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Abstract

As a result of a global pandemic, there has been an increasing interest in tools for remote video
conferencing and collaboration. One of these new innovations is social eXtended Reality (XR). By
combining Virtual Reality (VR) and Augmented Reality (AR) technologies, social XR can provide
a more immersive experience than any other VR application by giving users at different locations
the chance to virtually gather in real-time. But such applications impose enormous requirements on
computational and communication resources. 5th Generation (5G) mobile networks are targeted as
solution to provide ultra-low latency and ultra-high throughput for social XR. In current research,
many optimisations are aimed at VR applications such as on-demand streaming, while there is a
lack of solutions for real-time user-interactive applications like social XR. In this graduation project
we develop and assess cross-layer solutions for optimised scheduling of social XR applications in 5G
networks. An existing framework for simulating social XR conference applications serves as the basis
for our modelling approach. We devise different schedulers, that utilise cross-layer information in the
form of the video frametype and frame-level End-to-End (E2E) latency budgets rather than packet-
level latency budgets purely within the Radio Access Network (RAN). In contrast to previous
work, we create the VR traffic based on real video data and develop tools to model the packet
dispersion caused by multi-hop transmission over the internet towards the RAN. We study the effect
of various system and traffic parameters on the Quality of Service (QoS) and perceived Quality of
Experience (QoE) in the context of social XR applications through an extensive sensitivity analysis.
Herein we also assess the performance impact of different types of cross-layer packet schedulers.
Further, we gain insights into the correlation between the network QoS and perceived QoE by end
users which are the key in future cross-layer implementations for social XR.



Contents

1 Introduction 6
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Technical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Video Frame Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 5G Mobile Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Objective and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Literature Review 11
2.1 Review of Cross-Layer Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 System Description and Modelling 14
3.1 Overview of a Multi-User Wireless VR Application Scenario . . . . . . . . . . . . . . 14
3.2 Social XR Conference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Social XR Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.2 Propagation Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Radio Access Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.4 Packet Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Creating Packet Traces from Recorded Video . . . . . . . . . . . . . . . . . . 20
3.3.2 Modelling Packet Dispersion in IP Networks . . . . . . . . . . . . . . . . . . . 23

4 Simulation Scenarios and Results 26
4.1 Simulation Scenarios and Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Results of Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Comparison of Schedulers for Default Scenario . . . . . . . . . . . . . . . . . 29
4.2.2 Impact of Scenario Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Feasible Load and Application Configurations . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Scenarios and Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Results and Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Analysing Quality of Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.1 Interpreting PSNR and SSIM Values . . . . . . . . . . . . . . . . . . . . . . . 44
4.4.2 Analysing PSNR and SSIM Results . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 48
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2



A BLER Curves 55

B Choosing Number of Hops with Traceroute 56

C Tuning Bandwidth and RAN Budget 59
C.1 Tuning the Default Carrier Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 59
C.2 Tuning the Default RAN Latency Budget for Different E2E Requirements . . . . . . 59

D Video Quality Results (PSNR/SSIM) of Sensitivity Analysis 61

3



List of Abbreviations

3GPP 3rd Generation Partnership Project

4G 4th Generation

5G 5th Generation

AR Augmented Reality

AVC Advanced Video Coding (H.264)

B-frame Bidirectional Predicted Frame

BLER Block Error Rate

BS Base Station

CQI Channel Quality Indicator

CSI Channel State Information

CSV comma-separated values

DL Downlink

DPI Deep Packet Inspection

E2E End-to-End

EDD Earliest-Due-Date

EXP/PF Exponential/Proportional Fair

FIFO First-In-First-Out

F-OFDM Flexible Orthogonal Frequency Division Multiplexing

FOV Field Of View

GoP Group of Pictures

HEVC High Efficiency Video Coding (H.265)

HMD Head Mounted Display

HOL Head Of Line

I-frame Intra-coded Frame

IoT Internet of Things

IP Internet Protocol

4



LoS Line-of-Sight

MAC Medium Access Control

MCS Modulation and Coding Scheme

MCU Multi-point Control Unit

MI-ESM Mutual Information Effective SINR Mapping

MIMO Multiple-Input Multiple-Output

M-LWDF Maximum-Largest Weighted Delay First

mMTC massive Machine-Type Communications

mmWave Millimetre Wave

MSE Mean Squared Error

NALU Network Abstraction Layer Unit

PDR Packet Drop Rate

PF Proportional Fair

P-frame Predicted Frame

PRB Physical Resource Block

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

QoS Quality of Service

QuaDRiGa QUAsi Deterministic RadIo channel GenerAtor

RAN Radio Access Network

RTP Real-time Transport Protocol

SINR Signal-to-Interference-plus-Noise Ratio

SSIM Structural Similarity Index Measure

TB Transport Block

TCP Transmission Control Protocol

TDD Time Division Duplex

TTI Transmission Time Interval

UDP User Datagram Protocol

UE User Equipment

UL Uplink

URLLC Ultra-Reliable Low-Latency Communications

VR Virtual Reality

XR eXtended Reality

5



Chapter 1

Introduction

1.1 Motivation
With the evolution and evermore deployment of the 5G network in the past years, more and more
applications have emerged that can profit from the new mobile communication standard. Besides
bringing higher bandwidths and data rates, 5G also enables novel applications that require high
reliability and ultra low latencies such as autonomous driving, and makes technologies like Internet
of Things (IoT) and massive Machine-Type Communications (mMTC) possible, where high numbers
of devices are connected.

One type of application that can highly benefit from the new supply of extreme high data rates
are VR-based applications. With the global pandemic happening in the past few years, people
have been forced to come up with new ways to communicate and collaborate remotely. One novel
solution for this is social XR. It leverages XR technologies, which includes AR and VR, to create
immersive virtual experiences.

To facilitate such a high-quality and immersive experience, many stringent requirements have to be
fulfilled, in particular very low latency and very high throughputs. Further, unlike more traditional
VR or AR applications, the real-time aspect and user-interactive nature of social XR impose different
demands than for example for VR gaming or on-demand streaming of VR content. Novel cross-layer
solutions, where information is shared among layers for more efficient use of available resources and
the ability for high adaptivity are the key. Clemm et al. [1] emphasises a need for new cross-layer
solutions to deal with real-time user interactivity as a new challenge, which limits the utilisation of
caching/buffering [2] or movement prediction techniques applied in traditional VR [3].

With current Head Mounted Displays (HMDs) having higher resolutions, higher throughputs may
be needed - up to 100 Mbps for a compressed stream and potentially up to 500 Mbps for a raw
(uncompressed) stream [4]. The added real-time interactivity limits the possibility to buffer content
and imposes strict latency requirements to create an immersive experience in social XR. Ideally
required limits in the order of 1 ms for the E2E latency are still impossible in the near future due
to physical and technical constraints. The preference is thus to achieve a latency as low as possible
to avoid motion sickness and improve immersiveness, with different targets given in literature like
50ms [5] and 30ms [6].

For more traditional, non-interactive applications, plenty of strategies exist to optimise VR delivery
[7], with many solutions focused specifically on improving the efficiency of video processing in
the application layer which in turn benefits the latency and bandwidth usage. One technique for
example is tiling, where the video is divided into multiple separately stored and processed sections.
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By focusing the available resources only on what is inside the Field Of View (FOV) of a user,
it results in savings of bandwidth and computation power [8]. Related to it is using prediction
strategies for the user’s head or eye movement while streaming VR content. With this method good
radio channel conditions can be exploited in the application layer to choose the predicted parts
of a video in a cross-layer fashion and transmit the corresponding tiles with higher resolution [9].
By using edge computing the video processing can be brought closer to the user from the source
in the network cloud when streaming VR. Alternatively, if computations were previously done on
the user device, it can be offloaded to the edge depending on the edge load conditions and user
throughput, since raw (and hence bigger) data needs to be transmitted from the device to the 5G
Base Station (BS) [2, 10]. Other possibilities with edge servers, most noticeably caching content
in advance to reduce the transmission latency, may prove to be difficult for social XR given the
real-time nature of the interaction.

One cross-layer optimisation in form of a multi-user Medium Access Control (MAC) scheduling
scheme for VR services in 5th Generation (5G) is proposed in [11]. It exploits video frame type
information from the application layer encapsulated in video packets to prioritise the ones more
crucial for maintaining a good video quality. To implementation such a cross-layer scheduling
scheme for social XR in practice, the only premise is the functionality to extract the application-
level frame type information at the packet scheduler in the BS which is covered in the following
section.

For streaming services, schedulers in base stations are usually latency-aware and take into account
the delay packets experience in the RAN [12]. The RAN delay is only a small part of the total
E2E latency budget of a frame, which is a QoE requirement set by the application. The E2E
latency experienced by individual packets comprises multiple parts such as latency due to video
processing and networking latency. It has been shown that considering the E2E deadlines in the
packet scheduling can improve the resulting video quality [13]. Hence, in this thesis, a cross-layer
solution in the context of social XR applications will be modelled and assessed. We take an existing
framework for simulating social VR conference applications [14] as a basis for our modelling approach
and devise different schedulers, that utilise the video frame type and the remaining E2E latency
budget of video packets as cross-layer information.

In the following parts of this chapter, we provide a high-level overview of the video frametypes and
the 5G RAN, which are the key components of this study. Then, we state the goals of the thesis
and the research approach followed to develop and assess the targeted cross-layer solutions for the
enhancement of social XR performance. Lastly, we give the structure for the rest of this thesis.

1.2 Technical Background

In this section we provide a brief overview of the main technical aspects that are featured in the
thesis. First, we explain the functionality of video frame types in the context of video processing
and the mechanism of exploiting this application layer information in the scheduling at the BS.
Then, we present the key novel features of 5G, the transmission technology used in this study.

1.2.1 Video Frame Types

Video frame types are not only used for social XR but for video applications in general. There
are three different types of frames used in video compression, the Intra-coded Frame (I-frame),
the Predicted Frame (P-frame), and the Bidirectional Predicted Frame (B-frame) [15]. The reason
to take advantage of frame type information stems from their distinct characteristics. An I-frame
contains a complete image, and is the least compressible out of the three, but also the only frame
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where the decoder does not require other video frames to decode it. A P-frame contains only the
changes in the image relative to that represented by the previous frame. This lets the encoder reduce
the transmission payload by not needing to store unchanged pixels in the frame. The other optional
B-frame uses differences from both the previous and following frames in the encoding, making them
the most compressible type of frame.

A Group of Pictures (GoP) then contains a single I-frame followed by multiple P- and optionally
B-frames arranged in a specified order. This means for example that decoding errors due to packet
loss in an I-frame may lead to error propagation and potentially quality degradation through the
whole GoP [16].

Figure 1.1: Example GoP structure of size 10 [17].

As our scope is to develop solutions for social XR applications over 5G networks, the findings in [11]
raise an incentive to prioritise I-frames in the social XR traffic handling and optimise the packet
scheduler at the 5G BS. Traditionally, the BS would not able to read Internet Protocol (IP) packets’
payload content, and thus is not able to know information such as the video frame type for individual
packets. A solution for this is using a Deep Packet Inspection (DPI) function directly at the BS or
another related node, like the gateway to monitor the VR packet stream and read out the frame
type information from every IP packet.

