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Optical coherence tomography (OCT) can be a valuable imaging tool for in vivo and label-free digital plant phe-
notyping. However, for imaging leaves, air-filled cavities limit the penetration depth and reduce the image quality.
Moreover, up to now quantification of leaf morphology with OCT has been done in one-dimensional or two-
dimensional images only, and has often been limited to relative measurements. In this paper, we demonstrate
a significant increase in OCT imaging depth and image quality by infiltrating the leaf air spaces with water. In
the obtained high-quality OCT images the top and bottom surface of the leaf are digitally segmented. Moreover,
high-quality en face images of the leaf are obtained from numerically flattened leaves. Segmentation in three-
dimensional OCT images is used to quantify the spatially resolved leaf thickness. Based on a segmented leaf image,
the refractive index of an infiltrated leaf is measured to be 1.345 ± 0.004, deviating only 1.2% from that of pure
water. Using the refractive index and a correction for refraction effects at the air-leaf interface, we quantitatively
mapped the leaf thickness. The results show that OCT is an efficient and promising technique for quantitative phe-
notyping on leaf and tissue level. © 2020 Optical Society of America under the terms of the OSA Open Access Publishing

Agreement

https://doi.org/10.1364/AO.408384

1. INTRODUCTION

With an increasing world population and growing biofuel con-
sumption, the demand for crops is expected to increase rapidly
over the coming decades [1]. Plant scientists use methods such as
crop monitoring, environment control, early disease detection,
and plant breeding to improve both the quality and quantity
of food production. Plant phenotyping, i.e., the evaluation of
the performance and appearance of a plant in its environment,
is a crucial step in the development and optimization of these
methods. Traditional phenotyping, i.e., scoring of plants by
human raters based on visual inspection, is more and more
replaced by digital phenotyping, which aims to objectively and
quickly quantify relevant plant traits at low cost [2]. Imaging
and computer vision approaches play a central role in digital
phenotyping. While many studies focus on high-throughput
phenotyping with limited resolution and dimensionality, the
long-term goal is for three-dimensional (3D) high-resolution
phenotyping for a deeper comprehension of plant phenotypes
[3]. In this paper, we show how optical coherence tomogra-
phy (OCT) can contribute to plant trait quantification in
high-resolution phenotyping.

Leaves are the plant’s organs where sunlight is captured and
carbohydrates are synthesized, making them an important
object for high-resolution plant phenotyping on organ, tissue,
and cellular scales [3]. Microscopic phenotyping of plant leaves
often needs fixation, clearing, and staining, especially when the
deeper mesophyll layer and vascular tissue are investigated [4,5].
Such extensive sample preparation not only reduces phenotyp-
ing throughput, but also makes it impossible to do longitudinal
in vivo measurements. Longitudinal measurements, i.e., follow-
ing the same tissue in time, are important to study leaf dynamics
such as leaf growth and plant interaction with the environment
[6,7].

Tomographic methods such as magnetic resonance imag-
ing (MRI) and high-resolution X-ray computed tomography
(HRXCT) are able to obtain 3D images of leaf morphology in
vivo at resolutions of typically 30 µm for MRI and 10 µm for
HRXCT [8]. The drawbacks of these computed tomographic
methods are their low speed and high cost [9], as well as the
trade-off between sample size and resolution [8].

OCT is developed for label-free in vivo imaging deep into
scattering biological tissue [10]. OCT has been used to obtain
3D images of plants with resolutions between 5 and 10µm. Due

1559-128X/20/3310304-08 Journal © 2020Optical Society of America

https://orcid.org/0000-0003-3325-1079
https://orcid.org/0000-0003-1698-7842
mailto:j.dewit-1@tudelft.nl
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://doi.org/10.1364/OA_License_v1#VOR-OA
https://doi.org/10.1364/AO.408384
https://crossmark.crossref.org/dialog/?doi=10.1364/AO.408384&amp;domain=pdf&amp;date_stamp=2020-11-16


Research Article Vol. 59, No. 33 / 20 November 2020 / Applied Optics 10305

to the combination of confocal gating and coherence gating,
multiply scattered light is largely filtered out and the penetration
depth becomes many times that of confocal microscopy. It has
been used to reveal plant anatomy [11,12], detect plant diseases
[13–17], study leaf senescence [18], and investigate root growth
dynamics [19]. Moreover, OCT is used in post-harvest quality
evaluation of agriculture produce [20].

