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Abstract The interplay between two-dimensional percolation growth models and
one-dimensional particle processes has been a fruitful source of interesting mathe-
matical phenomena. In this paper we develop a connection between the construction
of Busemann functions in the Hammersley last-passage percolation model with i.i.d.
random weights, and the existence, ergodicity and uniqueness of equilibrium (or time-
invariant) measures for the related (multi-class) interacting fluid system. As we shall
see, in the classical Hammersley model, where each point has weight one, this approach
brings a new and rather geometrical solution of the longest increasing subsequence
problem, as well as a central limit theorem for the Busemann function.
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1 Introduction

In the middle of the fifties Busemann [4] introduced a collection of functions to study
geometrical aspects of metric spaces. These functions are induced by a metric d, and
by a collection of rays (semi-infinite geodesics) as follows: the Busemann function
b� (·), with respect to a ray (�(r))r≥0, is the limit of d(�(r),�(0)) − d(�(r), ·)
as r goes to infinity. Along a ray � the metric d becomes additive. By using the trian-
gle inequality, this implies that the defining sequence is non-decreasing and bounded
from above, and so it always converges. Using analogous considerations, one can
construct Busemann functions over spaces equipped with a super-additive “metric” L
(one needs the reversed triangle inequality). In this work we are particularly inter-
ested in geometrical aspects of the following stochastic two-dimensional last passage
(super-additive) percolation model: let P ⊆ R

2 be a two-dimensional Poisson random
set of intensity one. On each point p ∈ P we put a random positive weight ωp and
we assume that {ωp : p ∈ P} is a collection of i.i.d. random variables, distributed
according to a distribution function F , which are also independent of P. When F is the
Dirac distribution concentrated on 1 (each point has weight 1; we will denote this F
by δ1), then we refer to this model as the classical Hammersley model [1,11]. For each
p, q ∈ R

2, with p < q (inequality in each coordinate, p �= q), let �(p, q) denote the
set of all increasing (or up-right) paths, consisting of points in P, from p to q, where
we exclude all points that share (at least) one coordinate with p. So we consider the
points in the rectangle ]p, q], where we leave out the south and the west side of the
rectangle. In this probabilistic model, the “metric” (or last-passage time) L between
p < q is defined by

L(p, q) := max
�∈�(p,q)

⎧
⎨

⎩

∑

p′∈�

ωp′

⎫
⎬

⎭
.

Then L is super-additive,

L(p, q) ≥ L(p, z) + L(z, q).

When we consider a path � from p to q consisting of increasing points (p1, . . . , pn),
we will view � as the lowest increasing continuous path connecting all the points,
starting at p and ending at q, and then excluding p. This way we can talk about crossings
with other paths or with lines. Suppose �1 and �2 are two different paths between p
and q that both have the maximal weight L(p, q). Now suppose that (x1, t1) ≤ (x2, t2)
are two points on the intersection of the two paths, such that the paths do not intersect
in the open strip (x1, x2) × R. Then one path must lie entirely below the other path in
this strip, and the total weight of the two paths in this strip must be equal (otherwise
we would be able to construct a “longer” path). This means that we can define the
minimum of �1 and �2 by choosing the lowest path in each such strip. The finite
geodesic between p and q is given by the lowest path (in the sense we just described)
that attains the maximum in the definition of L(p, q). We will denote this geodesic

123



Busemann functions and equilibrium measure

by �(p, q) (this is well defined for any ordered pair (p, q), even if we do not specify
the order).

Given this function L , we can define an interacting fluid process in the follow-
ing way (for a precise description), see Sect. 4: consider the set N of all increasing
right-continuous functions ν on R such that ν(0) = 0 and

lim inf
x→−∞ ν(x)/x > 0.

To every ν ∈ N we can associate a measure, which we also denote by ν, such that
ν((x, y]) = ν(y) − ν(x). We will consider ν ∈ N as a starting configuration for our
interacting fluid process at time t = 0; the configuration at time t is denoted by Mν

t
(so Mν

0 = ν). The evolution of the process can be described as follows: suppose there
is a Poisson point at (x, t), for some t > 0, with weight w. Denote Mν

t− ∈ N as the
configuration just before time t . Then

Mν
t (y) =

{
Mν

t−(y) if y < x,

max(Mν
t−(y), Mν

t−(x) + w) if y ≥ x .

This means that if at time t and at position x a Poisson point appears with weight w,
then at time t , we add mass w at position x of our configuration, and we take this mass
away from the positions closest to the right of x ; see Fig. 1 in Sect. 4 for an example
where ν has only atoms. When F = δ1 (the classical Hammersley process), we sim-
ply retrieve the classical Hammersley interacting particle process. We will show the
following connection between the interacting fluid process Mν

t and the function L
(Proposition 4.1): define for x ∈ R and t ≥ 0

Lν(x, t) = sup
z≤x

{ν(z) + L((z, 0), (x, t))}.

Then

Mν
t ((x, y]) = Lν(y, t) − Lν(x, t).

In Corollary 4.4 and Theorem 5.3 we construct a one parameter family of processes
να ∈ N that are the unique ergodic equilibrium measures for the Hammersley inter-
acting fluid process. This construction uses a concept known as Busemann functions,
which we will describe in the next paragraph. We view this connection between the
Busemann functions and the interacting fluid process as the key idea of this paper. On
the one hand, it allows us to prove existence, uniqueness and ergodicity (mixing) of
the equilibrium measures of the interacting fluid process. Furthermore, it gives us a
natural way to prove a strong law of large numbers for the second class particle and
to define a multi-class fluid system with a countable number of classes, which is a
new result even in the classical Hammersley process. On the other hand, it implies a
central limit theorem for the Busemann function in the classical model. This result
also shows a phase transition from a Gaussian limit distribution, on the square-root
scale, to Tracy–Widom type (zero-mean) limit distribution, on the cube-root scale,
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at the critical angle α − π ; here we use the results from [2]. This transition from
square-root to cube-root scaling for Busemann functions was first conjectured in 2001
by Howard and Newman [12] (see also [16]). Furthermore, we conjecture that under
suitable conditions, the random measures να behave asymptotically like a Brownian
motion plus linear drift (just like a compound Poisson process). If this is true, we
believe that we can extend the methods from [6] to conclude cube-root asymptotics
for the length of the longest paths and its fluctuation. This idea will be pursued in an
upcoming paper.

Throughout this paper, except in Theorem 2.1, we will make the following assump-
tion on the distribution function F of the weights:

∞∫

0

exp(ax) d F(x) < +∞, for some a > 0. (1.1)

We will work from this assumption in all statements. In [7], using methods developed
by Newman and co-authors in [12] and [14] also applied to the classical Hammersley
process by Wüthrich in [16], and using ideas from Kesten in [13], it is shown that finite
geodesics can be extended to semi-infinite α-rays by moving one endpoint appropri-
ately to infinity. An α-ray starting at p ∈ R

2, denoted by �α(p), is a semi-infinite
geodesic that starts at p and moves to infinity in the direction 
α := (cos α, sin α), for
α ∈ (π, 3π/2). It turns out that under Assumption (1.1), for fixed α, with probability
1, each p ∈ R

2 is the starting point of a unique α-ray, and two α-rays will always
coalesce eventually. In Sect. 2 we will state precisely the theorems for existence and
coalescence of α-rays. An important tool in the development of these concepts is the
following result, known as the shape theorem: there exists a constant γ = γ (F) such
that for all x, t ≥ 0

lim
r→∞

L(0, r(x, t))

r
= γ

√
xt ( a.s.) (1.2)

In Sect. 3 we will use theα-rays to construct the Busemann function Bα : if x, y ∈ R
2,

let c = c(α, x, y) be the coalescence point of the two α-rays starting at x and y. Then

Bα(x, y) = L(c, y) − L(c, x).

It is not hard to see that the distribution of Bα is invariant under translation and that Bα

is additive: Bα(x, z) = Bα(x, y) + Bα(y, z). Its most important property, however, is
the following connection with the interacting fluid process: if we define the measures
νt
α on R by

νt
α((x, y]) = Bα((x, t), (y, t)),

then the family of random measures {νt
α : t ∈ R} forms a Markov process, and in fact

we have that if we define να = ν0
α , then Mνα

t = νt
α (Corollary 4.4). The translation

invariance of the Busemann function then shows that να is an ergodic equilibrium
measure for the interacting fluid process.
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In Sect. 8 we describe how to define a Busemann function in the last passage perco-
lation on the lattice Z

2 with i.i.d. weights on the lattice points. It is an important open
question for a long time already, how to prove in this general set-up that the shape
function, see (1.2), is strictly curved, a fact we need to define our α-rays. However,
if we restrict ourselves to exponential (or geometric) weights, in which case the last
passage percolation is an alternative description of the totally asymmetric exclusion
process (TASEP), we know the shape function, and it is indeed strictly curved. There-
fore, we can define the Busemann function and we find a similar connection to the
(known) equilibrium measures, which allows us to prove analogous results.

We feel that the connection between the Busemann functions and the equilibrium
measures gives us an important new tool to study last passage percolation and the cor-
responding fluid processes. In an upcoming paper, we will use the Busemann function
and the results from this paper to determine the asymptotic speed of a second class par-
ticle, given a deterministic, rarefaction initial condition, in the classical Hammersley
process and in TASEP. Furthermore, as said before, we have strong indications that
the Busemann function can help us establish the cube-root behavior of the length of a
longest path, and the fluctuations of the longest path.

Overview. In Sect. 2 we will state the theorems, that we will use further on, about
the limit shape and the existence and coalescence of α-rays, and then give precise
references for the proofs. In Sect. 3 we define the Busemann function and give its
most important properties. In Sect. 4 we introduce the Hammersley interacting fluid
process and establish the connection between the Busemann function and the equi-
librium measures. In Sect. 5 we prove uniqueness and ergodicity (mixing property)
of the equilibrium measures, and we show local convergence to the equilibrium mea-
sure in case of a rarefaction fan. In Sect. 6 we prove the central limit theorem for the
Busemann function in the classical model. In Sect. 7, we show how we can define a
multi-class system with a countable number of classes, and we establish the strong
law for a second class particle. In Sect. 8 we state the analogous results for the TASEP.

