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Abstract. Satellite observations of the terrestrial biosphere cover a 
period of time sufficiently extended to allow the calculation of 
reliable climatologies. The latter is particularly relevant for studies 
of vegetation response to climate variability. This chapter reviews 
studies done by the authors since the late 80-s on the use of time 
series analysis techniques to extract concise information from 
extended time series of large area multispectral satellite data. Two 
basic methods have been used: the Fast Fourier Transform, 
especially in the earlier studies, and Harmonic Analysis in more 
recent work. Since the first studies, work has been relying on the 
global radiometric data collected by AVHRR and later on MODIS, 
as well as it has been performed in different continents. The 
applications supported by published results are:   
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a) the identification and mapping of zones characterized by a similar response of 
terrestrial vegetation to environmental forcing;  

b) the determination and characterization of terrestrial vegetation response to climate 
variability over any period of time covered by available time series of satellite data;   

c) early warning of anomalies detected during the growth of terrestrial vegetation by 
using indicators of photosynthetic activity such as NDVI and fAPAR.  

 
Introduction 
 
 Climate variability has a very significant impact on the evolution of 
vegetation cover. This relationship can be analyzed using observations of 
climatic forcing factors and of vegetation response, applying, in both cases, 
global data sets i.e. re-analysis data obtained by atmospheric models and 
spectro-radiometric data collected by satellites. Available re-analysis data span 
a period of more than 40 years while the spectro-radiometric satellite data 
more than 25 years and these time series are sufficiently long to carry out 
studies of climatological relevance. Early examples of time series analysis of 
satellite data to study terrestrial vegetation and its response to climate 
variability were published in the early 90-s [1,2].  
 The study of vegetation cover types, phenology and climate conditions has 
been successful through the application of NOAA-AVHRR NDVI imagery at 
regional scale [3-7]. Potter and Brooks [8] explained 70-80% of the spatial 
variability found in the NDVI seasonal extremes for different plant functional 
types by applying climate indices calculated with temperature and rainfall data. 
Henricksen and Durkin [9] demonstrated that the start and the end of the 
growing season in Ethiopia, assessed with NDVI images, were strongly related 
to a moisture index. Additionally, Hielkema et al. [10] calculated that the 
integrals of NDVI for each growing season were closely correlated with 
rainfall in the Sudanese savanna. A strong linear relationship was also found 
between NDVI and the annual rainfall in the range of 150-1000 mm in the 
western Sahel [11]. More recently, Anyamba and Tucker [12] applied the 
analysis of NDVI data to derive information on the Sahelian vegetation growth 
dynamics in response to rainfall variability during the period 1981-2003. They 
consistently detected drought and 'wetter' conditions in agreement with the 
region-wide trends in rainfall events. Justice et al. [13] found a general 
relationship between rainfall estimates from Meteosat and NOAA-AVHRR 
NDVI data wherein the time lag between rainfall events and NDVI was 
particularly evident when rainfall was the limiting factor for vegetation 
growth. Different authors demonstrated the usefulness of applying NOAA-
AVHRR NDVI to detect the effect of droughts in Ethiopia [9,14] and in Sahel 
[15,16]. Recently, NOAA-AVHRR NDVI series have been applied to study 
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the inter-annual variability induced by the ENSO events [17-20]. Liu and 
Negrón Juárez [17] could calculate large anomalies of NDVI and ENSO 
indices for drought forecast in Northeastern Brazil. The anomalies were 
spotted four months in advance and had 68% of success rate. 
 The novelty of the methodology here described is the simultaneous 
characterization of three aspects: spatial and temporal variability of vegetation 
cover as well as its dynamic response to forcing factors. Such result is obtained 
thanks to the analysis of time series for each image element (pixel). Analyses 
of the relationship between climate variability and photosynthetic activity were 
performed in Africa [21,22], South America [21,23, 28], Europe [24,25,26] 
and China [27]. The impact of rainfall anomalies on foliar phenology, in terms 
of timing (phase) and intensity of greenness, was studied by using Fourier 
series to fit a time series of NDVI observations.  
 Such approach involved the study of three different but related aspects: 
 
1. characterization and mapping of climate-soil-vegetation complexes or 

isogrowth zones [2,21,22]; 
2. quantitative analysis of the response of foliar phenology to climate 

variability [24,25,26,28];  
3. early detection of drought–related anomalies in the growth of vegetation [27].  
 
Mapping climate-soil-vegetation complexes 
 
 The objective is to characterize and map areas wherein vegetation 
development is similar due to a unique combination of climate, soil and 
association of vegetation species. For those particular areas the concise 
notation of “isogrowth zones” has been then used. Isogrowth zones are mapped 
by applying classical numerical classification algorithms to images of Fourier 
coefficients obtained by modeling the time series of NDVI observations for 
each pixel. The results of the classification are then analyzed and documented 
by correlation with both soil and vegetation maps as well as with climate data. 
In all the performed studies a clear correlation was observed between 
isogrowth zones and a measure of aridity such as the Budyko ratio.  
 
Vegetation phenology and climate variability 
 
 Climate forcing is accounted by using observations of net radiation and 
precipitation, more precisely their ratio (Budyko index), which is a measure of 
excess radiant energy at the land surface relative to available water and, 
therefore, of drought hazard [29-31]. The response of vegetation as 
characterized by photosynthetic activity is obtained by estimates of the fraction 
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of Absorbed Photosynthetically Active Radiation (fAPAR). These estimates 
are obtained with multispectral radiometric data collected by a series of 
imaging radiometers installed on satellites operated from 1979 onwards. The 
results summarized in this review were obtained with data collected from the 
Advanced Very High Resolution Radiometer (AVHRR) and from the 
Moderate Resolution Imaging Spectroradiometer (MODIS).   
 
Early detection of drought – related anomalies 
 
 The analysis of annual time series of NDVI observations suggested [27] 
that the deviations of current year observations from the reference (average) 
year can be detected in the earlier stages of the growing season, providing 
crucial information to predict the peak magnitude of anomalies in advance on 
the actual occurrence of a drought spell.  
 Modeling of NDVI time series by means of Fourier series or with other 
techniques can be used to fill missing data in the time series, including those 
ones due to clouds, to remove image noise and to extrapolate data in time by 
using a moving window during the calculation of the Fourier transform. Even 
though the prediction accuracy increases with decreasing lead time, an early 
warning of an anomaly during the vegetation growth season is very useful for 
the estimation of drought impacts, particularly in agriculture. 
 