Most OCT studies on (early) disease detection have com-
pared A-scans that were obtained by laterally averaging flattened
B-scans [13–16]. Pathogen-induced cell degradation results in
a broadening of, or a changing distance between, peaks in the
average A-scan. This has been successfully used as a bio-marker
for plant diseases. Wijesinghe et al. quantified the average thick-
ness of the palisade parenchyma layer by dividing the optical
path length (OPL) between the two peaks in the average A-scan
through an assumed leaf refractive index [14,15]. Other studies
have described changes in the average A-scan in a mere qualita-
tive way. Chow et al. used scattering intensity as a measure for
disease infection, but the values were given in arbitrary units
and are hence not transferable between setups [17]. Anna et al.
measured the attenuation coefficient of leaves as an indicator of
senescence [18]. Additionally, they calculated texture parame-
ters of gray level B-scans to quantitatively classify different stages
of senescence.

However, all these studies demonstrate two major drawbacks.
First, none of these studies were able to clearly visualize the
entire cross-section of a mature leaf, including the opposite leaf
surface, due to a limited penetration depth. Even if signals are
picked up from deeper regions, the signals that have a low signal-
to-noise ratio (SNR) are further deteriorated due to multiply
scattered photons and sample-induced aberrations. The rela-
tively low penetration depth as compared to other biological
tissues is caused by the fact that leaves contain air-filled cavities.
At these air-tissue interfaces, strong scattering and refraction
occur, giving rise to the multiply scattered signal and sample-
induced aberrations [21]. This effect can be largely reduced by
infiltrating the leaves with a liquid that has a refractive index
close to that of the leaf tissue. Infiltration of leaves with per-
fluorodecalin (PFD) has been used to enhance the resolution
and image quality in in vivo confocal microscopy [22]. PFD
has a low surface tension and thus infiltrates easily into the leaf
even under atmospheric pressure. Infiltration with PFD is done
by soaking the leaves for 5 min in the solution [23], which is
difficult to apply on leaves still on the plant. Water also can be
infiltrated into leaves by pressing the opening of a water-filled
syringe against the abaxial leaf epidermis and applying gentle
pressure, or by releasing air from leaves held underwater using
a vacuum pump allowing water to enter after the vacuum is
gently released [24]. Syringe-based water infiltration takes a few
seconds and the infiltrated leaves dry within an hour, returning
the leaf to its normal state. Moreover, water is available every-
where, significantly cheaper than PFD, and part of the natural
environment of plants. Both PFD and water are believed to have
marginal physiological effects and thus infiltration with these
liquids is feasible with in vivo imaging [22].

Second, the mentioned publications did not show quan-
tification of 3D leaf morphology and layer thickness. Current
leaf quantification often yields relative values that cannot be
translated into objective physical quantities. For example,

the measured OPL was not always transformed into physical
thickness, and if done, a literature value for water or plant cells
was used. Moreover, most quantification was based on laterally
averaged A-scans that do not capture the full 3D shape. This
is mainly because of a lack of application of advanced image
processing and segmentation.

A particular morphological feature that is of interest is leaf
thickness, which can be important, for example, to accurately
determine a plant’s biomass [25]. The current methods to
measure lateral resolved leaf thickness require extensive clearing
[5], complex and costly equipment [25], or a custom-build
complex setup [26], or give no accurate results [27]. OCT can
be an attractive alternative method to measure leaf thickness,
especially when combined with a study of the internal leaf tissue
morphology.

In this paper, we address the problems of limited penetration
depth and lack of quantification of 3D morphology in current
OCT plant imaging. First, we demonstrate that water infil-
tration successfully extends the penetration depth and gives
higher-quality images. Second, we use these higher-quality
images in combination with image processing and segmenta-
tion to quantify lateral resolved leaf thickness. Compared to
alternative methods, OCT is a simple and cost-efficient tool for
measuring lateral resolved leaf thickness.

