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ABSTRACT
The presented research demonstrates the synthesis of two-

dimensional kinematic mechanisms using feature-based reinforce-
ment learning. As a running example the classic challenge of
designing a straight-line mechanism is adopted: a mechanism
capable of tracing a straight line as part of its trajectory. This
paper presents a basic framework, consisting of elements such as
mechanism representations, kinematic simulations and learning
algorithms, as well as some of the resulting mechanisms and a
comparison to prior art. A sensitivity analysis analyzes the neural
network’s considerations with respect to the selected features.
Series of successful mechanisms have been synthesized for path
generation of a straight line and a figure-eight.

INTRODUCTION
Mechanism synthesis can be an arduous task, often as much

art as science. Therefore, support from computational power in
exploring the solution space can be of great value. Research into
such computer-aided mechanism synthesis mainly focuses on
topology optimization for compliant mechanisms [1] or evolution-
ary algorithms for rigid body mechanism [2–4].

None of these efforts however apply reinforcement learn-
ing (RL), an experience-based learning concept currently applied

∗Address all correspondence to this author.

successfully in other fields [5–7]. RL is specifically well-suited
for game-like situations [8] in which decisions have to be made
and (delayed) rewards may be obtained. Application of RL onto
mechanism design therefore requires the development of an in-
ventive new framework in which design challenges are posed in a
game-like fashion.

The present paper reports a method for formulating kine-
matic synthesis of rigid body mechanisms as a RL problem using
a decision-tree-based mechanism representation and nonlinear
value function approximation in an effort to make mechanism
design a game-like process. To demonstrate the method’s effec-
tiveness several straight-line mechanism are synthesized. Using
the same algorithm and parameter settings, a mechanism for gen-
erating figure-eight patterns is synthesized. Additionally a sensi-
tivity analysis is performed to investigate what features are valued
most by the learning algorithm. Finally a benchmark study is
performed.

First, the method used in this research is presented after
which the experiment is described. Hereafter the results from the
experiment are discussed. The paper ends with a discussion and
conclusion.
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METHOD
Mechanism representation

In order to synthesize, interpret, evaluate and manipulate
mechanism designs, a numeric system, i.e. a computer, has to
be able to communicate about such objects. This requires a
befitting language, or in formal terms a numeric representation of
designs. Several options depend on a discretized solution space
(e.g. building blocks [9] truss-based [10] and density methods
[4]). However, discretization introduces unwanted dependence
on designer inputs like mesh-size or building block selection.
Alternatively, graph-based representations can be used to describe
mechanisms. A particularly convenient method is the decision-
tree, since reinforcement learning is especially adept at sequential
decision making. And, as shown by [2], decision-operators can
be chosen such that the solution space is limited to the feasible
domain.

Lipson [2] proposed a decision-tree representation to describe
a series of decisions on a seed mechanism resulting in a unique
kinematic mechanism. In each decision one of two operations is
performed: T or D. Given a kinematic system of interconnected
links and hinges, both operators act on a specified target link when
executed. The operators introduce a new hinge and connect it to
the the target link’s endpoints. In case of a T operator, the target
link is subsequently replaced by a connecting link between the
new hinge and its nearest non-connecting neighbor. A D operator
simply leaves the target link untouched. Using Fig. 1 one may
compare the different results of these operators.

Both T and D have the particularly useful property of con-
serving a mechanism’s number of degrees of freedom (DOF).
For our path generation objectives, only 1-DOF systems are de-
sired. So, given a 1-DOF seed mechanism, these operator are
intrinsically restricting the design space to include only feasible
mechanisms. This is in contrast to most other representations, like
non-tree graphs, which do allow over-constraint, under-constraint
and kinematically determined mechanisms to be synthesized. The
sequence of operators can be represented as a decision tree as
shown in [2].

In [2], the operators are accompanied by a local coordinate,
describing the placement of the new node relative to the target
link’s position, see Fig. 2a. To refrain from the complexity of
continuous action spaces these local coordinates are not used in
the method presented in this paper. Instead new nodes are placed
automatically such that they form an isosceles triangle with the
target link. The resulting triangle’s height is set equal to the target
link’s length and the new node is placed on the outside of the
existing mechanism, see Fig. 2b.

Kinematic modeling
Kinematic modeling is required to evaluate a mechanism’s

path generation accuracy. During the learning process this eval-
uation procedure is performed hundreds of thousands of times.

FIGURE 1: Example of different outcomes for D and T opera-
tions on link number 3. The full lines represent links, the circles
represent hinges and the dotted lines represent newly created
links.

