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�
Introduction

1.1. Context
Cloud computing has given users access to virtually infinite computing power. Cloud service providers operate
data centers consisting of hundreds, sometimes thousands of interconnected machines. The machines dissipate
heat that is undesirable because it may lead components to overheat. Air conditioners are used to cool the
air and regulate the temperature in the data center. Doing so requires large amounts of electricity leading to
a high carbon footprint. 98% of Dutch houses is heated by burning gas in a central heating system. Nerdalize
is a company that aims to create a cloud by placing servers in CloudBoxes in people’s homes. A CloudBox
contains servers and a boiler. The heat dissipated by the servers is used to warm up the water in the boiler and
complement the central heating system. This approach takes away the need for expensive cooling and other
infrastructure overhead compared to a traditional data center. This results in a significantly lower footprint
as illustrated in Figure 1.1.

Nerdalize aims to provide a platform to members of the scientific community and research institutions for
running compute intensive workflows. A workflow is a sequence of steps that need to complete in a certain
order. Each step runs on a machine performing a particular task, such as downloading data or performing a
computation.

1.2. Problem Statement
The challenge set out by Nerdalize is to develop a workflow management system to run on their infrastructure
while making optimal use of generated heat. Many workflow management systems exist but none support a
container native environment. The boilers attached to the CloudBox have a limited capacity and a maximum
temperature. Heat generated by the CloudBox when the boiler has reached maximum temperature is wasted.
To minimize this waste it is useful to take boiler temperatures into account when making scheduling decisions.

Figure 1.1: The carbon footprint per four servers, or one CloudBox, of the Nerdalize cloud (top) and a traditional data center (bottom).

1



2 1. Introduction

1.3. Approach
The goal of this project is to manage workflows in this special context, of cloud servers deployed in private
homes. Using the infrastructure deployed by Nerdalize as a use case, this project provides the conceptual
contributions needed to manage workflows and the technical contributions of a realistic evaluation of the
proposed workflow manager. The development of Flower started with two weeks of research. During this time
we studied the strengths and weaknesses of several existing implementations. In cooperation with Nerdalize
and other professionals from all over the world we specified system requirements. The goal was to develop a
general solution to the problem such that it may be used by Nerdalize but also by others.

The 7 weeks after the research phase were used to design and implement Flower. We used modern
software development methodologies to continuously deliver an incrementally improved product throughout
the process. This allowed us to cope with changing requirements and other unexpected circumstances. The
described approach led to a successful project in which we have made have made several contributions,
scientific and otherwise. The main contributions are listed next in Section 1.4.

1.4. Main Contributions
In this thesis we present Flower, a workflow management system that has as main feature the first capabilities
for heat-aware scheduling. Flower consists of several components. The first component is the workflow
management system responsible for executing a workflow on a cluster of machines. The second part contains
various temperature-based scheduling policies. To the best of our knowledge we are the first ones to introduce
the notion of heat when making scheduling decisions. The final Flower component is a workflow visualizer to
monitor workflow execution. We shared parts of knowledge gathered during the project with others through
a technical blog post.

1. A workflow management system in a containerized environment. It is able to schedule arbitrary workflows
defined by the user. Dependencies between steps can be specified enforcing one step to be executed
before another.

2. A visualizer to monitor the current state of a workflow. The visualizer graphically displays the process
of a workflow in real-time. This gives the user valuable insights when used as a monitoring tool. It also
helps to detect problems which would otherwise be hard to find.

3. A survey of different scheduling policies to best make use of generated heat. Different policies are
proposed and explained. An intuition is given as to what the expected outcome is and in which scenario
it is useful. A policy is chosen depending on the user’s objective.

4. An evaluation of one scheduling policy. Experimental work validates the Flower system and compares
using one of the developed policies to a naive. The impact is illustrated through a calculation and a
graphical comparison.

5. A blogpost about the internal workings of Kubernetes [13]. The blog post describes in great detail the
internal workings of several Kubernetes components. This information is otherwise undocumented
and extracted from reading the source code of the system. Because studying source code is difficult and
time consuming we made our findings available online1 such that others don’t have to do the research
again.

The contributions have been recognized by the open source community and others. Brendan Burns, the lead
engineer of Kubernetes, has invited us to give a demo of the system to several members of the community.
In this demo we will be able to demonstrate system functionality and receive feedback. Eventually we aim to
contribute the system as a third party solution to the Kubernetes repository. Additionally we have been asked
by Kubernetes product manager David Aronchick to write a blog post about working with Kubernetes. This
will be done after the bachelor project is finished due to the limited time.

1.5. Structure
The structure of the thesis is as follows: Chapter 2 introduces relevant technologies and concepts as well
as a survey of related work. Chapter 3 presents the main problem and outlines requirements for a solution.

1http://borismattijssen.github.io/articles/kubernetes-informers-controllers-reflectors-stores

http://borismattijssen.github.io/articles/kubernetes-informers-controllers-reflectors-stores
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Chapter 4 describes processes including research, development and collaboration. The design and implementation
of Flower is covered in Chapter 5. Evaluation of Flower including the experimental work done to verify Flower
can be found in Chapter 6. Chapter 7 discusses the implications of Flower and provides possibilities for future
work. Finally Chapter 8 summarises the thesis and presents the final conclusion.





�
Background

This chapter is used to present background information related to the Flower project. In particular we describe
any desired prior knowledge about technologies and concepts in Section 2.1. Section 2.2 describes various
systems related to Flower.

2.1. Technologies and concepts
Throughout this report we attend to matter for which a prior knowledge of certain technologies and concepts
is desired. In this section we describe those technologies and concepts in more detail. Section 2.1.1 gives
an introduction to workflows and workflow management systems, Section 2.1.2 introduces the concept of
containers, Section 2.1.3 explains the Kubernetes system, Section 2.1.4 describes the Kubernetes API server,
and Section 2.1.5 goes into detail about Nerdalize’s CloudBox.

2.1.1. Workflow Management
Many companies and scientists need to process increasingly larger amounts of data [27]. To support the
increasing demand of computing power needed to processes this data, many computers are interconnected
forming a grid or a cloud. Data processing is often done in discrete steps, where each step depends on
the output of previous steps in the system. In the scientific world a common sequence of steps is analysis,
simulation, data management, and visualisation [22]. The abstract representation of steps and dependencies
is called a workflow. Workflows can be modelled as directed acyclic graphs (DAGs), in which steps are nodes
and edges represent dependencies between steps. Using DAGs as a model allows for the use of extensive
scientific research on graphs [34, 35] to optimize performance [33], reliability [26], and scalability [23] of the
workflow. An example of a DAG is shown in Figure 2.1. The figure shows six steps and various dependencies.
Step B can only start executing when step A finishes execution. Steps C, D, and E can each start in parallel
when step B finishes.

Workflow management systems (WMS) have been around since the start of grid computing [24, 28, 30, 36].
According to Taverna [18] a WMS is "a piece of software that provides an infrastructure to setup, execute,
and monitor scientific workflows". In other words a WMS schedules steps on appropriate machines and
monitors their execution and dependencies, so users can focus on describing the workflow. An example
of a workflow management tool is Pegasus [28] which lets the user describe their workflow in XML format.
Pegasus maps steps to available machines and transfers necessary data required for execution. Other systems
like Triana [24] provide users with a visual tool to create workflows and do monitoring. WMSs often contain
functionality to optimize workflow performance, scalability and reliability. Section 2.2 will describe some
workflow management systems in more detail.

2.1.2. Containers
A container is an operating-system level virtualization method that provides an isolated environment, simulating
a closed system running on a single host. It gives the user the ability to have an environment to do whatever
is needed; in particular run applications with the necessary resources and environment configuration [29].

A container runs multiple processes in an isolated environment. Each process has a process id which
is unique within the container itself. Processes outside the container are not visible inside the container.

5



6 2. Background

Figure 2.1: An example of a workflow presented as a DAG.

Figure 2.2: Comparison of virtual machines (left) and containers (right). Based on a figure from the Docker documentation (https:
//www.docker.com/what-docker#/compare-block).

This also applies to other resources such as networking, disk and users. Isolation is provided by cgroups and
namespaces as Linux kernel modules.

When describing containers, virtual machines (VMs) are often used as an analogy. Containers and VMs
are similar in that both are virtualized environments that run on a host machine. The differences are shown
in Figure 2.2, showing the software stacks used by VMs and containers. The figure shows VMs have their own
operating system (OS) called the guest OS which is separated from the host OS. Containers on the other hand
share the kernel with the host OS. Using containers rather than VMs provides two major advantages: their
size is smaller (MBs vs. GBs) and booting is faster (seconds vs. minutes).

In recent years containers have increased in popularity. This increase in popularity can be attributed to
the release of the Docker software in 2013, which makes it easy to build, distribute and run containers [6].

2.1.3. Kubernetes
Kubernetes is an open-source project by Google for orchestrating containers on multiple hosts [13]. The main
features of Kubernetes are scheduling and replication control. The scheduler assigns pods to an available
host. A pod is the atomic unit in Kubernetes; it contains one or more tightly coupled containers. Replication
control can be used to ensure that a specified amount of copies of a pod exist. The replication controller
monitors pods and creates new instances in case of pod failure. Kubernetes consists of one master node
and multiple worker nodes, as shown in Figure 2.3. The master node runs the scheduler and replication
controller and exposes an API for communication with users and worker nodes. Each worker node has a
kubelet daemon communicating with the master node through the API. Worker nodes are responsible for
running pods on a host. Throughout this report we will use the term job. A job contains one or more pods. It
terminates successfully when all of its containing pods have succeeded.

2.1.4. Kubernetes API server
The Kubernetes API server validates and configures data for API resources. These resources include nodes,
pods, jobs and workflows and represent an entity relevant to the Kubernetes system. A resource is represented
in YAML or JSON format. This format is well established and widely used, making client integrations easier.

https://www.docker.com/what-docker#/compare-block
https://www.docker.com/what-docker#/compare-block
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Figure 2.3: Kubernetes architecture showing master node (left) and worker (right) nodes. Based on a figure from the Kubernetes
documentation (https://github.com/kubernetes/kubernetes/blob/master/docs/design/architecture.md).

All resources have aspec and astatusfield which play a central role in how Kubernetes does its orchestration.
The spec is provided when a resource is created. It represents the desired state of that resource. Figure 2.4
illustrates an example spec which may be submitted to the Kubernetes API server. The spec defines a Pod
with two containers, one running the redis image and one running a logger from the google/glog image.
All resources have a metadata field containing meta information about the resource, not its contents. As
can be seen in the figure, in this example a label has been set. Labels are key/value pairs used to specify
identifying attributes of resources. They are used by Kubernetes to select groups of resources with similar
properties. When the spec is submitted to the API server it will be stored and given a status. A status is the
actual state of the resource at a given point in time, which may or may not be the same as the spec. Different
Kubernetes components will constantly reconciliate to move the status towards the spec. This leads to a
robust mechanism that copes well with unexpected failures and unforeseen circumstances.

apiVersion: v1
kind: Pod
metadata:

name: cache
labels:

app: cache
spec:

containers:
- name: key-value-store

image: redis
- name: logger

image: google/glog

Figure 2.4: An example Pod spec with two containers in YAML format.

The Kubernetes API server exposes a RESTful API serving as a gateway to the cluster’s shared resources
through which other components interact. Resources may be submitted to the API server which will store
them in a distributed key-value store. The store ensures data is replicated across different nodes to be resilient
to outages.

2.1.5. CloudBox
A CloudBox is the unit that will eventually make up the Nerdalize data center. CloudBoxes are placed in
people’s home. They consist of a water boiler and a number of servers. The water in the boiler is pumped
through a heat exchanging component that transfers the heat produced by the servers to the water. From
the home owners perspective the CloudBox functions much like a regular central heating system in that it

https://github.com/kubernetes/kubernetes/blob/master/docs/design/architecture.md
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warms up water needed to warm up the house or take a shower. For Nerdalize the CloudBox is a node in a
highly distributed cluster running compute intensive jobs for a wide variety of customers. The home owner
receives free heating because Nerdalize pays for the electricity used to power the servers and heat up the
water. Nerdalize builds a distributed data center with much lower overhead compared to traditional data
centers. This is mainly because they do not need air conditioning to cool the servers, and because they do
not have to build an actual data center saving on infrastructure costs.

2.2. Related work
In this section we will discuss some of the existing workflow schedulers (Section 3.1),

2.2.1. Pegasus
Pegasus is a workflow management system used to automate, recover and debug scientific computations. It
is a sophisticated piece of software used by research organisations to run simulations and analysis on some
of the largest computing grids in the world. These applications often involve the processing of large amounts
of data. The computing grid consists of many heterogeneous machines provided by different, geographically
spread out institutions. Pegasus introduces the notion of a workflow as "an abstract description of application
components and their dependencies"[28]. The workflow may be represented as a directed acyclic graph
(DAG). This approach leads to a highly flexible description where individual components may be replaced
with alternative implementations. The abstract representation then undergoes several refinement steps geared
towards making it executable and increasing performance. The result is an optimized, executable mapping
from an abstract workflow onto physical machines.

2.2.2. Luigi
Luigi is a workflow manager written in Python at Spotify Inc. It helps users manage complex pipelines of
batch jobs by handling dependency resolution, workflow management and visualization[2]. Luigi workflow
specifications are written in Python leveraging the expressiveness of the programming language itself. This
makes it easy to build up the dependency graph in which dependencies may include recursive references,
date algebra etc. A visualizer is provided out of the box, providing valuable insights regarding task status, the
dependency graph and workers running the tasks.

2.2.3. Airflow
The third existing solution is Airflow developed by AirBnB[1]. Airflow is similar to Luigi in that the system
and the workflow definition are written in Python. Operators are a feature that distinguish Airflow. Types of
operators include sensor, remote execution and data transfers. The sensor waits for an event to happen before
proceeding to the next task in the workflow. Examples of events are a file appearing in a specified folder or the
existence of a particular record in a SQL database. The second type of operator is remote execution, which
triggers an external script. Finally the data transfers operator is responsible for moving data from one place
to another. This data may be stored in a database of some kind or in a regular file. Airflow uses a plug-in
architecture to ease the extension with new functionality.

2.2.4. Oozie
Apache Oozie is a workflow scheduler for Hadoop[3]. Oozie is tightly integrated with the Hadoop stack
supporting Java map-reduce, Streaming map-reduce, Pig, Hive, Sqoop and Distc. A workflow is defined by an
XML file which may contain two types of nodes. The first type is a control flow node, providing a mechanism
to control the workflow execution path. The second type of node is the workflow action node, which describes
the execution of a computation or processing task. XML properties are used to create connections between
nodes. These connections may be conditional meaning that a corresponding predicate needs to be satisfied
before the transition takes place.
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Problem Analysis

3.1. Overview
In this chapter we will first define the problem as formulated by Nerdalize. From this problem definition
we derive a problem statement which will be the central question we seek to answer during the project. In
Section 3.3 we list several user stories which describe the system from the end-user perspective. These stories
serve as a simplified description of the requirements defined in Section 3.4. Requirements are divided into
categories and prioritized.

3.2. Problem Definition
To achieve optimal cluster utilization and ease of use for its customers, Nerdalize is building its main product
the Nerdalize Cloud Engine (NCE) based on modern container orchestration technology. After extensive
research Nerdalize has chosen to use the open source Kubernetes system as the basis for the NCE. In line
with its business goals the first step is allowing clients to run high throughput workloads in a user friendly
manner. Many workloads contain large parallelizable components. Running these on a cluster delivers a
reduction in total workload throughput time. Modern cluster schedulers support complex workflows that
allow non-trivial multi-step workloads to be executed automatically. Kubernetes has basic support for the
concept of Job, but at the time of writing does not have workflow support.

Because Nerdalize uses cloud boxes installed in people’s homes instead of traditional servers, the scheduling
of a workflow poses new challenges and opportunities. The heat produced by a cloudbox is used to warm
up water in a boiler attached to it. This water may then be used by the home owner however he or she likes.
Because the amount of liters inside the boiler is fixed there is a maximum temperature of the water. When the
water reaches maximum temperature, additional heat produced by the cloudbox is wasted. This waste may
be avoided by using a scheduling strategy that takes the boiler’s water temperature into account. Workflow
steps should be scheduled in homes where the boiler has not yet reached the maximum temperature to
avoid energy being wasted. Scheduling strategies should be easily replaceable such that new ones may be
developed and used in the future.

The high level goals of this project are:

1. Research the state of the art in workflow management.

2. Research the current support in Kubernetes for workflow management.

3. Design and implement a workflow management system in or on top of Kubernetes, preferably in cooperation
with the Kubernetes community.