1. Approach  
 
1.1.  Fast Fourier Transform and Harmonic Analysis 
  
 The Fast Fourier Transform (FFT) algorithm, applied in this study, allows 
to decompose the NDVI series for each pixel in an average signal plus N/2 
sinusoidal components, with N being the length of the time series expressed as 
the number of images [21]. The average signal is the mean NDVI value for the 
whole time series of observations and the periodic (sinusoidal) components are 
characterized by amplitude and phase. All of them, mean NDVI, and amplitude 
and phase for each period, are called in this paper Fourier coefficients.  
 Amplitude and phase are associated with a given period, e.g. 12 and 6 
months in our analysis. The amplitude value represents a measurement of the 
maximum variability of NDVI at a given period, and phase is the timelag of 
this maximum in relation to the initial point of the series. The decomposition 
of a complex time series of NDVI images into simpler periodic signals allows 
to understand the relative weight of different periodic climate processes like 
rainfall and temperature on vegetation complexes [22] as well as foliar 
seasonality [32] in Southern Africa. 
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 The Harmonic Analysis algorithm allows the use of irregularly spaced 
observations and the frequency of periodic functions can be selected by the 
user. The method has been described by Menenti et al. [1,2,33], Verhoef et al. 
[25], Azzali and Menenti [21,22], Roerink et al. [33,34]. This algorithm 
consists of a curve-fitting procedure based on harmonic components and it can 
be considered a generalization of the maximum value compositing normally 
applied to generate NDVI data products. In practice, time series of NDVI 
contain cloud – contaminated observations even after the classical maximum 
value compositing algorithm is applied [24].  
  

 
 
Figure 1. Schematic description of the HANTS algorithm: (left) identification and 
removal of outliers and (right) resulting Fourier coefficients of the filtered time series. 
 

 
 
Figure 2.  Weekly composite NDVI image of Europe and North Africa: (left) original 
image with standard radiometric corrections and cloud flagging and (right) after 
removal of cloud contaminated observations and gap-filling using the HANTS 
algorithm [24, 26]. 
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 The Harmonic Analysis of NDVI Time Series (HANTS) algorithm allows 
the user to select dominant frequencies, e.g. on the basis of a preliminary FFT 
analysis and applies a least squares fitting procedure based on the selected 
harmonic components.  
 Filters may be applied in order to identify and remove anomalous 
observations (Fig. 1), due to e.g. clouds. 
 As a consequence, this procedure yields time series of irregularly spaced 
observations, which may be different for each pixel. Although this result 
comes at a price in terms of processing time, it allows to maximize the number 
of valid observations and, therefore, of information extracted from the time 
series. Once the valid observations are fitted by the final Fourier series, the 
latter can be used to fill gaps in the observations for each final to obtain a 
cloud-free image of the observed area (Fig. 2). 
 
1.2. Large area mapping of climate-soil-vegetation complexes  
 
Isogrowth – zones 
 
 The most obvious feature of large area vegetation processes is the 
phenology of land cover. Even without a precise definition of measurable 
parameters to characterize it, land cover dynamics is an integrated response 
to a variety of climate, biotic, physiographic and anthropological processes 
[35-40]. It is this integrating property of land cover dynamics that provides 
the key to the description and understanding of large area ecosystems       
[41-45]. 
 In this context, temporal records of vegetation properties has been already 
applied since the ‘70s to characterize terrestrial ecosystems and to understand 
the weather and climate influences on vegetation [46,47].  
 Particularly, phenology is an essential part of the overall adaptive strategy 
of vegetation to the environment and is an extremely sensitive response 
indicator to climate, soil and land management. Consequently, the ability to 
investigate the timing of vegetation development (green foliage duration and 
intensity) and its senescence with frequent and consistent observations is a 
crucial tool for the study of natural and agricultural environments. Satellite 
remote sensing has provided a way to measure and monitor phytophenology at 
the regional as well as at the global scale [47]. Many examples of large-area 
classification of vegetation at different phenological stages using NOAA 
AVHRR NDVI data can be found in literature [5, 48-51]. Since multi-temporal 
satellite observations are already available for long time spans the challenge 
has been to develop an efficient approach to extract concise information from 
large amounts of data. In practice, the use of time series techniques has 
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provided a significant answer to it by giving a parsimonious description of 
vegetation phenology [1,2, 52-56].  
 
Classification algorithms  
 
 Both the FFT and the HANTS algorithms provide images of the Fourier 
coefficients, i.e. pixelwise values of amplitude and phase for all frequencies 
considered, which result in maps of the quantitative measurements of 
vegetation phenology. Such maps supply measures of the vegetation response 
to environmental processes, which enable the identification of “isogrowth 
zones”.  
  To this end numerical classification procedures widely used in 
combination with spectral attributes of vegetation, can be applied. It is not 
straightforward, however, to define a-priori large area “isogrowth zones”,  and 
supervised (hard) classification algorithms cannot be applied. Consequently, 
unsupervised and fuzzy classification techniques have, in this context, a 
significant potential. As results of several alternate classification strategies and 
algorithms two solutions have emerged:  
 
a) apply, first, an unsupervised classification algorithm [57] to define classes 

and form alternate sets of signatures; the second step consists in  a 
supervised classification procedure supported by performance indicators 
[58,59] which help to select the best definition of classes and associated 
signatures;  

b) apply, first, an unsupervised classification algorithm, as above, followed 
by a fuzzy classification procedure; this strategy assigns membership 
values to each pixel for all classes considered, rather than assigning each 
pixel to a class only.  

 
 Both strategy (a) and (b) require an ex-post analysis on the basis of 
ancillary information selected from soil and vegetation maps to understand 
what each class actually means. The climate-soil-vegetation complexes or 
“isogrowth zones” can be then be understood in terms of a combination of 
known attributes [60,22]. 
 
1.3.  Response of vegetation phenology to climate variability  
 
 Work done towards mapping the “isogrowth zones” has documented a 
close relationship between vegetation type and aridity, which was measured by 
using the Budyko ratio. The next question is whether a similar relationship 
exists between temporal patterns or, in other words, whether the response of 
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vegetation phenology, measured by time series of NDVI (or fAPAR) 
observations, can be related to climate forcing, measured by time series of 
Budyko ratio.  
 For this purpose, time series of AVHRR and MODIS NDVI as well as 
fAPAR data [24, 61] have been applied to characterize vegetation phenology 
across a range of temporal and spatial resolutions. In practice to obtain time 
series of Budyko ratio measurements (ratio of net radiation to precipitation), 
the re-analysis datasets generated by ECMWF and NCEP have been applied at 
a spatial resolution significantly lower than that one of the satellite data. We 
assume that the latter describe the effect of spatial heterogeneity (soils, 
physiography and land management) within the larger grid cell for which re-
analysis data are available.  
 The data generated by atmospheric models have a spatial resolution (40 
km for ECMWF, 200 km for NCEP) much lower than the satellite data (1-4 km). 
 

