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Abstract—Energy flexibility is key to integrating more renew-
ables into the grid. An essential contributor to enabling energy
flexibility is P2X technologies such a Power2Heat, Power2Gas,
among others. To evaluate the flexibility available from these
resources and the impact they can have on the electrical grid,
complex simulations need to be set up that may not always be pos-
sible using traditional simulation tools, given the multi-domain
nature of such systems. Hence, the need for intelligent simulation
techniques arises. This paper introduces a co-simulation tool,
FMUWorld, to overcome simulation problems for complex energy
systems. We use a multi-energy co-simulation and an energy
flexibility analysis as use cases to explore the capabilities of the
proposed tool. The ease-of-use offered by FMUWorld is shown
to allow users to focus more on analysis of the system, such
as parameter sensitivity, system optimisation, etc., rather than
co-simulation setup. The paper highlights the key features and
functionalities of FMUWorld that make it a novel tool for co-
simulation of multi-energy systems.

Index Terms—Cosimulation, energy flexibility, functional
mock-up units, multi-energy system

I. INTRODUCTION

In today’s energy systems, modeling and simulation-based
analysis are needed before anything can be implemented in the
physical system. Modeling and simulation allow researchers
and analysts to evaluate the impact of their decisions, iden-
tify critical operating points, and plan mitigation strategies.
This process is crucial in creating a robust, reliable, and an
economical energy system.

The energy system of late has been changing, and rapidly.
It is transitioning from a central, unintelligent structure to a
more distributed, and intelligent system. The growth in the
adoption and integration of renewable energy sources (RES)
such as wind, solar, etc. have contributed to this changing
energy system. However, with increasing adoption of RES,
challenges to keep the energy system operating reliably and
securely are growing as well. Lower penetrations of RES
into the grid (as is currently), do not provide any significant
challenges. Once the share of RES starts becoming significant,
issues such as large, and unpredictable net load ramps [1],
reverse power flows [2], reduced system inertia [3], among
others, start affecting reliable and economic system operation.

To tackle these problems, especially the issue of unpre-
dictable net load ramps, the energy system has to be made
flexible. This flexibility can be achieved with the tighter
integration of our energy systems [4]. Coupling electric power
systems with, for example, heat networks and gas networks
can buffer excess RES generation, while unpredicted lack of

generation can be offset by intelligent load control. To analyse
the impact of energy sector coupling, a model based analysis
needs to be carried out first. However, the tools used currently
are domain specific, meaning they can be used to accurately
model and simulate the behaviour of a single energy domain
(electricity, heat, or gas).

Modeling, and simulating MES using domain-specific tools
will inadvertently involve making assumptions for at least
one domain. Such assumptions may limit system analysis [5].
To overcome this problem, clever software tricks to combine
existing, mature, state-of-the-art tools and simulate different
domains in a coupled fashion (co-simulation) can be used.
There exist many co-simulation tools for MES that allow
coupling of models from various energy domains, each with
their advantages and disadvantages.

In this paper, we introduce a tool, FMUWorld, for quick
co-simulation setup. The proposed tool enables combining
models from different domains effortlessly, given the models
are packaged as Functional Mock-up Units (FMUs). This
allows the user to focus more on setting up analyses, such
as parameter sensitivity analysis, than the co-simulation setup
itself. The rest of the paper is divided as follows. Section II
gives a brief overview of previous work about current state-
of-art co-simulation tools and highlights the contribution of
this work. Section III introduces FMUWorld, its structure,
capabilities, and functionalities. Section IV provides a case
study in the form of energy flexibility analysis of an industrial
boiler system for food processing plants using FMUWorld.
Section V discusses the results, conclusions, and future work.

II. PREVIOUS WORK

Co-simulation has been a topic of active interest and re-
search in the energy domain. There already exist quite a
few co-simulation tools currently that allows users to couple
models from different domains and analyse a truly smart multi-
energy system. One of the tools currently available for co-
simulation of energy systems is Mosaik [6]. Mosaik imple-
ments a smart grid co-simulation in an interesting fashion. It
uses 4 components: SimAPI that defines communication proto-
col between the different simulators and Mosaik, scenario API,
that allows users to create simulation scenarios, a Simulator
Manager that is responsible for communicating and starting
the processes of the implemented simulators, and a Scheduler
that is in control of the operation of the different simulators
and manages the data flow between them. Although fairly
advanced, a fundamental limitation in the usage of Mosaik
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is its dependence on simulator adaptors which rely on using
simulator APIs, a challenging task for non-programmers.