In the video formats Advanced Video Coding (H.264) (AVC) or its successor High Efficiency Video
Coding (H.265) (HEVC) that are the most commonly used in streaming [18], the encoded data of a
video frame is organised into so-called Network Abstraction Layer Units (NALUs) [19]. These units
make up the payload of the Real-time Transport Protocol (RTP), the application-layer protocol
used for real-time streaming applications for delivery over the IP network. Typically, it is used
in conjunction with the User Datagram Protocol (UDP), since it is more suited as transport-
layer protocol for latency-sensitive applications than Transmission Control Protocol (TCP) [1]. For
routing across the internet, the data is then encapsulated in the IP payload. Figure 1.2 shows how
these NAL units are encapsulated in the different protocols. The DPI function would then for every
packet remove the headers to extract the bytes belonging to the video frame and read out a 5-bits
type field in the NALU header to determine the frame type [11].

1.2.2 5G Mobile Networks

In the following, we present several key technologies in 5G, which allow for far higher throughputs
and lower latencies compared to its predecessor, the 4th Generation (4G) standard, and enable
demanding applications such as social XR.
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Figure 1.2: Protocol stack structure of VR video streaming [11].

One upgrade in 5G consists of using frequencies in the range of 24-300 GHz, which is commonly
referred to as the Millimetre Wave (mmWave) spectrum, which allows for higher bit rates and cell
capacity. Further, 5G employs Flexible Orthogonal Frequency Division Multiplexing (F-OFDM)
that enables the network operator to adapt the numerology depending on factors like the service
requirements of the application or the propagation aspects of the cell environment. By configur-
ing a wider subcarrier spacing and hence shorter symbol duration in the fraction of a millisecond,
shorter Round-Trip Times (RTTs) of a few milliseconds are now achievable. With higher frequency
bands, 5G depends upon massive MIMO and beamforming to increase the spectral efficiency. Mas-
sive MIMO beamforming is necessary to provide sufficient coverage at higher frequencies and to
enhance the Signal-to-Interference-plus-Noise Ratio (SINR) for enabling higher data rates. Driven
by Ultra-Reliable Low-Latency Communications (URLLC)-type applications, it is imperative for
packet schedulers in 5G to incorporate a latency component. This directly relates to the main as-
pect explored in our thesis, that is optimising the scheduling functionality by exploiting cross-layer
information.

1.3 Objective and Approach

The main goal of this thesis is to propose and assess various cross-layer optimisations of MAC
scheduling of social XR traffic in a 5G network. More specifically, we aim to assess the benefits
of utilising cross-layer information of the VR application for the packet scheduling in the RAN
by exploiting knowledge about E2E frame latency budgets and the video frame type incoming IP
packets belong to. We investigate the potential benefits compared to the latency-aware non-cross-
layer EDD [20] and M-LWDF [12] packet schedulers in terms of both network QoS and the perceived
QoE.

For our investigations we focus solely on the effects of the cross-layer scheduler. To this end, we
modify an existing framework for simulating indoor social XR conferences [14]. The framework
comprises modelling aspects for the RAN and its physical configurations and resource management
mechanisms, the user behaviour, the propagation environment and physical setting. We use real
video data to create a suited VR traffic stream. Further, we model the effects of packet dispersion
caused by video processing and multiple internet hops the IP packets are routed through and the
impact this has on packet latencies and the variations therein before they arrive at the 5G BS. This
way we obtain more realistic traffic characteristics to incorporate into the social XR conference
simulator.

Using simulations in an extensive sensitivity analysis we intend to obtain insights into the impact
of various system and scenario parameters, such as the video application bit rate or the E2E la-
tency budget, on the attainable performance and capacity gains from our cross-layer optimisation
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approach. We assess the results from a network perspective with the Packet Drop Rate (PDR)
as a QoS measurement. Using a concrete reference video, we can also evaluate the impact of the
presented cross-layer scheduling solutions on the user-perceived video quality (QoE) using the Peak
Signal-to-Noise Ratio (PSNR) [21] and Structural Similarity Index Measure (SSIM) [22]. This way,
we can determine the differences between assessing a system based purely on QoS or QoE and
recommend cross-layer solutions for future implementations in practice.

1.4 Outline
The remainder of this thesis is organised as follows. In Chapter 2 we give a literature review for
research in cross-layer optimisations of video and VR streaming that utilise the E2E latency budget
as well as the video frame type. In addition we list our contributions beyond the state of the art
research for social XR and cross-layer optimisations in particular.

Chapter 3 first presents a high-level description of the addressed system as a whole and the underly-
ing components for the VR delivery pipeline. Afterwards, we address each of the modelling aspects
and assumptions in more detail, such as the generation of the traffic stream, the user behaviour
model, the social XR application model, the physical configurations of the RAN, as well as the
(non-)cross-layer packet schedulers.

Next, we present the results of our simulations in Chapter 4. We start off by defining the different
scenarios we will take into account. We discuss the results with respect to the benefits of utilising
various levels of cross-layer information in the packet scheduling. We assess the simulation outcomes
both from a network QoS perspective and from a QoE perspective utilising known video quality
metrics to get a better understanding of the video quality as perceived by the user.

Lastly, in Chapter 5 we formulate our conclusions by summarising the most important findings and
give pointers for potential research in the future.
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Chapter 2

Literature Review

2.1 Review of Cross-Layer Scheduling

In this section, we discuss and provide an overview of some studies addressing the subject of cross-
layer scheduling for video transmission in wireless networks. We first review studies that utilise
the E2E latency budget of packets as cross-layer information to optimise the packet scheduling.
Then, we show approaches that exploit information about the video frame type to prioritise certain
packets and enhance the user experience.

E2E Latency-Based Cross-Layer Scheduling

First, we discuss work related to exploiting information about E2E delay requirements in video
streaming applications to optimise the QoE. In [23] and [24], the E2E latency budget of video
packets is utilised as cross-layer information in the MAC-layer. However, the approaches here are
linked to optimising the packet dropping mechanism, whereas our focus lies in the packet scheduling.
In [25], Xie et al. propose an approach to optimise the routing of video packets by utilising knowledge
about the packets’ E2E latency requirements. Since the context here deviates too much from our
thesis, it will not be discussed in more detail.

In [26], the resource allocation problem for video transmission over mesh networks with multiple
users is addressed. In the proposed solution both the packet scheduling and buffer management
mechanism consider the E2E latency deadlines of video packets to optimise the bandwidth allocation
among all end users. The results show that this way video distortions can be minimised and the
video qualities among all users balanced. It is important to note that the considered setting of video
streaming over multihop networks differs from our social XR use case. Further, in [26] all users have
different E2E latency requirements varying between 0.1 and 1 s, unlike in this thesis.

A packet scheduling algorithm based on E2E delay requirements is presented in [13]. The authors
consider delay sensitive video streaming services over mobile ad hoc networks. As such, the proposed
algorithm is applied at every network node and takes into account the accumulated delay per hop
and the maximum tolerable E2E delay to optimise the scheduling of packets across the network.
It is shown that by considering the total E2E delay, the total E2E delay of each packet is kept in
a tolerable range as much as possible, which greatly improves the video quality. Note, that the
presented scenario of a mobile ad hoc networks is different than cellular mobile networks considered
in this thesis.
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Frametype-Based Cross-Layer Scheduling

There exists a number of studies about leveraging application level information like the frame type
to optimise the QoE for video streaming over wireless networks. While in [27,28], packet scheduling
optimisations using cross-layer information about the video is used, these studies are not recent.
In [29, 30], cross-layer optimisations using video frame type information for improving the video
QoE are proposed. However, in both cases it involves the packet fragmentation process rather than
the packet scheduling, which is the focus in this thesis. As such, these studies will not be further
discussed in detail.

In [31], cross-layer solution for enhancing the QoS for medical video transmission in wireless networks
is presented. In particular, the authors propose a packet differentiation and prioritisation method
based on characteristics like the type of medical video transmitted in the flow, the various types
of layers in layered encoded streams, as well as the video frame types mentioned in Section 1.2.1.
In the proposed method packets are marked based on the different priority levels, which are then
considered in the packet scheduling and dropping mechanisms. Results show that this cross-layer
approach is effective in enhancing the QoS and QoE. However, it needs to be noted that compared
to social XR medical video have lower resolutions and thus require less throughput. In addition, the
scenarios in [31] allowed up to 300 ms E2E latency, which is far lower than E2E latency requirements
in social XR.

A cross-layer scheduling scheme for VR services in 5G is proposed in [11]. There, Zhang and Huang
propose a solution which comprises the use of video frame type differentiation in latency-aware
packet schedulers. To our knowledge, this is the only paper that implements the usage of video
frame type information for packet schedulers in the context of multi-user VR streaming over 5G
networks. The packet scheduler takes the frame type and the experienced RAN latency of the
packet tRAN to obtain the scheduling priority w as follows

w =
{
aI + bItRAN for an I-frame
aP + bP tRAN for a P-frame

(2.1)

with tRAN denoting the experienced RAN latency of a packet, as defined in [11]. Results of the
proposed system show a decrease in the overall packet transfer latency especially in high-load
scenarios and an increase in the user capacity in the considered scenarios.

The coefficients aI , bI , aP and bP determine the exact priority I-frame packets receive over P-frame
packets. In Chapter 3.2.4, we discuss the exact modelling of the frame type prioritisation parameter
for our cross-layer schedulers.

2.2 Contributions
With this thesis we aim to contribute to the state of the art research in supporting social XR over
mobile networks. More specifically, our main objective is to assess the gain from using cross-layer
information such as the E2E frame latency budget and video frame type in the packet scheduling
at the RAN BS in a multi-user social XR scenario.

In more detail, the contributions are the following:

• Proposal of several cross-layer schedulers using various levels of cross-layer information.

• Development of tools for the performance assessment of the (non-)cross-layer schedulers by
modifying existing 5G RAN simulator and building a network hop simulator to model packet
dispersion due to transmission over the internet.
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• Extensive performance assessment of the proposed schedulers using the PDR as network QoS
metric.

• Evaluation of cross-layer schedulers in terms of QoE metrics and assessing the correlation
between resulting QoS and QoE.
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Chapter 3

System Description and Modelling

As we want to objectively measure and get an understanding of the gains from cross-layer scheduling,
our system model needs to cover all relevant aspects of delivering social XR to multiple users in a 5G
network. This chapter presents the modelling for the delivery of a social XR video stream through
the internet and 5G RAN to the end users. A high-level overview of all system components and
their interactions is given first. Then, each component’s modelling parameters and the assumptions
behind them are outlined in detail.

3.1 Overview of a Multi-User Wireless VR Application Scenario

This section gives a high-level overview for the components of the modelled social XR system as
illustrated in Figure 3.1. Our focus is only on the downlink to keep the complexity reasonable since
there would be additional modelling assumptions required for the video processing in the upstream
direction. In our model the source of the downlink stream is the media processing cloud which
comprises the Multi-point Control Unit (MCU) that receives and combines video streams from all
participants in the social XR session and outputs the encoded VR streams for the UEs. We model
the VR stream at the source in the media processing cloud, which combines the feed of the virtual
and physical participants.

The packet stream of every generated frame exits the MCU not as a single chunk of packets, but
rather in bursts with a certain dispersion due to the encoding process [32] (see Section 3.3.1), before
it then enters the IP network. Depending on the routing between the MCU and the RAN, the
VR packets go through various network hops, which cause further packet dispersion. Section 3.3
describes our models for the VR traffic and the packet dispersion in detail. Then, the VR packet
stream arrives at the 5G BS that serves the physical participants in the social XR conference, as
modelled in the next section. (Non-)cross-layer packet schedulers (Section 3.2.4) then deliver the
VR packets to the end users.