2 Shape function and α-rays

A key notion in this paper will be an α − ray: for each angle α ∈ (π, 3π/2) and for
each point x ∈ R

2,�α(x) is the lowest continuous down-left path through an ordered
sequence (pi )i≥0 in R

2, with p0 = x, pi ∈ P and pi ≥ p j whenever i ≤ j . Further-
more, �(p j , pi ) ⊂ �α(x) (every part of the path is a geodesic), and finally we must
have that

lim
i→∞

pi

‖pi‖ = 
α := (cos α, sin α). (2.1)

A crucial step for the existence of α-rays is the following shape theorem: set 0 =
(0, 0), n = (n, n),

F(x) = P(ωp ≤ x) and γ = γ (F) = sup
n≥1

E(L(0, n))

n
> 0.
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Theorem 2.1 Suppose that

∞∫

0

√
1 − F(x) dx < +∞. (2.2)

Then γ (F) < ∞ and for all x, t > 0, as r → ∞,

L (0, (r x, r t))

r
→ γ

√
xt a.s. and

EL (0, (r x, r t))

r
→ γ

√
xt .

Further, if (2.2) is strengthened to: there exists a > 0 such that

∞∫

0

exp(ax) d F(x) < +∞ , (2.3)

then there exist constants c0, c1, c2, c3, c4 > 0 such that for all r ≥ c0

P (|L(0, (r, r)) − γ r | ≥ u) ≤ c1 exp

(

−c2
u√

r log r

)

for u ∈ [ c3
√

r log2 r , c4r3/2 log r
]
.

For proofs see Theorems 1.1 and 1.2 in [7]. Theorem 2.1 shows that L has a curved
limiting shape, mainly due to the invariance of the Poisson process under volume
preserving maps: if x, t, r > 0 and p ∈ R

2, then

L(0, (x, t))
D= L (p, p + (r x, t/r)) . (2.4)

This is because under this map, the distribution of the Poisson process does not change,
and the up-right paths are preserved. The almost sure convergence is a standard con-
sequence of the sub-additive ergodic theorem, once we have a bound on E(L(0, n)),
linear in n.

The following theorem gives us existence and coalescence of α-rays. Before we
state the theorem, we shall define what we mean by convergence of paths: we say
that a sequence of paths � n converges to � , and denote limn→∞ � n = � , if for all
bounded subsets B ⊂ R

2 there exists n0 such that � n ∩ B = � ∩ B for all n ≥ n0.

Theorem 2.2 Assume (1.1), so for some a > 0,

∞∫

0

exp(ax) d F(x) < +∞.

Then for fixed α ∈ (π, 3π/2) the following holds with probability one:
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(1) For each x ∈ R
2 there exists a unique α-ray starting from x, which we denote by

�α(x).
(2) For any sequence (zn)n≥0 of points in R

2 with ‖zn‖ → ∞,

if lim
n→∞

zn

‖zn‖ = (cos α, sin α) then lim
n→∞ �(x, zn) = �α(x).

(3) For all x, y ∈ R
2 there exists c = c(α, x, y) such that �α(x) and �α(y) coalesce

at c:

�α(x) = �(x, c) ∪ �α(c) and �α(y) = �(y, c) ∪ �α(c).

The proof of Theorem 2.2 is based on a method introduced by Newman [14] that
can be applied in a wide percolation context. An outline of the proof is given in [7].
A detailed proof of the same theorem, but now restricted to the Hammersley classical
model, can be found in [16]. Finally, note that two α-rays can only coalesce once: if
they have two points p ≥ q in common, then they both must coincide with �(q, p)

in between, by definition of the α-ray.

3 The Busemann function

Using the concept of α-rays, we will study the function Bα(x, y), which is defined by
taking the first coalescence point c = c(α, x, y) between the α-ray that starts from x
and the one that starts from y (remember that these two rays coalesce), and setting

Bα(x, y) = L(c, y) − L(c, x). (3.1)

Note that if we take a different coalescence point c′, then c ≥ c′ and they both lie on
a geodesic. Since L is additive on a geodesic, we get L(c′, x) = L(c′, c) + L(c, x),
which shows that the definition of Bα(x, y) does not depend on the choice of the
coalescence point. Let (zn)n≥1 be any unbounded decreasing sequence that follows
direction (cos α, sin α), and let c(zn, x, y) denote the most up-right coalescence point
between � (zn, x) and � (zn, y). By Theorem 2.2, with probability one, there exists
n0 > 0 such that

∀ n ≥ n0 c(zn, x, y) = c(α, x, y) and L(zn, y) − L(zn, x) = Bα(x, y). (3.2)

Therefore, in geometrical terms, Bα(x, ·) can be seen as the Busemann function along
the ray �α(x).

Some properties of Bα are summarized in the following proposition. The proofs
can be found in Sect. 9.

Proposition 3.1 Define the Busemann function Bα as above, for α ∈ (π, 3π/2).

(1) The distribution of the function Bα is translation invariant: ∀ p ∈ R
2

Bα(· + p, · + p)
D= Bα(·, ·).
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(2) Bα is anti-symmetric and additive: ∀ x, y, z ∈ R
2

Bα(x, y) = −Bα(y, x) and Bα(x, z) = Bα(x, y) + Bα(y, z).

(3) For any (x, t) ∈ R
2,

B5π/2−α(0, (x, t))
D= Bα(0, (t, x)).

(4) For any (x, t) ∈ R
2, all α ∈ (π, 3π/2) and ρ > 0, we have

Bα((0, 0), (x, t))
D= Bα̃((0, 0), (ρx, ρ−1t)),

where tan α̃ = ρ−2 tan α.
(5) If x ≤ y and x �= y, then

Bα(x, y) ≥ 0 and 0 < E(Bα(x, y)) < +∞.

(6) Fix x, y ∈ R
2 and p, q ∈ R

2 such that p, q ≥ 0. The function λ �→ Bα(x +
λp, y + λq) is càdlàg in λ ∈ R.

As mentioned in Sect. 1, the most important aspect of Bα is a Markovian structure
described in the following proposition.

Proposition 3.2 For all s ≤ t and x ∈ R we have

Bα((0, s), (x, t)) = sup
z≤x

{Bα((0, s), (z, s)) + L((z, s), (x, t))}.

Proof Without loss of generality we can take s = 0 (and therefore t ≥ 0). Define
Zα = Zα(x, t) ∈ R as the crossing-point of the α-ray starting at (x, t) with the x-axis.
Clearly, Zα ≤ x and

Bα(0, (x, t)) = Bα(0, (Zα, 0)) + Bα((Zα, 0), (x, t))

= Bα(0, (Zα, 0)) + L((Zα, 0), (x, t)).

The last equality follows from the fact that (x, t) and (Zα, 0) are lying on an α-ray.
This means that it is enough to prove that for all z ≤ x ,

Bα(0, (z, 0)) + L((z, 0), (x, t)) ≤ Bα(0, (Zα, 0)) + L((Zα, 0), (x, t)). (3.3)

Suppose p is a coalescence point of the α-rays starting at 0, (x, t) and (z, 0). Then

Bα(0, (z, 0)) = L(p, (z, 0)) − L(p, 0) and

Bα(0, (Zα, 0)) = L(p, (Zα, 0)) − L(p, 0).
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Furthermore, since p, (Zα, 0) and (x, t) are elements of �α(x, t), we know that

L(p, (z, 0)) + L((z, 0), (x, t)) ≤ L(p, (x, t))

= L(p, (Zα, 0)) + L((Zα, 0), (x, t)).

From this, (3.3) easily follows. ��

Define the positive measures να
t on R, using Proposition 3.1, by

να
t ((x, y]) := Bα((x, t), (0, 0)) − Bα((y, t), (0, 0))

= Bα((x, t), (y, t)) ∀x ≤ y. (3.4)

Proposition 3.2 then shows that the process t �→ να
t is a Markov process: the future

evolution of να
t depends on the Poisson process in the upper-half plane R × (t,∞)

and on the present value of να
t , not on the past of the process (which is of course

independent of the Poisson process in R × (t,∞)). Note that the distribution of να
t

does not depend on t (by Proposition 3.1(1)), so this distribution is an equilibrium
(or time invariant) measure for the underlying Markov process. In the next section we
will describe the generator of this Markov process, which will be an extension of the
classical Hammersley interacting particle process.

4 The Hammersley interacting fluid system

It is well known that the classical Hammersley model, where all weights are 1,
described in Aldous and Diaconis [1], has a representation as an interacting parti-
cle system. The Hammersley process with random weights has a similar description,
although a better name might be an interacting fluid system. We start by restricting
the compound Poisson process {ωp : p ∈ P} to R × R+. Then we choose a positive,
locally finite measure ν defined on R. Usually, these measures will be purely atomic,
but this is not necessary. To each measure ν we associate a non-decreasing process
ν(·) defined by

ν(x) =
{

ν((0, x]) for x ≥ 0

−ν((x, 0]) for x < 0.
(4.1)

Note that ν(·) is a cadlag function. Although the details are a bit cumbersome,
all the results we will show can be extended, mutatis mutandis, to the case where
ν(x) = −∞ for x < 0, which would correspond to a non-locally finite measure with
an infinite fluid density to the left of 0. This is a quite natural starting condition, but
we will not use it explicitly in this paper.

The Hammersley interacting fluid system (Mν
t : t ≥ 0) is a stochastic process

with values in the space of positive, locally finite measures on R. Its evolution is
defined as follows: if there is a Poisson point with weight ω at a point (x0, t), then
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Fig. 1 Example of the Hammersley interacting fluid process

Mν
t ({x0}) = Mν

t−({x0}) + ω, and for x > x0,

Mν
t ((x0, x]) = (Mν

t−((x0, x]) − ω)+. (4.2)

Here, Mν
t− is the “mass distribution” of the fluid at time t if the Poisson point at (x0, t)

would be removed. To the left of x0 the measure does not change. In words, the Pois-
son point at (x0, t) moves a total mass ω to the left, to the point x0, taking the mass
from the first available fluid to the right of x0. See Fig. 1 for a visualization, in case of
atomic measures, of the process inside a space-time box. In this picture, restricted to
[0, x], the measure ν consists of three atoms of weight 5, 3 and 7. The measure Mν

t/2
consists of three atoms of weight 1, 4 and 6, while at time t , it consists of one atom
with weight 7.

