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Comparing the Formation and Characteristics of Use-Wear Traces on Flint, Chert,
Dolerite and Quartz
Alessandro Aleo a,b

aFaculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands; bFaculty of Archaeology,
Leiden University, Leiden, Netherlands

ABSTRACT
Use-wear traces are considered to be material specific. The use of an appropriate reference
collection is thus fundamental for interpreting tools’ function. To test whether a flint reference
collection can be used to interpret the function of non-flint tools, I conducted experiments
using chert, dolerite, and quartz endscrapers and flakes. I compared wear traces obtained
during the experiment with use-wear on experimental flint tools exposed to the same variables
(motion, contact material, time). The results highlighted strong similarities in the characteristics
and distribution of traces on chert and flint. Dolerite and quartz differ from flint, especially
regarding the distribution and appearance of use-polish. However, shared traits were observed
in all the raw materials involved in this experiment, demonstrating a certain degree of
comparability between use-wear traces on flint and non-flint rocks. Based on the data, a flint
reference collection can allow a basic interpretation of use-wear also on different rocks.
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Non-flint rocks; use-wear
traces; experimental
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Introduction

Use-wear analysis is becoming more and more part of
mainstream methodologies in archaeological research
across the world. The method greatly developed since
its conception 60 odd years ago (Evans et al., 2014; Mar-
reiros et al., 2020 and references therein). Traceology
refers to the study of macro and microscopic wear
traces on the edges/surfaces of objects. By studying the
characteristics and distribution patterns of wear traces
it is possible to infer past tools’ functions. Experiments
form a fundamental component of use-wear studies.
Based on experiments, archaeologists can infer past
tool function and production in light of the similarities
between corresponding attributes of archaeological
and experimental use-wear (Van Gijn, 2010). Hence, the
interpretation of wear traces is strongly influenced by
the available comparative reference collection. One
research hiatus is that comparative collections of non-
flint knapped tools are still rare. With this study, I want
to explore how traces on different lithic raw materials
compare to detect whether flint tools can be used as a
reference collection for non-flint artifacts.

Non-flint materials, and coarse rocks in particular,
generally attract little scientific attention, and

technological and typological frames derived from flint
have often been applied to them (Knutsson, 1998). The
same holds for functional studies. However, raw material
proprieties not only influence knapping attributes, but
also the distribution and appearance of the wear traces.
Hence, we can expect tools made on different rocks to
exhibit different patterns of use-wear traces (Clemente
Conte et al., 2015). Despite the frequency of flint tools,
there are regions where good quality flint is scarce or
unavailable, and is replaced by other rock types with
similar knapping properties, for example quartz and
quartzite (Aubry et al., 2016; Knutsson et al., 2016).
Outside Europe, numerous fine- and coarse-grained
rocks, like chert, quartzite, and silcrete, are used in tool
production instead of flint (e.g. Douglass et al., 2016;
Holdaway & Douglass, 2015; Nami, 2015; Will, 2021).

The identification and interpretation of use-wear
traces on quartzose and heterogenous rocks are often
considered problematic. Recently, several experimental
programs aimed to broaden our knowledge on the
mechanical responses to stress caused by the use and
wear formation process on non-flint rocks were created
(e.g. Bello-Alonso et al., 2019; Bello-Alonso et al., 2020;
Fernández-Marchena & Ollé, 2016). Concurrently, new
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analytical techniques, such as scanning electron micro-
scope (SEM) and laser scanning confocal microscope,
improved the detection and recognition of wear traces
on these highly reflective and irregular rocks (e.g. Ollé
et al., 2016; Pedergnana et al., 2020). The application of
these methods to archaeological materials highlighted
the feasibility of functional interpretation of lithic assem-
blages composed of non-flint artifacts (e.g. Lemorini
et al., 2019). In these recent advances, the authors
stressed the need to use rock-specific reference collec-
tions. Comparisons to use-wear traces on flint are proble-
matic due to significant differences in the raw material
proprieties which influence wear formation (see for
example Bello-Alonso et al., 2019).

It is certainly true that wear traces are in part material
specific, but there are also similarities in the types of
wear analysts encounter (Clemente Conte et al., 2015).
Because building a comprehensive raw material-
specific reference collection is not always an option, I
set out to test the extent to which we can rely on a refer-
ence collection of flint tools to interpret the wear traces
of non-flint knapped materials. To do so, I designed a
systematic experiment in which the same activity, with
the same use duration, is performed with flint tools
and tools made of other lithologies. As my overarching
research interest includes South African lithics, I
focused on well-known resources from there: chert,
quartz and dolerite. A description of macro- and micro-
wear traces resulting from the work of different
materials, was provided for chert, dolerite, quartz, and
flint artifacts. After that, I performed a comparative
analysis between experimental traces on flint and non-
flint tools to investigate which differences in the charac-
teristics of wear traces can be observed and how these
influence the interpretation of tools’ function.

Materials and methods

Experimental tools: raw materials, tool types

Experimental flake tools and endscrapers were made on
rock types that are generally found in the South African
archaeological record: chert, dolerite, and quartz
(Table 1, rocks descriptions SI). All flint tools are non-cor-
tical and made of fine-grained European flint (Fig. SI1).
The tools were made by expert flint knappers, using soft
and hard hammer stones. The chert and dolerite rocks
were collected in Lesotho and the Kwazulu-Natal province
of South Africa. The quartz cobbles are store-bought and
collected from locally river-beds in the Netherlands. All
chert tools are made of fine- to medium-grained chert
and are non-cortical (Fig. SI2). Due to the shortage of
good quality quartz and dolerite, and the small dimension

of the available nodules, tools were made from both cor-
tical and non-cortical flakes (Fig. SI3, SI4). The quartz
cobbles had a smooth, rounded cortical exterior with
weathering limited to some sheen over the surface. The
dolerite cortical exterior is angular and rough.

The scrapers were retouched to endscrapers and
hafted by side-mounting them at one end of a pine
wood handle with the aid of a compound adhesive
made of pine resin, beeswax, and ochre (Fig. SI5). The
hafting design and adhesive recipe are representative
for hafted tools in the African Middle Stone Age (MSA)
and Later Stone Age (LSA) (Deacon & Deacon, 1980;
Lombard, 2007; Wadley, 2005).