3.2 Social XR Conference Model

This section contains the models and methods used to simulate a social XR session. The presented
model is mostly based on the thoroughly assessed and optimised model by Morais et al. [14]. Parts
such as the physical setting, user behaviour and components of the radio resource management are
adopted with modifications made regarding the antennas, traffic model and packet schedulers used,
as the latter is the focal point of this work.
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Figure 3.1: Overview of modelled social XR system.

3.2.1 Social XR Setting

We simulate the downlink portion of users participating in a social VR conference in an indoor
office. Half the users participating are joining virtually and half are physically present. We consider
a round table in the center of the room with all users uniformly distributed around it in an alternating
seating fashion with the serving BS located on the ceiling at the center of the table as shown in
Figure 3.2.

Figure 3.2: Example social XR setting with four physical and four virtual participants, with RAN
BS position marked in red.

Every physical user is wearing an HMD with integrated User Equipment (UE) with the processed
video stream coming from the MCU, which combines the feed from virtual and physical participants,
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across the IP network to the BS and then transmitted to the UEs. A new modelling approach
compared to [14] for the traffic streams based on real video data is used, which is elaborated on in
Section 3.3.

The intent to model user behaviour in form of head motion is due to changes in the position
and orientation of a user’s head also directly affecting the position and orientation of the UE’s
receiver antennas which affects the downlink channel quality due to multipath fading. To model the
head motion, the head’s position and orientation are represented as a set of Cartesian coordinates
and rotational angles respectively. The target trajectory of a user’s head is then specified by a
predetermined order of speakers, with a set time interval for every speaker and with all users
turning their head to the speaker at every iteration. To introduce realistic head wobbling, the
sampling of the offset coordinates and angles to reach the target head position and orientation are
randomised according to a normal distribution.

3.2.2 Propagation Environment

To simulate our indoor office scenario that includes aspects like path loss, shadowing or multi-path
fading, we opt for the QUAsi Deterministic RadIo channel GenerAtor (QuaDRiGa) [33] to generate
channel traces according to the indoor Line-of-Sight (LoS) office as described by 3rd Generation
Partnership Project (3GPP) [5]. Each trace contains the complex impulse response between the
receiver and transmitter antenna pair, taking into account path loss, our scenario specific fading and
the antenna orientations. As QuaDRiGa does not take noise into account, we add that afterwards
using the equation for thermal noise power PN = kBTB, with the Boltzmann constant kB =
1.380649×10−23 J/K, temperature T = 290 K and frequency bandwidth B. Figure 3.3 illustrates the
multi-path fading effects in the channel gain of four UEs for the considered propagation environment.

Figure 3.3: Channel gain variations over time for four users, at 3.5 GHz carrier frequency.

3.2.3 Radio Access Network

Considering that the main purpose of this study is to get insights from cross-layer scheduling, we
disregard the use of beamforming as well as massive Multiple-Input Multiple-Output (MIMO) an-
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tenna arrays to avoid unnecessary complexity for our assessment of cross-layer schedulers. Instead,
we assume a single omni-directional antenna for the BS as well as for the UEs. The BS uses a Time
Division Duplex (TDD) carrier in the 3.5 GHz Band with a ratio of 4:1 between Downlink (DL)
and Uplink (UL) slots. Given 5G’s F-OFDM-based radio interface featuring a flexible numerology,
we use numerology 2, meaning our subcarrier spacing is 60 kHz and the Transmission Time In-
terval (TTI) duration TT T I = 0.25 ms, which is the smallest time unit at which the BS schedules
transmissions. To cut down the computation time and memory usage required to generate the
channels and considering the assumed wideband (not frequency-selective) scheduler, we create the
impulse responses for fewer Physical Resource Blocks (PRBs) than there would be in reality. As
the channels do not change too significantly from PRB to PRB, it is sufficient to only generate the
responses for ten PRBs across a 50 MHz frequency bandwidth, and scale them accordingly to the
different frequency bandwidths used for simulating the social XR scenarios.

Simulation Procedure

As previously stated, we focus in this study on the BS scheduling and transmitting to UEs in the
downlink. This section outlines the functionalities needed for every TTI, as shown in the flowchart
in Figure 3.4.

Figure 3.4: Simulation steps in every TTI

We configure the TDD carrier with four DL TTIs followed by one UL TTI, which we do not
explicitly model here. To estimate the channel quality, which is then further used to, e.g. determine
the attainable bit rate, a Channel State Information (CSI) update is performed every NCSI

T T I = 5
TTIs. Similar to how it is done in practice, the CSI updates happen only every few TTIs as
channels do not change enough to update too frequently. In our model, the CSI is acquired through
the generated channel impulse responses.
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If there is no CSI update necessary, a TTI begins with updating the UE buffers. The packet
schedulers used are all latency-aware, hence all packets in the buffer are checked whether they need
to be dropped due to exceeding their latency budget based on the configured scheduler. We go in-
depth into the modelling aspects for the (non-)cross-layer packet schedulers in the following Section
3.2.4. As not all UEs will have packets in their buffer all the time, only UEs with packets to be sent
are listed for scheduling.

To estimate the instantaneous bit rates for the UEs, an SINR estimation is done based on the last
reported CSI. The SINR is used to determine the Channel Quality Indicator (CQI) from the Block
Error Rate (BLER) curves (Appendix A). The highest CQI corresponding to the SINR is chosen,
which still achieves a lower percentage of block errors than the configured BLER target of 10%,
this determines the selection of the Modulation and Coding Scheme (MCS) for the transmission.
The MCS defines the code rate Rc and hence the the number of bits in a symbol NSymbol

bits . We
first assume that all 168 resources elements in a PRB are used for data, i.e. NP RB

Symbol = 168. The
attainable bit rate R in bit/s is computed by dividing the number of bits transmitted in a PRB over
the TTI duration as shown in Equation (3.1). The bit rate is used for computing UE priorities, in
case a channel-aware packet scheduler is configured.

R =
RcN

Symbol
bits NP RB

Symbol

TT T I
(3.1)

The data transmitted in a given TTI is split into multiple Transport Blocks (TBs). We consider
the same number of TBs NT B = 5 for every TTI. To decide whether a transmission of a TB was
successful, a BLER-based coin is flipped based on the applicable BLER curves with the realised
SINR and the selected MCS. To determine the realised SINR, Mutual Information Effective SINR
Mapping (MI-ESM) is used to aggregate the SINRs over all PRBs into one effective SINR (see [34]
for details). The buffers are updated and the bits removed if the transmission was successful. If all
bits of a packet have been successfully sent, the timestamp of the last transmission is recorded as
the final arrival time for that packet.

3.2.4 Packet Scheduling

This section presents the modelling aspects of the baseline non-cross-layer schedulers first, and
then explains the two types of cross-layer information used and how they affect the schedul-
ing decision. The baseline non-cross-layer schedulers are the Maximum-Largest Weighted Delay
First (M-LWDF) and Earliest-Due-Date (EDD) schedulers. We did not include the widely used
Proportional Fair (PF) scheduler, as the PF scheduler is purely throughput based and thus not
suited for scheduling latency-sensitive packets. Another latency-aware alternative also used in prac-
tice is the Exponential/Proportional Fair (EXP/PF) scheduler. It is not included here, since it
was shown that the M-LWDF scheduler, which also includes a PF component, outperforms it as a
whole [12].

3.2.4.1 Non-Cross-Layer Schedulers

Traditionally, latency-based schedulers only take into account a packet’s RAN latency [11] which
does not require the BS to learn additional information about a packet other than its time of arrival
at the BS. The decision whether a packet is dropped from the buffer is only made based on whether
it has exceeded the configured RAN latency budget, usually configured to a value in the order of
few to tens of milliseconds.
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M-LWDF-Scheduler

The M-LWDF packet scheduler [12], a mix of latency-based and PF scheduling, is one of the baseline
non-cross-layer schedulers in this study. It calculates the UE priorities Pi,m−lwdf (t) for UE i at TTI
t as follows:

Pi,m−lwdf (t) = − log10 δ

∆LAT
ti,LAT

Ri(t)
R̂i(t− 1)

(3.2)

The latter part of the equation is a PF component, with Ri(t) denoting the instantaneously attain-
able bit rate and R̂i(t − 1) the exponentially smoothed bit rate experienced by UE i thus far. δ
denotes the maximum allowed PDR of the flow, that would only influence the scheduling if different
UEs have different maximum allowed PDRs, which is not the case here. ti,LAT is the experienced
latency of the packet at the Head Of Line (HOL) in the buffer of UE i and ∆LAT the latency budget.
As we will have different flavours of the schedulers, experienced latency and latency budget here
can be either the above-mentioned experienced RAN latency tRAN and RAN latency budget ∆RAN,
or the experienced E2E latency tE2E and E2E latency budget ∆E2E explained below.

EDD-Scheduler

The EDD scheduler [20] represents a purely latency-based approach of scheduling, giving priority
to the UE with the most urgent latency deadline, or due date, with Ti,Deadline,i− t representing the
remaining time from the current time t until the deadline Ti,Deadline of the packet at the HOL in
the buffer of UE i.

Pi,edd(t) = 1
Ti,Deadline − t

(3.3)

As we want to schedule the packet with the most urgent deadline, the UE priority is its inverse.
TDeadline will be determined differently depending on whether the scheduler follows a fixed RAN
latency budget or the E2E latency budget explained in the next section. It is important to note that
unlike the M-LWDF scheduler, the EDD scheduler is channel-oblivious, which impacts the resource
efficiency.

3.2.4.2 Cross-Layer Schedulers

With the M-LWDF and the EDD as the non-cross-layer schedulers, the main idea of cross-layer
schedulers is extending the M-LWDF and EDD schedulers by using (1) E2E latency budget instead
of RAN-latency budget, (2) I-frame prioritisation and (3) both E2E latency budget and I-frame
prioritisation.

E2E Latency Budget

As opposed to the RAN latency budget, which applies at the IP packet level, and is set by the
RAN operator, an E2E latency budget set by the application is the time in which a frame should
successfully be conveyed from the source to the Head Mounted Display (HMD), including the time
required for encoding, transmission and then decoding and rendering.

Since we do not consider parts of the video processing in our model, we solely focus on the part
of the E2E latency budget for transmission in the IP network and 5G RAN for the cross-layer
scheduling. As the latency from video processing differs depending on e.g. whether it is done on
the device or edge, we take this into account by assessing different values for the E2E networking
latency budget.

To calculate the E2E latency of a packet, we first look at which frame it belongs to. The frame
index f and frame rate RF determine the time Tf at which the frame has been generated at the
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source, assuming time is initiated at zero at the start of the session

Tf = fTframe, with Tframe = 1/RF (3.4)

Having an E2E networking latency budget ∆E2E means the E2E deadline TDeadline,f = tf + ∆E2E

is identical for all packets n belonging to the same frame f . Similarly to above, packets will be
dropped if the target E2E latency budget has been exceeded. With different arrival times of packets
of the same frame at the BS, packets of the same frame will have different remaining RAN latency
budgets ∆RAN−E2E,n, which are calculated as follows:

∆RAN−E2E,n = tf + ∆E2E − tnetwork,n. (3.5)

tnetwork,n denotes the latency the packet n may have already experienced due to dispersion in the
network at the source encoder (see Chapters 3.3 and 3.3.2). Correspondingly, the experienced total
E2E latency of a packet tE2E,n is calculated as

tE2E,n = tnetwork,n + tRAN,n. (3.6)

with tRAN,n denoting the experiencing RAN latency of packet n.

