth mentioning that we use a generic indicator h to represent a hangar in this
chapter. If one wants to consider multiple locations of performing the aircraft main-
tenance check, each hangar h would have to be associated with a location lh and the

decision variable δk
i ,t will be replaced by δlh ,k

i ,t .

4.4.3. OBJECTIVE FUNCTION
We use the same objective function as described in [16], minimizing the unused FH [17,
18], instead of the total maintenance cost, due to the following reasons:

- The available maintenance cost data is unreliable and hard to associate to a spe-
cific maintenance check;

- Maintenance checks are mandatory, and the total maintenance costs of an airline
can only be reduced if the number of aircraft checks over time is also reduced;

- One day of an aircraft out of operations is more costly than the daily cost of a main-
tenance check.
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For an aircraft i and information ωt , the value of unused FH in a day t is equal to the
summation of the FH loss due to an A-/B-/C-/D-check scheduled for that day:

C k
t

(
sk

t , xk
t

)
=χk

i ,t

(
I i

k-FH −FHk
i ,t

)
, k ∈ K (4.21)

The contribution function of FH loss on day t is calculated by:

Ct (st , xt ) =
∑

k∈K

N∑
i=1

[
C k

t

(
sk

t , xk
t

)
+ληk

i ,t

]
(4.22)

where the first term on the right-hand side reflects the unused FH of aircraft i , the sec-
ond term is a penalty for creating an additional slot of type k check on the day t . The
penalty λ is introduced because creating one extra slot is equivalent to hiring a group of
technicians to perform a maintenance check on extra work-hours on the day t or sub-
contracting the maintenance check to a third party MRO. This action is very costly, and it
should only be an option if it avoids an aircraft on the ground, waiting for a maintenance
slot. For that reason, the value of λt should be much larger than C k

t

(
sk

t , xk
t

)
.

Our objective is then to minimize the sum of the total contributions for all states vis-
ited during the time horizon, discounted by a factor γ. That is, we search for the optimal
AMCS policy (π) that minimizes the contribution of our scheduling decisions over the
time horizon T − t0:

min
π

E

{
T∑

t=t0

γt−t0Ct
(
st ,X π (st )

)∣∣∣st0

}
(4.23)

whereπ is the scheduling policy that generates actions based on st , st0 denotes the initial
state. X π (st ) is the set of actions associated with st if the policy π is adopted.

4.4.4. OPTIMIZATION MODEL
After the introduction of state transition, constraints, and objective function, the opti-
mization problem is to minimize (4.23), subject to constraints (4.8)–(4.20).

The optimal maintenance check scheduling policy over the time horizon [t0,T ] can
be found by recursively computing the Bellman’s equation:

Vt (st ) = min
xt

{
Ct (st , xt )+γ

∑
st+1

p
(
st+1

∣∣st , xt
)

Vt+1(st+1)

}
(4.24)

where st+1 =SW (ŝt ,ωt+1) =SW
(
SX (st ,X π (st )) ,ωt+1

)
, and p

(
st+1

∣∣st
)

is the probability
of transitioning from state st to state st+1. The Bellman’s equation expresses the value of
being at each state st , by considering the immediate contribution of an action xt and the
future value.

4.5. METHODOLOGY
The stochastic AMCS is a typical Markov Decision Process (MDP) consisting of four ele-
ments: a set of states {st }, a set of associated actions

{
xt |xt =X π (st )

}
, the immediate re-

ward of doing an action Ct (st , xt ) and the probability p (st+1|st ) of transition from a state
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st to another new state st+1. Here we use Figure 4.2 to illustrate MDP and state transition
from stage t0 to stage t0 +1. In this example, st0 is the initial state and

{
xt0, j

}
is the set of

corresponding actions st0 . After making a decision xt0, j , we move from st0 to ŝt0, j but the
new information ωt0+1 has not arrived yet at this moment. The new information ωt0+1

is a stochastic variable, each realization ωl
t0+1 is associated with a transition probability

pt0+1,l , meaning that ωt0+1 has a probability pt0+1,l of becoming ωl
t0+1. However, ωl

t0+1
is only revealed after an action is made. In order to know the final optimal state we have
to keep making decisions until we reach the end of planning horizon.

There are three main hindrances that prevent us from planning the optimal schedule:

H.1 Multi-dimensional state vector st (each aircraft has many attributes)

H.2 Multi-dimensional action vector xt (selecting different combinations of aircraft for
maintenance check)

H.3 Very large outcome space (the optimal final state is unknown)

In particular, H.2 and H.3 are closely correlated. For example, if the maintenance capac-
ity of the day t is M k

t for type k check, we would have the following number of possible
actions:

∏
k∈K

M k
t∑

mk=0

N !

(N −mk )! mk !
(4.25)

where N !
(N−mk )! mk !

represents the possible selections of aircraft for type k check. The

number of outcome states for type k check is the same as (4.25). As a result, the number
of possible actions on the day T is:

T∏
t=t0

∏
k∈K

M k
t∑

mk=0

N !

(N −mk )! mk !
(4.26)

Even if for an example of two check types, A-check and C-check, a small fleet with ten
aircraft, and one daily slot available for each check type, we would have 121 possible ac-
tions and associated outcome states on the first day, and more than 1.7 million possible
sequences of actions just after three days.

A potential solution to address the problem formulated as MDP is dynamic program-
ming (DP). However, a classic implementation DP requires solving (4.24) recursively,
from T to t0. This process is not possible for AMCS since the final state is unknown.
Thus, forward induction becomes the only option, meaning that we have to determine
optimal actions from an initial state until the end of the planning horizon while estimat-
ing the impacts of current actions on future stages.

Chapter 2 addresses the deterministic AMCS optimization using a DP-based method-
ology by defining maintenance check priority, applying a thrifty algorithm to estimate
if the remaining slots will be sufficient, discretization, and state aggregation under DP
framework [16]. However, the DP-based methodology is not suitable for stochastic AMCS
since it relies on having deterministic information on aircraft daily utilization and main-
tenance elapsed time. The DP-based methodology keeps a set of workable states for



4

90 4. STOCHASTIC AIRCRAFT MAINTENANCE CHECK SCHEDULING OPTIMIZATION
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Figure 4.2: An example of state transition from stage t0 to stage t0 +1 in stochastic AMCS.
{

xt0 , j

}
is the set of

possible actions associated with st0 and
{

ŝt0 , j

}
is the set of resulting post-decision states. The pre-decision

state s
j
t0+1,1 is only known when new information ω

j
t0+1 arrives and pt0+1, j is the probability of transitioning

the state ŝt0 ,1 to s
j
t0+1,1.
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each day t using discretization and aggregation, from which it computes the workable
states for t + 1. But in stochastic AMCS, once we make a maintenance decision on t ,
there is only one state on t +1 after the new information is revealed. Working with a set
of workable states and exploring the optimal sequence of actions is no longer possible.
Therefore, we propose an approximate dynamic programming (ADP) methodology in
which we approximate the future costs of performing a maintenance check action un-
der the DP framework, using Monte Carlo simulation to capture the uncertainties in our
decision framework.

This section presents the detail of the lookahead ADP methodology for stochastic
AMCS. We begin with a brief introduction to the ADP concept in Subsection 4.5.1. Sub-
section 4.5.2 presents how we use Monte Carlo sampling to simulate uncertainty. Sub-
section 4.5.3 defines maintenance check priority for each aircraft and Subsection 4.5.4
defines basic rules for AMCS. After that, we describe two reference AMCS policies in Sub-
section 4.5.5 as benchmarks. In Subsection 4.5.6, we present the detail of the lookahead
ADP methodology. The last subsection (Subsection 4.5.7) shows an analysis of algorithm
complexity.

4.5.1. APPROXIMATE DYNAMIC PROGRAMMING
Approximate Dynamic Programming (ADP) is a modeling framework, based on an MDP
model, that offers several strategies for tackling the curses of dimensionality in large,
multi-period, stochastic optimization problems [19]. ADP has been a research area of
great interest for the last 30 years and is known under various names (e.g., reinforcement
learning, neuro-dynamic programming). The main idea is to make decisions by optimiz-
ing instant reward/cost (myopic policy); or look ahead to future reward/cost (lookahead
policy) to make decisions; or use approximation techniques, such as computer simula-
tion and machine learning to approximate either the optimal policy (policy iteration) or
the value function (value iteration), instead of solving (4.24). Policy iteration [20, 21] or
value iteration [22–25] usually requires a model, either parametric or non-parametric, to
capture the features of a state. One common approach is to formulate the policy/value
function as a linear combination of the values from each feature. However, neither policy
iteration nor value iteration is deemed suitable for stochastic AMCS due to the following
limitations:

1) Objective Setting: Since our objective is to minimize the total unused FH between
successive maintenance checks, there is no direct link between policy/objective
function and the features of a state that can impact the maintenance check deci-
sion. Moreover, the total unused FH is the summation of unused FH of each letter
check for the entire planning horizon; however, the number of letter checks for
each aircraft is a part of the solution.

2) Changing of Fleet Size: The fleet size varies during the planning horizon, e.g., new
aircraft may phase-in, and old aircraft can phase-out/retire, which changes the
environment conditions and compromises the training of policy function or value
function.

On the other hand, using the lookahead approach for ADP instead of policy itera-
tion or value iteration can skip the steps of feature selection and training of policy/value
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function. The key to lookahead approach is a lookahead policy that estimates the cost
of performing a maintenance check action from a future period. Besides, a lookahead
policy can easily adapt itself to the new fleet status and environment, e.g., the change of
fleet size or maintenance slots. Therefore, this chapter resorts to implementing a looka-
head policy under the ADP, which combines Monte Carlo sampling and simulation for
the stochastic AMCS. It uses the estimation of the cost of performing a maintenance
check action to approximate the value Vt+1 (st+1) in (4.24). Based on the estimation of
future cost and immediate contribution, it makes the best maintenance check decision.

4.5.2. MODELING OF UNCERTAINTY

Inspired by [9] and [10], we use stochastic simulation to capture uncertainty (generate
information). Monte Carlo sampling is a computational technique based on construct-
ing a random process and carrying out a numerical experiment by N -fold sampling from
a random sequence of numbers with a prescribed probability distribution [26]. The sets
of sample paths

{
wn

}
, or so-called new information, are generated by Monte Carlo sam-

pling. Each sample path is a sequence of information wn =
{
ωn

t0+1,ωn
t0+2, . . . ,ωn

T+1

}
. We

apply the classic Monte Carlo sampling on the sampling of aircraft daily FH and FC from
historical data. For the aircraft daily FH, we first compute the mean (µi ) and variance
(σi ) from historical aircraft daily utilization, then sample ∆fhωi ,t from normal distribu-

tion N
(
µi ,σ2

i

)
, and ∆fcωi ,t also follows the same process.

On the other hand, for the maintenance elapsed time, we opt to generate integers to
be consistent with the daily maintenance slots and flight schedule. We have adapted the
Monte Carlo sampling to serve our purpose. Given a set of historical maintenance check
elapsed time from an airline:

Step 1: Count the number of data points for a specific letter check (ncount).

Step 2: Generate a uniformly distributed integer q , that is, q ∼U (1,ncount).

Step 3: Pick the q th data point as the additional maintenance check elapsed time
(new information).

We use an example to elaborate Monte Carlo sampling for maintenance check elapsed
time. Given a set of C-check label and extra elapsed time (in working days) of aircraft i :

C1.1: −1, 0, 1, −2, 2, 0, 0, 0, 0, 2, −1, 0, 0, 0, 1, −1 (4.27)

where “-1” means C1.1 finishes one day earlier, “-2” means C1.1 ends two day earlier,
“1” indicates that it takes one more day than expected, and “2” indicates that C1.1 lasts
two days longer than average. We observe from (4.27) that there are 16 data points in
total (ncount = 16), these 16 points represents the historical duration of C1.1. Next, we
generate a uniformly distributed integer q ∈ [1,16], then pick the q th data point as the
actual elapsed time of C1.1, and that completes the sampling of one specific check. For
example, if q = 5, we pick the 5th data point from (4.27) and set ∆Lωi

(
yk

i .t

) = 2, where

yk
i .t = C1.1. It repeats the same process for all letter check labels for the entire fleet.
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After Monte Carlo sampling, the new information ωt+1 has the form of:

ωt+1 =
{
ωA

t+1,ωB
t+1,ωC

t+1,ωD
t+1

}
(4.28)

ωk
t+1 =

{
∆Lωi

(
yk

i ,t

)
, ∆fhωi ,t+1, ∆fcωi ,t+1

}
t ∈ [t0 +1,T ], k ∈ {A,B,C,D} (4.29)

For each sample path {ωt+1,ωt+2, . . .ωT+1}, we make letter check decisions from t to T
using pre-defined rules (policies), and we call this process one simulation.

4.5.3. DEFINING MAINTENANCE CHECK PRIORITY
Another major challenge in stochastic AMCS is the multi-dimensional action vector. Ac-

cording to (4.25), there are
∑

k
∑M k

t
mk=0

∏
k

N !
(N−mk )! mk !

actions on day t . To reduce the

number of maintenance check actions, we propose a prioritization solution in the previ-
ous work [16], i.e., defining priorities for the fleet according to the rule of earliest deadline
first for each check type. This rule does not specifically take any assumption on fleet size.
It is common in maintenance scheduling and also convenient to implement in practice.
Different from [16], we use the term expected remaining utilization in stochastic AMCS
to indicate the maintenance check deadline. The reason is that we can only estimate the
expected remaining utilization according to the mean daily FH and FC of each aircraft
and corresponding inspection interval. The expected remaining utilization unifies three
different usage parameters of each aircraft (DY/FH/FC). It is defined by the fewest days
to the next letter check:

Rk
i ,t = min

{
Rk-DY

i ,t , Rk-FH
i ,t , Rk-FC

i ,t

}
(4.30)

The Rk-DY
i ,t , Rk-FH

i ,t and Rk-FC
i ,t refer to the expected remaining utilization with respect to

each usage parameter and associated interval specified by the MPD:

Rk-DY
i ,t = argmax

r∈N

{
r ≤ I i

k-DY −DYk
i ,t

}
(4.31)

Rk-Ψ
i ,t = argmax

r∈N

{t+r∑
τ=t

fhi ,τ ≤ I i
k-Ψ−Ψk

i ,t

}
(4.32)

whereΨ ∈ {FH, FC}, ψ ∈ {fh, fc}, ψi ,τ and fci ,τ denote the average daily FH and FC of air-
craft i ; N is the set of natural numbers and k indicates the check type. After the expected

remaining utilization is calculated, we sort
{

Rk
i ,t

}N

i=1
in ascending order:

R̃k
1,t , R̃k

2,t , R̃k
3,t , . . . , R̃k

N ,t R̃k
i ,t ≤ R̃k

i+1,t , R̃k
i ,t ∈

{
Rk

i ,t

}N

i=1
(4.33)

The fleet is scheduled maintenance check according to the sequence in (4.33): aircraft
with lower expected remaining utilization is given a higher check priority. For each letter
check type, after assigning priorities to the entire fleet, the combination of aircraft selec-
tion for maintenance and the number of outcome states of each action is reduced from
(4.25) to 1. Since heavy maintenance (e.g., C-/D-check) is more restrictive and demand-
ing in terms of resources, it has a higher priority than other check types.
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4.5.4. BASIC SCHEDULING RULES FOR STOCHASTIC AMCS
This chapter defines some basic rules for making AMCS decisions before presenting the
scheduling policies. These basic rules are the prerequisites for the stochastic AMCS:

An aircraft i is allocated a type k check if its expected remaining utilization is lower

than a threshold (i.e., when Rk
i ,t ≤ Rk

lb). This threshold is usually specified by airlines

to prevent scheduling maintenance checks too often on the same aircraft.