Therefore, a robust, general and computationally cheap analysis
method is desired which can handle any conceivable mechanism
within the representation’s domain. To do so numeric simulation
is used.

Fig. 3 shows the initial configuration of an example mecha-
nism. The bottom two nodes are only allowed rotational motion.
The curved arrow indicates the input link. In a simulation the
input link is rotated a full circle in 300 equally spaced steps by
prescribing its position. After each perturbation the positions of
the free nodes are determined by solving the position problem.
Finally a sampled trajectory is extracted. Applying this method to
the mechanism presented in Fig. 3 leads to the curved trajectory
shown by the dashed line.

Solving the position problem The position problem
has to be solved for all 300 prescribed positions of the input link.
However depending on the geometry of a mechanism, the input
link may not be able to turn a full circle through all positions.
For such kinematically inadmissible positions there is no valid
solution to the position problem. Therefore a method is required
that can cope with such situations. [11] presents a method in
which mechanisms are modeled using rod-type finite elements
with revolute joints on both ends, allowing for axial deformation
with unit stiffness. Solutions to the position problem can therefore
always be found, even for kinematically inadmissible positions,
by deforming some of the links. In each time step the position
problem is solved iteratively by determining and minimizing the
error function: the system’s elastic potential V . Newton’s second-
order method [12] is adopted to solve the optimization problem,
minimizing V with respect to the nodal coordinates x. The error
function for a linkage with a total of b links of length Le equals:

V (x) = 1/2
b

∑
e=1

(le(x)−Le)
2 = 1/2

b

∑
e=1

(√
xT [ḡ]ex−Le

)2

2 Copyright © 2018 by ASME



(a) (b)

FIGURE 2: Positioning of new nodes based on Lipson’s [2] method (a) and the method proposed in this paper (b). Along with the operator
type and target link number, Lipson’ operators include a local coordinate describing the position of the new nodes relative to the target
link. In the proposed method only the operator type and target link are specified. The new node is positioned such that it creates an
isosceles triangle with the target link.

in which le(x) represents the length of element e as a function of
the nodal coordinates in x and ḡ is an assembled reduced form
stiffness matrix that allows for fast computation. During iteration,
le might not be equal to Le, introducing elastic potential and
thereby error. Iterative updates of x continue until the error V
drops below a predefined tolerance of 1 · 10−3 or the iteration
count exceeds 100.

Kinematically inadmissible positions and singular-
ities During numeric analysis, kinematically inadmissible do-
main can be detected by high levels of elastic potential. By
removing trajectory points with high elastic potential only the
feasible domain remains. In the limit cases, i.e. mechanisms
with dimensions just slightly preventing it from entering infea-
sible domain, singularities can occur. In such cases somewhere
along the trajectory two or more links become aligned resulting
in locking behavior, effectively losing one degree of freedom.
Such an unstable mechanism position results in large gradients of
the potential energy. Accordingly, the gradient and Hessian ma-
trices in Newton’s second-order method become ill-conditioned.
To deal with the resulting large gradients an adaptive learning
rate is employed, preventing overshoots whilst searching for an
equilibrium position. This adaptive learning rate α is cut in half
whenever the error is rising instead of falling. No updates of x are
performed in this case until the error ceases to rise.

Learning approach
RL is described by Kaelbling et al. [8] as behavioral learning

by “trial-and-error interactions with a dynamic environment” RL
does not require a priori data, but instead learns from reward
signals received after each experienced data point. Hence a ma-
chine can learn by taking actions, assessing the resulting rewards

and adapting its decision policy accordingly. Through iteration,
the machine can learn to take the actions that maximize the total
reward.

In RL the learner is named the actor [13]. The actor gains
experience through taking actions that lead to interactions with
its environment. After every interaction, the actor is faced with
a new situation, or state, from which it may perform the next
action. As part of the interactions, the actor may receive rewards.
The actor’s goal is to choose actions such that it maximizes the
total reward. In a more formal manner, one can say that for every
time-step t the actor is in state St . After taking action At , it ends
up in state St+1 with probability PSt At (St+1) and receives a reward
Rt+1. A schematic of this process is shown in Fig. 4. Over time,
the actor’s total return Gt equals the sum of all future rewards:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + ...=

∞

∑
k=0

γ
kRt+k+1 (1)

