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Abstract. This paper presents a registration framework for the construction of a
statistical shape model of the human hand in a standard pose. It brings a
skeletonized reference model of an individual human hand into correspondence
with optical 3D surface scans of hands by sequentially applying articulation-
based registration and elastic surface registration. Registered surfaces are then
fed into a statistical shape modelling algorithm based on principal component
analysis. The model-building technique has been evaluated on a dataset of
optical scans from 100 healthy individuals, acquired with a 3dMD scanning
system. It is shown that our registration framework provides accurate geometric
and anatomical alignment, and that the shape basis of the resulting statistical
model provides a compact representation of the specific population. The model
also provides insight into the anatomical variation of the lower arm and hand,
which is useful information for the design of well-fitting products.

Keywords: Articulation-model � Registration � Human hand
Statistical shape modelling

1 Introduction

Shape models of faces and full-bodies have become valuable for many commercial
applications of computer vision and graphics, ranging from customized design to
motion tracking [1, 2]. Their potential for noise and artifact reduction, hole filling, and
resolution improvement, have aided to employ low-budget scanners with low mesh
quality [3, 4]. Recently, the popularity of these techniques has led to their consideration
for modelling the human hand, most often for the task of hand tracking [5, 6].

In the context of hand tracking, shape models have been used with the primary goal
of improving pose estimation [5–9]. In general, these techniques consist of a fixed prior
rigged template model which can be aligned to person-specific depth images or 3D
meshes. The alignment is often achieved by solving for the articulation and anthro-
pometric parameters of the template that optimally match the subject’s depth image or
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3D mesh. The registration is regularized by principal component analysis (PCA) [5] or
by an “as rigid as possible” (ARAP)-regularization [6].

As the focus of these techniques has been on obtaining accurate pose information,
the level of geometric detail can vary significantly between models. Many models are
composed of primitives like spheres and cylinders of fixed size, with the registration
step simply articulating these primitives [5, 7]. Others use a more realistic skin
geometry, but only allow the model to articulate [8]. Accommodating variations in
hand shape and size has only recently been explored [6, 9], and those variations have
not been restricted to a range of “natural” hand shapes and sizes.

It has been argued that detailed personalized hand models improve the accuracy of
both model registration and pose estimation [10]. This argument was furthered by
Khamis et al. who regularized possible hand shapes with a low-dimensional parametric
shape model that included statistical shape variations of a population [11]. Ideally, this
shape model would be based on a dataset of high-quality surface scans in the same
pose, but Khamis et al. constructed their shape basis on low-quality depth scans which
contained self-occlusions. To address the low quality, their statistical shape model was
estimated simultaneously with each individual’s hand shape and pose parameters.

Meanwhile, recent advances in optical scanning technology, such as the 3dMD-
system [12], have enabled the acquisition of high-quality (<0.5 mm error) 3D surface
scans, even from highly articulating objects like hands. It is expected that a statistical
shape model based on these high-quality scans would reveal more geometric details
and it is therefore the interest of this paper to build a high-resolution geometric shape
basis that, to the best of our knowledge, has not been seen in the literature.

Building such as statistical model requires bringing the 3D scans of different
subjects’ hands into anatomical correspondence. Having an anatomical correspondence
for all points of all meshes is critical to build an accurate and interpretable model.
However, this is an especially difficult task for a complex articulating shape like the
hand.

The aim of this study is to obtain reliable anatomical correspondence for building a
statistical human hand model. We propose a registration algorithm, similar to the
technique in [9], that aligns a template articulation model to a database containing 100
high-quality 3D scans of human hands. We hypothesize that the addition of the
articulation model, and its corresponding registration algorithm, will allow us to more
accurately obtain shape correspondences, and normalize for pose, in 3D scans of
human hands. We further hypothesize that these advances in shape correspondences
and pose normalization will facilitate the use of standard statistical shape modelling
algorithms, like PCA, on 3D scans of human hands.

2 Methods

At a high level, our proposed shape modelling technique works as follows. An artic-
ulating reference of the human hand, with anatomically correct rotation axes, angles,
and constraints, is constructed to act as prior in an articulation-based registration
method. This reference hand is then registered to each optical surface scan of a database
in order to make anatomically correct correspondences between them. Person-specific
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deviations that cannot be captured by the reference are accommodated through a
subsequent elastic surface registration step. Finally, the registered surfaces are articu-
lated to the same pose and PCA is used to derive the statistical shape model of the
human hand. The following subsections discuss these steps in further detail.