2. METHODS

A. Experimental OCT Setup

The measurements are performed with a high-resolution
spectral-domain OCT setup (Ganymede II HR, Thorlabs,
Germany) that has a super-luminescent diode light source with
a center wavelength of 900 nm and a full width half maximum
(FWHM) bandwidth of 120 nm. The axial resolution is experi-
mentally measured to be 3.0µm in air, which corresponds to 2.2
µm in tissue. The spectrometer covers a bandwidth of 220 nm
over 2048 pixels, giving a spectral sampling resolution of 0.11
nm and an axial imaging range of 1.87 mm in air. The system
is operated with an A-scan rate of 36 kHz, enabling real-time
acquisition of B-scans and sub-minute acquisition of volume
scans. The objective lens (OCT-LK4-BB, Thorlabs, Germany)
has a working distance of 41.6 mm and a maximum lateral field
of view of 16mm× 16 mm, though in this research smaller scan
areas were used to reduce the memory usage. The lateral resolu-
tion is experimentally determined with a knife-edge imaging a
step response to have a FWHM of 6µm. The raw spectral data is
obtained with ThorImage software (version 5.2.0). The B-scans
consist of 1024 A-scan lines over a width of 3 mm in x -direction,
corresponding to a scan line every 3 µm. Every A-scan is aver-
aged eight times to improve the SNR). The 3D scans consist of
512× 512 scan lines over an area of 3× 3 mm2. The resulting
separation of 6 µm between the scan lines corresponds well to
the lateral resolution resulting in a well-sampled volume. One
of the limitations of volume OCT imaging is the size of the data
sets that are created. For the 3D acquisition with 2048 pixels
per A-scan and 2 bytes per pixel (for 12 bit numbers), the raw
spectral data has a size of 1 GB. To limit the data size, only two
averages per A-line are made, giving a raw spectral data size of
2 GB. The scan time of 512× 512× 2 A-scans is 15 s, which
gives no practical limitation for application in plant imaging.
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(b)(a)

Fig. 1. SD-OCT setup that was used for this study. (a) The setup in
action. (b) A schematic overview of the refractive index measurement.
The red dashed boxes indicate the area of the image. z0 and d are physi-
cal distances, while3 is the distance in OPL.

The raw spectral data is processed in Python 3 to obtain
high-quality images. The processing consists of subsequently
the subtraction of the reference spectrum, interpolation to an
equally spaced grid in wavenumber domain, apodization with a
Hanning window, correction for dispersion mismatch, and an
inverse discrete Fourier transform. The numerical correction for
the dispersion mismatch between the reference and sample arm
is done with a fourth-order polynomial, whose coefficients are
obtained from a reference measurement of a single reflector [28].
After processing, the A-scans belonging to the same scan line are
complex averaged to improve the SNR [29]. For segmentation,
the absolute value of the complex averaged scan lines is used
directly. For displaying in images, this amplitude is subsequently
converted to a dB scale by dividing through the maximum,
taking the 10-base logarithm, and multiplying by 20.

B. Plant Material

Measurements are taken on a fully developed leaf of a mature
four-week-old Arabidopsis plant of accession C24 [30]. The
leaf is infiltrated by pressing the mouth of a syringe to the abax-
ial side of the leaf and gently pushing the water into the leaf
until it is completely infiltrated, visible because of the induced
translucence. The infiltrated leaf dries within an hour and the
physiological effects of infiltration on the leaf are minimal. After
drying, the area of infiltration is not recognizable by the naked
eye, nor in the OCT scan. This allows for in vivo imaging of the
same area of a leaf longitudinal, i.e., at different times during
growth. The OCT measurements are taken from the adaxial
(top) side of the leaf. The leaf can remain on the plant, as the
whole plant is placed below the scan head, as shown in Fig. 1(a).
The sample is placed below the zero-delay with an extra offset to
separate the image from auto-correlation artifacts.