 
 
Figure 3. Schematic description of the approach proposed in this paper to study the 
response of terrestrial vegetation to climate variability; CI is the ratio of precipitation 
times the latent heat of evaporation to net radiation. 
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Daily values of net radiation and precipitation have been integrated over time 
to obtain a Budyko ratio dataset with the same temporal resolution of the 
satellite NDVI and fAPAR data. The latter were extracted respectively from 
the 30-days AVHRR and 8-days MODIS composite images. Because of the 
relevant difference in the grid spatial resolution between the data related to 
climate forcing (40-200 km.) and those of vegetation response (1 - 4 km.), we 
had to assume that, for a large area, climate forcing parameters are known and 
constant. On the other hand, the vegetation response shows, in the same large 
area, wide ranges of spatial variability when using higher resolution satellite 
data. 
 Menenti et al. [2] selected, for earlier studies, the Normalized Difference 
Vegetation Index (NDVI) instead of fAPAR. 
 Roerink et al. and Bolle et al. [32, 24] addressed the study of the 
vegetation phenological response to drought (measured by the time series of 
the Budyko ratio) by looking at both spatial and temporal correlation of 
Fourier coefficients and selecting the amplitudes of dominant components, 
with the help of yearly average value of the Budyko ratio. 
 Furthermore, the above mentioned studies have been extended to the 
analysis of inter-annual variability of vegetation phenology by evaluating the 
ratio of changes in the Fourier coefficients to the corresponding changes in the 
Budyko ratio values. Figure 3 shows the schematic description of the approach 
here applied to study the response of terrestrial vegetation to climate 
variability.  
 
1.4.  Early detection of anomalies in vegetation conditions 
 
 Azzali (1998, personal communication) applied the HANTS algorithm to a 
10 years NDVI dataset to detect anomalies in maize production within 
agricultural areas in three South- African districts. By using the technique of a 
moving window for a 2 years time-span, the results provided useful 
information on the influence of the rainfall amount on the temporal dynamic of 
maize growth and on its yield variation. 
 Jia and Bastiaanssen [62] further progressed in this direction building upon 
previous results, i.e. studying stable spatial patterns of vegetation type and 
average aridity conditions (sect. 1.2) as well as the steady state yearly patterns 
of phenology and drought (sect. 1.3). The authors focused on the use of time 
series analysis to model and predict observations and on the early detection of 
drought-related anomalies in foliar phenology. 
 The trends of the vegetation response can provide a measure of drought 
impact as well as of drought dynamics. Knowledge of these trends is essential 
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for short term predictions of biomass production and in the assessment of 
drought impact on crop yield as well as on the vitality of natural ecosystems.  
 For this purpose, several satellite data products have been applied for 
monitoring photosynthetic activity (e.g. the MODIS fraction of Absorbed 
Photosynthetic Active Radiation - fAPAR - data product, the Land Surface 
Temperature, vegetation indices, etc.) in order to calculate the response of 
vegetation productivity (agriculture and forest) to drought.  
 Given a multi-annual time series of observations, e.g. 8-days MODIS 
fAPAR, the Fourier analysis is performed and the result is a gap-filled, noise-
filtered time series for each year of the data set and for the average (reference) 
year. The occurrence and magnitude of drought-related anomalies, i.e. lower 
than average fAPAR and concurrent higher than average Budyko ratio, are 
evaluated at first. Then the model thus obtained of the yearly time series is applied 
to extrapolate in time the observations past the moment when the earliest anomaly 
is observed (DOY 121 in Fig. 4), i.e. beyond the moment when a lower than 
average fAPAR is first detected. (Fig. 4). The example shown in Fig. 4 clarifies 
how the predicted time series provides an early estimate of the maximum value of 
the anomaly, which in the example (Fig. 4) occurs on DOY 185. 
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Figure 4. Modeling fAPAR time series using Fourier analysis: observations for 2001 
are modeled (squares) and compared with the average year for the period 2001 – 2005 
(continuous line); on DOY 121 the modeled time series over the previous 12 months is 
used to predict the peak anomaly on DOY 185. 
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 This approach can be further explored by using several alternate methods 
(Fourier series, wavelets, Markov chains, etc.) to model the time series of 
observations for each individual pixel and to obtain maps of observed and 
predicted anomalies and of their magnitude. 
 
2. Methods 
 

2.1. The Fast Fourier transform and harmonic analysis 
   
 For general information on Fourier series, Fourier transform and its 
applications in earth sciences the reader is referred to [63-66]. 
 A time series of NDVI or fAPAR images will be indicated as I(x,y,t), 
where x is pixel number or longitude, y is line number or latitude and t is time 
in dekades (10 days) or days. I(x,y,t) can be expressed as a linear combination 
of elementary periodic functions: 
 

1
( , , ) ( , ) exp [ ( , ) ]N

n n nn
I x y t A x y i w t g x y

=
= −∑                              (1) 

 
where wn is frequency, A is amplitude and g is phase angle; the frequency is 
related to the period Pn as wn =2π / Pn. The maps A(x,y)n and g(x,y)n for the 
dominant terms in Eq.(1) represent, in a very concise manner, the information 
contained in the time series of image data I(x,y,t).  
 
The Fast Fourier Transform (FFT) algorithm 
 
 A time series of equidistant data points of length N can be represented by a 
vector I of dimension N. The Fourier transform consists of finding the 
amplitude vector a, such that:  
 

aUI =                                                                           (2) 
 

Where U is a N x N matrix, which contains complex numbers u on the unit 
circle in the complex plane. The matrix U can be organized in such a way that 
each element ur,k is given by:  
 

⎥⎦
⎤

⎢⎣
⎡ −−=

N
ikru kr )1()1(2exp, π                                                   (3) 

 

Where r respectively k are the row respectively column number, and i = (-1)1/2 
the imaginary unit number. By multiplying the data vector I by the complex 
conjugate of U, U* we obtain: 
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aUUIU ** =                                                             (4) 
 
and finally: 
 

[ ] IUUUa *1* −
=                                                                  (5) 

 
Since in the special case of the Fourier transform the matrix U is square and 
U*U is diagonal and equal to NI , where I is the identity matrix, the solution, 
in this case, is: 
 

IU
N

a *1
⎟
⎠
⎞

⎜
⎝
⎛=                                                                    (6) 

 
The mixed radix FFT algorithm implemented and applied for the investigations 
described in this Chapter is very fast because it calculates the matrix – vector 
product very efficiently by breaking it up in FFT-s of smaller dimensions. This 
is especially effective when N can be factored into many small (radix) 
numbers. In the current implementation of the algorithm, the supported radix 
numbers are 2,3,4 and 5, which allow to process time series of such lengths 
(number of data points) as 12, 36 or 360. The latter allows the analysis of 
multi-annual data at e.g. dekadic temporal resolution. 
 A disadvantage of the FFT is that data must be equidistant in time. 
Therefore, it would be worthwhile to weigh the input data in order to avoid 
that missing data have a too large impact on the results. In practice, this 
concept has been implemented as briefly described below. 
 