I-Frame Prioritisation

Similarly to the scheduler with I-frame prioritisation from [11] introduced in Section 2.1, we use
frame type as a form of cross-layer information in the scheduling. This is effectuated by including
an additional parameter φframe ≥ 1 to give a higher weight for I-frame packets for the EDD and
M-LWDF schedulers as follows

Pi,edd−frametype(t) =
{
φframePi,edd(t) for I-frame
Pi,edd(t) for P-frame

(3.7)

Pi,mlwdf−frametype(t) =
{
φframePi,m−lwdf (t) for I-frame
Pi,m−lwdf (t) for P-frame

(3.8)

We consider different options for φframe and assess the performance impact in Section 4.1.

All in all, we have eight different schedulers in total. Two non-cross-layer schedulers that are RAN-
latency based (RAN-EDD and RAN-M-LWDF), the variations using E2E instead of RAN latency
budgets (E2E-EDD and E2E-M-LWDF), the variations using additional frame type information,
(RAN-Frametype-EDD and RAN-Frametype-M-LWDF) and lastly the two schedulers using both
types of cross-layer information (E2E-Frametype-EDD and E2E-Frametype-M-LWDF).

3.3 Traffic Model
This section describes the motivation and model behind creating packet traces from real video data
and modelling the packet dispersion caused by both the video encoder and series of internet routers
the packets travel through towards the RAN.

3.3.1 Creating Packet Traces from Recorded Video

As an extension to [14], we use a more realistic video traffic model in this thesis. In particular,
instead of choosing constant values throughout the simulation for traffic parameters such as the
number of packets per I- and P-frame or the size of each packet, we generate a packet trace from a
real video and model the burstiness of the video encoding process [32].
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Generating Video Traces

We use a recorded video sequence with characteristics similar to one in a real social XR conference,
with a neutral office setting and limited user movement. These points about the video content are
insofar crucial, as it has been shown that when evaluating QoE metrics, such video characteristics
play an important role in determining the perceived quality, as repeatedly demonstrated [16,21,35].
Figure 3.5 shows two snapshots of the recorded video with an indoor office background and different
user positions due to head movement.

(a) Snapshot of user looking at the camera (b) Snapshot of user looking away from camera

Figure 3.5: Snapshots of recorded video with indoor office background and different user positions.

Using GStreamer [36], we can stream the video packet-wise through the network and capture the
resulting packet trace with a packet analyser tool like Wireshark [37] or tcpdump [38]. When
streaming the video, we set the application parameters such as the bit rate, the frame rate and the
GoP size. The default video bit rate is chosen as 100 Mbps based on the minimum requirement
for ’entry-level VR’ [6] and will be varied later, but throughout the simulations, we use a constant
frame rate RF of 30 frames per second [6] and a GoP size of ten frames (one I-frame and nine
P-frames per GoP) [17].

The models in [11, 14] are not considering B-frames and for simplicity, we do the same for our
modelling approach. From the trace we read out the necessary parameters of each packet, which
are its timestamp, size, number of the frame the packet belongs to, and the frame type of said
frame. Table 3.1 shows a partial output of a trace containing five packets, parsed as comma-
separated values (CSV). From left to right, the values shown in each row are the packet timestamp
in seconds, the packet size in bytes, the RTP timestamp, the frame number, and the frame type
(either I- or P-frame). The packet timestamps shown here are the recorded network timestamps
by Wireshark due to the experimental setup. These are removed as we will model and enforce the
packet dispersion of the video encoder.

Modelling Burstiness of Video Encoder

We include a model for the burstiness of the output from a video encoder, as in practical implemen-
tations, the encoder releases the packets of a video frame in a burst, which is then passed through
a smoother before they are sent into the network [32]. In our case, the parsed timestamps in the
packet trace are network timestamps recorded by Wireshark. Since the start of the timestamps have
to match with the start time in the simulator, they have to be adjusted to represent the burstiness
pattern of the encoder.
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Table 3.1: Snippet of a CSV packet trace.

packet timestamp packet size RTP timestamp frame number frame type
1629202824.60665 1428 4119239446 10 I
1629202824.60666 1428 4119239446 10 I
1629202824.60667 1142 4119239446 10 I
1629202824.63926 42 4119242446 11 P
1629202824.63933 183 4119242446 11 P

First, for all Nframes frames in the video, we give each of the n packets of frame f an identical
timestamp τf by taking the frame index f (for f = 0, 1, ..., Nframes − 1) and multiplying it by the
inter-frame time Tframe, the inverse of the video’s frame rate RF .

τf = fTframe, with Tframe = 1/RF (3.9)

for all n packets in the frame.

We then model the packet dispersion at the encoder output by defining a burstiness parameter
b ∈ [0, 1] that determines the maximum percentage of the inter-frame time Tframe, wherein all
packets of a frame can be dispersed. This is denoted as ∆F and calculated as follows

∆F = (1− b)Tframe. (3.10)

Within ∆F , all packets are dispersed with the same inter-packet time, denoted δp.

To determine δp for a specific video stream and burstiness b, we:

i Determine the largest number of packets Nfmax in a single frame in the video stream, with
Nfmax = max

f
Nf , where Nf denotes the number of packets in the frame f .

ii Obtain the inter-packet time δp = ∆F/Nfmax , based on the largest frame in terms of number of
packets

iii Calculate the new packet timestamps τf,n of the n-th packet in frame f as:

τf,n = fTframe + nδp , for n = 0 to Nf − 1. (3.11)

This approach ensures that we have the same inter-packet time δp throughout the video stream
while keeping the departure of the first packet of each frame synced with the frame generation
times without an overlap of packets belonging to different frames.

Synchronisation of Traffic Streams

In practice, users will join a social XR session not necessarily at the same time. As such, the start of
their VR streams, which is always an I-frame, will not be synchronised. In the worst-case scenario
it can happen that the I-frames of all users overlap and create a spike in traffic, which we define as
the perfectly synchronised case. In the maximally asynchronised case, we consider the I-frames of
all users to be maximally temporally separated. We calculate this I-frame offset per user as the time
of a GoP over the number of total users. In an example of four users and GoP size ten, which is
depicted in Figure 3.6, this would result in a maximal offset of 2.5 frames (0.083 s) of the I-frames.
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Figure 3.6: Frame type sequence for four maximally asynchronised video traffic streams.

3.3.2 Modelling Packet Dispersion in IP Networks

The VR packet stream will not only experience dispersion at the video encoder, but also by travelling
through the IP network to the BS transmission buffer. As our cross-layer approach also exploits
knowledge of the total E2E latency budget as compared to previous models [11], we implement a
simulator to create realistic random packet dispersions caused by packets going through multiple
network hops that affect the experienced latency and consequently the remainder of the E2E latency
budget of packets arriving at the BS buffer. Further, we assume that all packets of a given session
would follow the same route through the IP network, we ignore the possibility that packets of a
later frame could overtake packets of an earlier frame and hence arrive earlier at the BS buffer. In
practice, this would mean that only an E2E latency-based scheduler could rearrange packets in the
BS buffer and deal with this occurrence properly.

Figure 3.7 illustrates a series of network hops between the source at the MCU and the RAN BS,
with two types of packet streams as inputs. We model routers at every network hop as a First-In-
First-Out (FIFO) queue and track the timestamps of the VR packets after every queue. As shown
in the figure, the two types of inputs for the queues are the foreground VR packet stream, and
the background traffic generated according to independent but identically configured Poisson-based
packet generation processes at each router. By adding a certain amount of background traffic, the
VR packets experience random queueing delays before entering the next hop. This way we get a
certain somewhat randomised dispersion pattern for the VR packets after going through a specific
number of queues.

Figure 3.7: Series of network hops between video source and BS with fore- and background packet
streams.
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Modelling Scenario Parameters

Here we define the main modelling aspects for the network hop simulator and the assumed scenarios
and the rational behind those choices.

We define three scenarios to give an idea of the impact of different numbers of hops representing
different distances between source and destination. The first is between two nearby cities within
a country (e.g Amsterdam - Delft). The second is between two cities further away from different
countries but not yet intercontinental (e.g Amsterdam - Berlin). Lastly, we consider an interconti-
nental scenario (e.g Amsterdam - New York). Using traceroute [39], we chose five, ten, and fifteen
as the number of hops between the two locations in the three scenarios (see also Appendix A.2).
Additionally, a propagation delay tprop is considered for every scenario in a straightforward manner
based on the straight-line distance d between the two locations and assuming signals are travelling
at the speed of light in glass fiber.

In practice, multiple routers with different capacities (1/10/100 Gbps) are deployed [40]. As we will
be simulating multiple queues with realistic packet sizes in the tens or hundreds of bits compared to
the capacity of a switch in the order of Gbps, there will be hundreds of thousands, if not millions of
iterations of events that need to be simulated. To keep the computational complexity manageable,
we choose a traffic handling bit rate in each router of Srouter = 1 Gbps.

Now, we determine the modelling aspects of the background traffic stream and define the considered
scenarios. Studies have concluded that a majority of IP traffic consists of TCP flows and observed
a large part of very small packet sizes just above 40 bytes, which are TCP acknowledgements and
large packets around 1500 bytes, which is the maximum Ethernet packet size. Based on studies of
internet traffic characteristics [41, 42], for our background packet size distribution PBG we choose
the packet sizes as 44, 1300, and 1500 Byte, and their respective probabilities as 44%, 19%, and
37% for our model. This results in an average packet size of savg = 821 Byte.

We define the background load Lrouter as a percentage of Srouter. Test runs revealed that for
background loads lower than 50% for all three numbers of hops, there is no huge difference in the
final packet dispersion. To choose a scenario with a very high background load, the additional
load to the system from the VR stream has to be considered. With 90% background load and
the VR stream having 100 Mbps default bit rate, the system will be overloaded, which we want to
avoid. Therefore we choose 50% as the lowest amount of background load, 70% as a still manageable
amount, and 85% as the highest amount of background load which does not yet lead to an overloaded
system. Using the average packet size savg and the different background loads, we obtain the arrival
rate λBG in average number of background packet arrivals per second for each of the three scenarios
as λBG = {76103, 106610, 129366} packets per s.

In summary, the parameters for the network hop simulator are as follows:

1. Number of queues Nrouter and propagation delays tprop

I Amsterdam - Delft: d ≈ 60 km, Nrouter = 5, tprop = 0.3 ms

II Amsterdam - Berlin: d ≈ 600 km, Nrouter = 10, tprop = 3 ms

III Amsterdam - New York: d ≈ 6000 km, Nrouter = 15, tprop = 30 ms

2. Traffic handling bit rate of each router Srouter = 1 Gbps

3. Packet size distribution of background traffic
PBG = {44 Byte (44%), 1300 Byte (19%), 1500 Byte (37%)}
with average packet size savg = 821 Byte
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4. Background loads Lrouter = {0.5, 0.7, 0.85},
with arrival rates λBG = {76103, 106610, 129366} packets per s

Figure 3.8 shows an illustrative trace-based comparison for the packet dispersion in terms of packet
arrivals per TTI at the BS for the input and output of the network hop simulator with 10 queues
and 70% background load. The packet trace has an initial encoder burstiness b = 0.6.

We see in Figure 3.8a that even before entering the network hops the packet dispersion due to the
encoder is already slightly larger for the I-frames, which comprise more packets, than for P-frames.
As can be seen from Figure 3.8b, the additional dispersion causes the number of packet arrivals
per TTI to go down from fifteen per TTI and also to be randomised instead of constant. Further,
the dispersion of I-frame packets is now even larger, with the last packets of the second and third
I-frame experiencing an E2E delay of more than half of the inter-frame time due to encoding and
queueing delays.