In the experiment, I used the hafted scrapers in a
transverse scraping motion. The flakes remained unre-
touched and were handheld. They were used in longi-
tudinal motions (cutting and sawing).

The experiments: contact materials, motion, and
time

The experiment can be considered a generalized refer-
ence experiment (Van Gijn, 1990). These types of exper-
iments are aimed to reproduce and study a wide range
of used tools, and it was not my goal to replicate
specific tasks or archaeological objects.

I used the tools to process animal and plant materials
(Table 1). The contact materials ranged from soft to
medium-hard and consisted of fresh deer hide (Cervus
elaphus; soft), green reeds (Phragmites australis Trin.;
soft-medium), and fresh deer bone (Cervus elaphus;
medium-hard). I selected these materials because they
represent a plausible counterpart of the raw materials
that could have been exploited during the MSA and
LSA. Reeds are widely known in the ethnographic
record for being used as shafts for bone-tipped arrows
(Deacon, 1992) and may have been used for the same
purpose in the past. Red deer was chosen to replace
African medium-sized ungulates (Steele & Klein, 2013).

The hide and bone raw materials were scraped and
cut with the scrapers and flake tools respectively. In the
hide scraping experiment, the hafted tools were placed
perpendicular to the hide and pulled towards the hide-
worker (see as reference Konso hide-workers in Ethiopia;
Rots & Williamson, 2004) (Figure 1(a)). The endscrapers
were used to clean fresh skins which were cut with
flake tools. The cutting motion was done unidirectionally
(Figure 1(b, c)). A downward motion was also applied in
the bone working experiments, where endscrapers were
used to deflesh and scrape the surface of fresh bones
(Figure 1(d)). The bone-cutting experiments were con-
ducted on the same bones after they had been cleaned
and scraped in the previous experiment. The bones
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Table 1. Overview of the experimental tools and the variables tested in the experiment.
Experiment nr. Raw material Tool type Cortex on the used edge Handling Motion Contact material Use-duration (min)

2558 Flint Endscraper No Hafted Scraping Hide 30
665 Flint Endscraper No Handheld Scraping Hide 60
2555 Flint Flake No Handheld Cutting Hide 30
2556 Flint Flake No Handheld Cutting Hide 60
207 Flint Endscraper No Handheld Scraping Bone 30
1810 Flint Endscraper No Handheld Scraping Bone 60
48 Flint Flake No Handheld Sawing Bone 30
2557 Flint Flake No Handheld Sawing Bone 60
428 Flint Flake No Handheld Cutting Reed 30
183 Flint Flake No Handheld Cutting Reed 60
3827 Chert Endscraper No Hafted Scraping Hide 30
3826 Chert Endscraper No Hafted Scraping Hide 60 (2*30)
3831 Chert Flake No Handheld Cutting Hide 30
3830 Chert Flake No Handheld Cutting Hide 60 (2*30)
3824 Chert Endscraper No Hafted Scraping Bone 30
3825 Chert Endscraper No Hafted Scraping Bone 60 (2*30)
3828 Chert Flake No Handheld Sawing Bone 30
3829 Chert Flake No Handheld Sawing Bone 60 (2*30)
3832 Chert Flake No Handheld Cutting Reed 30
3833 Chert Flake No Handheld Cutting Reed 60 (2*30)
3855 Dolerite Endscraper No Hafted Scraping Hide 30
3807 Dolerite Endscraper No Hafted Scraping Hide 60 (2*30)
3809 Dolerite Flake Yes Handheld Cutting Hide 30
3808 Dolerite Flake No Handheld Cutting Hide 60 (2*30)
3806 Dolerite Endscraper No Hafted Scraping Bone 30
3805 Dolerite Endscraper No Hafted Scraping Bone 60 (2*30)
3813 Dolerite Flake No Handheld Sawing Bone 30
3811 Dolerite Flake Partially Handheld Sawing Bone 60 (2*30)
3812 Dolerite Flake Yes Handheld Cutting Reed 30
3810 Dolerite Flake No Handheld Cutting Reed 60 (2*30)
3816 Quartz Endscraper No Hafted Scraping Hide 30
3814 Quartz Endscraper No Hafted Scraping Hide 60 (2*30)
3821 Quartz Flake No Handheld Cutting Hide 30
3823 Quartz Flake Yes Handheld Cutting Hide 60 (2*30)
3817 Quartz Endscraper No Hafted Scraping Bone 30
3815 Quartz Endscraper No Hafted Scraping Bone 60 (2*30)
3822 Quartz Flake Yes Handheld Sawing Bone 30
3819 Quartz Flake Yes Handheld Sawing Bone 60 (2*30)
3818 Quartz Flake Yes Handheld Cutting Reed 30
3820 Quartz Flake Partially Handheld Cutting Reed 60 (2*30)

Figure 1. Experimental activities carried out. (a) Scraping a fresh deer hide with a hafted endscraper. (b, c) Cutting fresh deer hide with
handheld flakes. (d) Scraping a fresh deer bone with a hafted endscraper. (e) Deep incisions on a fresh deer bone from sawing with a
handheld flake. (f) Cutting green reeds with a handheld flake.
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were cut, creating deep incisions against the grain of the
bone but never cutting through it (Figure 1(e)). A bidirec-
tional longitudinal sawing motion was applied. Reeds
were only cut with flake tools and not scraped. Fresh
reeds were cut by placing the flake perpendicular to
the reed’s stem and using a unidirectional motion
(Figure 1(f)).

Each experiment was conducted twice, at two time
intervals: 30 and 60 min (Table 1). With this sequential
experiment, the progression of use-wear traces
through the use was documented (cf. Ollé & Vergès,
2014). Only one active side or area of the tool was
used, concentrating potential wear formation to a
specific edge. All activities were carried out by the
same person (AA) to reduce the variables related to
the experimenter. Regarding the flint tools, I conducted
experiments 2555, 2556, 2557, and 2558. The others
were selected from the available Laboratory for Material
Cultural Studies reference collection which comprises
more than 4000 experimental tools.

Methods: sample preparation, microscopy and
wear analysis

To capture the development of the traces, all intended
active surfaces of the tools were examined and photo-
graphed prior to the experiments. I analyzed the tools
after the 30-minute interval and again after the last
60 min interval. I aimed to photograph the same
locations after each use-session. However, because of
edge-removals and crushing during some of the activi-
ties, several spots were lost. When that occurred, I
selected new photo locations where traces had already
started to develop.