C. Surface Segmentation

For quantitative analysis of the morphological traits of plant
leaves, the location of the top surface and bottom surface of the
leaf are segmented.

The segmentation starts with an OCT cross-sectional image
[Fig. 2(a)], where the signal from the entire leaf is well above the
noise level. Thresholding is applied to obtain a rough segmenta-
tion of the leaf. The threshold is taken sufficiently low to capture
the weaker reflections from the bottom surface and the places

(a)

(b)

Fig. 2. Illustration of the steps in surface segmentation to obtain
leaf thickness. (a) Cross-sectional OCT image and the results of the
two steps in image segmentation. (b) Segmentations resulting from
thresholding (Mt , green), from taking a negative second derivative
(Ms , light blue) and the overlap of both (yellow). The arrows point to a
soil particle (s), side lobes of the top reflection (sl), and noise above the
threshold (n).

where the local normal of the top surface of the leaf is tilted with
respect to the optical axis. This results in the segmentation Ms ,
as shown in yellow and green in Fig. 2(b).

The segmentation by thresholding includes many high-
intensity side lobes, visible as the light green lobes on the surface
in Fig. 2(b), annotated with arrow sl. To remove these side lobes,
an additional requirement is imposed that the second-order
Gaussian derivative (σ = 3 pixels) along the axial direction
should be negative. This negative second derivative filter (Ms ,
light blue and yellow) effectively acts as a local maximum filter,
discarding the band before the peak positions of the top and bot-
tom surface. It successfully removes the side lobes and increases
the accuracy of the segmentation of mainly the top surface.

Subsequently, the first and last non zero pixels for each A-scan
in this segmentation are taken as the first estimates for the top
and bottom surface, respectively, indicated with the red line in
Fig. 2(a). Higher-intensity noise (indicated with n) and struc-
tures like leaf hairs or small soil particles (indicated with s) result
in outliers in these first surface estimates. To remove the outliers
a median filter is applied with a 7 pixel radius circular footprint.
After median filtering, the bottom surface is smoothed by a
Gaussian kernel with a sigma of five pixels. These filters result in
a smooth and accurate segmentation for the top and bottom sur-
face, as indicated by the white dashed line. Implemented with
Python operating in Spyder on a desktop (Intel Xeon W-2223
CPU), the surface segmentation of the 512× 512 scan lines
volume took 24 s, of which 15 s were spent on calculating the
Gaussian derivative filtered image.

D. Leaf Refractive Index Measurement

OCT measures axial distances in optical path length (OPL).
Conversion between the OPL and the depth is done by dividing
through the refractive index of the medium, in this case, the
refractive index of infiltrated leaf tissue.



Research Article Vol. 59, No. 33 / 20 November 2020 / Applied Optics 10307

We quantify the refractive index of an infiltrated leaf with a
method similar to the in vitro method of Tearney et al. [31]. A
water-filled cuvette is imaged twice: first with the leaf placed in
a cuvette close to the back surface, then after the leaf is removed
while the probe and cuvette remain in their position, as shown
in Fig. 1(b). The displacement of the wall of the cuvette between
the two OCT images is equal to the difference in the OPL
between light going through the leaf tissue and light going
through water. The relative difference of the refractive index can
be calculated for each lateral position with

nl − nw
nw

=
13

3l −13
, (1)

where nl and nw are the refractive indices of respectively an
infiltrated leaf and water, respectively;3l is the thickness of the
leaf in OPL; and 13 is the displacement of the cuvette wall
in OPL, as indicated in Fig. 1(b). Although this method does
not account for refraction at the leaf surface, the resulting error
will be insignificant as the difference in the refractive index is
expected to be small. For fully automated refractive index mea-
surement, both the leaf and cuvette surface are segmented.3l is
obtained from the surface segmentation, as described in Section
C. The location of the cuvette wall is obtained for each A-scan
by fitting a Gaussian to a manually selected 100 µm wide axial
region around the cuvette wall. The obtained peak locations are
subsequently median filtered with a 25 pixel window to remove
outliers, and then Gaussian filtered with a sigma of 15 pixels to
obtain a smooth curve. For each lateral position equation Eq. (1)
is evaluated. The final refractive index is obtained by averaging
over all lateral positions.