(a) Trace with 100 Mbps bit rate and burstiness b = 0.6 before network hop simulator.

(b) Same trace after network hop simulator with Nrouter = 10, and Lrouter = 70.

Figure 3.8: Comparison of packet arrivals per TTI for input video packet trace (a) and output trace
(b) of network hop simulator.
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Chapter 4

Simulation Scenarios and Results

This chapter assesses the schedulers presented in the previous chapter, particularly concerning the
benefits of exploiting cross-layer information. We first lay out the range of simulation scenarios and
parameters for the sensitivity analysis and the motivation behind those choices in Section 4.1. Then
in Section 4.2, we present and analyse the sensitivity analysis results, particularly the performance
impact of different types of cross-layer schedulers. Next, in Section 4.3 we determine for a subset of
schedulers what combinations of the number of UEs, the application bit rate, and the E2E latency
budget are achievable given an imposed 5% PDR requirement for a subset of schedulers. This
section intends to give an overview of the social XR scenarios that can be supported from a network
operator’s point of view. Lastly, we use the objective video quality metrics PSNR and SSIM and
analyse their correlation with the previously obtained PDR results focusing on the context of the
benefits from cross-layer scheduling in Section 4.4.

4.1 Simulation Scenarios and Approach

In this section we will define the simulation scenarios through which the cross-layer schedulers
are assessed and how the choice of default configurations was made. The performance indicator
with which the schedulers and scenario parameters are assessed is the PDR. We chose 5% as a
threshold, which was shown to be an acceptable network QoS without too much QoE degradation
[43]. Contrary to previous work [14], we not only count the packets dropped at the BS resulting
in a RAN PDR but also those that have been transmitted successfully to the UE but have not
arrived within the given E2E latency budget, giving us an E2E PDR. Note that with the considered
schedulers in this study, dropping additional packets after transmission may only occur with the
RAN latency-based schedulers.

We simulate every set of parameters for 20 different random generations of radio channels. The
resulting PDR in each plot is the average over all seeds and the number of users in the scenario.
Each bar plot includes a black bar indicating the confidence interval at a 95% confidence level.

First, we conduct a sensitivity analysis for different scenario parameters by varying them in a ceteris
paribus manner. Table 4.1 shows the parameters and the range of values considered with the default
highlighted.

To determine the default carrier bandwidth, we set all parameters to their default value and chose
the minimum bandwidth needed to achieve <5% PDR with the best non-cross-layer scheduler. 125
MHz was shown to be insufficient to support the default scenario with <5% PDR, hence, we chose
150 MHz as the default carrier bandwidth (see Appendix C.1).
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Table 4.1: Parameters and (default) values considered in the sensitivity analysis.

Parameter Values (Default in italics)

Application bit rate 50, 100, 150, 200 Mbps
E2E latency budget 25, 50, 100 ms
RAN latency budget 1, 5, 10, 20, 30, 40, 50 ms
Carrier bandwidth 100, 150, 200 MHz
Number of UEs 1, 2, 4, 6, 8
Background traffic load 50%, 70%, 85%
Number of hops 5, 10, 15
Encoder burstiness 0.6, 1.0
Synchronisation of video traffic streams max. asynchronised, perfectly synchronised

Next, the default RAN latency budget is selected such that the PDR can be minimised for the
non-cross-layer packet scheduler. Figure 4.1 shows the PDR versus the RAN latency budget for
the non-cross-layer RAN-EDD (left chart) and RAN-M-LWDF (right chart) schedulers for all nine
configurations of the background traffic load and number of hops. All curves show the same general
pattern, in the sense that a decrease in RAN latency budget leads to a higher PDR, which is caused
by increases packet dropping due to insufficient radio resource. After a certain minimum PDR, the
PDR rises again for higher RAN latency budgets, since packets are increasingly dropped at the UE.
We select 20 ms as the default RAN latency budget since it gives the lowest PDR in most scenarios
for both schedulers. Since we consider a default E2E latency budget of 50 ms [5], a setting with
fifteen network hops would exceed the 5% target PDR for all RAN latency budgets and does not
influence the choice of default RAN latency budget for this sensitivity analysis.

Figure 4.1: PDR for non-cross-layer schedulers for all combinations of background network load,
number of hops and range of RAN latency budgets.

In Section 3.2.4.2, we have defined the I-frame prioritisation parameter φframe. Here, we determine
the value of φframe, such that the performance of the frametype-cross-layer schedulers is optimal. In
Figure 4.2, we show the PDR for all frames, I-frames, and P-frames versus different values of φframe
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for the four cross-layer schedulers using frame type information. For all schedulers, we observe
that the higher the value of φframe is, the lower the PDR for I-frames becomes, with gradually
diminishing returns until a minimum is reached. On the other hand, the PDR for P-frames will
naturally increase with φframe. This is likewise the case for the PDR of all frames, because although
the number of packets per I-frame is higher than per P-frame, the substantially higher number of P-
than I-frames in a GoP results in a net increase in the overall PDR. We see for the E2E latency-based
schedulers, that the green and blue curves increase less dramatically for very high values of φframe,
as compared to the RAN latency-based schedulers. In E2E latency-based schedulers, packets of the
same frame have the same E2E deadline, and as such smaller values for φframe can already result
in the scheduler purely prioritising I-frames over P-frames, with packet latencies in the order of
milliseconds. This is the most noticeable for the E2E-Frametype-EDD scheduler, where φframe = 2
already leads to the I-frame packets having constant priority, as it does not contain a PF component
and purely considers E2E latency deadlines. Since RAN latency-based schedulers consider different
RAN latencies and hence priorities for different packets of the same frame, a convergence is only
observed for much higher values of φframe. We configure φframe as 5, meaning I-frame packets will
receive a five times higher scheduling priority than P-frame packets, since for φframe = 5 most of
the gains have been attained for the I-frame PDR for all schedulers, while the increase of the PDR
of P-frames and all frames is still reasonably low. Note, that a setting of φframe = 1 effectively
implies turning off the frame type-based scheduling. Comparing with that, the charts in Figure 4.2
clearly show attainable gains from the I-frame PDR perspective.

Figure 4.2: PDR for increasing values of φframe for all four cross-layer schedulers using frame type
information.
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4.2 Results of Sensitivity Analysis

In this section, we present the results from the sensitivity analysis and assess the performance of the
(non-)cross-layer schedulers. Every figure below contains three bar plots depicting the PDR for all
frames on the top, I-frames in the middle, and P-frames on the bottom. As mentioned previously,
we set all parameters except the one named in the figure titles to their respective default values
according to Table 4.1. For better clarity, the maximum value for the PDR on the vertical axis is
capped at 30%.

4.2.1 Comparison of Schedulers for Default Scenario

To assess how the eight schedulers perform compared to each other, we first look at the results
for the overall PDR, the I-frame PDR, and the P-frame PDR for the default scenario, as shown in
Figure 4.3.

EDD vs M-LWDF Schedulers

First, we observe that the EDD schedulers (light colours) generally achieve a lower PDR than the
M-LWDF counterpart (dark colours). This result is due to the PF component in the M-LWDF
scheduler (see Equation (3.2)). which ensures resource fairness among UEs. Consequently, a UE
containing I-frame packets in its buffer actually requires more resources than other UEs with only
P-frames, which comprise fewer packets. However, due to the nature of the PF component, the
UE with I-frame packets will not receive the additional resources needed to transmit all I-frame
packets, leading to increased I-frame PDRs. This situation is also clearly noticeable in Figure 4.3.
In the middle plot, we see that the PDRs of the I-frames for the RAN- and E2E-M-LWDF scheduler
without frame type differentiation are much higher than for the RAN- and E2E-EDD schedulers.

RAN vs E2E Latency-Based Schedulers

The gain in overall PDR of E2E latency-based schedulers compared to RAN latency-based schedulers
is minor in the default scenario. As a matter of fact, we observe a minor increase in I-frame PDR
when using E2E latency-based schedulers. This shows that at the cost of requiring to tune the
RAN latency budget, RAN latency-based schedulers can come very close in performance to E2E
latency-based schedulers. We see that the PDR of E2E schedulers is lower for the P-frames but
slightly higher for I-frames. As I-frames contain more packets and are thus more affected by packet
dispersion, tuning the RAN latency budget optimises the PDR of I-frames. Tuning is complex in
practice when the RAN operator does not know the paths of the video packets across the internet
on their way to the BS and hence has no knowledge about the packet dispersion. Hence in practice,
the operator would likely conservatively choose a RAN latency budget based on a range of possible
scenarios in terms of pre-RAN latency and packet dispersion.

Frametype vs Non-Frametype Schedulers

Next, we assess the results from utilising frame type information in the schedulers. We see, as
expected, that the I-frames’ PDRs of the frametype schedulers are significantly lower than those
of non-frametype schedulers. The downside is that the P-frames will have many more dropped
packets, leading to a higher overall PDR for cross-layer schedulers using frame type information.
Section 4.4 will discuss how the different distribution of dropped packets affects the experienced
video quality by end users, using the PSNR and SSIM as objective video quality metrics, which
effectively combine the effects of I- and P-frame PDR in a single meaningful metric.
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Figure 4.3: PDRs for all schedulers with parameters set to default according to Table 4.1.
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One exception to the points mentioned above is the performance of the E2E-Frametype-EDD sched-
uler. Contrary to the observations above, it gives a higher PDR than the E2E-Frametype-M-LWDF
or RAN-Frametype-EDD schedulers and shows the highest overall PDR. The explanation for this
outlier in the results lies in how the E2E-Frametype-EDD scheduler prioritises I-frame packets based
on the E2E latency budget.

To understand these results, recall that for both the E2E-EDD and the E2E-Frametype-EDD sched-
ulers, the E2E deadline for packets belonging to the same frame will be the same. With the asyn-
chronous scenario considered here, the I-frame packets of all UEs are maximally spread out within
a GoP (see Figure 3.6). When the E2E-Frametype-EDD scheduler prioritises I-frame packets, all
packets of the I-frame will have the same deadline and thus the same level of priority over P-frame
packets in the buffer of other users. For example, assuming UE A has I-frame packets in its buffer,
the E2E-Frametype-EDD scheduler will only schedule the other UEs after UE A’s buffer has no
I-frame packets left at its HOL. With I-frames consisting of more packets than P-frames, they also
experience larger packet dispersions when travelling through network hops before arriving at the
BS (see Figure 3.7b). UE A, in this example, will be scheduled for many TTIs in a row, resulting
in low throughput fairness and leading to high PDRs for the other UEs’ P-frames. These effects are
reflected in a higher average P-frame PDR and a higher net increase in overall PDR for the E2E-
Frametype-EDD scheduler. Since packet deadlines for the packets of a given I-frame are different
in the case of, e.g. the RAN-Frametype-EDD schedulers, prioritising one UE for such an extended
period of TTIs will not happen, resulting in a lower P-frame PDR.

4.2.2 Impact of Scenario Parameters

This section assesses the impact of various system parameters on the schedulers’ performance. We
divide the parameters based on how they affect the overall system. We first examine the video
application bit rate, channel bandwidth, and number of UEs served by the BS. These all affect the
total effective load offered to the BS. Then, we examine the outcome of varying two types of latency
budgets; the packet-level RAN latency budget set by the network operator and the frame-level E2E
latency budget required by the application. Next, we assess the different causes of packet dispersion,
including the number of network hops, the amount of background load in the network hop simulator,
and the encoder burstiness b. Finally, we show the impact of having perfectly synchronised versus
maximally asynchronised video traffic streams.