2.1 Reference Articulating Hand Model

Reference Surface Geometry and Skeleton. Our reference hand is based on a single
Magnetic Resonance Image (MRI) scan of the first author’s right hand (repetition time
[TR]: 4220 ms; echo time [TE]: 1560 ms; field of view [FOV]: 192 mm � 520 mm;
resolution: 1 mm3; no gap). The outer skin surface and all relevant bones were man-
ually segmented from the MR image.

To construct the surface mesh of the reference hand, the binary label field of each
body part, obtained from the MRI scan, was then converted to a triangulated surface
mesh using a discrete marching cube algorithm [13]. The extracted skin surface mesh
was then removed of noisy outliers, smoothed in volume-preserving way [14] and
remeshed uniformly [15]. The reference skin mesh is denoted by bMM ¼ ðbVM ; eMÞ,
with V̂M 2 R

3�NM a matrix containing the coordinates of the NM vertices in a rest pose
(the rest pose being denoted by the hat), and eM 2 R

NM�NM representing the connec-
tivity, which remains constant at all times.

An abstract line-skeleton Ŝ, defined using the set of segmented bones, is shown in
Fig. 1(a). Each segmented bone b is represented by a local coordinate frame in the
skeleton (i.e. an origin and orientation). The origin of the bone is located at its center-
of-rotation hb and the orientation of its coordinate frame is as described by the Inter-
national Society of Biomechanics (ISB) [16]. The orientation of each bone with respect
to the world reference frame is described by the world-to-bone rotation matrix
Cb 2 SO 3ð Þ.

(a) Arm skeleton, with labelled bones (b) Bone hierarchy 

Fig. 1. Our reference articulating hand model is defined by the skeleton in (a). The bones in this
skeleton are ordered in the hierarchical tree structure in (b) with an artificial root bone at the
wrist. Arrows indicate the parent-child relationship. Colors indicate the corresponding
articulation parameters: a(blue), a and b(green), c(red), d(orange). See text for further details.
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Bone Hierarchy. The set of bones are ordered in the hierarchical tree structure shown
in Fig. 1(b). This hierarchy represents the parent-child relationships between the
coordinate frames of each bone in the skeleton. The root of the hierarchy is an artificial
bone located at the wrist with the same orientation as the third metacarpal bone.
A wrist-rooted armature allows us to describe arm and hand motion independently from
each other, but with respect to a common root coordinate system at the wrist (this
decoupling will be a benefit in our registration tasks). Global hand motion is described
by the third metacarpal bone, which the ISB standard defines as the parent of all other
carpal bones [16].

Articulation. The articulation of the hand is defined by the state of its joints. Using
our skeleton, the state of each joint can be described as a rotation between the local
coordinate frames of adjacent bones:

Rb ¼ CbC
�1
p bð Þ; ð1Þ

where p bð Þ is the parent of bone b as defined by the tree structure in Fig. 1(b). The
rotation matrix Rb captures how bone b is articulated with respect to its parent. This
matrix can be decomposed into three rotation angles - ab; bb; cb - which match the
ISB’s joint angle descriptions [16]. The angle ab is the primary angle of articulation and
describes the bending of the fingers and flexion/extension of the wrist. The angle b is
the secondary angle of articulation and describes ulnar/radial deviations of the wrist
and the separation between the fingers. The angle c is a roll angle around the bone’s
longitudinal axis. An additional angle, d, is used to define pronation-supination of the
arm. This motion is modelled as a rotation around an axis connecting the ulna at the
wrist to the radius at the elbow. In the wrist-centered armature the ulna rotates around
this axis over the radius. The degrees of freedom for each bone have been indicated by
the color in Fig. 1(b): a(blue), a and b(green), c(red), d(orange).

When articulating a bone with a new set of angles, we recalculate the parent to bone
rotation matrix as a concatenation of these rotation angles. From Eq. (1) it is possible to
update the rotation matrix Rb since its parent maintained the same position in space.
Relating the rotation matrix of the rest pose with this of the articulated pose, provides
the rest-to-pose rotation matrix:

Tb ¼ CbĈ�1
b ð2Þ

from which we can update the head position of the bone and update the bones further
down in the tree hierarchy.

Finally, we confine, by visual inspection, all joint articulation angles to remain
within a natural range of motion. To accomplish this, we introduce a mapping from
these constrained physical angles to “dummy” unconstrained variables as described in
[17]. The benefit of the “dummy” unconstrained variable is that it can be optimized in
the registration algorithm without any changes to the optimizer.