E. Leaf Thickness Measurement

For each lateral position, the distance in the OPL between the
top and bottom surface is divided by nl to obtain the physical
distance l between the top and bottom surface. This distance l
is measured along the beam path; thus it will be larger than the
leaf thickness d for an oblique leaf surface, as indicated in Fig.
3. Taking refraction into account and assuming that the leaf can
locally be considered as having two parallel surfaces, the true leaf
thickness d can be obtained with

d = l

√
1−

(
sin θi

nl

)2

, (2)

where d is the local thickness measured perpendicular to the top
surface, l is the local thickness measured as the distance in the
A-scan between the top and bottom reflection, θi is the angle
of the leaf surface with respect to the optical axis, and nl is the
leaf refractive index, as shown in Fig. 3(a). Figure 3(b) shows
the values of the correction factor d/l for incident angles up
to 45o. The local θi is calculated by taking the inverse tangent
of the Gaussian gradient magnitude of the top surface with a
sigma of 10 pixels (60 µm). The leaf thickness d is calculated
with Eq. (2).

F. En face OCT Images

With the segmented top surface en face images at a fixed depth
below the top surface are made. The leaf in the C-scan is

(a) (b)

Fig. 3. (a) Geometry and parameters for calculating the correction
factor. The scan beam falls in the vertical direction and the leaf is
tilted with an angle θi with respect to the horizontal. x and z are the
horizontal and vertical coordinates in the images, respectively. (b) The
correction factors for leaf tilting angles θi between 0◦ and 45◦, using
nl = 1.345.

numerically flattened by shifting the leaf top surface to the
first pixel for each A-scan. From each depth of interest, a slice
in the transverse direction is taken and displayed as an en face
image. The reference intensity for conversion to the dB scale is
the maximum value of the entire data set.

3. RESULTS

A. Result of Leaf Infiltration on the OCT Imaging
Depth

Figure 4 shows an image of the same leaf before and after infiltra-
tion. The images are not taken from exactly the same position as
the plant moved during infiltration. In both images, the adaxial
epidermal cells are clearly visible, as are the mesophyll cells just
below the epidermal cells. At some places, the strong reflections
from the air-leaf interface give side lobes that partly obscure
the epidermal cells. Without infiltration, the image gets blurry
after penetration of about 100 µm OPL. As this leaf is relatively
thin, the abaxial side can be seen from a drop of intensity after
about 200 µm OPL, but the transition is rather vague and its
location far from precise. Moreover, the B-scan area crosses the
midrib around the center of the image, but this is not visible in
the image.

The relatively poor image quality in the deeper regions of
the non-infiltrated leaf can be understood from the presence
of air-filled cavities that the plant uses for gas exchange. These
cavities with a refractive index that is much lower than that of
leaf tissue cause aberrations and refraction of the beam such that
the back-reflected signals are disturbed and, if collected, mapped
to the wrong location. The many air-tissue interfaces also cause
a lot of multiple scattering, which further decreases the visibility
of deeper-lying structures in the leaf. Multiple scattering also
gives rise to the haze, visible at the bottom of the leaf, which
corresponds to the longer path lengths of multiply scattered
light [32]. This further obscures the abaxial leaf surface in the
image.

Filling these cavities with water by infiltrating the leaves
makes them much more transparent to the OCT signal, thereby
reducing sample-induced aberrations and multiple scattering.
In Fig. 4(b), cells are visible in the deeper regions of the cell, and
also the vascular tissue in the midrib can be clearly distinguished.
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(a)

(b)

Fig. 4. B-scan images of the central part of an Arabidopsis leaf. (a)
An image before infiltration and (b) an image after infiltration. The
scan area of (a) crosses the midrib about halfway in the image. In (b)
the midrib and vascular tissue are clearly visible. In contrast to (a),
the abaxial side of the leaf is clearly visible in (b). e, epidermal cell; m,
mesophyll cell; vb, vascular bundle; mr, midrib; ad, adaxial side; ab,
abaxial side.