4.2.2.1 Varying System Load

The video application bit rate (Figure 4.4), the available carrier bandwidth (Figure 4.5) and the
number of UEs (Figure 4.6) are all parameters that directly influence the total load on the RAN
BS. As expected, we see the trend for all three parameters, that increasing the load leads to higher
PDRs for all schedulers.

In all three figures, the observed increase in PDR is not linear but exponential. For example,
increasing the load by only 50%, such as increasing the video bit rate from 100 to 150 Mbps (Figure
4.4) or the UEs from four to six (Figure 4.6), increases the overall PDR roughly eightfold. Figure 4.5
confirms this observation as well. It shows that increasing the carrier bandwidth by a third barely
nets any gains in terms of PDR, while decreasing it by a third shows an increase in PDR by roughly
three times. These results suggest that when deploying a system in practice, these configurations
have to be well-tuned for a given network QoS target, as overloading the system can considerably
deteriorate the performance and potentially significantly affect the end user experience. Notably,
the relative performance overall of the different schedulers does not fundamentally change. But
the distinctions between the frametype and non-frametype schedulers are more accentuated under
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Figure 4.4: PDRs of all schedulers for different video application bit rates.
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higher cell load scenarios. We observe that in these scenarios, where the overall PDR is drastically
increased, the I-frame PDR stays low for all frametype schedulers. For example in Figure 4.6, we
see that the overall PDR for all schedulers in a setting with eight UEs is way above 30%, whereas
the I-frame PDR is still in many cases within the 5% target.

Figure 4.5: PDRs of all schedulers for different carrier bandwidths of the RAN BS.
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Figure 4.6: PDRs of all schedulers for different number of UEs in the RAN.
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4.2.2.2 Varying RAN and E2E Latency Budgets

Here, we look at the implications of the mobile network operator configuring different packet-
level RAN latency budgets and the application imposing different frame-level E2E latency budget
requirements. First, we see the results for different RAN latency budgets in Figure 4.7, assuming a
fixed default value of the E2E latency budget. Since the RAN latency budget does not exist in the
four E2E latency-based schedulers, their PDRs stay constant in all scenarios.

Figure 4.7: PDRs of all schedulers for different packet level RAN latency budgets.

Quite the opposite is the case for the RAN latency-based schedulers. We saw in the previous section
that choosing the optimal RAN latency budget for a given E2E latency budget significantly improves
their performance. With a larger RAN latency budget, only few packets will be dropped at the BS,
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but more packets will in turn violate the E2E latency budget when arriving at the UE, leading to
more packet dropping at the UE and a higher over PDR. Another key downside of a too high RAN
latency budget is the waste of scarce radio resources corresponding with the packet transmissions
that will later on be dropped at the UE. Configuring lower RAN latency budgets leads to many more
unnecessarily dropped packets at the BS, causing a high PDR. Hence, the main tradeoff is reducing
the unnecessary droppings at the BS and improving the PDR, while not increasing the RAN latency
budget beyond the optimal value such that transmission resources are wasted on packets that will
eventually be dropped at the UE. This resource waste leads to unnecessary congestion for radio
resources and consequently more scheduling delays and dropping of packets.

In contrast, having different E2E latency budget requirements will affect all schedulers, as shown in
Figure 4.8, which depicts the PDR for 25, 50, and 100 ms of E2E latency budget. We observe that
RAN latency based schedulers see a higher increase in PDR than E2E latency-based schedulers if
the E2E latency budget is reduced.

Figure 4.8: PDRs of all schedulers for different frame-level E2E latency budgets.

Ideally, the RAN latency budget would need to be retuned to the different E2E latency budgets.
Since this is not done here, the PDR suffers more for the RAN-latency based schedulers for lower E2E
latency budgets. Similarly, changing the E2E latency budget from 50 ms to 100 ms primarily benefits
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the E2E latency-based schedulers. With a well-tuned RAN latency budget, the RAN latency-based
schedulers see only very few or no packet droppings at the UE in the first place. Hence, the gain
from raising the E2E latency budget is negligible for RAN latency-based schedulers.

4.2.2.3 Varying Packet Dispersion

Now we investigate the impact of three different causes of packet dispersion on PDR. Figure 4.9
shows the PDR for the two considered settings of encoder burstiness, with b = 0.6 (left charts)
indicating the implementation of a smoother in the video encoder as mentioned in Section 3.3.1,
and b = 1.0 indicating the absence of it, with all packets of a frame sent out in one burst. We see
that there are no visible differences in the results, implying that the type of video encoder has no
effect on the resulting packet dispersion and PDR. There would likely only be a noticeable difference
with burstiness much lower than 0.6. As mentioned in Section 3.3.1, this could lead to packets from
a later frame could overtaking a packet of an earlier frame and hence arriving earlier at the BS
buffer, which we do not consider here.

Figure 4.9: PDRs of all schedulers for different encoder burstiness b.

Figures 4.10 and 4.11 show the PDR for the various settings of the number of network hops and
background traffic load respectively.
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We see from Figure 4.10 that there is not a noticeable difference between going through five or
ten network hops, but a massive increase in PDR for the case of fifteen. The cause of this is the
propagation delay of 30 ms in the scenario with fifteen hops. It takes up already a significant part
of the 50 ms of E2E latency budget, which leads to the observed increase in PDR of up to four
times. This implies that the packet dispersion is not affected as much by the total number of hops
as such, but rather by more considerably higher propagation delays.

In Figure 4.11, we notice that the background load at each router only influences the packet dis-
persion and PDR if the background traffic load is at 85%. These results indicate, that only very
high levels of background traffic load severely increases the queueing delays for VR packets that it
negatively affects the PDRs. With higher background loads, the earlier mentioned caveat of the
E2E-Frametype-EDD scheduler is visible again. Since packets of an individual frame are in general
even more dispersed, the arrival of I-frame packets is delayed by so much, that more TTIs are used
only to transmit the I-frame packets of one UE, at the cost of dropping even more P-frame packets.
We observe similar with the E2E-Frametype-M-LWDF scheduler, although to a smaller degree due
to its PF component.

Figure 4.10: PDRs of all schedulers for different numbers of network hops.
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Overall, we can conclude that realistic levels of encoder burstiness do not affect the PDR and the
main factors for high degrees of packet dispersion which affect the PDR are propagation delays for
larger distances between the source and BS and very high traffic loads at network hops. Using cross-
layer schedulers with knowledge about the E2E latency budget improves performance, especially in
cases where the propagation delay is close to the configured E2E latency budget. This means that
although the application might demand a certain latency, in case of a long-distance use case, the
application should trade off a bit in terms of perceived end user experience and allow a high enough
E2E latency budget such that the application is usable at all.

Figure 4.11: PDRs of all schedulers for different background traffic loads at network hops.

39



4.2.2.4 Synchronisation of Video Traffic Streams

Figure 4.12 shows the difference between having maximally asynchronised and perfectly synchro-
nised video traffic streams among the different involved users. In the latter case, we observe an
increase in PDR for all schedulers. The cause for this is the stark increase in the aggregate number
of packet arrivals whenever there is an I-frame. With the I-frames now also arriving simultaneously
for all UEs, there is no difference in performance from using additional frame type information in the
scheduling. The E2E-schedulers are also noticeably outperforming their RAN counterparts in both
I- and P-frame PDR. Because we previously tuned the RAN latency budget for the asynchronised
scenario, it is now more beneficial to have additional cross-layer information in the form of the E2E
latency budget. This exemplifies once again that RAN latency-based scheduling in itself may work
fine, but only if the RAN latency budget is well-tuned to the scenario at hand, which in practice is
virtually impossible to do.

Figure 4.12: PDRs of all schedulers for different video traffic stream synchronisations.

Ultimately, we can conclude from Section 4.2 that in most cases, using E2E latency-based cross-layer
schedulers gives a better performance than a well-tuned RAN latency-based schedulers, especially
considering that tuning the RAN latency budget is not feasible in practice. The frametype cross-
layer schedulers show in almost all cases a significant decrease in I-frame PDR at the cost of higher
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P-frame PDR and slightly higher overall PDR. The latter may seem worse from a network QoS
perspective, but how this affects the arguably more crucial user-perceived video quality is discussed
in Section 4.4.

Further, we notice drawbacks for both the EDD and M-LWDF schedulers in some special cases.
The former lacks channel-awareness that can lead to inefficient usage of resources if I-frames are
over-prioritised as we saw in the case of the E2E-Frametype-EDD scheduler. On the other hand,
without additional I-frame prioritisation, the PF component of the M-LWDF schedulers lead to
an undesired under-prioritisation of UEs with many I-frame packets. Therefore the RAN/E2E-
M-LWDF scheduler without frame type information show the highest I-frame PDRs. This shows
the problem of having to balance the prioritisation of the I-frame packets of one user while at the
same time not overly neglecting P-frame packets of other users. In that sense, there is still room
for improvement for both the EDD and M-LWDF scheduler. We saw that the RAN load could
influence the PDR the most, meaning the video bit rate, channel bandwidth, and number of UEs
should be geared to each other as good as possible to reach a specific QoS target. Moreover, the
packet dispersion mainly influences the PDR in a scenario where, e.g. there is a high load in network
routers, or the E2E latency budget was configured too small for a long distance between source and
destination with a large propagation delay.

4.3 Feasible Load and Application Configurations

This section aims to identify what combinations of the number of UEs and application bit rate are
supportable under the three different E2E latency budgets, given a 5% upper limit for the PDR.

We consider a subset of the schedulers assessed in Section 4.2. Since the EDD schedulers showed
generally lower PDRs than M-LWDF schedulers in the sensitivity analysis, we focus on the EDD
scheduler using different types of cross-layer information and compare the RAN-EDD, the RAN-
Frametype-EDD, the E2E-EDD, and the E2E-Frametype-EDD scheduler in this section.

4.3.1 Scenarios and Settings

Unlike the previous section’s sensitivity analysis, we assume that the RAN operator has no prior
knowledge about underlying networking and propagation delays but only knows the E2E latency
budget. Consequently, we tune the RAN latency budget based on worst-case scenarios for the packet
dispersion. We saw in the previous section, that the number of network hops is the biggest cause
for packet dispersion. Hence, we tune the RAN latency budgets for the E2E latency budgets of 50
and 100 ms based on the scenarios with fifteen network hops. Because satisfying an E2E latency
requirement of 25 ms in scenarios with fifteen network hops is physically not possible due to the
30 ms of propagation delay, the RAN latency budget for 25 ms E2E latency budget is tuned based
on ten hops instead. The chosen RAN latency budgets are 10 ms for 25 and 50 ms of E2E latency
budget and 50 ms for 100 ms E2e latency budget (see Appendix A.3). We simulate and compare
results for all possible E2E latency budgets for ten (Figure 4.13) and 15 network hops (Figure 4.14).
As the default for the number of UEs was four and for the application bit rate 100 Mbps, we now
consider one to eight UEs in single-UE increments and 50 to 150 Mbps in 10 Mbps increments. We
set all other system parameters to default as given in Table 4.1.