The Harmonic Analysis algorithm 
 
To assign weights to the input data the eq. (2) must be rewritten as: 
 

aUWIW =                                                                    (7) 
 
Here the matrix U does not contain complex numbers anymore, but rather the 
associated sine- and cosine series. In this case multiplying by the transposed of 
U, U* , gives: 
 

aUWUIWU ** =                                                            (8) 
 
with the solution: 
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[ ] IWUUWUa *1* −
=                                                           (9) 

 
where W is the diagonal matrix of weight factors. Because of these weight 
factors the matrix U*WU is not diagonal and its inverse must be calculated in 
order to find the amplitudes. 
 This algorithm is the solution of a generic weighted least squares fitting 
problem and therefore it can be used for a range of applications much wider 
than the FFT. 
 In the HANTS algorithm, as implemented, the matrix U has N rows and 
2M+1 columns, where M is the number of frequencies to be considered above 
the zero frequency, except if M=N/2, in which case the number of columns is 
equal to N. 
 
2.2. Large area mapping of climate-soil-vegetation complexes  
 
Isogrowth – zones                                                                                                                
 
 The areas wherein the phenology of terrestrial vegetation is similar were 
mapped according to the following procedure: 
 
a) a multi-annual data set was set up using 9 years monthly NDVI data -

from August 1981 through July 1990- which was extracted from the 
archive created and maintained by the Global Inventory Monitoring and 
Modeling Systems (GIMMS) team at NASA/GSFC. These images 
consisted of the Global Area Coverage data re-projected to an equal area 
projection and re-sampled to obtain a 7.6 km x 7.6 km spatial resolution. 
Such monthly composites were produced, first, by screening cloud-
contaminated observations through the application of Thermal Infrared 
Radiance in the AVHRR Channel 5 and then by searching for maximum 
NDVI within each month [67]. In particular, the 10 years time series 
were constructed with radiometric data collected within three different 
AVHRR sensors and calibrated with a procedure which removed the 
sensor-related artifacts and trends [68]. 

b) The FFT mixed radix algorithm (described above) was applied to the time 
series of 108 monthly images. The images of mean NDVI and of the 
amplitudes of the 6 months, 1 year, 4.5 and 9 years components were 
retained for further analyses.  

c) Such selected images provided concise measurements of foliar phenology 
and were used as attributes in the identification of homogeneous zones 
with the numeric classification procedures described below.  
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Classification algorithms 
 
 The mapping of isogrowth zones [58,60,21,22] has been performed 
through the following steps: 
 
1. The most significant attributes were selected using a measure of 

separability (signature divergence); 
2. An unsupervised classification algorithm was applied to form alternate 

class definitions; 
3. Several alternate classification rules were applied; 
4. A measure of classification performance (IP) was created in order to 

compare the relatively large number of alternate classification procedures 
generated by the combinations of (a), (b) and (c). This indicator is based 
on normalized measures of reliability, separability and accuracy of the 
classification. 

5. The highest value of IP leads to the best classification procedure. 
 
 The isogrowth zones, i.e. the classes obtained by numeric unsupervised 
classification procedures, need to be understood by using ancillary 
information on soils, climate and vegetation type. Long term averages of net 
radiation and precipitation were used to calculate maps of the mean Budyko 
ratio. 
 The challenge with mapping isogrowth zones using Fourier coefficients 
as attributes is that classes cannot be defined beforehand. An alternate 
solution was explored by applying a fuzzy classification (FCM) algorithm, 
specifically a fuzzy c-means (FCM) algorithm [69-71]. This method is a 
generalization of the hard c-means clustering algorithm: instead of assigning 
each pixel to a single class, it computes a measure of class membership for 
each pixel and for all classes. For this purpose, an initial set of classes is 
needed. The algorithm generates both a map where each pixel is assigned to 
the class with the highest membership and one membership map for each 
class and all pixels. 

 The membership was evaluated as: 
 

∑
=
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−−
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 i = 1,..,N; j = 1,…,M;  M < N                                 (10) 
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where: mij = membership of pixel i for class j; dij = distance of pixel i from 
centroid of class j; ϕ =  fuzziness exponent  in the domain (0, ∞ ); ϕ = 1 gives 
a hard classification, ϕ = ∞ gives uniform membership for all classes. 
 The obtained maps revealed that when pixels have a large membership 
value for a single class and much lower values for the remaining classes, a 
feasible definition of classes is achieved. On the contrary, occurrences of 
rather uniform membership values suggest that class definition is more 
uncertain.  
 
2.3.  Response of vegetation phenology to climate variability  
 
 The data described in Sect. 2.2 were also used to characterize the 
sensitivity of terrestrial vegetation to climate variability [24]. The 
measurements of foliar phenology provided by the Fourier coefficients were 
applied to characterize the vegetation response to climate variability. For this 
purpose, both spatial and temporal analysis of the relation between foliar 
phenology and aridity, measured by the Budyko ratio, was carried out. 
 The spatial analysis was performed by correlating the maps of relevant 
Fourier coefficients (mean value and amplitudes of dominant components) 
with the map of mean Budyko ratio. 
 The temporal analysis, on the other end, was carried out by computing 
ratios of the inter-annual changes, such as: 
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n

P
R

P
R

yearAyearA

P
R
A

−−
⎟
⎠
⎞⎜

⎝
⎛−⎟

⎠
⎞⎜

⎝
⎛

−
=

⎟
⎠
⎞⎜

⎝
⎛Δ

Δ )()(                                                             
(11)

 

 
 Where Rn is net radiation, P is precipitation, yearl and yeark are any paired 
years in the data set. 
 The correlation of spatial patterns of An and (Rn / P) for any given year k 
yields relationships of the kind: 
 

⎟
⎠
⎞⎜

⎝
⎛= P

RfA n
kn                                                                      (12) 

 
 If this analysis is repeated for each annual data set, it is possible to 
evaluate the response of vegetation phenology to inter-annual variability of 
climate: 
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where the temporal derivative is computed over any two years k and l. It 
should be noted that Equations 10 and 12 evaluate the temporal response of 
vegetation phenology to the inter-annual variability of dryness applying two 
fundamentally different methods. Equation 12 assumes that the inter-annual 
variability of Fourier coefficients (amplitude in this case) is calculated as the 
product of the spatial dependence of An on (Rn / P) at constant t and at the 
inter-annual change in (Rn / P). Equation 10 does not assume any spatial 
dependence of An on (Rn / P) and treats each pixel observation as independent. 
We will evaluate whether Equations 10 and 12 lead to the same observed 
response of phenology to inter-annual variability in dryness by analysing 
extended time series of AVHRR data. 
  