(i)

If the number of type k check slots is sufficient, the aircraft that has lowest expected

remaining utilization R̃k
1,t = mini

{
Rk

i ,t

}
has highest priority of type k check.

(ii)

If aircraft i has a higher type k check priority than aircraft j
(
Rk

i ,t < Rk
j ,t

)
but the

remaining slots of type k check are only sufficient to accommodate a type k check
for aircraft j rather than for aircraft i , swap the priorities between aircraft i and j
in the AMCS for type k check.

(iii)

If an aircraft reaches its maximum utilization of type k check on the day t and there
is no available slot, additional slots will be created until the type k check is finished.

(iv)

4.5.5. REFERENCE SCHEDULING POLICIES
To address the stochastic AMCS, we propose to use ADP to schedule aircraft mainte-
nance checks based on fleet status, following pre-defined policies. In this subsection,
we introduce two simple scheduling policies, the myopic policy and thrifty policy. These
two policies are the most fundamental scheduling policies, although they are not com-
mon in the AMCS application. The results from the myopic policy indicate the extreme
of being greedy. It also serves as an upper bound for the average aircraft utilization and
a lower bound for the total number of maintenance checks. On the contrary, the results
from the thrifty policy indicate the extreme of being conservative. It provides a lower
bound for the average aircraft utilization and an upper bound for the total number of
maintenance checks. In this study, we use the outcomes from myopic and thrifty poli-
cies to benchmark our hybrid lookahead policy so that we can have some insight into
how far the KPIs are from the associated lower and upper bounds.

MYOPIC POLICY

Myopic policy is one of the most elementary policies. It requires only the state st and
makes a maintenance check decision according to the minimum immediate contribu-
tion, without looking into the future cost. For each day t , the myopic policy enables us
to make maintenance check decision only if an aircraft reaches the inspection interval
of type k check. This is equivalent to assuming Vt+1(st+1) = 0 in (4.24):

x∗
t = argmin

xt∈X t

{Ct (st , xt )} (4.34)

where X t denotes the set of possible actions of day t , X t =
{
X π (st )

}
. The myopic policy

runs very fast and if it results in no additional slot in stochastic AMCS (e.g., there is suffi-
cient aircraft maintenance capacity), then (4.34) is already the optimal policy. However,
considering the limited maintenance capacity in practice, myopic policy often leads to
poor solutions in terms of creating lots of additional maintenance slots.
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THRIFTY POLICY

The thrifty policy is a conservative policy that schedules maintenance check whenever
there is an available slot [16], and this can be interpreted as:

x∗
t = argmax

xt∈X t

{ ∑
k∈{A,C}

N∑
i=1

χk
i ,t

∣∣∣ N∑
i=1

χk
i ,t ≤

∑
h

M k
h,t , χk

i ,t ∈ xt

}
(4.35)

where X t =
{
X π (st )

}
. Similar to the myopic policy, the thrifty policy only requires the

state st to make a maintenance check decision without looking into the future cost. In
particular, it checks whether or not the available slots from t matches the mean main-
tenance check elapsed time (the actual elapsed time is only known at t +1 after a main-
tenance check is decided). It runs even faster than the myopic policy but results in low
aircraft utilization and a relatively large number of maintenance checks.

4.5.6. LOOKAHEAD APPROXIMATE DYNAMIC PROGRAMMING
The lookahead approximate dynamic programming (ADP) methodology consists of two
parts, a dynamic programming framework, and a hybrid lookahead policy. The dynamic
programming framework is the same as described in [16]. The hybrid lookahead policy
combines deterministic and stochastic forecasts.

A HYBRID LOOKAHEAD POLICY

To address the stochastic AMCS, we need to solve the following equation:

x∗
t = argmin

xt∈X t

{
Ct (st , xt )+γV t (st )

}
(4.36)

where V t (st ) is an approximation of the value function Vt (st ) in (4.24) and also the
key to solve (4.36). Since there are limited maintenance resources and capacities in the
stochastic AMCS, creating extra maintenance slots beyond the maintenance capacity of
airlines is one of the major operating costs. In this way, we first use the thrifty policy dis-
cussed in [16] to explore the future and estimate the number of additional maintenance
slots that would be needed if an action is taken:

gk (ŝt , t + th) =
N∑

i=1

t+th∑
τ=t

η̂k
i ,τ, k ∈ K (4.37)

where η̂k
i ,τ denotes the number of additional slots created on day τ, without knowing any

information from t + 1, and th is a positive integer. Note that computing gk (ŝt , t + th)
in (4.37) requires ŝt (ŝt = SX (st , xt )), the mean aircraft daily utilization, and the mean
elapsed time for the entire fleet. Obtaining gk (ŝt , t + th) is equivalent to applying (4.35)
from t +1 to t + th .

As C-checks happen every 18–24 months, and D-checks occur every 5–6 years, the
deviation of aircraft daily utilization from its mean value will cancel out during this long
period. It means that we can use the average daily utilization of each aircraft to sim-
ulate when the coming C-/D-checks take place. The “self-cancellation” of uncertainty
also applies to maintenance check elapsed time. For instance, one C-check may require
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several days more to complete, but the other needs fewer days to finish. If these two C-
checks are executed one after another in the same hangar, it can mitigate the impact of
uncertainty. However, (4.37) it cannot predict the future extra maintenance slots for the
other check types that happen more often e.g., A-/B-checks. The future period [t , t + th]
to look ahead is too large in (4.37), and A-/B-check occurs too often to anticipate using
only the mean aircraft daily utilization. Hence, to provide a more accurate prediction
on the extra maintenance slots for A-/B-check, we propose a hybrid policy combining
deterministic and stochastic forecasts:

- Step 1: Determine the optimal C- & D-check actions using deterministic forecasts

- Step 2: Determine the optimal A- & B-check actions using stochastic forecasts

DETERMINE OPTIMAL C- AND D-CHECK ACTIONS USING DETERMINISTIC FORECASTS

Before determining the optimal C- and D-check actions, it is worth mentioning that
wasting an available maintenance slot at present can result in a shortage of maintenance
slots in the future. From the perspective of an airline, if we skip a maintenance slot on
the day t1, it means that some technicians are idle (not performing maintenance works),
and the airline still needs to pay for those technicians. On the other hand, when we
create one extra slot on the day t2 (t2 > t1), the airline has to spend more money to com-
pensate the extra work from the technicians or to subcontract the maintenance check.
Therefore, we want to penalize both the waste of an available slot on day t and the extra
costs for creating more slots in [t +1, t + th]. We give a penalty to the objective values
when all the following conditions are met:

C.1 There are sufficient slots for a type k check, namely, ∃i , Rk
i ,t ≤ Rk

lb and constraint
(4.19) holds.

C.2 gk (ŝt , t + th) > 0, i.e., there is at least one extra maintenance slot of type k check
created in [t , t + th].

C.3 There is no action of type k check, i.e.,
∑N

i=1χ
k
i ,t = 0

According to this logic, we use the following approximation for Vt (st ) in (4.24):

Vt (st ) ≈V
(1)
t (st ) =

∑
k

(
λgk (ŝt , t + th)

+ max
Rk

i ,t≤Rk
lb

sgn


∑t+Li

(
yk

i ,t

)
τ=t M k

h,τ

Li

(
yk

i ,t

) −χk
i ,t


︸ ︷︷ ︸

C.1

sgn
(
gk (ŝt , t + th)

)︸ ︷︷ ︸
C.2

[
1− sgn

(
N∑

i=1
χk

i ,t

)]
︸ ︷︷ ︸

C.3

ξ

)
(4.38)

where λ is a large constant (cost per extra slot) to prevent creating unnecessary addi-
tional maintenance slots, ξ is a large constant to prevent the waste of an available slot,
and “sgn” is the sign function:

sgn(α) =


−1 if α< 0
0 if α= 0
1 if α> 0

(4.39)
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We decide C- and D-check actions for the day t , i.e., only keep the optimal C- and D-
check actions:

x∗
t ,det =

{
xA∗

t ,det, xB∗
t ,det, xC∗

t ,det, xD∗
t ,det

}
= argmin

xt∈X t

{
Ct (st , xt )+γV

(1)
t (st )

}
(4.40)

xC∗
t = xC∗

t ,det, xD∗
t = xD∗

t ,det (4.41)

In (4.40), “det” is the abbreviation of “deterministic”. For C-/D-check, we use the deter-
ministic forecasts, namely, the mean daily utilization and maintenance elapsed time, to
assess whether the maintenance slots are sufficient in the future in the thrifty algorithm
for [t +1, t + th], then determine the best C- and D-check action. In this way, we tremen-
dously reduce ADP algorithm complexity for prediction of coming C-/D-checks. After
obtaining the optimal C-/D-check actions from (4.40) and (4.41), we fix xC∗

t and xD∗
t .

DETERMINE OPTIMAL A- AND B-CHECK ACTIONS USING STOCHASTIC FORECASTS

Since the aircraft A-/B-check occurs once every few months, the uncertainty in daily
aircraft utilization can significantly impact the dates of A-/B-checks. We can rely on the
stochastic forecasts to estimate when the A- and B-checks are likely to occur in a shorter
future period [t +1, t + tl ] (tl ¿ th). We carry out Monte Carlo simulations:

wn
t+1 =

{
ωn

t+1, ωn
t+2, . . . ,ωn

t+tl+1

}
, n = 1,2, . . . ,nsample, t ∈ [t0,T ] (4.42)

gωk
(
ŝt , t + tl , wn

t+1

)= N∑
i=1

t+tl∑
τ=t

ηk
i ,τ

(
ωn
τ+1

)
, k ∈ K (4.43)

Gk (ŝt , t + tl ) = 1

nsample

nsample∑
n=1

gωk
(
ŝt , t + tl , wn

t+1

)
(4.44)

Similar to (4.38), we use the following approximation for Vt (st ) in (4.24):

Vt (st ) ≈V
(2)
t (st ) =

∑
k

(
λGk (ŝt , t + tl )

+ max
Rk

i ,t≤Rk
lb

sgn


∑t+Li

(
yk

i ,t

)
τ=t M k

h,τ

Li

(
yk

i ,t

) −χk
i ,t


sgn(Gk (ŝt , t + tl ))

[
1− sgn

(
N∑

i=1
χk

i ,t

)]
ξ

)
(4.45)

After that, we determine the optimal A- and B-check actions:

x∗
t = {

xA∗
t , xB∗

t , xC∗
t , xD∗

t

}= argmin{
xA

t ,xB
t ,xC∗

t ,xD∗
t ,

}
∈X t

{
Ct

(
st ,

{
xA

t , xB
t , xC∗

t , xD∗
t ,

})+γλV
(2)
t (st )

}
(4.46)

Note that we use the deterministic forecasts from [t +1, t + th], and stochastic forecasts
from [t +1, t + tl ] to make the maintenance check decision only for the day t . After that,
we move to t +1 and update the state according to new information. We repeat the same
process on t + 1 to determine the maintenance check action for the day t + 1. We call
(4.40)–(4.46) a lookahead ADP methodology. The detail of lookahead ADP methodology
is presented in Algorithm 3.
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Algorithm 3 A Lookahead ADP Methodology for Stochastic AMCS Optimization

1: Initialize ŝt0−1 . Initial input data
2: ŝt−1 ← ŝt0−1

3: procedure APPROXIMATE DYNAMIC PROGRAMMING

4: t ← t0

5:
6: while t0 < T do

7: ωt ←−
{
∆Lωi

(
yk

i ,t−1

)
, ∆fhωi ,t , ∆fcωi ,t

}N

i=1
. Arrival of new information

8: st ←SW (
ŝt−1 ,ωt

)
. Pre-Decision update

9: Compute maintenance check priorities for both check types

10: procedure FIND THE OPTIMAL MAINTENANCE CHECK ACTION

11: Xt ←
{

xt |xt =X π (st )
}

. Generate a set of feasible actions

12: procedure DETERMINE THE BEST C- AND D-CHECK DECISIONS

13: gk (ŝt , t +T ) ←∑N
i=1

∑t+T
τ=t η̂

k
i ,τ , k ∈ K

14: V
(1)
t (st ) ← Eq. (4.38)

15:
{

xA∗
t ,det , xB∗

t ,det , xC∗
t ,det

, xD∗
t ,det

}
← argminxt ∈Xt

{
Ct (st , xt )+γV

(1)
t (st )

}
. ŝt =SX (st , xt )

16: xC∗
t ← xC∗

t ,det
, xD∗

t ← xD∗
t ,det . Find the optimal C- and D-check actions

17: end procedure

18: procedure DETERMINE THE BEST A- AND B-CHECK DECISIONS

19: wn
t+1 =

{
ωn

t+1 , ωn
t+2 , . . . ,ωn

t+tl +1

}
n = 1,2, . . . ,nsample , t ∈ [

t0 ,T
]

. Monte Carlo sampling

20: gω
k

(
ŝt , t + tl , wn

t+1

)
←∑N

i=1
∑t+tl
τ=t ηk

i ,τ

(
ωn
τ+1

)
. Simulation

21: Gk
(
ŝt , t + tl

)← 1
nsample

∑nsample
n=1 gω

k

(
ŝt , t + tl , wn

t+1

)
22: V

(2)
t (st ) ← Eq. (4.45)

23:
{

xA∗
t , xB∗

t , xC∗
t , xD∗

t

}
← argmin{

xA
t ,xB

t ,xC∗
t ,xD∗

t ,

}
∈Xt

{
Ct

(
st ,

{
xA

t , xB
t , xC∗

t , xD∗
t ,

})
+γλV

(2)
t (st )

}
24: end procedure

25: x∗t ←
{

xA∗
t , xB∗

t , xC∗
t , xD∗

t

}
. Optimal maintenance check action found

26: ŝ∗t ←SX (
st , x∗t

)
. Post-Decision update

27: ŝt ← ŝ∗t
28: end procedure

29: t ← t +1
30: end while

31: end procedure
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4.5.7. ALGORITHM COMPLEXITY
To access the algorithm complexity of the lookahead ADP methodology, we count how
many times the state transition function (4.7) is called to find the best action x∗

t of the
day t . For an action xt , we mean a set of maintenance check decisions for all check
types. For comparison purpose, we also provide the algorithm complexity analysis for
the myopic and thrifty policies.

