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A B S T R A C T

In this work, a hybrid physics-based data-driven surrogate model for the microscale analysis of heterogeneous
material is investigated. The proposed model benefits from the physics-based knowledge contained in the
constitutive models used in the full-order micromodel by embedding the material models in a neural
network. Following previous developments, this paper extends the applicability of the physically recurrent
neural network (PRNN) by introducing an architecture suitable for rate-dependent materials in a finite
strain framework. In this model, the homogenized deformation gradient of the micromodel is encoded into
a set of deformation gradients serving as input to the embedded constitutive models. These constitutive
models compute stresses, which are combined in a decoder to predict the homogenized stress, such that the
internal variables of the history-dependent constitutive models naturally provide physics-based memory for
the network. To demonstrate the capabilities of the surrogate model, we consider a unidirectional composite
micromodel with transversely isotropic elastic fibers and elasto-viscoplastic matrix material. The extrapolation
properties of the surrogate model trained to replace such micromodel are tested on loading scenarios unseen
during training, ranging from different strain-rates to cyclic loading and relaxation. Speed-ups of three orders
of magnitude with respect to the runtime of the original micromodel are obtained.
. Introduction

Owing to their high flexibility and potential to reduce computa-
ional costs, machine learning (ML) techniques are becoming increas-
ngly popular in solid mechanics. These techniques can be especially
seful in micromechanical and multiscale analysis, where the accu-
ate representations of complex materials are often compromised by
heir notoriously high computational costs. Complex heterogeneous
aterials can be modeled on a lower scale, the microscale, through
so-called Representative Volume Element (RVE), a micromodel as-

umed to statistically represent the material behavior. At that scale,
lassical constitutive models can be conveniently employed to describe
he behavior of each of the constituents. This allows for an accurate
epresentation of intricate phenomena in the composite material behav-
or without the need for assumptions about the macroscopic material
ehavior. The generality of the method, however, is not without trade-
ffs. Large micromodels, fine meshes, and path and rate-dependent
aterials are some of the features that result in exceedingly high com-
utational costs. A common approach to tackle this issue is to replace
he micromodel altogether with a surrogate model that reproduces the
elation between the homogenized strains and stresses at a lower com-
utational cost. In applications involving path-dependent materials,

∗ Corresponding author.
E-mail address: M.AlvesMaia@tudelft.nl (M.A. Maia).

variations of Recurrent Neural Networks (RNN) are the most popu-
lar choice, but other surrogate modeling strategies built on Gaussian
Processes (GPs) and dimensionality reduction techniques (e.g. Proper
Orthogonal Decomposition (POD) and Hyper-reduction methods) have
also showed potential for reducing the computational costs (Oliver
et al., 2017; Ghavamian et al., 2017; Rocha et al., 2019, 2021).

When it comes to neural networks, the more complex architectures
derived from RNNs, such as Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM), are the predominant choice at present.
These models can handle sequential data through mechanisms that
propagate information from previous to later states when processing
a sequence (e.g. an entire path of 𝜀-𝜎 pairs). Several works showcase
their potential in modeling path-dependent behavior for both homoge-
neous (Heider et al., 2020) and heterogeneous materials (Wu and Noels,
2022; Logarzo et al., 2021; Gorji et al., 2020; Mozaffar et al., 2019).
Nevertheless, several unresolved issues and challenges remain. One of
them lies in the fact that in spite of the similarity between the role of the
hidden state in RNNs and the internal variables in a constitutive model,
the network mechanism is still regarded as a black-box and insights into
any latent physical patterns learned by the network are thus far limited
ttps://doi.org/10.1016/j.mechmat.2024.105145
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to simple settings (e.g. homogeneous material in 1D problems Koeppe
et al., 2021; Liu et al., 2023; Bhattacharya et al., 2023).

Another pressing issue in these networks is their limited ability
to extrapolate. This is usually tackled with ever larger training sets
and intricate design of experiments that aim to uniformly/densely
cover the space of strain paths. A complicating aspect is the curse
of dimensionality. In that regard, frameworks based on RNNs and
variations are typically exemplified in 1D or 2D problems, but even
in those cases a large variety of loading/unloading cases is required
to cover similar paths and patterns encountered in actual microscale
simulations. Recent works (Ghane et al., 2023; Cheung and Mirkhalaf,
2024) illustrate the hurdles with predicting loading types different from
the ones used for training. In Ghane et al. (2023), a strategy based
on transfer learning is employed to improve the training performance
of LSTMs and GRUs and overcome feature sparsity issues. For this,
the authors train a network on data generated using a random walk
strategy, and then use the optimized parameters in the initialization of a
second network trained to predict cyclic loading. Cheung and Mirkhalaf
(2024) extend that idea to train GRUs with multi-fidelity data, helping
reduce the computational cost of generating large high-fidelity training
datasets.

An alternative approach to uncover the black-box nature of these
methods is to introduce physics knowledge into the ML-based model.
Following that philosophy, Physics-Informed Neural Networks (PINNs)
are likely the biggest exponent. Although these networks have been
initially designed to solve partial differential equations, the idea of en-
riching the loss function with extra terms to enforce physics constraints
has quickly found its way into the material modeling community. For
instance, to predict displacement and stress fields, in addition to terms
corresponding to the Neumann and Dirichlet boundary conditions in
the loss function of a PINN, one could also include physics-based
constraints such as Karush–Kuhn–Tucker conditions when modeling
plasticity, as done by Haghighat et al. (2021) or the evolution of the
plastic strain-rate for viscoplastic materials, as shown in Arora et al.
(2022). In spite of the additional information, Haghighat et al. (2021)
report no benefit in using PINNs as forward solvers and Arora et al.
(2022) comment on the degrading performance in extrapolation.

Another way to leverage physical consistency in NNs is to encode
the physical knowledge directly in the architecture design (Masi and
Stefanou, 2022; Eghbalian et al., 2023; Garanger et al., 2023). For in-
stance, in Masi and Stefanou (2022), the authors proposed a framework
where stresses and dissipation are obtained through the differentiation
of the learned energy potential function. Strategic architectural choices
can also help enforce a specific behavior, as done in Garanger et al.
(2023). In that work, tensor-based features and activation functions are
used in feed-forward and GRUs to enforce material symmetries.

Moving away from the recurrency mechanisms in RNNs, transform-
ers rely on self-attention mechanisms to extract correlations among
the elements within a sequence. These models have shown improved
performance in comparison to other state-of-the-art methods in captur-
ing long-range dependencies in language processing problems (Vaswani
et al., 2017), but have only recently been applied in the computational
homogenization field to predict the response of composite materi-
als with elastoplastic behavior (Zhongbo and Hien, 2024; Pitz and
Pochiraju, 2024). Beyond the positive assessment on the accuracy and
efficiency of the trained models on the online evaluations, a common
thread in these works (Zhongbo and Hien, 2024; Pitz and Pochiraju,
2024) encompass the need of very large datasets (ranging from dozens
to hundreds of thousands of curves), the difficulty of training models
with millions of parameters and the critical scaling of computational
memory space required for both the offline and online phases as the
sequence length increases.

When dealing with materials with time-dependency, the extra di-
mensionality related to strain-rate sensitivity adds a new depth to
the problem. For clarity, we distinguish time or rate-dependency from

path-dependency as the former refers to behavior that is dependent

2 
on the duration and speed of the loading, while the latter refers to
behavior dependent on the loading sequence and history. In a broader
sense, both are framed as history-dependent. In some works, the strain-
rate (Wen et al., 2021) and/or the time increment (Ge and Tagarielli,
2021) have been explicitly included in the feature space. In others,
a fixed time increment is considered (Ghavamian and Simone, 2019;
Chen, 2021). Another interesting strategy was proposed by Liu et al.
(2023), where a forward Euler discretization was employed to make the
stress prediction independent from the time discretization using two
feed-forward NNs. The first model learns the rate of change of a set
of internal variables learned from the data based on the current strain
and the previous set of internal variables, while the second predicts
the stress based on the current strain and the internal variables learned
by the first NN. In a follow-up work, Zhang and Bhattacharya (2024)
explore how iterated learning can help improve the accuracy of these
models in multiscale applications through the inclusion of strain-stress
curves extracted from a macroscopic problem of interest, as well as
their transferability to other problems.

Finally, Eghtesad et al. (2023) proposed a framework based on the
dual potential function to describe rate-dependent viscoplastic flow
response in metals. The authors take advantage of input-convex NNs
to enforce thermodynamic consistency and leverage automatic dif-
ferentiation to compute gradients of the output with respect to the
inputs, which are used for solving the implicit time-stepping algorithm
employed in their elasto-viscoplastic model. Nevertheless, the method
is not suitable for FE simulations yet as arbitrary loading and bound-
ary conditions can take place and only uniaxial deformations were
considered.

In all of these works, to train a surrogate for rate-dependence the
training data needs to account not only for a good coverage of strains
but also strain-rates. To deal with time-dependency in a more seamless
manner, we propose to expand the applicability of the approach pre-
sented in Maia et al. (2023), namely the Physically Recurrent Neural
Network (PRNN). In that work, a network with embedded physics-
based material models was used to accelerate multiscale analysis of
path-dependent heterogeneous materials. The core idea is that the
macroscopic strain can be encoded into a set of strains for (fictitious)
material points, from which the stress is computed using the same
material models and properties as in the micromodel. With these
stresses, a decoder is applied to obtain the macroscopic stresses in a
homogenization-like step.

A key element in the proposed architecture consists of letting the
material model that evaluates the fictitious material point stress also
handle the evolution of its own internal variables. This way, the net-
work inherits the assumptions built into the material models used in
the micromodel without the need for additional trainable parameters
or mechanisms to reproduce history-dependent behavior. In a related
work (Rocha et al., 2023), we explore this idea from a different perspec-
tive. Instead of learning how to dehomogenize the macroscopic strain,
we learn how material properties evolve in time and let the material
model be the decoder of a single fictitious material point subjected to
the macroscopic strain.

In our previous paper (Maia et al., 2023), the PRNN was demon-
strated to work for micromodels with rate-independent plasticity, cap-
turing loading–unloading behavior without seeing it during training.
It is anticipated that the same approach can capture rate-dependence.
In this paper, we apply the PRNN approach to micromodels where the
polymer matrix is described with the Eindhoven Glassy Polymer (EGP)
model, an advanced elasto-viscoplastic material model for polymers.
For this purpose, the following features are added with respect to the
previous work:

• time-dependent material behavior;
• a finite strain formulation;
• generalization to 3D space.