It is not true that the evolution Mt is well defined for all measures ν (e.g. if we
start with a finite number of particles to the left of 0, every particle would be pulled
instantaneously to −∞). In this paper we follow the Aldous and Diaconis [1] graphical
representation in the last-passage model (compare to the result in the classical case,
found in their paper):

Proposition 4.1 Let N be the set of all positive, locally finite measures ν such that

lim inf
y→−∞

ν(y)

y
> 0. (4.3)
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For each ν ∈ N , the process defined by

Lν(x, t) := sup
z≤x

{ν(z) + L((z, 0), (x, t))} (x ∈ R, t ≥ 0) (4.4)

is well defined and the measure

Mν
t ((x, y]) := Lν(y, t) − Lν(x, t) , (4.5)

evolves according to the Hammersley interacting fluid system.

Proof It follows immediately from the definition that Lν(x, t) is increasing in x and t ,
even if Lν would not be finite everywhere. This implies that if we can prove that Lν

is finite on for example Z × Z+ with probability one, then almost surely, Lν is finite
everywhere. Therefore, we need only prove for any fixed point (x, t) that Lν(x, t) is
finite with probability one. Use (2.4) to see that for any ε > 0 and z ≤ x ,

P (L ((z, 0), (x, t)) > −εz) = P

(
L
(
(0, 0), (

√
(x − z)t,

√
(x − z)t)

)
> −εz

)
.

Defining r = √
(x − z)t and using Theorem 2.1, we get

P (L ((z, 0), (x, t)) > −εz) = P

(
L ((0, 0), (r, r)) > ε(−x + r2/t)

)
≤ c1e−c2r ,

for some positive constants c1 and c2, and for r big enough. Borel-Cantelli then shows
that

L ((z, 0), (x, t))

−z
a.s.−→ 0 (z → −∞).

Now (4.3) gives us the desired result.
We can show that x �→ Lν((z, 0), (x, t)) is càdlàg using the fact that for y ≥ x ,

L((z, 0), (y, t)) ≤ L((z, 0), (x, t)) + L((x+, 0), (y, t)) and

lim
y↓x

L((x+, 0), (y, t)) = 0,

where x+ means that you are not allowed to use a possible Poisson point directly
above x . Therefore, Mν

t is indeed a locally finite measure on R. To see that Mν
t fol-

lows the Hammersley interacting fluid dynamics that we have just defined, suppose
that there is a Poisson point in (x0, t) with weight ω. For x < x0, this Poisson point
has no effect, so Mν

t = Mν
t− on (−∞, x0). Clearly,

Mν
t ({x0}) = Mν

t−({x0}) + ω.

If x > x0, then the longest path to (x, t) that attains the supremum in (4.4) can either
use the weight in (x0, t), which would give Lν(x, t) = Lν(x0, t) = Lν(x0, t−) + ω,
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or it could ignore the weight in (x0, t), which would give Lν(x, t) = Lν(x, t−). This
proves that

Mν
t ((x0, x]) = Lν(x, t) − Lν(x0, t)

= max {Lν(x0, t−) + ω , Lν(x, t−)} − Lν(x0, t−) − ω

= (Mν
t−((x0, x]) − ω

)

+ .

��
We have two remarks concerning the interactive fluid process. The first remark

concerns the flux of the fluid system through the t-axis. We define the flux measure
ν∗ on [0,∞) such that for t ≥ s ≥ 0,

ν∗((s, t]) = Lν(0, t) − Lν(0, s). (4.6)

In Fig. 1 we can see that ν∗((0, t]) = 10, whereas ν∗((0, t/2]) = 4. We can compare
ν∗ to the process of sinks in the classical Hammersley process with sources and sinks,
as defined in [5]. We then have the following lemma.

Lemma 4.2 For x, t ≥ 0,

Lν(x, t)=max

{

sup
0≤z≤x

{ν(z)+L((z, 0), (x, t))} , sup
0≤z≤t

{ν∗(z)+L((0, z), (x, t))}
}

.

(4.7)

The way to prove Lemma 4.2 leads us to our second remark: the supremum in the defi-
nition of Lν(x, t) is actually attained (it is therefore a maximum). This is the statement
of the following lemma.

Lemma 4.3 With probability 1, the set {z ≤ x : Lν(x, t) = ν(z) + L((z, 0), (x, t))}
is non-empty, for all (x, t) ∈ R × [0,∞). Furthermore, if we define

Zν(x, t) = sup{z ≤ x : Lν(x, t) = ν(z) + L((z, 0), (x, t))}, (4.8)

then

Lν(x, t) = ν(Zν(x, t)) + L((Zν(x, t), 0), (x, t)).

Proof This lemma relies on the fact that on a compact interval, the sum of a non-
decreasing right-continuous function (ν(z)) and a non-increasing left-continuous func-
tion (z �→ L((z, 0), (x, t))) attains its maximum, and the set of maxima is closed
(see Lemma 9.1 in Sect. 9). Now we have to show that with probability 1, for all
(y, s) ∈ R×[0,∞), the supremum over z ≤ y can actually be restricted to a compact
set. For a single (x, t) (and therefore for a countable set of (x, t)’s), this has been
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done in the proof of Proposition 4.1, using (4.3) and Theorem 2.1 for L . Then we can
conclude the desired compactness property for all (y, s) by using the inequality

ν(z) + L((z, 0), (y, s)) ≤ ν(Zν(x, t)) + L((Zν(x, t), 0), (y, s))

∀z ≤ Zν(x, t), y ≥ x, s ≤ t.

This last inequality can be seen as follows: suppose there exists z < Zν(x, t) such
that

ν(z) + L((z, 0), (y, s)) > ν(Zν(x, t)) + L((Zν(x, t), 0), (y, s)).

Then the finite geodesic �((z, 0), (y, s)) must intersect the finite geodesic
�((Zν(x, t), 0), (x, t)) in some point c. It follows that L((z, 0), (y, s))= L((z, 0), c)
+ L(c, (y, s)), and L((Zν(x, t), 0), (x, t)) = L((Zν(x, t), 0), c) + L(c, (x, t)). Fur-
thermore, we have that

ν(z) + L((z, 0), (y, s)) > ν(Zν(x, t)) + L((Zν(x, t), 0), c) + L(c, (y, s)).

Combining this gives

ν(z) + L((z, 0), (x, t)) ≥ ν(z) + L((z, 0), c) + L(c, (x, t))

> ν(Zν(x, t)) + L((Zν(x, t), 0), c) + L(c, (x, t))

= ν(Zν(x, t)) + L((Zν(x, t), 0), (x, t)),

which contradicts the definition of Zν(x, t). ��
Note that we have also proved the following statement:

∀y ≥ x ∀ 0 ≤ s ≤ t : Zν(y, s) ≥ Zν(x, t). (4.9)

Proof of Lemma 4.2: Define ν− as the restriction of ν to (−∞, 0] (so ν− has no mass
on the positive x-axis). Then for x, t ≥ 0, there exists Z ≤ 0, so that

Lν−(x, t) = ν(Z) + L((Z , 0), (x, t)).

The finite geodesic �((Z , 0), (x, t)) crosses the positive t-axis in some point, call it
(0, s). It is not hard to see that ν∗(s) = ν(Z) + L((Z , 0), (0, s)) and

Lν−(x, t) = ν∗(s) + L((0, s), (x, t)) ≥ ν∗(s̃) + L((0, s̃), (x, t)) (∀0 ≤ s̃ ≤ t).

This follows from similar arguments as at the end of the proof of Lemma 4.3. Finally,
we remark that

Lν(x, t) = max

{

sup
z≤0

{ν−(z) + L((z, 0), (x, t))} , sup
z>0

{ν(z) + L((z, 0), (x, t))}
}

,

from which Equation (4.7) follows. ��
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Assume that we have a probability measure defined on N and consider ν ∈ N
as a realization of this probability measure. We say that ν is time invariant for the
Hammersley interacting fluid process (in law) if

Mν
t

D= Mν
0 = ν for all t ≥ 0.

In this case, we also say that the underlying probability measure on N is an equilibrium
measure. Let α ∈ (π, 3π/2) and define the measure in N

να((x, y]) = Bα ((x, 0), (y, 0)) for x ≤ y ∈ R.

Compare this to (3.4) (να = να
0 ). It was this interplay between the longest path

description and the equilibrium interacting particle system that proved very fruitful
in the results for the classical Hammersley process in Cator and Groeneboom [6].
We will attempt the same in the interacting fluid system, but since the equilibrium
solution is not explicitly known, we needed to develop new tools and ideas, which in
fact also had interesting applications for the classical case. Of course, as an immediate
consequence of Proposition 3.2, we do have the following

Corollary 4.4 The random measures να = να
0 (3.4) are all equilibrium measures for

the Hammersley interacting fluid process. Furthermore, for all (x, t) ∈ R × [0,∞),

Lνα (x, t) = Bα((0, 0), (x, t)).

5 Ergodicity and uniqueness of the equilibrium measure

To prove the next theorem about time invariance, we need to define the following exit
points: for t ≥ 0,

(Zα(x, t), 0) is the crossing point of �α(x, t) and R × {0}. (5.1)

This was already used in the proof of Proposition 3.2. Analogously, for x ≥ 0,

(0, Z∗
α(x, t)) is the crossing point of �α(x, t) and {0} × R. (5.2)

We have the following proposition.

Proposition 5.1 For all x ∈ R and t ≥ 0, we have

Zα(x, t) = Zνα (x, t).

Proof From (3.3) and Corollary 4.4 we immediately get that Zνα (x, t) ≥ Zα(x, t).
Now suppose Zνα (x, t) > Zα(x, t). Since

Bα((0, 0), (x, t)) = Lνα (x, t)

= να(Zνα (x, t)) + L((Zνα (x, t), 0), (x, t))

= Bα((0, 0), (Zνα (x, t), 0)) + L((Zνα (x, t), 0), (x, t)),
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we conclude that

L((Zνα (x, t), 0), (x, t)) = Bα((Zνα (x, t), 0), (x, t)).