The dependence of co-simulation tool on simulator APIs
can be avoided by packaging models as Functional Mock-
up Units (FMUs). FMU of a dynamic model is a zip file
that contains model equations as compiled C code and model
description as an XML file. The Functional Mock-up Interface
(FMI) [7] allows users to interact with the model FMU through
standardised method calls. This makes it easier to exchange
and couple models developed in various simulation software
(provided the software provides an FMU Export capability).
FMI is a growing standard, with more than 100 software
tools providing the function to export their models as FMUs,
including MATLAB, Dymola, OpenModelica, etc.

VirGIL is another powerful Java-based tool for hybrid
energy systems co-simulation [8]. The platform allows users to
connect various simulators as FMUs. However, it is not open-
source software, thus limiting its availability. Also, VirGIL
is not under active maintenance, which implies that it lacks
newer FMI features. Mastersim [9] is another co-simulation
tool that also provides a graphical user interface. Mastersim is
intuitive to use, allowing users to setup co-simulation between
dynamic models packaged as FMUs. The tool has only been
tested for building energy performance simulations. Therefore
challenges that come with an MES co-simulation are untested
with Mastersim.

The motivation to develop FMUWorld is to make co-
simulation an intuitive and straightforward process, which will
enable new users to adopt this simulation philosophy easily
and facilitate focus on designing applications, such as param-
eter tuning, using co-simulation. Usually, with co-simulation
tools, the user tends to spend more time on ”modeling” the co-
simulation setup, rather than the application of co-simulation
itself. In comparison, the highly sophisticated domain-specific
tools allow users easy modeling and simulation that in turn
allows users to focus on analysing results obtained using these
simulations. That is where FMUWorld comes in. It will be
shown in this paper, FMUWorld’s ease of use allows users,
especially beginners, to setup co-simulation easily, while also
allowing additional functionalities for advanced users.

We use two case studies to demonstrate FMUWorld’s capa-
bilities. In one case study, we set up an MES co-simulation
between Closed Cycle Gas Turbine (CCGT) in an electrical
network to show the straightforward process of setting up the
co-simulation using FMUWorld. In the second case study,
we demonstrate how easy co-simulation setup allows users
to focus on setting up analyses. In this case, a parameter
sensitivity analysis to analyse energy flexibility capability of
an industrial boiler system.

III. FMUWORLD

A. Structure

FMUWorld is based on Python 3. To interact with
FMUs, two library adapters were developed. meAdapter and
csAdapter to interact with Model Exchange FMUs and Co-
Simulation FMUs respectively. These modules are built using
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Fig. 1: FMUWorld structure

the FMPy python library. The idea behind creating these mod-
ules was to make the interaction between users and individual
FMUs intuitive. Using the developed adaptors, the interaction
with FMUs is simplified to four simple method calls: init(),
step(), set_input(), and get_output(). Apart from
these, the modules also provide other advanced functions to
interact with FMUs. FMUWorld is built entirely using these
modules.

At the most basic level, co-simulations involve putting
different models together and connecting their inputs and
outputs for data exchange. These models may be made in any
tool, using any formal modeling language. FMUWorld tries
to keep this philosophy at its core. The first step in setting
up co-simulation is creating a canvas/world on which, various
FMUs can be embedded and connected. The canvas is known
as the World() within the FMUWorld framework. Within
World(), the user can define key simulation settings. These
include the start time and stop time of the simulation, simu-
lation logger, and co-simulation data exchange time interval.
This is shown in Figure 1.

1) Creating World Instance and adding FMUs: World()
can be instantiated by importing the FMUWorld module. This
sets up the co-simulation master. FMUs can be added using
the add_fmu() command. Users need to specify the fmu
location, fmu instance name, the internal step size that the fmu
uses, the inputs, and the outputs of the fmu. This is shown in
Listing 1.