We show how these new and non-trivial features are incorpo-
rated into the network and demonstrate that the benefits of the PRNN

approach successfully transfer to a much more complex class of models.
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Fig. 1. Micromodel and scheme of configurations used in the updated Lagrangian framework.
c
c
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2. Microscale analysis

This work focuses on the homogenized behavior of a RVE of a
microscopic material with both path and time-dependency. For no-
tation purposes, the superscripts Ω and 𝜔 refer to the homogenized
macroscopic) and microscopic quantities, respectively. Let 𝜔 denote
he RVE domain and consider that periodic boundary conditions (PBC)
re applied to simulate the behavior of a macroscopic bulk material
oint, as depicted in Fig. 1(a). In the absence of body forces, the
pdated Lagrangian formulation, illustrated in Fig. 1(b), can be defined
y the weak statement of equilibrium

∫𝜔
𝐁T𝝈 𝑑𝜔

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐟 int

−∫𝛤u

𝐍T𝐭p 𝑑𝛤

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝐟ext

= 𝟎 (1)

here 𝐍 is a matrix with the shape functions used to interpolate the
odal displacements 𝐚, 𝐁 is the strain–displacement matrix with the
radients of the shape functions with respect to the current coordinates
, 𝝈 is the Cauchy stress, 𝐭p are the tractions prescribed on the boundary
f the domain 𝛤f (see Fig. 1).

With the domain discretized in a Finite Element (FE) mesh, the
isplacements at the nodal values, known as the degrees of freedom
DOF), are used to describe the displacement field of the micromodel
= 𝐍𝐚. In this method, Eq. (1) is solved iteratively as

= 𝐟 int − 𝐟ext = 𝟎 (2)

here 𝐫 is the residual vector that vanishes once equilibrium is reached.
he iterative procedure involves linearization of 𝐟 int with respect to the
OF vector. In the geometrically nonlinear formulation, this lineariza-

ion requires accounting for the dependence of 𝐁 from Eq. (1) on the
isplacements through a geometric contribution to the stiffness matrix.

The stress in Eq. (1) is related to the deformations with a constitu-
ive model 𝜔, which, in general, can be described by

,𝜶 = 𝜔 (𝐅,𝜶𝑡−1,Δ𝑡) (3)

here 𝜶 and 𝜶𝑡−1 are the history variables that account for path and
ate-dependency at the current and previous time step, Δ𝑡 is the time
ncrement and 𝐅 is the deformation gradient

= 𝐈 + ∇𝐮 (4)

here ∇𝐮 represents the gradient of the microscopic displacements.

ince the deformation gradient is calculated with respect to the initial

3 
onfiguration, its increment can also be easily computed from the
urrent and previous deformation states

𝐅 = 𝐅𝐅−1
𝑡−1. (5)

For rate-dependent materials, the stress depends on Δ𝐅 as well
as 𝐅, which can be achieved with Eq. (3) if 𝐅𝑡−1 is included in the
material history 𝜶. Upon convergence, the homogenized stresses can be
averaged out by integrating the microscopic stresses over the volume
𝜔:

𝝈Ω = 1
|𝜔 |

∫𝜔
𝝈 d𝜔. (6)

2.1. Constitutive models

In this work, we consider a composite micromodel made of uni-
directional fibers embedded in a matrix material. To describe the
constitutive behavior of the matrix, the EGP model is used, while for
the fibers, a hyperelastic transversely isotropic model is assigned. These
consist of the same choices adopted in Kovačević and van der Meer
(2022), where a thorough validation of the material models was carried
out for a carbon/PEEK composite material. Here, we only highlight the
main aspects of their formulation and focus on how to incorporate them
in a PRNN.

The fiber constitutive law is based on the one developed by Bonet
and Burton (1998) with slight modifications (Kovačević and van der
Meer, 2022). The constitutive model derives from the strain energy
density function and can be split into two components, an isotropic
part with a neo-Hookean potential and a transversely isotropic part,
with both depending on the right Cauchy–Green deformation tensor

𝐂 = 𝐅T𝐅. (7)

The EGP model for the matrix material consists of a rate and path-
dependent elasto-viscoplastic, isotropic, 3D constitutive law. In this
model, no explicit yield surface is needed since an Eyring-based viscos-
ity function evolves with the stress applied, leading to the viscoplastic
flow of the material. The Cauchy stress calculated by the EGP is com-
posed of three contributions: hydrostatic, hardening and driving stress.
While the first two parts are defined in more simple terms as they do not
depend on the internal variables, in the third part, where viscoplasticity
is introduced, a further decomposition can be considered. In this case,
the multiple contributions to the driving stress correspond to different
molecular (relaxation) processes. Each relaxation process is represented

with a series of Maxwell models (modes) connected in parallel, with
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Fig. 2. Right polar decomposition on deformation gradient 𝐅 resulting in the stretch
and rotation tensors 𝐔 and 𝐑, respectively.

a shear modulus in the elastic spring and a stress-dependent viscosity
in the dashpot. Here, a single relaxation process is considered and
represented with 1 mode.

For any of the models discussed so far, a helpful tool to deal with
the high-dimensionality of the deformation gradient is the polar decom-
position theorem. The theorem states that any deformation gradient 𝐅
can be uniquely decomposed into the product of two other tensors: a
symmetric one 𝐔 and an orthogonal one 𝐑, as 𝐅 = 𝐑𝐔. These two
tensors have physical interpretations and are closely related to the
principle of material objectivity or material frame indifference. In short,
the symmetric tensor represents the deformation (i.e. stretches and
shear) and the orthogonal tensor represents a rigid body rotation. When
applied in this sequence, the final configuration obtained is the same
as the one obtained if the deformation gradient was applied directly.

The particular order of stretch and rotation is known as right polar
decomposition and is illustrated in Fig. 2. From these interpretations
and considering the principle of material frame indifference, which
states the material response is independent of the observer, one can
rewrite stresses as

𝝈U,𝜶 = 𝜔 (𝐔,𝜶𝑡−1,Δ𝑡) (8)

𝝈F = 𝐑 𝝈U 𝐑T (9)

where 𝝈U are the unrotated stresses and 𝝈F are the stresses in the
original frame of reference.

3. Physically recurrent neural network

In this section, we present the new architecture of the Physically
Recurrent Neural Network (PRNN) to be used in a 3D finite strain
framework for micromodels with path and rate-dependent behavior.
Having the network in Maia et al. (2023) as the starting point, we
highlight and motivate the main changes in comparison to the 2D
formulation. In that work, a NN composed of a data-driven encoder,
a material layer with embedded physics-based material models and a
data-driven decoder is proposed. The data-driven parts learn how the
homogenized strain can be dehomogenized and distributed among a
small set of fictitious material points and how the stress obtained in
these material points can be homogenized again, respectively. With the
same core idea, we propose a set of modifications to extend such model
to the current application. For an extended introduction to PRNNs, the
interested reader is referred to Maia et al. (2023).

Before diving into the details of the novel architecture, training
aspects and its use as a constitutive model, we highlight an important
change in its input with respect to the 2D formulation in Maia et al.
(2023). Here, the surrogate is trained to learn the mapping from stretch
(path) to unrotated stress (Eq. (8)) and let it be embedded between
decomposition and rotation operations to recover the stress in the
original frame, as illustrated in Fig. 3, instead of mapping deformation
gradient to rotated stress directly. With this, the dimensionality of
the feature space of the PRNN is reduced from 9 to 6 independent
components, alleviating the sampling effort required for training.
4 
Fig. 3. Use of PRNN in a general full-order solution setting with 𝐅Ω and 𝝈Ω
F as input

and output, respectively.

3.1. Encoder

The encoder comprises all parameters and operations that convert
the homogenized stretch tensor into local fictitious deformation gra-
dients. In the general PRNN architecture illustrated in Fig. 4, these
correspond to the blue connections. In our previous work, the encoder
consisted of an arbitrary number of hidden layers fully connected,
while in this work a custom layer is proposed to ensure that physical
constraints related to the definition of the strain measure are met. Two
challenges arise from working with the deformation gradient instead
of the small strain vector. Firstly, with the deformation gradient or the
stretch, the undeformed state corresponds to the identity and not a null
tensor.

In a regular dense layer, if a given set of weights 𝐖 were to be
applied on the undeformed stretch tensor (i.e. 𝐔Ω = 𝐈), the resulting
matrix 𝐖𝐔Ω would be different from the identity and therefore gen-
erate stresses when it should not. To address that, we need to make a
few changes to the encoder, starting with the way we treat the input.
Now, instead of applying weights to transform a vector with dimension
6, we work on the actual tensor 𝐔Ω that is 3 × 3. Note that this is only
a reshaping operation, and no additional features are needed to fill the
tensor.

With that, the weights connecting 𝐔Ω to the inputs of the material
layer can be applied in a similar fashion to the fictitious material
points, in groups, to generate the deformation gradients used in that
layer. In this case, for each point, a 3 × 3 weight matrix is needed.
Another important change to ensure the zero stress-state comes from
the definition of the deformation gradient (see Eq. (4)). Based on
that, we subtract the identity matrix from the homogenized stretch
tensor and only then apply the weights to the remaining values. After
that transformation, we add the identity back and obtain the final
deformation gradient.

Secondly, because the deformation gradient determinant represents
the change in volume from the undeformed to the current configura-
tion, the local deformation gradients learned by the network should
have strictly positive determinants. One way to avoid negative determi-
nants consists in ensuring that the determinant of the weight matrices
applied on 𝐔Ω−𝐈 to obtain the fictitious local deformation gradients are
always positive. This is done by imposing a structured weight matrix
𝐖𝑗 originated from a Cholesky decomposition for each subgroup 𝑗.
The determinant of the decomposed triangular matrices simplifies to
the multiplication of their diagonal elements, so positivity is therefore
ensured by applying a softplus function to those diagonal entries. In
this case, only 6 learnable parameters are associated to each fictitious
material point. The scheme in Fig. 5 summarizes how the local strain
of one fictitious material point is obtained after the proposed changes.

3.2. Material layer

This layer contains the embedded physics-based constitutive mod-
els, arranged into a series of fictitious integration (material) points.
Because a material model is not a scalar-valued function like typical
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Fig. 4. New architecture of PRNN for finite strain framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 5. Encoder architecture applied to obtain the local strain of a fictitious material point 𝑗 based on the input 𝐔Ω.
activation functions (e.g. sigmoid, tanh, relu, etc.), a special architec-
ture is required. In that sense, an important change compared to Maia
et al. (2023) is the way neurons are interpreted. Here, we group
them together in 𝑚 subgroups, each consisting of a tensor with the
same order tensor and dimensions as the deformation gradient in the
input layer (3 × 3 for the present investigation in three dimensions),
whereas in Maia et al. (2023) the subgroups consists of vectors of
length 3, representing the strain vector in 2D. In this arrangement,
each subgroup corresponds to one fictitious material point. The basic
idea is that the values reaching the subgroup can be seen as a local
deformation learned by the encoder, which will then be evaluated by
one of the constitutive models used in the full-order solution with the
same material properties.

Once a given constitutive model with its respective material prop-
erties is assigned to the subgroup 𝑗, say 𝜔

𝑗 , the next step is to use it to
obtain the stresses and the updated internal variables (if any). These
internal variables are present in rate and path-dependent material
models and are the core of the physics-based memory of the proposed
network. However, rate and path-independent constitutive models can
also be used in the material layer without further adaptations. A brief
discussion on the choice of the constitutive models used in this layer
follows at the end of the section.