Since there is only one state on a day t in stochastic AMCS, each state st has at most
nact actions (nact depends on maintenance capacity), in myopic policy, we have to check
all possible actions and find the one resulting the minimum daily contribution, without
looking into the future cost. It means that if there are nact actions on the day t , we have
to call (4.7) nact times in any case in the myopic policy. Hence, the algorithm complexity
of the myopic policy is nact.

For thrifty policy, we allocate the maintenance checks whenever there are sufficient
available maintenance slots (based on the mean elapsed time of the letter checks). In-
stead of evaluating all possible actions on the day t , we check the hangar capacity first
and see how many maintenance checks that the hangars can accommodate, then choose
the action that fits the most maintenance checks in the hangars. Therefore, we just need
to call (4.7) only once on the day t in the thrifty policy.

In the lookahead ADP methodology, it makes the aircraft maintenance check deci-
sions in two steps. It first determines the optimal actions for aircraft C- and D-checks,
and then for aircraft A- and B-checks. In the first step, we apply the thrifty algorithm to
compute the number of extra maintenance slots for the period of [t +1, t + th]. Since we
only need to call (4.7) once for each day in the thrifty algorithm, computing the number
of extra maintenance slots for [t +1, t + th] is equivalent to calling (4.7) th times. Multi-
plying th with the number of actions nact implies the algorithm complexity of the first
step:

nactth (4.47)

In the second step of the lookahead ADP methodology, we fix the optimal C- and D-check
actions obtained from the previous step, then use Monte Carlo simulations to estimate
the number of extra A- and B-check slots for the future period [t +1, t + tl ]. For each
sample path, we use the thrifty algorithm to compute the extra slots, that is, running
the thrifty algorithm on [t +1, t + tl ]. It means that we call (4.7) tl times for each sample
path. The total number of sample paths nsample makes us call (4.7) nsampletl times for
each action. Since we already determine the optimal aircraft C- and D-check decisions
in the first step, the number of actions in the second step, nA

act, is smaller than nact. The
algorithm complexity of the second step is:

nactnsampletl (4.48)

Summing (4.47) and (4.48) gives the following algorithm complexity of determining the
optimal action on a day t in the lookahead ADP methodology:

nactth +nA
actnsampletl < nact

(
th +nsampletl

)
(4.49)

We can see that the lookahead ADP methodology has polynomial time complexity, which
is suitable for practical implementation in AMCS problem.
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Table 4.2: A- and C-check intervals of Airbus A319, A320 and A321 [28].

Aircraft Type Check Type Calendar Days Flight Hours Flight Cycles

A319
A-Check 120 750 750

C-Check 730 7500 5000

A320
A-Check 120 750 750

C-Check 730 7500 5000

A321-1
A-Check 120 750 750

C-Check 730 7500 5000

A321-2
A-Check 120 750 750

C-Check 1096 12000 8000

4.6. RESULTS
The proposed ADP methodology is evaluated using the aircraft maintenance data, and
daily utilization from a European airline [27]. The test fleet is the Airbus A320 family
(A319, A320, A321-1, and A321-2), consisting of 40-50 aircraft. The airline distributes
the tasks within B-check into successive A-checks (no B-check), merges the D-checks
in C-checks, and labels them as heavy C-checks. Hence, there are only A- and C-check
in the evaluation and Table 4.2 presents the associated inspection interval of each air-
craft type. Two case studies are presented in this evaluation: the first case uses the data
from the historical period September 25th 2017 to December 31st 2021 and has aircraft
type A319, A320, and A321-1; the second case focuses on the period of March 20th 2019
to December 31st 2023 and has all four aircraft type. For each test case, there are five
schedule/policies/methodologies tested:

M.1 Lookahead ADP methodology with deterministic and stochastic forecasts, labeled
as “ADP-DS”

M.2 The optimal deterministic AMCS schedule planned by [16], labeled as “DP-based”

M.3 Myopic policy, labeled as “Myopic”

M.4 Thrifty policy, labeled as “Thrifty”

M.5 Lookahead ADP methodology itself using only deterministic forecasts, labeled as
“ADP-D”

The ADP-D includes only (4.38)—(4.40) and make the optimal AMCS decision x∗
t =

x∗
t ,det. We benchmark the outcomes from M.1 against the results from M.2—M.5.

4.6.1. MAINTENANCE ACTIONS
The airline has at most two A-check slots per workday and three C-check slots per day
during the C-check period, but there are at least three days between the start dates of
two successive C-checks. The airline needs these three days to prepare the maintenance
tools. It means that there could be at most one C-check starting on a day. The maximum
of two A-checks slots on weekdays and the possibility of merging A- into C-check to-
gether lead to 12 possible combinations of total daily A- and C-check actions, as shown
in Table 4.3.
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Table 4.3: Possible aircraft maintenance check actions on a day t .

Maintenance Check Action Number of A-Checks Number of C-Checks

1 0 0

2 0 1

3 1 0

4 1 1

5 2 0

6 2 1

7 3 0

8 3 1

9 4 0

10 4 1

11 5 0

12 5 1

4.6.2. KEY PERFORMANCE INDICATORS

To discuss the results, we use a set of key performance indicators (KPIs) for each type
of letter check. These KPIs are the average FH of the entire fleet, the total number of
maintenance checks, the total number of extra slots, and the average computation time
of making the optimal decision for a day.

To validate the proposed lookahead ADP methodology, we use 100 test runs in each
test case. Each test run corresponds to one test sample path generated using Monte-
Carlo sampling, from which we can see how well the lookahead ADP copes with uncer-
tainty itself and how robust this methodology is. After one test run, we obtain a set of
associated average FH of the fleet, the total number of maintenance checks, the total
number of extra slots, and the average computation time of making the optimal deci-
sion for a day. Each of the KPIs is the mean of 100 test runs. For example, the KPI average
FH of the entire fleet is the mean of 100 average FH resulting from 100 test runs. And
this also applies to the calculation of other KPIs for all the policies/methodologies to be
tested.

To simulate the performance of the DP-based methodology over the test sample
paths, we first plan the optimal maintenance check schedule for the deterministic AMCS
model and then test the optimal schedule over the sample paths and adjust the A-/C-
check when necessary. An additional maintenance slot is created every time the main-
tenance schedule becomes unfeasible.

For the other policies/methodologies, we plan the optimal maintenance check day
by day, from the first day to the last day of the planning horizon, considering the new
information provided per day, according to the sample path. The test cases are further
used to support a sensitivity analysis on some of the model parameters. All the aircraft
A- and C-check schedules are generated using the same input data and under the same
operational constraints of the airline, as described in [16].
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Table 4.4: Model parameters for Stochastic AMCS optimization

Parameters Description Value Unit

RA
lb A utilization threshold to prevent scheduling A-check too often [16] 21 day

RC
lb A utilization threshold to prevent scheduling C-check too often [16] 210 day

γ Discount factor for Stochastic AMCS model 1 —

λ Cost of creating an additional maintenance slot 105 FH

ξ Penalty for the waste of an available maintenance slot 1020 FH

nsample The number of sample paths for Monte Carlo simulations 50 —

tl A future time period for A-check to look ahead in rolling horizon 183 day

th A future time period for C-check to look ahead in rolling horizon 1461 day

4.6.3. MODEL PARAMETERS

We assign 105 FH to λ to avoid creating an extra maintenance slot, based on the ob-
servation of objective values from our previous research. The objective values of the
deterministic AMCS have a magnitude of 105 [16]. Setting λ = 105 can avoid creating
unnecessary additional maintenance slots. We assign 1020 FH to ξ to penalize the action
of wasting all available maintenance slots of a day when the lookahead policy predicts
an extra maintenance slot needed in the future. The reason for having ξÀ λ is that, in
the situation of wasting an available slot of a day t1 when the lookahead policy predicts
an extra maintenance slot on a day t2 > t1, the airline still has to pay for technicians for
being idle on t1 and spend a higher cost to compensate the extra work from technicians
on t2. Therefore, we use ξ = 1020 to prevent this circumstance. For ADP-DS, we use 50
sample paths in Monte Carlo simulation to evaluate a decision, i.e., nsample = 50 (600 in
total for 12 actions). For ADP-D, we use only the mean daily aircraft utilization and the
mean maintenance check elapsed time.

Both test cases are conducted using parallel computing on a quad-core workstation.
We look six months ahead for A-check (tl = 183), and four years ahead for C-check (th =
1461) to estimate the cost of creating additional maintenance slots. The reason is that
if the algorithm allocates an A-/C-check to an aircraft, we anticipate the next check. A
summary of model parameters is presented in Table 4.4.

4.6.4. OUTCOMES FOR THE TEST CASE 2017–2020
We first look at the KPIs of the test case 2017–2020. As shown in Table 4.5, the sched-
ules from DP-based methodology and the myopic policy both result in more than 90
extra C-checks slots and 20 extra A-checks slots on average for the 100 test sample paths,
compared with the C-check schedule and A-check estimation of the airline (15 addi-
tional slots for each check type). It means that the optimal A- and C-check schedule
from the deterministic AMCS generated by the DP-based methodology is not robust to
uncertainty, and, without looking into the future cost, the myopic policy is too greedy in
A- and C-check scheduling. Although these two approaches at the moment of planning
achieve higher aircraft utilization for both check types, the airline has to face extra costs
to create additional maintenance capacity if one of the plans is executed.

Conversely, the thrifty policy does not need to create any extra maintenance slot for
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Table 4.5: Comparison of KPIs for September 25th 2017–December 31st 2020 for 100 test sample paths. The
numbers labeled with “*” are estimated or extrapolated according to the historical maintenance data of the
airline. ADP-D represents the lookahead ADP with only deterministic forecasts. ADP-DS represents the looka-
head ADP with both deterministic and stochastic forecasts.

KPI 2017–2020 Airline Stochastic Results (100 test runs)

(1194 days) Schedule DP-based Myopic Thrifty ADP-D ADP-DS

C-check

Mean Average FH 6646.8 6785.4 7142.1 6200.6 6849.2 6838.4

Mean Extra Slots 15 90.4 368.4 0.0 6.5 5.7

Mean Total Checks 88 77.0 75.3 83.1 79.2 79.4

A-check

Mean Average FH 695.0∗ 713.3 744.6 573.6 705.9 703.5

Mean Extra Slots ≥ 15∗ 20.4 367.3 0.0 1.6 0.8

Mean Total Checks 750∗ 727.0 698.4 893.6 733.6 735.9

Mean Total Extra Slots 30∗ 110.8 735.7 0.0 8.1 6.5

Computation Time/day [s] —– 0.02 0.09 0.05 0.35 2.63

all 100 test sample paths. The thrifty policy is too conservative, and the associated mean
average FH for C-check is 6.7% lower than the C-check schedule of the airline. For A-
check, the associated mean average FH is 17.5% lower. There is a trade-off between
aircraft utilization and the number of extra slots. The thrifty policy is more robust to
uncertainty, yet at the cost of achieving a lower aircraft utilization.

On the other hand, the lookahead ADP methodology with only deterministic fore-
casts, ADP-D, leads to higher mean average aircraft utilization and fewer extra mainte-
nance slots for both check types and 100 test sample paths, compared with the C-check
schedule and A-check estimation of the airline. It outperforms the optimal schedule
generated by the DP-based methodology, as well as the myopic and thrifty policies.

The proposed lookahead ADP methodology combining deterministic with stochas-
tic forecasts, ADP-DS, creates the second least mean extra slots (after the myopic), 0.8
extra slots on average for A-check, and 5.7 for C-check. The associated mean average FH
for A-check/C-check is 8.5 and 191.6 higher, respectively, compared with the C-check
schedule and A-check estimation of the airline. Besides, the differences in mean aver-
age FH between ADP-D and ADP-DS is only 0.34%/0.16% for A-/C-check, meaning that
these two approaches are equivalently promising in terms of aircraft utilization. Even
so, due to the stochastic forecasts on extra A-check slots, the ADP-DS leads to 50% fewer
A-checks and 12.3% fewer C-checks than the ADP-D.

Figure 4.3 shows the distributions of total extra slots under the ADP-D and ADP-DS
for the 100 test runs. We can observe that ADP-DS creates no more than 15 additional
slots for all the test runs, and in 86% of test runs, it uses less than ten extra slots. For
ADP-D, the airline may need to create more than 20 additional slots to cope with the
uncertainty, and the chance of creating more than ten extra slots is higher than 33%.
Therefore, according to the results of 100 test sample paths, ADP-DS outperforms ADP-D
in terms of fewer additional slots for both check types and of average aircraft utilization.
Furthermore, Table 4.6 shows that a Student’s t-test rejects the null hypothesis that the
two methods have similar performance, at a 5% significance level. That is, the outcomes
from the two methods do have mean values that significantly differ from each other.
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Average FH: 703.5 (A-Check) and 6838.4 (C-Check)
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Figure 4.3: Distributions of total extra slots under two methodologies for the test case 2017–2020, under 100 test
sample paths: (a) Distribution of total extra slots under the ADP-D (lookahead ADP using only deterministic
forecasts); (b) Distribution of total extra slots under the ADP-DS (lookahead ADP using both deterministic and
stochastic forecasts).

Table 4.6: Student’s t-test on the results from ADP-D and ADP-DS for the test case 2017–2020.

t-value p-value Degrees of Freedom Pooled Estimate of the Population Standard Deviation

3.0477 0.0030 99 5.0859

4.6.5. OUTCOMES FOR THE TEST CASE 2019–2022
Table 4.7 shows that the KPIs of the second test case follows a similar trend to the first
test case. The myopic policy still results in the highest aircraft utilization, yet creating
the most extra slots for both check types. The thrifty policy leads to the lowest aircraft
utilization and the least extra slots as expected. In the second test case, the optimal
schedule from deterministic AMCS obtained from the DP-based methods becomes more
robust to uncertainty than the first test case, and it creates only 19.4/22.9 extra A-/C-
check slots for the period of 2019–2022, compared with the 20.4/90.4 extra A-/C-check
slots used in 2017–2020. Besides, it associated mean average FH is the second-highest
for both check type, only after the myopic policy.