4. Extend the workflow management system to support a replaceable scheduling policy that takes boiler
temperature into account.

5. Carry out experimental work to measure the impact of the developed scheduling policy.

9
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From this problem definition we are able to derive a problem statement. The statement is based on the
problem definition from Nerdalize as well as the academic requirements specified by TU Delft. The derived
statement differs from the original definition in that it is more concise and more abstract, omitting implementation
details.

The derived problem description is split up into two questions:

1. “How can workflows be executed in a distributed containerized environment?”

2. “How can workflows be scheduled to reduce the waste of generated heat?”

3.3. User Stories
The interviews with Nerdalize helped clarify which use cases they encountered and what is needed to satisfy
them. We then composed a list of user stories that encapsulate all functionality, such that we end up with
a high level description of system functionality. The user stories are all in the format As a <user>, I want
<action>, so that I <reason> to ensure consistency.

1. As a user, I want the system to do scheduling in a distributed environment, so that I can make use of
parallelism to improve turnaround time.

2. As a user, I want the system to take boiler temperature into account, so that I do not waste energy.

3. As a user, I want to add steps that depend on the completion of other steps, so that I can create a workflow.

4. As a user, I want to add or remove steps during workflow execution, so that I can make changes at
run-time.

5. As a user, I want to ensure that certain steps do not run on the same machine, so that I can improve
reliability. network overhead.

6. As a user, I want to customize the scheduler, so that I can tailor it to my needs.

7. As a user, I want to interact with the workflow through an API, so that I can integrate it with my existing
system.

8. As a user, I want to run workflows on my local machine, so that I can test before deployment.

3.4. Requirements
System requirements have been formulated in the research phase as well as during the implementation phase
of the project. Most requirements emerged after interviewing Nerdalize employees. During the development
of the system requirements have been dropped and changed. Changed requirements are described in more
detail in Section 7.1.3. This section only contains the most up-to-date requirements. The original list of
requirements can be found in the Research Report in (app).

3.4.1. Functional Requirements
Based on the list of user stories we created the following functional requirements. The requirements are
grouped into four categories which are: workflow manager, step, workflow and scheduler. The workflow
manager is responsible for providing the scheduler with steps whose dependencies have been resolved. The
scheduler ensures steps are assigned to a suitable machine according to a specified policy. A scheduling
policy uses information about the workflow and the boiler temperatures to make a scheduling decision.
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Requirements are prioritized using colored boxes representing categories as defined by the MoSCoW[14]
method. The green box ( ) stands for must have, the half full orange box ( ) stands for could have and
the almost empty red box ( ) stands for won’t have.

Workflow manager:

1. The workflow manager executes a workflow based on a formal definition of steps and constraints.

2. The workflow manager monitors the execution of the workflow

3. The workflow manager is responsible for providing data required by a step.

step:

4. steps’ execution may depend on the status (failed, succeeded, running) of one or more other steps.

5. steps may be other workflows.

6. steps can be added and/or removed through the Workflow Manager API during the execution of a
workflow.

Workflow:

7. A workflow may run on a single machine or a cluster of machines.

8. A workflow may be cancelled during execution.

9. Resource usage of a workflow may be limited as specified by the user.

Scheduler:

10. The scheduler’s policy should be customizable so that users may tailor it to their needs.

11. The default scheduling policy is able to schedule steps on the machine with the lowest boiler temperature.

Requirement 3 and 5 are beyond the scope of this project, due to time constraints. The system will be
extensible in such a way that functionality may be added at a later point in time. Requirements 6 and 9
are the least crucial at this moment in time. We decided priorities in collaboration with Nerdalize to address
the most pressing business needs first.

3.4.2. Non-functional Requirements
Apart from functional requirements, the interviews and user stories also require a set of non-functional
requirements for the system to meet all the criteria. Non-functional requirements are used to judge the
operation of a system. One cannot write code to implement them, rather they are emergent properties that
arise from the system as a whole. The requirements are listed below in no particular order.

Usability
Usability refers to the degree to which users of a particular system are able to effectively and efficiently achieve
objectives. It is very important for our system that it is designed such that the learning curve will be shallow
rather than steep. This allows users to quickly get started and increase the likelihood the system will get
adopted by the community.

Open source
The developed system should be available as open source. This is required to collaborate with (experienced)
people from the Kubernetes community who may help out with difficult design decisions as well as provide
valuable feedback. It also allows other people to report bugs in the system and collaborate code or documentation
speeding up development.

Maintainability
Maintainability measures the ease with which developers are able to make changes to the system. This is
important because when the project is finished we will have less time to maintain the system. If it is easily
maintainable and open source, other developers are able to take over without having to extensively study the
code. This is beneficial to Nerdalize as well as other users of the system as it is more likely kept up to date.





�
The research and development process of

Flower

During the project we have used processes and tools for assistance. These processes and tools can be divided
into three categories. Section 4.1 describes the research processes, Section 4.2 goes into detail about the
chosen development methodology, the chosen programming language, the testing strategy used, and the
development tools used. Section 4.3 discusses collaboration with external parties and within the team.

4.1. Research
The research processes described in this section were used to gather necessary information for the design
and implementation of Flower. This section is split up in Section 4.1.1 and Section 4.1.2, which respectively
describe the processes before the project started and the processes during the project.

4.1.1. Before the project
Five weeks before the official start of the project, we had a conversation with Nerdalize about the subject of the
project. Eric from Nerdalize gave us an extensive list of technologies we had to become familiar with, which
can be found in Appendix B. We had very little prior knowledge of the container ecosystem and distributed
systems in general. To get familiar with Docker we watched two Youtube series from LearnCode.acadmey and
Docker, and we watched several talks from DockerCon. Besides watching videos we read the recommended
books about Docker. Go is the language used by Docker and Kubernetes, so we had to get familiar with that
too. To learn Go we used several approaches before and during the project . Before the project we walked
through the 65 tutorials on gobyexample.com. At the time Nerdalize had just decided to use Kubernetes
for container orchestration. To get a basic understanding of Kubernetes we read Kubernetes Up & Running ,
watched videos on YouTube , and read the about the basic concepts on GitHub and the official docs . Based on
recommendations by Nerdalize we got familiar with the following technologies related to Distributed Systems:
Ansible , OpenStack , CoreOS , Hyper.sh , and etcd .

A week before the start of the project we had another conversation with Nerdalize about the subject
of the project. We were told that the initial problem "Does a multi-tenant cloud require a ‘classic’ Cloud
Management Platform, or can we build this more easily and flexibly with modern, container-based tooling
such as Kubernetes and/or Mesos?" was already solved by Nerdalize engineers. Together with Nerdalize we
decided on a new subject, which led to the problem description as described in Section 3.2. Although the
subject changed, most research we had done was still very valuable.

4.1.2. During the project
Most of the research that is at the basis of Flower was conducted during the first two weeks of the project,
also known as the research phase. At the end of these weeks we wrote a report describing the main results.
The full report can be found in Appendix A. During the research phase and throughout the project we used
three types of research: interviews, literature, and reading source code. Each of these is described in a separate
section below.

13
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Name Company / Group
Ad van der Veer Nerdalize
Eric Feliksik Nerdalize
Mathijs de Meijer Nerdalize
Remy van Rooijen Nerdalize
Jesse Donkervliet Nebu Bachelor Thesis
Tim Hegeman Nebu Bachelor Thesis
Alexey Ilyushkin Distributed Systems group TU Delft
Dario Minonne Amadeus (FR)

Table 4.1: People we interviewed throughout the project.

Interviews
We interviewed people from different backgrounds for different reasons. These people, along with the company
or group they belong to, are listed in Table 4.1. We used the interview with Eric Feliksik from Nerdalize to get
a better understanding of the context of the problem. During this interview, Eric gave us a general overview
of the technologies involved in the project. We interviewed Ad van der Veer and Mathijs de Meijer from
Nerdalize, to go over different usecases relevant for Nerdalize. These use cases turned into user stories and
served as the basis of our requirements. Remy van Rooijer works on the design of cloudboxes and boilers at
Nerdalize. We interviewed him to get a better understanding of the hardware and the physical properties of
the boiler. This understanding helped us design Heat Scheduler. Jesse Donkervliet and Tim Hegeman from
Nebu did their bachelor thesis two years ago and got a very good grade. We interviewed them to ask about
the way they approached the project and to see if we could learn something from their mistakes. Alexey
Ilyushkin is a PhD student working in the Distributed Systems group at the Faculty of Electrical Engineering,
Mathematics and Computer Science (EEMCS/EWI), TU Delft. He works on problems related to scheduling
workflows. We used the interview with Alexey to get an insight of the different scheduling strategies and to get
a better understanding of the difficulties that arise when scheduling workflows. Dario Minonne is an engineer
at Amadeus in France who has also been working on a workflow management system for Kubernetes. The
interviews with Dario were used to research the current state of his implementation and to get familiar with
the Kubernetes community.

Literature study
We did a literature study for two main reasons. On the one hand we wanted to acquire background knowledge
on workflow management systems in general. Sources for this information were scientific papers and books .
On the other hand we wanted to survey related work, to find ways in which problems had been solved before
in workflow management systems. Sources for the related work were scientific papers as well as project’s
homepages .

Researching source code
Throughout the project we have researched the Kubernetes source code. This research was necessary to get a
deeper understanding of the working of certain Kubernetes components as well as to learn from their design
patterns.

4.2. Development
This section is used to describe how we dealt with development of the system. In particular we discuss; the
chosen development methodology in Section 4.2.1, the programming languages used in Section 4.2.2, testing
strategies in Section 4.2.3, documentation in Section 4.2.4, and tools in Section 4.2.5

4.2.1. Development Methodology
During the project we made use of the SCRUM software development methodology to manage product
development. Scrum is an iterative and incremental agile software development framework.

Scrum allows a small team of developers to cope with changing requirements and shifting priorities.
Scrum also encourages team members to communicate often and openly about progress and encountered
problems. The reason we chose an iterative approach is because we predicted changing requirements.
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# Weeks Main activities Focus
0 1-2 Acquire background information, gather requirements, create preliminary design Research
1 3-4 Development of Flower Development
2 5-6 Development of Flower Development
3 7-8 Development of Heat Scheduler and writing final report Development
4 9-10 Writing final report and prepare for presentation Reporting

Table 4.2: An overview of all SCRUM sprints.

An alternative approach would have been the waterfall model. That model works well when all requirements
are clear at the start of the project and are unlikely to change. This not being the case made it insuitable for
us.

We decided to use two week sprints. Sprints always end with a demo to show the customer the latest
stable version of the product. One week sprints seemed too short to both introduce new features and have a
working demo at the end of the week. Sprints longer than two weeks would make the process less agile, since
the project only consists of eight weeks of development. Two weeks seemed like a good duration for a sprint
and this turned out to work very well. We were able to deliver a substantially improved product at the end of
each sprint, while still coping with changes in requirements. An overview of the main progress made during
each sprint is given in Table 4.2.

Sprint 0 was the research phase of the project. We used this sprint to do a background study, gather
requirements and design a preliminary architecture. Sprint 1 was used to create the first functionality of
Flower. Flower was able to execute workflow steps, without taking dependencies into account at the end of
sprint 1. Sprint 2 was used to add all remaining functionality to Flower. At the end of the sprint Flower was
able to execute workflows and take dependencies between steps into account. In sprint 3 we developed Heat
Scheduler and started working on the final report. Sprint 4 was fully dedicated to the final report and to the
presentation.

At the start of the project we created a project roadmap which can be found in Appendix C. This roadmap
served as the initial contents of the product backlog; a list of tasks to be completed before the end of the
project. During the project several requirements changed, which caused modifications to the product backlog.
The changed requirements can be found in Section 7.1.1.

To keep track of the product backlog and the sprint backlogs we used Trello [20]. Figure 4.1 shows the
Trello system. We created one Trello list for the product backlog, one list for the sprint backlog, one list with
work in progress tasks and a separate list for every finished sprint. Lists contain cards representing finished
or unfinished tasks. The product backlog contained high level tasks, such as ‘steps can only run when their
dependencies have been resolved’. When tasks moved from the product backlog to the sprint backlog they
were broken up into smaller, more descriptive tasks.

4.2.2. Programming languages
Most code written during the project was written in the Go programming language. The available concurrency
constructs such as channels make it well suited for distributed applications. Channels are a way to exchange
information between threads significantly simplifying concurrent programming. We used this feature a lot
in our project. The problems solved using channels are much more challenging in other languages. Go
is very popular among developers working on container related technologies. This is largely due to the
increasing popularity of the container platform Docker[6], which itself is written in Go. As a result there are
many libraries available to solve problems common in distributed systems and interface with other related
technologies. Lastly we plan to contribute to the Kubernetes community. Kubernetes itself is written in Go.
The decision to choose a language the community is familiar with will increase the likelihood of the project
gaining adoption. It will also make it easier for other developers to understand, encouraging modifications
and engagement.

Apart from Go we used Javascript to create graphical user interfaces (GUI). The goal of these interfaces
was to visualize what was going on in the system. We found writing a web application that made use of the
Kubernetes API was the easiest way to do this. Any machine is able to access the GUI as long as it has a browser
installed. Using Javascript gave us access to the many libraries available to create visualizations, speeding up
development.
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Figure 4.1: The Trello system with multiple lists holding different cards. The second card in Working on is being moved to Done.

4.2.3. Testing
Every piece of code added to the system should ideally not contain any unexpected behavior. Tests are well
suited to ensure this is indeed the case. Unit tests provide a way to verify that a piece of code, in isolation,
produces a desired result. The added benefit of unit testing code is to prevent regressions. These occur when
new functionality is added which breaks old code. By running a suite of tests on every build, new as well
as old code is tested to ensure no regressions take place. End-to-end tests are used to test large parts of an
application. We used this to test the system from a user perspective along with manual testing.

Unit tests
For unit tests we used Go’s testing framework which is very minimal. The framework only provides a testing
object which is passed to test functions. The testing object may perform assertions and report failures when
they occur. Tests are written in a file starting with_test.go. This allows the test runner to find tests automatically.
We chose the default testing framework because it is widely adopted in the Go community. It provides test
coverage as well as benchmarking without any alterations to the testing code. Kubernetes uses the default
testing framework which is convenient as we were able to copy and alter the tests for the components we
reused.

Continuous integration
A convenient way to automate the testing process is through continuous integration (CI). For our project we
used Travis CI [19]. We tried several alternatives which each did not do exactly what we wanted. In particular
we tried Jenkins [10] and Wercker [21]. After realizing these solutions were unsuitable we made a shellscript
to build the system, run all tests, and measure coverage. This is similar to what would happen on a CI server.
To run our end-to-end tests we want to spin up Kubernetes on the CI server. As the instance on the server
itself runs inside a Docker container this means support for recursive Docker support is required. The two
solutions listed above both do not provide this whereas Travis does. The continuous integration server allows
every code push to a remote repository to trigger the full set of tests. In case tests fail, a notification is sent
describing what went wrong. This way of testing also makes sure that code runs on all machines rather than
only on one developer’s machine. Later we added code coverage measurements to the continuous integration
process with coveralls [5]. By running Go’s default testrunner with the –coverage flag it is able to generate a
coverage file describing coverage line by line for all packages. This file is then submitted to coveralls through
their API. On their website they provide a user interface to see how well each tested. Tested lines of code are
colored green whereas non-tested lines get a red color, as can be seen in Figure 4.2. This helped us to ensure
important parts of the code are covered by the tests.
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Figure 4.2: A coverage visualization for the getWorkflowRunningAndCompletedSteps function.

Load test
Lastly we performed a load test on the system to see how it performs on a large cluster with a large workflow.
The cluster we used consisted of 50 machines provided by Google Cloud Platform. The workflow we used had
a thousand steps and almost a thousand dependencies. It was taken from the Pegasus website in DAX format
which is incompatible with our YAML format. Because generating such a large workflow by hand would take a
long time we wrote a DAX to JSON converter instead. It converts arbitrary DAX files to a corresponding YAML
file. To simulate work being done in the steps we made a step sleep for thirty seconds before it transitioned to
completion. Even under load the system performed well completing the entire workflow in a time very close
to the critical path. The main overhead was caused by the time it takes for the Kubernetes API server to be
notified when a step is completed.