Consider that 𝜔
𝑗 takes as input the deformation gradient 𝐅, the

internal variables from previous time step 𝜶𝑡−1 and the increment of
time Δ𝑡. In the first time step, the internal variables of all material
points are properly initialized based on the undeformed state 𝜶0. In
𝑗

5 
every time step, the current stresses 𝝈 and updated internal variables
𝜶 of each subgroup are obtained. These variables are preserved in
each subgroup so that in the following load step, when a new 𝐅 is
fed to the material point, the history of the material can be updated
accordingly. A representation of this workflow is shown in Fig. 6. Note
that the ‘‘flattening’’ operation transforming the 3 × 3 tensor into a
vector with only the 6 independent components, is analogous to the
reshaping operation used at the encoder. This condensation does not
imply in loss of information since the Cauchy stress tensor is symmetric.

An important aspect illustrated in Fig. 6 is that no additional
time-related features or trainable parameters are needed to learn the
time-dependence. The network learns the strain distribution over the
fictitious material points through the encoder, which works the same
for all constitutive models. The time increment Δ𝑡 is passed to the rate-
dependent material as additional input, but it has the same value for
all material points as would be done in the micromodel simulation.
By directly employing the same material models and properties con-
sidered in the micromodel with internal variables that naturally follow
physics-based assumptions, we can capture the rate and path-dependent
behavior in a more straightforward way. With RNNs, the mechanisms
behind the evolution of internal variables need to be learnt from the
data.

Finally, the user is left with the choice of which constitutive model
to employ in the material points. Our recommendation is to employ
all nonlinear constitutive models used in the micromodel with their
respective known material properties. To illustrate that, consider the
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Fig. 6. Scheme of fictitious material points unrolled in time, each colored box
corresponding to a different constitutive model. From top to bottom: path-dependent,
path and rate-dependent, and path and rate-independent constitutive models. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

composite micromodel studied in the numerical examples of this work,
in which an orthotropic hyperelastic model is used to describe the fibers
and an elasto-viscoplastic model for the matrix. Since both models
include nonlinearity in their formulations, we include both types in
the material layer. In addition to that, in the present case, each model
has distinctive behavior in terms of path and rate-dependence, which
emphasizes the importance of both in the network. This topic is further
discussed in Section 3.4 along with other training aspects and model
selection procedure, including the definition of the proportion of the
constitutive models in this layer.

3.3. Decoder

The decoder comprises all network parameters that work on the
outputs of the material layer to obtain the homogenized stresses 𝝈Ω.
Note that because the outputs of the material layer consist of the
stresses from the fictitious material points, the role of the decoder
parameters is well aligned with the actual full-order solution. In the
micromodel, once the full-field of stresses is obtained, the homogenized
stresses are obtained by averaging the stresses over the entire domain.
Here, instead of integrating the field with hundreds or thousands of
integration points, only a few fictitious material points contribute to
 d

6 
the homogenized response where the relative contributions of each
fictitious point are learnt from data.

For that purpose, an arbitrary number of neurons and layers can
be used. In this work in particular, for a more direct analogy with
the homogenization process, a single dense layer with linear activation
and physics-motivated modifications is considered. In this way, the
weights of the output layer reflect the relative contribution of each
of the material points to the predicted homogenized response. In the
actual micromodel, weights come from a numerical integration scheme
and are strictly positive. To reflect that, an absolute function 𝜌 (⋅) is
pplied element-wise on the weights of the decoder 𝐖d. For the present
rchitecture (see Fig. 4), it then follows that the predicted homogenized
tress is given by

̂Ω = 𝜌 (𝐖d) 𝐚 (10)

here 𝐚 corresponds to the concatenation of local stresses from the
aterial points.

In addition to that, we also investigate the use of a sparsification
pproach, where instead of having a regular dense layer that connects
ll components of the local stress tensor to the predicted homogenized
tress, only the component-wise contributions are taken into account,
s illustrated in Fig. 7. For instance, only the stresses 𝜎xy from each of
he subgroups are weighted in for obtaining 𝜎Ωxy. This sparsification also
rings the decoder closer to the actual homogenization procedure, in
hich stresses are averaged component-wise.

.4. Training aspects and error metrics

The goal of the optimization procedure is to minimize a loss func-
ion that quantifies how close the network’s prediction are from the
ctual solution. In this work, the standard loss function based on the
ean square error (MSE) is used:

= 1
𝑁train

𝑁train
∑

𝑡=1

1
2
‖

‖

‖

‖

vec (𝝈Ω
𝑡 ) − vec

(

𝝈Ω
𝑡
(

𝐔Ω
𝑡 ,𝐖,𝐖d

)

)

‖

‖

‖

‖

2
(11)

where 𝑁train is the number of loading paths used for training, 𝐖
and 𝐖d are the network parameters for the encoder and decoder,
respectively, and vec(⋅) corresponds to the Voigt representation of
the homogenized stress tensor, which consists of 6 components in
the 3D case (i.e. the ‘‘flattening’’ mentioned in the previous sections).
From that, one can compute the gradients of the loss function with
respect to the trainable parameters using a backpropagation proce-
dure and then update those accordingly, for which we use the Adam
optimizer (Kingma and Ba, 2014).

The backpropagation here follows the same methodology as in Maia
et al. (2023). Note that the gradients of the parameters in the decoder
can be obtained based on the conventional backpropagation procedure,
but for the ones in the encoder, backpropagation through time is
needed. This is a vital aspect of the training and stems from the path-
dependency of the material models embedded in the material layer. For
completeness, we include the expression for computing the gradients of
the weights in the encoder at time step 𝑡 for a given loading path:

𝜕𝐿𝑡

𝜕𝐖𝑗
= 𝜕𝐿

𝜕𝝈Ω
𝑡

𝜕𝝈Ω
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𝑗
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𝑗

𝜕𝐅𝑡
𝑗

𝜕𝐅𝑡
𝑗

𝜕𝐖𝑗

]}

(12)

here 𝐖𝑗 corresponds to the weights associated to the material point
. The gradients related to the internal variables are evaluated using
entral finite differences. However, if the material models are im-
lemented with automatic differentiation support (e.g. PyTorch and
ensorFlow), these gradients and dependencies can be automatically
aken into account with tools such as Autograd and GradientTape, as
one with off-the-shelf RNNs.



M.A. Maia et al.

o
c
c
t
T
f

𝜎

w
o
t
t
i
d
i
T
e
f
i
t

t

Mechanics of Materials 198 (2024) 105145 
Fig. 7. PRNN with sparse decoder.
A potential issue in training with Eq. (11) is the large variations
f values across the multiple outputs due to the orthotropy of the
omposite material with high stiffness contrast. In such scenario, one
omponent can disproportionately dominate over the others, leading
o unstabilities in the training process and overall poor performance.
o mitigate that, each component of 𝝈Ω is normalized to [−1, 1] as
ollows:

Ω
(⋅)norm = 2

⎛

⎜

⎜

⎝

𝜎Ω(⋅) − min 𝜎Ω(⋅)
max 𝜎Ω(⋅) − min 𝜎Ω(⋅)

⎞

⎟

⎟

⎠

− 1 (13)

here max refers to the maximum absolute homogenized stress values
f the component (⋅) in the training data and min is the negative of
hat value. The symmetric bounds in each of the components ensures
hat the zero-stress state from the material points will be reflected
n the homogenized stress. Furthermore, to preserve the role of the
ecoder as the homogenization-like step, the normalization in Eq. (13)
s also applied to the local stresses from the fictitious material points.
his ensures that all material point stresses are within the same range
xpected at the output layer. Lastly, no normalization is considered
or the inputs, since the range of the features are similar and, more
mportantly, are compatible with the range expected by the models in
he material layer.

For the model selection and performance assessment, we consider
wo error metrics:

Absolute error ∶ 1
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∑
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‖

‖

‖

‖

‖

vec (𝝈Ω
𝑡 ) + 𝜺 ‖‖

‖

(14)

where 𝑁paths refers to the number of loading paths in the valida-
tion/test sets, 𝐿path is the length of each path and 𝜺 is a stabilizing
term with the same dimensions as vec (𝝈Ω

𝑡 ) filled with 10−8 used to
avoid division by zero.

To reduce the number of hyper-parameters to be tuned and keep
the model selection as simple and straightforward as possible, we
define a minibatch as 2 paths, the stopping criterion as the maximum
number of epochs (1000 ) and use the recommend default settings
from Kingma and Ba (2014) in the Adam optimizer, including its
standard learning rate decay update per iteration. When training the
network, the validation set is evaluated every 50 epochs, and the
best set of parameters is updated only if the current error is lower
7 
than the historical lowest validation error, thus mitigating the risk of
overfitting. Further details on the model selection procedure, including
the definition of the material layer size, the type of decoder (dense or
sparse), and the size of the training set, are presented in Section 5.

When choosing which constitutive models to assign to the fictitious
material points, we follow the idea of including all sources of non-
linearity. In this case, both the fiber and the matrix constitutive models
qualify. At this point, it is worth highlighting another aspect that makes
having both models in the network important. Although the fiber con-
stitutive model adopted in this work only shows non-linearity at very
large strains, in our case, it is also the one introducing the transversal
isotropy in the micromodel and has distinct behavior from the matrix
in terms of path and rate-dependency. Those unique characteristics
need to be present in the network so that the encoder and decoder can
leverage them into the homogenized stress response.

Related to that is the definition of how many of the fictitious
material points are assigned to each of the models. This proportion
itself is a hyper-parameter, but to reduce the amount of variables in the
upcoming studies, we define a fixed splitting ratio. The hyperelastic and
elasto-viscoplastic models correspond to 25% and 75% of the material
points, respectively, rounding the number of hyperelastic models up
when the total number of points is even but not divisible by 4. The
higher proportion of points associated to the elasto-viscoplastic model
is rooted in the fact that this is the most complex constitutive model
in the micromodel, from which we expect higher expressibility. Fur-
thermore, it is also a model with internal variables, 24 per point to
be precise, which effectively work as the physics-based memory of the
network. Thus, we expect to achieve good performance with smaller
networks (i.e. more parsimonious PRNNs) compared to splitting ratios
that favor hyperelastic models. Other than the difference in the material
layer size itself, we expect no significant changes in the overall accuracy
of the network granted model selection has been performed correctly.

Finally, we highlight that the choice of constitutive models, regard-
less of history-dependence, and their splitting ratio in the material layer
do not affect the total number of trainable parameters in the network.
For the dense decoder architecture depicted in Fig. 4, the number of
trainable parameters is given by the total number of fictitious material
points multiplied by 42 (6 from the encoder and 36 from the decoder).
In the sparse decoder archictecture illustrated in Fig. 7, this number
drops to 12 trainable parameters per fictitious material point (6 from

the encoder and 6 from the decoder).
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3.5. Use as constitutive model

For incorporating the present network as a constitutive model in
a microscale analysis that takes as input the homogenized deformation
gradient (𝐅Ω) and the increment of time (Δ𝑡) and outputs homogenized
stresses 𝝈Ω

F , a few additional steps are introduced. First, the polar
decomposition theorem is applied on the deformation gradient in order
to obtain the rotation 𝐑Ω and the stretch tensors 𝐔Ω. Once the stretch
tensor is obtained and the increment of time is known, the network is
used to predict the unrotated stresses 𝝈Ω

U in a forward pass. The rotation
tensor is then used to transform the predicted unrotated stresses back
into the rotated system.

