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Abstract: The contribution described in this paper is concentrated on the integration of exhaust gas
recirculation (EGR) system into the process of combustion in an optimal manner. In practice, deriving a
state-space model of this actuator is an energetic task as a result of involving some uncertain chemical
reactions. To alleviate the effect of unobserved phenomena, which does not seem to be easy in modeling,
an improved Gaussian Process (GP) is represented for identifying such dynamics. In this approach,
practical modification in general formulation of GP is provided based on proportional feedback gain
adjustment. Afterwards, the obtained model is considered for design of optimal model-based control
strategy. The whole aim is focused on achieving a green economically gasoline engine by optimizing the
trend of fuel consumption. Eventually, simulation results illustrate the effectiveness of proposed structure

in EGR systems.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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In recent years, Engine manufacturers and suppliers are ob-
jected to satisfy environmental regulation and customer require-
ments in attaining ultra-low emission vehicles with higher fuel
efficiency, and improved drivability. As a consequence, a great
advancement towards the structure of modern ICE engine has
been made which incorporates additional devices like intake
boosting, exhaust gas recirculation (EGR), and variable valve
actuation. These developments would possess a superiority in
providing an accurate observation of system while an inferiority
can appear in an aspect of increasing the system complexity in
comparison with traditional engines. As a result, the traditional
approaches come up with providing engine calibration maps
based on experimentally obtained lookup tables, are rendered
incompetent due to a large number of tables associated with
any individual control actuator. Among these subsystems, EGR
process has shown to have a potential influence on the term of
produced emission and fuel economy and great attraction has
been provided in recent studies as in (Panni et al. (2014)).

To be able to improve the introduced goals in the newly de-
signed engine which has evolved into an extremely non-linear
coupled MIMO system, several possible methodologies can be
proposed like: restating the combustion concepts, developing
the system of fuel injection, making an advantage of new ma-
terials, or enhancing engine control system. The field of engine
control is mostly predominant in early studies due to its flex-
ibility in design and reliability in fabrication/implementation.
One of the primary works reported in the literature on the
principle of recirculating the exhaust gas in SI engines can be
traced in (Stefanopoulou and Kolmanovsky (1999)) where the
nonlinear behavior of an EGR system was analyzed. Afterward,
(Laghrouche et al. (2010)) addressed a sophisticated overview
of physical modeling and identification of this recirculation

process. These advancements in the identification of EGR loop
contributes more, on the possibility of improving the control
structure as in (Feru et al. (2012)). In contrast to these amount
of works in relation to derive a mathematical formulation for
its system dynamics, some unobservable phenomena that are
not well understood or hard to model, would be problematic.
Here, as an alternative way of modeling the complex behavior
of the system, machine learning methods are mostly preferred.

To the best of the authors’ knowledge, Gaussian Processes
(GPs) are pointed out as a powerful modeling framework due to
their systematic incorporation in the modeling uncertainty exist
in predictions.However, the concept of system identification is
not thoroughly incorporated with the advantage of GPs due to
some limitations, yet it has actualized some astonishing results
in literature where traditional approaches have struggled or
failed. This point can be preserved by considering (Ko et al.
(2007)) where the dynamics of autonomous blimp are acquired
based on learning control policy and GPs. Within the assist
of information regards to system dynamics, model-based con-
trollers are then considered more reliable than the decentral-
ized controllers in terms of numerous advantages mainly in
tracking accuracy and possibility of compliance (de la Cruz
et al. (2012)). Predictive control stands out in these categories
due to its better robustness in adapting well to disturbance or
nonlinearities, as a result of moving horizon scheme.

In this note, the EGR system within the process of combustion
is identified by Gaussian Process framework and the model is
then exploited with model predictive control to enhance the
engine performance in both terms of exhaust emissions and fuel
consumption. The main contribution of this study compared
with other methods applied to torque control of SI engines is
the fact that take an advantage of online learning policy, makes
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Fig. 1. Schematic description of the gasoline engine used for
the study.

the design structure highly adaptive against system parameters
variations in SI engines. Afterward, a simple and practical
methodology to compensate the effect of offset error in the
scheme of model approximation is also proposed to develop
the GPs framework mainly in term of prediction error. The
proposed modification is promising when the results show
comparable improvement in comparison with Sparse Online
Gaussian Processes in both terms of efficiency and complexity.
Finally, the designed scheme provides feasible performance
against any variation of torque/speed operation point in term
of system constraints: engine knock and misfire, which makes
the engine works in its safe operational condition.