4.2.4. Documentation
Documentation played a central role throughout the development process. We applied two different types of
documentation with partially overlapping goals. The first one being the documentation of code in the source
files. Every single function is preceded by a descriptive comment on what a function does and how it should
and should not be used. The Go programming language contains a tool called fmt[9], which ensures every
block of code contains a descriptive comment and is formatted according to the Go style conventions. This
led to a well documented product which is beneficial in several ways. More than once we had to refactor
parts of the codebase. It was then useful to read the comments before making a change to ensure no existing
functionality would break. We do believe in self-documenting code and spent considerable time thinking
of appropriate function names. After our project however, other developers will most likely be working on
our codebase. What seemed very straightforward to us at the time of writing may not be so obvious to them
when doing modifications. In this scenario comments help clarifying the behavior without having to make
any assumptions or guesses. Documentation may be found online on the GoDoc [8] website.

The second type of documentation was writing a summary at the end of every day during the project.
In this summary we would write what had happened that particular day and how the system changed. This
helped us tracing back problems and making it easy to find the reason why a particular change had been
made, even weeks after it took place. An added benefit of this chronological sequence of events was how it
made writing the report much easier. Especially this section in which parts of the development process are
described.
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4.2.5. Tools
To support us with the creation of Flower and Heat Scheduler we used several tools. This section describes
the tools we used, which are listed in Table 4.3.

Godep is a dependency managing tool for Go. Godep will look in the source code for imported packages.
These packages are downloaded to the project in a folder called vendor. Using Godep ensures working code,
even when the external packages update their code.
Gofmt formats Go programs. Using Gofmt ensures that code is always formatted in the same way. This is
very convenient when working in teams, because normally everyone has their own formatting preferences.
Using Gofmt made reviewing pull-request much easier for us. Only differences in real code are shown, such
that you do not get distracted by differences in code format.
Gofmt formats Go programs. Using Gofmt ensures that code is always formatted in the same way. This is very
convenient when working in teams, because normally everyone has their own formatting preferences. Using
Gofmt made reviewing pull-request much easier for us. Only differences in real code are shown, such that
you do not get distracted by differences in code format. Go build builds Go programs. Go build is run each
time a .go file is saved. Using this tool helped us develop faster, since compile errors are shown in the IDE in
real-time.
Go test tests Go programs or packages. We used go test to test our code as described in Section 4.2.3 and
generate code coverage profiles.
Travis CI is a hosted continuous integration service used to build and test software projects hosted at GitHub.
Travis CI is invoked by GitHub each code is pushed. We used Travis CI to make sure the program builds and
no test fail, before merging code to the master branch.
Go vet examines Go code and reports suspicious constructs. We used go vet to warn us when our code
contained style mistakes. Examples of style mistakes are uncommented public functions, comments that
are syntactically incorrect, or struct names that stutter with the package name.
Go tool cover interprets code coverage profiles generated bygo test. The tool comes with an HTML generator.
We used the HTML generator to view coverage results in a web browser.
Coveralls is a hosted code coverage visualizer. We sent coverage reports to coveralls on each build, using
Travis CI. Coveralls can be used to visualize coverage reports per git branch.
Grafana is a tool used to visualize metrics. Grafana makes is easy to create plots of real-time data. We used
Grafana to visualize the boiler temperature for our simulation. Results and a screenshot of the simulation can
be found in Section 6.2.
Git is a version control system. We used Git during the development of Flower and Heat Scheduler. Two major
version control systems exist: Git and Subversion. We chose to use Git because of numerous reasons of which
the most important are: we had prior experience with Git, GitHub supports only Git, Git is much faster than
Subversion, and Git is easier to use than Subversion.
GitHub is an online hosted git repository service. There are many more git hosting services, we chose GitHub
because of several reasons. We wanted a free and open repository such that everyone in the world can see
our project. GitHub comes with pull-requests and issues, which are both very convenient collaboration tools.
Github is also very easy to use and we had prior experience working with it.
Atom is a text editor with good Go support. Atom was mainly chosen for its Go support and because it was
recommended by Nerdalize employees.
Vim is a terminal-based text editor. One of the team members did all his development in Vim. Vim also has
good Go support and is mainly famous for its many keybindings.
Kubectl is the command line interface used to communicate with Kubernetes. We used kubectl as the main
way of interacting with Kubernetes. Kubectl has many commands, of which we manily used: kubectl get
jobs to list all jobs in the cluster, kubectl create -f [file] te create a new resource based on the specified
file, and kubectl delete job [job] to delete a job.
Docker is a tool to build, run and ship containers. Kubernetes uses Docker as their default container run-time.
Sometimes it was more convenient to use the docker command line interface, than to use kubectl. We also
used Docker to build containers for Flower and the different Heat Scheduler components.
Make is a build automation tool. We used build to automatically build and ship docker containers to the
container registry of Google Cloud.
Wireshark is a network protocol analyzer. Sometimes communication between Flower and Kubernetes was
hard to track when debugging. Wireshark helped us in the debugging process, as it logs all HTTP traffic in
chronological order.
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Tool Category Website
Godep Development https://github.com/tools/godep

Gofmt Development https://golang.org/cmd/gofmt/

Go build Development https://golang.org/pkg/go/build/

Go test Development https://golang.org/pkg/testing/

Travis CI Development https://travis-ci.org/

Go vet Analysis https://golang.org/cmd/vet/

Go tool cover Analysis https://godoc.org/golang.org/x/tools/cmd/cover

Coveralls Analysis https://coveralls.io/

Grafana Analysis http://grafana.org/

Git Code management https://git-scm.com/

GitHub Code management https://github.com/

Atom Editor https://atom.io/

Vim Editor http://www.vim.org/

Kubectl Deployment http://kubernetes.io/docs/user-guide/kubectl-overview/

Docker Deployment https://www.docker.com/

Make Deployment https://www.gnu.org/software/make/

Wireshark Network analysis https://www.wireshark.org/

DAX to JSON Utility http://bit.ly/1UjKRFr

JSON to YAML Utility https://www.browserling.com/tools/json-to-yaml

Table 4.3: Tools used to create Flower and Heat Scheduler.

DAX to JSON is a utility we created to allow for faster testing of large workflows. The Pegasus [28] project
comes with a workflow generation tool called Pegasus Generator. The output of Pegasus Generator is in DAX
file format, which in fact is XML. Pegasus Generator has some default workflows, which can be up to 1000
nodes. By using the DAX to JSON converter we were able to quickly generate large input files for Flower.

4.3. Collaboration
During the project we collaborated with various parties. Most notable is collaboration with Nerdalize team
members, the open source community and collaboration within the team. Collaboration with Nerdalize and
within our own team is described in Section 4.3.1, community engagement and communication is described
in Section 4.3.2, collaboration tools used during the project are further detailed in Section 4.3.3.

4.3.1. Nerdalize

During the project we worked at the Nerdalize office. Nerdalize provided us with our own desk, which was
in the same office as the other Nerdalize employees. Working in the same office as the Nerdalize employees
proved to be very useful to us. It allowed us to quickly tap into their rich pool of knowledge about Go, Docker,
and Kubernetes.

At the start of the project we had no experience writing Go programs. During the first weeks of the
project we participated in a Go workshop organized by Nerdalize employee Ad. Ad is an experienced Go
programmer, with much knowledge about Docker and Kubernetes as well. The workshops were held every
Monday morning, for which we had to prepare homework. Participating in these workshops helped us
understand the basics of Go and taught us the best practices when writing Go code.

During the project we had a weekly meeting on Friday afternoons with Nerdalize CTO Mathijs. We used
these meetings to report the current status of the project and to discuss any encountered problems. The
meetings were often also used as the sprint review. During the project we have encountered some challenges
with working with the open source community. It has been very helpful to discuss these challenges with
Mathijs.

Nerdalize has a beer and demo moment on Friday afternoon, during which a team of Nerdalize employees
demos their project. We have demoed the latest stable version of our code, during these beer and demo
moments three times. The demos were always at the end of a SCRUM sprint, to conform to the SCRUM
methodology. Doing these demos kept us motivated to deliver a working product throughout the project.

https://github.com/tools/godep
https://golang.org/cmd/gofmt/
https://golang.org/pkg/go/build/
https://golang.org/pkg/testing/
https://travis-ci.org/
https://golang.org/cmd/vet/
https://godoc.org/golang.org/x/tools/cmd/cover
https://coveralls.io/
http://grafana.org/
https://git-scm.com/
https://github.com/
https://atom.io/
http://www.vim.org/
http://kubernetes.io/docs/user-guide/kubectl-overview/
https://www.docker.com/
https://www.gnu.org/software/make/
https://www.wireshark.org/
http://bit.ly/1UjKRFr
https://www.browserling.com/tools/json-to-yaml
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Tool Category Website
Hangouts Communication https://hangouts.google.com/

Slack Communication https://slack.com/

GitHub Storage https://github.com/

Google drive Storage https://drive.google.com/

Kami Utility https://www.kamihq.com/

Table 4.4: Tools used to create Flower and Heat Scheduler.

4.3.2. Open source community
Kubernetes is an open source project with an active community. Channels for communicating with the
Kubernetes community include: Slack [15], Stack Overflow [16], GitHub pull-requests [7], and GitHub issues [7].
These channels are actively used by members of the community to share ideas, propose extensions and report
issues.

At the start of the project the idea was to include Flower in Kubernetes source code, such that we could
contribute back to the community. We had noticed the existence of a proposal for a workflow management
system for Kubernetes on GitHub. We contacted the contributors of this proposal via email to see if we could
cooperate. It turned out that a man named Dario was in charge of the proposal. We had several video calls
with him to discuss a possible collaboration. We ended up not working together but his input has been very
useful to us.

We have encountered several bugs in Kubernetes, since we were working with alpha features. We used
the GitHub issues system to report these bugs. We have used this same system to participate in conversations
related to the bugs we found.

4.3.3. Tools
We used several tools to support collaboration and communication within the team and with external parties.
Table 4.4 shows the collaboration tools that we used. The way each tool works and how we used it, is described
below.

Hangouts is a video call application by Google. We used Hangouts to communicate with a professional from
Amadeus because it is located in France.
Slack is a communication tool much like a chat application. Kubernetes has its own Slack group with multiple
channels. Channels are used to split conversations up in to different topics. We used the#kubernetes-users
channel to ask other users about working with Kubernetes. We also used the #kubernetes-dev channel to
talk to Kubernetes developers, about software implementation details.
GitHub an online hosted git repository service. We used GitHub to host our code but also to keep track of
issues and to create pull-requests. Communicating through pull-requests turned out to be very effective for
us. Using this type of communication groups the conversation to a specific piece of code, which makes it easy
to read back up on a conversation.
Sharelatex is a hosted LATEX editor. Sharelatex allows for collaborative editing in the same file and project. We
used Sharelatex for both the research report and the final report.
Google Drive is a hosted storage solution by Google. Google drive comes with its own office suite. We used
Google Drive to collaboratively work on the same files and keep all project files in a central place.
Kami is an online PDF annotation tool. Kami allows users to collaboratively annotatate PDF files with comments
and highlights. We used Kami extensively during the research phase of the project to highlight interesting
parts in scientific papers and books.

https://hangouts.google.com/
https://slack.com/
https://github.com/
https://drive.google.com/
https://www.kamihq.com/
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Design and Implementation of Flower

This chapter describes each part of Flower in detail. Section 5.1 gives an overview of Flower as a whole. In
Section 5.2 the Workflow Manager subsystem and how it relates to other subsystems is described in more
detail. The section is split up in two parts. Section 5.2.1 describes the architecture, and Section 5.2.2 which
describes how we implemented it. The Heat Scheduler and the different scheduling policies are covered in
Section 5.3.

5.1. The Flower system
In this section we describe the architecture and the implementation of Flower in Section 5.1.1 and Section 5.1.2
respectively.

5.1.1. Architecture
Flower consists of three subsystems that together provide workflow management and scheduling. An overview
of the these subsystems in the cluster is shown in Figure 5.1. The cluster - or cloud - is a set of connected
machines which can be used to run containers.

Workflow Manager is responsible for executing workflows created by the user. To create a workflow, the
user submits a workflow specification to Kubernetes. Kubernetes is used to store the specification and the
current state of the workflow. A state diagram of a workflow is shown in Figure 5.2a. The diagram shows
how a workflow transitions to the executing state when all preconditions are satisfied. When a workflow is
executing, its steps transition from a pending state to a completed state. Figure 5.2b shows the state diagram
of a step. A step can start executing when all its dependencies have been resolved. Workflows reach the
completed state, when all steps are completed.

Figure 5.1: Overview of all subsystems in the cluster.

Workflow Manager observes Kubernetes for creations and modifications of a workflow specification. When
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(a) The various stages of a workflow.

(b) The various stages of a step.

Figure 5.2: State diagrams of a workflow (top) and a step (bottom).

a new workflow is added to Kubernetes or when an existing one is altered, Workflow Manager will perform
validation and verify which workflow steps are ready for execution. When the dependencies of a step have
been resolved, it is handed over to Kubernetes to schedule it on a suitable machine.

The Kubernetes scheduler will determine which machines are suitable for the step to execute on. It will do
this by checking a list of predicates for each machine. Kubernetes sends the list of suitable machines to Heat
Scheduler. Heat Scheduler returns a single machine based on a custom heat-scheduling policy described in
more detail in Section 5.3. The schedulable step will be executed on the returned machine.

5.1.2. Implementation
We built both Workflow Manager and Heat Scheduler on top of Kubernetes. Kubernetes is "an open source
system for managing containerized applications across multiple machines" [12], which is described in more
detail in Section 2.1.3. We decided to build our proof of concept implementation on top of Kubernetes for a
number of reasons: Kubernetes (i) orchestrates containers, (ii) has a default scheduler which can be extended,
(iii) is open source, (iv) is used by Nerdalize, making this integration useful to them.

Kubernetes is used as the central store for workflows because of its fault tolerant storage. It uses a distributed
key-value store, such that data doesn’t get lost when one of the machines in the cluster goes down. YAML or
JSON text formats may be used to describe a workflow as these are formats Kubernetes uses to store resource
representations.

Flower uses a microservices architecture [32] to run components in their own environment. Microservices
are small services running one process or a few tightly coupled processes. They can be independently deployed,
often in an automatic way. We use Kubernetes to deploy microservices that run inside a container. Kubernetes
has advanced features for running microservices such as the replication controller. The replication controller
is used to monitor a running microservice and restart it when it goes down. We run both Workflow Manager
and Heat Scheduler as microservices. A more in-depth description of the architecture and implementation
of these microservices can be found in Section 5.2 and Section 5.3 respectively.

5.2. The Workflow Manager component
This section describes the Workflow Manager component. Workflow Manager is responsible for executing
workflows, which are defined as a collection of steps with optional dependencies. First the architecture is
described in Section 5.2.1, after which we go over the implementation details in Section 5.2.2

5.2.1. Architecture
Workflow Manager is a workflow execution system that is built to run workflows on modern cloud services. As
a proof of we chose to build Workflow Manager for Kubernetes. Workflow Manager interfaces with Kubernetes
through the Kubernetes API. The API endpoints Workflow Manager uses are described in more detail in
Section 5.2.2. The individual components of Workflow Manager, are shown in Figure 5.3. Each of these
components and their responsibilities is described below.

Kubernetes API Server
The Kubernetes API server stores a representation of all resources in the cluster. It functions as the main
gateway to communicate with Kubernetes. In the context of the Workflow Manager component, the API
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Figure 5.3: Overview of Workflow Manager package and the interactions with the Kubernetes package.

server can be seen as an upstream store that holds all workflows and jobs. To create a workflow, the user
sends the workflow specification to the API server. Workflow Manager is able to observe the workflows stored
by the API server and process them. Steps in a workflow correspond to jobs in Kubernetes.

Manager
The manager is responsible for providing the transitioner with workflows that need processing. It lists and
watches workflows and jobs that are stored in the API server. Listing is used to query all workflows/jobs from
the API server. Watching is a mechanism to receive updates on changes of an individual workflow or job when
they occur. These changes can be anything from a change in a workflow’s specification to the change of a job’s
status (running, completed, failed).

When the manager receives a new workflow or notices an update to an existing workflow or job that
belongs to a workflow, the transitioner is called to process the workflow.

Transitioner
The transitioner is responsible for transitioning a workflow from its current state to its desired state. A workflow
will only be transitioned if it is validated by the validator. The current state of a workflow is provided by the
manager. The desired state of a workflow is for it to be complete. This is the case when all workflow steps
have finished execution. Steps with resolved dependencies are provided to the scheduler. When all workflow
steps have finished, the transitioner will set the workflow status to complete and update to the API server.

