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 Abstract 

In this paper we present a procedure that enables a systematic and partially automated 
parameterization and selection of agent-based models of the diffusion of innovations 
and policies to support diffusion processes. A prototype on the diffusion of water 
saving shower heads is presented. Our results suggest that the presented approach can 
adequately and systematically evaluate different sets of parameters and model 
structures against known diffusion data. 

Introduction 

When developing agent-based models, limited knowledge of the target system and 
lack of data often cause uncertainty about how to specify certain aspects of the model. 
In order to nevertheless derive robust policy advice from models, the effect of 
proposed policies then has to be simulated and assessed across a range of model 
specifications that, in sum, reflect the range of plausible representations of the real 
world system. Uncertainties about model specification concern both, parameter values 
but also about aspects of the model structure such as plausible decision models of 
agents [1]. Sensitivity analysis is a method to address uncertainty about parameter 
values and is a standard part of almost every modeling exercise [2]. Furthermore, 
approaches have been developed to test a variety of model structures against 
empirical data and to select out of a bigger set only those structures that are in 
accordance with empirical data [3]. However, variation of a model’s structure is a 
time consuming exercise and therefore often not done. Even more so, testing a range 
of policies against a set of model structures (and a set of parameter values for each 
model structure) and comparing the effects of policies against this broad set of model 
specifications is a time consuming and cumbersome exercise. 

In this paper we present a procedure to accelerate this process for models of the 
diffusion of innovations, by making the process transparent and do a systematic 
variation and selection process. Part of this process is automated, in order to develop 
models and assess policies at greater speed than is current practice.  



 

 Innovation diffusion models 

According to Rogers [4] the diffusion of an innovation is the process by which an 
innovation is communicated through certain channels over time among the 
participants in a social system. Most ‘micro level’ diffusion models that aim to 
represent this process have a common structure [5]: (1) Consumer agents define the 
individual entities than can adopt an innovation. This can be individual persons, 
households, or groups of households. (2) Social structure is the heterogeneity of 
consumer agents, e.g. dividing them in different consumer groups. (3) Decision 
making processes are the key actions of consumer agents to model the adoption of an 
innovation. (4) Social influence between agents often affects decision making 
processes and is commonly modeled as a social network graph. Models vary in the 
range at which social influence is exceeded. This can be influence from direct peers, 
from the respective social group or the entire population of agents. All these ranges of 
influence can be modeled as a social network graph.   

Automation procedure 

As depicted in figure 1, the presented automation procedure comprises three 
phases: preprocessing, inverse modeling, and policy simulation. It has been 
implemented in NetLogo. 

 

 
 

Figure 1: Overview of automation procedure (see text for details). 
 
Preprocessing: In this step, input data is provided to specify those model elements 

that are not selected to be varied, and to define empirical data based on which model 
variations will be selected or discarded. In our specific modeling exercise, agents are 
each defined by their numerical ID, their 2D coordinates, and the group they belong 
to. The attribute ‘group’ serves to capture heterogeneity of agents and allows decision 
models to differentiate adoption decisions between actors. The social network is 
provided by tuples of each an agent that influences another agent. Furthermore, for 
each innovation the properties ‘environmental friendliness’, ‘ease of use, 
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‘compatibility’, ‘savings from innovation’ and ‘ease of installation’ [6] are defined as 
number in [0,1],  which represent how an innovation is perceived by households. 
Finally, ‘patterns’ are provided that characterize the dynamics of the real-world 
process that shall be modeled. These patterns are ‘indicators of essential underlying 
processes and structures’ [3]. Each additional pattern reduces uncertainty about which 
mechanisms could explain the diffusion of an innovation. An example for a pattern is 
the exponentially increasing adoption share of a successful innovation during its 
initial diffusion [4]. Further, a ‘matching function’ is defined that compares the 
simulation outcome to the empirically identified patterns.  

Inverse modeling: In this automated phase, simulations are conducted with a range 
of model variations that have to be defined beforehand. In the experiments reported 
below we have varied the decision models of agents between four decision models 
(cf. figure 1, ‘Decision model library’). For each model variation the parameter 
setting that satisfies the matching function best is identified. We have used the 
BehaviourSearch1 extension of NetLogo with a simulated annealing optimization to 
implement this step. Based on the results of this optimization and comparison with 
patterns, model variations are selected for further processing or discarded. 