On the other hand, both ADP-D and ADP-DS have better performance than the esti-
mation of the airline, in terms of higher mean average FH, fewer mean total checks, and
mean extra slots for both check types. In fact, the advantage of ADP-DS becomes more
notable in this test case. For C-check scheduling and 100 test sample paths, ADP-DS
even outperforms ADP-D in all aspects. For A-check scheduling, the extra slots created
in the ADP-DS is 75% fewer than in ADP-D. Both methods take just seconds to produce
the plan for one day and less than two minutes to produce the schedule for the next
month. However, the computation time in the ADP-DS is 7.5 times as ADP-D due to the
Monte Carlo simulations to estimate the cost of performing an A-check action. Looking
at the distribution of extra slots in Figure 4.4, we are aware of the fact that ADP-DS uses
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Table 4.7: Comparison of KPIs for March 20th 2019–December 31st 2022 for 100 test sample paths. The num-
bers labeled with “*” are estimated or extrapolated according to the historical maintenance data of the airline.
ADP-D represents the lookahead ADP with only deterministic forecasts. ADP-DS represents the lookahead
ADP with both deterministic and stochastic forecasts.

KPI 2019–2022 Airline Stochastic Results (100 test runs)

(1383 days) Estimation DP-based Myopic Thrifty ADP-D ADP-DS

C-check

Mean Average FH 6700.0∗ 6920.9 7469.4 6361.7 6794.1 6808.6

Mean Extra Slots ≥ 20.0∗ 22.9 426.8 0.0 4.0 4.0

Mean Total Checks 100∗ 90.0 88 94.0 90.8 90.6

A-check

Mean Average FH 695.0∗ 708.8 744.2 614.1 699.3 697.9

Mean Extra Slots ≥ 20.0∗ 19.4 517.5 0.9 12.0 3.0

Mean Total Checks 1030∗ 1003.0 959.6 1151.8 1017.9 1019.9

Mean Total Extra Slots 40.0∗ 42.3 944.3 0.9 16.0 7.0

Computation Time/day [s] —– 0.02 0.09 0.05 0.35 2.63

fewer than 18 slots in all 100 test sample paths, and in 75% of the test runs, there are less
than ten total extra slots. But for ADP-D, the airline may need more than 30 additional
slots to cope with uncertainty, and the chance of creating more than ten extra slots is
likely to be higher than 90%. Therefore, in the second test case, the ADP-DS is still the
best option for the stochastic AMCS. Besides, a Student’s t-test also confirms that the
results from ADP-D and ADP are significantly different, as shown in Table 4.8.

Table 4.8: Student’s t-test on the results from ADP-D and ADP-DS for the test case 2019–2022.

t-value p-value Degrees of Freedom Pooled Estimate of the Population Standard Deviation

13.1804 1.6×10−23 99 6.8283

4.6.6. PRACTICAL DISCUSSION
In the two test cases, we see that the optimal maintenance check schedule from the
long-term deterministic AMCS model will likely fail. That is, in the long term, the air-
line would have to create many additional maintenance slots to cope with the uncer-
tainties from aircraft utilization and maintenance check elapsed time. However, since it
takes only 2–3 seconds for the lookahead ADP methodology to determine the daily opti-
mal maintenance checks, whenever there are changes in maintenance tasks or activities,
the airline can use the lookahead ADP methodology to update the maintenance check
schedule promptly. Besides, for each test case, more than 96% of the test runs have the
same schedule in the first week, meaning that it is possible for the maintenance planners
to update the maintenance check schedule on a weekly basis.

Besides, since there is no data about the cost of creating an additional A-/C-check
slot, it is impossible to evaluate to what extent reducing aircraft utilization and having
maintenance checks earlier is better than creating extra maintenance slots. In our case
study, we assumed that an additional maintenance slot is very costly, more expensive
than the cost of anticipating the maintenance check a few flight hours before the end
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Average FH: 697.9 (A-Check) and 6808.6 (C-Check)
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Figure 4.4: Distributions of total extra slots under two methodologies for the test case 2019–2022, under 100 test
sample paths: (a) Distribution of total extra slots under the ADP-D (lookahead ADP using only deterministic
forecasts); (b) Distribution of total extra slots under the ADP-DS (lookahead ADP using both deterministic and
stochastic forecasts).

of the interval. Nevertheless, regardless of the real trade-off considered by the user, the
lookahead ADP methodology using both deterministic and stochastic forecasts outper-
forms the myopic policy, thrifty policy, DP-based methodology described in [16] and the
lookahead ADP methodology itself using only deterministic forecasts.

4.6.7. SENSITIVITY ANALYSIS FOR 2019–2022
This subsection investigates the impact of model parameters of the lookahead ADP on
the results of the stochastic AMCS, for the test case Mar 20th 2019–Dec 31st 2022. We are
in particular interested in the following aspects:

Q.1 Reducing the number of sample paths for Monte Carlo simulations makes the
lookahead ADP methodology faster. How will that affect the results (KPIs)?

Q.2 How much could we improve the KPIs if we increase the number of sample paths
for Monte Carlo simulations in the lookahead ADP methodology?

Q.3 If we reduce the cost of generating an extra maintenance slot in the lookahead ADP
methodology, how will that affect the solutions (KPIs)?

The baseline scenario is the ADP-DS from Table 4.7. For Q.1, if we can still achieve the
KPIs within 5% from the ones in the baseline scenario after reducing the number of sam-
ple paths for Monte Carlo simulation, e.g., to 20, it will make the lookahead ADP method-
ology at least twice faster. In that case, we would suggest using nsample = 20 (240 in total
for 12 actions) for the lookahead ADP methodology. For Q.2, if we increase the number
of sample paths for Monte Carlo simulation, e.g., from 50 (600 in total for 12 actions) to
80 (960 in total for 12 actions), but achieve no more than 5% improvements in the reduc-
tion of extra slots, we suggest using nsample = 50. For Q.3, we want to know how many
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Table 4.9: Sensitivity analysis for the test case March 20th 2019–December 31st 2022 using 100 random sample
paths. For each sample path, we use the lookahead ADP methodology to make AMCS decisions for the entire
planning horizon.

KPI of 100 Runs (2019-2022) Scenario 0 Scenario 1 Scenario 2 Scenario 3

C-check

Mean Average FH 6808.6 6819.5 6798.0 6820.6

Mean Extra Slot 4.0 4.9 3.8 5.4

Mean Total Checks 90.6 90.7 90.8 90.4

A-check

Mean Average FH 697.9 697.9 697.4 704.5

Mean Extra Slot 3.0 3.2 2.9 15.4

Mean Total Checks 1019.9 1020.1 1020.6 1010.0

Mean Total Extra Slots 7.0 8.1 6.7 20.8

Mean Merged A- in C-Check 17.6 16.3 17.6 13.5

Computation Time/day [s] 2.63 1.21 4.09 2.63

more extra maintenance slots will be created if we reduce the penalty of generating one
additional maintenance slot, e.g., from λ= 105 to λ= 100. To investigate Q.1–Q.3, we set
up the following test scenarios:

- Scenario 0: the baseline scenario, as pre-computed in the previous subsection;

- Scenario 1: conditions from Scenario 0 and setting the number of random sample
paths in the Monte Carlos simulation to 20, namely, nsample = 20;

- Scenario 2: conditions from Scenario 0 and setting the number of random sample
paths in the Monte Carlos simulation to 80, namely, nsample = 80;

- Scenario 3: conditions from Scenario 0 and setting the penalty of creating one ad-
ditional maintenance slot to 100 FH, namely, λ= 100;

We generate 100 test sample paths for each scenario and apply the lookahead ADP
methodology to the stochastic AMCS. For Scenario 1, we observe that reducing the num-
ber of random sample paths from 50 to 20 in the Monte Carlo simulation increases the
mean total extra slots by 1.1 (0.9 for C-check and 0.2 for A-check). At the same time, there
is only a minor improvement in aircraft utilization. It also means that the airline needs
to create extra slots more frequently than the baseline scenario. Comparing Figure 4.5a
and Figure 4.5b, we can see the total extra slots scatter between 2 to 35 in Scenario 1, one
occurrence for 24, one for 26, one for 33 and one for 35 extra slots. It indicates that there
would be a 4% chance that the airline may need more than 24 extra slots when we use
only 20 sample paths in the Monte Carlo simulation. Since the total number extra slots
increase by 15.7% compared with Scenario 0, we would not suggest reducing the number
of sample paths for the Monte Carlo simulation from nsample = 50 to nsample = 20.

In Scenario 2, increasing the number of sample paths for the Monte Carlo simulation
from nsample = 50 to nsample = 80 reduces the number of extra slots by 4.2% compared
with Scenario 0. Although Figure 4.5c shows that in 76% of the 100 test cases, nsample = 80
results in fewer than 10 extra maintenance slots, only 1% higher than Scenario 0, the
improvement is not significant since the computation time increases by more than 50%.
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(a) Sensitivity Analysis - Scenario 0 (b) Sensitivity Analysis - Scenario 1

(c) Sensitivity Analysis - Scenario 2 (d) Sensitivity Analysis - Scenario 2

Figure 4.5: Distributions of total extra slots under different parameters for the lookahead ADP methodology:
(a) Distribution of total extra slots of baseline scenario; (b) Distribution of total extra slots when nsample = 20;
(c) Distribution of total extra slots when nsample = 80; (d) Distribution of total extra slots when λ= 100.

Hence, we would not suggest increasing the number of sample paths for the Monte Carlo
simulation from nsample = 50 to nsample = 80.

The KPIs of Scenario 3 indicate that decreasing the cost of creating an extra mainte-
nance slot from 105 FH to 100 FH increases the mean total extra slots by 197%, from 7.0 to
20.8 (details can be seen in Figure 4.5a and 4.5c). The A-check contributes to most of the

extra slots. The approximation of cost function, V
(1)
t (st ) in (4.38), requires that as long as

the lookahead ADP methodology predicts an extra C-check slot needed in [t , t + th] and
there are sufficient C-check slots on the day t , it will choose to perform a C-check. Since
there is at most one C-check on the day t , due to a minimum of 3 days between the start
dates of two C-checks, changing the cost of creating an extra slot λ only has a minor im-
pact on C-check slot scheduling. On the other hand, we can perform multiple A-checks
on a day; decreasingλwill inevitably increase the number of extra A-check slots (see Fig-
ure 4.5d). Consequently, there is more flexibility in performing aircraft A-check because
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of the creation of extra A-check slots; the number of merged A- in C-checks is reduced
by 23.3%.

4.7. CONCLUSION
This chapter proposes a lookahead approximate dynamic programming (ADP) method-
ology to address the stochastic aircraft maintenance check scheduling (AMCS), consid-
ering the uncertainty of aircraft daily utilization and maintenance elapsed time. The
lookahead ADP methodology consists of a dynamic programming framework and a hy-
brid lookahead policy with deterministic and stochastic forecasts. The lookahead ADP
methodology is capable of providing daily optimal maintenance check decisions and
minimizing the total unused FH between checks. It increases aircraft availability and
reduces the frequency of creating extra maintenance slots in the long term, and eventu-
ally leads to a significant saving in maintenance operation cost and possibly additional
revenue from commercial operation.

The lookahead ADP methodology uses deterministic forecasts first to determine the
optimal aircraft C- and D-check actions. After that, based on the optimal C- and D-
checks, it uses stochastic forecasts to find the best A- and B-check actions. The determin-
istic forecasts are the estimations of costs of creating extra maintenance slots using the
mean aircraft daily utilization and mean maintenance check elapsed time. The stochas-
tic forecasts are the estimations of the costs of generating additional maintenance slots
using Monte Carlo simulations.

To evaluate the proposed lookahead ADP methodology, we present two case studies
using the historical maintenance data of an A320 family fleet from a European airline. On
the one hand, in both test cases, we see how that, in the long term, the optimal A- and
C-check schedules from the deterministic AMCS creates additional maintenance slots
to cope with the uncertainty from aircraft utilization and maintenance elapsed time. On
the other hand, comparing KPIs from the maintenance schedule/estimation of the air-
line and KPIs from the lookahead ADP methodology, we can infer that the lookahead
ADP methodology reduces the total number of letter checks and the number of extra
maintenance slots. The reduction of maintenance checks and additional maintenance
slots, in the long term, leads to a significant saving in aircraft maintenance costs and
generates additional revenue for the airline. The maintenance planners can use the
lookahead ADP methodology to update the maintenance check decisions immediately
whenever changes occur in the maintenance activities or tasks.

This original and novel study is the first to propose lookahead ADP to make optimal
maintenance check decisions daily for the stochastic AMCS optimization. The looka-
head ADP methodology can help maintenance planners react to changes in mainte-
nance activities or tasks and promptly update the maintenance check actions. Mainte-
nance planners can use the proposed methodology to update short-term schedules (for
the following week) in 20 seconds once new information is obtained, keeping the letter
check schedule optimized for the short term without compromising the long-term fea-
sibility. Besides, it also opens the door for future research on related topics. For instance,
to incorporate condition-based maintenance by considering the health prognostics and
diagnostics and define the tasks to be performed within each maintenance check. In this
case, we plan the maintenance tasks for each maintenance check according to real-time
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monitoring rather than fixed intervals. Although this would significantly increase the
model complexity, it would extend the stochastic AMCS to the task level, producing an
optimally integrated maintenance check and task execution plan.
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5
A DECISION SUPPORT SYSTEM FOR

AIRCRAFT MAINTENANCE

PLANNING

This chapter presents a decision support system (DSS) for aircraft maintenance planning
optimization. The DSS serves as a modeling framework that incorporates aircraft main-
tenance check scheduling (AMCS) optimization, optimal maintenance task allocation,
and shift planning. It is capable of providing a comprehensive fleet maintenance plan
for maintenance planners of airlines, including an optimal maintenance check schedule,
task executions of each maintenance check, and the work shifts for the coming two weeks.