Listing 1: Importing World and adding FMUs

#import World object from FMUWorld

from FMUWorld import World

#create an instance of World as my_world

my_world = World(start_time = 0.0,

stop_time = 100.0,

logging = True,

exchange = 1)

#add FMU to my_world

my_world.add_fmu(fmu_name = 'fmu1',

fmu_loc = fmuLoc2,
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step_size = 1e-3,

inputs = ['input_connector'],

outputs = ['component.variable'])

It is important to explain a fundamental feature of FMU-
World here that makes it a powerful co-simulation tool for
multi-energy systems. A key aspect of multi-energy systems
is the timescale of different energy domains. Electrical power
systems operations can range from microseconds-to-day, while
thermal systems operations are evaluated in hours-to-days
time scale. This means, while combining FMUs from various
domains, the step sizes with which each of the FMU is
designed to be simulated, will vary.

This presents a challenge of determining the instants at
which information should be exchanged between the FMUs.
FMUWorld handles this by analysing all the FMUs, and
their step sizes defined using add_fmu() and determining
an optimal time step size after which information should be
exchanged between the FMUs. This step size for information
exchange is the lowest common multiple (LCM) of all the
time steps gathered from the FMUs. Figure 2 shows this
approach. For a case where three FMUs have three-time steps,
the FMUWorld algorithm finds a common time step which
will allow individual FMUs to integrate with their time steps
to reach that time, and then exchange values. In the Figure 2,
the time step marked with red is the FMUWorld’s calculated
time step. Alternatively, if the user wants to manually input
the time interval for the exchange of information between the
FMUs, it can be done by changing the parameter exchange,
defined while creating World() (in section III-A1).

2) Adding signals: Signals such as constant, step, pulse can
be added as well. The syntax to add signals is similar to that
of adding FMUs. This is shown in Listing 2.

Listing 2: Adding a signal

#constant signal of value x1

my_world.add_signal('signal1': [x1])

#step input. if time > t1 value = x2 else x1

my_world.add_signal('signal2': [x1, t1, x2])

#pulse input. if t1<time<t2 value = x2 else x1

my_world.add_signal('signal3': [x1, t1, t2, x2])

3) Defining connections between FMUs: Connections be-
tween FMUs and signals can be defined within the FMUWorld
framework as dictionaries. The output-input relationships com-
ponents are defined as key-value pairs of the dictionary. It is
also possible to define multiple outputs to one input. Output
signals are added before being set as input. This is shown in
Listing 3.

4) Simulating my_world: Once the connections between
the FMUs have been defined, the setup can be simulated. Per-
forming simulation is achieved by calling the simulate()
function on my_world. This is shown in Listing 3.

Listing 3: Adding connections and simulating

#define connections

connections = {'fmu1.output':'fmu2.input',

Time (s)

Time (s)

Time (s)

FMU1

FMU2

FMU3

Fig. 2: Time step determination for simulation setups with
variables step sizes for each FMU

'signal1':'fmu3.input',

('fmu2.output', 'fmu3.output'):'fmu4.input'}

#add connections to the world

my_world.add_connections(connections)

#simulate my_world

results = my_world.simulate()

If the simulation is successful, output screen print ’Suc-
cess!’. In case there was an error in the simulation run, the
error is printed on the output screen. As illustrated, FMUWorld
makes it extremely easy to set up and simulate FMU based
co-simulation.

B. Additional Functions

In addition to setting up the simulation, advanced users
can also access greater control of their simulation setup using
options() method. FMUWorld supports the ability to make
parameter changes to individual FMUs using parameter set,
set user-defined initial conditions to co-simulation using init,
and modify the output signal of an FMU during the simulation
before it is given to the input FMU using modify signal. The
signal modification allows users to scale up or scale down
signals, by multiplying by a real value or adding a real value,
or both. For example, turbine output in W may be needed to
be input as MW into the electrical network model FMU. The
functionalities are shown in Listing 4.

