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Indoor positioning
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No large-scale solution Infrastructure is needed

Bluetooth tags
Wi-Fi fingerprinting
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Microsoft Hololens
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Hololens scan
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Hololens scan
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Problem statement (2) — Drift
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Between 2-5 meter over 200 meter

Introduction



%
TUDelft CGI

Research question

“How can the Microsoft Hololens improve indoor positioning, using the on-the-
fly produced mesh and an existing floor plan”

Introduction
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Develop indoor positioning application

Resea 'C h Microsoft Hololens and floor plan
goa ‘ No infrastructure

Real-time

Introduction
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Emergency response

BEFORE DISASTER

Mitigation

- Most extreme requirements

Long-term measures Rescue force training

Prevention / \
Recovery \ / Response

Acute

- Fast and efficient decision making

Preparation

DISASTER

- Real-time and dynamic data

Detriment removal

D ;
Supply / help ynamic

AFTER DISASTER

Background
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© & 2 —

ACCURACY CONSTANT UNCERTAINTY NO
<1M AVAILABILITY ESTIMATION PRE-INSTALLATION

Rantakokko et al. (2010)

Positioning requirements for ER
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SLAM
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SLAM

Monocular
Binocular
RGB-D
Infrared
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SLAM

Feature
method
Direct method

Introduction Background | Related work | Method Implementation Results Conclusion 23



]
TUDelft CGI

SLAM

Posture
optimization
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Relation to floor plan
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Spatial Matching

To be registered shape X Reference shape Y

Related work
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Spatial Matching

Transformation matrix M:

Rotation R
Translation T

Registered shape X’ X' =RX+T Reference shape Y

Related work
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Iterative Closest Points (ICP)

e Most implemented
e Hololens uses ICP

Spatial Instantaneous Kinematics (IK)

Matching e Velocity vectors
e (Theoretically) faster convergence than ICP

Hough Transform (HT)

¢ [nvariant rotation
e Combination 2D/3D data




Data

Preprocessing

Registration

Evaluation

Ground truth

Hololens

Meshes to point
cloud

ICP

Speed

Filter point cloud
on normals

LQAIK

Accuracy

Reference point
on floor plan

Floor plan

Initial
transformation

HT

Robustness

Method

]
TUDelft CGI

Research
method

29



Workflow
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CaGl

Retrievg
every 1p
Visualization Mesh to 2D point seconds Real-time 3D
cloud model
Hololens f
Algorithms
Floor plan Spatial rr?atchlng
algorithm
| Updated
transformation
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Mesh to point cloud

Mesh 3D point cloud of walls 2D point cloud
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2D or 3D positioning

- Loss in dimension
- Complex buildings

- Correctly aligned horizontal plane

X bV

Method | | | 32




SE LECTI N G A WALL Scanned object Floor plan

Initial transformation value

| Method |
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'terative Closest Points (ICP)

Objective: Find a displacement vector g that minimizes the distances between displaced shape X
and reference shape Y

q; = mind(q(X),Y)?
q

Find closest points:

d(x,Y) = min|y — x|

Least squares:

.1
mqlnNZ’i‘Llllyi — R(qr)x; — qrll?
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Iteration 1 2 Iteration 1

Iteration n Iteration n

" p

qd:

n _n

P3

P2 ds
q:2

| C P Point-to-plane / point-to-line

optimizations

1 C P ) 1 N R 2
mqmﬁz;llyl- — R(qp)x; — qrll mquZ“(( (ar)x;i +qr) —y)n ||
i= 1=
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step 1 step 2 step 3 step 4 step 5

couplings error
| C P X Po I'> minimization

—(closest point

optimizations W compuintion

termination
criterion

use next
resolution
step

Multi-resolution (Jost & Hugli, 2003)
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Instantaneous Kinematics (1K)

Velocity vector:
v(x;) = €+ ¢ X x;

c: velocity vector at origin (=translation)

c: Darboux vector / vector of angular velocity (=rotation)