The content of this chapter is based on the following research article:

Deng, Q., Santos, B. F., and Verhagen, W. J. C. (2021). A Novel Decision Support System for Optimizing Aircraft
Maintenance Check Schedule and Task Allocation. Decision Support Systems. To cite this article, please use
the DOI https://doi.org/10.1016/j.dss.2021.113545.
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5.1. PROBLEM DEFINITION
Aircraft maintenance is a sequence of activities, including overhaul, repair, inspection,
or modification of an aircraft or aircraft systems, components, and structures to ensure
an aircraft retains an airworthy condition. In the aviation industry, a commercial aircraft
must undergo regular maintenance to prevent component and system failures during
operations. Many of the aircraft maintenance activities take place after an aircraft has
been operating certain flight hours (FH), flight cycles (FC), or calendar days (DY). The
FH, FC, and DY are known as usage parameters to indicate aircraft utilization. The max-
imum usage parameters allowed in operation are defined as inspection intervals.

Modern aircraft have thousands of parts, systems, and components that need to be
recurrently inspected, serviced, and replaced. Many airlines adopt a top-down approach
to plan aircraft maintenance:

• Step 1 – Maintenance Check Scheduling
First group major maintenance tasks with the same or similar inspection intervals
into letter checks: A-, B-1, C- and D-check, as showed in Table 5.1. Each check type
is coupled with an elapsed time (time required for the execution of tasks within
letter checks + time estimated for other tasks). Maintenance planners then create
a maintenance check schedule (3–5 years for C-/D-check and 6–12 months for A-
check) according to pre-defined elapsed time of each check type. The letter checks
are performed in the hangar.

• Step 2 – Maintenance Task Allocation
Although some tasks can quickly be packaged into these letter checks, a large num-
ber of other tasks (e.g., more than 70% for an Airbus A320 aircraft) are dephased
from the inspection intervals of these checks. It means that they either have to be
allocated to a more frequent letter check or manually allocated by maintenance
operators to different maintenance events based on the suitability of the task to
that check and the urgency of performing the task.

Table 5.1: Aircraft letter check and corresponding inspection interval [1].

Check Type Interval Maintenance Tasks

A-check 2-3 months External visual inspection, filter replacement, etc.

B-check — Rarely mentioned in practice

C-check 18-24 months Inspection of the individual systems and components

D-check 6-10 years Inspection of most structurally significant items

Despite the rapid expansion of the global air travel industry and the increase of fleet
size, the advances in aircraft maintenance planning (AMP) have been struggling to keep
up with the times. In practice, AMP involves scheduling maintenance checks to each
aircraft, allocating tasks to each check, planning the workforce for each task, inventory
optimization, and coordination of maintenance tools. For small airlines, AMP is not so

1B-checks are rarely mentioned in practice. The tasks within B-checks are commonly incorporated into suc-
cessive A-checks.
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demanding and can be done manually according to the experience of maintenance plan-
ners. For large airlines, the AMP problem becomes more complex – maintenance plan-
ners have to spend several days or weeks on scheduling maintenance activities because
of the lack of efficient tools. Since, on average, 9%—10% of the total cost of airlines goes
to aircraft maintenance, which is equivalent to about $2.5M per aircraft per year [2], the
savings derived from efficient AMP can be very substantial.

To facilitate the AMP process, many companies engage in developing AMP systems.
For example, Ref. [3] developed one of the first AMP tools to improve maintenance effi-
ciency and reduce associated cost. After that, many companies followed and developed
various tools, e.g., Solumina MRO from iBASEt, Airline Suite from C.A.L.M Systems INC.,
WinAir from AV-Base Systems, and Maintenix from IFS, etc. To our best knowledge, all
the available tools focus on managing and tracking the status of the maintenance tasks,
providing a valuable computer-aid solution to manual planning. However, none of them
has the function of producing an optimized maintenance schedule automatically.

AMP is challenging due to the lack of optimization approaches for planning mainte-
nance checks and associated tasks, even though there are many available computer-aid
solutions. Two distinct limitations in the current academic and industrial state of the
art can be discerned, as further discussed in Section 5.2: 1) a lack of decision support
system (DSS) to optimize the maintenance check (A-, B-, C- and D-checks) schedule; 2)
a lack of DSS for optimizing aircraft maintenance check and task execution in an inte-
grated manner. In the literature, there is no work integrating the two problems in a single
optimization framework.

In 2015, the AIRMES project was launched by Clean Sky Joint Undertaking, a public-
private partnership between the European Commission and the European aeronautics
industry, to optimize end-to-end maintenance activities within an airline operator’s en-
vironment [4]. We developed a DSS during the project to automate the maintenance
planning process and provide maintenance check scheduling optimization, task allo-
cation, and shift planning in one comprehensive solution. The contribution of our re-
search is threefold:

• The DSS integrates aircraft maintenance check scheduling, maintenance task al-
location, and work shift planning in the same framework. In practice, these pro-
cesses are solved using different tools, while in the literature, these are seen as
three different problems handled separately.

• We demonstrate that the DSS can improve aircraft utilization and reduce mainte-
nance costs, compared with the current practice of airlines. It reduces the time
needed for AMP from days or hours to 20–30 minutes.

• We also present the usefulness of the DSS in helping airlines evaluate different
aircraft maintenance strategies before implementation.

This paper presents the architecture of the resulting DSS and the corresponding op-
timization modules for maintenance check schedule, task allocation, and shift planning.
We also discuss the applicability of the DSS by presenting the results from a case study
with a European airline and several industry partners. The case study validates the utility
of the DSS for both maintenance planning optimization and future scenario analysis.
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The outline of this paper is as follows: Section 5.2 gives an overview of the relevant
literature on the aircraft maintenance domain. The DSS architecture is presented in Sec-
tion 5.3, including aircraft maintenance check scheduling optimization, task allocation,
and shift planning as well as their corresponding algorithms. Section 5.4 describes the
demonstration exercise with data from the partner airline. The last section summarizes
the research with concluding remarks and gives an outlook on future work.

5.2. RELATED WORK
The aviation industry is extremely competitive in Europe. The average net profit of air-
lines usually represents only up to 4%–5% of revenues and about 9%—10% of the total
cost goes to aircraft maintenance [2]. Efficient AMP is one useful way of reducing main-
tenance costs. The benefit of efficient AMP is two-fold: on the one hand, the increased
aircraft availability indicates that there will be more aircraft available for commercial op-
erations, and eventually, generating more revenues; on the other hand, it decreases the
number of aircraft maintenance inspections, and therefore, reduces the maintenance
operation costs in the long term. This section reviews the previous research on AMP
from long-term planning (3–5 years) to short-term planning (several days to weeks).

5.2.1. LONG-TERM AIRCRAFT MAINTENANCE PLANNING

Long-term AMP aims to generate an aircraft heavy maintenance schedule (C- and D-
checks) before determining the tasks within each check, also known as aircraft main-
tenance check scheduling (AMCS). It is indispensable since C-check has an interval of
18–24 months, and D-check is usually scheduled once every 6 years; airlines need a C-
and D-check schedule to further plan the A- and B-checks and the associated tasks for
all the (A-, B-, C-, and D-) checks. In 1977, Air Canada developed one of the first DSSs for
the long-term AMCS, called AMOS [3]. AMOS was considered a computer-aid manual
planning approach since the developers did not see the value of finding an optimal solu-
tion that could rapidly become obsolete due to uncertainty. It helped Air Canada reduce
the time for planning a 5-year C-check schedule for its fleet from 3 weeks to a few hours.
Besides, Ref. [3] defined the long-term (3–5 years) planning, and it is the only available
reference of the long-term AMP category before 2020.

Following this research direction, Ref. [5] proposed a dynamic programming (DP)
based methodology for long-term AMCS within the AIRMES project in 2020, adopting
the assumptions, problem formulation presented in [3]. It aimed to optimize the air-
craft maintenance check schedule for the future 3–5 years. This work is the first step
towards building an integrated AMP framework, focusing on long-term AMP. The DP-
based methodology generates an optimized 4-year schedule for both light and heavy
maintenance within 15 minutes. The optimized maintenance check schedule can be
further used to plan the maintenance tasks within each check and daily work shift.

5.2.2. SHORT-TERM AIRCRAFT MAINTENANCE PLANNING

In contrast to the little available literature about long-term AMCS, there are many studies
on short-term AMP in the topics of maintenance routing, maintenance personnel man-
agement, and maintenance task scheduling. The reason is that by optimizing short-term
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maintenance activities, airlines can see tangible benefits in a few days or weeks.

AIRCRAFT MAINTENANCE ROUTING

Aircraft maintenance routing (AMR) is to design flight routes for every aircraft to meet
the maintenance requirements set by Federal Aviation Administration (FAA) and individ-
ual airline companies. Extensive research works have contributed to AMR through flight
schedule design [6, 7], determining routes flown by each aircraft [8–10], fleet assignment
(assigning an aircraft model for each flight) [11–13], tail assignment (determining which
aircraft should fly which segment) [14–16], or even addressing the aircraft routing in con-
junction with crew pairing [17–19]. These studies usually consider aircraft maintenance
as an operational requirement but did not plan the maintenance checks or tasks.

MAINTENANCE PERSONNEL PLANNING

Maintenance personnel planning (MPP) is one of the main research directions of short-
term AMP. An effective maintenance workforce supply can reduce operations costs while
ensuring aviation safety and punctuality. It has attracted lots of attention from both in-
dustry and academia. Early in 1994, KLM Royal Dutch Airline and Erasmus University
Rotterdam developed a DSS to smooth the workload of aircraft maintenance personnel
by increasing the number of peaks of workloads and reducing the peak length [20]. It
helped KLM improved the utilization of maintenance technicians (the ratio of produc-
tivity labor-hours to total available labor-hour). After that, many researchers envisioned
the potential benefits and continued the MPP study, such as optimizing the workforce
supply [21–23], or minimizing the total labor cost [24, 25]. However, MPP usually as-
sumes that maintenance tasks are given rather than planning the tasks.

MAINTENANCE TASK SCHEDULING

Maintenance task scheduling (MTS) refers to allocating maintenance tasks to time slots
so that the tasks can be executed before due dates. It includes task scheduling for aircraft
line maintenance (coordinating maintenance tasks to be carried out at the gate during
turnaround time and the required maintenance resources), daily hangar maintenance,
or work shift. There are some studies addressing the MTS for line maintenance, such as
spreading the workload more uniformly across shifts [26], improving aircraft availability
and reducing maintenance costs [27], or optimizing both workforce and tasks [28]. MTS
for line maintenance planning has an operational nature. It only focuses on optimizing
a limited number of maintenance tasks during aircraft turnaround time.

Task scheduling for daily aircraft hangar maintenance can be seen in [29]. Accord-
ing to the authors, optimizing the daily hangar maintenance tasks to be executed 24
hours beforehand also maximizes the availability of fighting jets for the missions of the
next day. The authors call attention to the fact that if we want to plan the daily mainte-
nance task for each letter check, we have to look into a planning horizon longer than 24
hours, especially for the C-/D-check. Besides, the daily maintenance task plan bridges
the gap between AMCS and associated work shift planning. That is, we can better plan
each morning/afternoon/evening shift and prepare the tools and aircraft spare parts if
we know the daily maintenance tasks in advance. Hence, Ref. [30] proposed a bin pack-
ing approach to determine daily maintenance tasks (for each A-/B-/C-/D-check) given
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a long-term (3–5 years) maintenance check schedule for AIRMES. As a result, it gives a
long-term (3–5 years) plan of maintenance tasks for each day and a heterogeneous fleet.

5.2.3. CONCLUDING REMARKS FOR LITERATURE REVIEW
To our best knowledge, most of the studies in the AMP domain focus either on AMR or
MPP, assuming that the maintenance tasks are given. There are some studies on MTS, yet
most of them focus on line maintenance problems. The long-term and short-term AMP
was not yet considered in a single framework, nor was a DSS presented in the literature
addressing the AMP. Synthesizing the literature review gives rise to two challenges in the
AMP domain:

1. No DSS for aircraft maintenance planning optimization (AMPO) is presented in
the academic literature that can generate an optimally integrated maintenance
check and task execution plan at the fleet level.

2. Commercial DSSs addressing the fleet maintenance check level are relatively rare.
Even so, they do not optimize the maintenance check schedule.

In practice, maintenance planners have to spend a significant amount of time and
effort scheduling the aircraft letter checks and coordinating associated tasks execution
activities. It can happen that with the aid of current DSSs, the maintenance planners
still obtain an inefficient plan; this may, in the long-term, result in more letter checks
and higher operation costs.

The DSS presented in this paper contributes to bridging two main research streams,
long-term and short-term AMP, by integrating the AMCS problem and its methodology
presented in [5], the MTS problem and the associated algorithm presented in [30], and a
shift planning approach into the same framework.

5.3. SYSTEM ARCHITECTURE
To address the challenges identified in Section 5.2, we developed a DSS specifically for
AMP using the programming language Python and for Windows operating system. The
DSS is a stand-alone software prototype and has already been converted to an executable
file. It can be run on any individual PC without installation or a license. The DSS consists
of three components (layers), a database, a model, and a graphical user interface (GUI):

- Database: Store the input data, including the maintenance planning document
(MPD) for aircraft manufacturers, fleet status, operational constraints, and avail-
able workforce from airlines.

- Model: Clean and process input data, optimize the aircraft maintenance check
schedule and maintenance task execution plan.

- Graphical User Interface (GUI): Allow users to interact with the DSS and visualize
the planning results and the associated KPIs.

In this section, we present the structure of the DSS layer by layer, as illustrated in
Figure 5.1. We begin with description of database layer (Subsection 5.3.1) and input, fol-
lowed by a detailed introduction of the optimization models and algorithm (Subsection
5.3.2). In subsection 5.3.3, we outline the GUI of the DSS.
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Figure 5.1: Architecture of the decision support system for AMPO.

5.3.1. DATABASE AND INPUT DATA
The database stores the input in the format of comma-separated values (CSV) and out-
put in Excel. We classify the input into four categories:

MAINTENANCE PLANNING DOCUMENT

The maintenance planning document (MPD) is provided by the aircraft manufacturer.
It specifies the maintenance tasks according to the aircraft structure, systems, and com-
ponents, as well as corresponding inspection intervals (as described in Table 5.1). The
MPD gives strict criteria for aircraft maintenance – all letter checks and tasks have to be
performed before the corresponding usage parameters reached their maximums (inter-
vals). Any violation of maintenance task execution will prevent the aircraft from flying
because of safety concerns.

Table 5.2: An example of fleet status with respect to aircraft C-Check on 01/07/2020.