Obtaining the tangent stiffness matrix is not as straightforward. In
this framework, the jacobian of the network is only one part of the
tangent stiffness matrix expression for the entire mapping between
rotated stresses and the deformation gradient

𝜕𝝈Ω
F

𝜕𝐅Ω
=

𝜕𝝈Ω
F

𝜕𝝈Ω
U

𝜕𝝈Ω
U

𝜕𝐔Ω
𝜕𝐔Ω

𝜕𝐅Ω
+

𝜕𝝈Ω
F

𝜕𝐑Ω
𝜕𝐑Ω

𝜕𝐅Ω
(15)

where the partial derivatives of the homogenized rotation and stretch
tensors with respect to the homogenized deformation gradient are given
by the expressions derived by Chen and Wheeler (1993) and 𝜕𝝈Ω

U∕𝜕𝐔
Ω

is given by performing a complete backward pass through the network.
Moreover, the partial derivative of the stresses with respect to the
unrotated stresses is given by

𝜕𝝈Ω
F

𝜕𝝈Ω
U

= 𝐑Ω ⊗ 𝐑Ω (16)

where ⊗ represents the Kronecker product between two second-order
tensors of dimensions 𝑛rank ×𝑛rank, resulting in a second-order tensor of
dimensions 𝑛rank 𝑛rank ×𝑛rank 𝑛rank. Finally, the partial derivative of the
stresses with respect to the rotation tensor are evaluated as

𝜕𝝈Ω
F

𝜕𝐑Ω
= �̄� (𝐈⊗ 𝝈Ω

U 𝐑ΩT
) + (𝐈⊗ 𝐑Ω 𝝈Ω

U) 𝐏 (17)

where �̄� and 𝐏 are two permutation matrices given by

�̄� =
∑

𝑖,𝑗
𝐸𝑖𝑗 ⊗𝐸𝑖𝑗

𝐏 =
∑

𝑖,𝑗
𝐸𝑖𝑗 ⊗𝐸𝑗𝑖

(18)

with 𝐸𝑖𝑗 being a null matrix except for the unit value at 𝐸𝑖,𝑗 .

4. Data generation

In general, surrogate models need to be trained with an extensive
amount of data covering several types of loading. This is because it
is virtually impossible to have fine control over what types of loading
the micromodel will experience upfront even in the simplest scenarios.
Therefore, to investigate how well the proposed network can generalize
to unseen scenarios, a variety of loading functions and methods for
generating the loading paths are considered.

First, we define the geometry and the discretization of the micro-
model. In this case, the same composite RVE used in Kovačević and
van der Meer (2022), and illustrated in Fig. 8, with 9 fibers embedded
in a matrix material is adopted. The material models and properties
assigned to each of the phases also follow from that work with a
minor change in one of the material properties of the matrix. The
reinforcements are assumed to be carbon fibers and can be described
by the hyperelastic, transversely isotropic material model developed
by Bonet and Burton (1998). For the matrix, the elasto-viscoplastic
EGP model is considered with the relaxation spectrum now consisting
of one mode (the first). Both of these models are briefly discussed
in Section 2.1, but for further details on their implementation and
numerical validation in the 3D finite strain framework, the reader is
directed to the reference paper (Kovačević and van der Meer, 2022).
8 
Fig. 8. Geometry and mesh discretization of micromodel used to generate the data.

To generate the data, two strategies are devised, one producing
proportional loading paths, and the other non-proportional loading
paths. We use the first type to train and test the network, while the
second is reserved for testing only. By proportional we refer to curves
in which the loading direction is fixed. For this, we adopt the arc-
length formulation with indirect displacement control derived in Rocha
et al. (2020), in which a constant unit load vector is considered and
the additional constraint consists in the unsigned sum of the controlled
displacements. For stress measures based on the undeformed state, that
also entails a constant stress ratio.

For creating proportional paths, three main ingredients are needed:
the loading direction 𝐧, the loading function 𝜆 and the time increment
Δ𝑡. In the previous work (Maia et al., 2023), basic load cases (e.g. uni-
axial and biaxial tension and compression, transverse and longitudinal
shear, etc.) were used for training PRNNs subjected to general stress
states. Here, due to the increased problem dimensionality, we train with
a more general approach of random loading directions. For each path,
the unit load vector is obtained by sampling values from 6 independent
Gaussian distributions (X ∼  (0, 1)) and normalizing them to a unit
vector, one for each prescribed corner displacement. As for the time
increment, we set it to Δ𝑡 = 1 s for all time steps. Fixing the time
increments allows for a straightforward assessment of the ability of the
network to extrapolate to unseen strain-rates.

The last ingredient to create the proportional curves is the loading
function 𝜆. We use the two loading functions depicted in Figs. 10(a)
and 10(b) as pre-defined monotonic and non-monotonic curves, respec-
tively. Although useful for testing, this non-monotonic set is not as valu-
able for training since all curves follow the same unloading/reloading
behavior. An alternative with more unloading variety is to sample
𝜆 from a Gaussian Process (GP) with X ∼  (𝜇, 𝜎2) and covariance
function given by

𝑘(𝐱𝑝, 𝐱𝑞) = 𝜎2𝑓 exp
(

− 1
2𝓁2

‖𝐱𝑝 − 𝐱𝑞‖2
)

(19)

where 𝐱𝑝 and 𝐱𝑞 are the time step indices of the sequence of loading
function values, 𝜎2𝑓 is the variance and 𝓁 is the length scale. These
hyper-parameters control the smoothness and how large the unsign sum
of the controlled displacements can be, and are tuned to obtain smooth
loading functions, as the ones illustrated in Fig. 10(c) (see Fig. 10).

To create a more diverse set in terms of strain-rate compared to the
curves using a single pre-defined loading function, for the proportional
GP-based curves, the time increment of each path is drawn from a
bounded uniform distribution Δ𝑡 ∼ 𝑈 (0.01 s, 100 s).

Fig. 9 shows a summary of the three loading types discussed so far
ordered by their level of complexity. In this work, we train with two
of them, namely monotonic curves (in blue) and proportional GP-based
curves (in brown). For testing, we take a step further and generate non-
proportional and non-monotonic paths. These are the most complex
paths considered and also employ GPs in their formulation. To create
these curves, first we switch to a displacement control method and
follow a similar procedure as the one employed in Maia et al. (2023).
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Fig. 9. Scheme of loading types considered in this work, with colored types being used for training and testing, while remaining are for testing. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 10. Loading functions used to create proportional loading paths.
ere, we sample the displacements at the controlling nodes from 6 in-
ependent GPs, allowing unloading/reloading to take place at different
imes across the components of the homogenized deformation gradient.
his is illustrated in the bottom right plot of Fig. 9, where independent
(⋅)–𝑡 functions are plotted for the different components.

For reference, all the types of loading paths studied in the following
ection are listed below in ascending order of complexity:

• Type I: proportional and monotonic loading path. The direction
𝐧 is generated randomly, the loading function 𝜆 is as illustrated
in Fig. 10(a) with step size Δ𝜆 = 1 × 10−4 mm, and Δ𝑡 = 1 s. In
the following sections, data sets using this type of path carry the
subscript ‘‘mono’’;

• Type II: proportional and monotonic loading path with same
loading function and step size as Type I, but different strain-rate.
Data sets with this type of path carry the subscript ‘‘mono’’ and
two variations of superscript, ‘‘faster’’ and ‘‘slower’’. To generate
those, Δ𝑡 = 0.01 s and Δ𝑡 = 100 s are used, respectively;

• Type III: proportional and non-monotonic loading path with fixed
unloading/reloading behavior 𝜆 as illustrated in Fig. 10(b) with
Δ𝜆 = 1 × 10−4 mm, and Δ𝑡 = 1 s. Data sets with this type of path
have the subscript ‘‘unl’’ and the superscript ‘‘fixed’’;

• Type IV: proportional and non-monotonic loading path with load-
ing function given by a GP with variable step size, and Δ𝑡 ∼
𝑈 (0.01 s, 100 s). In this case, each loading path follows a different
unloading/reloading function. Fig. 10(c) illustrates some of the
loading functions generated by this approach with 𝓁 = 30 and
𝜎2𝑓 = 1×10−5 as the hyper-parameters of the GP. Data sets with this
type of path have the subscript ‘‘unl’’ and the superscript ‘‘prop.
GP’’;

• Type V: non-proportional and non-monotonic loading path with
GPs to describe the displacements, and Δ𝑡 ∼ 𝑈 (0.01 s, 100 s). Each
controlled displacement in the micromodel is assigned to an inde-
pendent GP, from which we sample smooth and random functions
with variable step size. In this case, the hyper-parameters of the
GPs are 𝓁 = 30 and 𝜎2𝑓 = 2.5 ⋅ 10−7, with the exception of the

variance of the GP associated to the displacement in the fiber

9 
direction, which is 10 times smaller than the others to prevent
excessively high stress values that can dominate the homogenized
stress state. Data sets with this type of path have the subscript
‘‘unl’’ and the superscript ‘‘non-prop GP’’.

5. Numerical experiments

In this section, the accuracy of the network is assessed in a set
of numerical experiments. The goal is to illustrate the extrapolation
properties of the method given the different training strategies. The test
cases cover loading directions and strain-rates different from those seen
in training, as well as complex unloading/reloading cases. Since we are
focusing on the network’s accuracy only, the following sections deal
with the stretch and the unrotated stresses as their inputs and outputs,
respectively.

5.1. Model selection

First, two preliminary studies are carried out for model selection.
The first one is used to choose between sparse and dense decoders (see
Section 3.3), while the second is focused on defining the material layer
size. The comparison is carried out with varying size of the material
layer each time considering the largest training set with monotonic
loading paths. For each combination of decoder architecture and ma-
terial layer size, 10 random initializations of the PRNN are considered.
In each of them, the training set mono consists of 100 monotonic
curves randomly selected from a pool of 1000 curves of the same type
(Type I). For validation, a fixed set mono with 100 monotonic curves
is considered. In Fig. 11, the colored areas correspond to the envelope
with the highest and lowest absolute errors for each combination, along
with the average errors represented by the solid lines with markers. In
all cases, we emphasize that the reported errors over validation and test
sets correspond to the network parameters associated to the historical
best performance during training, as discussed in Section 3.4. A marked
difference in accuracy between the two types of decoder for all range of
material layer size over mono is observed. Therefore, in the remainder

of this paper, all networks have a sparse decoder.
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Fig. 11. Envelope of highest and lowest absolute validation error from 10 PRNNs
trained on mono = {144 monotonic curves} over validation set mono = {100

onotonic curves} with different material layer sizes and decoder architectures. (For
nterpretation of the references to color in this figure legend, the reader is referred to
he web version of this article.)