Policy simulation: Policies were implemented as NetLogo functions and stored as 
individual ‘NetLogo source files’. In this step they can be selected by the user to test 
their effect for the set of model variations that were found plausible in the inverse 
modeling phase. With the BehaviourSpace tool in NetLogo, policy are assessed 
automatically, based on each plausible model specification. 

 Application case: diffusion of water-saving appliances 

As a proof of concept and for illustrating the presented automation procedure, we 
apply the procedure to the diffusion of water-saving showerheads as presented by 
Schwarz [7]. 

During preprocessing, we defined three agent groups (so-called leading lifestyles, 
mainstream households, and hedonists). Two patterns on the diffusion of water-saving 
showerheads where identified in the available empirical data [7]: 1) Market shares in 
Germany in the year 2005, after ca. 15 years of diffusion, differentiated by consumer 
groups; 2) The exponential shape of the adoption diffusion curve during these first 15 
years of innovation diffusion. 

For inverse modeling, we defined and tested four decision models. First, we 
defined a model based on the one proposed by Schwarz [7]. In Schwarz’ model, 
agents either decide to adopt the appliance, or decide according to the majority of 
their peers. We added some flexibility to this model through providing ranges to 
parameter values that were fixed in the original model.2 This resulted in the ‘Schwarz 
flexible’ model. Second, we defined a model based on the Theory of Planned 

                                                             
1 http:www.behavioursearch.org 
2 In our model the deliberation rate may range in [0.004,0.04] and the probability for each 

consumer group to adopt according to majority of peers is flexible in [0,1].  



 

Behaviour [8], the TPB model. In this model attitude and influence from peers are 
weighted and added to derive the agents decision. Both models assume that agents 
can deliberate about adoption at all times. We differentiated both models by the 
option of an additional word-of-mouth (WOM) mechanism. If this mechanism is 
active, agents only consider adopting feedback devices if they are ‘aware’ of them. 
They become aware once a peer adopts the device. Figure 2 shows the results of the 
inverse modeling for the four model variations. Results show that the ‘Schwarz 
flexible (no WOM)’ model was not able generate an exponential pattern. The ‘TPB 
(no WOM)’ model was not able to match the adoption data at the same time as the 
exponential pattern. Therefore, these two models were discarded, and the two models 
‘Schwarz flexible (WOM)’ and ‘TPB (WOM)’ were selected for policy simulation. 

 

Figure 2. Average adoption of water-saving showerheads, as simulated by the four tested 
models at best fitting parameters. Results are differentiated by consumer group. The hollow 

points show empirical market shares after 15 years of diffusion. 

Figure 3: Results of policy for the two selected model variants. 

For policy simulation, we designed a simple marketing strategy of giving away free 
products to 10% of households at the beginning of the simulation. Figure 3 shows the 
results of this policy for the two selected model variations. Impacts of the policy are 
quite similar for both models: the innovation (initially) spreads at a much quicker 
pace and the amount of additional adoptions within 15 years is similar, too. This adds 
supports the conclusion that the policy is robust against the remaining uncertainty 
about the decision model. 
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 Discussion and conclusions 

The experiments reported in the previous section demonstrate the feasibility of the 
presented automation procedure. We argue that implementing such a procedure has 
several benefits: 1) It makes tests of model variants regarding their ability to 
reproduce empirical facts easier. Doing so, it supports an improvement of validity of 
models, 2) It facilitates to test policy recommendations against a range of plausible 
model variants and thus supports the identification of robust policies, 3) It makes 
these features available for quick applications of models to new cases (e.g. simulating 
the diffusion of a product in a different city) independent of the availability of a 
modeling expert. Once the model variants and polices are implemented, a user could 
select and test model variants without requiring highly developed modeling or 
simulation skills. Skills in data processing are however required to process and 
provide the required input data.  

We have developed this procedure for the case of innovation diffusion models. 
This is an arguably uncomplicated case. The similarity of the structure of various 
innovation diffusion models simplifies automating the building of agent-based models 
of innovation diffusion, as the same basic ontology holds for many model variations. 
This similarity makes the definition of interfaces between decision models, agents, 
innovations and policies comparably easy. We propose to apply the presented 
automation procedure to other cases in which model variants are less similar in order 
to explore how far automation of the generation of agent-based models can be 
extended. 
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