Validator
When a workflow is submitted it is first validated before processing starts. The validation process consists
of different parts. The most important property of a workflow is that its dependency graph contains no
cycles. To verify this we sort the DAG topologically. A topological order exists if and only if the graph does
not contain a cycle. In Figure 5.4 the pseudocode for the topological sorting algorithm based on Depth First
Search (DFS) [25] is shown. Other parts of the validation include, making sure the specification is valid JSON
or YAML, checking if step names are unique and ensuring that steps contain all the fields for processing.
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for all v in V do visited(v) = 0
for all v in V do mark(v) = 0
for all v in V do if (visited(v)==0) DFS(v)

DFS(v) {
mark(v) = 1
visited(v) = 1
for all w in adj(v) do {

if (visited(w)==0) {
DFS(w)

} else {
if (mark(w)==1) print "found a cycle"

}
}
mark(v) = 0

}

Figure 5.4: Topological sort based on DFS. Based on a code snippet made available for a lecture at Carnegie Mellon University
(http://www.cs.cmu.edu/afs/cs/academic/class/15451-s06/www/lectures/DFS-background.txt).

Figure 5.5: A screenshot of the user interface of Flower. Green nodes represent completed steps, blue nodes represent running steps, and
gray nodes represent pending steps.

Scheduler
A step - and its corresponding job - are provided to the scheduler when it is ready for execution. The scheduler
places the job on a machine in the cluster, such that it can be executed. For this project we extended the
scheduler, to schedule based on a custom heat-scheduling policy. The architecture of our scheduler is explained
in more detail in Section 5.3.

User interface
Flower comes with a graphical user interface (GUI) to visualize the current state of a running workflow. A
screenshot of the GUI is shown in Figure 5.5. The GUI shows the workflow as a DAG, with a node for each
step. Green nodes represent completed steps, blue nodes represent running steps, and gray nodes represent
pending steps. The GUI polls the API server for the current state of the workflow and its jobs and updates its
representation accordingly.

5.2.2. Implementation
This section describes the implementation of Workflow Manager in more detail. Workflow Manager is designed
to run on top of Kubernetes, which is heavily reflected in the implementation. A sequence diagram of Workflow
Manager is shown in Figure 5.7. The different components from the diagram are explained below.

Throughout this section we often refer to the workflow resource. Figure 5.6 contains an object diagram
showing the composition of the workflow resource. From the diagram it can be seen that a Workflow is
composed of a status and a specification calledWorkflowStatus andWorkflowSpec respectively. The workflow
specification is specified by the user, while the status gets updates by Workflow Manager as the execution
progresses.
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Figure 5.6: Object diagram showing the composition of the Workflow object.

Method Path Description
GET /apis/extensions/v1beta1/jobs list objects of kind Job
GET /apis/extensions/v1beta1/watch/jobs watch individual changes to a list of Jobs
POST /apis/extensions/v1beta1/namespaces/{namespace}/jobs create a Job
GET /apis/nerdalize.com/v1alpha1/workflows list objects of kind Workflow
GET /apis/nerdalize.com/v1alpha1/watch/workflows watch individual changes to a list of Workflows
GET /apis/nerdalize.com/v1alpha1/namespaces/{namespace}/workflows/{name} read the specified Workflow
UPDATE /apis/nerdalize.com/v1alpha1/namespaces/{namespace}/workflows/{name} replace the specified Workflow

Table 5.1: Kubernetes API endpoints used by Workflow Manager. Source: http://kubernetes.io/kubernetes/third_party/
swagger-ui/.

Client
The client is used to communicate with the Kubernetes API server. Messages to and from the API server are
encoded in JSON text format. Using JSON is very convenient, because Go makes it easy to convert JSON
objects to structs. Table 5.1 shows the Kubernetes API endpoints that are used by Workflow Manager. These
endpoints can be grouped in endpoints regarding jobs and workflows. Three observations can be made from
this table that are worth describing.

The fist is the API group, which is the part after /apis/ in the table. By using the third party resource API
from Kubernetes, we were able to register our own Kubernetes API endpoints. We registered these endpoints
under the nerdalize.com API group.

The second notable observation is the namespaces part in the table. Namespaces are used by Kubernetes
to support multiple virtual clusters in the same physical cluster.

The last observation are items one and five from the table, which describe the endpoints used for watching
resources. Watching an endpoint sets up an HTTP long polling connection to the server. Each time a resource
changes, a new event is pushed over the HTTP connection. An example of such an event in JSON format can
be found in Figure 5.8. The watching mechanism is very convenient as it allows changes to be pushed by
the server. This reduces network delay compared to periodically polling the server. Unfortunately watching
functionality for third party resources such as workflows, was still in alpha production state, hence very
unstable. This forced us to write our own watching mechanism by periodically listing the server and manually
keeping track of the differences.

Informer
The informer lists and watches the client to stay informed about changes that happen to workflows and jobs.
The informer will reflect these changes to an in-memory store. We used the informer as a fast cache compared
to requests to the API server. The informer provides convenient event handlers for created, updated, and
deleted events. The use of these event handlers is explained in the manager section.

The informer is a Kubernetes object that uses different components such as Controller, DeltaFIFO,
and Reflector behind the scenes. Explaining these component is out of the scope of this report. We

http://kubernetes.io/kubernetes/third_party/swagger-ui/
http://kubernetes.io/kubernetes/third_party/swagger-ui/
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{
"type": "ADDED",
"object": {

"kind": "Job",
"metadata": {

"name": "test-job",
...

},
"spec": {

...
},
"status": {

"conditions": [
{

"type": "Complete",
"status": "True",

}
]

}
}

}

Figure 5.8: An example of a watch event in JSON format.

did write a blog post about it, which can be found at http://borismattijssen.github.io/articles/
kubernetes-informers-controllers-reflectors-stores.

Store
The in-memory store can be used to quickly list all workflows and jobs in the cluster. The only object that is
allowed to write to the store is the informer. Other components have read-only access. Using this strategy,
the store always reflects the state of the API server.

Manager
The manager is responsible for delegating the processing of workflows. It contains a list of workflows that
need processing in a thread safe queue called the workerqueue. On creation the manager starts multiple
threads, called workers. Each worker constantly checks the workerqueue to see if there are workflows that
need processing. When a worker receives a workflow from the workerqueue, it is handed over to the transitioner
for processing.

The manager uses the informer’s event handlers to stay updated when a workflow or job is created,
updated, or deleted. The manager has a workflow informer and a job informer, because it needs to stay
informed about both workflows and jobs. Whenever one of the event handlers of the workflow informer is
called, the corresponding workflow will be added to the workerqueue for processing.

The sequence diagram in Figure 5.9 shows the flow of actions when a workflow is created. When created
the manager creates the workerqueue and multiple workers. For the sake of simplicity we only show one
worker in the diagram. The workers will try to pop a workflow from the queue, by calling its blocking pop()
function. When a workflow is created, the informer calls the addWorkflow event handler in the manager. The
addWorkflow function will push the workflow onto the workerqueue. The workerqueue can now respond to
the pop call from the worker, by returning the created workflow. The worker will then delegate the processing
of the workflow to the transitioner.

When one of the event handlers in the job informer are called, a similar flow of actions take place. Since
the workerqueue only contains workflows, the workflow corresponding to the job should be identified first.
When a workflow is created, it is assigned a unique identifier (UID). When a job belonging to a workflow is
created, it is assigned a nerdalize.com/workflow-uid label containing the corresponding workflow UID.
When an event handler in the job informer is called, the nerdalize.com/workflow-uid label can be used

http://borismattijssen.github.io/articles/kubernetes-informers-controllers-reflectors-stores
http://borismattijssen.github.io/articles/kubernetes-informers-controllers-reflectors-stores
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Figure 5.9: Sequence diagram of the manager and the workers.

to find out which workflow the job belongs to. That workflow is then pushed onto the workerqueue for
processing.

Transitioner
The transitioner is responsible for transitioning a workflow from its current state to its desired state. When
provided with a workflow, the transitioner will check if the preconditions of the workflow are met. The
preconditions ensure that the workflow is (i) a valid workflow, (ii) not yet finished, and (iii) has not passed
a deadline specified by the user in the specification.

If the preconditions are met, the transitioner will continue processing. It processes each step whose
dependencies have been resolved. Two distinguishable actions can be taken for such a step. If no job exists
for a the step, the job will be created using the client. When a job is created, its existence will be noticed by
the Kubernetes scheduler. The scheduler will make sure that the job executes on a suitable machine. If a job
does exist for the step, the transitioner will obtain the status of the job. The status of a job can be one of active,
succeeded, or failed. The obtained status will be included in the status of the workflow.

When all the workflow steps have finished execution, the workflow is assigned a WorkflowCompleted
status condition. The client is used to update the status of the workflow on the API server. The locally updated
workflow may contain outdated information compared to the information present at the API server. In this
case when the client tries to update the API server will reject it. The transitioner then indicates to the manager
that the workflow should be requeued, such that the whole transition can be retried.

Expectations
Communication with the API server can take a long time in case the API server runs on a different machine
and the network is congested. As a result ofthis delay, the in-memory store always lags the current state of
resources in the API server. This could have problematic consequences, such as the transitioner creating a
job twice. This can happen because creation of the first job is not directly reflected in the store. To prevent
problems like these from happening we used expectations.

Explaining how expectations work can best be done using the sequence diagram in Figure 5.10. The
diagram shows three periods during which the manager is active, indicated by the black bullets. In the first
period the transitioner checks if the expectations for job are satisfied. The result is true, so job gets created.
The transitioner tells the expectations object to expect job to be created. When the second period starts, the
creation of job is not yet reflected in the store. This is due to the network delay indicated on the Kubernetes
API server object. Since job is not yet present in the store, the transitioner decides to create it. Before creation
the transitioner first checks the expectations and finds out that the expectations for job are not satisfied. For
this reason job is not created again. In the thrid period the response from the API server finally arrives. This
causes the manager to get notified. The manager notifies expectations that it observed the creation of job. The
notification from the manager in reality goes through the informer, which is omitted for the sake of clarity.
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Figure 5.10: Sequence diagram, showing the added value of using expectations. The black bullets are used to indicate three distinct
events.
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Figure 5.11: Overview of the heat scheduler. The user specifies which policies and the weight of these policies. The scheduler calculates
a score for each machine based on the policies.

Eventbroadcaster
We used an event broadcaster to log creation of jobs. When a job is created the event broadcaster logs the
event to the API server. The user is able to access these logs using the Kubernetes command line interface to
get a chronological history of events.

5.3. The Heat Scheduler component
Heat Scheduler is a subsystem of Flower that can schedule steps based on selected scheduling policies. It is
responsible for scheduling workflow steps on a CloudBox whose boiler has not yet reached the maximum
temperature to minimize wasted heat. To make this scheduling decision Heat Scheduler must know the
temperatures of all CloudBoxes in the cluster. The temperature is provided by a temperature sensor.

5.3.1. Architecture
Heat Scheduler is used to select the most favourable machine for a step to run on. Heat Scheduler assigns
a score to each machine based on a list of policies and a given weight for each policy. Each policy can be
represented by a priority function, which assigns a score between 0 and 10 to each machine. The score of each
priority function is multiplied by a user specified weight. All products add up to the final score of a machine. A
machine with the highest score is the most favourable machine. For example, suppose there are two priority
functions, priorityFunc1 and priorityFunc2 with weighting factors weight1 and weight2 respectively,
the final score of some machine m is: (weight1 £ priorityFunc1(m)) + (weight2 £ priorityFunc2(m)).

In the following sections we present four scheduling policies. Each policy expects a list of machines at
its input and returns a list of scores corresponding to these machines. Each machine contains information
about the current, requested, and average temperature of its corresponding boiler and information about the
outside temperature of its physical location. An input-output diagram is shown in Figure 5.11. The user can
specify which scheduling policies should be used and what their corresponding weight factors are, as can be
seen from the diagram.

5.3.2. Scheduling policy: Minimum temperature
Intuition
This policy favors machines connected to a boiler whose water temperature is the lowest of all boilers.

Technical details
This scheduling policy assigns a score to each machine corresponding to its boiler temperature. The score
for each machine is calculated by taking the ratio of the minimum boiler temperature of all boilers to the
boiler temperature corresponding to the machine. In other words, the lower the temperature of a boiler, the
higher the score of its corresponding machines. The algorithm for this policy is presented in Algorithm 1 in
pseudo-code.

5.3.3. Scheduling policy: User request
Intuition
Users that consume heated water often desire to control the temperature of the water. An example is when the
user wants to control the temperature of the central heater which is connected to a boiler. This policy favors
machines connected to a boiler of which the difference between the current and the desired temperature is
the largest.
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Algorithm 1: Lowest temperature

Data: M √ list of machines
n √ number of machines
Result: S √ scores for machines
begin

tmi n √ mi nTemp(M) // get minimum temperature of all boilers
for i = 1...n do

tmachi ne √ temp(Mi ) // get temperature of the boiler corresponding to Mi
Si √ (tmi n/tmachi ne )£10 // calculate score for Mi

Technical details
The user request scheduling policy assigns a score to each machine corresponding to its boiler and its requested
temperature. The height of the score for each machine is relative to the difference between the temperature of
its boiler and its requested temperature. In other words, the greater the difference between the temperature
of a boiler and its requested temperature, the higher the score of its corresponding machines. The algorithm
for this policy is presented in Algorithm 2 in pseudo-code.

Algorithm 2: User request

Data: M √ list of machines
n √ number of machines
Result: S √ scores for machines
begin

// get maximum difference between current and requested temperature of all boilers
dmax √ maxDi f f (M)
for i = 1...n do

tr equested √ r eq(Mi ) // get requested temperature of the boiler corresponding to Mi
tcur r ent √ temp(Mi ) // get current temperature of the boiler corresponding to Mi
dmachi ne √ tr equested ° tcur r ent
if dmachi ne > 0 then

Si √ (dmachi ne /dmax )£10 // calculate score for Mi
else

Si √ 0 // do not give negative score to Mi

5.3.4. Scheduling policy: Usage profile
Intuition
This scheduling policy uses historical data to make predictions about the future. The policy favors machines
connected to a boiler with the lowest water temperature, averaged over the past week.

Technical details
This scheduling policy assigns a score to each machine corresponding to its boilers average temperature.
A running average of the past week is provided as an input. The score for each machine is calculated by
taking the ratio of the minimum average boiler temperature of all boilers to the average boiler temperature
corresponding to the machine. In other words, the lower the average temperature of a boiler, the higher the
score of its corresponding machines. The algorithm for this policy is presented in Algorithm 3 in pseudo-code.

5.3.5. Scheduling policy: Outside temperature
Intuition
This scheduling policy works by taking the weather forecast into account. The policy favors machines located
at places where the outside temperature is lowest. By places we mean the geographical location of the
machine. This policy can be used when the network of computers spans multiple climate zones. Colder
areas are more likely to require heat, therefore scheduling should prefer these areas.
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Algorithm 3: Usage profile

Data: M √ list of machines
n √ number of machines
Result: S √ scores for machines
begin

tmi n √ mi n Av g Temp(M) // get minimum average temperature of all boilers
for i = 1...n do

tmachi ne √ av g Temp(Mi ) // get average temperature of the boiler corresponding to Mi
Si √ (tmi n/tmachi ne )£10 // calculate score for Mi

Technical details
This scheduling policy assigns a score to each machine corresponding to the outside temperature. The score
for each machine is calculated by taking the ratio of the minimum outside temperature of all machines to the
outside temperature corresponding to the machine. In other words, the lower the outside temperature, the
higher the score of the machines corresponding to that location. The algorithm for this policy is presented in
Algorithm 4 in pseudo-code.

Algorithm 4: Outside temperature

Data: M √ list of machines
n √ number of machines
Result: S √ scores for machines
begin

// get minimum outside temperature corresponding to the machines
tmi n √ mi nOut si deTemp(M)
for i = 1...n do

tmachi ne √ out si deTemp(Mi ) // get outside temperature corresponding to Mi
Si √ (tmi n/tmachi ne )£10 // calculate score for Mi

5.3.6. Implementation
Heat Scheduler is exclusively used to create a list of scores based on a list of machines and can therefore not
be used as a scheduler on its own. We decided to implement Heat Scheduler as an extension to the default
scheduler of Kubernetes. The advantage of extending the Kubernetes scheduler are the default policies provide
by Kubernetes. The Kubernetes scheduler checks a list of predicates [11] for each machine in the cluster,
when provided a step. The predicate returns whether a particular machine satisfies a requirement to run a
step on that machine. An examples of a predicate used by Kubernetes is FitsResources, which checks if the
machine has enough resources (memory and CPU) to run the requested step.