Now define c as the coalescing point of the α-ray starting at (Zνα (x, t), 0) and the
α-ray starting at (x, t) (which goes through (Zα(x, t), 0)). Then

L(c, (x, t)) = Bα(c, (x, t)) (because the two points are on one α-ray)

= Bα(c, (Zνα (x, t), 0)) + Bα((Zνα (x, t), 0), (x, t))

= L(c, (Zνα (x, t), 0)) + L((Zνα (x, t), 0), (x, t)),

which would imply that there exists a longest path from c to (x, t) which is strictly
below the original α-ray, contradicting the uniqueness of the lowest finite geodesic.

��
Since the α-ray �α(0) has asymptotic direction (cos α, sin α) with probability 1,

we can easily see that

lim
t→∞ P (|Zα(t, (tan α)t)| ≥ εt) = lim

t→∞ P
(|Z∗

α(t, (tan α)t)| ≥ εt
) = 0. (5.3)

This follows from the fact that Zα(t, (tan α)t) has the same distribution as the crossing
of �α(0) with the horizontal line R × {−(tan α)t}, and a similar relation holds for
Z∗

α(t, (tan α)t).
However, we can also control Zν for more general ν. Compare the following lemma

to Lemma 3.3 in Ferrari, Martin and Pimentel [9].

Lemma 5.2 Suppose ν ∈ N . Assume that

lim inf
z→−∞

ν((z, 0])
−z

≥ γ

2

√
tan α and that lim sup

z→∞
ν((0, z])

z
≤ γ

2

√
tan α. (5.4)

Let h ∈ R. Then, with probability one,

lim
t→∞

Zν (t + h, (tan α)t)

t
= 0.

Furthermore, define

Z̃ν,h (t, (tan α)t) = argmax
z≤t

{ν(z) + L((−t + z,−(tan α)t), (h, 0))} . (5.5)

Here we take the right-most maximum. The idea is that we move the origin to
(−t,−(tan α)t) and look at the exit point for (h, 0). Then, with probability one,

lim
t→∞

Z̃ν,h (t, (tan α)t)

t
= 0.

The slightly technical proof of this lemma can be found in Appendix.
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Now we can prove the most important result of this section.

Theorem 5.3 The process x �→ να(x) is stationary and ergodic and its intensity is
given by

Eνα(1) = γ (F)

2

√
tan α. (5.6)

Finally, consider a random ν ∈ N , which is time invariant, and which defines a sta-
tionary and ergodic process on R with 0 < E(ν(1)) < +∞. Define α ∈ (π, 3π/2)

by

α = arctan

(
2

γ (F)
Eν(1)

)2

.

Then ν
D= να .

Proof The fact that x �→ να(x) is stationary and that 0 < E(να(1)) < +∞ fol-
lows directly from Proposition 3.1. Ergodicity will follow from Proposition 5.6. Fix
α ∈ (π, 3π/2) and set ρ = ρ(α) := √

tan α. Since the model is invariant under the
map (x, t) → (ρx, t/ρ),

Eνα(1) = Eν5π/4(ρ) = Eν5π/4(1)
√

tan α.

Now, for all t ≥ 0,

Lν5π/4(t, t) = ν5π/4
(
Zν5π/4(t, t)

)+ L
(
(Zν5π/4(t, t), 0), (t, t)

)
.

By Proposition 5.1, Zν5π/4(t, t) = Z5π/4(t, t) =: Z5π/4(t). If Z5π/4(t) ≥ 0 then

0 ≤ Lν5π/4(t, t) − L ((0, 0), (t, t)) ≤ ν5π/4
(
Z5π/4(t)

)
.

On the other hand, if Z5π/4(t) < 0 then Z∗
5π/4(t) := Z∗

ν5π/4
(t, t) = Z∗

5π/4(t, t) ≥ 0.
It follows from (4.6) and Corollary 4.4 that

ν∗
α(x) = Bα(0, (0, x)). (5.7)

From the additivity of the Busemann function, we know that

Lν5π/4(t, t) = ν∗
5π/4

(
Z∗

5π/4(t, t)
)

+ L
(
(0, Z∗

5π/4(t, t)), (t, t)
)

.

Finally we obtain that,

0 ≤ Lν5π/4(t, t) − L ((0, 0), (t, t)) ≤ max
{
ν5π/4(Z5π/4(t)), ν

∗
5π/4(Z∗

5π/4(t))
}

.
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Clearly, from Proposition 3.1(3) (symmetry) it follows that ν∗
5π/4

D= ν5π/4. Equation
(5.3) implies that for any η > 0, P(max{Z5π/4(t), Z∗

5π/4(t)} ≥ ηt) → 0 as t → ∞.
Let ε > 0. The ergodicity of ν5π/4 (and of ν∗

5π/4) and the fact that Eνα(1) < +∞
imply that there exists η > 0 such that for all t big enough,

P(ν5π/4(ηt) ≥ εt or ν∗
5π/4(ηt) ≥ εt) ≤ ε/2.

Again for t big enough, we know that P(max{Z5π/4(t), Z∗
5π/4(t)} ≥ ηt) ≤ ε/2.

Combining all this gives, for t big enough,

P(Lν5π/4(t, t) − L ((0, 0), (t, t)) ≥ εt) ≤ ε.

Therefore,

Lν5π/4(t, t) − L ((0, 0), (t, t))

t
D−→ 0. (5.8)

By Corollary 4.4 and using Proposition 3.1(3), we get

ELν5π/4(t, t) = EB5π/4(0, (t, t))

= EB5π/4(0, (t, 0)) + EB5π/4((t, 0), (t, t))

= 2tE(ν5π/4(1)).

The ergodic theorem applied to B5π/4(t, t)1 implies that, with probability one,

lim
t→∞

B5π/4(t, t)

t
= 2Eν5π/4(1).

Combining this with Theorem 2.1 and (5.8), one gets (5.6).
Now we need to address the uniqueness of να . Suppose ν ∈ N is ergodic and

time invariant. Define Z(t) = Zν(t, (t tan α)) and Zh(t) = Zν(t + h, (tan α)t). Now
define, as in Lemma 5.2,

Z̃(t) = argmax
z≤t

{ν(z) + L((−t + z,−(tan α)t), 0)}

and

Z̃h(t) = argmax
z≤t+h

{ν(z) + L((−t + z,−(tan α)t), (h, 0))} .

Here, we take the right-most location of the maximum. The intuition for Z̃(t) and
Z̃h(t) is that we place the origin at (−t,−(tan α)t), and look at the exit-point for the

1 Ergodicity will follow from Proposition 5.6.
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path that starts at (−t,−(tan α)t), picks up mass from ν and then goes to 0, resp.
(h, 0). Clearly, we have

(Z(t), Zh(t))
D= (Z̃(t), Z̃h(t)).

Since ν is ergodic, and by our choice of α, ν satisfies (5.4). Lemma 5.2 then tells us
that

(Z̃(t), Z̃h(t))/t
a.s.−→ (0, 0).

This means that the two paths �((−t + Z̃(t),−t (tan α)), 0) and �((−t + Z̃h(t),
−(tan α)t), (h, 0)) will converge in any bounded box to the α-rays �α(0) and
�α((h, 0)) respectively (this follows from Theorem 2.2(2)). However, these two α-
rays will coalesce, which means that with probability 1, there exists t0 > 0 such that for
all t ≥ t0, the two converging paths coalesce, which in turn implies that Z̃(t) = Z̃h(t)
(because they are both the right-most point where the maximum takes place and, as
soon as they coalesce, they get the same exit point). Now define

L̃(t) = sup
z≤t

{ν(z) + L((−t + z,−(tan α)t), 0)}

and

L̃h(t) = sup
z≤t+h

{ν(z) + L((−t + z,−(tan α)t), (h, 0))} .

We also have that

(L̃(t), L̃h(t))
D= (Lν(t, (tan α)t), Lν(t + h, (tan α)t)).

Furthermore, if t ≥ t0, then

L̃h(t) − L̃(t) = Bα(0, (h, 0)) = να((0, h]).

This proves that

Mν
t (tan α)((t, t + h]) = Lν(t + h, (tan α)t) − Lν(t, (tan α)t)

D−→ να((0, h]).

Since ν is time invariant and ergodic, we see that

ν((0, h]) D= Mν
(tan α)t ((t, t + h]) D= να((0, h]).

In principle, we need to show convergence for a finite number of h’s simultaneously,
but it is not hard to see that the ideas we used can be extended to that case, at the
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cost of some notational burden. Note that we have proved that for any deterministic
ν satisfying (5.4), Mν

(tan α)t ([t, t + h]) converges in distribution to να(h), as a process
in h. This shows that in a rarefaction fan, the fluid process converges locally to the
correct equilibrium process (local equilibrium). ��
Corollary 5.4

E(ν∗
α(1)) = γ (F)

2
√

tan α
.

In particular, for all α ∈ (π, 3π/2), we have

E(να(1)) · E(ν∗
α(1)) = γ (F)2

4
.

Proof Remember that ν∗
α(x) = Bα(0, (0, x)). For α = 5π/4, the result follows Prop-

osition 3.1(3) (symmetry) and Theorem 5.3. Now use the map (x, t) �→ (ρx, t/ρ) to
see that

ν∗
α(x)

D= ν∗
5π/4

(
x/

√
tan α

)
.

��
For the classical Hammersley model, we know that if ν̄λ is a Poisson counting pro-

cess of intensity λ, then ν̄λ is time invariant and ergodic. Therefore it must be equal in
distribution to να , for some α ∈ (π, 3π/2). Choose λ = 1 and define α1 ∈ (π, 3π/2)

such that ν̄1
D= να1 . We know that in the classical Hammersley process,

L ν̄1(0, t)
D= ν̄1((0, t]).