Objective:

N
min E F(x; +v(xi),y:)
v(x) 4 J

1=
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Solving rigidity constraint of IK

G| o X+ v(xi)

Method | | | 38
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Hough Transform (HT)

-

Hough domain

0: angle
r: distance to origin

0 - S
N

r 6>
Reference image
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-
-

@b
@b

Reference image - Translation -

Rotation is translation-invariant!
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Plane/line finding
using Hough Space

Hough
transform
(HT)

Finding the correct

translation
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Plane or line finding in HT

(xpe» Ype): POINt coordinates
(x,, Vn): point normal vector
8: tan~1 i—" (orientation)

r: |x,¢ cos 6 + y,, sin @ | (distance to origin)

Method | | | 42
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Rotation in HT

Objective:

mﬁXE H(floorplan) (91'»,01) Z H(pointcloud) (Qi +v, ,02)
p1

[ p2

In other words:

Find a rotation y where the alignment between the Hough image of the reference shape H™and the
rotated Hough image of the registered shape H@ s highest

| | | Method | | | 43




]
TUDelft CGI

Translation in HT

Euclidean space

Using Iterative Closest Points with only translation:

1
NZ%’ — X
l
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Configurations

Use meshes that Use meshes that
are scanned since are scanned since
start of the process OR |ast registration

No buffer 50cm buffer
around walls OR around walls

‘ Method ‘
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Evaluation criteria

© & ©

ACCURACY COMPUTATION TIME ROBUSTNESS
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Accuracy

Drift Initial transformation Spatial matching techniques
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Computation time

< 15 seconds

Well scalable:
° 100 points
o 1000 points
o 10000 points
o 100000 points

o Different sizes of the scanned mesh

| |  ethod | | | »
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Robustness

Behaviour of algorithms on special cases:

- Doors
- Walls that do not exist in the floor plan

- Walls that exist in the floor plan, but not in the present situation

- Large spaces (>20x20 meter halls)

| |  ethod | | | p
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TU Delft Library building | CGI Rotterdam office

| | | | Implementation | |
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Indoor positioning application

@

<

Real-time Simulation

| Implementation |
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Functionalities

B

PROCESS INPUT USER INTERFACE SHOW POSITION ADJUST POSITION CORRECT ERRORS
OF HOLOLENS ON FLOOR PLAN WHEN USER IN POSITION
MOVES

Introduction Background Related work Method Implementation Results Conclusion 53
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Errors after initial transformation
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Errors of best fit using SVD (MH drift
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Benchmark
Small mesh Medium mesh | Large mesh - N
= S T '.
I_:'_ wolata: BT':E‘! i . T ]’ - =
) L e -

Computation times in seconds per algorithm per mesh with N points

N points | ICP Instantaneous Kinematics Hough Transform
Small__Medium |Large_|Small __|Vedium
100 1.24 1.3 9.79 4.3 2.8 2.26 0.51 1.3 3.37
1000 2.611 4.8 9.63 3.55 39 4.81 3.166 4.6 5.54
10000 14.96| 17.25 36.75 16.55 11.9 22.47 24.8 26.15 29.33
100000] 126.33| 214.5 408.46 171.72  166.28| 202.63 244.1 264 281.7

Results |
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Results using ICP
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Results using ICP
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ermror in meters
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Results using Instantaneous Kinematics
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Results using Instantaneous Kinematics
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Results using Hough Transform
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Results using Hough Transform

20.0
Initial transformation - Use of meshes in
17.5 Hough Transform local 0.5m proximity
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E
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registration
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Validation tests

Hough Transform

Architecture Library CGl
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Robusthess — vvaHs n scanned
mesh
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175 | o RMSE as estimation
for accuracy

Significant correlation (p<0.001)

error in meters

Only 12% explanation of variance

| | | | | Results | 68
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Conclusions

(1) Iterative Closest Points, Instantaneous Kinematics and Hough Transform have been selected
as feasible algorithms.