Fleet Tail Before Next DY FH FC fh/day fc/day Phase-In

A320 AC-1 C 12.1 -1 212 2391 963 10.3 4.2 12/01/1998

A319 AC-2 C 10.1 C 11.1 607 6439 2600 9.9 4.1 08/06/1998

A321 AC-3 —– C 1.1 0 0 0 10.1 4.2 01/03/2021

FLEET STATUS

We use Table 5.2 to illustrate the structure input data. The column Fleet shows the air-
craft type. Tail No. indicates the aircraft tail number. Before and Next represent the
previous and next letter checks respectively. DY, FH and FC are the usage parameters
of the fleet. fh/day and fc/day are the average daily utilization of the fleet. Phase-In
indicates when an aircraft starts in commercial operation. This is relevant information
as old aircraft will phase out after a certain number of checks, and meanwhile, airlines
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have new aircraft in operation. If an aircraft will phase out, we give “-1” to its next A-/C-
/D-check, meaning that no more A-/C-/D-check needs to be scheduled. If the phase-in
date of an aircraft is later than the current date, this aircraft only starts flying from the
phase-in date, and before that, its usage parameters remain 0.

OPERATIONAL CONSTRAINTS

The operational constraints can be divided into two categories: commercial constraints
and maintenance constraints. The operations center of airlines defines the commercial
constraints. For example, the operations center may limit the availability of the aircraft
to perform maintenance during commercial peak seasons (e.g., during the summer or
specific holidays), or it may impose an earlier time limit to the maintenance check of a
specific aircraft following the end of a leasing contract or the chartering of an aircraft to
third parties.

The maintenance constraints are defined by the maintenance department, which
specifies the maintenance capacity according to available maintenance resources, e.g.,
maintenance tools, workforce, and aircraft spare parts. This capacity is expressed as
maintenance slots per day that define how many aircraft can be at the hangar for a spe-
cific type of maintenance. Furthermore, other maintenance constraints may apply, such
as that no heavy checks can start on the same day to avoid high demanding works in par-
allel or that some aircraft already have maintenance predefined before computing the
schedule. The latter takes place, e.g., when part of the maintenance program is executed
by third-parties or partially depends on third-parties, not being subject to rescheduling.
A typical example of this is the replacement of landing gears or engines. Besides, main-
tenance task execution follows the sequence of opening the access panel, inspection,
maintenance, and closing the access panel.

WORKLOAD OF EACH TASK AND AVAILABLE WORKFORCE

The workload of each task is provided by the airline. Each task associates a task code,
a set of skill types required to perform the task, labor hours for each skill type defined
by the MPD. If there are urgent unscheduled tasks, they can be added to the input with
corresponding duration, workforce, and due dates.

The available workforce is the input given by airlines and divided per skill types (e.g.,
engines and flight control systems, avionics, aircraft metallic structure, and painting,
etc.). The available workforce includes the total number of maintenance technicians per
skill type, the number of hours a technician work per day on average, and the number
of available technicians on each week in the year. The available workforce constrains
the task allocation to maintenance checks because it is limited per day, according to the
daily workforce schedule. Since aircraft maintenance work is usually ongoing 24 hours
every day, airlines divide the daily workforce into three groups of workers to perform
their duties and call those groups morning shift, afternoon shift, and night shift. In the
input data, the maintenance planners of airlines have to specify the maximum number
of technicians in one shift and also for one task.

5.3.2. OPTIMIZATION MODEL AND ALGORITHMS
The model layer has three optimization models in total: a maintenance check scheduling
model (AMPO-1 in Figure 5.1), a maintenance task allocation model (AMPO-2), and a
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shift planning model (AMPO-3). The design of the model layer follows the top-down
approach. The DSS first generates an optimal aircraft maintenance check schedule in
AMPO-1, then allocates the maintenance tasks to each maintenance check in AMPO-2.
After that, it plans the shifts according to the maintenance tasks to be executed in each
letter check.

The reason for following the top-down approach is that it is impossible to plan the
work shifts before knowing the task execution or plan all maintenance tasks one after an-
other for the entire fleet without knowing the maintenance check schedule. The main-
tenance check schedule indicates in which letter check a maintenance task could be al-
located without violating the safety regulation defined by the MPD. The work shifts can
only be planned based on the maintenance check schedule and the tasks to be executed
within each check. The overall optimization process entails the following seven steps:

STEP I: EXTRACT MAINTENANCE CHECK AND TASK INSPECTION INTERVAL

The Model component extracts the maintenance check (A-/C-/D-check) interval and in-
spection intervals of all tasks from the MPD stored in the database. The inspection in-
tervals are expressed in the form of max DY/FH/FC allowed in commercial operation.

STEP II: COLLECT DY/FH/FC OF EACH AIRCRAFT AND REMAINING UTI-
LIZATION OF ALL SYSTEMS AND COMPONENTS

The Model component loads the fleet status (current DY/FH/FC for each check type
since its previous execution) and average aircraft daily utilization (FH/day and FC/day)
stored in the database. This process can be seen in the second step in the model layer
of Figure 5.1. The Model component also collects the usage parameters of all aircraft
systems and components and computes the remaining utilization of each system and
component. For example, consider a component of an aircraft with max usage parame-
ters 120 DY, 1000 FH, and 600 FC, and this aircraft has daily utilization of 10 FH/day and
5 FC/day. Given current usage parameters 500 FH and 250 FC, the remaining utilization
of this component would be 50 days.

STEP III: IDENTIFY MAINTENANCE OPPORTUNITIES AND DETAILED OPERA-
TIONAL CONSTRAINTS

According to the input constraints from the operation center and maintenance depart-
ment of airlines, the Model component identifies the maintenance opportunities. The
maintenance opportunities indicate the time-window when a specific check type is al-
lowed to be performed and the corresponding check capacity. Table 5.3 presents a for-
mat of maintenance opportunities stored in the database after input processing:

For a specific maintenance check type, if a time window is not within any Start Date
and End Date in Table 5.3, it means that the associated capacity for this period is 0.

STEP IV: GENERATE OPTIMAL AIRCRAFT MAINTENANCE CHECK SCHEDULE

(AMPO-1)
After processing and loading the input data, the user can specify the planning horizon
for aircraft maintenance check scheduling (AMCS) optimization. The default planning
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Table 5.3: An example of maintenance opportunities stored in database.

Fleet Check Type Start Date End Date Capacity

A320 C-/D-Check Oct-1-2017 May-31-2018 3

A320 C-/D-Check Jun-1-2018 Jun-14-2018 1

A320 A-Check Every Monday Every Friday 1

A320 A-Check Sep-26-2017 Sep-26-2017 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

horizon is three years to ensure that it includes at least one C-check for each aircraft, but
the user can choose from two to six years.

The model formulation of AMPO-1 can be seen in Chapter 2. Currently, there is only
one objective function within the DSS for AMCS optimization, minimizing the unused
flight hours of the entire fleet [3] for a period specified by the user. It is possible to add
more objectives or even multi-objectives later on. The optimal letter check schedule
is generated using a dynamic programming (DP) based methodology, as presented in
[5]. The idea is to check whether the maintenance capacity in the future is sufficient or
not for each maintenance action (e.g., performing a C-check or several A-checks). This
methodology follows a forward induction approach, incorporating a maintenance prior-
ity solution to deal with the multi-dimensional action vector, as well as a discretization
and state aggregation strategy to reduce outcome space at each time stage. If the input
data does not lead to a feasible maintenance check schedule, the DSS will suggest the
best dates for adding necessary maintenance slots to make it feasible.

STEP V: GENERATE OPTIMAL TASK ALLOCATION FOR MAINTENANCE CHECKS

FOR EACH AIRCRAFT (AMPO-2)
Once the AMPO-1 plans the optimal letter check schedule for the entire fleet, the DSS
allocates the maintenance tasks to each letter check, assuming that there are sufficient
aircraft spare parts and maintenance tools. The task allocation aims at minimizing the
total cost in task execution, subject to the daily available workforce. It adopts an al-
gorithm based on the worst-fit decreasing (WFD) [30]. The task allocation algorithm
treats the maintenance resources within each check as bins and the maintenance tasks
as items. It consists of:

• Bin Definition: The task allocation within AMPO-2 divides the entire aircraft let-
ter check schedule into time segments (bins) according to the number of parallel
maintenance checks. For example, in Figure 5.2, C1.2, C12.1, C7.1, C7.2, and C9.1
are the maintenance checks. T1–T7 are the bins defined by the AMPO-2. The sizes
of the bins (time segments) are determined based on the aircraft maintenance re-
sources, i.e., the number of maintenance technicians working during the time pe-
riods of the bins (the available workforce per day is given in the input).

• Bin Selection: The heuristic algorithm sorts the time segments according to the
associated capacity (maintenance resources), from highest to lowest. When the
algorithm selects a bin to allocate a maintenance task, it always starts with the
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Figure 5.2: Overlapping maintenance checks are divided into several time segments (bins) in AMPO-2 - i.e., T1,
T2, ..., T7.

bin with the highest remaining capacity. The availability of bin (time-segment)
depends on the aircraft hat having letter check during that time-segment. In the
example of Figure 5.2, T1 is only available for aircraft (AC) 16, T2 is available for
both AC-16 and AC-17, etc.

• Item Allocation: The algorithm allocates the items (tasks) following the rules of
“the most urgent item (task) first”. Each maintenance task must be allocated be-
fore its due date; otherwise, it generates extra capacities and notifies the DSS user.

The model formulation and the associated task allocation algorithm of AMPO-2 are
presented in Chapter 3. For the maintenance tasks that have to be executed in a strict
order, the task allocation algorithm groups those tasks into a package. A task package is
also considered one item. After that, the algorithm allocates the item (task package) to a
bin (time segment of a maintenance check). In this way, it ensures that all tasks within
the package will all be executed. For instance, the maintenance tasks presented in Table
5.4 have to be executed in the order of:

1200-A −→ 1200-B −→ 1200-C −→ 1200-D (5.1)

Table 5.4: An example of maintenance tasks that have to be executed in the order of A → B → C → D.

Fleet Tail No. Date Item Description

A320 AC-1 Mar-19-2019 1200-A Open the panel at aircraft component xxx

A320 AC-1 Mar-19-2019 1200-B Inspect aircraft component xxx

A320 AC-1 Mar-19-2019 1200-C Replace component xxx

A320 AC-1 Mar-19-2019 1200-D Close the panel at aircraft component xxx

In this example, technicians have to execute task 1200-A (open the panel at compo-
nent xxx) first. Otherwise, they cannot continue to inspect or replace the component
xxx. After the technicians complete the task 1200-C, they have to close the associated
panel (close the panel at component xxx). The task allocation algorithm groups these
four tasks into one package and label it as “Item 1200”, providing information of the se-
quence when presenting the results to the user.
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STEP VI: INTEGRATE THE OPTIMAL MAINTENANCE CHECK SCHEDULE AND

TASK ALLOCATION PLAN
In this step, the DSS first creates a folder for each aircraft with the name “aircraft tail
number + Time + Date”, and decouples the entire maintenance check schedule obtained
from AMPO-1 according to aircraft tail numbers. In each folder, it saves the associated
maintenance checks in the format of Excel. Next, the DSS organizes all the maintenance
tasks from AMPO-2 within the same letter check in one table in CSV format and puts this
CSV file in the folder according to the aircraft tail number of the letter check. The user
can compare or keep track of the historical optimization results according to the time
and date in the folder name.

STEP VII: PLAN THE MAINTENANCE WORKFORCE AND SHIFTS (AMPO-3)
The Model component also has an algorithm (AMPO-3) to plan the maintenance work
shift (morning/afternoon/night), create job cards, and estimate the workload after the
AMPO-2 completes the task allocation for all letter checks. Due to the uncertainty asso-
ciated with the workforce available per shift, the optimal maintenance check schedule
and task execution plan may quickly become obsolete. Thus, the AMPO-3 only creates
the work shifts and job cards for the initial 1–2 weeks of the planning horizon.

The shift planning algorithm allocates the maintenance tasks to each shift, respect-
ing the workforce available per shift and the sequence of opening access panel, inspec-
tion, maintenance, and closing access panel (and this is the only task execution se-
quence we have to follow in both AMPO-2 and AMPO-3 according to the specification
of our airline partner). Figure 5.3 illustrates the workflow of shift planning function
(AMPO-3). AMPO-3 first assigns the tasks of opening the access panel to the morning
shift. If there is no available workforce left in the morning shift, it continues to assign
those tasks to the afternoon shift (or even night shift) until all the tasks of opening ac-
cess panels are allocated. Next, the algorithm assigns the inspection works, and after
that, the maintenance tasks. The tasks of closing the access panel are allocated at last.
The shift planning process continues until it loops over the task execution plans of all
maintenance checks. When it finishes, the DSS will store the results in the database ac-
cording to the aircraft tail number of the tasks.

5.3.3. GRAPHICAL USER INTERFACE
The GUI serves the purpose of interacting with DSS users. The DSS users can load in-
put data, start the AMPO, visualize the optimization results and associated KPIs, change
operational constraints (planning horizon, the number of maintenance slots, or reserve
slots for specific maintenance activities), and export the output data via the GUI. Those
actions are the basic requirements for the GUI from the DSS users, identified by the
AIRMES project group.

The GUI of the DSS has a single main window, divided into five screens. The user
can see the maintenance check schedule of all aircraft for the entire planning horizon
on a daily basis or per hangar view on different screens. The GUI also displays key per-
formance indicators (KPIs), the tasks allocated per maintenance check, the workforce
assigned per day (of the first few weeks), the identification of the maintenance interval
tolerances used, the maintenance slots generated as additional to the given capacity. The
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Figure 5.3: Workflow of shift planning (AMPO-3).
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1 2 3

Figure 5.4: Main screen of the DSS.

user can also use the GUI to set the planning horizon, modify the start dates of specific
maintenance checks, and change the operational constraints, such as adding/reducing
maintenance slots or reserve maintenance slots for other maintenance activities. We use
Figure 5.4 and 5.5 to illustrate the main features of the DSS.

In Figure 5.4, the marker 1 indicates the main screen of the DSS. The main screen
displays the aircraft maintenance check schedule per day per aircraft, computation time,
and the number of extra maintenance slots created during optimization for a specific

planning horizon. The marker 2 indicates the 2nd screen of the DSS. The 2nd screen
displays the maintenance check schedule for the entire fleet in the hangar view. The

marker 3 indicates the screen of displaying the KPIs, including the mean FH, mean
FC, total maintenance checks, distribution of unused FH and FC for each check type,
and the number of merged A- in C-/D-Checks.

In the 2nd screen, the DSS user can further see the maintenance tasks of each check.
If the DSS user selects a maintenance check, a dialogue box will be popped up to display
the aircraft tail number, maintenance check label, current DY, FH, and FC. The user can
click the button “Show Tasks”, as indicated by marker 4 in Figure 5.5. The DSS will
display a list of maintenance tasks within the check and a figure that shows the workload
distribution and the work shifts. The user can also change the start date of a specific

check by clicking the button indicated by marker 5 . The DSS will re-optimize the entire
schedule according to the new specification from the user.
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4 5

Figure 5.5: The 2nd screen of the DSS.