4.3.2 Results and Observations

In Figures 4.13 and 4.14, the coloured area indicates the feasible combinations of application bit
rate and number of UEs for the given scheduler and E2E latency budget.
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In Figure 4.13, the areas covered in blue (50 ms E2E latency budget) and green (100 ms E2E latency
budget) are very similar, indicating that there are diminishing returns in terms of the capability
to support more demanding scenarios by increasing the E2E latency budget. However, much fewer
combinations of application bit rate and number of UEs are supported if the E2E latency budget is
only 25 ms, as we see with the red areas. We saw from Figure 4.8 that a lower E2E latency affects
the PDR much more heavily. Notably, only a 120 Mbps application bit rate is possible even for
only one UE. Because higher application bit rates mean higher loads on network routers, we see an
increase in PDR due to higher levels of packet dispersion, similar to our observations for increasing
the background traffic load in Figure 4.11.

Figure 4.13: Feasible combinations of application bitrate, number of UEs and E2E latency budget
for ten network hops for RAN-EDD schedulers (top) and E2E-EDD schedulers (bottom).

Recall that the E2E latency requirement of 25 ms is physically impossible for the scenario with fifteen
network hops since the propagation latency alone exceeds the E2E latency budget. Therefore, Figure
4.14 contains no areas shaded in red. The areas in blue for 50 ms E2E latency budget show again
the effect of packet dispersion on the performance. Before arriving at the BS, the networking delay
is over 30 ms with 15 network hops, which takes up at least two thirds of the total E2E latency
budget if the budget is 50 ms. Similar to Figure 4.13 and the case with 25 ms E2E latency budget,
bitrates higher than 90 Mbps are not possible to support with only 50 ms E2E latency budget
because of the more significant packet dispersion for packet streams with higher bit rate.

Overall, the E2E-EDD scheduler shows the best results in every scenario among the four schedulers.
The E2E-Frametype-EDD scheduler has the worst performance for higher numbers of UEs but better
performance than the RAN latency-based schedulers when fewer UEs are present. As we saw in
Section 4.2.1, more UEs lead to a higher increase in P-frame PDR due to the E2E-Frametype-EDD
scheduler overly prioritising I-frame packets. Similar can also be said about the RAN-Frametype-
EDD scheduler in Figure 4.13, where it cannot support seven UEs with 60 Mbps application bit
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rate and 50 ms E2E latency budget, while the RAN-EDD and E2E-EDD schedulers both can.

Figure 4.14: Feasible combinations of application bitrate, number of UEs and E2E latency budget
for fifteen network hops for RAN-EDD schedulers (top) and E2E-EDD schedulers (bottom).

We can generally increase the set of feasible scenarios by using cross-layer schedulers. Both the
RAN-Frametype-EDD and E2E-EDD show a better performance than the non-cross-layer RAN-
EDD scheduler in almost all cases. The E2E-Frametype-EDD scheduler is also better if there are
fewer UEs present. It is important to mention that the 5% PDR threshold is chosen from a network
QoS perspective. Potential scenarios where frametype cross-layer schedulers exhibit PDRs slightly
higher than 5% due to the overall net increase caused by higher PDRs for P-frames are not present.
How low PDRs for I-frames with overall PDR higher than 5% affect the video quality experienced
by users in practice, can again not be expressed in these figures. For this reason, we will assess the
simulation results with video quality metrics in the next section to better quantify the effects of
cross-layer schedulers.
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4.4 Analysing Quality of Experience

Since the PDR as a network QoS metric can only represent the performance from a network efficiency
standpoint, we need another way to illustrate the perceived user experience. We will use the
PSNR [21] and SSIM [22] as video quality metrics. Both PSNR and SSIM are full-reference metrics,
meaning the output video with any quality impairment due to packet losses is directly compared
with the original reference video. We discuss the two metrics in more detail below.

4.4.1 Interpreting PSNR and SSIM Values

The PSNR is given in dB, with a higher value indicating a closer resemblance between the original
and reconstructed video. Each pixel in a colour image is represented as a combination of three
different colours in a certain color space, e.g. with red, green, and blue in the RGB colour model. The
PSNR is calculated based on the average Mean Squared Error (MSE), representing the cumulative
squared error in all three colour spaces between the received and original image [21]. The colour
value of each pixel in an image will change when the image quality degrades due to packet loss. A
maximum PSNR (infinity) is only reached if the MSE is zero, meaning the compared images are
identical. The overall PSNR value for a video is determined as the average PSNR over all frames.
In [35], anything above 30 dB is perceived as very good video quality, with other studies giving
lower thresholds until 25 dB to be still acceptable for wireless transmissions [21].

Unlike the PSNR, which calculates absolute errors in an image, the SSIM considers changes in
structural information to estimate the image degradation [22] with a value ranging between zero
and one, with the latter only achieved if the compared images are identical. The thought behind
structural information is that spatially close pixels contain information about the structure of objects
in an image due to a strong correlation. An SSIM value of 0.95 is deemed a threshold for good
quality with just noticeable differences [22]. The SSIM and PSNR can be unreliable if used to
compare videos with different contents or video codecs [21, 44]. We avoid this as we use the same
original video as a reference throughout this study.

4.4.2 Analysing PSNR and SSIM Results

Figure 4.15 shows all schedulers’ PSNR and SSIM values with the default configuration. When
comparing the video quality, higher values are desired, as opposed to lower values when comparing
the PDR. Contrary to the PDR results in Figure 4.3, the M-LWDF schedulers perform as good
or better than the EDD schedulers. This observation alludes to the fact that EDD schedulers
distribute the resources less fairly than M-LWDF schedulers which inherently provide some degree
of throughput fairness among users. Better video quality due to enhanced fairness suggests, that the
improvements in video quality see diminishing returns for lower PDR, and on the contrary slightly
higher PDRs with less variance among users leads to on average better video qualities. This also
hints towards linear increases in PDR leading to exponential decreases in PSNR/SSIM.

In Figure 4.16, we consider the same scenario as in Figure 4.15, but depict the PSNR and SSIM per
user instead of the average. Here it clearly shows the difference and higher variance in PSNR/SSIM
between users for the E2E-EDD schedulers compared to the E2E-M-LWDF scheduler. Due to our
implementation, UE 1 receives more resources than the other UEs in case the frame generation
times are almost identical and the E2E-EDD scheduler is used as it only considers the E2E deadline
of packets that is dictated by the frame generation times. In practice, this is of course an unwanted
scenario which could realistically still happen if the frame generation time for different UEs at the
source is almost identical, leading to the over-prioritisation of one UE with the E2E-EDD scheduler.
This again showcases the drawbacks of the EDD scheduler’s lack of channel-awareness.
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Figure 4.15: PSNR and SSIM for all schedulers with parameters set to default (cf. Figure 4.3).

Next, we observe that most Frametype schedulers perform worse than non-Frametype schedulers,
and prioritising I-frame packets over P-frame packets does not convert to better net results for the
video quality by default. Similarly to the results in Section 4.2.1, the E2E-Frametype-EDD scheduler
shows the worst results out of all schedulers due to its particular way of always prioritising the I-
frame of one user, resulting in low resource efficiency. The E2E-Frametype-M-LWDF scheduler
performs best although it did not show the lowest PDR in any scenario previously. From this we
can conclude that for the best user experience, both types of cross-layer information in combination
with a PF component should be used to increase the transmission of important I-frame packets
while maintaining good resource efficiency. It is important to note that for all schedulers in the
default scenario, the PDR is in a low range below or at worst only slightly above the 5% threshold,
which is also reflected in the PSNR/SSIM, with all schedulers achieving high results for PSNR (>32
dB) and SSIM (>0.97).

To better illustrate the gain of using frame type as cross-layer information in the scheduling and
the degree of correlation between the perceived (PSNR/SSIM) and the network-level QoS (PDR)
metrics, we focus on Figure 4.17. Here, we have plotted the PDR and corresponding PSNR/SSIM of
every video file resulting from all simulations in the sensitivity analysis. We represent all UEs from
every seed as individual data points for one set of parameters and scheduler and separate them
by colour into Frametype (blue) and Non-Frametype (red) schedulers and EDD and M-LWDF
schedulers.

As expected, we see the trend that there is a negative correlation between PDR and PSNR, and also
PDR and SSIM. Further, the figures show that for the lower regime of PDRs, especially up to 5%,
Frametype and Non-Frametype schedulers do not produce very different results in terms of video
quality. However, the gain of using Frametype schedulers is noticeable as the PDR increases. We
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Figure 4.16: PSNR and SSIM for default configuration per UE.

observe in many cases that by using Frametype schedulers, we are still able to achieve high enough
PSNR (>25 dB) and SSIM (>0.95) even with PDR as high as 40%. This verdict emphasises the
importance of not only looking at network-level QoS metrics, but also at perceived-level metrics such
as the PSNR or the SSIM. Thus, we can conclude that using Frametype schedulers will not show
any noticeable changes in already good network conditions with low PDR but is more beneficial in
scenarios with critical network conditions or too high system load. In these situations, which may
occasionally occur even in well-designed networks due to natural variabilities in e.g. the cell load or
channel conditions, the impairment of the video quality can be limited successfully by prioritising
the radio resources for transmitting I-frame packets.

Overall, from an end user experience perspective, we conclude that the E2E-Frametype-M-LWDF
scheduler, which uses both types of cross-layer information and is channel-aware, is the best choice
for almost all scenarios.

The full results of the PSNR and SSIM for the scenarios covered in the sensitivity analysis in Section
4.2, corresponding to the PDR results covered in Figures 4.4 to 4.12, can be found in Appendix D.
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Figure 4.17: PSNR and SSIM for all individual simulations separated for EDD and M-LWDF
schedulers as well as Frametype and Non-Frametype schedulers.
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Chapter 5

Conclusion

5.1 Conclusion
This section concludes the thesis by summarising the findings and presenting directions for new
research in the future.

In this thesis, we modelled and investigated a cross-layer solution for optimising social XR ap-
plications over 5G mobile networks. Our focus was on improving the performance of the packet
scheduling mechanism in the 5G RAN. In particular, by utilising application-level information in
the form of the E2E frame latency budgets and video frame type in the packet scheduling process,
our goal was to improve network efficiency and, more importantly, the QoE perceived by end users.

In Chapter 2, we reviewed solutions for video and VR streaming applications that exploit cross-
layer information in packet scheduling and identified a lack of studies aimed towards real-time
user-interactive VR applications such as social XR. We presented the state of the art research in
studying the effects of utilising E2E latency budgets instead of RAN latency budgets for packet
schedulers. Further, we showed solutions for video and VR streaming applications that exploit
video frame type information to prioritise I-frame packets, which are more important for preserving
good QoE. We saw significant improvements in video quality and perceived end user experience in
video and VR streaming applications by capitalising on application-level cross-layer information in
packet schedulers. We aim to extend the state of the art in cross-layer optimisation for VR delivery
by proposing and assessing cross-layer packet schedulers using a realistic model for real-time social
XR applications.

Chapter 3 starts with a high-level description of all components of our model for the downlink
streams of social XR applications. Then we discussed in detail the modelling of the system starting
with the physical setting, the user behaviour and propagation environment as well as the specifica-
tions and functionalities of the RAN. For the latter, we exploited an existing simulation framework,
which we adapted in order to focus on our objective of optimising the packet scheduling in the
RAN. We extended the framework with our proposed cross-layer schedulers and non-cross-layer
benchmark schedulers. Then, we used a recorded video in an indoor office setting to create traffic
streams with realistic characteristics, including the effects of packet dispersion imposed by video
encoders and multi-hop transmission over the internet. We developed a tool for creating that packet
dispersion by simulating a series of routers that introduce random queuing delays for the packets
travelling through.