A discount factor γ is introduced as a means to promote fast
results. This procedure is governed by the five-element tuple
(S,A,P,γ,R). Decision processes described by such a tuple are
sometimes referred to as Markov Decision Processes (MDP) [14],
referring to their adherence to the Markovian property [15] and
inclusion of both deterministic and stochastic elements. Using
the tuple’s elements, one can define the value function Vπ(s) as
the expected return G of being in state s and following policy π

until termination [13]:

Vπ(s) = Eπ [Gt |St = s]

= Eπ

[
∞

∑
k=0

γ
kRt+k+1

∣∣∣∣∣St = s] (2)
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Since one is usually concerned with choosing the right action,
it is common practice [13, 14] to include both the state and the
action as variables of the value-function, leading to the state-
action value-function Q:

Qπ(s,a) = Eπ [Gt |St = s,At = a]

= Eπ

[
∞

∑
k=0

γ
kRt+k+1

∣∣∣∣∣St = s,At = a] (3)

For a known MDP, the fixed point theorem [16] shows that
Vπ can always be found in a recursive fashion. In reality however,
the MDP is never fully known and V or Q can only be estimated.
Several algorithms exist that can be used to improve an estimation
of V or Q after each completed series of states and actions also
known as an episode. To improve efficiency, one can bootstrap
by updating after each time-step instead of after each episode.
The former method is referred to as Monte Carlo learning (MC),
whereas the latter is known as Temporal Difference learning (TD).
Both methods are described in depth by Sutton and Barto [13].

The approximated Q-function becomes more and more ac-
curate by learning. This is exploited to make sound decisions
and therefore maximize reward Rt . Always choosing the action
that maximizes expected reward in t + 1 is known as a greedy
policy. Such a policy however is short-sighted and likely to get
stuck in local optima. To prevent such behavior a policy called
ε-greedy [13, 17, 18] is used. This policy introduces randomly
selected actions with a probability of ε to encourage exploration
of the action space. In the current application ε is initialized as
high as 0.5 and diminishes throughout the learning process.

For the current application TD learning is chosen, since this
method is found to generally converge faster then its MC counter-
part [13]. The simplest and best-known TD algorithm is SARSA,
its pseudocode shown in algorithm 1. In each time-step t an error
term between the true and expected reward is determined. After-
wards the approximation of Q(St ,At) is adjusted in the direction
of the true value by a small step of size ν .

Value function approximation In the SARSA algo-
rithm Q(S,A) is calculated and adjusted. In a practical sense,
this means Q should be an entity that can take a state and action as
input and produce an expectation as output. Several embodiments
exists for such an entity: closed-form mathematical functions,
lookup-tables and (non)linear function approximation.

Closed-form mathematical functions, used to calculate Q as
f (S,A), are not a fitting choice as they generally are not compat-
ible with state-descriptions and discrete actions as inputs. Sec-
ondly, iterative updates of closed-form functions can only mate-
rialize by means of parameter adjustments. Selecting the right
parameters to include in the function however requires a priori

FIGURE 3: The starting point: a basic four-bar mechanism with
two grounded nodes. The arrow indicates the prescribed motion
on input link 1. Link 2, often named coupler link, transfers the
input motion to output link 3. The dashed line depicts the output
link’s path, moving back and forth along the same trajectory.

Initialization;
Q← arbitrary;

foreach Episode do
Initialize S;
Choose A from S using ε-greedy policy and Q;
foreach Step in the episode do

Take action A, receive R and S′;
Choose action A′ from S′ using ε-greedy policy

and Q;
Q(St ,At)← Q(St ,At)+

ν [Rt+1 + γQ(St+1,At+1)−Q(St ,At)];
S← S′ ; A← A′;

end
end
Algorithm 1: SARSA using TD learning from [13]

knowledge of the desired function approximator, which is unavail-
able.

Secondly, one could represent Q(S,A) in a tabular fashion,
keeping track of a separate Q value for each unique state-action
pair [13]. For specific applications this method can be effective
[19]. However, besides the obvious memory limitation to small
state and action spaces, the tabular approach also fails in what
is known as the generalization of states [20]: the ability to use
experience gained in state-action pair (S,A) for decision making in
closely related state-action pairs. In a table each state-action pair
is treated as a perfectly separated individual, such that experience
from visiting state-action pair (S,A) is only valuable for future
visits to that exact same pair. Neighboring pairs however, with
states and actions much alike S and A, may also benefit from the
(S,A) experience. Tabular representation cannot facilitate such
cross-border sharing of experience.