This means that να1(t)
D= ν∗

α1
(t). We can now use Theorem 5.3 and Corollary 5.4 to

conclude that α1 = 5π/4 (since we must have that tan α1 = 1). Consequently,

1 = Eν̄1(1) = Eν5π/4(1) = γ (δ1)

2

√
tan(5π/4) = γ (δ1)

2
,

which proves that γ (δ1) = 2. We remark that the proof that the Poisson process is time
invariant does not depend on the value of γ (δ1). It only relies on an explicit calculation
of the generator associated to Mt . (See Lemma 8 of [1], or Theorem 3.1 of [6]).

Corollary 5.5 In the classical Hammersley model, we have that γ (1) = 2 and that

να
D= ν̄λ(α) where λ(α) = √

tan α.

For general weight distributions F , we were not able to get more information on να

(not even a guess for a good candidate). In particular, we do not know how to calculate
γ (F). This does seem to be the most important contribution of the interacting fluid
representation: once we have a good candidate for να , we can check it by showing that
it is invariant under the evolution of the interacting fluid. In fact, even in the results
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for the classical Hammersley case found in Aldous and Diaconis [1] and Cator and
Groeneboom [5,6], this is where the interacting particle process proves its worth.

5.1 Mixing property of να

We will show that the measure να has the following mixing property, usually called
strong mixing in dynamical systems. We consider the σ -algebra F = σ {να((a, b]) :
a ≤ b ∈ R} on the sample space �, defined by the compound Poisson process. We can
define the translation τt as an F-measurable map from � to �, simply by translating
all Poisson points by the vector (t, 0).

Proposition 5.6 For each α ∈ (π, 3π/2), να satisfies

∀A, B ∈ F : lim
t→∞ P(A ∩ τ−1

t (B)) = P(A)P(B). (5.9)

In particular, this implies that να is ergodic.

Proof From translation invariance and a standard approximation of sets in F , it is
enough to prove (5.9) for all A, B ∈ Fh := σ {να((a, b]) : a ≤ b ∈ [0, h]}. Con-
sider the paths �((−t,−t (tan α)), 0) and �((−t,−t (tan α)), (h, 0)). Almost surely,
these paths will converge to �α(0) and �α((h, 0)), respectively, on any finite box.
This means, that if we define for a, b ∈ [0, h]

ν(t)
α ((a, b]) = L((b, 0), (−t,−t (tan α))) − L((a, 0), (−t,−t (tan α))),

then for t big enough, we have ν
(t)
α = να|[0,h]. Clearly, τ−1

t+h(B) is independent of ν
(t)
α ,

since they depend on the Poisson process to the left respectively to the right of the line
{−t} × R. Define the event

Ct = {∀s ≥ t : ν(s)
α = να|[0,h]}

and denote A(t) the counterpart of the event A in F (t)
h := σ {ν(t)

α ((a, b]) : a ≤ b ∈
[0, h]}; although it is intuitively clear what is meant, we will make this more precise
at the end of the proof. Then

|P(A ∩ τ−1
t+h(B)) − P(A)P(B)| ≤ |P(A ∩ τ−1

t+h(B) ∩ Ct ) − P(A)P(B)| + P(Cc
t )

= |P(A(t) ∩ τ−1
t+h(B) ∩ Ct ) − P(A)P(B)| + P(Cc

t )

≤ |P(A(t) ∩ τ−1
t+h(B)) − P(A)P(B)| + 2P(Cc

t )

= P(B)|P(A(t)) − P(A)| + 2P(Cc
t )

≤ 4P(Cc
t ).

The proposition now follows from the fact that2 P(Cc
t ) → 0.

2 We note that, in the classical model, we have independent increments even if the probability of the event
Cc

t does not decay to 0 very fast. This indicates that, to show mixing by using these events may not be the
best strategy.
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To see what is meant by A(t), we define the index-set I = {να((a, b]) : a ≤ b ∈
[0, h]} and I (t) = {ν(t)

α ((a, b]) : a ≤ b ∈ [0, h]}. There is a canonical bijection
i : I → I (t). Define B as the product σ -algebra on R

I , and likewise B(t). Extend the
canonical map i such that i : R

I → R
I (t)

. Define the map

φ : � → R
I : ω �→ {να((a, b])(ω) : a ≤ b ∈ [0, h]},

and likewise φt : � → R
I (t)

. We know that Fh = φ−1(B) and F (t)
h = φ−1

t (B(t)). This
means that there exists U ∈ B, such that A = φ−1(U ). We define A(t) = φ−1

t (i(U )).
��

6 Central limit theorems for the Busemann function in the classical model

Our geometrical approach yields a very explicit description of the fluctuations of the
Busemann function in the classical Hammersley model. We first notice the following
relations that will be derived from Proposition 3.1 and Proposition 3.2:

Proposition 6.1 Consider the classical Hammersley last-passage model with weights
equal to 1 and recall 
β := (cos β, sin β).

• If β ∈ [0, π ] then, as processes,

Bα(0, · 
β) = Lνα (· 
β) ;

• Consider two independent one-dimensional Poisson processes Xα and Yα with
intensity λ(α) and 1/λ(α), respectively. Here, λ(α) = √

tan α. If β ∈ [π/2, π ]
then, as processes for t ≥ 0,

Bα(0, t 
β)
D= Yα (t sin β) − Xα (−t cos β) .

Proof The first statement follows directly from Proposition 3.2. To obtain the second
relation, note that, by additivity and anti-symmetry (Proposition 3.1),

Bα(0, t 
β) = Bα(0, (t cos β, 0)) + Bα((t cos β, 0), t 
β)

= Bα((t cos β, 0), t 
β) − Bα((t cos β, 0), 0)

= Lνα ((t cos β, 0), (t cos β, t sin β)) − Lνα ((t cos β, 0), 0).

In the classical Hammersley process we have a version of Burke’s Theorem (see
Theorem 3.1 in [5]), which implies that both t �→ Lνα (0, (t, 0)) and t �→ Lνα (0, (0, t))
are Poisson processes with intensity λ(α) and 1/λ(α) respectively, and that t �→
Lνα (0, t 
β) has independent increments. This last statement can be seen in the follow-
ing way: consider the increments Lνα (0, s 
β) and Lνα (s 
β, t 
β), for 0 ≤ s ≤ t ; see
Fig. 2.

Then both increments depend on the independent Poisson processes Lνα restricted
to (the line segments) 0A and AB, and on the Poisson process in the triangle 0AB.
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Fig. 2 Independent increments
for Lνα

Burke’s Theorem for Lνα now implies that Lνα restricted to C E is independent of
Lνα restricted to E D. Since Lνα restricted to B E depends on Lνα on C E, C B and the
Poisson process in EC B, whereas Lνα restricted to 0E depends on Lνα on 0D, DE
and the Poisson process in 0DE , and since these six processes are all independent,
we proved that the increments are independent. This proves the Proposition. ��

In the classical set-up, Corollary 5.5, together with Proposition 6.1, implies that:

(1) if β = 0 then

Bα(0, · 
β)
D= Xα(·) ,

where Xα is a Poisson process of intensity λ(α).
(2) if β ∈ (0, π/2) then

Bα(0, · 
β)
D= L ν̄λ(α)

(· 
β) ,

where λ = λ(α) = √
tan α;

(3) if β ∈ [π/2, π ] then,

Bα(0, · 
β)
D= Yα(· sin β) − Xα(− · cos β) ,

where Yα and Xα are two independent one-dimensional Poisson processes vari-
ables of intensity 1/λ(α) and λ(α), respectively.

Baik and Rains [2] proved the following central limit theorem for the Hammersley
classical model with external “sources”. Let �(x) be the standard normal distribution
function, and let F0(x) be the zero mean Tracy–Widom type distribution function
introduced in Definition 2 of [2].

(4) If λ ∈ (0, 1) then

lim
s→∞ P

(
L ν̄λ (s, s) − (1/λ + λ)s

(
√

1/λ − λ)s1/2
≤ x

)

= �(x) ;
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(5) If λ = 1 then

lim
s→∞ P

(
L ν̄λ (s, s) − 2s

s1/3 ≤ x

)

= F0(x) ;

(6) If λ > 1 then

lim
s→∞ P

(
L ν̄λ (s, s) − (λ + 1/λ)s

(
√

λ − 1/λ)s1/2
≤ x

)

= �(x).

These results naturally lead us to a central limit theorem for the Busemann function

B(β, ·) := B5π/4 (0, (· cos β, · sin β)) .

By (2.4), w.l.o.g. we can restrict ourselves to α = 5π/4. In this case we have

EB(β, t) = (cos β + sin β)t.

Corollary 6.2 Consider the Hammersley classical last-passage model. Then

lim
t→∞ P

(
B (π/4, t) − √

2t

2−1/6t1/3 ≤ x

)

= F0(x) ,

while for β ∈ [0, π/4)

lim
t→∞ P

(
B (β, t) − (cos β + sin β)t

(
√

cos β − sin β)t1/2
≤ x

)

= �(x) ,

and for β ∈ (π/4, π ]

lim
t→∞ P

(
B (β, t) − (cos β + sin β)t

(
√

sin β − cos β)t1/2
≤ x

)

= �(x).

Proof The statement for β = 0 and β ∈ [π/2, π ] follows (1) and (3), together with
the central limit theorem. Now, let us take β ∈ (0, π/2). Consider the map (2.4)

with ρ(β) = √
tan β. Then B(β, t)

D= L ν̄ρ (s, s), where s = (
√

sin β cos β)t , and for
β ∈ (0, π/4] we have ρ ∈ (0, 1] while for β ∈ (π/4, π ] we have ρ ∈ (1,∞). ��

6.1 The crossing formula

In the classical model, the exit point formula for the equilibrium regime, proved by
Cator and Groeneboom [6], is

VarL ν̄λ (x, t) = −λx + t

λ
+ 2λEZ ν̄λ (x, t)+ , (6.1)
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where VarX is the variance of X , and X+ := max{X, 0}. Together with Proposi-
tions 5.1 and 6.1, this relates the variance of the Busemann function at (x, t) with the
position of the crossing point of the α-ray starting at (x, t):

VarBα(0, (x, t)) = −(
√

tan α)x + t√
tan α

+ 2(
√

tan α)EZα(x, t)+. (6.2)

In particular,

VarB5π/4(0, (t, t)) = 2EZ5π/4(t, t)+.