Before microscopy, the tools were cleaned under
running water and in an ultrasonic bath with water and
soap for 10 min. This was to remove use-residues that hin-
dered the analysis. Some tools needed a further 20 min
cleaning treatment. During the analysis under high mag-
nification, all pieces were cleaned with a 96% alcohol sol-
ution to remove any finger grease from handling.

Macroscopic traces were visually analyzed using a
Leica M80 stereomicroscope with an external light
source and magnifications ranging from x7.5 up to x60.
Images were taken using a Leica MC120 HD camera.
Microscopic traces were observed with a Leica DM6000
M metallurgical microscope with incident light and
bright field illumination and magnifications ranging
from x50 up to x500. Images were captured with a
Leica DFC450 camera and microscopy z-stacking soft-
ware to overcome the problem of low depth of focus.

For each implement, I recorded the location, distri-
bution and association of the use-wear on the tool’s

surface, using a system of polar coordinates (Fig. SI6;
Van Gijn, 1990). I recorded the following variables: edge-
damage (edge-removals, crushing, edge-reduction),
edge-rounding, polish, striations, and abrasion. Abrasion
corresponds to the disappearance of part of the original
surface of crystals due to use. The degree of abrasion
and the shape and size of the hollows (“pecking”) are indi-
cators of the type of the workedmaterial (Clemente Conte
et al., 2015; Clemente Conte & Gibaja Bao, 2009; Ollé et al.,
2016). Edge-removals were evaluated based on their dis-
tribution along the edge and the orientation of the
scars. The former is informative of the hardness of the
material worked, the latter of the use-motion (Semenov,
1964; Tringham et al., 1974). Polish was described by
means of various attributes namely: distribution, texture,
topography, brightness and degree of linkage. Polish dis-
tribution is influenced by the worked material, the use
duration and applied motion. Polish texture and topogra-
phy are related to the worked material as well as bright-
ness. The description of the micro-polish follows the
terminology and methodology developed by Keeley
(1980) and further developed by others (Van Gijn, 1990;
Van Gijn, 2014, 2010; Vaughan, 1985). The orientation of
the striations in relation to the used edge was recorded.
I described the development of edge-rounding, polish,
and abrasion as light, moderate, or heavy. The degree of
rounding was visually assessed based on the extent of
rounding of the used edge caused by working a specific
contact material. For polish and abrasion, I observed the
extension of the surface area affected by alteration. For
the former, I also considered the degree of linkage in
the polish. Considering that use-wear traces do not
always develop in the same way along the edge, the
degree of wear of a specific trace may vary depending
on its location.

Finally, a comparative analysis was undertaken to
identify shared similarities in the characteristics and
distribution pattern of traces. With the aim to explore
the possibilities and limitations of using the reference col-
lection of flint tools to infer the function of non-flint tools.

Results

Flint

The results of the use-wear analysis are listed in Table 2.
Hide: Working fresh hide resulted in edge-rounding, rare
edge-removals, which occurred only during the cutting
activity, and a greasy polish developed in a characteristic
band along the edge. The polish is bright and invasive
and follows the profile of the working edge exactly
(Figure 2(a, b)). The texture of the polish is either
pitted or cratered. Polish on the endscrapers display a
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Table 2. Overview of the production and use-wear traces recorder on the experimental tools.

Exp. Exp. Type Traces

Production Use

Edge-
removals

Edge-
rounding Polish development Polish distribution Polish texture Polish topography Polish brightness Abrasion Striations

2558 Flint/Scr/Hide/30 -striations - -light -light -band along the edge -rough and greasy - -bright - -
-polish -moderate -invasive
-edge-damage

665 Flint/Scr/Hide/60 - - -moderate -moderate -band along the edge -rough and greasy -cratered -bright - -
-invasive

2555 Flint/Cut/Hide/30 - -isolated -light -light -band along the edge -rough and greasy -pitted- -bright - -
-moderate -moderate cratered

-invasive
2556 Flint/Cut/Hide/60 - -isolated -moderate -moderate -band along the edge -rough and greasy -pitted -bright - -

-invasive
207 Flint/Scr/Bone/30 - -isolated -light -light -line along the edge -smooth and matt -domed -bright - -
1810 Flint/Scr/Bone/60 - -isolated - -moderate -line along the edge -smooth and matt -domed -very bright - -

-isolated spots -flat
48 Flint/Saw/Bone/30 - -close - -light -isolated spots -smooth and matt -domed -very bright - -longitudinal

-moderate
2557 Flint/Saw/Bone/60 - -close - -moderate -isolated spots -smooth and matt -domed -very bright - -longitudinal

-scalar -heavy -flat
-pitted

428 Flint/Cut/Reed/30 - -isolated -light -moderate -band along the edge -smooth and matt -domed -very bright - -
-invasive

183 Flint/Cut/Reed/60 - -isolated -light -moderate -band along the edge -smooth and matt -flat -very bright - -
-close -heavy

-invasive -domed
3827 Chert/Scr/Hide/30 - - -light -light -band along the edge -rough and greasy -pitted -bright - -

-invasive -cratered
3826 Chert/Scr/Hide/60 - - -light -light -band along the edge -rough and greasy - -bright - -

-moderate -invasive
3831 Chert/Cut/Hide/30 - -rare -light -light -band along the edge -rough and greasy - -bright - -

-isolated -invasive
3830 Chert/Cut/Hide/60 - -isolated -light -light -band along the edge -rough and greasy - -bright - -

-moderate -isolated spots
-invasive

3824 Chert/Scr/Bone/30 - -single -light -light -line along the edge -smooth and matt - -very bright - -
-moderate -isolated spots

3825 Chert/Scr/Bone/60 - -isolated -light -light -line along the edge -smooth and matt -pitted -very bright - -
-moderate

3828 Chert/Saw/Bone/30 - -close - -light -isolated spots -smooth and matt -domed -very bright - -
3829 Chert/Saw/Bone/60 - -close - -moderate -isolated spots -smooth and matt -domed -very bright - -longitudinal
3832 Chert/Cut/Reed/30 - -close -light -light -band along the edge -smooth and matt -domed -very bright - -

-moderate -invasive
3833 Chert/Cut/Reed/60 - -close -light -moderate -band along the edge -smooth and matt -domed -very bright - -