Listing 4: Adding options to simulation

#define options

my_options = {

'parameter_set':

{'fmu1':(['cmp.var'],[value]),

'fmu2':(['cmp1.var1','cmp2.var2'],[val1, val2])},

'init':

{'fmu3':(['cmp.var'],[value])},

'modify_signal':

{'fmu1.output':[2], #multiplies by 2

'fmu2.output':[1/1e6, 0.5]} #multiplies by 1/1e6

#and adds 0.5

}
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#set options

my_world.options(my_options)

C. Result Data Structure

Once the simulation is executed as shown in Listing 3, the
simulate function returns a results data object. FMUWorld uses
the Pandas library to manage results; hence, the results object
returned from simulate() is a pandas data frame.

IV. STUDY CASE

A. Electrical-Thermal co-simulation

This case aims to evaluate the impact of the change in fuel
supply to a closed cycle gas turbine (CCGT) on the system
frequency using co-simulation. For this, we take two models
in different energy domains: a dynamic closed cycle gas
turbine (taken from [10]) for thermo-mechanical simulations,
and the IEEE 9 bus system (modified from [11]) for electrical
simulation. The models are tested on OpenModelica (OM) and
exported as FMUs using inbuilt FMU Export function. The
co-simulation setup is shown in Figure 3.

The time constant of the electrical network is 1e-3s, and
that of CCGT system is 2s. Also, the output from the CCGT
is in W, which needs to be converted to equivalent per unit
value for the generator model in the electrical block. These
two features make this setup a challenging one. The system
can be set up as shown in Listing 5.

Figure 4 shows result of the co-simulation. As we can see,
when the fuel input to the turbine is reduced, the mechanical
power generated is reduced too. This mechanical power is
transferred to the synchronous machine in the nine bus system
after conversion to per unit value. As can be seen from Figure
5, the frequency of the generator also decreases.

CCGT

Watts to per unit
converter

Electrical Network

Fig. 3: Co-simulation setup combining thermal, mechanical,
and electrical energy domains. The CCGT is a Model Ex-
change FMU, and the electrical block is a Co-Simulation
FMU. The Watts to per-unit converter is the signal modifi-
cation performed by FMUWorld.

Fig. 4: Impact of reducing fuel input to the turbine. As
expected, the output of the turbine decreases when the fuel
input decreases.

Fig. 5: Decrease in turbine mechanical power leads to decrease
in frequency of the generator it is connected to.

B. Energy Flexibility Analysis

In this case, we set up a flexibility analysis for an in-
dustrial electric boiler (henceforth referred to as boiler) and
storage system. Many industries, such as wood pulp, food
processing, etc. require hot water for their processes. The
water temperature needs to be maintained at a set value with
minimum deviations. These small deviations from set value
can be used to provide flexibility to the grid, especially if
component capacity is large (as is the case with industrial
setups).

Industrial boiler and storage systems are different from
residential systems, in a sense that constraints on the fluid
temperature and pressure are more strict for industrial systems.
Deviations from set-point temperature cannot be sustained
for long periods, and the fluid must return to set-point tem-
perature. Given the thermal inertia of the storage tank, the
temperature rise will be slow when the boiler is supplied with
excess energy. Industrial components with strict constraints on
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Fig. 6: Boiler and storage tank setup in Modelica. The boiler
model uses the temperature set-point as an input to activate
flexibility.

flexibility-affecting variables, such as temperature for boilers,
need downtime after provision of flexibility to return to
original state, during which the flexibility may not be available.

Thus, flexibility in such cases needs to be presented with
a set of values: flexibility provided during activation, and the
downtime following flexibility provision. To analyse the effect
of various flexibility activation periods on total flexibility
delivered by the boiler, and the following downtime, we set up
a parameter sensitivity analysis. We run a set of simulations
with various values of flexibility activation times, and evaluate
total flexibility obtained and the downtime.

The idea is to show how this can be set up quickly
using FMUWorld. The uncontrolled boiler-storage tank model
is taken from AixLib Modelica library examples [12]. A
PI controller is developed to control the amount of energy
provided to the boiler. In steady state, energy is only needed
to maintain the storage tank temperature by compensating for
radiation losses. The boiler has a fast ramp up and ramp down
rates. The boiler and storage tank model are shown in Figure
6.