We note that this crossing point formula can be seen as a version of the scaling identity
ξ = 2χ , where χ and ξ are the critical exponents that measure the order of magnitude
of the fluctuations of Busemann functions and crossing points, respectively.

7 The multi-class process and second class particles

For two positive measures ν and ν̄ on R, we say that ν̄ dominates ν, notation ν̄ ≥ ν,
whenever ν̄(I ) ≥ ν(I ) for all measurable I ⊆ R.

Proposition 7.1 Suppose we have two measures ν, ν̄ ∈ N such that ν̄ ≥ ν. Define the
corresponding interacting fluid system as Mν

t and M ν̄
t , using the same weighted Pois-

son process (basic coupling). Then M ν̄
t ≥ Mν

t (as measures). If ν̄|(−∞,0) = ν|(−∞,0),
then M ν̄

t ([0, x]) − Mν
t ([0, x]) is non-increasing in t for all x ≥ 0.

Proof Fix an interval [−K , K ] and a time t . There exists (a random) M > 0 such that
Mν

t and M ν̄
t restricted to [−K , K ] only depend on Poisson points in [−M, K ]× [0, t]

and on ν and ν̄ restricted to [−M, K ] (it is not hard to see that we can take M =
Zν(−K , t) (see (4.9)). This means that we are only dealing with a finite number of
Poisson points, so if we can prove that the premise “M ν̄

s ≥ Mν
s for all s < t” implies

that M ν̄
t ≥ Mν

t , we will have proved the first statement, since it is obviously true
for t = 0. Suppose there exists a Poisson point at (x0, t) with weight ω for some
x0 ∈ [−M, K ], since otherwise the implication is immediate. We then know, using
Proposition 4.1 and (4.2), that if x0 < x ≤ y,

Mν
t ((x, y]) = (Mν

t−((x0, y]) − ω)+ − (Mν
t−((x0, x]) − ω)+

≤ (M ν̄
t−((x0, y]) − ω)+ − (M ν̄

t−((x0, x]) − ω)+
= M ν̄

t ((x, y]).

The inequality follows from the fact that if A ≥ B and Ã ≥ B̃ ≥ 0, then (A − ω)+ −
(B − ω)+ ≤ (A + Ã − ω)+ − (B + B̃ − ω)+. If x ≤ x0 < y or x ≤ y ≤ x0, the
implication is straightforward, following a similar split up.

123



Busemann functions and equilibrium measure

The second statement follows from a similar reasoning: suppose there is a Poisson
point at (x0, t) with weight ω. If x > x0 ≥ 0,

M ν̄
t ((x0, x]) − Mν

t ((x0, x]) = (M ν̄
t−((x0, x]) − ω)+ − (Mν

t−((x0, x]) − ω)+
≤ M ν̄

t−((x0, x]) − Mν
t−((x0, x]).

The inequality follows from the fact that (A − c)+ − (B − c)+ ≤ A+ − B+ whenever
c ≥ 0 and A ≥ B. Since M ν̄

t ([0, x0]) − Mν
t ([0, x0]) = M ν̄

t−([0, x0]) − Mν
t−([0, x0]),

this shows that

M ν̄
t ([0, x]) − Mν

t ([0, x]) ≤ M ν̄
t−([0, x]) − Mν

t−([0, x]).

Now suppose x0 < 0 and x ≥ 0. Note that under the condition on ν̄, we have that for
all s ≥ 0 and all ε > 0, L ν̄ (−ε, s) = Lν(−ε, s), so

M ν̄
s ([0, x]) − Mν

s ([0, x]) = L ν̄ (x, s) − Lν(x, s).

When L ν̄ (x, t) does not use the weight at (x0, t), we know that L ν̄ (x, t) = L ν̄ (x, t−)

and that Lν(x, t) ≥ Lν(x, t−), which implies the desired result. If L ν̄ (x, t) does use
the weight at (x0, t), then it is not hard to see that Lν(x, t) will also use the weight
at (x0, t) (the longest path corresponding to ν̄ is always to the right of the path corre-
sponding to ν), which means that only the mass on the x-axis strictly to the left of 0
is used, and therefore M ν̄

t ([0, x]) = Mν
t ([0, x]). Finally, when x0 = x , we get that

M ν̄
t ([0, x]) = M ν̄

t−([0, x])+ω and Mν
t ([0, x]) = Mν

t−([0, x])+ω, and when x0 > x ,
we have M ν̄

t ([0, x]) = M ν̄
t−([0, x]) and Mν

t ([0, x]) = Mν
t−([0, x]). ��

In other words, Proposition 7.1 tells us that the interacting fluid system is mono-
tone: if one starts the fluid process with the same Poisson weights (basic coupling)
and with ordered initial configurations, then the order is preserved for all t ≥ 0. This
coupled process is called the multi-class fluid system. The multi-class system is just a
convention to describe a coupled process with ordered initial configurations (Ferrari
and Martin [8]).

7.1 The multi-class invariant process

With Theorem 2.2 in hands, for any countable D ⊆ (π, 3π/2), one can construct
simultaneously a collection of equilibrium processes {να : α ∈ D} by using the same
Poisson weights on R × R− and the Busemann functions Bα . It turns out that this
collection respects the order induced by the angles α ∈ D. More precisely:

Theorem 7.2 If ᾱ > α then νᾱ ≥ να . In particular, for any countable subset {αi : i ∈
Z} ⊆ D, if one runs simultaneously (basic coupling) the interacting fluid processes on

R × R+ with initial measures (ναi : i ∈ Z) then, whenever αi > α j , M
ναi
t ≥ M

να j
t

for all t ≥ 0, and

(M
ναi
t : i ∈ Z)

D= (ναi : i ∈ Z).
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Proof Let z′ ≥ z ∈ R. Let m be the crossing point between�ᾱ((z, 0)) and�α((z′, 0)).
Furthermore, denote c as the coalescence point of the two α-rays �α((z, 0)) and
�α((z′, 0)), and denote c̄ as the coalescence point of the two ᾱ-rays �ᾱ((z, 0)) and
�ᾱ((z′, 0)). Then

νᾱ

([z, z′])− να

([z, z′]) = {L(c̄, (z′, 0)) − L(c̄, (z, 0))
}

− {L(c, (z′, 0)) − L(c, (z, 0))
}

= L(c̄, (z′, 0)) − {L(c̄, m) + L(m, (z′, 0))
}

+L(c, (z, 0)) − {L(c, m) + L(m, (z, 0))} ≥ 0.

Notice that the Busemann functions Bα are a function of the compound Poisson pro-
cess (P, w): Bα(·, ·) = Bα(·, ·)(P, w) (here w denotes the weights). Since p + P, the
translated version of P, has the same distribution as P, we get that

{Bαi (·, ·)(P, w) : i ∈ Z} D= {Bαi (·, ·)(p + P, w) : i ∈ Z}.

This shows time invariance for the Busemann multi-class process. ��
This result is also new in the classical Hammersley interacting system, where a dif-

ferent and explicit description of the invariant process with a finite number of classes
is given in Ferrari and Martin [8].

7.2 Law of large numbers for second-class particles

Proposition 7.1 can be used to define the notion of second-class particles. In the inter-
acting fluid system we can define it analogously to the interacting particle case, with
a slight adaptation due to the continuous weights. We start by changing ν into ν̄, by
putting an extra weight ε > 0 in 0, so

ν̄([0, x]) = ν([0, x]) + ε for x ≥ 0.

With this new process, and using the same Poisson weights, we define M ν̄
t . Clearly,

M ν̄
t ([0, x]) ≤ Mν

t ([0, x]) + ε.

Now define the location of the second class particle Xν(t) as

Xν(t) = inf{x ≥ 0 : M ν̄
t ([0, x]) = Mν

t ([0, x]) + ε}.

By Proposition 7.1, Xν(t) is a non-decreasing function of t , meaning that the second
class particle moves to the right. In fact, the extra mass ε will spread out, and our
definition coincides with the rightmost point of this spread-out mass. This is a natu-
ral choice, since we will show that it does not depend on the total mass ε, while for
example the leftmost point does depend on ε.
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There is the following important connection between the longest path description
and the second class particle. Let ν+ be the process defined by ν+(x) = ν(x) for
x ≥ 0, and by ν+(x) = −∞ for x < 0. We also define the process ν− by setting
ν−(x) = 0 for x ≥ 0, and ν−(x) = ν(x) for x < 0. Then

Lν+(x, t) =
{

sup{L((z, 0), (x, t)) + ν(z) : 0 ≤ z ≤ x} if x ≥ 0
−∞ if x < 0,

and

Lν−(x, t) = sup{L((z, 0), (x, t)) + ν(z) : z < 0 and z ≤ x}.

Clearly,

Lν(x, t) = max {Lν+(x, t), Lν−(x, t)} .

Now suppose x ≥ 0. If Lν+(x, t) ≥ Lν−(x, t), there exists a longest path that does
not use any weight of ν on (−∞, 0). This means that if we add a weight ε > 0 in the
origin, L ν̄ (x, t) = L ν̄+(x, t) = Lν(x, t) + ε. Using Proposition 4.1, we see that this
means that M ν̄

t (x) = Mν
t (x) + ε, so Xν(t) ≤ x . If on the other hand we start with

Xν(t) ≤ x , we conclude that M ν̄
t (x) = Mν

t (x) + ε, using Proposition 7.1 and the fact
that Mν

t and M ν̄
t are right-continuous. This in turn means that L ν̄ (x, t) = Lν(x, t)+ε,

which is only possible if Lν+(x, t) ≥ Lν−(x, t). We have shown that

{Xν(t) ≤ x} = {Lν+(x, t) ≥ Lν−(x, t)}. (7.1)

Note that this can be rewritten as

{Xν(t) ≤ x} = {Zν(x, t) ≥ 0}. (7.2)

This means that the path of the second class particle corresponds to a competition
interface, a fact well known for the totally asymmetric exclusion process (Ferrari and
Pimentel [10]). This allows us to show that the second class particle satisfies a strong
law whenever ν+ and ν− have asymptotic intensities. The proof of this does not use
a coupling of two invariant versions of the fluid process, as is usual in the interacting
particle case, but it uses the longest path description in a direct way. We would like
to point out that in our general set-up, with random weights on the Poisson points,
we do not have an equivalent of Burke’s Theorem. This means that the time-reversed
process is not a Hammersley interacting fluid system. Therefore, the path of a second
class particle in general does not coincide in law with a longest path in the interacting
fluid system, in contrast to the classical case, where the statement is true. However,
we do have the following connection.