-invasive
3855 Dole/Scr/Hide/30 -polish - -light -light -band along the edge -granular -flat -very bright - -

-moderate -isolated spots
-invasive

3807 Dole/Scr/Hide/60 - - -moderate -light -band along the edge -granular -flat -very bright - -
-moderate -isolated spots

134
A
.A

LEO



-invasive
3809 Dole/Cut/Hide/30 - -isolated -light -light -isolated spots -rough and greasy -flat -very bright - -

-granular
3808 Dole/Cut/Hide/60 - -isolated -light -light -isolated spots -granular -flat -very bright - -
3806 Dole/Scr/Bone/30 - -isolated -light -light -isolated spots -smooth and matt -domed -bright -light -transverse

-very bright
3805 Dole/Scr/Bone/60 - -isolated -light -light -isolated spots -smooth and matt -domed -bright -light -

-pitted -very bright
3813 Dole/Saw/Bone/30 - -close - -light -isolated spots -smooth and matt - -bright - -
3811 Dole/Saw/Bone/60 - -close -light -light -isolated spots -smooth and matt -domed -bright - -

-granular -very bright
3812 Dole/Cut/Reed/30 - -isolated -light -light -isolated spots -smooth and matt -domed -very bright - -

-moderate -invasive
3810 Dole/Cut/Reed/60 - -isolated -light -light -isolated spots -smooth and matt -domed -very bright -light -

-moderate -invasive
3816 Quartz/Scr/Hide/30 - -rare -light -absent - - - - - -

-isolated
3814 Quartz/Scr/Hide/60 - -rare -moderate -light -isolated spots -rough and greasy - -bright -light -

-isolated
3821 Quartz/Cut/Hide/30 - -isolated -light -absent - - - - - -
3823 Quartz/Cut/Hide/60 - -isolated -light -light -band along the edge -rough and greasy - -dull -light -

-moderate -moderate -invasive -bright -moderate
-isolated spots

3817 Quartz/Scr/Bone/30 - -isolated - -absent - - - - - -
3815 Quartz/Scr/Bone/60 - -isolated -light -light -isolated spots -smooth and matt - -bright -moderate -
3822 Quartz/Saw/Bone/

30
- -isolated -light -light -isolated spots -smooth and matt - -very bright - -

-close
3819 Quartz/Saw/Bone/

60
- -close - -light -isolated spots -smooth and matt -domed -very bright -moderate -

-moderate -pitted
-comet tails

3818 Quartz/Cut/Reed/30 - -isolated -light -moderate -band along the edge -smooth and matt -domed -very bright - -
-invasive

3820 Quartz/Cut/Reed/60 - -isolated -light -light -band along the edge -smooth and matt -domed -very bright - -
-moderate -invasive

Note: The description of the experiment type (Exp. type) is compiled as follows: raw material, motion (scraping or cutting/sawing), contact material, time (30 or 60 min). Production traces are grouped together. The detailed
description of the single experiments is given in the SI.
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transverse directionality. The degree of edge-rounding
varies between light to moderate, and it is never
heavily developed even after 60 min of use. As already
demonstrated in previous studies (cf. Collin & Jardon-
Giner, 1993; Loebel, 2013; Rots, 2005), working fresh
hide creates a less pronounced rounding of the edge
and a greasier and brighter polish compared to dry hide.

Bone: Traces produced by contact with fresh bone
consist of edge-rounding, edge-removals, and polish.
Scraping fresh bone resulted in a slightly developed
rounding, a few edge-removals, and a smooth polish dis-
tributed in a thin line along the edge (Figure 2(c)).
Sawing caused more edge-removals and no rounding.
The associated polish is smooth and matt, it has a loca-
lized distribution and a clear longitudinal directionality
(Figure 2(d, e)). Tiny pits are visible in the polish. Longi-
tudinal striations, indicative of the use-motion, were
documented on both cutting tools. No striations were
documented on the endscrapers, but the polish displays
a transverse directionality.

Reed: Cutting fresh reeds produced a slight edge-
rounding, unevenly distributed edge-removals, and a
band of well-developed highly linked polish (Figure 2
(f)). The polish has a smooth and matt texture and
both domed and flat topography. Well-developed
spots of polish generally display a flat topography
rather than domed. The brightness is very intense, and
the polish exhibits a clear longitudinal directionality.

Chert

Hide: Traces from contact with fresh hide consist of edge-
rounding, edge-removals, and polish. Scraping and
cutting resulted in a light edge-rounding. Edge-removals
occurred only on tools used for cutting. A rough and
greasy polish developed on all scraping and cutting
tools. On endscrapers, a continuous band of polish –
with transverse directionality – formed (Figure 3(a)).
While on cutting tools, the polish has amore localized dis-
tribution but, it is still invasive (Figure 3(b)). Pits and craters
in the polish were documented on one endscraper.

Bone: Scraping fresh bone caused a very light edge-
rounding and a few edge-removals. A smooth and
matt polish is distributed at the very edge of the end-
scrapers, while a lightly developed greasier polish
extends more into the piece (Figure 3(c)). Sawing
caused more edge-removals than scraping. The continu-
ous crushing of the edge inhibits the formation of edge-
rounding. Bone polish developed in isolated spots and
has a smooth and matt texture and a domed topogra-
phy. Tiny pits are visible in the polish (Figure 3(d, e)).
The polish is bright and has a clear longitudinal direc-
tionality. Striations parallel to the edge were documen-
ted on one flake.

Reed: Working fresh reeds resulted in edge-removals,
lightly developed edge-rounding, and a wide band of
polish with a smooth and matt texture and domed

Figure 2. Selection of use-wear traces on experimental flint tools. (a) Light edge-rounding and greasy band of polish from scraping
fresh hide (200x). (b) Edge-rounding, isolated edge-removals and band of polish from cutting fresh hide (200x). (c) Line of polish and
light rounding from scraping fresh bone (200x). (d) Domed polish with longitudinal directionality from sawing fresh bone (200x). (e)
Edge-removal with longitudinal orientation and flat smooth polish from sawing fresh bone (200x). (f) Edge-removal oriented long-
itudinally and highly-linked band of polish from cutting reeds (200x).
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topography (Figure 3(f)). The polish is very bright and
displays a longitudinal directionality. The degree of
linkage of the polish is higher on the flake used for
60 min.