Fortunately a third solution exists that does: estimating
Q(S,A) by using linear function approximation. A set of features
f (S,A) can be obtained and combined linearly using weights w

4 Copyright © 2018 by ASME



FIGURE 4: Schematic showing the cyclical life of an RL actor.
Image reproduced from [13].

to approximate Q(S,A):

Q(S,A) = w1 f1 +w2 f2 + ...+wn fn = wi fi (4)

adopting Einstein’s summation notation for a total of n weights
and features. A suitable feature list serves as a summary of the cur-
rent state-action pair, containing only the information significant
for decision making. A unique mapping exists from a state-action
pair to its feature list. Comparable state-action pairs however may
result in similar or identical features. Therefore linear function
approximation allows for the generalization of states, in contrast
to the tabular approach. Experience gained in state-action pair
(S,A) is valuable for visits to comparable state-action pairs Ŝ, Â
too, as long as their feature values f (S,A) and f (Ŝ, Â) are similar.
During learning, the weights wi from Eq. 4 are updated accord-
ing to the update rule in algorithm 1. We used linear function
approximation in the current research as a first step and produced
working mechanisms. Linear combinations are however unable
to detect complex nonlinear relations between features or groups
of features and the outputted value.

To cope with such non-linear relations, the linear function
is replaced with a neural network (NN). The network uses 314
feature values as input layer, a single 236-node hidden layer
and a single-node output layer. The value of the output node
approximates Q(S,A). After each time-step backpropagation is
performed to determine the gradient of each weight with respect
to the error. The weights are thereafter updated according to the
acquired gradient information [21] using the the Adam algorithm
[22]. The used NN features bias terms in both the input and
hidden layer and is subject to L1 and L2 regularization [23].

Application to mechanism design Every episode
starts with the same initial mechanism shown in Fig. 3. Sub-
sequently the actor is allowed to choose an operator (T or D )
and a link number to operate on at each time-step t. Choices
are made by performing an exhaustive sweep over all possible
actions At and ε-greedily selecting the action with the highest
predicted state-action value Q(St ,At). Taking an action leads to
a new state St+1. The actor receives a reward Rt+1 for the new
design described by St+1, calculated by the scoring module. This

process repeats n times until the terminal state is reached and the
episode ends. n Equals 6 by default, but can be changed as a
design variable.

Feature selection
The feature set used to approximate Q(S,A) should accu-

rately describe the current state S and action A. This description
should distinguishably identify unique (S,A)-pairs whilst labeling
highly correlated pairs correspondingly. Whilst the former is a
requirement to serve as a basis for decisions, the latter facilitates
feature sets to generalize over (S,A)-pairs.

A major downside of using feature-based value-function ap-
proximation is the requirement for hand-crafted features. This
requirement introduces a dependence on designer-insight in a
context further dominated by artificial intelligence. This is par-
ticularly troublesome since the relation between the NN’s input
and output is in itself the subject of study. This relation is there-
fore not known a priori and hence cannot be used to determine
which features are of significant value. To circumvent the issue
of selection a wide variety of features have been used in this
research. On the other extreme using an overly large amount of
features slows down NN performance. Therefore regularization
is used to perform feature selection during learning [24]. This
self-selecting character contributes to the network’s general appli-
cability by adapting the features used to the design goal it is faced
with. Hence, the initial features have been hand-crafted entirely
independent from the adopted design goal.

A large number of features are based on graph theoretical
characteristics. Included are each node’s degree, betweenness,
closeness, page rank, eigenvector, laplacian eigenvector, eccentric-
ity and cluster coefficient as well as the graph’s density, mean dis-
tance, efficiency, number of spanning trees, spectral gap, Fiedler
value, radius, diameter, number of cycles, longest cycle length
and shortest cycle length. All features in Table 1 have been scaled
to fit the NN’s recommended operating range between -1 and 1.

Experiment
In this section we will elaborate on the selected design objec-

tives by means of which the efficacy of the algorithm is demon-
strated. Secondly a number of design variables and algorithmic
variations will be introduced, for which optimal values are es-
tablished using a parameter sweep and grid search. Finally a
sensitivity analysis is proposed to gain insight in the relevance of
the selected features.