The clearest difference between the images is that with infiltra-
tion the abaxial side of the leaf is clearly and accurately imaged.
Moreover, the shape of the midrib on the abaxial side can be
clearly distinguished. The comparison of these images shows
the huge benefit of infiltration for OCT imaging of plant leaves,
making it possible to clearly image the full cross-section of the
leaf in vivo, and also quantifying leaf thickness as a function of
lateral position. We will explore the latter in the next subsection.

B. Leaf Refractive Index Measurement

Figures 5(a) and 5(b) show a B-scan of a water-filled cuvette
with and without an infiltrated leaf. The white arrows point to
an auto-correlation artifact of the cuvette wall, which is suffi-
ciently separated from the relevant features to enable accurate
segmentation. The vertical stripes in the images are probably
caused by aliasing of reflections of a surface of the cuvette out-
side the axial range. These artifacts, however, do not cause any
problems in the segmentation as their intensity is well below
the intensity of the leaf and the cuvette wall. The segmented
leaf and cuvette surface are indicated with a white and a red
dashed line, respectively. The average difference in the OPL
of the cuvette 13= 2 µm, which corresponds to one pixel.
For each lateral position equation, Eq. (1) is evaluated and the
result of it plotted in Fig. 5(c). The average relative difference
in the refractive index between infiltrated leaf tissue and water
is 1.2%. This relative difference is small enough to justify the
neglect of refraction at the leaf surface. Using the literature
value nw = 1.329 at the center wavelength of the OCT setup
(λc = 900 mm) [33], we obtain a refractive index for infiltrated
leaf tissue of nl = 1.345± 0.004. The variation in the measured
refractive index is caused by a combination of uncertainty in
both measurement and segmentation, and the natural variation
of leaf tissue.

(a)

(b)

(c)

Fig. 5. (a) B-scan image of an infiltrated leaf in a cuvette and (b)
the image after the leaf has been removed while the setup and cuvette
remained untouched. From the segmentation of the leaf surface and
the cuvette surface, the relative refractive index difference is calculated
per lateral position using Eq. (1) and plotted in (c). The mean relative
difference 1n/nw is indicated by the red dashed line, and the green
dashed lines indicate the single standard deviation borders.

C. Leaf Thickness

The leaf thickness is determined for a section of the leaf around
the midrib, indicated with the red box in Fig. 6(a). Figure 6(b)
shows the segmented top and bottom surface in 3D. The midrib
is clearly visible in the segmentation of the bottom surface. The
peak at the right side is an artifact caused by the presence of a
trichome (a leaf hair). The correction factor d/l as defined by
Eq. (2) is evaluated and visualized in Fig. 6(c). For the major
part of the surface, this factor is close to 1; at the lower half of the
image, it decreases to values down to 0.93 due to the slope of the
surface. Around the leaf hair, the gradient magnitude becomes
much larger, resulting in local correction factors up to 0.83.
From the segmentation, the correction factor, and the measured
refractive index nl = 1.345, the lateral resolved leaf thickness
is determined and visualized in Fig. 6(d). The midrib is clearly
visible due to its large thickness ranging from 260 µm at the
right to 366µm at the left of the image. Moreover, the veins can
be distinguished with a thickness of around 180 µm, while the
lamina or leaf blade has a thickness varying between 110µm and
150 µm. Two artifacts, caused by a soil particle and a leaf hair,
are indicated with arrows.

D. En Face Images

Using the surface segmentation, en face images are obtained at
different depths with respect to the top surface of the leaf. This
is shown in the single OCT cross-section in Fig. 7(a), with the
lines indicating the depths in the OPL of the en face images
(b–f ). In the cross-sectional image, the vascular bundle inside
the midrib is clearly visible and has a diameter of about 120µm.