Dolerite

Hide: Traces from contact with fresh hide are edge-
rounding, edge-removals, and polish. Edge-removals
were documented only on cutting tools. Hide polish
developed on endscrapers and flakes and its distribution
is not uniform along the used edge. Polish developed in
isolated patches with a granular texture and a flat topo-
graphy (Figure 4(a, b)). On endscrapers, the polish is dis-
tributed more continuously along the used edge than
on flakes. Hide polish developed both on crystals and
on the matrix.

Bone: Working fresh bone resulted in edge-removals,
edge-reduction, polish, abrasion, and striations. A light
edge-rounding was observed on both endscrapers,
while on the flakes, it developed only on the one used
for 60 min. Severe edge damage occurred during the
sawing activity. On both endscrapers and flakes, the
polish has a localized distribution and it developed on
the most protruding areas of the edge. The polish has
a smooth and matt texture and a domed topography
(Figure 4(c, e)). Pits are occasionally visible in the
polish. Fine and small striations perpendicular to the

working edge are visible on the surface of a worn pro-
truding crystal on endscraper 3806 (Figure 4(d)). On
both endscrapers, abrasion of the crystals is visible.
Abrasion is lightly developed since no very abrasive
materials were worked. The hollows are mostly
medium-sized and irregular in shape in line with what
has been reported in the literature for tools used to
process medium and hard materials (cf. Clemente
Conte et al., 2015).

Reed: Traces from contact with fresh reeds consist of
rare edge-removals, light edge-rounding, smooth and
matt polish with a domed topography, and abrasion
(Figure 4(f)). The polish is invasive and distributed in iso-
lated spots along the working edge. The polish lays on
top of the crystals and grains of the matrix, the bright-
ness is very intense, and the polish displays a clear longi-
tudinal directionality. Abrasion is visible on a few crystals
along the edge and is lightly developed.

Quartz

Hide: Traces from contact with fresh hide consist of
edge-removals, edge-rounding, polish, and abrasion.
The degree of rounding varies between light to moder-
ate (Figure 5(a)). Edge-removals are rare and isolated.
Hide polish did not develop on all tools. When present,
the polish is distributed in isolated spots or a band
along the edge and has a rough and greasy texture

Figure 3. Selection of use-wear traces on experimental chert tools. (a) Edge-rounding and greasy band of polish from scraping fresh
hide (200x). (b) Edge-rounding and polish from cutting fresh hide (200x). (c) Line of polish from scraping fresh bone (300x). (d) Isolated
spots of polish with longitudinal directionality from sawing fresh bone (500x). (e) Edge-removals and smooth spot of polish with longi-
tudinal directionality and tiny pits from sawing fresh bone (500x). (f) Edge-removal oriented longitudinally, edge-rounding and inva-
sive smooth polish from cutting reeds (200x).
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(Figure 5(c)). Polish is mostly located on the dorsal corti-
cal exterior of the flake used for cutting hide. Abrasion
developed on endscrapers and flakes (Figure 5(b)). Due
to the state of the worked material (fresh hide) the
degree of abrasion is mostly light with small-sized
hollows (cf. Clemente Conte et al., 2015).

Bone: Fresh bone traces – consisting of edge-
removals, edge-rounding, polish, and abrasion – did
not develop on all tools. Only one endscraper displays
traces of use. Scraping fresh bone caused a light edge-
rounding and isolated edge-removals. Polish – with
transverse directionality – developed in isolated spots
at the very edge and abrasion was documented in a
few locations (Figure 5(d, e)). Cutting produced more
edge-removals than scraping and very light rounding.
A smooth polish, with pits and comet tails, developed
on the cortical exterior of one cutting tool and has a
localized distribution (Figure 5(g)). The degree of
abrasion is higher on tools used to work bone compared
to those used on hide, and the hollows are medium-
sized and irregular in shape (Figure 5(f)) (cf. Clemente
Conte et al., 2015).

Reed: Cutting fresh reeds resulted in isolated edge-
removals, light rounding, and a band of smooth and
matt polish with a domed topography (Figure 5(h, i)).
The brightness of the polish is very intense and displays
a longitudinal directionality. Reed polish is clearly visible
both on the cortical exterior and crystalline surface of

the tools. However, on the crystalline surface, the
polish distribution is less uniform due to the uneven
topography, but it is still invasive.

Tool effectiveness

Raw materials proprieties (such as hardness, roughness,
toughness) and the shape of the tools can influence tool
efficiency, and this is directly related to edge mainten-
ance. For use-wear analysis, this means that some raw
materials and tool types may have a limited or typical
build-up of use-wear. For example, in a brittle raw
material, working edges with wear traces may continu-
ously collapse resulting in a limited accumulation of
traces. Therefore, I also recorded the degree of tool
effectiveness.

I did not observe differences in the effectiveness of
flint and chert tools while processing different materials.
Flake tools and endscrapers were highly effective in the
various activities. Only one chert flake used to cut fresh
hide was ineffective. However, chert’s lower efficiency
depended mainly on the convex shape of the working
edge, which is not particularly suited for cutting. The
development of edge modifications did not significantly
affect the performance of tools.

Not all the dolerite tools proved effective. I noticed a
clear difference in effectiveness between retouched and
unretouched implements. Endscrapers were overall less

Figure 4. Selection of use-wear traces on experimental dolerite tools. (a) Edge-rounding and polish with granular texture (white
arrow) from scraping fresh hide (200x). (b) Edge-rounding and granular polish from cutting fresh hide (200x). (c) Smooth polish
with transverse directionality from scraping fresh bone (500x). (d) Abrasion and striations perpendicular to the edge on a protruding
crystal from scraping fresh bone (300x). (e) Edge-rounding and domed polish with longitudinal directionality (white square) from
sawing fresh bone (300x). (f) Edge-damage, invasive smooth polish (white square) and light abrasion (white arrow) from cutting
reeds (200x).
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effective than flake tools and thick scraper-heads per-
formed worse than thin ones. Endscraper effectiveness
further decreased during use since edge-rounding and
edge-reduction caused a rapid increase of the active
edge angle. Conversely, unmodified flakes were
effective cutting tools. However, the effectiveness of
flakes used to saw bones rapidly declined during use
due to continuous edge-crushing. Edge modifications
were mainly caused by the loss of grains rather than frac-
turing (cf. Gibaja Bao et al., 2009).