In the remainder of paper, section 1 presents a brief description
of SI engines and addresses the primary problem. Section 2
provides the basic theory beyond the Gaussian Process as
well as its modification in the case of modeling the system’s
behavior. Afterwards, section 3 represents the designed control
structures and consequently, the evaluated results are shown and
compared in section 4. Eventually, conclusions are summarized
in section 5.

1. PROBLEM FORMULATION

In this section, a brief description of the general behavior of
gasoline engines shown in Fig 1 is provided. The main working
principle of these classical engines is associated with three
parameters: intake manifold, ignition timing, exhaust manifold.
In the concept of controlling SI engines, two primary objectives
are always investigated: reduction in produced emission, and
efficient fuel consumption. These goals are indeed functional-
ized with the mentioned parameters e.g. the rate of fuel effi-
ciency is highly affected by the way of integrating the exhaust
manifold into the process of combustion. In general, the system
dynamics can be summarized as S in below:

dx(t) _
B9 = fn,u)
S'{y(‘?’) = $() M

where, u € R™, x e R™, and y € R™ are system input, state,
and output vectors, respectively. According to the principle
of combustion, the control inputs are: the throttle valve xrg,
the spark advance xgs4, and the exhaust gas recirculation valve
XEGR- S0, the vector of inputs can be rewritten as:

’

u=[xrg xsa XeGrl

Likewise, the accessible outputs are represented in y:

y=I[t h qy]
where 7 is the produced engine torque in [Nm], & provides
information about the occurrence of knock and misfire and g is

’
>
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the current fuel consumption in [Kg/s]. The primary objective is
to minimize the following cost function towards the predefined
conditions

Iy
Jy.ref) = f 15 (1) + exlrat) = Trea(DP @
ts
s.t. x=f(x,u)
y=g(x)
h(x,u) <0

Umin < U < Umax

which contains the total fuel consumption and torque tracking
error over a whole engine cycle. The corresponding optimiza-
tion problem can be restated in (3):

min J(y,ref)

s.t. h(x,u) <0 3)
uelU

Note that the saturation bounds on the control # have been taken
into account explicitly by adding them on the output of the each
control variable and u is a convex subset of R”. In this paper,
we consider the following problem.

Problem 1. Consider the dynamic behavior of engine in (1),
measurable system parameters: u, y. Derive efficient control
laws with special attention on EGR system for minimizing
the introduced objective function (2) over a desired torque
profile T4, constant engine speed i and keeping the rate of
knocking and misfiring below zero in order to satisfy the system
constraints h(x,u).

2. MODEL DERIVATION WITH GAUSSIAN PROCESSES

In the following, the exhaust gas recirculation process is ap-
proximated by using GPR framework. In what follows, the
design of GPR algorithm in our desired application is first intro-
duced. Meanwhile, GP’s performance is boosted by presenting
an adaptive modification parameter. Eventually, the task of find-
ing a good approximation for system dynamics is accomplished
by introducing two common choices of Kernel Function.

2.1 Bayesian System Identification

Bayesian system identification techniques stand out within the
field of system identification due to their ability to assess the
appearance of uncertainty in the system’s dynamics. The gen-
eral discrete-time model used in Bayesian system identification
is stated as in (8)
Xper1 = W(Xg, Ug) + Og, (4a)
Vi = 2(xk) + & (4b)
where x; € R™ denotes the states variables as all features of the
system that affects its future, y; € R denotes state observations
known as output vectors, d; and &; shall be considered an inde-
pendent additive noise: A (0,0'2), on process and observation,
respectively. Functions w and z represent the relation between
the system dynamics and accordingly with the system’s ob-
served output Rasmussen and Williams (2006).