Anthropometric Scaling. Besides the articulation of the skeleton, the reference model
also accommodates the anthropometric variations related to bone length and body part
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thickness. The model therefore adopts an affine scaling of each bone defined by a
longitudinal scaling factor s== and a transversal scaling factor s?. The scaling matrix in
world coordinates can be written as follows:

Sb ¼ Cb diag s?b ; s
==
b ; s?b

� �
C�1
b : ð3Þ

The world to bone transformation including both articulation and scaling is
therefore defined as:

Fb ¼ SbTb: ð4Þ

In the reference hand, we apply longitudinal and transversal scaling on the lower
arm, hand palm, and each finger separately. For the fingers, a single longitudinal
scaling factor is used for all phalanges of the same digit; this is justified by the fact that
the ratio of bone lengths between phalanges of a single digit obey closely the golden
ratio rule [18]. Nevertheless, we allow the metacarpals to change in length indepen-
dently from the phalanges in order to maintain flexibility of the reference during the
registration task.

Skinning. To deform the reference skin mesh M̂M to a new skin mesh MM Uð Þ in line
with the articulation parameters / of the skeleton, we employ Linear Blend Skinning
(LBS) [19]. LBS updates vertices based on the skeleton’s articulation via:

vi ¼
X

b
wi;bFbv̂i þ tb; ð5Þ

with tb ¼ hb � Fbĥb being a translation vector. The skinning weights wi;b capture how
much vertex vi is influenced by articulating bone b. They are obtained by solving a heat
equilibrium analogy as described in [20].

During the pronation-supination movement of the lower arm, the amount of skin
sliding gradually increases over the elongation axis of the arm. This twisting behavior
cannot be explained with standard linear blend skinning since the expected skin
deformation does not follow the transformation of its underlying bone. Instead, we
model the skin deformation during pronation-supination by applying spherical linear
interpolation (SLERP) [21] between Culna and Cradius, where the interpolation param-
eter t linearly increases from the ulna’s head at the wrist to the radius’ base at the elbow
[9]. A vertex is then rotated with the interpolated rotation matrix depending on its
location along the connection axis.

vi ¼ wi;ulna t Tulna þwi;radius 1� tð ÞTradius
� �

v̂i: ð6Þ
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2.2 Articulation-Based Registration

Hierarchical Optimization. The aim of this section is to fit the articulation model,
described in the previous section, to a 3D surface scan, denoted byMT ¼ VT ; eTð Þ. This
registration is done by optimizing a set of model parameters X via a non-linear
Levenberg-Marquardt (LM) optimization scheme. The parameters include the articu-
lation parameters, anthropometric scaling parameters, and rigid transformation
parameters, summarized in Table 1. To avoid the optimizer ending in local minima, we

subdivide the set X in several smaller groups of parameters X ¼ Uj ¼ f/igj
n o

and

order the parameters in each group Uj in a hierarchical structure which is optimized
iteratively (e.g. A, A-B, A-B-C) by the LM optimizer. By using a wrist-centered
armature, we can decouple the hand and arm related parameters and do their regis-
tration steps independently. The order in which we optimize the defined parameter
groups are: “hand”, “arm”, “rigid”, “scaling”, “rigid”, “hand”, and “arm”. Furthermore,
we optimize each finger independently.

Landmark-Based Initialization. Before starting the hierarchical iterative optimiza-
tion protocol, we initialize the registration by globally scaling and aligning the refer-
ence hand based on three landmarks: two at opposite sides of the wrist and one at the
middle fingertip. Additionally, the length of the arm is set based on the distance
between landmarks at the wrist and an additional landmark at the elbow pit. This
second step was performed due to missing elbow geometry in our scan dataset, and
would not be required if the elbow is thoroughly scanned.

Table 1. Parameter hierarchy. The parameter set is divided in independent parameter groups Uj.
Parameters in each group are organised in different levels, where each level is optimised at a time.
Optimisation is done iteratively between levels within each group.