5.4. DEMONSTRATION AND EVALUATION
The DSS was demonstrated and validated in a demonstration exercise organized as part
of the AIRMES project, on 51 aircraft, in March 2019 [31, 32]. The exercise was carried out
in collaboration with one of the major European airlines and one of the leading aircraft
manufacturers and observed by the Clean Sky 2 Joint Undertaking partners involved in
the related research effort.

This exercise aimed to validate the value of the DSS and demonstrate that it can be
implemented in practice, primarily for AMP optimization and the study of future main-
tenance scenarios. For this reason, two test cases were performed and discussed. In the
first test case, we aimed to validate the DSS and benchmark its performance by compar-
ing the solution obtained with the maintenance schedule of the airline. In the second
test case, we investigated the current considerations of the airline about its future main-
tenance policies and fleet developments. The results were checked and validated by the
airline experts involved in analyzing such maintenance policies, providing valuable in-
sights to the airline on future maintenance limitations and solutions.

5.4.1. STANDARD AMCS OPTIMIZATION ON FLEET MAINTENANCE DATA

We received the input for AMCS on March 19th 2019 and optimized the A- and C-checks
for the A320 family of our airline partner from March 20th 2019 to December 31st 2021,
under the same operational constraints as the airline. According to the requirements of
our airline partner, D-checks are merged within C-check in the following pattern:

C-1, C-2, C-3︸︷︷︸
D-check

, C-4, C-5, C-6︸︷︷︸
D-check

,C-7, C-8, C-9︸︷︷︸
D-check

, . . . (5.2)
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We compared our results with the maintenance schedule available at the airline (Air-
line Schedule). According to the results illustrated in Figure 5.6 and 5.7, the AMPO-1 of
the DSS outperforms the planning approach of the airline. The AMPO-1 results in 6946.5
FH for C-check and 705.1 FH for A-check, higher than 6783.8 FH and 701.1 FH from the
maintenance schedule of the airline, but the result of AMPO-1 has one fewer C-check
and three fewer A-checks. Our airline partner also checks the maintenance check sched-
ule obtained using the DSS and agrees that the DSS generates a better schedule than the
maintenance planners. Besides, the AMPO-1 of the DSS optimizes both the aircraft A-
and C-check schedule for 2019–2021 within only 10 minutes. It means that the DSS user
can run the DSS to update its aircraft maintenance check schedule if there are changes
instead of manually shuffling the A-/C-checks to make another feasible one.

From a saving and revenue management perspective, since airlines spend on aver-
age $150K–$350K on a C-check [1] and $10K–$15K on an A-check, one fewer C-check
and three fewer A-checks in total can result in a potential saving of $0.1M–$0.4M for the
considered time horizon of roughly three years. Furthermore, a C-check lasts about 1–
4 weeks, and an A-check lasts 24 hours in this case study. One reduced C-checks and
three fewer A-checks are equivalent to about 10–31 days of aircraft availability for com-
mercial operations. This may generate a considerable amount of revenue for the airline.
According to an economic evaluation performed by another Clean Sky project, the im-
plementation of the DSS can potentially reduce the base maintenance costs by 2.7% for
point-to-point carrier airlines, 0.5% for large hub and spoke carrier airlines, and 2.4% for
small hub and spoke carrier airlines [33].

Following the demonstration of AMPO-1, we continued to test the task allocation
(AMPO-2) of the DSS. The AMPO-2 allocated the maintenance tasks using the optimal
maintenance check schedule created by the AMPO-1. It addressed the task allocation
for the maintenance check schedule of Mar 20th 2019–Dec 31st 2021 within 10 minutes.
The outcome of AMPO-2 is an optimized task allocation plan for the entire fleet and all
letter checks, including over 60,000 tasks. An example of the outcome from AMPO-2 can
be seen in Figure 5.8. To verify the AMPO-2, we compared the optimal task allocation
plan with the results from a commercial optimization solver. The comparison showed
that the AMPO-2 produces results within an optimality gap of only 0.028%. Our airline
partner also validated the optimal task allocation plan and its feasibility by benchmark-
ing our solution with the task allocation solution they had for the following year. The
maintenance planners of the airline stated that the results from optimal task allocation
are feasible for practical implementation.

After the AMPO-2 completed the optimal task allocation for all maintenance checks,
the AMPO-3 planned the work shifts and creates job cards for technicians. Our airline
partner set the horizon of shift planning for two weeks. Table 5.5 shows an example of
the results from AMPO-3. The 1st column of the table shows the aircraft tail number. The
2nd and 3rd columns indicate the date and work shifts. The 4th column describes the item
or action, and the 5th column tells the maintenance planner where the maintenance
work is in the aircraft. The last eight columns imply the workload needed for each skill
type. The airline evaluated the work shifts after the demonstration and indicated that the
work shifts of the first 2–3 days are almost the same as they planned, yet the difference
becomes dramatic in the second week. It is worth mentioning that, for example, if a task
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Figure 5.6: The KPIs of maintenance check schedule of the airline. We used the DSS to load the maintenance
check schedule of the airline directly and visualized the results on the interface.



5

130 5. A DECISION SUPPORT SYSTEM FOR AIRCRAFT MAINTENANCE PLANNING

Figure 5.7: The KPIs of maintenance check schedule from the AMPO-1 of the DSS
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Figure 5.8: Results of optimal task allocation (AMPO-2).
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requires one labor-hour for a specific skill type, it can be one technician spending an
hour, or two technicians spend half an hour, or even four technicians spend 15 minutes
performing the task.

5.4.2. EVALUATION OF AIRCRAFT MAINTENANCE STRATEGIES
In the second test case, we used the DSS to evaluate different maintenance strategies
before implementation. Each strategy is modeled as a test scenario, and all scenarios
are compared to the baseline scenario (Airline Schedule). Three maintenance strategies
(test scenarios) were proposed by the airline:

1. Scenario 1: increase the number of daily C-check slots from three to four but re-
ducing the period of the year in which the C-checks can be performed from the
current October–May to November–March;

2. Scenario 2: increase the fleet size from 51 to 66 aircraft without changing the main-
tenance periods or number of slots available;

3. Scenario 3: increase the fleet size from 51 to 66 aircraft but now increasing the
A-check slots by one on Fridays.

Table 5.6 shows the KPIs from test scenarios. We also include the KPIs from the pre-
vious demonstration and use the airline schedule as the baseline scenarios. First of all,
without considering other costs, we see the benefit per aircraft from implementing the
DSS (DSS Schedule) compared with the baseline scenario (Airline Schedule) for a 3-year
planning horizon:

C-Check: 20.6︸︷︷︸
gain

+ 4.9︸︷︷︸
saving

− 0︸︷︷︸
cost

= 30.9K (5.3)

A-Check: 5.7︸︷︷︸
gain

+ 0.7︸︷︷︸
saving

− 0︸︷︷︸
cost

= 6.4M (5.4)

The KPIs of Scenario 1 indicate that shortening the C-check periods while increas-
ing the C-check capacity, as considered by the airline, is not enough to cope with the
C-check demand from the current fleet size and leads to a loss of $75.4K in total per air-
craft for two check types. Although it gains $78.0K from more days of commercial oper-
ations compared with the baseline scenario (Airline Schedule) and saves $14.7K because
of performing fewer C-checks, the airline needs to spend $66.0K per aircraft on creat-
ing extra C-check slots (non-existent daily slots are added to the schedule, representing
moments that technicians have to work extra-time or that additional workforce has to
be hired). The majority of loss comes from A-check due to grounding aircraft more of-
ten for A-checks (-$89.9K from commercial operations and -$11.5K for performing more
A-check) and creating more extra A-check slots (-$0.7K). The reason is that the optimiza-
tion algorithm of AMPO-1 tries to ground the aircraft for A-check more often to defer the
need for a C-check. For example, consider an aircraft with a C-check interval of 7500
FH/730 DY and an average daily operation of 15 FH. If this aircraft has no A-check, it
will be grounded and performed a C-check after 500 days since the FH usage parameter
reaches 7500 FH before the DY usage parameter reaches 730 DY. If there is one A-check
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Table 5.6: Summary of KPIs from the airline schedule (3rd column), the AMCS optimization for the first test
case (4th column), and the different scenarios from the second test case (5th–7th column). The “Airline Sched-
ule” serves as the baseline scenario. “Gain” represents the potential income generated per aircraft from having
more days for commercial operations (due to more/few days for A- or C-checks) compared with the baseline
scenario. “Saving” represents the reduction of maintenance costs per aircraft due to more/fewer checks. “Cost”
represents the costs per aircraft for creating extra slots.

KPIs Airline DSS Scenario Scenario Scenario

20/03/2019–31/12/2021 Schedule Schedule 1 2 3

C-check

Average FH 6783.8 6946.5 6959.8 6543.8 6012.3

Average FC 2896.4 2954.8 2955.4 2802.5 2570.2

Total Checks 72 71 69 73 76

Extra Slots 0 0 61 0 0

Gain [$] — 26.0K 78.0K -20.1K -80.4K

Saving [$] — 4.9K 14.7K -3.8K -15.2K

Cost [$] — 0 66.0K 0 0

A-check

Average FH 701.1 705.1 665.0 690.6 664.3

Average FC 300.8 302.5 285.6 292.7 281.6

Total Checks 764 761 811 929 967

Extra Slots 3 3 4 75 9

Gain [$] — 5.7K -89.9K -243.8K -299.9K

Saving [$] — 0.7K -11.5K -31.3K -38.4K

Cost [$] — 0 0.7K 40.9K 3.4K

Total Benefit per Aircraft — 37.3K -75.4K -339.8K -437.3K

According to our airline partner:

1) One day of operation generates on average $97.5K of revenue.

2) The A-check of an A320 family aircraft lasts one working day and costs on average $12.5K.

3) The C-check of an A320 family aircraft lasts on average 13.6 working days (slots).

4) One fewer A-(C-)check means the entire fleet can have 1(13.6) more days for operations.

5) The C-check of an A320 family aircraft costs on average $250K ($18.4K per working day).

6) The cost of creating one extra A-/C-check slot is three times as one normal slot.
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scheduled before the C-check (A-check lasts one day), this aircraft can have the C-check
after 501 days. Similarly, if the aircraft is scheduled two A-checks, it can have the C-check
after 502 days, and so forth. Based on the results of the Scenario 1 evaluation, we sug-
gested that the airline should use its current maintenance strategy rather than the new
one (described in Scenario 1).

For Scenario 2, we observed that the current A-check capacity is not sufficient to han-
dle the increased A320 fleet size according to the results shown in Table 5.6. Eventually, it
leads to a huge loss, -$339.8K, on average per aircraft. Apart from the loss from C-check
due to fewer commercial operations (-$20.1K) and performing more C-check (-$3.8K),
A-check contributes most to the loss, -$243.8K from commercial operations and -$31.3K
from performing more A-checks. Besides, it needs to spend $40.9K on average per air-
craft on creating extra A-check slots.

To cope with the soaring A-check demand from increased fleet size, the airline pro-
poses to add one A-check slot on Friday, as described in Scenario 3. According to the
DSS results, creating one additional aircraft A-check slot on Friday (Scenario 3) signifi-
cantly reduces the need for extra A-check capacity from 75 to 9 compared with Scenario
2, meaning that the cost of creating extra slots is reduced (from $40.9K to $3.4K). How-
ever, it also increases the number of checks for both check types, resulting in a huge rev-
enue loss from commercial operations. The total loss increases by 437.3−339.8 = 97.5K
on average per aircraft compared with Scenario 2. We found out that the optimization al-
gorithm schedules C-check more frequently to provide more opportunities to merge the
A-checks in C-checks (since the airline primarily wanted to avoid creating extra slots).
Based on the results of Scenario 2 and Scenario 3, we suggested that adding one A-check
slot per week is not sufficient for the increase of fleet size, and the airline should consider
adding more A-check slots to cope with the increased maintenance check demand.

5.5. CONCLUSION
This paper presents a decision support system (DSS) that addresses aircraft maintenance
planning optimization in an integrated fashion, automating repetitive tasks while en-
abling fast, efficient, human-in-the-loop decision making for optimized planning pur-
poses. First of all, the DSS is capable of optimizing the aircraft maintenance check sched-
ule. Secondly, based on the optimal maintenance check schedule, the DSS allocates
maintenance tasks to each maintenance check considering the overlapping situation
(having multiple checks on going in the same period). Thirdly, the DSS plans the work
shift respecting the task sequence in practice. It can potentially help airlines improve
their maintenance planning efficiency, reduce the related maintenance operation costs,
and even assess their maintenance strategies. Therefore, the DSS makes significant con-
tributions relevant to both scientific research and industry application.

The DSS bridges the gap between long-term AMCS and short-term shift planning.
It integrates aircraft maintenance check scheduling, maintenance task allocation and,
work shift planning in the same platform. A demonstration exercise with a European
airline shows that the DSS can generate a comprehensive optimal maintenance plan
for a planning horizon of three years within half an hour. It means airlines can use
the DSS to reduce the time needed for aircraft maintenance planning from several days
to about 30 minutes. More importantly, considering the uncertainty that might impact
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aircraft utilization or maintenance activities, we make it possible for the maintenance
planners to run the DSS in a short time to update the current plan. Whenever there are
changes in the aircraft maintenance tasks or maintenance activities, maintenance plan-
ners can quickly make new decisions using the DSS and re-organize the tools, workforce
or promptly prepare the aircraft spare parts.

Besides, the demonstration exercise results show that the DSS reduces the number
of A-/C-checks by three/one while increasing the expected average FH of A-/C-check
by 2.4%/0.6% for a planning horizon of 3 years compared with the maintenance check
schedule made using the planning approach of the airline. The reduced A- and C-checks
could lead to a significant saving in maintenance costs. The improved aircraft utilization
also indicates that there will be more aircraft available for day-to-day commercial op-
erations to generate additional revenue for airlines. After the demonstration exercise,
the DSS was tested and classified by the Clean Sky Joint Undertaking partners to be at a
Technology Readiness Level Six (TRL 6). Nevertheless, the tool still has some limitations
that have to be addressed in the future if a higher TRL is aimed:

• The primary goal of AIRMES was on the development of the optimization algo-
rithms, so future efforts should focus on improving the GUI.

• Define requirements and specifications that will facilitate direct integration of the
DSS with other information systems used by airlines, including the development
of the Application Programming Interface (API) and, potentially, a Software Devel-
opment Kit (SDK).