After Kubernetes has gone over the predicates, the list of remaining machines is sent to the Heat Scheduler.
Heat Scheduler returns the score for each machine per priority function. Kubernetes combines these scores
with its own priority functions and schedules the step on the machine with the highest total score. An
example of a Kubernetes priority function is ImageLocalityPriority, which assigns a higher score to a
machine that already has the image of the container on its local disk. Kubernetes communicates with Heat
Scheduler through its HTTP API using JSON encoding for data.



6
Evaluation of Flower

6.1. Quality assurance
To ensure the code we wrote during the project is of high quality we employed two different measures.
During the project we had an independent party rate our code based on aspects such as maintainability
and compliance to best practices. This evaluation is further described in Section 6.1.1. The second measure
we took involved using automated tools to keep different metrics within a desirable range. Code metrics are
further described in Section 6.1.2.

6.1.1. Software Improvement Group
The Software Improvement Group (SIG) is a company that evaluates code. SIG uses static analysis to evaluate
the code, resulting in a score between 1 and 5 stars. Feedback from SIG can be taken into account to improve
maintainability and scalability of the code. During the project our code will be evaluated by SIG twice. The
first time we sent our code to SIG was on May 27th. We received feedback by June 3th, which gave us enough
time to improve the code based on their findings. The second SIG evaluation is on June 17th. This is on the
same day as the deadline of this report, which means we cannot reflect on the second feedback here.

The system scored 3.5/5 stars, which means the code scores above average on SIG’s maintainability model.
Areas of improvement were Duplication and Unit Size. The entire analysis of SIG can be found in Appendix D.
Since SIG did not tell us to which components the feedback was related, we asked them for clarification. In
their reply they suggested that we should focus only on Unit Size for the following functions: transitionWorkflow(),
process(), and processJobStep() in transitioner.go and onReady() in code.js.

We addressed the feedback by breaking up the aforementioned functions into smaller functions with less
responsibility. Table 6.1 shows the lines of code (LOC) and effective lines of code (eLOC) in each function
before and after SIG feedback. Effective lines of code are the lines of code in a function excluding comments,
whitespace and log statements. As can be seen from the table we have drastically reduced the sizes of the
functions. We expect good results from the second SIG feedback, since we took the feedback into account for
existing and newly added code.

6.1.2. Code metrics
To assure good code quality we took several measurements into account. We used the code coverage system
Coveralls as described in Section 4.2.3. At the end of the project we had 69% lines of relevant code covered

LOC eLOC
Function before after % decrease before after % decrease
transitionWorkflow() 49 34 144% 26 19 137%
process() 76 29 262% 53 17 312%
processJobStep() 60 22 273% 44 19 232%
onReady() 94 8 1175% 88 4 2200%

Table 6.1: Lines of code (LOC) and effective lines of code (eLOC) for functions, before and after SIG feedback.
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Language Files Code Comment Blank Total
Workflow Manager All 29 3499 655 381 4535

Go 19 3029 620 346 3995
XML 1 272 0 0 272
Javascript 1 92 3 9 104
Markdown 3 37 0 7 44
Shell 2 36 15 13 64
HTML 1 17 0 1 18
CSS 1 9 0 1 10
Make 1 7 17 4 28

Heat Scheduler Total 15 738 145 133 1016
Go 13 724 111 125 960
Make 2 14 34 8 56

Table 6.2: Lines of code (LOC) in Flower components, grouped by programming language.

with tests. This is still 31% away from full line coverage. This can be explained by the fact that Go code is
very verbose in error checking. Much of the error checking consists of checking circumstances that are very
unlikely to happen, such as the kernel being out of file descriptors. We did not test every single one of the
possible errors, since they are very unlikely to happen and hard to simulate. Line coverage could be further
improved by adding more end-to-end tests. End-to-end tests can be used to test much of the untested code
responsible for communicating with Kubernetes. We compared our line coverage to Kubernetes. Kubernetes
is a good comparison, as there are a lot of similarities between Kubernetes code and our code. Kubernetes
has 59% lines of relevant code covered. From this we may conclude that our code is well tested.

Table 6.2 shows the lines of code for Flower and Heat Scheduler respectively. From Table 6.2 we can
extract Heat Scheduler has a comment-to-code ratio of 20.4% for the Go code. According to Caltech [4] this
ratio means that we have good documented code. Heat Scheduler has a comment-to-code ratio of 15.3%,
which is average documented code accroding to Caltech. We used less comments in Heat Scheduler than in
Flower, because Heat Scheduler is simpler and the code is more self-explaining.

6.2. Experimental work
To validate our system we designed an experiment. The experiment itself is described in detail in Section 6.2.1.
The results of the experiment and the implications for stakeholders are covered in Section 6.2.2. Graphs are
provided to visually summarize important aspects of the experiment.

6.2.1. Experiment
The experiment was carried out using machines provided by Google Cloud Platform (GCP). We chose GCP
because Nerdalize uses it for development and we had been given free credit at the GCP conference. With this
credit we were able to use about 50 machines for 10 hours. The specifications of the machines we used are
shown in Table 6.3. The CPUs used by the GCP machines are very similar to the ones Nerdalize will eventually
use in the CloudBox. This made them a good choice for the experiment.

Setup
GCP makes it very easy to create a Kubernetes cluster. Through a graphical user interface the type of machine
as well as the desired amount are specified. With a click of a button the cluster is configured by registering
every machine with the Kubernetes master. While this approach is significantly easier than configuring the
cluster by hand it was not suitable for our experiment. Our implementation relies on a particular client that is
only available in Kubernetes 1.3. At the time the latest Kubernetes version available on GCP was 1.2. We ended
up modifying the shell script used by GCP to spin up the cluster. The script is available on the Kubernetes
GitHub page1. After running the modified script we ended up with a Kubernetes cluster running version 1.3.
The cluster was not visible on the online GCP dashboard, probably because we circumvented the setup page.
All other functionality was untouched which made for an appropriate experiment environment.

With the cluster ready we created a pod containing Flower and a pod containing our custom scheduler.

1https://github.com/kubernetes/kubernetes/tree/master/cluster/gce

https://github.com/kubernetes/kubernetes/tree/master/cluster/gce
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Property Value
Type n1-standard-2
Operating System CentOS 6
vCPUs 2
Processor 2.6GHz Intel Xeon E5
Memory 7.5Gb

Table 6.3: GCP instance specifications

After registering the custom scheduler with the default Kubernetes scheduler the setup was complete. Arbitrary
workflows could be submitted to the Kubernetes API server, Flower would then decide which steps are ready
for scheduling and the custom scheduler finds a suitable machine to run the step’s job on.

For the experiment we simulated a household consisting of four people. There is a CloudBox installed
along with a boiler with 150 liter capacity. This setup simulates an average family with two children. Several
other assumptions were made before the experiment took place:

Assumptions

1. The temperature of water entering the boiler is 15 degrees Celsius.

2. The maximum temperature of the boiler is 55 degrees Celsius.

3. The volumic capacity of the boiler is 150 liters.

4. The energy capacity of the boiler is 25.000.000 joules.

5. If boiler temperature is 15 degrees it is ’empty’ and contains 0 joules worth of energy.

6. If boiler temperature is 55 degrees it is ’full’ and contains 25.000.000 joules worth of energy.

7. Additional heat produced when the boiler is full is ’wasted’.

Assumptions were made in consultation with Nerdalize employees responsible for thermodynamics and
hardware development. Assumption 3. was calculated as the energy needed to heat 150 liters of water from
15 to 55 degrees Celsius. The experiment consisted of running a test workflow twice, once using the default
Kubernetes scheduler and once using the developed custom Heat Scheduler using the minimum temperature
policy. We chose this policy because of its simplicity and ability to illustrate the point. Boiler temperatures
are monitored as the workflow progresses. At the start of each run we reset the initial boiler temperatures
to the same values. This made comparison possible. We used the Epigenomics workflow, which is one of
the examples available on the Pegasus [31] website. The workflow is in a format used by Pegasus and is
incompatible with Flower. Because creating a similar workflow by hand would take a long time we wrote
a DAX to JSON converter instead2. It is able to convert an arbitrary workflow in DAX format and turn it
into the JSON format recognized by Flower. The workflow consists of 997 steps and 1,234 dependencies.
Each step contained a job which would run a stress [17] program. We configured the program to use a
random percentage of available CPU for thirty seconds on a given machine. This simulates a CPU intensive
computation being performed.

Simulation
The scenario which the experiment simulates is a cluster of CloudBoxes installed in a typical home consisting
of four people, two adults and two children. It expects no warm water is used during the execution. At the start
of the simulation it is 7PM, the children have just been washed and gone to bed. At the end of the simulation
both parents will take a shower consuming most of the boiler’s warm water. To simulate this situation initial
boiler temperatures were chosen randomly from a normal distribution with a mean of 60 and a standard
deviation of 20. These values were derived from water consumption data made available by the engineers at
Nerdalize.

Because the GCP instances do not contain an actual boiler, we wrote several components to simulate
a boiler. Initial boiler temperatures are assigned by the Initializer. During the experiment machine cpu

2https://github.com/nov1n/kubernetes-workflow/tree/master/dax-to-json

https://github.com/nov1n/kubernetes-workflow/tree/master/dax-to-json
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Endpoint Method
/setup?std={standard_deviation}&mean={mean} GET
/reset GET

Table 6.4: A description of the Initializer’s client facing API.

utilization was converted to corresponding generated heat by a boiler simulator. These two components
are now described in more detail.

The Initializer runs a web service with a client facing API which is described in Table 6.4. When a request
is made to the /setup endpoint the Initializer generates a label with the initial temperature value for every
machine in the cluster. Labels in Kubernetes specify identifying attributes of objects that are meaningful and
relevant to users. The label is randomly generated from a normal distribution of which the parameters may be
configured by the user through std and mean in the query string. The label is assigned to a machine through
the Kubernetes API server. The API server updates its internal representation of the particular machine to
reflect the label assigned. Labels are well suitable in this case because Kubernetes components such as the
scheduler may easily access them. This is important as our custom scheduler needs the temperature labels
to make scheduling decisions.

The /reset endpoint resets the temperature label for every machine to the value previously calculated by
/setup. Calling /reset before /setup is not allowed as previous values are not available. Reset functionality
is useful to test how different scheduling policies affect the same initial boiler temperatures. Test results of
running the same workflow with different scheduling policies can be found in Section 6.2.2.

Boiler Simulator The boiler simulator simulates a boiler attached to a machine. The boiler is not yet present
because CloudBoxes are still under development. After the initial boiler temperature is set by the Initializer
the boiler simulator keeps the temperature up-to-date corresponding to the heat generated by the machine.
The simulator periodically collects cumulative cpu utilization from Heapster. Heapster is a kubernetes component
that exposes various metrics through a RESTful API. CPU utilization is measured in millicore seconds which
is equivalent to a thousandth of a core used for one second. For every machine the cpu utilization is used
to compute the corresponding temperature increase. The conversion from cpu utilization to temperature
increase is done by taking into account the heat generated per millicore second, which depends on the type
of CPU present in the machine. For testing purposes it is convenient to increase the rate at which the boiler
heats up. As a result we introduced a scaling factor which is multiplied by the result of the conversion before
it is assigned as a label to a machine. Every time a temperature label is updated, the timestamp along with
the temperature is also stored in a database to be used by the user interface.

Scaling factor
The boiler simulator used a scaling factor to ’speed up time’. Instead of using the actual joules/second
generated by the CPU it used a value that made the short simulation representative for a much longer time
in reality. The 7 minutes it took to complete the workflow represent approximately 1,36 hours in reality. The
calculation can be found in Appendix E.

Hypothesis
The goal of the experiment is to measure how much heat is wasted. This waste occurs in two ways. The
first way is when steps are run on CloudBoxes whose boilers are full. Additional heat in this case is wasted
because the boiler has reached maximum temperature and the CloudBox vents warm air to the outside. The
second type of waste occurs when more warm water is used than is available in the boiler. In this case the
central heating system needs to produce the warm water not provided by the boiler. The first run uses the
default Kubernetes scheduler which is unaware of boiler temperatures. The default scheduler uses a round
robin scheduling strategy which means that a step, on average, has an equal probability of landing on a given
node. Because not every step produces the same amount of heat, we expect some CloudBoxes will quickly fill
up while others are still empty. The Heat Scheduler however is aware of boiler temperatures. Its scheduling
strategy is to schedule steps on the coldest boiler. In this case all CloudBoxes supposedly will warm up evenly,
minimizing wasted heat. We expect less heat to be wasted when the custom Heat Scheduler is used compared
to the default scheduler, due to a more even distribution of heat.
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Figure 6.1: The boiler temperature during the execution of the test workflow using the default scheduler. Energy produced in the gray
area (under 100%) is useful; energy produced otherwise is wasted.

Figure 6.2: The boiler temperature during the execution of the test workflow using the custom Heat Scheduler. Energy produced in the
gray area (under 100%) is useful; energy produced otherwise is wasted.
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6.2.2. Results
In this section we will describe the results of running the experiment. We explain how the results were
gathered, what they mean and how they relate to our expectations. Figure 6.1 and Figure 6.2 illustrate how the
boiler temperature changes over time with the two different schedulers. Every series represents a CloudBox.
On the vertical axis the boiler temperature is depicted as a percentage of the maximum temperature. The
horizontal axis shows time. Background color represents whether energy is being wasted. While lines fall
within the light area between 0% and 100%, energy is used to warm up the water in the boiler. The red
(dark) area from 100% up signifies heat is wasted because the boiler has reached maximum temperature.
Figure 6.1 corresponds to a workflow executed on the system using the default Kubernetes scheduler. As we
expected lines are far apart meaning steps are assigned to CloudBoxes which are full while not yet full ones
are available. Furthermore several lines enter the red (dark) area signifying heat waste. The Heat Scheduler
was used in the second run corresponding to Figure 6.2. In this graph we see that the lines are much closer
together and almost all stay within the light area. From this we may conclude that that given our assumptions
the Heat Scheduler makes more efficient use of generated heat.

Bottom line
We will now compare the wasted heat during the execution of the experiment using the default scheduler
versus using the custom Heat Scheduler. As previously described, at the end of our simulation each of the
two parents will take a shower. An average shower consumes 9 liters per minute and has a duration of 12
minutes. Leading to 108 liters of water. Water used for showering will be 38 degrees Celsius. Water starts at
15 degrees Celsius and must be heated to 36 degrees Celsius. To warm 1 liter of water 1 degree Celsius 4180
joules worth of energy are needed. The total amount of joules needed for the two showers is calculated as
follows:

9L/m £12m £ (36C °15C )£4180J/L/C £2people = 18.960.480 j oul es

Now we convert the amount of joules to the percentage of the total boiler capacity as follows:

18.458.880J
25.000.000J

= 0,76 = 76%

This means that all the CloudBoxes whose level was under 76% at the moment the showers took place, need
to resort to the central heating system to provide for the additional warm water needed. In case the default
scheduler is used, the central heating costs to provide the additional energy amount to at least "32,00 per
family per year. In case the Heat Scheduler is used, all heat is provided by the boiler saving the full "32,00 per
year. This is on top of the yearly savings of "300/year Nerdalize promises to homeowners using a CloudBox
installed, leading to a significant 10% increase. For more details about the calculation see Appendix F. This
saving only takes into account the scenario described above. Similar scenario’s may occur during the day
leading to more savings.

To verify the impact, other experiments are required using real CloudBoxes, real users and longer time
spans. The simulation possibly differs from reality in some scenarios which may lead to different results.
Using real users verifies if the assumptions made during the experiment regarding water consumption are
realistic. Lastly longer experiments will illustrate whether the savings are consistent over time.
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Discussion & Future Work

7.1. Discussion
Data centers are becoming increasingly important for our daily lives, supporting the ICT needs of our society.
However, they raise important operational costs, and an energy footprint that raises ecological concerns.
Instead of current data centers, an alternative for the future could be hosting servers in private homes, using
the heating generated by servers for the benefit of the home owner, and the revenue from the server for the
benefit of this distributed data center’s operator. Much research and engineering needs to happen before this
approach is proven viable at the scale of our society’s data center needs. In this work, we take an important
step in the right direction, by designing and implementing Flower, a workflow manager for such distributed
data centers that can also take heating into its scheduling decisions. In this section we will discuss the main
challenges encountered in Section 7.1.1, comment on the experiences using the Go programming language
in Section 7.1.2, and describe the changed requirements in Section 7.1.3.

7.1.1. Main challenges
During the project we have encountered several challenges. This section is used to describe the challenges.
We will describe the challenges working with the open source community, explain the pitfalls when relying
on alpha functionality, and discuss the difficulties of writing scalable and concurrent applications.