The parameter sensitivity analysis can be set in FMUWorld
by instantiating a simple for-loop in python. The co-simulation
can be set up in a way similar to the previous test case. A
boiler-storage tank FMU takes temperature set-point as input.
This can be provided either by an FMU, or a signal. In
our case, we provide the temperature set-point pulse input
using add_signal(). The period of the set-point signal
is changed from 5 min to 1hr in intervals of 5 minutes
to determine its effect on total flexibility obtained, and the
downtime. The parameter sensitivity can be set up as shown
in Listing 6.

The results are shown in Figure 7. As is expected, the
amount of flexibility obtained from boiler and storage unit
increases when the flexibility activation time is increased. The
relation between flexibility activation time and downtime is
also proportional.

Similar sensitivity analysis can be done for other system
parameters such as storage volume, area of the boiler, mass
flow rates, boiler controller parameters, etc.

V. CONCLUSIONS

In this paper, we proposed a co-simulation tool called
FMUWorld. The tool was developed to make the process of

Fig. 7: Energy flexibility analysis of an industrial boiler
system.

setting up multi-energy co-simulations a more natural process.
We highlighted the functionalities of FMUWorld that make it
a powerful tool for co-simulation, especially in MES. Key
features such as multi-time step co-simulation, ability to add
external signals, are effortlessly handled by FMUWorld, mak-
ing it a powerful tool. It is shown through two test cases how
FMUWorld enables users to focus more on setting up analyses
using co-simulation, rather than co-simulations themselves.

While FMUWorld is relatively powerful for rapid setup of
co-simulation, it still lacks certain features that will make it
even more powerful. Some of the ideas that are still being
tested include performance speed-ups by parallelizing oper-
ation. This should help significantly in large co-simulations.
Another key feature is the addition of user-defined external
signals. The tool is under active development and will be
released as open source tool soon.

Co-simulation, especially in multi-energy systems, is a hot
research topic. To get more people involved, it is needed
to introduce this simulation philosophy to a newer audience,
especially students. The tool is thus aimed primarily at such
an audience.
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APPENDIX
Here we present two pieces of codes used in the case

studies above. The codes and the python package will soon
be available on GitHub2

Listing 5: Test Case A

#import package

from FMUWorld import World

#create world instance

my_world = World(stop_time=1000,

logging = True,

exchange=2)

fmuLoc1 = os.path.join(working_dir,chp+'.fmu')

fmuLoc2 = os.path.join(working_dir,elec+'.fmu')

fmuLoc3 = os.path.join(working_dir,mod+'.fmu')

#add fmus

my_world.add_fmu(fmu_name = 'chp',

fmu_loc = fmuLoc1,

step_size = 2,

outputs = ['rampeQfuel.y.signal',

'Alternateur.Welec'])

my_world.add_fmu(fmu_name = 'elec',

fmu_loc = fmuLoc2,

step_size = 1e-3,

outputs = ['gen1.f',

'gen2.f',

'gen3.f'])

2GitHub username: dgusain1

#define connections

connections =

{'chp.Alternateur.Welec':'elec.machineInput'}

#add connections

my_world.add_connections(connections)

#modify signal

my_options = {'modify_signal':

'chp.Alternateur.Welec':[1/1e6, 0.63]}

my_world.options(my_options)

#simulate

results = my_world.simulate()

Listing 6: Test Case B

#import package

from FMUWorld import World

import numpy as np, pandas as pd

#create world instance

my_world = World(stop_time=1000,

logging = True,

exchange=2)

fmuLoc1 = /location/of/boiler/storage/fmu

#dataframe for result analysis

analysis_df = pd.DataFrame()

#setup for loop for parameter sensitivity

for time in np.linspace(300, 3600, 12):

#add fmus

my_world.add_fmu(fmu_name = 'boiler',

fmu_loc = fmuLoc1,

step_size = 1,

inputs = ['pi_input']

outputs = ['heatGen.TCold',

'heatGen.THot',

'heatGen.heater.Q_flow'])

#add signal

my_world.add_signal('temp_set':

[353.15, 5000, 5000 + time, 353.15 + 2])

#define connections

connections =

{'temp_set.y':'boiler.pi_input'}

#add connections

my_world.add_connections(connections)

#simulate

results = my_world.simulate()

#send results for processing

flex, downtime = process_res(results, time)

analysis_df.loc[time, 'flex'] = flex

analysis_df.loc[time, 'downtime'] = downtime
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