2.4.   Early detection of anomalies in vegetation conditions 
 
 Time series analysis of NDVI and fAPAR image data has also been 
applied to detect drought-related anomalies. This requires modeling of the 
annual time series at weekly resolution removing noisy and erroneous 
observations and filling the resulting gaps.  
 This first step gives a set of high quality annual time series, Ik(x,y,t) as well 
as the time series for the average year, i.e. the time series of the mean value of 
Ik(x,y,t) for all available observations on the same DOY over all available 
years: 
 

),,()},,(),...,,,({ 1 tyxItyxItyxI N ⇒                                       (14) 
 
Once Ī(x,y,t) has been calculated, anomalies Dk(x,y,t) are defined as: 
 

)],,(),,([),,( tyxItyxItyxD kk −=                                                (15) 
 
 This procedure gives results which are graphically plotted as shown in 
Figure 4. In particular, such analysis suggest that a smooth time series might 
be predictable by modeling a segment of the time series, from the date of the 
desired prediction backwards, and by predicting the time series forward by 
using the model thus determined. 
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3. Results 
 
 The results reviewed here have been achieved through several case studies 
summarized in Table 1 and mentioned in the Introduction.  
 
3.1. Large area mapping of climate-soil-vegetation complexes  
 
 Through a preliminary analysis of the significance of Fourier coefficients 
the selection of the most significant attributes of the isogrowth zones was 
performed including the mean NDVI, the amplitudes of the components with 
periods of 9, 4.5, 1 and 0.5 years and the phase of the components with periods 
of 1 and 0.5 years.  
 Additionally, different elements and methods were chosen to construct, 
apply and evaluate alternate classification procedures to map the isogrowth 
zones such as: 
 
- three sets of attributes; 
- inclusion or exclusion by masking of ocean and inland water; 
- normalization of numeric range of attributes; 
- four different sets of signatures, all including 20 classes, obtained by 

applying unsupervised classification; 
- three different clustering rules for the supervised classification step. 
 
Table 1.  Overview of case-studies on Fourier analysis of time series of AVHRR –   
NDVI and MODIS fAPAR. 
 

REGION PERIOD SPATIAL RES 
 

TEMPORAL
RES 

METHOD DATA 

Southern 
Africa 

August 1981 – 
 July 1990  

7.6 km x 7.6 km 30 days FFT AVHRR-  
NDVI 

South 
America 

July 1982 –  
June 1991 

7.6 km x 7.6 km 30 days FFT, HANTS AVHRR-  
NDVI 

Argentina July 1982 –  
June 1991 

7.6 km x 7.6 km 30 days FFT AVHRR-  
NDVI 

Europe January 1995 – 
December 1997

1 km x 1 km 10 days HANTS AVHRR-  
NDVI 

China January 2000 – 
December 2006

1 km x 1 km 8 days HANTS MODIS-  
fAPAR 
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Table 2.  Reliability, Separability, Accuracy and overall Performance Indicator, IP, for 
the best six classification procedures  
 

PROCEDURE RELIABILITY SEPARABILITY ACCURACY IP 
S1 0.71 1.40 0.85 0.885 
S2 0.70 1.40 0.87 0.884 
S6 0.65 1.395 0.92 0.884 
S7 0.68 1.40 0.74 0.85 
S9 0.70 1.405 0.48 0.79 
S12 0.74 1.405 0.78 0.88 

 
Southern Africa 
 
 Each combination of the above mentioned elements yields a different 
classification procedure. For each procedure indicators of Reliability, 
Separability and Accuracy were calculated and used to determine the overall 
classification performance indicator, IP, as described in Sect. 2.2.  
 A selection of the most significant procedures, i.e. having higher IP’s, 
were finally evaluated in more detail (Table 2).  
 A detailed qualitative assessment of the procedures S2, S6, S7 and S12, all 
obtained using the maximum likelihood Bayesian decision rule, was performed 
by correlation with ancillary data. Although a comparably high performance 
was also obtained with procedure S1, the S2 was then selected in order to 
compare procedures based on the same decision rule. 
 At this stage the isogrowth zones have been mapped by numerical 
classification of the Fourier coefficients, but their significance needs to be 
understood and documented. In practice, this evaluation was then performed 
by overlaying each isogrowth zone with a map of the Budyko ratio, B, and the 
White map of African vegetation [72]. A detailed analysis of these results was 
presented by Azzali and Menenti [21,22], here only a brief overview of few 
classes is given.  
 The isogrowth zones obtained with the S2 procedure, correlate rather well 
with both the Budyko ratio (Fig. 5a) and the White vegetation map (Fig. 5b). 
The isoline of B = 2, for example, indicates rather well the transition zone 
between arid and semi-arid vegetation over a broad latitude range from the 
southern tip of Africa towards the sub-sahelian region. The matching with the 
White vegetation map is also rather good, especially taking into account that 
the White classes are a broad association of species. Additionally, the 
isogrowth (or isophenology) map is able to define narrower vegetation 
associations, revealed by looking, particularly, at the features associated with 
each isogrowth zone. 
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Figure 6. Legend of the map in Fig. 5 for isogrowth zones representative of the 
response of vegetation type to a broad range in aridity conditions; attributes of each 
isogrowth zone are: a) mean NDVI, b) mean B; c) Fourier spectrum; d) NDVI(t) 
reconstructed using the Fourier series and e) fractional abundance of White classes; 
classes 6,5,9. 
 