Proposition 7.3 Assume that the distribution of ν is translation invariant. Then, for
any t ≥ 0, we have that

Xν(t) − x
D= −Zν(x, t).
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Proof This follows almost immediately from (7.2), since that equality can be rewritten
as

{Xν(t) − x ≤ h} = {Zν(x + h, t) ≥ 0}.

Now use translation invariance to see that

Zν(x + h, t)
D= Zν(x, t) + h.

Combining these two equations proves the proposition. ��
When we consider all α-rays starting at the line R × {t} and we move from left to

right, (Xνα (t), t) is the first point where the α-ray passes the origin. It is tempting to
think that the α-ray starting at (Xνα (t), t) actually passes through the origin, but this is
false in general. In fact, after time t , most α-rays will have coalesced with other rays,
and the crossings with the x-axis will be quite far apart; we would conjecture they are
order t2/3 apart.

Proposition 7.3 allows us to use Theorem 2.1 and Lemma 5.2 to prove a strong law
for the second class particle in the case of να . However, we are able to prove a strong
law even for deterministic initial conditions that satisfy a density property given in
the following lemma, whose proof is very similar to Lemma 5.2 and can be found in
Sect. 9:

Lemma 7.4 Suppose ν ∈ N . Assume that

lim inf
d→∞ inf

z∈[−4d,4d]
ν((z − d, z + d])

2d
≥ γ

2

√
tan α. (7.3)

Let ε > 0. Then, with probability one,

lim inf
t→∞

Zν((1 + ε)t, (tan α)t)

t
> 0.

Now assume that

lim sup
d→∞

sup
z∈[−4d,4d]

ν((z − d, z + d])
2d

≤ γ

2

√
tan α. (7.4)

Then, with probability one,

lim sup
t→∞

Zν((1 − ε)t, (tan α)t)

t
< 0.

Note that in our density condition, we do not allow the midpoint of the interval to be
much larger than d. The reason for this might be more clear if we think of a Poisson
process: if we fix d, we can always find some z ∈ R such that the interval [z −d, z +d]
is empty! With this Lemma we can proof the following result:
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Theorem 7.5 Assume that

lim
x→∞

ν (x)

x
= lim

x→−∞
ν(x)

x
= γ

2

√
tan α. (7.5)

Then, with probability one,

lim
t→∞

Xν(t)

t
= 1

tan α
.

Proof It is enough to prove the statement for α = 5π/4. Suppose ε > 0 and Xν(t) ≤
t − 2εt . Define n = �t�. Then for t large enough, we have

Xν(n) ≤ (1 − 2ε)n + 1 + 2ε ≤ (1 − ε)n.

By (7.2), this implies that Zν((1 − ε)n, n) ≥ 0. If we can show that ν satisfies (7.4),
then we can use Lemma 7.4 to see that Zν((1 − ε)n, n) ≥ 0 can happen only for
finitely many n ≥ 1, which gives

lim inf
t→∞

Xν(t)

t
≥ 1.

Bounding the limit from above can be done using the analogous argument. To see that
(7.4) indeed holds, remark that for all 1 > η > 0, there exists R > 1 such that for all
z ≥ R,

∣
∣
∣
∣
ν((0, z])

z
− 1

2
γ

∣
∣
∣
∣ < η and

∣
∣
∣
∣
ν((−z, 0])

z
− 1

2
γ

∣
∣
∣
∣ < η.

Choose M > 1 such that ν([−R, R]) < M . Now choose d > M R/η. If z > d + R
or z < −d − R, we get that

ν((z − d, z + d]) ≤ dγ + (2|z| + 2d)η ≤ dγ + 10dη.

If |z + d| < R,

ν((z − d, z + d]) ≤ 1

2
(2d + R)γ + M + |z − d|η ≤ dγ + (5d + 2 + 1

2
γ )η,

and a similar bound holds when |z − d| < R. This proves that ν satisfies (7.4). ��

8 Lattice last-passage percolation

In the lattice last-passage percolation model we have a collection {ωz : z ∈ Z
2} of

i.i.d. non-negative random variables indexed by lattice points z ∈ Z
2. In this set-up,

123



E. Cator, L. P. R. Pimentel

one can define last-passage times for x ≤ y (we put an � on the top to indicate that it
refers to the lattice model) by maximizing over up-right paths connecting x to y:

L�(x, y) := max
�∈�(x,y)

{
∑

x′∈�

ωx′

}

.

Similarly to the previous case, one can start with a non-decreasing process ν� =
(ν�(z) : z ∈ Z) and define the evolution by

Mν�

t ((x, y]) := Lν�(y, t) − Lν�(x, t) , (x, y ∈ Z, t ≥ 0)

where

Lν�(x, t) := sup
z≤x

{
ν�(z) + L�((z, 0), (x, t))

}

In this set-up, ν� must have a left density analogous to (4.3), i.e.:

lim inf
z→−∞

ν�(z)

z
> 1.

For a survey in lattice last-passage percolation (and its connection with the totally
asymmetric exclusion process) we address to [15].

If ωz has an exponential distribution of parameter one, then the limit shape is given
by (

√
x + √

t)2 and a result similar to Theorem 2.2 holds [10]. This allows us to
construct Busemann functions B� for α ∈ (π, 3π/2). The same method developed to
prove Theorem 5.3 can be applied to this case. Since for exponential weights we also
know the invariant measure, we have that:

Theorem 8.1 For α ∈ (π, 3π/2) let

ν�
α(x) = B�

α ((0, 0), (x, 0)) for x ∈ Z.

Then ν�
α is the unique ergodic process on Z that satisfies

M
ν�
α

t
D= ν�

α for all t ≥ 0.

In particular, for any x, y ∈ Z, M
ν�
α

t (x, y) is distributed like a sum of i.i.d. exponential
random variables of intensity

ρ(α) := 1

1 + √
tan α

. (8.1)
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We remark that ρ(α) is obtained by solving

(1 + √
tan α)2 = 1

ρ
+ tan α

1 − ρ
.

The left-hand side corresponds to the limit shape of the lattice model, in direction
(1, tan α), while the right-hand side corresponds to summing up, in the same direc-
tion, the expectation of the equilibrium process in the horizontal and vertical axis.
(Compare this with (5.6) and its proof.) The dual process on the vertical axis, denoted
by ν�∗

α , is distributed like a sum of i.i.d. exponential weights of intensity 1−ρ(α) (see
also [3]).

To develop our method in the model with general i.i.d. weights, one would need an
inequality similar to (9.2) for the respective limit shape. This is, however, one of the
most challenging problems in lattice last (and first) passage percolation models.
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9 Appendix

9.1 Proof of Proposition 3.1

The translation invariance of the underlying compound two-dimensional Poisson
process,

{ωq : q ∈ (P + z)} D= {ωp : p ∈ P} ,

implies (1).
Anti-symmetry follows directly from the definition of the Busemann function. Now,

by taking a coalescence point c between �α(x),�α(y) and �α(z) we have that

Bα(x, z) = L(c, z) − L(c, x)

= L(c, z) − L(c, y) + L(c, y) − L(c, x)

= Bα(y, z) + Bα(x, y) ,

which clearly shows additivity, and finishes the proof of (2).
Define S as the reflection in the diagonal x = t . Then S(P) has the same distribution

as P, and x ≤ y ⇔ S(x) ≤ S(y). This shows that for all x, y ∈ R
2,

L(x, y)
D= L(S(x), S(y)).
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Note that the lowest geodesic in the reflected case is not necessarily the reflection of
the original lowest geodesic. However, we can now use (3.2) to prove (3).

Since L(c, y) ≥ L(c, x) whenever c ≤ x ≤ y we have that Bα(x, y) ≥ 0 whenever
x ≤ y. Note that

Bα(x, x + (1, 1)) ≥ L(x, x + (1, 1)).

Clearly, EL(x, x + (1, 1)) > 0 (there is a positive probability that a Poisson point will
fall in between x and x + (1, 1)). Also,

EBα(x, x + (1, 1)) = EBα(x, x + (1, 0)) + EBα(x, x + (0, 1)).

Property (3) then shows that

EBα(x, x + (1, 0)) = EBα(x, x + (0, 1)) > 0.

Properties (1) and (2) show that for h > 0, EBα(x, (h, 0)) = hEBα(x, x+(1, 0)) > 0,
and the same for the vertical direction.

To prove that its expected value is finite, without loss of generality, assume that
y = 0, that α = 5π/4, and that x = (−1,−1). Let z be the intersection point between
�5π/4(0) and the one-dimensional boundary of { p : p ≤ x }. By taking a coalescence
point c ≤ z ≤ x, we have that

B5π/4(x, 0) = L(c, 0) − L(c, x)

= L(c, z) + L(z, 0) − L(c, x)

= L(z, 0) − {L(c, x) − L(c, z)}
≤ L(z, 0).

Now assume that c0 > 0 is a small constant and that |z| ≤ c0r . Then

L(z, 0) ≤ min {L ((−1,−c0r), 0) , L ((−c0r,−1), 0)} ≤ P(c0r)

where P(r) denotes the number of Poisson points in the set [−1, 0] × [−c0r, 0] ∪
[−c0r, 0] × [−1, 0]. Hence

P (L(z, 0) ≥ r) ≤ P (|z| > c0r) + P (P(c0r) ≥ r) .