First design objective
The current research takes on one of the oldest and best

known problems in kinematic synthesis: the straight-line problem
[25]. This problem serves as a useful example since several
solutions to it already exist [26, 27]. Moreover straight-lines
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TABLE 1: Overview of all included features, their value type
and number of values in each feature. Some feature sizes are
dependent on the maximum number of nodes N or links L. The
total number of features equals || f ||= 7L+14N+

(N
2

)
+17. Since

the transformation probabilities in this application are uniform,
ergo the outcome of action a is always a known new state St+1,
numerous features based on St+1 are included. For mechanisms
featuring 10 nodes, 314 features are used. Value types are boolean
(B), integer (I), real(R) or miscellaneous (M)

Feature Type Entries

Operator selection (T or D ) B 2
Link selected as target B L
Existence of target link B 1
Number of connections to target link I 1
Number of active links in St+1 I 1
Number of active nodes in St+1 I 1
Link active in St+1 B L
Node active in St+1 B N
Relative link lengths in St+1 R L
Relative node angles in St+1 R N
Relative nodal positions in St+1 R 2N
Shortest path per nodal pair in St+1 R

(N
2

)
Graph characteristics of St+1 M 8N +11
Node part of center in St+1 B N
Node part of periphery in St+1 B N
Link connected to ground in St+1 B L
Link part of longest cycle in St+1 B L
Link part of shortest cycle in St+1 B L
Link part of min. spanning tree in St+1 B L

mechanisms have served as design a challenge for computerized
synthesis before [2, 28]. This design goal therefore facilitates
qualitative comparison to prior art.

An objective function is implemented to determine straight-
lines tracing score. The function analyses the trajectory of each
node by determining the straightest section of each trajectory and
fitting a minimum-surface box around the section. The aspect
ratio of this box serves as a measure of the section’s straightness.
The final score is the product of the aspect ratio and the section’s
length, divided by 100 for scaling purposes.

Second design objective
The described method was developed independently from

the design goal, and should therefore be able to synthesize other
types of path generation mechanisms as well. To demonstrate
this a second objective function has been implemented, pursuing
to design figure-eights-generating mechanisms. Because of the

TABLE 2: Basic settings used during parameter sweep. In each
experiment these settings are adopted by all but one parame-
ter, which is the swept parameter. The third column lists the
values included in the sweep. ReLU refers to Rectified Linear
Units, LReLU refers to Leaky ReLU, tanh refers to hyperbolic
tangent [29], SGD to Stochastic Gradient Descent and SGDNM
to Stochastic Gradient Descent with Nesterov Momentum [30].
For the property ‘Hidden layer size’, values relative to the input
layer size are given.

Parameter Basic value Sweep values

Learning rate ν 1 ·10−1 [10−3,10−2,100]

Hidden layer style Sigmoid [ReLU, LReLU, tanh]
Hidden layer size 0.75 [0.25,0.5,4,16]
L1 Regularization λL1 = 0 [10−4,10−3,10−2]

L2 Regularization λL2 = 0 [10−4,10−3,10−2]

Training algorithm Adam [SGD, SGDNM]
Primary decay rate β1 = 0.90, [-]
Secondary decay rate β2 = 0.99 [-]
Infeasibility penalty 5 [0,1,25]
Exploration factor 100 [30,300]

circular nature of a figure-eight, any feasible tracing mechanism
should facilitate a complete circular input motion of 2π radians.
Therefore mechanisms resulting in any form of infeasible domain
are immediately disregarded by the function. After disregarding
such mechanisms, the function finds the remaining trajectories’
principle axes and fits a scaled figure-eight on each one. An
intermediary performance score is established per trajectory as the
reciprocal of the normalized mean shortest distance between the
trajectory points and the figure-eight. Finally the trajectories are
searched for the characteristic figure-eight center crossing. The
final score per trajectory is established based on the intermediate
score and whether or not such a crossing is present. Fig. 8b
visualizes the objective function’s procedure for one trajectory.
The lines between the dashed trajectory and the dotted figure-eight
represent the closest euclidean distance between the trajectories.
The star is plotted to mark a detected crossing.

Variations in settings and algorithms
During the experiment numerous settings with regard to the

NN have been varied. These so-called hyper-parameters are the
hidden layer type, learning rate ν , number of hidden nodes, the
L1 and L2 regularization rates and the selected training algorithm.
Besides the hyper-parameters two other design variables have
been varied: the decay rate for ε (exploration factor) and the level
of penalty for infeasible actions and designs. The decay rates β1
and β2 used in the Adam algorithm are conform recommended
settings [22] and kept constant throughout the experiments.
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TABLE 3: Combinations of algorithm choices (TD or MC) and
reward structure (accumulated or end-only) are visited in a grid
search. The possible combinations are denoted as A,B, C and D.

Temporal Difference Monte Carlo

End-only reward A B
Accumulated reward C D

During the experiment all algorithm parameters are varied
over their whole domain, whilst the remaining parameters have
been kept constant according to the basic settings, both shown
in Table 2. Parallel to this parameter sweep a grid-search is
conducted by varying the learning algorithm and reward scheme,
resulting in four different setups, see table 3. The variations A,B,
C and D learn either by TD-learning, or by following an MC
procedure. Moreover they use either one of two reward-schemes,
accumulating rewards throughout an episode or relying solely on
the episode’s final reward.