Quartz tools were overall effective in the different
activities, except for two cutting tools. Exp. 3822 was
selected to process fresh bone. However, this tool has
a granular internal structure, and during the use, the
edge quickly crumbled. The convex indented lateral
edge of exp. 3823 was unsuitable for cutting fresh
hide. The efficiency of the latter depended mainly on
the shape of the active edge rather than on the charac-
teristics of the raw material. Due to the hardness of
quartz, edge-rounding and edge-reduction formed

slower compared to other rock types. That allowed
quartz tools to retain their efficiency for a longer
period of use. However, the edges tend to break prema-
turely compared to flint and chert.

Discussion

Comparisons between non-flint and flint tools

Flint – chert comparison
Chert and flint are both microcrystalline varieties of
quartz. Due to their similarities, the development of
and the traces themselves are thus expected to be
similar (SI). According to Nieuwenhuis (2002), the charac-
teristics of use-wear traces on chert, especially coarse-
grained chert, were to some extent different from flint.
The result of her experiment showed that traces on
chert tools are comparable with those on flint tools,
but less extensively developed, especially polish (Nieu-
wenhuis, 2002, p. 36). My study underlines this

Figure 5. Selection of use-wear traces on experimental quartz tools. (a) Edge-rounding and polish from scraping fresh hide (200x). (b)
Polish and abrasion from cutting fresh deer hide (200x). (c) Polish (circle) from cutting fresh hide (200x). (d) Edge-rounding and mod-
erately developed abrasion from scraping fresh deer bone (200x). (e) Polish and linear features with transverse orientation from scrap-
ing fresh bone (300x). (f) Edge-removals and moderately developed abrasion from sawing fresh bone (300x). (g) Moderately
developed spot of polish displaying tiny pits/comet tails (500x). (h, i) Edge-removals and fluid polish from cutting reeds (200x).
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conclusion. Due to the uneven micro-topography of
chert, especially on tools used to process medium and
medium-hard materials (reeds and fresh bone), the
polish started to develop on the higher areas of the
micro-surface and extended gradually on the lower
parts through use. Therefore, polish spots have a more
localized distribution and a lower degree of linkage
when compared to polish on flint (Figure 6).

Polish distribution, texture, and topography on chert
tools are consistent with flint (Figure 7(a–c)). However,
polish distribution on chert hide-cutting tools differs
slightly from what was observed on flint tools. Instead
of a continuous band of polish along the edge, a few
spots of moderately developed polish were documented
on protruding locations, while a light polish is more
spread along the edge (Figure 7(a)). On both rock
types, hide polish has a rough and greasy texture,
while bone and reed polishes have a smooth and matt
texture (Figure 7(b)). Deep craters in the polish, associ-
ated with hide as a contact material (Van Gijn, 1990),
were documented only on tools used to scrape hide.
Tiny pits in the polish are visible both on hide working
and bone working tools. Bone and reed polishes
mainly display a domed topography. Only on flint,
some heavily developed spots of bone and reed polish
have a flat topography (Figure 7(c)). The difference in
polishes observed on experimental chert tools is thus
quantitative rather than qualitative. Experimental
traces on chert tools can be interpreted based on the

ones observed on the flint reference collection, although
a specific chert reference collection would be preferred.

Flint – dolerite comparison
Despite their great abundance, specific studies on wear
traces on dolerite tools are rare. Dolerite, like quartzite,
is a heterogeneous rock therefore, data were interpreted
in the light of studies conducted on other heterogeneous
rocks and the few available on dolerite and basalt (e.g.
Bello-Alonso et al., 2019, 2020; Clemente Conte et al.,
2015; Clemente Conte & Gibaja Bao, 2009; Huet, 2006;
Lemorini et al., 2019; Pedergnana & Ollé, 2017). On het-
erogeneous rocks, such as dolerite, edge removals – con-
sidered indicative of the hardness of the worked material
(Tringham et al., 1974) – are less clear than on flint. When
the scars are present, their morphological characteristics
such as shape, initiation, and termination are not easily
recognizable due to surface reflectiveness, micro-topo-
graphy unevenness, and, secondarily, problems in the
depth of field (cf. Pedergnana & Ollé, 2017). Rounding
developed on the tool only after the active edge had
stabilized. Prior to that, the continuous microflaking of
the edge hindered the formation of rounding (cf. quarzite
tools, Clemente Conte & Gibaja Bao, 2009). Other exper-
iments conducted with the Dolérite du Trieux (a formation
from the North Armorican Massif, France) pointed out the
relative fragility of dolerite tools’ cutting edges. Mechan-
ical tests showed that hardness measurements are much
lower on dolerite compared to flint and quartz, which

Figure 6. Comparison between reed polish on flint (top a–b) and chert (bottom c–d) distribution and degree of linkage after 30 and
60 min of use. Magnification 200x.
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results in a rapid deterioration of the used edge (Huet,
2006) (also see SI). Regarding micro-wear, both from my
experiment and the literature (Clemente Conte et al.,
2015; Clemente Conte & Gibaja Bao, 2009), I can conclude
that polish develops on dolerite slower than on flint, and
its distribution is usually localized or restricted to small
areas since only higher reliefs of the surface are in direct
contact with processed material. The main difference
between flint and dolerite concerns hide polish (Figure 8).

On flint, hide polish is distributed in a continuous band
along the used edge. However, on dolerite tools, hide
polish developed in isolated spots, both on the crystals
and the matrix. A continuous band of light polish is
visible only on hide-scrapers (Figure 9(a)). On dolerite,
hide polish is mainly characterized by a granular texture
while on flint is mostly rough and greasy (Figure 9(b)).
Hide polish topography is flat on dolerite tools, and the
characteristic pits or deep craters observed on hide
polish on flint are absent (Figure 9(c)). On dolerite bone
working tools, polish formed only on top of crystals and
grains on the highest locations of the surface. While, on
tools used to cut reeds, the polish developed in isolated

spots on the crystals and the matrix and extends inside
the piece (Figure 9(a)). On both flint and dolerite, the
texture of both bone and reed polishes is mostly the
same (Figure 9(b)). Dolerite bone-cutting tools mainly
display no topography features since polish spots are
usually not large enough to display topographical fea-
tures. On endscrapers, a domed topography was docu-
mented. On flint, a domed topography and tiny pits are
considered characteristic of bone as contact material
(Keeley, 1980; Van Gijn, 1990). In the comparison, reed
polish displays a similar domed topography (Figure 9(c)).