By choosing c0 small enough, one can make P (P(c0r) ≥ r) integrable over r > 0.
It is therefore enough to prove that P (|z| > c0r) is integrable over r > 0. We first
consider the case where z ≤ (−1,−c0r); the case z ≤ (−c0r,−1) can be handled in
exactly the same way. For this we need some notation: denote by Co(p, θ) the cone
starting at 0, with symmetry axis the line through 0 and p, and with θ equal to half the
top-angle. Furthermore, define for p ≤ 0,

Rout
0 (p) = {q ≤ p : p ∈ �(q, 0)}.
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By Lemma 2.3 of [7] (δ-straightness of geodesics): fix δ ∈ (0, 1/4) and θ ∈ (0, π/4).
There exist c1, c2, κ, M > 0 such that for all p ∈ Co((1, 1), θ) with |p| > M , we
have

P

⎛

⎝

⎛

⎝
⋃

p′∈p+[0,1]2

Rout
0 (p′)

⎞

⎠ ⊂ Co(p, |p|−δ)

⎞

⎠ ≥ 1 − c1e−c2|p|κ . (9.1)

Let b := (tan(23π/16))−1, b′ := (tan(21π/16))−1 and pn := (−bn,−n). Fix n0 > 0
big enough so that Co(pn, |pn|−δ) does not intersect {(−b′t,−t) : t > 0} for all
n ≥ n0 (recall that δ ∈ (0, 1/4) is fixed). Since the asymptotic direction of �5π/4(0)

equals (−1,−1) it will eventually be to left of {(−b′t,−t) : t > 0}. Therefore, if z ≤
(−1,−c0r) and c0r ≥ n0, there must be an n ≥ c0r and p′

n ∈ (pn+[0, 1]2)∩�5π/4(0)

such that

Rout
0 (p′

n) �⊂ Co(pn, |pn|−δ).

Using (9.1), we see that

P (z ≤ (−1,−c0r)) ≤
∑

n≥c0r

c1e−c2|pn |κ ,

for c0r > max{n0, M}, which shows integrability. This finally implies that EL(z, 0) <

∞, and consequently, EB5π/4(x, 0) < ∞.
By additivity and anti-symmetry, to prove cadlag, we can restrict our attention to

y = (0, 0), λ = 0 and q = (1, 0) so that ε is varying on the horizontal direction
close to the origin. For different values of y the argument is similar. Choose c as the
coalescing point of �α(0) and �α(q). Furthermore, define y < 0 such that (0, y) is
the crossing point of �α(q) with the y-axis. Then for every λ ∈ [0, 1], we have that

Bα(0, λq) = L(c, λq) − L(c, 0).

This is because the α-rays starting at λq are wedged in between �α(0) and �α(q).
Furthermore, for λ small enough, there will be no Poisson points in the rectangle
[0, λ] × [y, 0], which means that for those λ, L(c, λq) = L(c, 0), and therefore

Bα(0, λq) = 0.

This proves right continuity. The existence of the left limit follows from monotonicity.
��

9.2 Lemma from real analysis

Lemma 9.1 Let I = [a, b] be a compact interval. Suppose f : I → R is a
non-decreasing right-continuous function and g : I → R is a non-increasing
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left-continuous function. Then the function h = f + g attains its maximum on I ,
and the set of maxima is closed.

Proof Clearly, for every x ∈ I, h(x) ≤ f (b) + g(a), so M := supx∈I h(x) < +∞.
Since I is compact, we can choose a converging sequence xn such that h(xn) → M .
Denote x0 = limn→∞ xn ∈ I . Now we can choose a subsequence xk(n) such that
either xk(n) ↑ x0 or xk(n) ↓ x0. In the first case, f (x0) ≥ f (xk(n)) and g(x0) =
limn→∞ g(xk(n)), so h(x0) = M (note that we always have that h(x0) ≤ M). In the
second case, g(x0) ≥ g(xk(n)) and f (x0) = limn→∞ f (xk(n)), so we also have that
h(x0) = M . This proves that the maximum is attained. The fact that the set of max-
ima is closed follows in the same way by choosing a converging sequence xn with
h(xn) = M . ��

9.3 Proof of Lemmas 5.2 and 7.4

Proof of Lemma 5.2 We start with the proof for Zν . Using the transformation (2.4),
we can assume, without loss of generality, that α = 5π/4. The proof of this lemma is
based on the following elementary estimate for the shape function f (x, t) = γ

√
xt :

for s ≥ 0

f (t + s, t) − f (t, t) ≤
{

γ
2 s − γ

32
s2

t if s ≤ 8t,
γ√

8
s if s ≥ 8t.

(9.2)

Fix ε > 0 and suppose that Zν,h(t) := Zν(t + h, t) ≤ −εt − 1. Define k = −�Zν(t)�
and n = �t + h�. It follows that

ν(−k + 1) + L ((−k, 0), (n + 1, n + 1)) − L ((0, 0), (n, n)) ≥ 0.

Choose η > 0 small enough (we will see how small). For t big enough, we know from
(5.4) that

ν(−k + 1) ≤ −1

2
γ k + ηk.

Here we use that k ≥ εt . This implies that for t big enough,

L ((−k, 0), (n + 1, n + 1)) − L ((0, 0), (n, n)) ≥ 1

2
γ k − ηk. (9.3)

A straightforward application of Theorem 2.1 and Borel-Cantelli shows that for t big
enough (and therefore for n big enough), we will have that

|L ((0, 0), (n, n)) − f (n, n)| ≤ ηn.
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Below we will work out a more complicated application of Theorem 2.1. We now
have for t big enough

L ((−k, 0), (n + 1, n + 1)) − f (n, n) ≥ 1

2
γ k − ηk − ηn.

For t big enough, we will have that k ≥ 1
2εn (since h is fixed). Now we subtract

f (n + k, n) − f (n, n) from both sides of the inequality and use (9.2):

L ((−k, 0), (n + 1, n + 1)) − f (n + k, n) ≥
{

γ
32

k2

n − ηk − ηn if 1
2εn ≤ k ≤ 8n,

γ√
8

k − ηk − ηn if k ≥ 8n

≥
⎧
⎨

⎩

ε2γ
128 n − 9ηn if k ≤ 8n,

γ√
8

k − 2ηk if k ≥ 8n.

Therefore, if the set {t ≥ 0 : Zν(t, t) ≤ −εt − 1} is unbounded, it follows that for
some small η > 0, the events

{

|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| >

{
ηn if k ≤ 8n,

ηk if k ≥ 8n.

}

happen infinitely often for n ≥ 1 and k ≥ 1. Using Borel-Cantelli, this will have zero
probability if for all η > 0,

∞∑

n=1

8n∑

k=0

P (|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| > ηn) < +∞ (9.4)

and

∞∑

n=1

∞∑

k=8n

P (|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| > ηk) < +∞. (9.5)

Theorem 2.1 gives us some control on the fluctuations of L about its asymptotic shape.
Note that for n big enough, and 0 ≤ k ≤ 8n, we have

P (|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| > ηn)

= P

(
|L
(

0,
√

(n + 1 + k)(n + 1)(1, 1)
)

− f (n + k, n)| > ηn
)

.

Define r = √
(n + 1 + k)(n + 1) and u = n2/3. If we choose n large enough, we can

make sure that u < ηn/2 and

| f (n + k, n) − γ r | < ηn/2.
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Also, for n large enough, we have that u ∈ [ c3
√

r log2 r , c4r3/2 log r
]

(see Theorem
2.1). This implies, using Theorem 2.1, that there exist c1, c2 > 0 such that for n large
enough and 0 ≤ k ≤ 8n,

P (|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| > ηn) ≤ P (|L (0, (r, r)) − γ r | > u)

≤ c1 exp
(
−c2n1/6/ log(n)

)
.

This clearly proves (9.4). For k ≥ 8n, we define u = k2/3, and in a similar way we
find that

P (|L ((−k, 0), (n + 1, n + 1)) − f (n + k, n)| > ηk) ≤ c1 exp
(
−c2k1/6/ log(k)

)
.

This proves (9.5).
The proof that the set {t ≥ 0 : Zν(t + h, t) ≥ εt + 1} is bounded with probability

1 is actually easier, because we will have that 0 ≤ k ≤ n. Therefore, we only need to
use the following bound on the shape function f (x, t) = γ

√
xt : for 0 ≤ s ≤ t

f (t − s, t) ≤ 1

2
γ s − γ

8

s2

t
.

The remainder of the argument is similar to the previous case.

Now we consider Z̃ν,h . Since for all t we have Z̃ν,h(t, t)
D= Zν(t + h, t) (but not

as processes!), the Borel-Cantelli type arguments for Zν,h hold in this case as well,
mutatis mutandis. ��
Proof of Lemma 7.4 The proof of this Lemma relies on the proof of Lemma 5.2. As
usual, we will assume without loss of generality that α = 5π/4. We will start with
the second statement. We need to prove that for all η > 0 small enough, the set
{t ≥ 0 : Zν((1 + 2ε)t, t) ≤ ηt} is bounded with probability one. Choose η < ε/2.
Define the translated measure ν2εt such that for all b ≥ a,

ν2εt ((a, b]) = ν((a + 2εt, b + 2εt]).

Using Definition 4.1, we see that for z ∈ R,

ν2εt (z) = ν(z + 2εt) − ν(2εt).

Define k = −�Zν((1+2ε)t, t)−2εt� and n = �t�. If t is such that Zν((1+2ε)t, t) ≤
ηt , then

ν(−k + 1 + 2εt) + L((−k + 2εt, 0), ((1 + 2ε)t, t))

− [ν(2εt) + L((2εt, 0), ((1 + 2ε)t, t))] ≥ 0.

This event has the same probability as the event

ν2εt (−k + 1) + L((−k, 0), (t, t)) − L((0, 0), (t, t)) ≥ 0.
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We know that k ≥ εt (since η < ε). We can use (7.4) to see that for t big enough,

−ν2εt (−k + 1) = ν((−k + 1 + 2εt, 2εt]) ≥ 1

2
γ k − ηk.

To see this, define half the length of the interval by d = (k − 1)/2, and the midpoint
by z = εt − (k − 1)/2. We see then see that

|z| ≤ 4d.

This gives us, using the fact that n ≤ t ≤ n + 1,

L((−k, 0), (n + 1, n + 1)) − L((0, 0), (n, n)) ≥ 1

2
γ k − ηk.

This is exactly Equation (9.3) in the proof of Lemma 5.2, and we can follow that proof
from this point. The first statement of the Lemma follows similarly. ��
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