Open-source community
At the start of the project, the plan was to to include Flower in Kubernetes source code, such that we could
contribute to the community. We had noticed that a Professional from France had already written a proposal
for a workflow management system for Kubernetes. We got in contact to see if we could collaborate on the
implementation of the proposal because it covered most of our requirements.

Some code had been written as a work-in-progress (WIP). Just before the end of the research phase, the
WIP was rejected by Kubernetes. Kubernetes team members argued that adding workflows would make
Kubernetes overly complicated. They suggested implementing workflows as a third party project. Luckily
we had not yet started implementing, but we had to redesign our initial architecture because the solution
now had to run outside of Kubernetes.

After a week we found out that a large part of the code was reusable. We suggested working together with
multiple times, but ended up not. This was mainly due to company policies on his side and time constraints
on our side. We did however use this code as a starting point for Flower.

The code looked very extensive. We however soon found out that the code contained a lot of bugs. The
code had probably never been run, not even for testing purposes. We invested a lot of time refactoring the
code and making it operational. We later discovered that the code was very similar to existing Kubernetes
code. Looking back at the process we should have used the Kubernetes code as a starting point, because it
was better documented.

Kubernetes alpha
Kubernetes team members advised us to implement Flower as a third party project, using their third party
resource API. There are two main advantages of using the third party resource API: (i) Kubernetes takes care
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of storing data in a distributed manner and (ii) it looks like Flower is integrated into Kubernetes to end-users.
It should however be noted that the third party resource API is still in alpha, which means it is very unstable.
We have encountered the situation in which certain bugs were fixed, but other bugs were introduced at the
same time. Working with unstable code like this was time consuming but at the same time very educational.
We had to engage with the open source community to address issues, request fixes and test new revisions.

Scalability & Concurrency
Flower should run in a distributed environment and must be able to handle large workloads. These are
two requirements that introduced challenges. Because Flower had to run on large scale, we used parallel
processing in multiple places. Parallel processing makes the throughput of the program higher, but also
makes it harder to debug. We have encountered bugs which took us entire days to solve, because of the
difficult nature of concurrent problems.

Designing for distributed systems turned out to be hard. It requires other design patterns than those used
in non-distributed applications. This is because (i) communication can last unexpectedly long and (ii) the
program can more easily reach unexpected states. We ended up with a robust system, using design patterns
such as expectations described in Section 7.1.1.

7.1.2. Programming language experiences
Most of the Flower codebase is written in Go. Go is a very young programming language developed by Google,
dating back to only 2012. In this section we would like to reflect on Go to give some insight in this new
language.

Writing Go is similar to writing C. Although its syntax is similar syntax to C, it has more advanced features
such as garbage collection, dependency management, and built-in concurrency control. Go has no classes,
which might seems odd for a modern language focused on scalability. To cope with the need for structured
code, Go uses structs, interfaces and methods.

We liked working with Go. It is very easy to create scalable concurrent programs in Go because of the
ease of creating threads, called goroutines. Inter-thread communication is convenient using channels. We
had to get used to working with structs and interfaces instead of classes at first, but soon these concepts
made perfect sense. A feature we did not like as much is the verbose error checking of Go. Go does not have
exceptions, but uses multiple returns values of which the last one is often an error. Multiple return values are
an interesting feature of Go, but it means that error checking has to be done in the middle of pieces of code.

7.1.3. Changing requirements
The difference between the list of requirements in Section 3.4 and those in the research report, is the scheduler
section. Initially Nerdalize wanted the system to schedule workflow steps onto either the same machine or
on a separate machine. This requirement was introduced by Nerdalize, because steps can share the same
disk when scheduled on the same machine. During the project Nerdalize changed their approach to this
problem. The idea is to place a network disk close to the machines in the cluster. This way steps do not have
to run on the same machine to share data. The requirement to run steps on separate machines was only
introduced because of its similarities with the aforementioned requirement. Because of the new approach,
both requirements were dropped.

Nerdalize introduced a new requirement to replace the old ones. Nerdalize requested a scheduling policy
that is able to schedule steps on the machine with the lowest boiler temperature. This scheduling policy
is convenient for them and for the environment because it wastes less heat. The main problem with this
requirement was that no boilers were yet deployed. We therefore had to mimic the boiler by measuring CPU
usage and translating this to heat produced. The Heat Scheduler is described in more detail in Section 5.3

7.2. Future Work
In this section we will discuss next steps for the Flower project. Valuable additional functionality can be found
in Section 7.2.1. Future testing strategies that should be used to make Flower production ready are described
in Section 7.2.2. The idea of contributing Flower to the open source community is explained in Section 7.2.3

7.2.1. Additional functionality
Flower could be extended to provide more functionality to the user. In this section we discuss the possible
extensions of Flower. Most of these extensions result from unimplemented must-not-have and might-have
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requirements from Section 3.4 and brainstrom sessions with Nerdalize employees and other professionals.

Resource usage limiting of workflows
Flower is able to execute a given workflow, but does not yet have a general solution to resource limiting.
With resource limiting we mean the restriction of CPU and memory usage for a given workflow. Kubernetes
supports CPU and memory to be limited for a given pod. In Flower workflow steps run as pods. Therefore we
can currently limit the resource usage of the individual steps, but not for the workflow as a whole. Limiting the
workflow as a whole is beneficial in certain cases where it does not matter how much resources the individual
steps consume. This could for example be used by Nerdalize to bill customers per workflow.

Scheduled workflows
Scheduled workflows are workflows that are assigned a (periodic) starting time. Specifying a periodic starting
time makes sense in cases where workflows need to run on a daily/hourly basis. Examples of such workflows
are periodically generated business reports. To implement this functionality the CRON expression syntax
could be used, because many people are familiar with its usage in crontab files.

Nested workflows
Flower could be extended to support nested workflows. These are workflows nested into other workflows,
much like modules or packages to a programming language. The usage of nested workflows allows for encapsulation
of a series of processes that can be easily shared and integrated into other workflows. Flower is designed to
deal with nested workflows, however the code to execute a nested workflow does not yet exist.

Additional scheduling policies
The scheduling policies presented in Section 5.3 are the first of its kind. To the best of our knowledge workflow
scheduling policies that take heat dissipation into account do no yet exist. In this report three scheduling
policies are presented. We foresee that more scheduling policies will be added in the future. These can
be both policies regarding heat dissipation and other policies. Examples of other policies are scheduling
based on economically favorable machines. Such a policy would for example take the price of electricity into
account. Other policies could take network delay or data transfer cost into account.

7.2.2. Testing in production
The design and implementation described in Chapter 5 and the experimental work discussed in Section 6.2
describe the current state of Flower well. Flower has proven to be a working system, being able to handle
large workloads and deliver scheduling capabilities. It should however be noted that Flower is a proof of
concept system and has not yet run in production environments. In this section we describe two ways of
testing Flower to make it more suitable to run in production.

Testing real workflows
The experiment described in Section 6.2 was conducted by running a test workflow. For this test workflow
we took the dependency graph of the well-known workflow, Epigenomics. The steps in the workflow were
simple stress programs, that utilized the CPU for a given percentage. As future work we recommend Flower to
be tested with real-world workflows. An example of such a workflow could be the real Epigenomics workflow.

Testing with real boilers
Flower currently relies on simulated temperatures of the water inside the boilers, as explained in Section 6.2.
Flower should be tested with real CloudBoxes and real boilers once they are being deployed. Testing could
be done as a simulation first, with data that is gathered from the real CloudBoxes. If the simulation shows
expected results, the scheduling policies can be deployed to run in production.

7.2.3. Contributing Flower to the open source community
Flower has been designed to work with Kubernetes from the start. The initial idea was to get Flower in
Kubernetes source code, as described in Section 7.1.1. After we decided to move Flower to a third party
application, we still kept the possibility in mind to contribute back to the community. Kubernetes has a
separate repository for contribution projects called contrib. The idea is to place Flower in this repository.
Besides showing a sign of esteem it also has benefits for the Flower project. There will be an entire community
maintaining and extending the Flower source code.
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Summary & Conclusion

8.1. Summary

In this thesis we have presented Flower, a workflow management system in a containerized environment
with heat-aware scheduling capabilities. In particular we have covered the processes used to create Flower,
the design and implementation of Flower, the various heat-aware scheduling policies, and the experimental
work to show the impact of such policies.

The development of Flower started with two weeks of research. During these weeks we interviewed
both Nerdalize employees and professionals from various fields. Besides interviews a literature study was
conducted to gather knowledge about related work and workflow management systems in general. The 7
weeks after the research phase were used to design and implement Flower. To manage product development,
we made use of the agile development methodology Scrum. Further assistance was provided by multiple
tools, such as Travis CI for continuous integration and GitHub for team communication. During these weeks
we have had extensive conversations with employees from Nerdalize and professionals from companies including
Google, RedHat and CoreOS.

The design of Flower has led to a fully functional workflow management system with heat-aware scheduling
capabilities. To the best of our knowledge the notion of heat-aware scheduling has never been introduced to
the scientific world before. Flower executes workflows, represented by a directed acyclic graph, on a set of
interconnected machines, or cloud. As a proof of concept we implemented Flower on top of Kubernetes.
Kubernetes manages deployment of containerized applications on a cluster of machines. Each workflow step
is scheduled and executed on the most suitable machine. The most suitable machine is selected according
to scheduling policies that we created, taking heat dissipation into account. Heat-aware scheduling is an
important feature for Nerdalize, because its business revolves around making optimal use of heat dissipation
by computers.

To verify the behaviour of Flower and the added value of its scheduling policies, we conducted an experiment.
The experiment shows a reduction of wasted heat when a workflow of 997 steps is run on 50 machines. The
results of this experiment are show in Figure 8.1. The boiler temperature exceeds 100% for certain machines in
the bottom graph. From the figure we can conclude that less energy is wasted when a heat-aware scheduling
policy is used. From the experiment we conclude a minimal saving of "32 per family per year. This is an
additional 10% to the approximately "300 saving Nerdalize brings a family annually.
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44 8. Summary & Conclusion

Figure 8.1: The boiler temperature during the execution of the test workflow using the default scheduler (left) and the custom Heat
Scheduler (right).

8.2. Conclusion
The research questions presented at the beginning of this thesis can now be answered as follows:

1. “How can workflows be executed in a distributed containerized environment?”
To execute workflows in a distributed containerized environment, we designed and implemented Flower,
consisting of a Workflow Manager. Workflow Manager ensures that workflow steps, whose dependencies
have been resolved, are placed on a machine in a cluster. Actual placement of these steps is outsourced
to Kubernetes, a system used to orchestrate containerized applications in a cluster.

2. “How can workflows be scheduled to make optimal use of generated heat?”
Flower has several scheduling policies to make optimal use of generated heat. Each policy expects a list
of machines at its input and returns a list of scores corresponding to these machines. Each machine
contains information about the current, requested, and average temperature of its corresponding boiler
and information about the outside temperature of its physical location. The machine with the highest
score is used to execute a part of the workflow.

In Section 3.4 we presented a list of requirements for Flower. Table 8.1 shows the requirements and indicates
which requirements are met. Requirements are prioritized using colored boxes representing categories as
defined by the MoSCoW[14] method. The green box ( ) stands for must have, the half full orange box ( )
stands for could have and the almost empty red box ( ) stands for won’t have.

# Priority Requirement met Description
1 yes Flower executes a workflow according to a formal definition (Section 5.2.1).
2 yes Flower monitors workflows to ensure execution and provides the user with a monitoring

tool (Section 5.2.1).
3 no Flower is not responsible for providing data, because this is the responsibility of the user.
4 partially Step execution may depend on the completed status of other steps (Section 5.2.2).
5 no Flower does not feature nested workflows (Section 7.2.1).
6 yes Steps can be added or removed during workflow execution (Section 5.2.2).
7 yes Workflow may run on a single machine or a cluster of machines (Section 5.1).
8 yes Workflow may be cancelled during execution (Section 5.2.2).
9 no Flower does not feature resource limiting for workflows (Section 7.2.1).
10 yes Flower offers users the ability to customize the scheduler by adding policies and

specifying weights (Section 5.3).
11 yes Flower features a scheduling policy that takes minimum boiler temperature into account

(Section 5.3.2).

Table 8.1: Flower requirements and indications which requirements are met.
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�
Introduction

Nerdalize heats houses with computing power by packaging modern servers into a heating system and installing
it into houses. Nerdalize makes money by selling server time as a cloud provider for CPU intensive applications.
Their vision is to become a container-as-a-service (CaaS) [26] provider running on a distributed network of
computer powered heaters. Their current focus is on CPU intensive applications such as scientific computations.

Scientific computations are often done in discrete steps such as analysis, simulation, management, and
visualisation of data [18]. These steps may have dependencies between them to ensure steps only execute
when others are finished. The abstract representation of steps and dependencies is called a workflow. Much
research has been done in the field of workflow management systems [21, 24, 27, 32] in the past but no
suitable solutions exist for managing workflows in a containerized environment.

A solution for managing workflows in a containerized environment is proposed in this report. The report
is structured as follows: chapter 2 provides the necessary background regarding workflows and container
related technologies, chapter 3 lists the requirements of the system, chapter 4 describes our approach for
developing the system, and chapter 5 shows the preliminary planning of the project.
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�
Background

This section provides background information required to understand the system. Section section 2.1 describes
the technologies used. In particular workflow management, containers and Kubernetes. Section 2.2 contains
the problem description as provided by Nerdalize. Finally related work can be found in section 2.3.

2.1. Technologies
This section provides information about the different technologies used throughout the report. Three different
technologies are described as follows: subsection 2.1.1 gives an introduction to workflows and workflow
management systems, subsection 2.1.2 introduces the concept of containers, and subsection 2.1.3 explains
the Kubernetes system.

2.1.1. Workflow Management
Many companies and scientists need to process a lot of data [23]. To support the increasing demand of
computing power needed to processes this data, many computers are interconnected forming a grid or a
cloud. Data processing is often done in discrete steps, where each step depends on the output of previous
steps in the system. In the scientific world a common sequence of steps is analysis, simulation, data management,
and visualisation [18]. The abstract representation of steps and dependencies is called a workflow. Workflows
can be modelled as directed acyclic graphs (DAGs), in which tasks are nodes and edges represent dependencies
between tasks. Using DAGs as a model allows for the use of extensive scientific research on graphs [30, 31] to
optimize performance [29], reliability [22], and scalability [20] of the workflow. An example of a DAG is shown
in Figure 2.1. The figure shows six steps and various dependencies. Step B can only start executing when step
A finishes execution. Steps C, D, and E can each start in parallel when step B finishes.

Workflow management systems (WMS) have been around since the start of grid computing [21, 24, 27, 32].
According to Taverna [15] a WMS is "a piece of software that provides an infrastructure to setup, execute,
and monitor scientific workflows". In other words a WMS schedules tasks on appropriate machines and
monitors their execution and dependencies, so users can focus on describing the workflow. An example
of a workflow management tool is Pegasus [24] which lets the user describe their workflow in XML format.
Pegasus maps tasks to available machines and transfers necessary data required for execution. Other systems
like Triana [21] provide users with a visual tool to create workflows and do monitoring. WMSs often contain
functionality to optimize workflow performance, scalability and reliability. Section 2.3 will describe some
workflow management systems in more detail.

2.1.2. Containers
A container is an operating-system level virtualization method that provides a completely isolated environment,
simulating a closed system running on a single host. It gives the user the ability to have an environment to do
whatever is needed; in particular run applications with the necessary resources and environment configuration
[25].

A container runs multiple processes in an isolated environment. Each process has a process id which
is unique within the container itself. Processes outside the container are not visible inside the container.

3



4 2. Background

Figure 2.1: An example of a workflow presented as a DAG.

Figure 2.2: Comparison of virtual machines (left) and containers (right). Based on a figure from the Docker documentation (https:
//www.docker.com/what-docker#/compare-block).

This also applies to other resources such as networking, disk and users. Isolation is provided by cgroups and
namespaces as Linux kernel modules.

When describing containers, virtual machines (VMs) are often used as an analogy. Containers and VMs
are similar in that both are virtualized environments that run on a host machine. The differences are shown
in Figure 2.2, showing the software stacks used by VMs and containers. The figure shows VMs have their own
operating system (OS) called the guest OS which is separated from the host OS. Containers on the other hand
share the kernel with the host OS. Using containers rather than VMs provides two major advantages: their
size is smaller (MBs vs. GBs) and booting is faster (seconds vs. minutes).

In recent years containers have increased in popularity. This increase in popularity can be attributed to
the release of the Docker software in 2013, which makes it easy to build, distribute and run containers [6].