2.2 Gaussian Process Regression
Gaussian Processes, that are considered as stochastic processes,

have shown great performance for the purposes of nonlinear
regression. To this effect, Gaussian Process Regression known
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as GPR is a global supervised learning method that allows us
to formulate a Bayesian framework with the aim of regression.
Generally speaking, we know that each collection of random
variables, which possess a joint Gaussian distribution, is a
Gaussian process. Under this condition, GPR is able to find the
mapping function w € R which interprets the relation between
inputs X and corresponding target output ), and can be formu-
lated as

YV ~GPO,KX,X)+021,), (3)

where o-ﬁ is the noise variance, I, is the identity matrix of the
size nXn , and K(X, X) is the covariance matrix. The covariance
matrix consists of covariance k(x, x") value associates with each
set of training points. The mean function is often considered
zero for notational simplicity.

From a practical point of view, training data set D = {X,Y},
composed of n observations with a period of Af, needs a
special attention. The remarkable point is that the trend of
fuel consumption is highly dependent on Xggr, value of EGR
valve, while the tracking error is mostly related to AXggg, =
XeGr, — XEGR,_,» the variation of EGR valve at each sample
time. This observation provides a unique mapping function
in different operational regions. Note that, data sampling time
should be equivalent to the controller sampling interval that will
be introduced in the subsequent section. So, we have

T

Y= [Tk—nAt o ThoAr Tk] (6a)
T

X< XEGR_ne * XEGRi_n, XEGR, (6b)
AXEGRp * AXEGR,_ 5 AXEGR|

Now, the problem is to find a prediction function w* over a
given new input x*. According to GP prior, the joint distribution
of observed values and the predicted function can be observed

Y ( KX, X)+ 02, k(X,x") )
SR AR et |
The conditional distribution of w* at any new input location x*
is given by

V) = k(x*, X)(K (X, X) + a,%ln)_l Y (8a)
a2 (W) = k(x*, x")—
k(" X)(K (X, X) + (751,,)_] (X, x%). (8b)

In our application, demand for a precise model of the EGR
system makes us improve the performance of GPR framework.
A simple manipulation in the form of an observation could be
considered by finding a adaptive coefficient in order to adjust
the offset of output as in (8b):

Xiea1 = UW(Xg, U) + O 9

In this case, a proportional feedback gain « is provided to
eliminate the effect of offset error which is calculated iteratively
based on data observed by actual system and GPR framework.
The formulation can be viewed as:

@k = QuAYi(QuQly) ™" (10)

Here, Q. = [%%] is the weighting matrix, helps us to

compute a custom average over past horizon N. AY denotes
the fraction of real engine output and predicted value over last
N observations. For clarification, it can be restated as below:
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(11)

— oo yooo
AYk — |:Aik—N)*At A(k—N+l)*At .

T
Y- 1)#Ar
Y=Nysat 2 G—N+1)sAt

y(*k—l)*At

This manipulation can also be generalized in other applications
when a stationary variation between the identified model and
actual system can be calibrated by simple proportional feed-
back gain adjustment.

2.3 Kernel Functions

The principal function provided in GPR framework is covari-
ance function that let us to know the prediction probabil-
ity of input x*. To this end, two common choices: squared-
exponential (SE) and Matern (M) function are considered and
analyzed, aim to minimize prediction error and maximize the
probability of predicted value. SE kernel function is one widely
used covariance function describes by:

r2

—), 12
o7 (12)
where [ is characteristic length-scale, and r denotes the Eu-
clidean distance of samples. Another class of kernel function
known as a Matern covariance function can be formulated as:
21V A2y \2vr
(=) &(——)

kp(r) = ™) ]

ksg(r) =exp(-

7 13)

Here, v, r, and [ are corresponding hyperparameters associated
with Matern covariance function. The K, is a modified Bessel
function. In Gaussian Process framework, model selection in
the functional form of covariance function is integrated with the
optimization of their hyperparameters. The learning process of
these parameters is performed by maximizing the log-marginal
likelihood by taking an advantage of optimization procedures
like gradient-based methods. Note that, these parameters are
learned off-line while the training data are updated at each
sampling time.