 The maps in Figure 5 include 20 isogrowth zones (classes), isolines of the 
Budyko ratio and White vegetation classes. Azzali and Menenti [60] described 
particularly the full legend of these maps with a detailed analysis of the Fourier 
spectra, reconstructed NDVI(t) and the relative abundance of the White classes 
within each one of the 20 isogrowth zones. Few examples are analyzed here to 
document the correlation between increasing aridity (i.e. higher values of B), 
Fourier spectrum (amplitudes of different periodic components), the NDVI(t) 
reconstructed using the Fourier series and the vegetation types as defined and 
mapped by White [72].  
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 Class 6 (and the transitional class 10) have the highest mean NDVI value 
(0.43) in Southern Africa and Budyko values close to 1, which indicates a near 
equilibrium of evaporative demand (Rn) and water supply (P). Mean annual 
rainfall is 2000 mm. These classes are located in the dense equatorial forest 
areas of Central Zaire, Congo and Gabon. According to White (1983) the 
vegetation is classified as wetter and drier Guineo-Congolian rain forest (types 
1a and 2, Fig. 5b), swamp forest (type 8), mosaics of 1a and 8, mosaics of 1a, 2 
and secondary grassland (11a). Class 6 (and class 10) is the only class having a 
dominant 6 months component and the reconstructed NDVI(t) shows a very 
well defined bimodal character. 
 Class 5 has a mean NDVI = 0.37 and B = 2. Mean annual rainfall varies 
overall between 800 mm and 1200 mm, while it is 500 mm in Kenya where  
B = 3. The vegetation consists of Somali-Masai Acacia – Commiphora 
deciduous bushland and thicket (White types 42, 16a and 11a). The NDVI(t) 
follows the rainfall pattern with a main peak in December. The 12 months 
component is dominant, although the 6 months component is still significant. 
 Class 9 has a mean NDVI = 0.31 and B = 2.5.  It is characterized by a 
seasonal rainfall (mean annual value of 700 mm) occurring during the austral 
summer with a peak in January. The vegetation consists of highveld grassland 
(type 58) and afromontane scrub forest (29c, d and e; 19a) according to White 
[72]. The sharp boundary between isogrowth zone 9 and zone 2 is most likely 
due to the higher fertility of soils within zone 9. The 12 months component is 
largely dominant and the amplitude is comparable with the mean NDVI. The 
significant amplitude values of the 9 and 4.5 years components suggest a 
relevant influence of the hydrological regime of the middle Limpopo river on 
water supply to vegetation. 
 
South America 
 
 The FCM method described in Sect. 2.2 provides an alternate solution for 
mapping vegetation at a spatial scale where it is not possible to define 
vegetation types precisely.  
 Similarly to the previous case-study on Southern Africa, a subset of the 
Fourier coefficients, obtained with the FFT, were applied as attributes to 
identify homogeneous zones. The attributes included the mean NDVI, the 
amplitudes of the terms of the Fourier series with periods of 9, 4.5, 1 and 0.5 
years and the phase values of the terms with periods of 1 and 0.5 years. The 
used NDVI(t) time series spanned between 1982–1991 (see Table 1). 
 Likewise the previous case, an unsupervised classification algorithm was 
used in a first step, but signatures were constructed for six classes only. Next, 
the membership of all pixels for the six classes was evaluated using Eq.10. 
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Figure 7.  Map of isogrowth zones in South America showing classes 4,5 and 6 of six 
fuzzy classes obtained with the FCM method (see text for details); colours indicate the 
class of highest membership and intensity indicates the membership value 
  
 The classification results, achieved by the application of FCM, provided a 
set of maps: the first one where each pixel is assigned to the class for which 
membership is highest and M maps of the membership values of all pixels for 
each one of the M-classes. Part of this information can be merged into a single 
map (Fig. 7), where the colour indicates the class of highest membership and 
the colour intensity is its actual value. 
 The advantage of applying the FCM instead of other methods is that it 
provides both broader map units and information on internal variability 
through the membership value. This concept is well evident in Fig. 7 for the 
south – eastern part of Argentina where grasslands appear in magenta, showing 
also significant changes in intensity which indicate subtler differences in the 
combination of species and vegetation conditions. 
 
3.2.  Response of vegetation phenology to climate variability  
 
 The relationship between vegetation type and aridity documented by the 
correlation of isogrowth zones with the Budyko ratio (see e.g. Fig. 5) can be  
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Figure 8.  Mean NDVI, (a), and amplitude of the 1 year component, (b), vs. (P/Rn); 
Europe and North Africa, AVHRR NDVI 1996 – 1997, 10 days composites at 1 km x 1 
km resolution [24,26,34]. 
 
further investigated by analysing interannual variability of vegetation 
phenology and of climate. This relationship is confirmed by the strong 
correlation of both mean NDVI and the amplitude of the 1 year component 
with the value of B (Fig. 8). 
 The values in Fig. 8 were obtained by computing, first, the Fourier 
transform using HANTS for two yearly time series (1996 and 1997), then, 
averaging the values of mean NDVI and amplitude obtained in each year for 
all pixels and finally sampling the resulting maps to carry out the regression 
analysis. The scattering in data points clearly increases with the decreasing 
number of pixels at increasing values of (1/B). Since climate conditions in Europe 
are wetter than those ones found in the previous case-studies of Austral Africa 
and South America, the inverse of B was here applied as the indicator of 
climate conditions. 
 The relationships in Fig. 8 have been applied to estimate the sensitivity, S, 
of foliar phenology to water availability by computing: 
 

( )n

n

RP
AS

∂
∂

=                                                                        (16) 

 
S provides a straightforward measure of sensitivity to drought. Crucial is the 
difference in sensitivity between the mean NDVI and the 1-year amplitude, 
since the value of S becomes negligible at P/Rn ≈ 1 for mean NDVI and at  
P/Rn ≈ 1.5 for the 1-year amplitude. Thus the seasonality of foliar phenology 
remains significant under wetter conditions than conditions affecting the 
average greenness of foliage. Even more interesting is the difference between 
the value of S obtained using data on spatial patterns at given t, i.e. using Eq. 
16, or data at different times for a given pixel, i.e. using Eq. 11. 
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 A regression analysis of those data shown in Fig. 8 was then performed to 
obtain the following relationship: 
 

( ) nRP
nn dcRPbaA ++=                                                  (17) 

 
where the coefficients a,b,c and d depend on the order n of the periodic 
component under consideration.  
 Since the eq. 17 has been obtained with data on spatial patterns at given t, 
this also indicates the close relationship of spatial patterns of vegetation 
phenology with water availability. The sensitivity S can be then calculated by 
using eq. 16, given eq. 17, and obtaining the first derivative as a function of 
P/Rn. 
 Conversely, using the Eq. 11 to evaluate the sensitivity of phenology to 
temporal changes in water availability at a given location, it is rather evident 
that different functions S(P/Rn) are obtained when either spatial patterns or 
inter-annual changes are considered (Fig. 9). 
 Relevant is that S becomes negligible at significantly lower values of P/Rn 
in the case of interannual changes (Fig. 9b) when compared with the case of 
spatial patterns (Fig. 9a), i.e. P/Rn ≈ 0.3 for mean NDVI and P/Rn ≈ 0.8 for the 
1-year amplitude. 
 In practice, the S value provides different information when computed in the 
time and space domain. In the time domain it gives a measure of the phonological 
 