2.1.3. Kubernetes
Kubernetes is an open-source project by Google for orchestrating containers on multiple hosts [11]. The main
features of Kubernetes are scheduling and replication control. The scheduler assigns pods to an available
host. A pod is the atomic unit in Kubernetes; it contains one or more tightly coupled containers. Replication
control can be used to ensure that a specified amount of copies exist. The replication controller monitors
pods and creates new instances in case of pod failure. Kubernetes consists of one master node and multiple
worker nodes, shown in 2.3. The master node runs the scheduler and replication controller and exposes an
API for communication with users and worker nodes. Each worker node has a kubelet daemon communicating
with the master node through the API. Worker nodes are responsible for running pods on a host.

Throughout this report we will use the terms job and label. A job contains one or more pods. It terminates
with a success status when all of its containing pods succeeded. Labels allow selecting an entity in the
system based using specific selectors. Among these entities are jobs and pods.

2.2. Problem description
This section describes the problem we are trying to solve. In section 2.2.1 the reader finds the original problem
description as provided by Nerdalize. section 2.2.2 we provide a modified version of the problem statement
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Figure 2.3: Kubernetes architecture showing master node (left) and worker (right) nodes. Based on a figure from the Kubernetes
documentation (https://github.com/kubernetes/kubernetes/blob/master/docs/design/architecture.md).

to suit both the academic and the business requirements.

2.2.1. Original problem description
To achieve optimal cluster utilization and ease of use for its customers Nerdalize is building its main product
the Nerdalize Cloud Engine (NCE), based on modern container orchestration technology. After extensive
research Nerdalize has chosen to use the open source Kubernetes system as the basis for the NCE. In line
with its business goals the first step is allowing clients to run high throughput workloads in a user friendly
manner. Many workloads contain large parallelizable components. Running these on a cluster delivers a
reduction in total workload throughput time. Modern cluster schedulers support complex workflows that
allow non-trivial multi-step workloads to be executed automatically. Kubernetes has basic support for the
concept of Job, but at the time of writing does have workflow support.

The high level goals of this project are:

1. Research the state of the art in workflow management.

2. Research the current support in Kubernetes for workflow management.

3. Design and implement workflow management in or on top of Kubernetes, preferably in cooperation
with the Kubernetes community.

2.2.2. Derived problem description
The derived problem description will be the basis for the main research topics addressed in this project. It
is based on the problem description from Nerdalize and the academic requirements specified by TU Delft.
The derived description differs from the original description by being more abstract rather than focus on
implementation details. A proof of concept implementation will be developed to show how the abstract
concepts may be used to solve the real world problem posed by Nerdalize.

The derived problem description is:
“How can workflows be managed in a distributed containerized environment?”

2.3. Related work
In this section we will discuss some of the existing workflow schedulers (Section 3.1),

https://github.com/kubernetes/kubernetes/blob/master/docs/design/architecture.md
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2.3.1. Pegasus
Pegasus is a workflow management system used to automate, recover and debug scientific computations. It
is a sophisticated piece of software used by research organisations to run simulations and analysis on some
of the largest computing grids in the world. These applications often involve the processing of large amounts
of data. The computing grid consists of many heterogeneous machines provided by different, geographically
spread out institutions. Pegasus introduces the notion of a workflow as "an abstract description of application
components and their dependencies"[24]. The workflow may be represented as a directed acyclic graph
(DAG). This approach leads to a highly flexible description where individual components may be replaced
with alternative implementations. The abstract representation then undergoes several refinement steps geared
towards making it executable and increasing performance. The result is an optimized, executable mapping
from an abstract workflow onto physical machines.

2.3.2. Luigi
Luigi is a workflow manager written in Python at Spotify Inc. It helps users manage complex pipelines of
batch jobs by handling dependency resolution, workflow management and visualization[2]. Luigi workflow
specifications are written in Python leveraging the expressiveness of the programming language itself. This
makes it easy to build up the dependency graph in which dependencies may include recursive references,
date algebra etc. A visualizer is provided out of the box, providing valuable insights regarding task status, the
dependency graph and workers running the tasks.

2.3.3. Airflow
The third existing solution is Airflow developed by AirBnB[1]. Airflow is similar to Luigi in that the system
and the workflow definition are written in Python. Operators are a feature that distinguish Airflow. Types of
operators include sensor, remote execution and data transfers. The sensor waits for an event to happen before
proceeding to the next task in the workflow. Examples of events are a file appearing in a specified folder or the
existence of a particular record in a SQL database. The second type of operator is remote execution, which
triggers an external script. Finally the data transfers operator is responsible for moving data from one place
to another. This data may be stored in a database of some kind or in a regular file. Airflow uses a plug-in
architecture to ease the extension with new functionality.

2.3.4. Oozie
Apache Oozie is a workflow scheduler for Hadoop[3]. Oozie is tightly integrated with the Hadoop stack
supporting Java map-reduce, Streaming map-reduce, Pig, Hive, Sqoop and Distc. A workflow is defined by an
XML file which may contain two types of nodes. The first type is a control flow node, providing a mechanism
to control the workflow execution path. The second type of node is the workflow action node, which describes
the execution of a computation or processing task. XML properties are used to create connections between
nodes. These connections may be conditional meaning that a corresponding predicate needs to be satisfied
before the transition takes place.



�
Requirements

This chapter describes the requirements of the system. The requirements are gathered mainly by interviewing
Nerdalize employees as an initial starting point, since they can best describe Nerdalize’s needs. In the interviews
employees provided us with several use cases, which we translated into users stories and requirements. We
plan on involving the Kubernetes open-source community to refine or extend the current requirements, as
they probably have other use cases then Nerdalize.

The rest of this chapter is organized as follows: Section 3.1 describes the interviews with Nerdalize employees,
in section 3.2 we list the user stories and section 3.3 lists the resulting requirements.

3.1. Interviews
The first interview we had was with Eric Feliksik, an engineer at Nerdalize. This was shortly after we had
chosen the bachelor project, three weeks before its start. At this time we were very new to the field of
distributed so we discussed many of the important concepts. He helped us get an overview of the technologies
involved and how they work together. We asked many questions to address knowledge gaps we had. His
answers consisted mostly of architecture diagrams drawn on a whiteboard. After the meeting we took home
a reading list with recommended literature to get up to speed as quickly as possible.

The second interview was with Mathijs de Meijer and Ad van der Veer, both employees at Nerdalize. The
goal of this interview was to get their input to construct use cases and eventually requirements. These use
cases can be found in Appendix A. Together we went over the pros and cons of several different approaches,
finally settling for a preliminary design. The resulting user stories can be found below.

3.2. User Stories
The interviews with Nerdalize helped clarify which use cases they encountered and what is needed to satisfy
them. We then composed a list of user stories that encapsulate all functionality, such that we end up with
a high level description of system functionality. The user stories are all in the format As a <user>, I want
<action>, so that I <reason> to ensure consistency.

1. As a user, I want the system to do scheduling in a distributed environment, so that I can make use of
parallelism to improve performance.

2. As a user, I want to add tasks that depend on the completion of other tasks, so that I can create a workflow.

3. As a user, I want to add or remove tasks during workflow execution, so that I can make changes at
runtime.

4. As a user, I want to ensure that certain tasks do not run on the same machine, so that I can improve
reliability.

5. As a user, I want to co-locate tasks that work on the same data, so that I can reduce network overhead.

6. As a user, I want to customize the scheduler, so that I can tailor it to my needs.

7
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7. As a user, I want to interact with the workflow through an API, so that I can integrate it with my existing
system.

8. As a user, I want to run workflows on my local machine, so that I can test before deployment.

3.3. Requirements
Based on the list of user stories we created the following requirements. The requirements are grouped into
four categories which are: workflow manager, task, workflow and scheduler. The workflow manager is the
component responsible for handing tasks for which all constraints are satisfied to the scheduler. The scheduler
ensures tasks are assigned to a suitable host according to a specified policy. A scheduling policy uses information
about the workflow and the state of the hosts to make a scheduling decision.

Requirements are prioritized using colored boxes representing categories as defined by the MoSCoW[12]
method. The green box ( ) stands for must have, the orange box ( ) stands for could have and the red box
( ) stands for won’t have.

Workflow manager:

1. The workflow manager executes a workflow based on a formal definition of tasks and constraints.

2. The workflow manager monitors the execution of the workflow

3. The workflow manager is responsible for providing data required by a task.

Task:

4. Tasks’ execution may depend on the status (failed, succeeded, running) of one or more other tasks.

5. Tasks may be other workflows.

6. Tasks can be added and/or removed through the Workflow Manager API during the execution of a
workflow.

Workflow:

7. A workflow may run on a single machine or a cluster of machines.

8. A workflow may be cancelled during execution.

9. Resource usage of a workflow may be limited as specified by the user.

Scheduler:

10. The scheduler’s policy should be customizable so that users may tailor it to their needs.

11. The default scheduling policy can handle requests from the user to run two or more tasks on separate
hosts.

12. The default scheduling policy can handle requests from the user to run two or more tasks on the
same host.

Requirement 3 and 5 are beyond the scope of this project, due to time constraints. The system will be
extensible in such a way that functionality may be added at a later point in time. Requirements 6 and 9 are
the least crucial at this moment in time. We decided priorities in collaboration with Nerdalize to address the
most pressing business needs first.



�
Our approach

In this chapter we will discuss our approach to make the project successful. In particular section 4.1 will
cover the development methodology we used and why it was chosen over several alternatives. Section 4.2
introduces the programming language used for the implementation. How tools are used througout the project
to support project related processes is described in section 4.3. The preliminary design is introduced in
section 4.4 which contains an architecture overview, an explanation of how and why we use Kubernetes, and
an API design. Section 4.5 will describe measures we take to ensure the product will be of high quality. The
last section 4.6 will go over the risks associated with the project and how we seek to minimize them.

4.1. Development methodologies
During the project the team will make use of agile development methodologies. Scrum is the framework of
choice. In this section we will explain this choice as well as go over some of the available alternatives.

Scrum is an iterative and incremental agile software development framework for managing product development
[13]. It allows a small team of developers to cope with changing requirements and shifting priorities. Scrum
also encourages team members to communicate often and openly about progress as well as encountered
problems. This leads to a highly flexible development process. The reason we chose an iterative approach
is because we foresee many changes as the project progresses. We will work closely with the engineers at
Nerdalize as well as the Kubernetes community. Both may have different requirements or change requirements
as new wishes become more apparent.

An alternative approach is the waterfall model. It works well when all requirements are clear at the start
of the project and are unlikely to change. As this is not the case it is unsuitable.

Now that it is clear that agile practices are best suited for our project, it still is worth noting alternatives
to scrum exist. The main reason we chose scrum over for example XP[17] is the fact that the software team
at Nerdalize uses scrum. By using the same methodology we are able to learn from them how it is used in
practice.

4.2. Programming language
The implementation of our design will use the Go programming language. The available concurrency constructs
make it well suited for distributed applications such as our project. Go is very popular among developers
working on container related technologies. This is largely due to the increasing popularity of the container
platform Docker[6], which itself is written in Go. As discussed in section 4.4, our solution will build on top of
the open source project Kubernetes, which is also written in Go.

4.3. Tools usage
Tools are used to support project related processes. Two types of tools will be discussed in this section.
subsection 4.3.1 will focus on development tools whereas subsection 4.3.2 will go over process tools. Whenever
alternatives are available, the decision to choose a particular solution is substantiated.

9
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4.3.1. Development tools
Development tools are used to manage, test and manipulate code. Vim[16] and Atom[5] are popular text
editors which will be used to add and remove code as well as navigate the codebase. Other choices such
as Microsoft Visual Studio Code or Sublime Text were considered. As many of these editors provide similar
functionality however, our choice was based mostly on personal preference. Editor plugins provide additional
functionality to make them better suited for editing code in the Go programming language. Features include
running tests from within the editor, detecting and fixing formatting issues and looking up online documentation.

Our team consists of two members who will simultaneously work on the same codebase. Git[7] is a version
control tool that helps with this collaboration process. Version control also provides an easy way to revert to
an older version when changes do not have the desired effect. Whenever changes are ready to be shared, they
are pushed to Gitlab[8]. This is a hosted service providing a central repository for all developers to download
the latest changes. Alternatives to Git such as SVN or Mercurial have been considered. The team however
has used Git in the past, making it an attractive choice. Git has the added benefit that it is used by many in
the industry and academia. As our project will be open source this allows for a smooth interaction between
contributors.

The Go toolchain provides many useful tools. The test runner can be used to run all tests in a package and
obtain a formatted report. Optionally the test runner may also report code coverage if so desired. The race
detector will take a piece of code and test for situations in which a race condition occurs. If such a condition is
found it is reported along with the executed instructions that led up to it. Finally gofmt is a tool that ensures
code is compliant with the style guide. If this is not the case, the tool has the ability to fix any formatting
issues.

4.3.2. Process tools
Process tools help to facilitate many aspects of the process. These aspects include planning, prioritizing,
communication etc. Nerdalize uses Google apps for work. In particular it uses Gmail for all communication
between team members. Gmail provides access to an address book with contact information about all employees.
Google calendar is used to schedule (group) meetings. It is possible to see other’s calendars to check their
availability.

To complement the scrum methodology we will use Trello. This is an online tool to create cards and
add information to them. In scrum, a product backlog is used to list features to be implemented in order
of importance. Using Trello one would create a card for each of the items and drag them in the correct
order. Cards have a title and a description similar to a traditional post-it note. Unlike post-its cards may
also have labels associated with them, a due date and members assigned to it. This meta information makes
the solution very flexible as cards may be changed without the limited space of a post-it. Trello is used by
Nerdalize to facilitate scrum. This is the main reason we chose to use it as we are able to learn from their
experience and get support as the project progresses.

4.4. Preliminary design
According to the requirements specified in chapter 3 we created a preliminary design. In subsection 4.4.1 we
will give an overview of the architecture of the system and in subsection 4.4.3 we will describe the preliminary
API.

4.4.1. Architecture overview
One of the requirements is for the system to consist of different components, communicating with one
another. The main components are the workflow manager, the scheduler and the controller. A complete
overview of the architecture is shown in Figure 4.1.

The user communicates to the workflow manager through the API. It is responsible for handing tasks
for which all constraints are satisfied over to the scheduler. Each task may have multiple constraints, which
specify a dependency on another task’s status. An example of a constraint istaskB.status == ‘succeeded’.
The generic term constraint was chosen in favor of dependency to make it possible to use other types of
constraints in the future. The status of a task can be one of the following: running, succeeded, or failed.

The scheduler is responsible for assigning tasks to one of the available hosts, according to a scheduling
policy. It is aware of the hosts in the cluster and their available resources. Conforming to requirements 11
and 12 from section 3.3 the default scheduling policy is able to handle constraints to schedule two or more
tasks on separate hosts or schedule two or more tasks on the same host. The default scheduling policy can be
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Figure 4.1: Overview of system architecture

replaced by custom policies to account for user-specific needs.
The controller monitors running tasks and reports their status to the workflow manager through the API.

We chose to create a separate component for the workflow manager, the workflow scheduler and the workflow
controller to ensure each has a single responsibility.

4.4.2. Kubernetes
The design created in subsection 4.4.1 will be integrated with Kubernetes. We decided to build our proof of
concept implementation on top of Kubernetes for a number of reasons: Kubernetes (i) orchestrates containers,
(ii) has default scheduling and controller components which can be extended, (iii) is open source, (iv) is used
by Nerdalize making this integration useful to them.

Kubernetes provides a default scheduler and controller which both are replaceable by a custom implementation.
Default components will be implemented one at the time to ensure a working system throughout the process.
The first step is to add monitoring functionality to the controller. The second step is to implement the
workflow manager with the ability to execute DAG workflows. The last step is to replace the Kubernetes
default scheduler with a custom one with support for workflow specific constraints as defined in section 3.3.
This order of implementation was chosen (i) because the workflow manager uses information provided by
the controller and (ii) because the workflow manager is not dependent on a specific implementation of the
scheduler.

Tasks are implemented as jobs in Kubernetes. Monitoring by the controller is done using Kubernetes’ label
system. An example of a label is jobName, which can be used to select a job by its name. Scheduling of jobs
on appropriate hosts is done by using labels as well. By using labels the scheduler can identify two or more
jobs that should or should not run on the same machine.

4.4.3. API design
The API is used by system components and by the user to interact with the workflow manager. We chose to
use the REST architectural style because it is widely used in the industry. As a result it provides a familiar
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Figure 4.2: Initial API design.

framework to other developers.
The initial design of the API is shown in Figure 4.2. It should be noted that the API is very likely to change

during the project when requirements or design elements change.
Two services are provided by the workflow manager. The first one is related to workflows. Through the

API a user may view, create, edit or delete workflows. The second service is related to tasks. Tasks may be
added or removed from a workflow and may have their status updated.