3. CONTROLLER DESIGN

In what follows, we aim to derive an efficient control law to
effectively regulate EGR actuator based on the observed system
dynamics in previous section. To this end, the structure depicted
in Fig 2 is employed in this study. The notation s, d, and r
denote the set point, desired, and real variables, respectively.
This scheme considers Fractional PID controller with a sub-
optimal set of linear mapping functions M (7) for adjusting the
throttle valve and spark advance that can be briefly expressed
as:

Xrn = Aruta+ Bru

M(T):{XSA = AgATd+B_,gA (14)
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Here, Ay, Bry, ACS 4> and B’S 4 are associated scaling param-
eters. Extensive description regards to the set of M(7) is pre-
sented in (Zarghami et al. (2016)). To the best of the authors’
knowledge, a nonlinear mapping function for throttle valve and
spark advance has been also provided in literature while the
idea beyond the use of this representation is to simplify the
problem and illustrate how EGR system can affect the process
of combustion when it can be well regulated. For this aim, Non-
linear Model Predictive Control (NMPC) based on the model
obtained by GPR is presented.

3.1 Fractional PID Controller

The generalized form of Fractional PID controller is obtained
by substituting s in Laplace domain with fractional powers.
This manipulation can be appeared as:

C(s):Kp+%+KDs” (15)
The ability to indicate fractional powers (4 and ) for the inte-
gral and derivative parts, respectively, makes a better flexibility
in scaling the control actuators. Note that, the parameters in our
structure (4, u, Kp, K;, Kp) are tuned by employing Genetic
Algorithm. Regards to the frequency analysis of fractional con-
troller, a vivid description is provided in (Lanusse et al. (2014)).

3.2 Nonlinear Predictive Control

Model Predictive Control (MPC), which is also identified as
Receding Horizon Control denotes a class of algorithms that
compute an optimal sequence of policies in order to enhance the
future behavior of a plant. In Fig. 2, GP is considered for obtain-
ing the actual and desired value of EGR valve. This scheme em-
ploys a classical NMPC algorithm to achieve optimum control
effort with respect to the predicted future behavior of the system
as well as satisfying the system constraints and achieve the best
objective value introduced in (2). This process is carried out by
minimizing the common choice of cost function as below:

Ny
Jumpe(k) = Zl | $(k + jlk) — r(k+ j) IIZJJ.
j=
+ || Auk+ j— 11k) |1 .
J

(16)

where N, is the prediction horizon and r(k + j) is the set-
point which indicates the position of EGR valve at interval
(k+ j). The other indexes: y(k + jlk) and Au(k + j— 1]|k) are the
predicted output at instant k + j and the optimized value for
the incremental control at k + j— 1, respectively, calculated at
time k, by employing the model composed by equations (9).
The weighting matrices: Q; and R; are symmetric and both are
positive defined with proper dimensions.

Now, the control law is given by minimizing cost function (16)
in association with the control moves, that is:

min Jumpe(k
Au() Au(k+ 1), Au(k+Na—1) P (k) a7

subject to

(18)

Where N, is the control horizon. At each sampling instant &,
the optimal control sequence is yielded as the vector Au by
optimizing the cost function. The first element of this sequence
is applied to the system to compute the control input as u,, (k) =

Uiy < Wn(k+10) < Upp,
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um(k — 1) + Auj, (k) as well as the input constraints here are
considered as actuator limitation.

4. SIMULATION STUDIES

Sets of numerical tests are provided to evaluate the general
behavior of presented structure as in three parts. First, the re-
sults of model derivation with GP’s framework is represented
in both conventional and modified mode. At its next stage,
the designed control scheme is implemented on a high-fidelity
Matlab/Simulink® model, which has been developed by Toyota
as a benchmark for the JSAE-SICE “near boundary control
benchmark problem” (Watanabe and Ohata (2014)). This model
is able to evaluate the combustion and determine the possibility
of occurring knock or misfire under the operating conditions.
Finally, the optimality of control structure in EGR actuator is
analyzed and compare through several possible methodologies.
In all following simulations, the first five seconds are elimi-
nated, due to effects in the model during startup and initializa-
tion.