 
 
Figure 9. Sensitivity of mean NDVI, (a), and of the 1-year amplitude,(b), to interannual 
variability of water availability measured by the ratio P/Rn when considering spatial 
patterns (Eqs. 16 and 17, continuous line) or interannual changes (Eq.11, diamonds); 
Europe and North Africa, AVHRR NDVI 1995, 1996 and 1997, 10 days composites at 
1 km x 1 km resolution.  
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response of vegetation growing in an area wih a given climate, i.e. at a specific 
value of B, showing a temporary and usually rather limited inter-annual change 
of B. Therefore, this St value is a measure of resilience of vegetation. 
 In the space domain, conversely, the Ss value provides a measure of 
differences in phenology of vegetation types growing under different climate 
conditions, i.e. different mean B–values. This information (Ss) may be 
interpreted as a measure of vulnerability of vegetation in the presence of long 
term changes in climate, i.e. such as to affect in a permanent way water 
availability at the locations considered to compute S in the space domain, Ss.  
  
3.3. Early detection of anomalies in vegetation conditions  
 
 Timely and reliable detection of anomalies in vegetation growing 
conditions requires an accurate removal of anomalous observations, filling the 
gaps in the annual time series and a robust modeling for the valid observations. 
 The result by applying Eq. 14 is a set of noise-free annual time series 
including also the time series for the reference year obtained by averaging all 
available observations (for each 8 days period in different years). In practice, 
this data set provides a straightforward way to determine and visualize 
anomalies by applying Eq. 15.  
 A case-study [27] on the Qinghai – Tibet Plateau using MODIS fAPAR 
data for the period 2001 – 2005, illustrates how anomalies are detected and 
analysed (Fig. 10). 
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Figure 10.  Observed fAPAR annual time series at a randomly selected pixel in the 
Tibetan Plateau; each observation is a 8-days composite; Terra / MODIS, 2001-2005 [27] . 
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Figure 11.  Anomalies in the Fraction of Absorbed Photosynthetically Active Radiation 
(fAPAR) observed by the MODIS satellite at 8-days intervals; anomaly is defined as 
difference between each 8-days value in 2006 and the corresponding average in the five 
year period 2001-2005; pixel size is 1 km x 1 km; Sichuan (left from the blue line) and 
Chongqing (right from the blue line) Provinces, China.   
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Figure 12. Fraction of Absorbed Photosynthetically Active Radiation (fAPAR) 
observed by the MODIS satellite at 8-days intervals for a single pixel: five years (2001 
– 2005) average (blue) and 8-days observations during 2006; pixel size is 1 km x 1 km; 
Sichuan Province, China. 
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 This result illustrates the basic principle of the approach: although the 
overall shape of the fAPAR signature remains a simple periodic function, 
subtle differences in timing of minimum and maximum values and in the 
overall yearly amplitude are noticeable. Such differences are measured by 
using the Fourier coefficients. 
 Over vast and complex regions like the Qinghai – Tibet Plateau significant 
differences in inter-annual variability and phenology may occur and be 
observed. Anomalies may occur in few areas only. Jia and Menenti [27] 
selected the driest (i.e. 2001) and the wettest (i.e. 2005) years within the 
available MODIS data. Anomalies in fAPAR were almost negligible in the 
southeastern portion of the Plateau and very large, i.e., in the northeastern 
Plateau where δfAPAR= 12 in response to δ (Rn /λP) = 13. This example 
underscores the value of the approach described here: time series of spatial 
data on dryness conditions and concurrent vegetation conditions are essential 
to observe and understand the impact of climate variability on terrestrial 
vegetation. The latter is particularly relevant in extensive agricultural lands: a 
more detailed case-study dealing with the severe 2006 drought in Sichuan and 
Chongqing regions of China was carried out using the approach described 
here. 
 The analysis of MODIS fAPAR observations (Fig. 11) shows that scattered 
anomalies occurred in the western part of the province as early as June 2nd 
2006, due to irregular rainfall events, which were synchronously detected with 
TRMM data on the same locations. 
 The improvement in spatial resolution obtained with the MODIS data, 
over TRMM data, however, is very significant and of evident relevance for 
identifying areas where drought remedial interventions are most needed. 
Moreover, while seasonal forecast of precipitation is still a demanding 
challenge, the calculation of fAPAR anomalies is represented as a smooth 
function of time (Fig. 12), which may help for an easier prediction of trends and 
anomalies at different moments through the growing season. 
 
4. Discussion  
 
4.1. Large area mapping of climate-soil-vegetation complexes  
 
 The map of soil-climate-vegetation complexes (isogrowth zones) is a new 
type of map focusing on phytophenology and including for each class 
(complex) associations of different vegetation types, which revealed over a 
period of 9 years, a similar growing pattern of vegetation as well as a similar 
leaf display structure. Each class includes a similar dynamics of vegetation 
response to climatic, soil and anthropogenic factors. Then, a straightforward 
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comparison of the isogrowth zones map with other vegetation maps such as the 
one by White [72] and that of the Budyko aridity index shows, obviously, 
some differences.  
 It should be noted that the main mapping units in the White map represent 
climax vegetation of different regions of endemism [72]. In this case, the 
vegetation complexes used in this context, are usually rather broad, including 
large geographical locations and several lithological classes, under climatic 
conditions that are also broadly defined. 
 The images of Fourier coefficients and associated statistics indicate that 
this new approach is very well suited to study phenology of terrestrial 
vegetation over large areas. Moreover the approach is useful considering that 
temporal phenomena, such as the seasonality of the vegetation, can  be 
displayed and understood in terms of 4 or 5 images instead of a large number 
(i.e.108 AVHRR-NDVI images used in the Southern Africa and South 
America case-studies and more than 250 MODIS-FAPAR images used in the 
China case study). Therefore, the temporal behavior of vegetation communities 
occurring over many growing seasons may be summarized in a way that is 
potentially less cumbersome than other approaches [73]. 
 The advantage of this approach in analyzing multi-temporal NDVI images 
may extend beyond the mere description and the summarization of foliar 
rhythms observed at regional scale. For example, the 9 years amplitude image, 
which appears to relate to interannual variability of leaf display, may serve as a 
measure of resilience, an important functional response of vegetation to 
climatic change [39]. In particular areas of high amplitude at low frequencies 
(i.e. those with periods of 9 and 4.5 years), such as Acacia woodland- bushland 
of the Kalahari (classes 1 and 4 in Fig. 5), would suggest greater resilience to 
heightened climatic variation predicted for southern Africa under greenhouse 
warming scenarios [74]. Conversely, zones where the low frequency 
components showed small amplitudes, such as the miombo woodlands (classes 
13, 16 and 17 in Fig. 5), would tend to indicate a vegetation highly resistant to 
climatic changes. Of the two types of occurrences, it is likely that communities 
able to adjust leaf display rapidly in response to changes in available resources 
(i.e. resilient forms) will be privileged under conditions of heightened climatic 
variations. 
 