• Include the number of aircraft spare parts in the constraints in the task allocation
(AMPO-2) model.

Another interesting direction is to incorporate condition-based maintenance (CBM)
by taking health prognostics and diagnostics into consideration when developing main-
tenance plans. Although including CBM in the DSS will increase model complexity and
computation time, it will prepare the tool to cope with a current trend in the aircraft
maintenance research and operational communities.

Finally, it is worth mentioning that although the DSS is tailored to aircraft mainte-
nance planning optimization, it can also be adjusted to address similar problems, such
as train or bus maintenance planning for the coming days or weeks, or to match the
maintenance demand with operation timetables. For example, the main screen of the
DSS can be changed to display daily operation hours and maintenance duration. The
algorithm described in [5] can be adapted for similar maintenance scheduling or even
more general scheduling problems (e.g., vehicle routing or production planning) since
the idea of the algorithm is to estimate the consequence of each possible (maintenance)
action before making a decision. For such applications, the DSS framework can be main-
tained.
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6
CONCLUSION

This chapter concludes the dissertation with observations and findings obtained during
the study of aircraft maintenance planning optimization. First of all, it reviews the main
objectives of this research work. Next, it describes the challenges met in aircraft mainte-
nance planning and how they are addressed eventually, to highlight the scientific novelties
and practical contributions. Finally, this chapter discusses the limitations of the aircraft
maintenance planning models and gives recommendations for future work.
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6.1. REVIEW OF RESEARCH OBJECTIVE
This dissertation is dedicated to aircraft maintenance planning optimization. As stated
in Chapter 1, the main research objective is:

To develop a comprehensive maintenance planning optimization framework, in-
cluding aircraft maintenance check scheduling and the associated maintenance
task allocation, that automates and optimizes the aircraft maintenance planning
process without compromising the long-term efficiency.

Since this dissertation divides the main objective two sub-objectives, in this section,
each sub-objective and the conclusions reached from the research are reviewed.

O-1 Optimize the aircraft maintenance check schedule and task execution plan.

- Optimize the long-term deterministic aircraft maintenance check schedule,

- Optimize the task execution plan for each maintenance check, and

- Optimize the aircraft maintenance check decision considering uncertainties.

Chapters 2–4 of this dissertation are dedicated to describing how O-1 is achieved
from three different aspects, given a specific aircraft fleet and time horizon, and each
chapter corresponds to one particular topic. Chapter 2 focuses on the long-term deter-
ministic aircraft maintenance check scheduling (AMCS) optimization. It presents a for-
mulation that includes all letter check types in the same model and considers detailed
real-life operational constraints. Moreover, Chapter 2 presents a dynamic programming
(DP) based methodology for the long-term deterministic AMCS. A case study with a Eu-
ropean airline shows that, compared with current practice, the DP-based methodology
reduces the total number of letter checks, potentially resulting in a maintenance cost
saving of about $1.1M–$3.4M for a fleet of about 40 aircraft and a 4-year horizon.

Chapter 3 addresses the task allocation problem (TAP) of each maintenance check.
It formulates the TAP as a time-constrained variable-size bin packing problem (TC-VS-
BPP), given an optimal aircraft maintenance check schedule. Each bin is a time period
when several aircraft have the same type of letter checks ongoing in parallel and share
the maintenance resources. The bin size is the associated available workforce within this
period. A constructive heuristic based on the worst-fit decreasing (WFD) algorithm is
proposed, aiming at minimizing the total labor costs. According to a real-life case study
on 45 aircraft, the heuristic is more than 30% faster than an exact method (addressed by
a commercial optimization solver), while the solution gap is smaller than 0.1%.

Chapter 4 presents a lookahead approximate dynamic programming (ADP) method-
ology for the stochastic AMCS optimization, considering the uncertainty of aircraft daily
utilization and maintenance elapsed time. The lookahead ADP methodology consists of
a DP framework and a hybrid lookahead policy with deterministic and stochastic fore-
casts. The deterministic forecasts are the estimations of costs of creating extra main-
tenance slots using the mean aircraft daily utilization and mean maintenance check
elapsed time. The stochastic forecasts are the estimations of the costs of generating addi-
tional maintenance slots, given current decisions, using Monte Carlo simulations. Case
studies of an AIRBUS A320 fleet show that the lookahead ADP methodology determines
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the daily optimal maintenance check decision only in a few seconds. The lookahead
ADP methodology can be used by the maintenance operators to quickly update aircraft
maintenance check decisions whenever changes occur in maintenance tasks or activi-
ties.

Since the dissertation has provided solutions for all three aspects of O-1, meaning
that it addresses the long-term AMCS optimization and the associated optimal task allo-
cation, and the stochastic AMCS optimization, following the top-down approach com-
monly used in the aviation industry. Therefore, the Sub-Objective O-1, optimizing the
aircraft maintenance check schedule and task execution plan, is successfully achieved.

O-2 Automate the aircraft maintenance planning process

Chapter 5 describes a decision support system (DSS) developed during this research
work (AIRMES project). On the one hand, the DSS serves as a model framework to facil-
itate aircraft maintenance planning. The DSS users (maintenance operators of airlines)
no longer need to use different tools for AMCS and task allocation separately. On the
other hand, it automates the planning process by integrating the long-term determin-
istic AMCS optimization and the associated optimal task allocation, and the stochastic
AMCS optimization in the same framework. Besides, the shift planning function is also
added in the last phase of DSS development. After the DSS users load the input data
via the user interface, the DSS automatically optimizes the aircraft maintenance check
schedule and the associated task execution activities and plan the work shifts. It signif-
icantly improves the aircraft maintenance planning efficiency since maintenance oper-
ators of airlines do not need to move the maintenance checks/tasks manually or worry
about the feasibility of a maintenance check schedule. After a demonstration exercise,
the DSS was tested and classified by the Clean Sky Joint Undertaking partners to be at a
Technology Readiness Level Six (TRL 6). Hence, this dissertation also reaches the Sub-
Objective O-2, automating the aircraft maintenance planning process.

6.2. RESEARCH NOVELTY AND PRACTICAL CONTRIBUTION
This dissertation presents not only methodologies that can potentially innovate aircraft
maintenance planning (AMP) but also a decision support system (DSS) that can be used
to automate the AMP process. There were many difficulties during the research of the
aircraft maintenance planning (AMP) optimization, and they were addressed as follows:

• There is a lack of data about aircraft maintenance check scheduling (AMCS) and
seasonal daily aircraft utilization, and these data are crucial to formulating the
AMCS problem and developing optimization algorithms:

The first scientific contribution of this dissertation is to collect and anonymize the
AMCS related data, including fleet status, aircraft daily utilization, maintenance
check capacity and peak seasons, and share those data with the public. This dis-
sertation provides researchers access to AMCS-related data for further study of the
AMCS or similar problems.

• During the algorithm development for the deterministic AMCS optimization, the
author found out that the action space (the combinations of selecting multiple air-



6

144 6. CONCLUSION

craft for maintenance checks) and solution space are extremely large (the final opti-
mal fleet status is unknown), making it difficult to keep track of the AMCS decisions.
Besides, there are no available cost data to model the impacts of an AMCS decision.

For the first time, this dissertation proposes to assign priorities to aircraft for main-
tenance checks according to aircraft utilization following the rule of “earliest dead-
line first”, which significantly reduces the size of the action space. It is also the first
to adopt forward induction under dynamic programming (DP) framework to op-
timize the AMCS decisions for multiple check types. To keep track of the AMCS
decisions, it adapts the classic discretization and state aggregation of the DP ap-
proach to make the AMCS problem tractable. Instead of using the cost data to
model the impacts of an AMCS decision, this dissertation uses a thrifty algorithm
to check whether the future maintenance capacities can cope with the demands
so that whenever there are sufficient capacities for all check types, the thrifty al-
gorithm will suggest deferring a maintenance check action. All these innovations
make the proposed DP-based methodology described in Chapter 2 applicable to
real-life problems. A case study of a European airline shows that the DP-based
methodology optimized the maintenance check schedule for 45 aircraft and a 4-
year planning horizon within 15 minutes.

• The long-term aircraft maintenance task allocation problem (TAP) has never been
addressed before due to the lack of an optimal aircraft maintenance check schedule.

This dissertation proposes a constructive heuristic based on the worst-fit decreas-
ing (WFD) algorithm that optimizes the maintenance task execution within each
maintenance check quickly. Given a 4-year optimized aircraft maintenance check
schedule for 45 aircraft, the constructive heuristic described in Chapter 3 deter-
mines the start date of each aircraft maintenance task in 20 minutes while the op-
timality gap from a solution obtained by a commercial solver is within 5%. When-
ever there are changes in aircraft maintenance tasks or maintenance activities, the
proposed constructive heuristic can promptly update the maintenance task exe-
cution and the corresponding workforce.

• There are uncertainties in the aircraft maintenance check elapsed and in the aircraft
daily utilization. The optimal solution from the deterministic AMCS model may not
be robust and require to be updated frequently.

This dissertation presents a lookahead approximate dynamic programming (ADP)
for the stochastic AMCS optimization. The lookahead ADP still adopts the DP
framework. It uses a hybrid lookahead scheduling policy first to make the optimal
decision for heavy aircraft maintenance (e.g., C-/D-check) based on deterministic
forecasts, i.e., examining whether the capacity in a predefined future time-window
is sufficient for the maintenance demands using the deterministic maintenance
check elapsed time and aircraft daily utilization. After that, it fixes the decisions
for heavy maintenance and determines the light maintenance (e.g., A-/B-check)
according to stochastic forecasts, i.e., checking whether the light maintenance de-
mands can fit in the existing available maintenance slots using Monte Carlo sim-
ulations. A case study of 45 aircraft shows that, compared with the current prac-



6.3. RESEARCH LIMITATION AND RECOMMENDATIONS

6

145

tice, the lookahead ADP methodology potentially reduces the number of A-checks
by 1.9%, the number of C-checks by 9.8%, and the number of additional slots by
78.3% over four years.

• There is a lack of efficient tools for aircraft maintenance planning in the aviation
industry. Airlines have to generate the aircraft maintenance check schedule and
plan the maintenance task execution separately.

This dissertation also contributes to the state-of-the-art development of aircraft
maintenance planning software. It presents a decision support system (DSS) that
integrates the AMCS, maintenance task allocation, and shift planning in the same
optimization framework. This novel DSS automates the repetitive maintenance
planning process while enabling fast, efficient, human-in-the-loop decision mak-
ing for optimized planning purposes. It can not only optimize the aircraft main-
tenance check schedule considering the dependence of different check types and
the associated task execution but also plan the work shift respecting the task se-
quence in practice. A demonstration exercise with an airline partner shows that
the DSS is capable of generating a comprehensive optimal maintenance plan for a
planning horizon of three years within half an hour, successfully reducing the time
needed for aircraft maintenance planning from several days to about 30 minutes.
The DSS was tested and classified by the Clean Sky Joint Undertake partners to be
at a Technology Readiness Level Six (TRL-6).

6.3. RESEARCH LIMITATION AND RECOMMENDATIONS
This dissertation has provided significant contributions to both scientific research and
industry application. Even so, there are still some impacts or challenges that have not
been considered in the research work:

• Aircraft line maintenance planning

Aircraft line maintenance refers to the activities carried out while the aircraft remains
in the operating environment and is airworthy to fly. Aircraft line maintenance is usu-
ally performed at the gate. Line maintenance tasks include replacement of any compo-
nent designated as a line replaceable unit, routine in-service inspections, and day-to-day
check actions, and so on. Although the AMCS models and corresponding methodologies
proposed in this dissertation potentially reduce the number of maintenance checks and
increase average aircraft utilization, this, on the other hand, may transfer more work-
loads to line maintenance and increase line maintenance costs as a result. Therefore,
including aircraft line maintenance in the AMP optimization can further reduce the to-
tal maintenance operation costs for airlines. Following this direction, one can continue
AMP to line maintenance planning optimization, i.e., determine the tasks to be executed
in line maintenance or further move some tasks within aircraft letter check (A-/B-/C-
/D-check) to line maintenance. In this way, it reduces not only the total maintenance
operation costs but also the risk of spending more time on a maintenance check than
planned.

• Optimizing the composition and performance of teams of aircraft maintenance
technicians
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In the shift planning model, one of the goals is to assign the right number of techni-
cians to execute a maintenance task. However, due to the lack of data, the airline partner
suggests a maximum of four technicians for the execution of one maintenance task. In
practice, the number of technicians in a specific area of an aircraft is limited. It is not
realistic to allow as many technicians as possible to work on a task at a time. In this case,
it is also necessary to collect data regarding the number of technicians performing the
same job. Including this information in the shift planning mode, one can optimize the
number of technicians per shift and even further plan the compositions of teams per
activity scheduled.

• Considering uncertainties in the task allocation model

This dissertation only considers the uncertainties from aircraft daily utilization and
maintenance check elapsed time in the stochastic AMCS model, at the maintenance
check level. The task allocation model does not include uncertainties at the mainte-
nance task level. Incorporating task delays or possible system or component failures in
the task allocation model is also an exciting research direction. One potential solution
is to introduce condition-based maintenance (CBM). The CBM uses health prognostics
and diagnostics to define the tasks within each maintenance check. With the CBM ap-
proach, the task allocation model can plan the maintenance tasks for each maintenance
check according to real-time monitoring rather than fixed intervals, further extending
the lives of aircraft components and systems.

• Improving the applicability of the DSS

Regarding practical implementation, although the DSS is demonstrated to be effi-
cient in AMP optimization, there are still some possible improvements to make the DSS
applicable. The future works for the DSS improvements are in two aspects. On the one
hand, the graphical user interface (GUI) still needs some effort to be more user-friendly
and resilient. On the other hand, direct integration of the DSS with other informa-
tion systems used by airlines requires developing an Application Programming Interface
(API) and, potentially, a Software Development Kit (SDK) to facilitate this integration.

• Combining preventive maintenance and condition-based maintenance

The AMCS optimization and the associated optimal aircraft maintenance task allo-
cation belong to preventive maintenance (PM) scheduling. In PM scheduling, one has
to first estimate when a maintenance check or task is due according to its inspection in-
terval and daily utilization, then set a date, time, and place, and assign technicians to
perform the work. In condition-based maintenance (CBM), the maintenance tasks are
planned according to health prognostics and diagnostics. The design of the stochastic
AMCS model allows the integration of CBM and under AMCS. In this case, one can con-
tinue to develop health monitoring algorithms to further divide the letter checks into
more frequent and smaller task blocks that give more flexibility and allow quicker reac-
tions to new information.
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