(2) Hough Transform gave most accurate results and is fastest.
(3) 80% of experiments <5 meter, 15 second computation time met.

(4) Bad scan quality and artefacts are likely to affect accuracy most.

| | | | | | Conclusion 69
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Research question

“How can the Microsoft Hololens improve indoor positioning, using the on-the-
fly produced mesh and an existing floor plan”
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Requirements for positioning in ER

@ & 2

ACCURACY CONSTANT UNCERTAINTY NO
<1M AVAILABILITY ESTIMATION PRE-INSTALLATION

| | | | | | Conclusion 71
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Conclusions

Augmented Reality is a viable technology for indoor positioning without any pre-installations.

Not all requirements for the case of ER are met.

Better noise filters and outlier detection.

| | | | | | Conclusion 72
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Discussion

Method can be generalised to 3D and any AR device.

Limited implications for Emergency Response:
o Fragile device
o No vertical accuracy
o |nitial transformation requires manual work

o Limited support for floor plan formats

| | | | | | Conclusion 73




Future work
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- Indoor navigation using AR
- 3D models

- Country-wide system

- Situational awareness

| Conclusion 74
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Questions?
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Robustness — walls in floor plan
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BEFORE DISASTER

Z

L Active
Mitigation

E m e rge n Cy Long-term measures Rescue force training
Re S p O n S e Prevention / \ Preparation

Recovery \ / Response

Acute

DISASTER

Detriment removal

Dynamic
Supply / help y

AFTER DISASTER
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16 requirements for indoor positioning in

ER

1. Location accuracy in the horizontal
plane of no greater error than one
meter.

2. Stringent location accuracy in the
vertical plane of no greater error than
two meters

6. Integrity monitoring (uncertainty
estimation + detection of electronic
attacks)

7. Positioning data to be compatible to
and integrated with other information

8. Real-time map-building capability in

3. Constant accessibility for those who the form of simultaneous localization

need the positioning data.

4. Physical robustness so that the
system will operate reliably even under
harsh conditions

5. Encrypted voice communications
and data transfer.

and mapping (SLAM)

9. The system should not be bulky
10. Weight less than 1 kg

11. Energy-efficient system

12. Presentation of positioning data to

be intuitive and easy to understand
13. A modular system
14. No pre-installation

15. In any armed operation, the
visualization system should present
heading to own troops and in
particular the heading of the weapon.
Data for distance and direction to
targets and threats should also be
presented.

16. System costs below €1000



K proof

F(C) := F(c,¢) = Z(di +1n; - (E+cxx;))>

1

di+mn;-c+ (x; xn;) ¢ = d; + (x; x n;, n;) (?) = d; + A;C,
C

F(C) = ) (di+AC)

]

_ Z d? +2 Z d;A;C + Z CTAT A, C

i i

— D+2BTC+CcTAC

Pottmann, Leopoldseder & Hofer (2004)
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MANUALLY: AUTOMATIC: SEMI-AUTOMATIC:
ROTATING/TRANSLATING DOOR DETECTION SELECTING WALLS

Initial value

Related work |
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Instantaneous Kinematics

Distance to be minimized:

N
F(C) = F(Z‘,C) = Z(dl +n; - (E + c X Xi))z
i=0

Same function but as matrix function:
F(C)=D+2BTC +CTAC

Method | | | 87
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Instantaneous Kinematics

F(C) =D +2BTC + CTAC f(x) =d+ 2bx + ax?

AC+B =0 ax +b =0

Method | | | 88
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Solving rigidity constraint of IK

. . _1
Rotation: tan™*||c]|| GI | X; —|—V(Xf,{)

Axis origin:
Axis orientation:

Pitch:

| 89
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Hough Transform CGl
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Hough Transform Library
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