4.1 Model Validation

The primary step of our simulations relies on acquiring a
reliable model of system. To this end, the GP model is validated
under the introduced covariance functions as long as being
compared with Modified GP (MGP) framework. To analyze
each modeling profile, we introduce the predicted output error
defined by e(?) = y(t) —ygp(t), t € [t,,t¢], where this range
is large enough to test the model under different conditions.
The observed value for prediction uncertainty is shown by o>
during the whole cycle. Other two quantitative indexes: ||em||§ =

ﬁ ftzf e2(f)dt , and o-,zn = rf;—zé ftjf o(t)dt calculate the mean
value of previously mentioned indexes over an entire operating
cycle. Table 1 contains the tracking error and correspondence
uncertainty for the conventional and modified Gaussian Process
based on different covariance functions. The computational
effort in identifying different GP models listed in the following

table shown by T'.

The result obtained here illustrates that squared-exponential co-
variance function presents better performance within the struc-
ture of GP algorithm. In addition, the logical error reduction
indicates that estimated coeflicient is effective in dealing with
offset error and improve the general performance of GP algo-
rithm considerably. The maximum amplitude and average pre-
diction error of squared-exponential covariance function have
experienced a noticeable reduction by the amount of 23.1% and
38.5%, respectively. Based on this evaluation, Kgg is elected
as GP kernel function in any later simulations. Finally, Fig. 3
shows the MGP performance under the engine complete cy-
cle. One can propose that exploiting Sparse Online Gaussian

Table 1. Study results towards conventional and

modified GP
Methods

Index GP-SE  GP-Matern MGP-SE =~ MGP-Matern ~ SOGP
lemaxl  15.389 15.531 11.833 13.979 14.421
lewl?  2.586 3.123 1.589 1.717 2.519
e 44327 668.7 - - 192.86

a2, 269.32 271.85 - - 44.78
T(ms) 40 42 - - 58




3754

Engine Torque

—_— GP
Modified GP
= = = Simulator

150f

Prediction Error
20 T

60
Time(s)

100 120

Fig. 3. Validation of Gaussian Process and Modified Gaussian
Process based on squared-exponential covariance func-
tion.

Process (SOGP) can be a good alternative way to increase
the GP performance. Here, it was observed that the assist of
updating GP hyperparameters within SOGP framework present
an absolute superiority over conventional GP while in this ap-
plication it is not able to present the same attitude in terms
of estimation error against the MGP approach. The last main
point that needs to be mentioned is that the identified model
in GP structure is determine by corresponding hyperparameters
of kernel functions. In this way, the kernel hyperparameters of
squared-exponential covariance function has been optimized to
the value of r = 3.5701 and [ = 5.5597, respectively.

4.2 Torque-Tracking Validation

The basic torque tracking problem of SI engines has been
extensively studied over the past years. However, it was out
of attention to present a structure that is able to handle the
torque tracking problem for varying engine speed which is more
representative for real-world driving conditions. In practice,
this idea is commonly validated when the modern gasoline en-
gines are typically operated around 2000-3000 rpm (33-50 Hz)
when cruising, with a minimum (idle) speed around 750-900
rpm (12.5— 15 Hz). By this consideration, the evaluation is
conducted under a specific desire torque profile 74 and varied
engine speed as shown in Fig. 4. The results depicted in Fig. 4
show that the controller tracks the desired torque profile quite

Table 2. Engine and Fractional Controller Parame-

ters
Symbol  Description Value
Uyin Lower input boundary [5-300]
Umax Upper input boundary [95 60 100]
[ts tr] Initial and final working time [5s 120s]
[cr crl Torque and fuel weighting [18.10°]
[A B] Coeflicients of throttle valve mapping function [0.193 7.94]
[A” B'] Coefficients of spark advance mapping function ~ [0.134 24.9]
kp Proportional gain of fractional controller 1.925
k; Integral gain of fractional controller 5.271
kp Derivative gain of fractional controller 0.273
u Fractional power of derivation part 0.947
A Fractional power of integrator part 0.921
n Number of training data set for GP 100
N Backward horizon in calculating o 20

TNm]

Speed [rpm]
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Fig. 4. System parameters generated under the desire torque
profile 74 and varying engine speed.

well against logical variation of torque/speed. The constraints,
as well as corresponding control efforts generated at this stage,
is also presented in Fig. 4.