The characteristics of macro and microwear traces on
dolerite tools partially overlap with those on flint. Micro
polishes develop in general slower than on flint, and
because of the irregular microtopography of the surface,
the distribution is isolated, and degree of linkage
limited. The difference in bone and reedpolishes on doler-
ite is mainly quantitative (less polish in localized areas),
while for hide polish is quantitative and qualitative (also
a different appearance). Although hide polish texture
and topography are different from flint, the invasiveness
of the polish, its location both on high and low locations

Figure 7. (a) Column charts displaying polish distribution on experimental flint and chert tools. (b) Column charts displaying polish
texture on experimental flint and chert tools. Polish texture is consistent between flint and chert. (c) Column charts displaying polish
topography on experimental flint and chert tools. On both rocks, craters occur only in hide polish, while pits on hide and bone polish.
A domed polish is characteristic of bone and reed as contact materials on both rocks. Numbers represent the sum of locations on the
tool (see Materials and Methods) where the polish characteristic was observed. Polish distribution is consistent between flint and chert
tools except for chert hide-cutting tools on which the polish has a more localized distribution.
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of the edge, and the association with rounding all point
unmistakably to soft materials processing. The greasy
appearance of some spots of polish recalls animal
materials rather than vegetal. Thus, the identification of
the type of contact material remains feasible. A flint refer-
ence collection is useful in the identification ofwear traces
on dolerite tools. However, in some cases, additional
specific experiments may be necessary for a more
confident interpretation of the worked material mainly
because of the variation of dolerite rocks composition
and grain size which can affect wear traces.

Flint – quartz comparison
Due to their differences in structure and mineralogical
composition, quartz and flint have very different
responses to mechanical stress (SI). That affects use-
wear traces formation on these rocks. The experiment
highlighted a clear difference between traces on the
quartz crystal surface and the unflaked cortical exterior.
Polishes, with very similar characteristics to flint, mostly
form on the cortex/neo-cortex (Figure 10), while the
quartz crystal surface mainly displays plastic defor-
mations, linear features, and abrasion. As reported in
the literature (Clemente Conte & Gibaja Bao, 2009;
Knutsson et al., 2015), micro-polishes occur on quartz
less frequently and much slower than on flint except
for activities involving silica-rich materials, which result

in a considerable amount of polish development. There-
fore, unlike flint, where use is predominantly identified
based on polish characteristics, the use of quartz tools
must be identified based on other evidence as well.

The main difference concerning polish distribution is
represented by hide polish. On flint, hide polish tends to
develop in a continuous band along the used edge,
while on quartz, on small and isolated spots. However,
on the cortical side of hide-cutting tools, polish distri-
bution is more continuous (Figure 11(a)). No differences
in polish texture were noticed between flint and quartz
(Figure 11(b)). Hide polish displays a rough and greasy
texture, while bone and reeds polishes are smooth and
matt. Polish topography is mainly absent, especially on
tools used to process fresh hide. A few spots of polish
on the cortical exterior of the bone-cutting tool have a
domed topography. Pits and come tails, which are
characteristics of bone as a contact material on flint
(Keeley, 1980), were documented. Reed polish topogra-
phy is domed on both rocks (Figure 11(c)).

Use-wear traces on quartz display distinctive charac-
teristics, which are hard to interpret using only a flint
comparative collection. By comparing the degree of
edge-rounding and the amount of edge damage on
quartz and flint tools, it may be possible to assess the
hardness of the worked materials (cf. Semenov, 1964).
But for a more precise interpretation of the contact

Figure 8. Comparison between fresh hide polish on flint endscraper (right, a) and flake tool (right, c) and dolerite endscraper (left, b)
and flake tool (left, d). Magnification 200x.
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materials based on quartz-specific wear traces (i.e.
abrasion and striations), separate experiments are
needed. Nevertheless, the results highlight the value of
analyzing also the cortical surface of quartz tools.
Micro-polishes that develop here are comparable with
the ones on flint tools and can aid interpretation.

Functionality

As pointed out in the results, toolsmade of different rocks
varied in effectiveness in the same activities. The recog-
nition of existing differences in tools’ efficiency may
have influenced prehistoric populations’ choices in the
selection of the raw materials for their tools. Flint and
chert tools were overall the most effective. These rocks
are easy to knap and produce implements with sharp
edges easy to shape and maintain. Dolerite unretouched
flakes were more effective than endscrapers. The pres-
ence of flakes with natural indented edges makes them
particularly suited for cutting even though these edges
became blunted soon when used to process hard

materials. The degree of effectiveness of dolerite endscra-
pers was closely related to the shape of the functional
edge. Scraper-heads were difficult to retouch and shape
precisely because dolerite, like other though and
coarse-grained rocks, is prone to crushing rather than
fracturing, making it difficult to control the direction of
the removals (Wadley & Kempson, 2011). Because of
that, dolerite may have been preferred for unmodified
tools rather than retouched ones. That is the case of
Sibudu Cave, where unretouched implements were
mostly made of dolerite, while retouched tools with horn-
fels and quartz (Wadley & Kempson, 2011). Despite their
small dimensions, quartz flakes and endscrapers were
functional in all the activities. No differences in function-
ality between unretouched and retouched tools were
observed. From good-quality blocks of quartz, it is poss-
ible to obtain tools with sharp and robust functional
edges. Quartz endscrapers proved effective even
though the obtuse angle of the scraper-heads. This was
because endscrapers remained sharp and functional
due to the slow progression of wear damage on the

Figure 9. (a) Column charts displaying polish distribution on experimental flint and dolerite tools. On dolerite tools used on hide and
reeds, the polish is mainly distributed in isolated spots, while on flint in a continuous band along the edge. (b) Column charts displaying
polish texture on experimental flint and dolerite tools. On dolerite hide-working tools, the polish has mainly a granular texture, while on
flint is rough and greasy. Polish on flint and dolerite tools used on bone and reed displays a domed topography. (c) Column charts dis-
playing polish topography on experimental flint and dolerite tools. On dolerite hide-working tools the polish has mainly a flat topogra-
phy, while on flint is either pitted or cratered. Polish topography on dolerite tools used on bone and reeds is consistent with flint.
Numbers represent the sum of locations on the tool (see Materials and Methods) where the polish characteristic was observed.
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working edge. A limitation in the use of quartz as raw
materials for tools may lie in the small dimensions of
the products due to its high fragmentation proneness
during knapping (Tallavaara et al., 2010).