Group Uj Level
/if g

Degrees of freedom Relevant bones
B� S

Hand A aM3, bM3 M2–5, PP2–5
B aPP2�5, bPP2�5 PP2–5
C croot, aM3, bM3 M2–5, PP2–5

Arm A aR, bR U, R
B dU H
C aH H

Scaling A s?U;R;H , s
?
M1�5;PP1�5;PM2�5;PD1�5 U, R, M2–5, PP2–5

Rigid A Global translation and rotation Root, M5
Thumb A aM1, bM1, aPP1 PP1, PD1

B aPD1 PP1, PD1
C aM1, bM1, aPP1, aPD1, s

==
M1;PP1;PD1; s

?
PP1;PD1

PP1, PD1

Finger * A aM�, bM�, aPP�, bPP�, aPM�, aPD� PP*, PD*
B aPP�, bPP�, aPM�, aPD�, s

==
M�; s

==
PP�;PM�;PD�; s

?
PP�;PM�;PD� PP*, PD*
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Energy Function. At each hierarchy level, we apply a LM optimization to minimize

/ ¼ argmin/
XVMj j

i¼1

wa i;Bð Þ minj d VM /ð Þ ið Þ;V==
T jð Þ

� �� ���� ���2 !
; ð7Þ

where wa is a binary weight used to turn on and off the contribution of vertices,
depending on whether its corresponding bone is in the set of bones B considered to be

relevant for the optimisation (see Table 1). V==
T is the subset of VT consisting of vertices

whose normals are within 72� from the normal at VM ið Þ (a more strict threshold of 37�

is used for the scaling and arm optimisation steps). Rather than excluding points based
on their normals, we search for the closest point that meets this normal angle condition.
By doing so, we ensure that all points on the mesh will have a corresponding point (as
long as the mesh is not too sparse). Points for which a counterpart was not found are
excluded from the energy function.

The distance measure d p; qð Þ used is the point-to-plane distance introduced by Park
and Subbarao [22]. This is beneficial over point-to-point distance when using low
resolution mesh, but cannot be used for optimizing arm supination since corresponding
reference and target vertices lie in the same plane. In that situation, we replace the
distance measure by its point-to-point variant.

2.3 Shape Correspondences

Initially, the vertices in our 3D meshes are randomly ordered, meaning that, say, vertex
vi in our reference mesh does not anatomically correspond to vertex vi in another hand
mesh. The number of vertices may also be different for every mesh. Before performing
statistical analysis on these meshes, we must first establish an anatomical correspon-
dence between them. This correspondence is achieved in two steps. First, the
articulation-based registration, described above, is performed to align our reference
hand to the target mesh. Second, an elastic registration algorithm is applied to provide a
more precise anatomical correspondence between the reference mesh and the target
mesh [23]. The final result is that the reference surface is deformed to have its shape as
similar as possible to the shape of the target surface. At this point, the target mesh is
replaced by the deformed reference, ensuring that each hand mesh has the same number
of vertices ordered in the same fashion. This consistent vertex order ensures that every
hand mesh has the same vertices in the same anatomical positions.

2.4 Pose Normalization

In the statistical model, we are only interested in anthropometric variations and want to
normalize as much as possible for any variation due to pose and articulation differ-
ences. Therefore, we apply a pose normalization on the elastically deformed mesh,
using the skeleton estimated by articulation-based registration. Pose normalization can
easily be achieved by interchanging the rest and pose articulations, i.e. inverting the
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rest to pose transformation matrix in Eq. (2). Finally, all pose-normalized scans are
centered around their center-of-gravity position.

2.5 Shape Modelling

To investigate the principal modes of variations present in the population, we apply a
linear dimensionality reduction algorithm on the pose normalized registered scans.
A popular choice for statistical shape modelling is a principal component analysis
(PCA) [24]. In our context, PCA converts the vertex sets from all meshes into smaller
sets of values through the definition of linearly uncorrelated variables called principal
components. These principal components are defined by applying an orthogonal
transformation on the original vertex coordinates. The position of vertex vi in the
statistical model is modelled as its average position li plus a linear combination of
principal components Pi;j:

vi ¼ li þ
X

j
wjPi;j: ð8Þ

The weights wj give the contribution of each principal component (PC) to the
model instance. The calculated PCs describe orthogonal directions of variance and they
are ordered based on the fraction of variance found along the direction.

3 Results

In this section, we provide the results of the proposed registration and model-building
techniques after testing them on a set of 100 static optical surface scans acquired with a
3dMD system. For comparison purposes, we also applied the elastic registration on the
dataset as described in Sect. 2.3 but without the articulation-based initialization of
Sect. 2.2.

3.1 Articulation-Based Registration

Anatomical Correspondence. To quantify the anatomical accuracy of the registration
method, we annotated 22 anatomical landmarks on the reference mesh and on each
target scan. Landmarks were annotated at anatomical feature locations: at the elbow pit,
at two opposite points around the wrist, at each fingertip and at all finger joints. We
calculated the distance between the landmark positions on the moving mesh and their
ground-truth counterpart on the target mesh. These distances were computed after our
articulation-based registration, after our elastic registration, and for the result of a
purely elastic registration, without articulation-based initialization.