The second model selection step is focused on finding an optimal
ize for the material layer. For this purpose, the material layer size
s varied considering a range of different training set sizes. Note that
t this stage there is no direct comparison between the two training
trategies since their training and validation are of matching types.
imilarly to the plot in Fig. 11, in Fig. 12 we show the envelope of
est and worst performances, along with the average absolute errors
ver the validation set (⋅), which this time consists of either monotonic
r proportional GP-based curves. In the following sections, we use the
RNNs with material layer size of 8 for both cases, which corresponds
o the point where errors are either the lowest among all training sets
r have negligible difference with respect to larger layer sizes.

.2. Monotonic loading

As first test scenario, we consider a test set mono consisting of 100
onotonic curves in random and unseen directions (type I). We eval-
ate the networks trained on monotonic (type I) and GP-based paths
type IV) over that test set for different training set sizes. Fig. 13(a)
hows the lowest absolute and relative errors for both strategies, along
ith the envelope of absolute errors from 10 initializations. As more
ata is considered, the error bounds shrink and an optimal training set
ize can be identified around 72 curves. Although the difference in the
owest errors is still significant, 6.2MPa (5.4%) vs. 7.6MPa (6.3%), more
ata translates into marginal gain to both. In the breakdown of the error
er component in Fig. 13(b), the largest differences in the accuracy are
n the 𝜎Ωyy and 𝜎Ωzz components. The overall performance gap between
he two training strategies in this scenario is expected since we are
esting on the same loading behavior used to generate the training data
f one of the strategies. Another aspect to be considered is the fact that
he proportional GP-based curves reach lower strain ranges compared
o the monotonic paths for the same number of time steps and step size
see Fig. 13).

To illustrate the difference in performance, we select a curve from
mono with an absolute error close to the best performances from both
raining strategies. In this case, the prediction error on the curve shown
n Fig. 14 is around 5.5MPa and 7.2MPa for the networks trained on
onotonic and proportional GP-based curves, respectively. Note that

he accuracy loss stands out more in the components with lower stress
agnitude such as 𝜎Ωxx and 𝜎Ωzz. An explanation for that comes from the

hoice of the loss function, the mean squared error. Recall that although
ormalization of the outputs is considered to balance the difference

etween stress magnitudes among the components, the MSE remains an

10 
able 1
ummary of lowest absolute errors from 10 PRNNs trained on different types of curves
ver test sets mono, faster and slower.
Training loading type Monotonic Prop. GP

Training set size 72 144 72 144

Abs. error over mono [MPa] 6.2 6.1 7.6 6.6
Abs. error over faster [MPa] 6.6 6.5 7.5 6.7
Abs. error over slower [MPa] 5.7 5.5 7.1 6.2

absolute metric error. As such, values on the higher end of the normal-
ized range can still dominate the loss, leading to a better fit. Neverthess,
satisfatory agreement is observed in the remaining components with
the network trained on monotonic data, while the network trained on
proportional GP-based curves shows more significant errors.

5.3. Monotonic loading with different strain-rates

Next, we test the ability of the PRNN to capture rate-dependency.
For that, two new test sets are considered, slower and faster, with 100
curves each again in unseen directions (type II). In the first one, the
time increment Δ𝑡 is set to be 100 times larger than the reference one
(1 s) used for generating the monotonic curves for training, and in the
second, the time increment is 100 times smaller. The best performances
from the 10 PRNNs trained on different types and numbers of curves
are summarized in Table 1. Again, the slight advantage of the networks
trained on monotonic curves is expected since the loading function
in both test sets remains monotonic and reaches similar strain levels.
As a result, networks trained with proportional GP-based curves show
greater benefit from larger sets, as was the case in the previous as-
sessment. Similarly, since the gain is still relatively small compared to
doubling the training set size, we continue the analysis with the smaller
set for both types.

To illustrate the rate-dependent behavior, we use the best networks
over each of the test sets and select a representative curve from them
to visualize the effect of the different strain-rates (see Fig. 15). This
is an important milestone of this contribution, especially considering
that these strain rates are far from the reference values considered to
generate the monotonic curves. The rate dependency in this case is a
natural outcome of the elastoviscoplastic model used in the material
layer. Encoding rate-dependence in the material layer allows for repro-
ducing this effect without training for it. This is most evident from the
error values reported in Table 1, where the test errors are of similar
magnitude for test sets with unseen strain-rates as for the test set with
the same strain rate as used for the training data. In contrast to modern
RNNs, our latent variables have physical interpretation, and, more
importantly, evolve according to the same physics-based assumptions
considered in the micromodel.

5.4. Unloading/reloading behavior

In this section, three types of unloading/reloading paths are tested
with data sets from type III, IV and V. In all cases, every scenario
is assessed based on a test set with 100 curves. Networks trained
with both training strategies (based on type I and type IV curves) are
evaluated.

5.4.1. Predefined unloading/reloading function
Table 2 presents the lowest error from 10 networks over the test

set of proportional curves with pre-defined unloading  fixed
unl (type

III). It can be observed that both training strategies lead to similar
performances. Note that although the networks trained on proportional
GP-based curves can still benefit from a larger training set, we continue
the experiments with 72 curves as the gain in accuracy from doubling
the training set is minimal. It is also interesting how the networks
trained on monotonic paths are still slightly more accurate than the
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Fig. 12. Envelope of highest and lowest errors in logarithmic scale from 10 initializations of PRNNs trained on different types of loading and material layer sizes over validation
et (⋅). Solid lines with markers correspond to the average validation errors.
Fig. 13. Envelope of absolute errors from 10 PRNNs trained on different sets and evaluated on test set mono = {100 monotonic curves} on the left and absolute errors per
component using the best performing networks with 72 curves on the right. Solid lines with markers correspond to the best performances of each training loading type for several
training set sizes.
ones that have been trained with unloading. We see this as a result
of two subtle advantages: (i) a loading/unloading test function much
similar to the monotonic loading paths, especially the first half of the
curves in  fixed

unl , than to the arbitrary unloading in the proportional GP-
based curves and (ii) the time increment in the test curves are the same
as the ones in the monotonic curves.

While these aspects help elucidate the similar performances, they
do not express their significance. These networks have never seen any
sort of unloading in training but are still quite capable of extrapolating
to such behavior, correctly accounting for the effect of the plastic
deformation. This corroborates the findings in Maia et al. (2023), where
a path-dependent material model in the material layer allowed path-
dependency to arise naturally. Here, we verify that the method is
general and can be extended to account for other non-linearities and
time dependencies. Fig. 16 shows the predictions on a curve from  fixed

unl
with representative errors using the best performing network. Note how
close the predictions are to each other and the good agreement with
respect to the micromodel solution.
11 
Table 2
Summary of lowest absolute errors from 10 PRNNs trained on different types of curves
over test set  fixed

unl .

Training loading type Monotonic Prop. GP

Training set size 72 144 72 144

Abs. error over  fixed
unl [MPa] 6.7 6.8 7.0 6.5

5.4.2. Proportional and random unloading/reloading
In this experiment, the test set  prop. GP

unl is used to represent loading
paths with unloading–reloading taking place at random times. These
curves consist of the same type of loading used in one of the training
strategies, which is similar to the situation discussed in Section 5.2.
Naturally, this results in lower test errors compared to the networks
trained on monotonic loading paths, as shown in Table 3. To illustrate
the best performance among the 10 networks considered for each strat-
egy, we select a curve  prop. GP

unl with errors close to the average lowest
absolute error (see Fig. 17(a)), along with the errors per component

(see Fig. 17(b)) (see Fig. 17).
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Fig. 14. Best PRNNs trained on monotonic and GP-based curves on representative curve from test set mono.
Fig. 15. Performance of PRNNs trained on monotonic and proportional GP-based curves on test sets with strain-rates 100 times slower and 100 times faster than the one used to
create the monotonic training data.
Table 3
Summary of lowest absolute and relative errors from 10 PRNNs trained on different types of curves over test sets  prop. GP

unl and  non–prop. GP
unl .

Training loading type Monotonic Prop. GP

Training set size 72 144 72 144

Abs. (and rel.) error over  prop. GP
unl [MPa] (%) 3.2 (8.1) 3.4 (7.8) 2.7 (5.6) 2.6 (5.1)

Abs. (and rel.) error over  non–prop. GP
unl [MPa] (%) 11.5 (3.4) 12.2 (3.6) 11.0 (3.1) 10.9 (3.0)
t
p

5.4.3. Non-proportional and random unloading/reloading

For the last part of the experiments on the accuracy of the net-
work, the test set  non–prop. GP

unl is considered. Curves from this set have
more complex unloading behavior and significantly higher stress levels
compared to the proportional paths in  prop. GP

unl . This time, the slight
gain in accuracy shown in Table 3 from training with the proportional
non-monotonic data is examined along with the relative errors. This

way, we verify that although the absolute test errors have increased,

12 
the performances remain consistent with the values seen so far (below
10%) in terms of relative errors.

In Fig. 17(c), a representative curve from  non–prop. GP
unl illustrates

he best performance of both strategies over this set. The difficulty in
redicting the lowest magnitude stress (in this case, 𝜎Ωxz) becomes more

evident, as well as the variety of unloading, which this time is differ-
ent in each of the components. While some components go through

Ω Ω
unloading (e.g. 𝜎xx and 𝜎xy), others are monotonically increasing (e.g.
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Fig. 16. Best PRNNs trained on monotonic and proportional GP-based curves on representative curve from test set  fixed
unl .
𝜎Ωzz) and reaching high stress levels, which are naturally followed by
igher absolute errors per component as seen in Fig. 17(d).

An additional curve from  non–prop. GP
unl is selected and shown in

ig. 18 to highlight another aspect not yet discussed, the orthotropic
ehavior of the micromodel. Note that the unloading in the 𝑧-direction
ollows the same stress–strain path as the loading, indicating that the
lastic fiber is acting as the main load-bearing component. In contrast,
he shear stress in 𝑦𝑧 follows unloading in a different branch due to the
evelopment of plastic strains in the matrix.

Finally, although training with monotonic curves showed consistent
nd relatively accurate responses in most scenarios, the random and
mooth type of loading paths explored in the previous and the current
ection are deemed to be more general and better representative of
rbitrary functions. In both cases, training with 72 proportional GP-
ased curves has shown better performance and is therefore used to
ssess the network’s capabilities in Section 7, where the network is used
s a material model in several applications.

. Runtime comparison

In this section, we perform a runtime comparison to assess the
peed-up of the proposed approach in terms of the homogenized stress
valuation. For that purpose, we continue with the loading type inves-
igated in Section 5.4.3 (type V), and select one model from the 10
nitializations trained on 72 proportional GP-based curves to represent
he best overall performance. Here, we use the network with the
owest error over  prop. GP

unl . The choice could also have been based on
non–prop. GP

unl , but in favor of simplicity, in a case where the experiments
resented in Section 5 are not carried out, choosing from  prop. GP

unl
implies a simpler model selection based on a single type of loading.