4.2.  Response of vegetation phenology to climate variability 
  
 The case-study carried out in Europe and North Africa covered just three 
years, which is too short period of time for drawing generic conclusions on the 
response of foliar phenology to interannual climate variability. On the other 
hand, in that case, a strong correlation has been found between the Fourier 
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coefficients and the ratio of precipitation over net radiation. (The inverse of the 
Budyko ratio has been applied for the study on Europe, where wetter climatic 
conditions are occurring in comparison with those ones in Southern Africa and 
South America). In this context, among the amplitude and phase coefficients, 
the mean NDVI and the 1-year amplitude were the most sensitive indicators of 
vegetation response to climate variability.  
 The sensitivity of the Fourier amplitude and phase coefficients to climate 
variability was evaluated both in the time and spatial domain. In both cases the 
sensitivity decreased with increasing wetness (i.e. P / Rn). When considering 
changes in the spatial domain, the sensitivity S of mean NDVI becomes 
negligible at P / Rn ≈ 1.5, while the S value for the 1-year amplitude becomes 
negligible at P / Rn ≈ 2.5.    
 It is worth noting that negative S-values were obtained for the 1-year 
amplitude at P / Rn ≈ 0.5, i.e. that the 1-year amplitude decreases with the 
increasing of wetness. This apparently contradictory result can be explained by 
considering that under semi-arid conditions, an increase in rainfall may 
increase minimum NDVI more than the maximum NDVI during the year, thus 
leading to smaller 1-year amplitudes. 
 
4.3.  Early detection of anomalies in vegetation conditions  
 
 An early information on impending drought may be confirmed by 
concurrent observations of multiple land surface state variables, such as the 
Land Surface Temperature (LST) in addition to fAPAR. For the Sichuan and 
Chongqing case-study the LST anomaly anticipated the appearance of the 
fAPAR anomaly by a few weeks, and it remained smaller throughout all the 
period between end of April 2006 and end of August 2006. On the other hand, 
the LST anomaly, once appeared, it was always evident, thus providing an 
additional and crucial information on the impending drought event, well in 
advance on the time of peak-severity (August 2006). 
 In practice, both fAPAR and LST measures seem to respond consistently 
to climate forcing. An evaluation of fAPAR and LST response to rainfall, 
estimated with TRMM data, was performed by Jia and Bastiaanssen [62]. 
Although the large difference in spatial and temporal resolution between 
rainfall (TRMM) and fAPAR (MODIS) observations does not allow an 
accurate comparison, it is clear that the observed fAPAR anomalies respond 
rather well and correctly to the observed rainfall. The latter supports the use of 
fAPAR observations for detecting and forecasting drought-related anomalies in 
vegetation growth. Finally, the advantage of detecting anomalies and drought 
trends in the Sichuan and Chongqing case-study by means of measures both of 
water availability and response of terrestrial vegetation, consisted in the 
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capability of monitoring the beginning of drought occurrence 2 months before 
the anomaly events reached their peaks (late August). 
 
5. Conclusions  
 
 The review presented here illustrates the results obtained over about 20 
years by applying time series analysis techniques to extract concise 
information from extended time series of large area multispectral satellite data. 
Selected parameters obtained by FFT and HANTS analyses i.e. the 1-year,           
6-months and the 9-years amplitudes as well as the 6-months phase images are 
closely related to the distribution of vegetation types and can be applied for 
image classifications based on temporal dynamics of the vegetation at regional 
and continental level. Overall, aridity represents a strong determinant of both 
vegetation type and of vegetation phenology, which concept is largely 
supported by the detailed correlation analysis between Fourier coefficients and 
Budyko index. In particular, the highest correlation coefficients were obtained 
for the 1-year and 6-months amplitude values. This information, supported by 
the close match between the White [72] vegetation map and the map of 
isogrowth zones, indicates the importance of aridity, as measured by the 
Budyko ratio (B) [31], in determining both phenology and vegetation type.  
 This conclusion is further supported by the fact that the map of isogrowth 
zones was obtained through a two-steps classification procedure, where, first, 
classes have been defined by using an unsupervised classification algorithm to 
define signatures from Fourier coefficients then other related procedures were 
applied to obtain the isogrowth map. This implies that each class of the 
isogrowth map shows similar phenology as measured by the Fourier 
coefficients. Finally, the correlation of Fourier coefficients with B provides 
further evidence that small changes in aridity are able to determine subtle 
differences in vegetation types and, particularly, in the association of 
vegetation species. 
 The dependence of the NDVI Fourier spectra on climate variability in time 
and space has been established quantitatively. Such correlation was stronger in 
the spatial domain than in the temporal domain, suggesting that the Fourier 
spectra can be used as a measure of resilience of vegetation to interannual 
climate variability. Only under very dry conditions interannual climate 
variability has a larger impact on phenology than spatial variability in dryness. 
The results on quasi-real-time monitoring and early warning of droughts are 
preliminary and much remains to be done on issues such as filtering and gap-
filling of time series as well as  on the accurate and timely detection of 
anomalies. The review presented here, however, shows that the information on 
vegetation physiognomy and dynamics obtained by multi-spectral data 
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collected by imaging radiometers is very reliable and relationships robust over 
a range of space and time scales.   
 The results summarized and reviewed here open a two-fold perspective for 
further research:  
 
1. The abundance of spaceborne observations of the global land surface 

which span 25 years or more, has a climatological relevance far superior to 
what was achievable with the data available 20 years ago when this 
research began. Therefore, this invaluable source of information deserves 
the most urgent attention, by a deeper and more robust understanding of 
the observed response of the terrestrial biosphere to climate variability 
and, specifically, to inter-annual variability; 

2. both methods and data have become ripe enough to develop further an 
efficient and cost-effective early warning system for drought events, based 
directly on observations of vegetation conditions from space. 
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