Limitations and archaeological visibility of traces

My experiments showed that use-wear traces, especially
polishes, develop slower on non-flint rocks than on flint,
especially on dolerite and quartz. Hence, archaeological
non-flint tools briefly used may not display sufficiently
developed use-wear to allow a functional interpretation.

That applies particularly to dolerite and tools made
from brittle rocks in general, where the continuous crush-
ing of the active edge affects the formation and recog-
nition of use-wear traces since they are constantly
removed during use and preserved only on little spots.

Due to that, even artifacts with a long use life may
display only light evidence of use or no wear traces (cf.
Pedergnana & Ollé, 2017). For flint and chert, we can
expect traces to accumulate through use unless they are
intentionally removed by resharpening. A loss of wear
traces can happen during the processing of hard contact
materials. However, edge-damage rarely removes all the
evidence of use. For quartz, the slow formation rate of
wear tracesmay lead to amisidentification ormisinterpre-
tation of expedient tools.

In addition, my experiment showed that the edges of
dolerite tools wore down rapidly, and resharpening ses-
sions were needed to extend their use cycle. However, in
areas where lithic raw materials were abundant, flakes
may have been quickly abandoned and replaced when
dull, especially if made of non-homogeneous rocks
unsuited for retouching. That is the case, for instance

Figure 10. Comparison between polishes on experimental flint tools (a, c, e) and on the unflaked cortical exterior of experimental
quartz tools (b, d, f). (a–b) Fresh hide polish. (c–d) Fresh bone polish. (e–f) Fresh reed polish. (a, b, c, e, f) Magnification 200x. (d)
Magnification 300x.
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in New South Wales, Australia, where knappable raw
materials, like silcrete, quartz and quartzite, are locally
available. Ethnographic accounts have shown that Aus-
tralian Aboriginals prefer to replace their quartz tools
when exhausted rather than invest time in rejuvenating
them (Holdaway & Douglass, 2015). Even though reshar-
pening tends to remove traces from previous use ses-
sions, well-developed spots of use-wear may survive in
between resharpening scars (e.g. Loebel, 2013). Conver-
sely, discard of tools in an early stage of use means
traces remain poorly developed. In addition, when
used to process hard materials, dolerite and quartz
tools displays small localized areas with traces that can
be easily missed during the analysis. As already stated
in the literature (e.g. Clemente Conte et al., 2015), the
examination of wear-trace characteristics on single crys-
tals and grains within the matrix requires higher magnifi-
cations compared to flint and possibly other analytical
techniques such as SEM and digital microscopy. Thus,
the analysis of heterogenous rocks is more time consum-
ing than of flint. Furthermore, mechanical or chemical
post-depositional alterations may remove or obliterate
traces of use (Van Gijn, 1990). However, several studies

showed that quartz appears more resistant to post-
depositional modification than flint highlighting the
potential of this material in contributing to our knowl-
edge on the activities of prehistoric people (Clemente
Conte et al., 2015; Lazuén et al., 2011; Venditti et al.,
2016). Therefore, it is likely that the number of used
non-flint artifacts is underestimated. The state of preser-
vation of the material but also the mineralogical compo-
sition and mechanical proprieties of rocks featuring the
lithic assemblage are all factors that could favor the
identification of traces of use on knapped stone tools
or explain their absence, and they should be considered
by the analyst.

Conclusion

This experiment tested the possibility of using a flint
reference collection to interpret use-wear on different
rock types. Experimental wear traces on European flint
tools were compared with wear traces on chert, dolerite
and quartz. No major differences between flint and chert
were observed. Use-wear on chert can be confidently
interpreted using a reference collection of flint tools if

Figure 11. (a) Column charts displaying polish distribution on experimental flint and quartz tools. On quartz hide-working tools the
polish is mainly distributed in isolated spots, while on flint in a continuous band along the edge. (b) Column charts displaying polish
texture on experimental flint and quartz tools. Polish texture is consistent between flint and quartz tools. (c) Column charts displaying
polish topography on experimental flint and quartz tools. Polish topography is mainly absent on quartz tools except for the ones used
to cut reeds. Polish from contact with reeds displays a domed topography. Numbers represent the sum of locations on the tool (see
Materials and Methods) where the polish characteristic was observed.
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the wear traces are developed enough. Even though I
noted several differences in the distribution and charac-
teristics of wear traces between dolerite and flint, a flint
reference collection can allow a general interpretation of
the use motion and hardness of the worked material.
The precise interpretation of the contact material may
be more problematic except for dolerite tools used to
process siliceous plants. I observed strong similarities
between the use-polish on quartz cortical exterior and
flint. However, the function of quartz tools cannot be
inferred only using a flint reference collection. The
degree of edge-rounding and abrasion and the fre-
quency and distribution of edge-removals can help in
the identification of the hardness of the contact material,
but specific experiments are required for a more precise
interpretation of the worked material.

Flint and chert tools performed best in all the various
activities. The edges retained their functionality for a
longer period of use, and wear traces developed
sufficiently to allow a confident interpretation. Dolerite
unretouched tools were more effective than retouched
ones. Yet the edges of dolerite tools were the most
fragile overall. They wore and crumbled, resulting in
wear traces that were scattered and limited to isolated
spots. Quartz tools were effective and wore slower com-
pared to flint, chert and dolerite. However, the perform-
ance of quartz tools is influenced by the structure of the
block. Internal discontinuities, micro-fractures or inclusion
may lead to premature breaking of the working edge.

The direct comparison of use-wear on tools made from
different rocks allowed me to observe how traces from
the same contact material developed at different rates
based on the tool’s raw material. In addition, the obser-
vation of rock-specific mechanism of wear (e.g. continu-
ous edge-crushing on dolerite) helped explain the
limited presence or absence of wear traces on used
tools. The study shows that a partial overlap exists
between the use-wear features on European flint and
chert, dolerite, and quartz. These need to be considered
in light of the different proprieties and characteristics of
the rocks to achieve a correct functional interpretation.
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required for their transformation. The analyses will provide
elements for further discussing cultural innovations among
past hunter-gatherers.
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