In this work, all simulations, including the data generation and
training procedure for the network, were executed on a single core of a
Xeon E5-2630V4 processor on a cluster node with 128 GB RAM running
CentOS 7. Because we are interested in the final homogenized stress 𝝈Ω

F ,
we include in the PRNN runtime, the time spent in the transformations
to bring the predicted homogenized stress back to the original frame, as
illustrated in Fig. 3. For this comparison, we use as input the converged
strain path and time increments from the micromodel simulations. The
micromodel mesh is shown in Fig. 8 and consists of wedge elements
integrated with 2 points in the thickness direction, comprising 4992
integration points and 7860 degrees of freedom.
13 
Table 4
Computational offline costs averaged over 1100 training and validation proportional
GP-based curves and over 10 PRNNs.

Stress–strain curve Training

Av. wall-clock time 3.92 min 20.34 h

Averaging over the results from 150 simulations, we break down the
runtime from the full-order model in the three main parts depicted in
Fig. 19. With the micromodel, roughly 30% of the simulation is spent
evaluating the constitutive models at the integration points, around 15%
goes to the assembly of the global stiffness matrix and internal force
vector and more than half of the total time is spent solving the system,
totaling 186 s. In contrast, the network needs only 0.08 s to compute the
homogenized stress state, which results in a speed-up of three orders of
magnitude when compared to the full-order solution.

In terms of offline costs, we show the average times of the two
main tasks involved in the training of the networks Table 4. First,
the time needed to generate a full path of stretches and unrotated
stresses, including the polar decomposition and rotation operations;
and second, the time spent on training the PRNNs with 8 fictitious
material points and 72 proportional GP-based curves itself. It is worth
mentioning that, regardless of the offline costs, this section presents
only an estimate of the actual speed-up. In the general case, the speed-
up depends on several other aspects, such as the robustness of the
tangent stiffness matrix, the complexity of the loading case, and the
size of the micromodel. In multiscale settings, the gain can be higher
since the cost associated with an iteration at the macroscale builds on
a much higher execution time when using the micromodel compared
to the network, exceeding the sum of the online evaluation and offline
costs. To illustrate the potential to achieve higher speed-ups, we include
an additional runtime comparison in the last application of Section 7.

7. Applications

In this section, the PRNN trained to surrogate the constitutive
behavior of the micromodel in Section 5 is tested in applications in
which its robustness also plays a role in obtaining the equilibrium path.
By robustness, we understand the ability of the network to provide not
only accurate stress predictions, as verified in Section 5, but also a
tangent stiffness matrix that is stable enough for tracing an equilibrium
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Fig. 17. Best PRNNs trained on monotonic and GP-based curves on representative curves from two different test sets with random unloading/reloading.

Fig. 18. Orthotropic behavior of selected components in loading path from  non–prop. GP
unl .
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Fig. 19. Breakdown of simulation runtime using the micromodel and the PRNN averaged over 150 type V loading paths.
Fig. 20. Micromodel and PRNN meshes used in the applications.

path as close as possible to the one obtained by solving the micromodel.
Previously, the entire strain path and time increments obtained from
converged micromodel simulations were used as input. Here, the net-
work is directly employed as the material model and therefore the stress
prediction at each time step affects the following stress/strain state.
In this case, lack of smoothness of the surrogate output may lead the
iterative procedure to venture outside the training domain, potentially
giving rise to divergence from the true solution.

For all applications in this section, we use the network with the
lowest error on  prop. GP

unl . This time, to simulate its performance as
a surrogate model to the micromodel, the network is embedded in a
FE mesh that consists of a single 8 node hexahedral element with the
same dimensions as the micromodel and one integration point with
constitutive response given by the PRNN, as illustrated in Fig. 20.
To process the deformation gradient 𝐅Ω into a simpler input space
for the network (i.e. 𝐔Ω) and obtain the stresses in their original
frame of reference (𝝈Ω

F ) using 𝐑Ω, we use the scheme in Fig. 3. For
better readability, we drop the subscript, and refer to the final stresses
simply as 𝝈Ω. Furthermore, for both the micromodel and the hexahedral
element, in addition to the constrained displacements to avoid rigid
body motion (see Fig. 1(a)), periodic boundary conditions are applied.

In the first application, we test the ability of the model to reproduce
the stress relaxation phenomenon. In the second, we deal with cyclic
loading and in the last application, the network is embedded in the
general nonlinear framework developed by Kovačević and van der
Meer (2022) to account for off-axis and constant strain-rate loading
conditions. For the latter, we also include speed-up measurements to
illustrate how aspects such as step size and tangent stiffness smoothness
can play a role in increasing or decreasing the speed-up compared to
the study in Section 6.

7.1. Relaxation

In this study, a loading function to reproduce the stress relaxation
phenomenon is devised. For that, the micromodel and the PRNN are
loaded until a given strain level is reached 𝜺Ω0 at 𝑡 = 𝑡0, when the
stress level is 𝝈Ω

0 . After that, the strain is held constant, while a gradual
stress reduction takes place. For that, we use the arc-length control
introduced in Section 4 and control the stretching in the 𝑥-direction,
leaving the remaining directions free to deform (see Fig. 21).

In this example, the micromodel and the homogeneous hexahedral
element are loaded with ‖Δ𝐮c

‖ = 5 × 10−6 mm and Δ𝑡 = 1 s until
𝑡 = 160 s, when the strain level at that point is held constant until
0

15 
the total time of 500 s is reached and the analysis is terminated, as
depicted in the lower plot of Fig. 21(a). In the upper plot, despite the
mismatch in the stress before the start of the constant strain plateau,
where the maximum error reaches 11.9 MPa (9%), the overall stress-
time response of the micromodel is in relatively good agreement with
the network’s prediction, with an average error of 6MPa (5%). While
this case represents a challenging scenario for even modern RNNs due
to the long strain repetition, the expected stress decaying behavior in
the prediction comes as an inherent outcome of using a material model
that incorporates a spectrum of relaxation times in the material layer.
To illustrate the slight difference in the stress state at the beginning and
end of the constant strain plateau, we show in Fig. 21(b) two snapshots
of the full-field solution.

7.2. Cyclic loading

To assess the network’s performance on cyclic loading, we continue
with the arc-length method and same boundary conditions as the
previous application but now the uniaxial stretch at time 𝑡 is described
as

𝐹Ω
xx = 1 + 6 × 10−3

𝑙
sin

( 2𝜋
1000

𝑡
)

(20)

where 𝑡 is the time step index and 𝑙 = 0.021mm is the side length of
the micromodel. 20 cycles are considered, each consisting of 1000 steps
with Δ𝑡 = 1 s. Fig. 22(a) shows the stress–strain curve for the entire
loading history. The network reproduces the reverse plasticity and the
hysteresis behavior in the cyclic response. Because Eq. (20) consists of a
symmetric loading with constant peak and valley strains, a slow stress
decay over the cycles takes place. This asymptotic relaxation process
can be observed in the inset in Fig. 22(a) and is of similar nature to the
one discussed in Section 7.1. Overall, good agreement is found between
the PRNN and the micromodel solution. This is further assessed by
unrolling the stress–strain response in time and extracting the peak and
valley quantities.

First, the peak strain values from the diagonal components not
controlled by the arc-length are plotted in Fig. 22(b). In this case,
the strain path obtained by the network remains close to the true
solution and only minor deviations are observed in the 𝐹yy compo-
nent. Naturally, different loading conditions lead to different levels of
accuracy of the strain paths due to the indirect displacement control
equation considered in this work. As for the stresses, the envelopes of
maximum and minimum values for the entire loading history are shown
in Fig. 23. In each, the highest absolute error is marked by double
arrows, along with the corresponding relative error. Both absolute and
relative errors are within the range of errors obtained in previous
sections (see Fig. 22).

7.3. Constant strain-rate under off-axis loading

For the last application, a dedicated strain-rate based arc-length for-
mulation is used to reproduce the response of unidirectional composites
subjected to off-axis loading (Kovačević and van der Meer, 2022). In
this formulation, two coordinate systems are needed: the global (𝑥 and
𝑦 axes) and the local (1, 2 and 3 axes), as depicted in Fig. 24. In the
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Fig. 21. Homogenized stress-time response of micromodel and PRNN subjected to uniaxial stretch in 𝑥 until t = 160 s, when the strain is held constant until the end of the
simulation t = 500 s. On the right, the full-field of stresses of the micromodel for the start and end of the constant strain loading (in red).
Fig. 22. Stress–strain response of micromodel and PRNN subjected to uniaxial cyclic loading.
global coordinate system, the initial fiber orientation with respect to the
𝑦-axis is defined according to a given off-axis angle 𝜒 . The micromodel
is then subjected to constant strain-rate (�̇�yy) under uniaxial stress
conditions. With that, equivalent homogenized deformation and stress
states need to be derived in the local frame, and the transformations
between global and local coordinate systems are taken care by the
custom arc-length model.

In this work, we embed the network in the local frame, with the time
increment Δ𝑡 and the homogenized deformation gradient 𝐅 as input
and the homogenized stress 𝝈 as the output. In Fig. 24(c), we show the
16 
three relevant configurations in this framework. In the simulation, due
to the applied loading, the micromodel edge 0–1 tied to the local axis 𝒆1
should rotate with an angle 𝜙 with respect to the initial configuration
(from ‘‘a’’ to ‘‘b’’), going from the initial angle 𝜃0 to a new angle
𝜃1 = 𝜃0 + 𝜙. However, to avoid rigid-body rotation of the RVE, the
controlling node 1 is fixed in the shearing direction, but the angle 𝜙 is
implicitly taken into account through the constraint equation and the
unit force vector of the arc-length model. For that reason, configuration
‘‘c’’, in which 𝒆1 is always aligned to the initial fiber orientation, is used
to evaluate 𝜙.
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Fig. 23. Evolution of maximum and minimum stresses for all cycles with double arrows marking the relative error corresponding to the highest absolute difference between the
micromodel and PRNN subjected to uniaxial cyclic loading.
Fig. 24. Global and local coordinate systems with imposed strain-rate �̇�yy on 𝑦 direction and off-axis angle 𝜒 and reorientation of micromodel due to applied loading �̇�yy from
initial angle 𝜃0 to 𝜃1 = 𝜃0 + 𝜙 based on the deformed state (Kovačević and van der Meer, 2022).
a

In the local frame, the homogenized deformation gradient 𝐅 is given
by:

𝐅 =

⎡

⎢

⎢

⎢

⎣

𝐹 11 𝐹 12 0
0 𝐹 22 0
0 0 𝐹 33

⎤

⎥

⎥

⎥

⎦

. (21)

o ensure the global constant strain rate condition, a special constraint
quation 𝑔 derived by equating the homogenized deformation gradient
omponent in the global frame 𝐹yy to the value imposed from the input
s considered

= 𝐹 11 sin(𝜃0) sin(𝜃1) + 𝐹 22 cos(𝜃0) cos(𝜃1) + 𝐹 12 cos(𝜃0) sin(𝜃1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹yy calculated from micromodel

− exp(𝜀𝑡−1yy + �̇�yyΔ𝑡)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐹yy imposed from input

= 0 (22)

where 𝜀𝑡−1yy is the total strain in the global loading direction from the
last converged time step. Another vital part of the framework is related
to the update on the unit force vector applied at the controlling nodes.
In this case, the geometrically nonlinear effect on the unit force vector

comes not only from the change in configuration ‘‘a’’ to ‘‘c’’ but also

17 
from the change in orientation of the micromodel that 𝜙 introduces.
Finally, to relate the stresses from both frames, one can use the load
factor 𝜆 from the arc-length formulation, which is equivalent to the 𝜎yy
stress component in the global frame, to transform it to the local frame:

𝝈 = 𝜎yy

⎡

⎢

⎢

⎣

sin2(𝜃1) cos(𝜃1) sin(𝜃1) 0
cos(𝜃1) sin(𝜃1) cos2(𝜃1) 0

0 0 0

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝜎11 𝜎12 0
𝜎21 𝜎22 0
0 0 0

⎤

⎥

⎥

⎦

. (23)

In this contribution, we particularize the framework to 𝜒 = 45◦

nd strain-rates �̇�yy = [10−5 s−1, 10−4 s−1, 10−3 s−1], resulting in three
simulations in total. For more details on the formulation and derivation
of the expressions presented in this section, the reader is referred
to Kovačević and van der Meer (2022). Starting with the global stress–
strain response, results in Fig. 25 show satisfactory agreement with
the full-order solution. This is yet another verification of the capability
of the network to handle rate-dependency. We also inspect in Fig. 26
the evolution of separate pairs of stress and deformation gradient
components in the local frame. It is emphasized, that in this simulation,
none of these stress and strain components is directly controlled since
there is a nonlinear relation where the evolution of the load in local

frame depends on the computed deformation, except for the �̄�33 which
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Table 5
Breakdown of simulation time and speed-up for different strain-rates �̇�yy and 𝜒 = 45◦, each averaged over 10 simulations.