Sensitivity analysis
The use of a neural network obscures the input-output rela-

tion between the features and the Q-value estimation. In order to
gain an understanding of the added value of each feature sensitiv-
ity analysis is performed. However the highly nonlinear nature
of NNs makes this a difficult task. Existing methods all offer dif-
ferent approaches with different results. Therefore four different
methods are used and their results combined.

First of all the relative importance of the features is estab-
lished using the weights method, introduced by Garson [31]. This
method is based on partitioning the hidden-to-output weights
of each hidden node into components associated with the input-
to-hidden weights [32]. Using basic arithmetic operations this
method leads to a relative importance score of each feature. Sec-
ondly, Lek’s [33] profiling method is applied. In this method one
feature value is kept fixed while all other inputs step from their
minimum to their maximum value in a set amount of steps. The
median of the resulting Q(S,A)-value is saved. This process is
repeated throughout a range of values for the fixed feature, and
subsequently repeated for all features. The results are used to com-
pose a profile graph for each feature, indicating how the output
varies with respect to the feature’s value. Thirdly, a very basic ap-
proach is used by simply taking the mean absolute input-to-hidden
weight for each feature. Finally a finite-difference sensitivity anal-
ysis is performed. During finite-difference analysis features are
exposed one-by-one to a tiny increase δ and a tiny decrease −δ ,
after which the NN output O is evaluated. The feature sensitivity
is calculated as:

v f =
O+−O−

2δ
, (5)

TABLE 4: Recommended settings after performing an extensive
search through 112 unique setups.

Parameter Value

Algorithm SARSA
Reward scheme Reward after each time-step
Learning rate ν 1 ·10−2

Hidden layer style Sigmoid
Hidden layer size 3

4 of input layer size
Regularization λL1 = 1 ·10−3, λL2 = 1 ·10−3

Training algorithm Adam
Decay rates β1 = 0.90, β2 = 0.99
Infeasibility penalty 25
Exploration factor 30

where O+ refers to the output after a positive perturbation and
O− after a negative one.

RESULTS
Results from parameter sweep

With a parameter sweep counting 28 design variations and
a grid-search of 4 algorithm-reward combinations a total of 112
unique settings have been tested in fivefold for 5000 episodes. The
results were averaged per setting in order to limit the influence of
outliers. The reward distribution in the top-ten settings of both re-
ward schemes is shown in Fig. 5. In both cases the highest median
and mean is reached by the TD algorithm. The MC algorithm also
demonstrates the ability to generate high-scoring mechanisms,
but shows a lack of repeatability. Combining the best scoring set-
tings with the basic setup from Table 2, recommended settings are
extracted and shown in Table 4. Fig. 6 demonstrates convergence
of one specific test run by means of a semilogarithmic plot of the
mean-squared error propagation. The error converges towards
zero with values stabilizing around

√
10−3 after after some 2500

episodes. Convergence deteriorated for games featuring more
than 6 operations per episode.

Resulting structures
The developed algorithm has synthesized a collection of

functional designs, of which three well-performing individuals
are shown in Fig. 7. The outer two structures (Fig. 7a and 7c) were
limited to a maximum of eight nodes, whereas the structure in Fig.
7b features ten nodes. The latter design, drawing the straightest
line with an aspect ratio of 1:1168, resembles Hoecken’s design
[34], characterized by the large structure on top of the coupler link.
Interestingly, the other two structures use different approaches
leading to straight lines with aspect ratios of approximately 1:410.
More specifically, the structure in Fig. 7a contains a diamond
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FIGURE 5: Boxplot showing the reward distribution for settings that are present in at least one of the top-tens pertaining to the highest
accumulated reward (top) or end reward (bottom). The setting abbreviations are TD for Temporal Difference and MC for Monte Carlo
learning. Furthermore pnl = negative reward penalty, L1 = L1 regularization parameter, L2 = L2 regularization parameter, EF = Exploration
factor, LR = Learning rate ν , HLS = hidden layer size. The distributions are based on experiments in fivefold. Results are marked as
outliers when deviating more than 2σ from the mean, illustrated by the red plus-signs. The mean values are represented by the circles.
Triple circle markers indicate settings present in both top-tens. Double circle markers represent top-ten settings unique to the figure’s
corresponding reward scheme. Single circle markers represent settings scoring below top-ten.

shaped subset, of which the top node passes through a straight
section. While following the radial motion of the input link, the
diamond folds in and out, counteracting movement perpendicular
to the straight section. A similar folding movement was used by
Peaucellier in 1873 [26] in his perfect straight-line mechanism.