4.5. Quality Guarantees
We will take different measures to guarantee a high quality product. These measures relate to both the code
and the process as both are a crucial part of the project. In the first section we will go over how documentation
is done and in which ways it contributes to the overall quality. After that our testing strategy is described
which ensures written code behaves the way it is supposed to. The final section describes evaluation methods
used to measure the quality of the system.

4.5.1. Documentation
The working process will be documented in the final report. This report will be updated weekly to reflect
the advancements made and the hurdles encountered. Keeping this log will help us and interested readers
understand decisions and changes made throughout the project. The report is written in LATEX using the
ShareLatex[4] online collaborative editor. This allows us to work on the report together and see the work as it
progresses.

Many lines of code will be written over the span of two months. To make it easy for us and for other
people to understand and change the code, it will be thoroughly documented. The Go programming language
contains a tool called fmt[9], which ensures every block of code contains a descriptive comment and is
formatted according to the Go style conventions. We will use this tool to ensure all the code is properly
documented before it is pushed to a remote repository. Documentation in HTML format may be generated
from the code, making it easily accessible for everyone.

4.5.2. Testing
Every piece of code added to the system should not contain any unexpected behavior. Tests are well suited
to ensure this is indeed the case. Unit tests provide a way to verify that a piece of code, in isolation, produces
the desired result. The added benefit of unit testing code is to prevent regressions. These occur when new
functionality is added which breaks old code. By running a suite of tests on every build new as well as old code
is tested to ensure no regression takes place. End-to-end tests are used to test large parts of an application.
We will include these tests to make sure the entire application works as expected.

A convenient way to automate this process is through continuous integration. For our project we will
use Jenkins[10]. We chose this solution because of our previous experience with it. It provides Go support
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through a plug-in making it quick and easy to set up. The continuous integration server will allow every code
push to a remote repository to trigger the full set of tests. In case tests fail, a notification is sent describing
what went wrong. This way of testing also makes sure that code runs on all machines rather than only on one
developer’s machine.

4.5.3. Evaluation Methods
It is important to think about how to measure the quality once the system is finished. In this section we will
discuss different methods that may be used for this purpose.

The first methods we will use is a code quality report generated by the Software Improvement Group
(SIG)[14]. This report summarizes their analysis by assigning scores to various aspects of the code. These
aspects include coupling, maintainability and code duplication.

The second method evaluates the correctness of the system. Evaluation is done by running well-known
workloads such as Montage, CyberShake, LIGO, and the Pegasus workflow generator [19, 28]. The metric to
measure the performance of the system is execution time, which can be compared to the theoretical optimal
run time.

4.6. Risk Analysis
The project has several associated risks. In this section we will highlight some of the most important ones
and how we will deal with them.

The first major risk is our decision to use Kubernetes. This project led by Google is currently in active
development by a large and lively community. Many companies use it in production to orchestrate and
monitor their containers. As the container ecosystem is rapidly evolving there is a possibility Kubernetes
will lose momentum in favor of another technology. The workflow manager implemented in our project
however, takes a more abstract approach such that the concepts described may be implemented in whatever
technology is relevant at the time.

The second risk is our unfamiliarity with the Go programming language. Go is very popular in the container
community. Kubernetes is also written in Go, and hence our implementation will be as well. Learning a new
language may be difficult, especially when it contains many unique features such as with Go. To get up to
speed we practiced before the start of the project. During the project we will have weekly workshops with an
experienced Nerdalize engineer who will teach us important concepts from a practical point of view.

Our limited experience on programming distributed systems should be taken into account. Errors in
distributed systems are significantly harder to detect and to fix due to their non-deterministic nature. Some
concepts include mutexes, locks, threads and channels. The Go toolchain recently added support for a race
detector which may be run on a piece of code to ensure no race conditions take place. This will greatly aid
the debugging process and may preemptively give warnings when subtle errors are introduced.

Lastly we hope to use the supportive community surrounding Kubernetes as well as the people at Nerdalize
to provide us with guidance where necessary. As the code will ultimately be open source the whole world will
have the ability to look at the implementation and suggest changes where appropriate. We will take this help
with both hands as most of the aforementioned people are seasoned engineers.





�
Planning

In this chapter an initial planning is described. It includes planning with respect to engineering, the report,
the presentation, and community engagement. An overview of the planning is presented in Figure 5.1.

In the engineering section, planning regarding code implementation is shown. The section includes the
main components which need to be implemented and deadlines for the software improvement group (SIG).
The reporting section includes deadlines and drafts of the research report and the final report. Workshops,
presenting at Nerdalize and presenting at the distributed systems (DS) group are shown in the presenting
section. The community engagement section contains a planning for submitting a proposal and contributing
to Kubernetes.

We are aware of the risk that is involved with contributing to the open source community. It is possible
that the review of the proposal will take more time than originally planned. If this is the case, we will start
implementing the proposed solution before the community agrees. This is to make sure that we have a
working system by the end of the project.
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Figure 5.1: Preliminary planning of the project.



A
Use cases

The following information was provided by Nerdalize:

In principle workflows can be designed to be of arbitrary complexity, it is hypothesized that most practical
(Nerdalize) use cases can be covered with a relatively small feature set. We sketch some possible workloads
encountered in the wild below.

Workloads can consist of multiple steps executed in parallel.
Example: Assuming a embarrassingly parallelizable workload, on >=1 machine do:

1. download data partition from networked storage

2. functional transformation

3. upload results to networked storage

Workloads can consist of multiple steps of which all must be executed in parallel on the same machine.
Assuming a single threaded, parallelizable workload:

1. Download input data from networked storage

2. Run multiple instances of the workload software in parallel on the same machine (e.g. 1 process per
physical core), all processes need low latency access to the same dataset

3. Upload results to networked storage

Workloads can consist of multiple steps of which all must be executed in parallel on the different machines.
Example: Assuming a parallelizable workload, where the software is multicore optimized.
On multiple machines:

1. Download an input data item from networked storage

2. Run one instance of the workload software

3. Upload results to networked storage

Workloads can consist of multiple parallel steps of which >1 step can be scheduled to run on one machine.
Example: Assuming parallelizable workload, where the software is not multicore optimized.
On multiple machines, start multiple processes that do:

1. Download an input data item from networked storage

2. Run one instance of the workload software

3. Upload results to networked storage

17
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Workloads can consist some serial and some parallel steps.
Example:

1. On 1 machine:

(a) Download all input data

(b) Do some transformation (e.g. partition an image into tiles)

2. Then on multiple machines:

(a) Transform all partitions input into output, one partition per machine

3. Then on one machine:

(a) Stitch all partition output together

Some steps can be conditional on the output of a previous step.
Example:

1. Download input data from networked storage

2. Functional transformation

3. Choose from 3 types of Post processing based on aspects of the output of the functional transformationg

4. Upload post processed output data to networked storage
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B
Reading list

At the start of the project Nerdalize gave us this list of technologies we had to become familiar with:

• Ubuntu 15.10

• Docker

• Kubernetes

• Golang

• Hyper.sh and Hypernetes

• Virtual Machines (the concept)

• OpenStack

Nerdalize provided us with the following reading list:

• Ansible for DevOps (book)

• The Docker & Container Ecosystem (book)

• Docker Networking and Service Discovery (book)

• Kubernetes Up & Running (book)

• Gobyexample.com (website with tutorials on Golang)

• Golang.org (official Golang website)

• Hyper.sh (website)

• Kubernetes.io (website with official Kubernetes docs)
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C
Initial roadmap

This appendix shows the initial roadmap created for the project. Milestones are described using numbers.
They are divided into smaller tasks which are labeled using letters.

Prerequisites
1. Research libraries for:

(a) CLI functionality

(b) DAG data structure

(c) Logging

2. Develop a testing strategy

The WF Manager can
3. perform basic job operations

(a) start/stop a job

4. handle workflows specified in a formal format

(a) define initial workflow specification format: list of independent jobs

(b) start workflows from a specification file

5. monitor the status of a workflow

(a) get job status (running, failed, success)

6. start a workflow with two jobs and a dependency constraint

(a) extend workflow specification format to support dependency constraints

(b) validate workflow specification (dag)

(c) resolve dependencies and supply scheduler with jobs

(d) stop a workflow prematurely

7. make scheduling decisions using workflow information

(a) support placement constraint for 1+ jobs on different machines

(b) support placement constraint for 1+ jobs on same machine
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D
SIG Feedback

We received the following feedback from SIG in Dutch. This appendix shows two emails since we asked for a
clarification about the analysis in the first email.

D.1. Initial analysis
De code van het systeem scoort bijna 3.5 sterren op ons onderhoudbaarheidsmodel, wat betekent dat de code
bovengemiddeld onderhoudbaar is. De hoogste score is niet behaald door een lagere score voor Duplication
en Unit Size.

Voor Duplicatie wordt er gekeken naar het percentage van de code welke redundant is, oftewel de code die
meerdere keren in het systeem voorkomt en in principe verwijderd zou kunnen worden. Vanuit het oogpunt
van onderhoudbaarheid is het wenselijk om een laag percentage redundantie te hebben omdat aanpassingen
aan deze stukken code doorgaans op meerdere plaatsen moet gebeuren.

Voor Unit Size wordt er gekeken naar het percentage code dat bovengemiddeld lang is. Het opsplitsen van
dit soort methodes in kleinere stukken zorgt ervoor dat elk onderdeel makkelijker te begrijpen, te testen en
daardoor eenvoudiger te onderhouden wordt.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te behouden tijdens
de rest van de ontwikkelfase.

De aanwezigheid van test-code is in ieder geval veelbelovend, hopelijk zal het volume van de test-code
ook groeien op het moment dat er nieuwe functionaliteit toegevoegd wordt.

D.2. Clarification
In het geval van Unit Size zijn transitionWorkflow(), process(), en processJobStep() in het bestand transitioner.go
goede voorbeelden. De aanbeveling om eens naar de lengte van methodes te kijken geldt niet alleen voor de
Go-code, ook in JavaScript kan bij code.js het één en ander aangepast worden. Jullie hebben daar nu een
erg lange onReady() callback. Die is nu al vrij moeilijk leesbaar, maar deze aanpak wordt echt een probleem
op het moment dat jullie code verder gaat groeien. Het is beter om de functionaliteit in die callback uit de
splitsen naar aparte functies op basis van functionaliteit. Jullie doen dat al een klein beetje met highlightNextElement(),
maar die aanpak zou je eigenlijk verder willen doorvoeren.

Aangezien de Unit Size een stuk problematischer dan de (kleine) hoeveel duplicatie is, stel ik voor dat
jullie gezien de tijd je focussen op het verder verbeteren van bovenstaande voorbeelden. Als jullie naast die
voorbeelden nog meer aanpassingen doen zijn we helemaal blij.
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E
Scale factor calculation

The heat generated by the CPU we used for different numbers of cores is displayed in Appendix E. As we can
see the heat does not scale linearly with the amount of cores. For the experiment we used GCP machines with
2 cores corresponding to 100 joules/second. In the calculation below we calculate how long the experiment
would take if we would use the real joules/second generated rather than the scaling factor.

cores joules/second
0 83
1 90
2 100
4 112
8 133
12 153
16 176

Table E.1: Heat generation in joule/s for different numbers of cores with 100% utilization. Source: Measurements of real Nerdalize
servers, provided by Nerdalize employee Remy van Rooijen

ts = 420s simulation time

s = 500 scaling factor used by the boiler simulator

e = 1
95%

= 1,053 heat exchange efficiency factor

cs = 2 cores per machine in the simulation

cr = 16 cores per machine in the CloudBox

bs = 1 motherboards per machine in the simulation

br = 6 motherboards per machine in the CloudBox

hs = 50 j /s generated heat per CloudBox on a GCP machine

hr = 11 j /s generated heat per coresecond in the CloudBox

l = 23% = 0,23 average machine load factor

h = hs £hs

hr £hr
= 50£2

11£16
= 0,57 calculate cores scale factor

b = bs

br
= 1

6
= 0,17 calculate motherboard scaling factor

tr = ts £ s £h £b £e £ l =
420£500£0,57£0,17£1,053£0,23 = 1,36h calculate time it would take in reality
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F
Heat Scheduler savings

w = 32750000 joules wasted per simulation per machine

m = 50 amount of machines used in simulation

d = 365 days in a year

n = 6 amount of machines per CloudBox

g = 28300000 joules generated burning 1 m3 of gas in euros

p = 0,63 price of gas per m3

a = w
g

= 32750000
28300000

= 1,16 m3 gas wasted

s = a £p £n
m

= 1,16£0,63£6
50

= 0,09 daily amount of euros saved per CloudBox

y = s £d £n = 0,015£365 = 32,00 yearly amount of euros saved per CloudBox
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Flower infosheet 
 

Title: Workflow management and heat-aware scheduling for modern cloud infrastructures 
Date of presentation: July 1, 2016  
Client: Mathijs de Meijer, Nerdalize 
Coach: Dr. ir. Alexandru Iosup ,  Parallel and Distributed Systems Group, EWI, TU Delft 
Team members: Robert Carosi, r.g.b.carosi@student.tudelft.nl 

Boris Mattijssen , b.j.h.mattijssen@student.tudelft.nl 

 

 

Cloud computing has given users access to virtually infinite computing power. Cloud service providers 

operate data centers consisting of hundreds, sometimes thousands of interconnected machines. The 

machines dissipate heat that is undesirable because it may lead components to overheat. Air conditioners 

are used to cool the air and regulate the temperature in the data center. Nerdalize is a company that aims 

to create a cloud by replacing servers in a data center with CloudBoxes in people's homes. A CloudBox 

contains servers and a boiler. The heat dissipated by the servers is used to warm up the water in the boiler 

and complement the central heating system. The challenge set out by Nerdalize is to develop a workflow 

management system to run on their infrastructure while making optimal use of generated heat. Many 

workflow management systems exist but none supporting a containers based environment. 

Flower is a workflow management system in a containerized environment with heat-aware scheduling. 

Flower consists of several components. The first component is the workflow management system 

responsible for executing a workflow on a cluster of machines. The second part contains various 

temperature-based scheduling policies. To the best of our knowledge we are the first ones to introduce the 

notion of heat when making scheduling decisions. The final Flower component is a workflow visualizer to 

monitor workflow execution. 

To manage product development, we made use of the agile development methodology Scrum. Further 

assistance was provided by multiple tools, such as Travis CI for continuous integration and GitHub for team 

communication. During the project we have had extensive conversations with employees from Nerdalize 

and professionals from companies like Google, RedHat, CoreOS and Amadeus.  



 

Flower infosheet 
 

Title: Workflow management and heat-aware scheduling for modern cloud infrastructures 
Date of presentation: July 1, 2016  
Client: Mathijs de Meijer, Nerdalize 
Coach: Dr. ir. Alexandru Iosup ,  Parallel and Distributed Systems Group, EWI, TU Delft 
Team members: Robert Carosi, r.g.b.carosi@student.tudelft.nl 

Boris Mattijssen , b.j.h.mattijssen@student.tudelft.nl 

 

 

Cloud computing has given users access to virtually infinite computing power. Cloud service providers 

operate data centers consisting of hundreds, sometimes thousands of interconnected machines. The 

machines dissipate heat that is undesirable because it may lead components to overheat. Air conditioners 

are used to cool the air and regulate the temperature in the data center. Nerdalize is a company that aims 

to create a cloud by replacing servers in a data center with CloudBoxes in people's homes. A CloudBox 

contains servers and a boiler. The heat dissipated by the servers is used to warm up the water in the boiler 

and complement the central heating system. The challenge set out by Nerdalize is to develop a workflow 

management system to run on their infrastructure while making optimal use of generated heat. Many 

workflow management systems exist but none supporting a containers based environment. 

Flower is a workflow management system in a containerized environment with heat-aware scheduling. 

Flower consists of several components. The first component is the workflow management system 

responsible for executing a workflow on a cluster of machines. The second part contains various 

temperature-based scheduling policies. To the best of our knowledge we are the first ones to introduce the 

notion of heat when making scheduling decisions. The final Flower component is a workflow visualizer to 

monitor workflow execution. 

To manage product development, we made use of the agile development methodology Scrum. Further 

assistance was provided by multiple tools, such as Travis CI for continuous integration and GitHub for team 

communication. During the project we have had extensive conversations with employees from Nerdalize 

and professionals from companies like Google, RedHat, CoreOS and Amadeus.  
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