�̇�yy [s−1] 10−5 10−4 10−3

Type of analysis Micro PRNN Micro PRNN Micro PRNN

𝑁steps [–] 293 95 290 95 279 65
Stress evaluation [s] (%) 165 (15) .222 (59) 160 (15) .219 (59) 160 (14) .168 (60)
Stiff. and int. force assemble [s] (%) 91.6 (8) .0117 (3) 89.4 (8) .0116 (3) 91.4 (8) .00875 (3)
System solve + overhead [s] (%) 843 (77) .142 (38) 843 (77) .142 (38) 872 (78) .105 (37)
Total simulation time [s] 1099 .375 1092 .373 1123 .282
Speed-up [–] 2929 2932 3980
Fig. 25. Global stress–strain curve from off-axis composite with 𝜒 = 45◦ and different
strain-rates �̇�yy. Solid and dashed lines refer to the micromodel solution and the PRNN
rediction, respectively.

s kept at zero. It is observed that all deformation and stress components
omputed with the PRNN remain close to those coming from the
icromodel.

A final assessment is made in terms of speed-up. This time, because
n adaptive stepping scheme is used, the termination criterion (max-
mum norm) can be reached with a different number of macroscopic
teps depending on the tangent stiffness matrix. For that reason, in
able 5, in addition to the breakdown of the total simulation time into
he three tasks shown in Fig. 19 and the speed-up, we also show the
umber of steps. With less iterations, speed-ups range from 2900 to
000, which is significantly higher than the one obtained in Section 6
≈2200), where neither the adaptive stepping scheme nor the network’s
angent and predictions are used to define the next step in tracing
he equilibrium path. Other aspects, such as macroscopic mesh density
nd algorithmic parameters, can also influence the speed-up and the
elative times of each task with respect to the total time. In this
articular case with a single macroscopic element, using the PRNN as
he homogenized constitutive model means that most of the time is
edicated to evaluating the network. With that, we demonstrate the
otential of the proposed approach as a robust and efficient model in
practical application.

. Concluding remarks

A novel Physically Recurrent Neural Network (PRNN) architecture
as been developed to accelerate the microscale analysis of path and
ate-dependent heterogeneous materials. The formulation follows the
ore idea in Maia et al. (2023), where the homogenized response
f a micromodel is obtained by a network with constitutive models
mbedded in one of its layers. In this material layer, we have fictitious
aterial points with the same constitutive models and properties as used

n the micromodel. The values passed from encoder to the material
18 
layer are interpreted as (fictitious) local strains, which are input to the
constitutive model assigned to the material points, yielding (fictitious)
local stresses. These local stresses are subsequently transformed by a
decoder to obtain the homogenized stress.

What distinguishes the present methodology from the state-of-the-
art surrogate models, particularly the ones based on RNNs, is the
strong physics-based assumptions built into the model. Here, history-
dependency is a natural outcome of the embedded material models.
This is because, in addition to the local stress, the material model
assigned to a fictitious material point is also in charge of updating its
own internal variables (if any), which are stored from one time step to
another. Therefore, PRNNs naturally inherit rich memory mechanisms
from the constitutive models, bypassing the need to learn these latent
dynamics from data.

While the concept of having few fictitious material points represent-
ing the homogenized response of a micromodel remains at the core of
the method, a new architecture is required to extend the applicability
of the network to 3D problems in a finite strain framework. Among the
key changes compared to Maia et al. (2023) are the use of the polar
decomposition theorem and the principle of material objectivity. With
the former, the deformation gradient can be uniquely decomposed into
two tensors, namely stretch and rotation. The network is then used to
learn the mapping between stretch and unrotated stress, from which the
stress in the global coordinate frame is retrieved using the principle of
material objectivity.

For the numerical examples, we considered a unidirectional com-
posite micromodel with rate-dependent plasticity in the matrix and
hyperelasticity in the fibers. Two different training strategies (mono-
tonic vs. non-monotonic) were considered. When creating the mono-
tonic curves, a single value of time increment was considered so that
we could clearly illustrate the exceptional ability of the network to
extrapolate to strain rates far from the ones seen during training.
We have also tested the performance of the network on curves with
increasingly complex unloading behavior. In this case, although the
networks trained on monotonic data could capture unloading behavior
and performed well in most of the considered scenarios, training on
non-monotonic curves led to better performance overall. Comparing the
number of curves of the network selected for the numerical applications
with previous developments (Maia et al., 2023), now we need twice as
many curves to train a PRNN that is twice as big. This linear scaling
should not be expected given the exponential increase nature from the
curse of dimensionality, yet we can still achieve it.

In Section 7, we shifted our focus to applications where the PRNN
is directly replacing the micromodel in the solution of the equilibrium
problem. In the first application, we demonstrated that the network
can reproduce relaxation, which can be a difficult behavior to capture
with RNNs due to the long repetition of the input (i.e. constant strain).
In our case, since the constitutive models in the network have such
behavior in their formulation, the homogenized response also reflected
it robustly. In the second example, cyclic loading was considered, again
showing the ability of the network to extrapolate to loading conditions
and direction different than those trained for. For the last application,
the special arc-length formulation proposed in Kovačević and van der
Meer (2022) to account for off-axis loading and constant strain-rate
conditions was employed. We particularized the framework to one off-

axis angle and three different strain-rates and showed good agreement
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Fig. 26. Stress and deformation in the local system for 𝜒 = 45◦ and �̇�yy = 10−4 s−1. Solid and dashed lines refer to the micromodel solution and the PRNN prediction, respectively.
ith the actual micromodel for a case where the network and its
angent are used to compute the solution of a nonlinear problem.

To assess the network’s potential to accelerate micromodel simu-
ations, we investigated two scenarios. Firstly, the network was used
o predict stresses based on the converged strain paths from 150 mi-
romodel simulations, leading to a stress evaluation 2200 times faster
ompared to the full-order model. Then, we assessed the speed-up on
problem in which the PRNN was directly involved in tracing the

olution. In that case, the constant strain-rate application was used as a
eference. It was observed that the lower number of steps needed when
sing the PRNN as the material model led to speed-ups even higher,
etween 2900 and 4000 for the different strain-rates. In summary, the
roposed network provides an efficient model that can describe the
ate-dependent, orthotropic response of thermoplastic composites in
arge deformations. Trained on data generated with a micromodel, the
RNN response remains close to that of the micromodel for a wide
ange of loading scenarios, including those outside the training range.

RediT authorship contribution statement

M.A. Maia: Writing – review & editing, Writing – original draft,
isualization, Software, Methodology, Investigation, Formal analysis,
ata curation, Conceptualization. I.B.C.M. Rocha: Writing – review

& editing, Supervision, Software, Project administration, Methodology,
Funding acquisition, Conceptualization. D. Kovačević: Writing – re-
view & editing, Software. F.P. van der Meer: Writing – review &
editing, Supervision, Software, Project administration, Methodology,
Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The C++ code used in this paper is available at https://github.com/
SLIMM-Lab/prnn3d A centralized repository for PRNN developments is

available at https://github.com/SLIMM-Lab/pyprnn.

19 
Acknowledgments

The authors acknowledge the TU Delft AI Initiative for their support
through the SLIMM AI Lab. FM acknowledges financial support from
the Dutch Research Council (NWO) under Vidi grant 16464.

References

Arora, R., Kakkar, P., Dey, B., Chakraborty, A., 2022. Physics-informed neural networks
for modeling rate- and temperature-dependent plasticity. arXiv:2201.08363.

Bhattacharya, K., Liu, B., Stuart, A., Trautner, M., 2023. Learning Markovian ho-
mogenized models in viscoelasticity. Multiscale Model. Simul. 21 (2), 641–679.
http://dx.doi.org/10.1137/22M1499200.

Bonet, J., Burton, A., 1998. A simple orthotropic, transversely isotropic hyperelastic
constitutive equation for large strain computations. Comput. Methods Appl. Mech.
Engrg. 162 (1), 151–164. http://dx.doi.org/10.1016/S0045-7825(97)00339-3, URL
https://www.sciencedirect.com/science/article/pii/S0045782597003393.

Chen, G., 2021. Recurrent neural networks (RNNs) learn the constitutive law of vis-
coelasticity. Comput. Mech. 67 (3), 1009–1019. http://dx.doi.org/10.1007/s00466-
021-01981-y.

Chen, Y.-C., Wheeler, L., 1993. Derivatives of the stretch and rotation tensors. J.
Elasticity 32 (3), 175–182. http://dx.doi.org/10.1007/bf00131659.

Cheung, H.L., Mirkhalaf, M., 2024. A multi-fidelity data-driven model for highly
accurate and computationally efficient modeling of short fiber composites. Compos.
Sci. Technol. 246, 110359. http://dx.doi.org/10.1016/j.compscitech.2023.110359,
URL https://www.sciencedirect.com/science/article/pii/S0266353823004530.

Eghbalian, M., Pouragha, M., Wan, R., 2023. A physics-informed deep neural network
for surrogate modeling in classical elasto-plasticity. Comput. Geotech. 159, 105472.
http://dx.doi.org/10.1016/j.compgeo.2023.105472.

Eghtesad, A., Fuhg, J.N., Bouklas, N., 2023. NN-EVP: A physics informed neural
network-based elasto-viscoplastic framework for predictions of grain size-aware
flow response under large deformations. arXiv:2307.04301.

Garanger, K., Kraus, J., Rimoli, J.J., 2023. Symmetry-enforcing neural networks with
applications to constitutive modeling. arXiv:2312.13511.