Benchmarking
The straight-line objective function in the presented method

is similar to the one adopted by Lipson [2]. This allows for a
quantitative comparison between the current RL approach and
Lipson’s evolutionary algorithm (EA).

However it should be noted that at least three major discrep-

ancies exist between the two methods, making the comparison
difficult to interpret. First of all the positioning of new nodes
differs between the two methods, as depicted in Fig. 2. The
current node-placement method does not feature local coordi-
nates, which limits the solution space to only a subset compared
to [2]. Secondly the current method evaluates a trajectory on
both straightness and length, whereas Lipson’s solution adheres
to the aspect ratio only. Thirdly minuscule inaccuracies in the
calculated trajectories, through numeric simulation, may disturb
an otherwise high aspect ratio. To test this hypothesis the cur-
rent numeric simulator was used to determine the aspect ratio
of a Peaucellier machine’s trajectory, which is known to be per-
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FIGURE 6: Semilogarithmic plot showing the propagation of the
mean squared error through a series of episodes. Random events,
caused by exploration, result in high error spikes. Therefore, the
minimum errors per bucket of 20 error-values are shown in this
figure.

fectly straight. Upon analyzing the trajectory an aspect ratio of
1:1947 was obtained. This indicates the simulator’s accuracy is
insufficient to measure aspect ratios in this extreme region. For
reference, Lipson’s evaluation method found a 1 : 105 ratio for
the same machine [35].

That being said ratios can be compared. Lipson [2] describes
most of the resulting structures exceed aspect ratios of 1:1000,
with outliers as high as 1:28340. The results in Fig. 7 show aspect
ratios of respectively 1:415, 1:1168 and 1:406. Therefore the
straightness in the current results do not challenge the levels of
straightness achieved by Lipson. The required computational time
for a complete learning procedure is in both cases in the order of
10 hours. For the results in this paper a 2.7 GHz Intel Core i5 was
used, whereas Lipson used a 1.5 GHz Pentium IV.

Sensitivity analysis
The results from the four sensitivity analyses vary. There are

however five features that belong to the ten most sensitive features
in all analyses. These are shown, in arbitrary order, in Table 5.

The order of merit between these features varies over the
different analysis methods and is therefore not included. Nonethe-
less, the table yields informative results. The strong positive
relation found between Q and the existence of the target link is
rather trivial, since actions on non-existing links lead directly to
an infeasibility penalty. The next two however are not so trivial:
operations on link 6 lead show a positive sensitivity, whereas
operations on link 4 are negatively related to the expected reward.
However, this is not supported by the results: successful mecha-
nisms shown in Fig. 7a and Fig. 7b are the result of operations

TABLE 5: Most sensitive features with respect to Q.

Feature Relation to Q

Existence of target link Positive
Link 6 is selected as target Positive
Link 4 is selected as target Negative
Link 7 is part of longest cycle Positive
Relative vertical position of node 4 Negative

on both link 4 and 6.

Results of second design objective
The learning algorithm has been tested using a second design

objective, utilizing the same settings and features used to synthe-
size straight-line mechanisms. The resulting design is shown in
Fig. 8a. The depicted mechanism clearly traces a figure-eight,
albeit curved. Even though the imposed restrictions do not allow
for the creation of a perfect figure-eight trajectory, the results
demonstrate the algorithm’s capability of adapting to other design
goals.

DISCUSSION
The results presented in this paper prove that RL can be

applied to synthesize straight-line mechanisms. Therefore this
demonstration broadens the mechanical system design spectrum
of tools and gives future researchers an extra angle to consider
whilst choosing a fitting synthesis technique. The current re-
search may serve as a stimulant for the engineering world to start
adopting machine learning into its range of design tools.

Zooming out, one sees how this paper opens the door to a
new area of application for the heavily researched field of RL.
DeepMind’s David Silver [36] recently said: “Now we can start
to tackle some of the most challenging and impactful problems
of humanity”, after having presented a breakthrough in RL. Such
an announcement indicates a movement in the RL community
towards the application of its skills to other research fields. By
demonstrating the efficacy of RL in mechanical engineering this
research removes a barrier for scientists like Silver to apply their
craft to mechanical system design.