In this structure, the fractional PID controller gains are tuned
by GA Matlab toolbox as listed in Table 2. The MPC controller
parameters were the following: the weight matrices in cost
function are defined as Q = 10/ and R = 0.1/. The prediction
control horizons is selected as N, = 4 (four time periods =
40 ms). Another point is that the simulation sampling time is
At = .01ms while the controller runs at a higher sampling rate
At. = 10ms. The nonlinear optimization problem is solved by
the interior point algorithm, provided in Matlab Optimization
Toolbox.

4.3 EGR Optimality Validation

In the last stage, in order to verify optimality of the designed
EGR control structure, set of simulations are carried out un-
der given torque profile 74 and constant engine speed 7 =
1500(rpm). Obtained results represent the best way of inte-
grating the EGR actuator, that comes with a minimum value
of the above mentioned objective function, particularly in term
of fuel economy. An initial step is taken by applying a simple
PID controller to regulate the EGR valve position. However,
given a controller low-frequency gain or possessing a steady-
state error, and some other limitations in conventional PID
controller makes us put the step forward in the integration of
some state-of-the-art control structures. Having such ideology,
take an advantage of Fractional PID controller can eliminate
much of those drawbacks come with PID controller as long as
a vast improvements has been gathered at the rate of 167 (a.u.),
85 (kg) in terms of torque deviation and fuel consumption,
respectively. The curves in blue and black lines in Fig. 5 show
the trend of fuel consumption as well as accumulated tracking
error of PID and FPID, respectively. The corresponding input
waveforms are depicted in Fig. 6.

It can be easily seen that possible maximization of EGR can
result in a considerable reduction in the cost function, especially
in the term of fuel economy. Based on this observation, optimal
model-based control structure as NMPC with Gaussian Process
(GP- MPC) is designed to accomplish the optimization problem
I. The obtained results shows a good improvement in terms
of fuel consumption with the reduction of 27 (kg) which also
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Fig. 5. The system outputs: fuel consumption and accumulated
torque error, produced under introduced control method-
ology for EGR system over an entire engine cycle.

proves the assumption regards to working principle of EGR sys-
tem. However, in order to compensate the increment of torque
error that can be observed in table 3, a Modified form of GP-
MPC (MGP-MPC) is exploited. As shown in subsection 4.1,
deriving an accurate model of system in GP algorithm, results
in a lower torque error in comparison with the conventional
method by the rate of 48.9 (a. u.). The difference in performance
between these two controllers is due to the difference in model
of system. Comparing the prediction effect in the MGP-MPC
case, one can note that the incorporating an adaptive parameter
in GP framework was adjusted the control action for some
critical workload in the process of combustion. Plots in green
line and red dash represent the system output based on the
GP-MPC and MGP-MPC methods. Finally, the optimal control
commands generated by these two approaches are illustrated
Fig. 6.

5. CONCLUSIONS

In this paper, the dynamics of exhaust gas recirculation system
is approximated by Gaussian Process framework. This attitude
made it possible to incorporate the information of the system
by an optimal model-based control law. In this way, a classical
nonlinear predictive control scheme was implemented to effi-
ciently integrate the EGR actuator into the process of combus-
tion. After such efforts, it was observed that regulating the EGR
system needs an accurate estimation of system dynamics, which
made us improve the performance of our GP structure. Further
analysis was also shown a reasonable robustness behavior of
designed control scheme under various torque/speed profiles.
The principle proposed in the study is quite practical and the
authors believe that similar attitude towards the integration of
recent advances in Bayesian statistics can revitalize the indus-
trial applications of powertrain control.

Table 3. Objectives under different control method-

ology in EGR system
Torque Deviation  Fuel Consumption  Overall Objective
PID 217 5421 (kg) 5638
FPID 50 5336 (kg) 5386
GP-MPC 111.8 5307.8 (kg) 5419.6
MGP-MPC 62.9 5309 (kg) 5371.9
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Fig. 6. The corresponding input waveforms generated for EGR
actuator by employing introduced control methodologies
over a complete engine cycle.
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