Ge, W., Tagarielli, V.L., 2021. A computational framework to establish data-driven
constitutive models for time- or path-dependent heterogeneous solids. Sci. Rep. 11
(1), http://dx.doi.org/10.1038/s41598-021-94957-0.

Ghane, E., Fagerström, M., Mirkhalaf, M., 2023. Recurrent neural networks and transfer
learning for elasto-plasticity in woven composites. arXiv:2311.13434.

Ghavamian, F., Simone, A., 2019. Accelerating multiscale finite element simulations of
history-dependent materials using a recurrent neural network. Comput. Methods
Appl. Mech. Engrg. 357, 112594. http://dx.doi.org/10.1016/j.cma.2019.112594.

Ghavamian, F., Tiso, P., Simone, A., 2017. POD–DEIM model order reduction for
strain-softening viscoplasticity. Comput. Methods Appl. Mech. Engrg. 317, 458–479.
http://dx.doi.org/10.1016/j.cma.2016.11.025.

Gorji, M.B., Mozaffar, M., Heidenreich, J.N., Cao, J., Mohr, D., 2020. On the potential
of recurrent neural networks for modeling path dependent plasticity. J. Mech. Phys.
Solids 143, 103972. http://dx.doi.org/10.1016/j.jmps.2020.103972.

https://github.com/SLIMM-Lab/prnn3d
https://github.com/SLIMM-Lab/prnn3d
https://github.com/SLIMM-Lab/prnn3d
https://github.com/SLIMM-Lab/pyprnn
http://arxiv.org/abs/2201.08363
http://dx.doi.org/10.1137/22M1499200
http://dx.doi.org/10.1016/S0045-7825(97)00339-3
https://www.sciencedirect.com/science/article/pii/S0045782597003393
http://dx.doi.org/10.1007/s00466-021-01981-y
http://dx.doi.org/10.1007/s00466-021-01981-y
http://dx.doi.org/10.1007/s00466-021-01981-y
http://dx.doi.org/10.1007/bf00131659
http://dx.doi.org/10.1016/j.compscitech.2023.110359
https://www.sciencedirect.com/science/article/pii/S0266353823004530
http://dx.doi.org/10.1016/j.compgeo.2023.105472
http://arxiv.org/abs/2307.04301
http://arxiv.org/abs/2312.13511
http://dx.doi.org/10.1038/s41598-021-94957-0
http://arxiv.org/abs/2311.13434
http://dx.doi.org/10.1016/j.cma.2019.112594
http://dx.doi.org/10.1016/j.cma.2016.11.025
http://dx.doi.org/10.1016/j.jmps.2020.103972


M.A. Maia et al. Mechanics of Materials 198 (2024) 105145 
Haghighat, E., Raissi, M., Moure, A., Gomez, H., Juanes, R., 2021. A physics-informed
deep learning framework for inversion and surrogate modeling in solid mechanics.
Comput. Methods Appl. Mech. Engrg. 379, 113741. http://dx.doi.org/10.1016/j.
cma.2021.113741.

Heider, Y., Wang, K., Sun, W., 2020. SO(3)-invariance of informed-graph-based deep
neural network for anisotropic elastoplastic materials. Comput. Methods Appl.
Mech. Engrg. 363, 112875. http://dx.doi.org/10.1016/j.cma.2020.112875.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. http://dx.doi.
org/10.48550/ARXIV.1412.6980.

Koeppe, A., Bamer, F., Selzer, M., Nestler, B., Markert, B., 2021. Explainable artificial
intelligence for mechanics: physics-informing neural networks for constitutive
models. arXiv:2104.10683.

Kovačević, D., van der Meer, F.P., 2022. Strain-rate based arclength model for nonlinear
microscale analysis of unidirectional composites under off-axis loading. Int. J. Solids
Struct. 250, 111697. http://dx.doi.org/10.1016/j.ijsolstr.2022.111697.

Liu, B., Ocegueda, E., Trautner, M., Stuart, A.M., Bhattacharya, K., 2023. Learning
macroscopic internal variables and history dependence from microscopic models.
J. Mech. Phys. Solids 178, 105329. http://dx.doi.org/10.1016/j.jmps.2023.105329.

Logarzo, H.J., Capuano, G., Rimoli, J.J., 2021. Smart constitutive laws: Inelastic
homogenization through machine learning. Comput. Methods Appl. Mech. Engrg.
373, 113482. http://dx.doi.org/10.1016/j.cma.2020.113482.

Maia, M., Rocha, I., Kerfriden, P., van der Meer, F., 2023. Physically recurrent neural
networks for path-dependent heterogeneous materials: Embedding constitutive
models in a data-driven surrogate. Comput. Methods Appl. Mech. Engrg. 407,
115934. http://dx.doi.org/10.1016/j.cma.2023.115934.

Masi, F., Stefanou, I., 2022. Multiscale modeling of inelastic materials with
thermodynamics-based artificial neural networks (TANN). Comput. Methods Appl.
Mech. Engrg. 398, 115190. http://dx.doi.org/10.1016/j.cma.2022.115190.

Mozaffar, M., Bostanabad, R., Chen, W., Ehmann, K., Cao, J., Bessa, M.A., 2019. Deep
learning predicts path-dependent plasticity. Proc. Natl. Acad. Sci. 116 (52), 26414–
26420. http://dx.doi.org/10.1073/pnas.1911815116, arXiv:https://www.pnas.org/
content/116/52/26414.full.pdf.

Oliver, J., Caicedo, M., Huespe, A., Hernández, J., Roubin, E., 2017. Reduced order
modeling strategies for computational multiscale fracture. Comput. Methods Appl.
Mech. Engrg. 313, 560–595. http://dx.doi.org/10.1016/j.cma.2016.09.039.
20 
Pitz, E., Pochiraju, K., 2024. A neural network transformer model for composite
microstructure homogenization. Eng. Appl. Artif. Intell. 134, 108622. http://dx.
doi.org/10.1016/j.engappai.2024.108622.

Rocha, I.B., Kerfriden, P., van der Meer, F.P., 2020. Micromechanics-based surrogate
models for the response of composites: A critical comparison between a classical
mesoscale constitutive model, hyper-reduction and neural networks. Eur. J. Mech.
A Solids 82, 103995. http://dx.doi.org/10.1016/j.euromechsol.2020.103995.

Rocha, I., Kerfriden, P., van der Meer, F., 2021. On-the-fly construction of surrogate
constitutive models for concurrent multiscale mechanical analysis through prob-
abilistic machine learning. J. Comput. Phys.: X 9, 100083. http://dx.doi.org/10.
1016/j.jcpx.2020.100083.

Rocha, I., Kerfriden, P., van der Meer, F., 2023. Machine learning of evolving physics-
based material models for multiscale solid mechanics. Mech. Mater. 184, 104707.
http://dx.doi.org/10.1016/j.mechmat.2023.104707.

Rocha, I., van der Meer, F., Sluys, L., 2019. Efficient micromechanical analysis of fiber-
reinforced composites subjected to cyclic loading through time homogenization
and reduced-order modeling. Comput. Methods Appl. Mech. Engrg. 345, 644–670.
http://dx.doi.org/10.1016/j.cma.2018.11.014.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L.u.,
Polosukhin, I., 2017. Attention is all you need. In: Guyon, I., Luxburg, U.V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (Eds.), Advances
in Neural Information Processing Systems. Vol. 30, Curran Associates, Inc..

Wen, J., Zou, Q., Wei, Y., 2021. Physics-driven machine learning model on temperature
and time-dependent deformation in lithium metal and its finite element implemen-
tation. J. Mech. Phys. Solids 153, 104481. http://dx.doi.org/10.1016/j.jmps.2021.
104481.

Wu, L., Noels, L., 2022. Recurrent neural networks (RNNs) with dimensionality
reduction and break down in computational mechanics; application to multi-
scale localization step. Comput. Methods Appl. Mech. Engrg. 390, 114476. http:
//dx.doi.org/10.1016/j.cma.2021.114476.

Zhang, Y., Bhattacharya, K., 2024. Iterated learning and multiscale modeling of
history-dependent architectured metamaterials. arXiv:2402.12674.

Zhongbo, Y., Hien, P.L., 2024. Pre-trained transformer model as a surrogate in
multiscale computational homogenization framework for elastoplastic composite
materials subjected to generic loading paths. Comput. Methods Appl. Mech. Engrg.
421, 116745. http://dx.doi.org/10.1016/j.cma.2024.116745.

http://dx.doi.org/10.1016/j.cma.2021.113741
http://dx.doi.org/10.1016/j.cma.2021.113741
http://dx.doi.org/10.1016/j.cma.2021.113741
http://dx.doi.org/10.1016/j.cma.2020.112875
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://dx.doi.org/10.48550/ARXIV.1412.6980
http://arxiv.org/abs/2104.10683
http://dx.doi.org/10.1016/j.ijsolstr.2022.111697
http://dx.doi.org/10.1016/j.jmps.2023.105329
http://dx.doi.org/10.1016/j.cma.2020.113482
http://dx.doi.org/10.1016/j.cma.2023.115934
http://dx.doi.org/10.1016/j.cma.2022.115190
http://dx.doi.org/10.1073/pnas.1911815116
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
http://arxiv.org/abs/https://www.pnas.org/content/116/52/26414.full.pdf
http://dx.doi.org/10.1016/j.cma.2016.09.039
http://dx.doi.org/10.1016/j.engappai.2024.108622
http://dx.doi.org/10.1016/j.engappai.2024.108622
http://dx.doi.org/10.1016/j.engappai.2024.108622
http://dx.doi.org/10.1016/j.euromechsol.2020.103995
http://dx.doi.org/10.1016/j.jcpx.2020.100083
http://dx.doi.org/10.1016/j.jcpx.2020.100083
http://dx.doi.org/10.1016/j.jcpx.2020.100083
http://dx.doi.org/10.1016/j.mechmat.2023.104707
http://dx.doi.org/10.1016/j.cma.2018.11.014
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://refhub.elsevier.com/S0167-6636(24)00237-0/sb31
http://dx.doi.org/10.1016/j.jmps.2021.104481
http://dx.doi.org/10.1016/j.jmps.2021.104481
http://dx.doi.org/10.1016/j.jmps.2021.104481
http://dx.doi.org/10.1016/j.cma.2021.114476
http://dx.doi.org/10.1016/j.cma.2021.114476
http://dx.doi.org/10.1016/j.cma.2021.114476
http://arxiv.org/abs/2402.12674
http://dx.doi.org/10.1016/j.cma.2024.116745

	Physically recurrent neural network for rate and path-dependent heterogeneous materials in a finite strain framework
	Introduction
	Microscale analysis
	Constitutive models

	Physically recurrent neural network
	Encoder
	Material layer
	Decoder
	Training aspects and error metrics
	Use as constitutive model

	Data generation
	Numerical experiments
	Model selection
	Monotonic loading
	Monotonic loading with different strain-rates
	Unloading/reloading behavior
	Predefined unloading/reloading function
	Proportional and random unloading/reloading
	Non-proportional and random unloading/reloading


	Runtime comparison
	Applications
	Relaxation
	Cyclic loading
	Constant strain-rate under off-axis loading

	Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