The first layer [Fig. 7(b)] corresponds to the cuticle and the
top of the epidermal cells. The air-tissue interface gives strong
reflections, resulting in high intensities in this image. The struc-
ture in the image is an indication of the local orientation of the
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(a)

(c) (d)

(b)

Fig. 6. (a) RGB image with the scan region indicated by the red
box. (b) The segmented top and bottom surface. (c) The correction
factor for tilted surfaces taking refraction into account. (d) The lateral
resolved leaf thickness assuming nl = 1.345. The arrows indicate small
artifacts in the segmentation due to a soil particle (s) and a leaf hair (h).
The leaf hair is visible as the peak on the right side of (b).

leaf surface. A surface normal along the axis of the OCT beam
gives a high-intensity signal back on the detector. The reflected
intensity decreases with an increasing angle. The bottom 0.5
mm area has a lower average intensity as the leaf surface is sloped
downward there. In the right bottom, a leaf hair is visible, which
caused an artifact in the top surface segmentation. Figure 7(c)
is located at the epidermal layer, and indeed many epidermal
cells can be distinguished, and are better visible in the inset. The
typical width of the lobes of the cells is 40 to 50µm. Two bright
dots contain the high-intensity reflections from grains of soil,
and also the leaf hair is still visible. The epidermal cells are less
well visible in the lower part, probably due to the sloped surface.
Figure 7(d) shows the palisade mesophyll layer, and has a dis-
tinctly different texture than the epidermal layer. The lateral size
of the cells is smaller, typical 20–30 µm, giving a finer texture.
This layer has a more open structure at the midrib and also at
some of the larger veins. When we go deeper to 117 µm (OPL)
into the leaf, the vascular bundles can be seen in the midrib and
the veins. The location of these vascular bundles corresponds
well with the location of veins in Fig. 6(d). The mesophyll cells
in the lamina areas look slightly more open than those in Figure
7(d). This indicates that this slice is indeed through the spongy
mesophyll with many cavities for gas exchange, and that the
one in (d) is located in the palisade mesophyll layer. The cavities
have an irregular structure, but the width along their smallest
dimension is typically 50–70 µm, and up to 90 µm close to the
midrib. When taking a slice below the bottom surface of the
lamina regions, the veins and the thicker leaf at the edges of the
midrib are clearly visible. The signal at the right bottom is due to
a locally thicker surface, as can be seen in Fig. 6(b). Cross-section

(a) (b)

(c) (d)

(e) (f)

Fig. 7. En face images of the leaf at a fixed distance in OPL from the
adaxial surface, generated from the same data that is used in Fig. 6. The
lines in (a) indicate the depth of the images in (b)–(f ). (b) OCT surface
intensity showing the cuticle and the top surface of the epidermal cells.
The white dashed line indicates the location of the cross-section (a). (c)
The image at 16 µm depth, which is located in the epidermal layer. (d)
The image at 73 µm depth, which is located in the palisade mesophyll
layer. (e) The image at 117 µm, showing the vascular bundles of the
midrib and veins, and the spongy mesophyll layer between the veins.
Several vascular bundles are annotated. (f ) The image at 238 µm,
which is below the leaf at the lamina or leaf blade, while it still contains
tissue around the midrib and leaf veins. All images are plotted on a scale
between 0 and−65 dB, where 0 refers to the maximum value in the 3D
data set. The distance from the surface and z in (a) are given in OPL. e,
epidermal cell; h, leaf hair; s, soil particle; vb, vascular bundle; v, vein.

images show that this thickening appears at both the top and
the bottom, which may be related to the leaf hair that is in its
vicinity.

4. DISCUSSION

This work presents water infiltration as a method to increase the
OCT imaging depth and image quality of plant leaves. In addi-
tion, we show quantification of the refractive index of leaves and
the lateral resolved leaf thickness.

The key advantages of OCT for quantifying lateral resolved
leaf thickness are that it is fast, minimally invasive, and com-
patible with label-free in vivo imaging, and that it gives leaf
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thickness and internal leaf morphology at once at a relatively low
cost using commercially available systems. The results presented
in this paper show that OCT can be successfully used to quantify
spatially resolved leaf thickness and that it provides further
insight into the underlying leaf morphology.