Extensions on the current results could be made by removing
the imposed restrictions on Hod Lipsons’s [2] T and D operators.
A first step would be to extend the actor’s freedom in choosing the
location of new nodes. A paramount improvement however could
be made by using a learning algorithm capable of coping with a
continuous action space. Such algorithms (policy gradient [37],
actor-critic models [18, 38]) do not use an argmax operator to
perform greedy action selection, but instead estimate a stochastic
reward distribution over the action space and select an action
accordingly, decoupling computational time from the size of the
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(a) (b) (c)

FIGURE 7: Three structures as created by the algorithm. The thick, dark blue dashed lines represent the trajectories featuring a straight
section, highlighted by a full green line. The large green nodes represent each structure’s straight-line tracing node. The aspect ratios of
the straight sections are (a) 1:415, (b) 1:1168 and (c) 1:406.

(a) (b)

FIGURE 8: Example of the application of the proposed algorithm adopting a figure-eight design goal. Figure (a) shows the resulting
structure, in which the green node (lower-right corner) traces a blue thick dashed figure-eight pattern. Figure (b) shows how the trajectory
is compared to a true figure-eight. The colored lines display the shortest distance between each trajectory point and the true figure-eight.
In this case, the mean euclidean distance equals 0.203. The green star indicates a detected crossing.

action space. The resulting algorithm could search a continuous
design space from which it may obtain designs that achieve more
accurate performance.

Secondly the value function approximator could be improved
by further researching the ideal set of features. The presented
result from the sensitivity analyses has introduced only limited
insight in the inner workings of the network. The effect of in-
dividually important features may have been outweighed by a
combined effort from less important features. Also, Q might be
very sensitive to certain groups of features moving together. Un-
fortunately both of these phenomena cannot be detected by the

applied analysis methods. As a first step towards feature selection
however, the presented methods can be used to remove obsolete
features, increasing the algorithm’s efficiency.

Besides the issues concerning feature selection, the neural
network’s layer depth may be extended. Such a deep neural net-
work would be able to detect more complex relations between
sets of features and the expected reward, leading to increased
algorithm performance. Finally some post-processing steps may
be developed to clean up the algorithm’s results. For example,
post-processing could remove obsolete triangles or adapt dimen-
sions to improve aesthetics and producability of the designs. The
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resulting software may be directly applicable to the design of
mechanisms for specific kinematic goals, whether it be tracing
trajectories, amplifying motion or other kinematic challenges.

Additionally, quantitative benchmarking showed room for
improvement on the part of the design accuracy of the proposed
algorithm. However the imposed restriction on the algorithmic
design freedom impairs the fairness of comparison, as did small
inaccuracies of the obtained kinematic simulation results. By
adopting smaller tolerances in the kinematic modeling procedure
these inaccuracies can be minimized, moving performance to-
wards Lipson’s.

Finally, the results from the sensitivity analysis were not
conclusive. One can hypothesize that these individual sensitivities
should be viewed in context of the neural network: the effect of
one feature, albeit a highly sensitive one, may be outweighed by a
group of other features. Also the network’s output may be much
more sensitive to simultaneous shifts in certain combinations of
features. Analyzing individual features therefore introduces only
limited insight in the Neural Network’s inner workings.

CONCLUSION

The current research demonstrates the added value of re-
inforcement learning in mechanism design, which has thus far
been uncultivated ground. In this paper a method is presented
by which kinematic synthesis can be molded into a game-like
process compatible with reinforcement learning algorithms.

We have explored the use of value-function approximation
by a neural network to predict the performance of a kinematic
mechanism. An extensive parameter search resulted in a list of
recommended algorithm and hyper-parameters settings.

A series of straight-line mechanisms has been successfully
and independently synthesized by the developed algorithm. Al-
though no exact solutions have been found, the resulting designs
are unmistakably straight-line mechanisms and show similarities
to Peaucellier’s [26] and Hoecken’s [34] mechanisms.

In addition we demonstrated the algorithm’s ability to syn-
thesize a mechanism for a figure-eight path-generation objective.
The successful handling of a second design goal suggests the al-
gorithm’s potential as a general solution for a variety of kinematic
synthesis challenges.

In future work the applied SARSA algorithm can be upgraded
to an actor-critic or policy gradient model, effectively alleviat-
ing the necessity of the current restrictive measures on the nodal
placement and thereby increasing the algorithms design freedom.
Combined with further work on feature selection and neural net-
work architecture, reinforcement learning should be regarded as a
promising means for the synthesis of mechanical systems.
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Math, 3(1), pp. 133–181.
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