In Chapter 4, we assessed through an extensive sensitivity analysis the impact of our system param-
eters and cross-layer scheduling approach in the context of social XR applications. We compared
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the performance of the benchmark EDD and M-LWDF schedulers and the cross-layer schedulers.
The results showed significant performance gains from using the E2E latency budget in the schedul-
ing decisions since RAN latency-based schedulers only perform well if the RAN latency budget is
well-tuned to the specifics of the scenario at hand, which in practice is virtually impossible to do.
Using frametype schedulers, which prioritise packets belonging to an I-frame, decreased the I-frame
PDR (as intended) at the cost of increasing the overall PDR, due to many more dropped P-frame
packets, which resulted in an unfortunate net PDR increase as a GoP comprises more P-frames than
I-frames. We observed one further drawback of using the E2E-Frametype-EDD scheduler. Since the
lack of channel-awareness leads to an over prioritisation of I-frame packets and hence in a more sig-
nificant increase in dropped P-frame packets, it performs worse than the E2E-Frametype-M-LWDF
scheduler.

Next, we showed the impact of different scenario parameters on the performance. We noticed
significant increases in PDR when raising the effective load to the BS. The relative performance
of the different schedulers was not affected but rather key trends we observed before were more
prominent, like the frametype-schedulers showing even higher overall PDRs but keeping very low I-
frame PDRs in high cell load scenarios. The packet dispersion imposed by the encoder and internet
influenced the PDR only in extreme edge cases, for example if total packet arrivals on network hops
was nearing 100% of its traffic handling bit rate. In that case the individual traffic streams were
Perfectly synchronised traffic streams, where the I-frames of individual UEs arrive at the same time,
not only leads to a worse performance due to higher aggregate packet arrivals whenever there is an
I-frame, but also means that using frametype schedulers has no effect on the PDR.

Afterwards, we studied the range of feasible combinations of the number of UEs and the application
bit rate for different E2E latency budgets and network hops for all variations of the EDD scheduler.
We gained insights into the scenarios the (non-)cross-layer EDD schedulers can support for different
configurations. In addition, we saw an increase in supportable scenarios by using cross-layer infor-
mation compared to having a well-tuned non-cross-layer scheduler. So can the E2E-EDD scheduler
in the scenario with ten network hops and an E2E latency budget of 50 ms, support three UEs
with an application bitrate of 150 Mbps, while the RAN-EDD scheduler is only able to support an
application bitrate of 130 Mbps. With 25 ms E2E latency budget, the RAN-EDD scheduler can
support two UEs with an application bit rate of 90 Mbps, which is increased by an additional UE, if
the RAN-Frametype-EDD scheduler is used instead. Further, having stricter E2E latency budgets
implies that high application bit rates cannot be supported due to networking delay caused by more
significant levels of packet dispersion taking up too much of the E2E latency budget.

Lastly, we evaluated the scenarios assessed in the sensitivity analysis from the QoE perspective using
the PSNR and SSIM as objective video quality metrics. The results showed a negative correlation
between the PDR and PSNR, and the PDR and SSIM, since more dropped packets (higher PDR)
lead to more decoding errors in the received video (lower PSNR/SSIM). We observed a slight
increase in PSNR and SSIM from using E2E latency-based schedulers compared to RAN latency-
based schedulers. This is similar to the previous results, where E2E latency-based schedulers also
produced lower PDRs. Notably, the benefit of using the frame type as cross-layer information for
the video quality was more significant. While under low PDRs, e.g. due to low cell load, there is
not much gain to be had from cross-layer schedulers, whereas in more critical scenarios and PDR
increasing to undesired levels, e.g. due to high cell load, cross-layer schedulers using the frame type
can still deliver satisfactory results. Further, channel-aware schedulers produced better results, so we
conclude that the E2E-Frametype-M-LWDF scheduler is the best scheduler from a QoE perspective.
Ultimately, the observations about the QoE are in contrast to the results earlier for the PDR, where
using frametype schedulers make things worse from a network perspective. Notably, we saw that
using frametype schedulers an acceptable PSNR of 25 dB or SSIM of 0.95 could still be reached
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with PDRs up to 50%, while using non-frametype schedulers the PSNR and SSIM would drop down
to 15 dB and 0.75 respectively. These results imply huge benefits from implementing cross-layer
schedulers in practice.

5.2 Future Work
We recommend the following points for future research.

Examine the performance of cross-layer schedulers while including elements of the 5G RAN disre-
garded in this study, such as massive MIMO, mmWave frequency bands, and beamforming. We
showed the benefits for the end user experience by using cross-layer schedulers. The next step
should be to conduct studies similar to Section 4.3 while considering all aspects of 5G that would
be used in practical deployment. A very stringent requirement of social XR is the low latency
requirement for enabling user interactivity. In 5G, flexible slots and mini-slots could facilitate and
allow lower transmission latencies especially by using cross-layer schedulers for high priority I-frame
packets nearing their latency deadlines. Thus, future research should aim to consider all aspects of
5G to produce guidelines for supported social XR scenarios under different application and network
configurations.

Investigate the benefits of using additional information for scheduling decisions. In Chapter 4, we
observed disadvantages for both the EDD and M-LWDF schedulers. The former lacks channel-
awareness and thus produces high variance in terms of QoE between end users. Whereas with the
PF component, the M-LWDF scheduler does not distribute enough resources for UEs with more
packets (I-frames) in their buffer. These results suggest developing and assessing a new packet
scheduler that utilises cross-layer information in combination with, e.g. knowledge about the buffer
status of each UE. We concluded that using the E2E-Frametype-M-LWDF scheduler resulted in
most scenarios in the best perceived QoE, even though it did not have the lowest overall PDR or
I-frame PDR. Since I-frames comprise more packets than P-frames, by also considering the total
amount of packets left in the UEs buffer in the scheduling decision, the I-frame PDR could be
further decreased, while keeping the increase in P-frame PDR still within reasonable range due to
the PF component. This change could mean a further improvement in resource efficiency and video
quality.

Assess the perceived QoE for different application configurations with subjective metrics and train
machine learning models for adaptive streaming. We previously showed in Chapter 4 the impact
of different configurations on the PDR and video quality. We also mentioned that QoE metrics
can only accurately represent the perceived video quality when using the same reference video and
these results are only assessing the performance from objective perspectives. It is important to also
consider the subjective perception of end users’ for different application configurations. Therefore,
future studies should look into, for example, how end users perceive higher E2E latencies with higher
application bit rates versus lower E2E latencies but with lower application bit rates in social XR
applications. Such insights can motivate the development of an adaptation mechanism which e.g.
adapts the application requirements based on the physical distance between the two parties of the
social XR session and their mobile network conditions. In this context we also recommend to assess
and identify new thresholds for video quality metrics like the PSNR and SSIM for different types
of video content. By collecting data for various social XR scenarios beyond the indoor conference
setting considered in this thesis, one could train machine learning models to predict the perceived
end user experience from factors, such as the video content, bit rate, and E2E latency requirements.
This can help the system to quickly adapt to, e.g. bad radio channel conditions, and change
parameters to maintain adequate experiences for end users.
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Appendix A

BLER Curves

Figure A.1 shows the BLER curves for the different MCS, with the BLER probability of 10% marked
for each curve. The curves are fitted to simulations based on the equations for each MCS curve that
can be found in [34].

Figure A.1: BLER curves simulated with Vienna Link-Level Simulator [45].
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Appendix B

Choosing Number of Hops with
Traceroute

In Section 3.3.2, we chose different numbers of network hops for the three considered scenarios.
Figures B.1 to B.4 show the traceroutes from the local PC (in Delft) to various destinations for
which we looked up random IP addresses. The goal was to have a rough understanding of the
different numbers of internet hops for destinations with different geographic distances.

In each traceroute, we can see that the first few hops are always through the same IP addresses.
These are the IP addresses of local routers and of the internet service provider. Omitting these, we
see that the number for the next few hops up to the destinations does not always correlate with the
actual distance. So is New York (Figure B.3) reached in as many hops as Berlin (Figure B.2), which
is only a few hops more than to Amsterdam (Figure B.1). This is most likely due to the fact, that
New York is very close to the Atlantic ocean, with the whole travel across the ocean cables only
consisting of one additional hop. In Figure B.4, we see that for a long-distance connection to Los
Angeles, that most likely goes through the network in the United States, there will be many more
hops. Hence, for simplicity, we chose the numbers of network hops within realistic ranges, without
making too many complicated assumptions. Therefore, the three modelled scenarios in Section 3.3.2
are five, ten, and fifteen network hops, with the important addition that the propagation delay is
also considered.

Figure B.1: Traceroute between local PC and IP address in Amsterdam.
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Figure B.2: Traceroute between local PC and IP address in Berlin.

Figure B.3: Traceroute between local PC and IP address in New York.
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Figure B.4: Traceroute between local PC and IP address in Los Angeles.
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Appendix C

Tuning Bandwidth and RAN Budget

C.1 Tuning the Default Carrier Bandwidth

Figure C.1 shows the PDR for the non-cross-layer RAN-EDD (left) and RAN-M-LWDF (right)
schedulers with 125 MHz carrier bandwidth under different network hop simulator configurations.
We observe that indeed 125 MHz are not enough to support our default scenario with a sub 5%
PDR. For simplicity, we chose 25 MHz as the increment for tuning the carrier bandwidth and hence
selected 150 MHz as the default carrier bandwidth.

Figure C.1: PDR for non-cross-layer schedulers with 125 MHz carrier bandwidth under different
network hop simulator configurations.

C.2 Tuning the Default RAN Latency Budget for Different E2E
Requirements

To tune the RAN latency budgets for the different E2E latency requirements as considered in Section
4.3, we use the results shown in Figures C.2 and C.3. Figure C.2 shows that for most IP network
scenarios, 10 ms RAN latency budget minimises the PDR. Hence, the RAN latency-based schedulers
are configured with 10 ms RAN budget for the E2E latency requirement of 25 ms. In Figure C.3, we
see that for many cases, the optimal RAN latency budget would be 60 or 70 ms for an E2E latency
budget of 100 ms. However, since in this scenario fifteen network hops can be actually supported
as well, the RAN latency budget is chosen as 50 ms, as this configuration allows a sub 5% PDR
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for scenarios with fifteen network hops, while minimising the PDR for the other scenarios with five
and ten hops.

Figure C.2: PDR for non-cross-layer schedulers with 25 ms E2E latency budget under different
network hop simulator configurations.

Figure C.3: PDR for non-cross-layer schedulers with 100 ms E2E latency budget under different
network hop simulator configurations.

60



Appendix D

Video Quality Results (PSNR/SSIM)
of Sensitivity Analysis

Figures D.1 to D.9 below illustrate the results of the video quality corresponding to the scenarios
covered in the sensitivity analysis in Figures 4.4 to 4.12 from Section 4.2.

Figure D.1: PSNR and SSIM for varying application bit rates (cf. Figure 4.4).
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Figure D.2: PSNR and SSIM for varying channel bandwidths (cf. Figure 4.5).

Figure D.3: PSNR and SSIM for varying number of UEs (cf. Figure 4.6).
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Figure D.4: PSNR and SSIM for varying RAN latency budgets (cf. Figure 4.7).

Figure D.5: PSNR and SSIM for varying E2E latency budgets (cf. Figure 4.8).

63



Figure D.6: PSNR and SSIM for varying encoder burstiness (cf. Figure 4.9).

Figure D.7: PSNR and SSIM for varying numbers of network hops (cf. Figure 4.10).
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Figure D.8: PSNR and SSIM for varying network background loads (cf. Figure 4.11).

Figure D.9: PSNR and SSIM for varying traffic stream synchronicity (cf. Figure 4.12).
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