A disadvantage of our method is that infiltration locally
changes the leaf environment. As water is added to the leaf, this
method may be less suitable for longitudinal drought monitor-
ing studies. However, when the time between measurements is
longer than the drying time of the leaf, the physiological effects
of infiltration will probably be limited. Based on the presented
results, it cannot be excluded that infiltration has any effect on
the leaf thickness. However, this effect will be less than with
optical clearing and the same for different plants or leaf areas.
Therefore, it will barely limit the applicability for plant studies.
Syringe infiltration sometimes bruises the leaf on the small
ring where the syringe mouth is pressed on the leaf. This can be
avoided by using a vacuum pump or PFD infiltration, which is
expected to give similar imaging results.

Sample-induced beam deviation and systematic errors in the
segmentation may be a source for systematic errors or inaccuracy
of the leaf thickness measurement. Therefore, the proposed
method to compensate for beam refraction is essential to obtain
an accurate result with an oblique leaf surface. Even with this
method, the limited axial imaging range and the possibility of
image warping still require the orientation of the leaves to be as
close to horizontal as possible.

The accuracy of the leaf thickness quantification depends
on the quality of the surface segmentation. In this work, we
present a simple but robust segmentation method that gives
good results, excluding side lobes at the top surface that would
otherwise have caused a systematic error toward a thicker sur-
face. Structures on the surface, like leaf hairs, cause errors in the
segmentation. These artifacts can be removed by more aggres-
sive filtering, at the expense of losing spatial detail. Smaller leaf
hairs, of plants such as tomato or lettuce, will be largely filtered
out by the proposed median filter. Moreover, leaf hairs can be a
relevant feature of a plant’s phenotype, and OCT is very suitable
to quantify both their surface density and 3D shape. The speed
and accuracy of the segmentation may be improved by applying
more advanced segmentation methods, for example, those based
on deep learning.

Our approach can also be applied to other plant species with
different leaf sizes. Using syringe infiltration, we successfully
imaged full cross-sections, including the bottom surface, of let-
tuce, tomato, dandelion and ribwort plantain leaves. However,
plant leaves with many fibers, such as willow or reed leaves, were
difficult to infiltrate with a syringe. Moreover, the attenuation of
these leaves is higher. Therefore, our method worked less well for
such leaves. We obtained the best imaging results with fresh and
green leaves, where we were able to image full cross-sections for
leaf thicknesses up to 350µm.

For very thick or highly scattering leaves, infiltration may
not give enough of an increase in penetration depth to accu-
rately image the other side of the leaf. The penetration depth
can be increased by using an OCT system with a larger cen-
ter wavelength, at the expense of a lower imaging resolution.
Dual-side view OCT (DSV-OCT) can be used to measure the
lateral resolved thickness of opaque objects, and thus even of

non-infiltrated leaves [34]. Compared to the dual confocal laser
profiler [26], DSV-OCT also gives an image of the internal leaf
morphology by fusing the images from both sides. However, it
has the same disadvantages as the dual confocal laser profiler,
namely, it is a custom-build, complex setup and needs close
access to both sides of the leaf.

Our OCT images have the potential for quantifying many
more morphological features, such as individual cells and vas-
cular bundles. Segmentation methods to extract such features
from 3D confocal microscopy images [35–37] can be adapted
for use on OCT plant images. This may enable further quan-
tification of plant leaf morphology and dynamics. Moreover,
our leaf thickness measurements can be applied to larger-scale
plant studies. Those studies include imaging on whole leaves
and comparing leaf thickness of different varieties, and longitu-
dinal studies on the development of leaf thickness during plant
growth. Hence, we foresee a great potential of our technique for
quantification of 3D leaf morphology in digital phenotyping.

5. CONCLUSION

With this work, we show that water infiltration of plant leaves
significantly improves the penetration depth and image quality
for OCT plant imaging. With water infiltration, we imaged
entire cross-sections of plant leaves, measured their refrac-
tive index, and successfully quantified the lateral resolved leaf
thickness with high accuracy.

Data Availability.
Data sets and analysis code is available at the Zenodo repository,
accessible via the DOI: 10.5281/zenodo.4059559.
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