The landmark correspondence results are shown in Fig. 2(a). The average distance
between joint landmarks after articulation and elastic registration was 5.7 mm, com-
pared to 6.8 mm without the articulation based initialization step. Anatomical align-
ment is the best at the fingertips and distal joints because its estimation relies on clear
geometric features. The accuracy on the elbow pit alignment is low due to missing data
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at the elbow and limited geometry information at the upper arm. Given the improved
landmark correspondence of our algorithm, we can conclude that the articulation-based
registration - as an initialization step - improves the anatomical correspondence of the
elastic registration.

Geometric Correspondence. To create shape correspondence, we replace a target
mesh by the registered result. This step may introduce geometric error where the
surfaces do not match exactly. We quantify this geometric correspondence accuracy by
calculating the average distance between the target and the elastically registered mesh,
in the normal direction on the registered mesh. The results are shown in Fig. 2(b), with
the average distance between surfaces grouped by anatomical region. The average
geometric accuracy of our algorithm was 0.12 mm.

3.2 Statistical Model

Model Performance/Compactness. The compactness of a statistical model is a
widely used measure to quantify how efficiently the model describes the total variance

(a) Landmark correspondence error (b) Geometric error

Fig. 2. The anatomical and geometrical correspondence results for our registration method and a
purely elastic method. Anatomical correspondence error, using expert-denoted landmarks, is
shown in (a) while geometric errors in the hand shapes are shown in (b).

Fig. 3. Normalized compactness graph of the statistical hand shape model.
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in the population [25, 26]. The compactness measure C mð Þ is defined as the sum of the
shape variance captured by the first m principal components:

C mð Þ ¼
Xm

i¼1
ki; ð9Þ

with ki the shape variance described by the ith PC. Figure 3 shows the normalized
compactness results of our statistical hand shape model. The first principal component
explains over 90% of the total variability in the dataset, while the first four PC account
for over 97%.

Our model’s first four principal components are visualized in Fig. 4. The average
geometry is shown along with ± three standard deviations for each principal compo-
nent. The first PC describes global scaling. The second PC describes variations in the
length-to-thickness ratio of the arm, hand and fingers. The third and fourth PC are
related to varying length and width of the fingers relative to arm size, respectively.

4 Discussion

We have presented a two-step registration method for 3D meshes of human hands.
First, we matched an articulating prior model to a target scan, then we applied an elastic
registration to obtain more precise shape correspondence. We demonstrated our method
on a dataset of 100 optical 3D surface scans. We showed that the anatomical accuracy
improves by 17% by initializing the elastic registration with the articulation-based
registration result, while the average geometric accuracy stays around 0.12 mm. We
further fed the registered surfaces into a statistical shape modelling algorithm and
showed that the resulting model provides a compact representation of the population’s
variation. Only four principal components are needed to describe 97% of the shape
variability in the dataset. We believe that our model is suitable for applications like
hole-filling and resolution improvement, where pose estimation is an inevitable task.
Our shape model could also be useful as a prior in a surface registration algorithm.

Nevertheless, our results did highlight a few limitations. We observed low accuracy
on the estimation of the elbow pit location mainly due to missing data around the elbow
and limited geometry at the upper arm. We also noted that the registration outcome
highly depends on its settings (e.g. the ranges of motion, order of parameter opti-
mizations, vertex normal thresholds). Finally, it is likely that some articulation infor-
mation did make it into the shape model as a result of errors in the articulation-based
registration. The source of these errors include the optimization settings, but also the
limited degrees of freedom in the reference hand (e.g. the use of the golden ratio to
scale finger bones). Our future work will look at addressing these limitations as well as
extending the technique to the 4D modelling of hand motion.
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5 Conclusion

We presented herein a registration method for 3D meshes of human hands. It was based
on the alignment of an articulating reference hand and elastic deformation. We
demonstrated the registration’s effectiveness by building a PCA shape model of the
human hand. In the future, we will improve the anatomical accuracy of the method-
ology and to extend the method to model hand motion.

Acknowledgments. This work was supported by the Research Foundation in Flanders (FWO
SB) and the VLAIO PLATO-project. The authors would like to thank Vigo nv, More Institute
vzw and Orfit Industries nv for their continued contribution to the project.

Fig. 4. First four eigenmodes of the statistical shape model. Color represents the variance ki jð Þ
for vertex j along the ith PC.
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