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Preface
The next time I will be on an aircraft, without any doubt its cockpit crew will come to my mind. Those two
or three or four persons behind the closed door in front of the aircraft, working another day in their tiny
office. After ten months at the Cockpit Crew Services department of KLM Royal Dutch Airlines, I might
be wondering if any of them really specifically wanted to fly this flight, for how long they have already
been flying this aircraft type at this rank, or when they have last practised the crosswind approach of
our flight in one of the flight simulators back home. But most likely, I will be asking myself if any of them
was on reserve duty just hours before. He or she would have been waiting in the airline crew lounge at
the airport, anxious about whether or not a reserve crew member would be required today. Then, his
or her phone would have rung and the operations control centre would have been on the line, sharing
details about the surprise flight that was ahead. From there on perhaps as little as one hour had passed
until the departure of the flight that was just assigned. The pilot may have been happy with the destina-
tion or absolutely devastated, fact is that thanks to this reserve crewmy flight could depart without delay.

This thesis is the final writing before my studies in Aerospace Engineering at Delft University of
Technology are completed. It is concerned with my graduation research project about airline reserve
crew pairing optimisation that has been performed in collaboration with KLM Royal Dutch Airlines, as
part of a larger research project about crew scheduling. It has been a great opportunity to do my grad-
uation research in-house at a company so relevant to my studies.

I would like to take the opportunity to acknowledge a few people who have supported me during the
course of the research project.

Firstly, I want to thank my daily supervisor, Lennart Scherp, for the guidance provided during the
last ten months. Apart from progress meetings and discussions about the topic, your project setup at
KLM provided ideal working conditions for a thesis project. It has been fun to see the team expanding
along the way, starting with two desks, later to four and now to six. It was a pleasure to contribute to
your research on crew scheduling by investigating the airline reserve crew pairing problem, and I am
curious to see where the project stands in a couple of years time.

Secondly, thanks to Bruno Santos, for the additional supervision during the project. The feedback
during the monthly progress meetings has provided valuable. It has helped me to maintain a critical
attitude towards the performed work and to keep the scientific scope of the project in mind.

Thirdly, my gratitude goes to all welcoming employees at the Cockpit Crew Services department of
KLM. In particular, I would like to thank Nico Scheeres, Thea Groot, Shirah van den Hoek, Leon Ceelen
and Taco Eyck for their direct involvement in the project, being able to answer questions at any time
and provide valuable feedback from a practical perspective.

Last but not least, thanks to my family and friends who have supported me along the way. They
have provided ample opportunity for pleasure and recreation during the course of this project, which
has been really helpful in the long term.

R. Janssen
Schiphol, June 2018
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Executive summary
In an operational airline environment, disturbances to the planned flight schedule cannot be avoided.
Disturbances can have propagating disruptive effects in the schedule, because airline resources are
all interconnected in airline networks (Belobaba et al., 2015). Consequently, airline schedules cannot
be executed exactly as planned, resulting in inefficient use of airline resources (Barnhart et al., 2003;
Barnhart and Cohn, 2004). Therefore, it is important to airlines that schedule disruptions are resolved.

Disruption management focuses on resolving schedule disruptions. Within disruption management,
robust airline scheduling aims to introduce stability and flexibility in schedules such that disruptions can
be absorbed. One possible robustness measure is the use of reserve crew. When a crew absence
is reported after the crew schedule has been published, open crew positions arise in the schedule,
causing the airline schedule to become inoperable. Reserve crew can be used to cover the open
positions, so that the airline schedule becomes operable again. In European airlines, reserve crew
generally consist of regular flight crew that have been assigned reserve pairings in their crew schedules
(Nissen and Haase, 2006). That is, crew are periodically assigned reserve pairings instead of regular
flight pairings. The airline reserve crew pairing problem consists of finding the set of reserve pairings,
called a reserve pattern, that minimises the effect of expected disruptions to an airline flight schedule.
The optimal number, length, and start times of the pairings should be determined in solving the airline
reserve crew pairing problem.

Efficient reserve crew pairing is a difficult problem due to the inherent unpredictability of reserve
demand. Given that crew costs are, next to fuel, the biggest expense for an airline (Belobaba et al.,
2015), the importance of efficient reserve crew pairing is evident. Therefore, methods are required that
predict the demand for reserve crew as accurately as possible. Given a predicted reserve demand,
the reserve crew pairing problem involves finding a set of reserve crew pairings that covers the un-
predictable reserve demand as well as possible. In other words, the mismatch between the expected
reserve demand and the available reserve capacity should be minimised. The benefits lie in an in-
creased reserve utilisation rate and a decreased flight cancellation rate due to crew absence (Bayliss,
2016), ultimately decreasing airline expenses.

Despite the importance of efficient reserve crew pairing, the problem has received little attention
in scientific literature. The current state of the art has focused on solving the airline reserve crew
pairing problem for cabin crew. For this, the flexibility in how reserve pairings can be defined is limited:
reserve crew pairings are fully defined through pairing start times. It is assumed that the length of the
reserve pairings is constant and known in advance. Moreover, reserve pairings are assumed to be
fully dedicated to reserve duties. These assumptions can be challenged: reserve pairings may vary in
length and they can be combinations of reserve duties and regular flight duties. These characteristics
are especially relevant to long-range cockpit crew, because cockpit crew are the most expensive type of
airline crew and long-range crew typically operate longer flight pairings than short-haul crew. To cover
these long pairings, long reserve pairings are required as well. If these reserve pairings remain unused,
the combination of long reserve pairings and expensive crew leads to a high waste of resources. If a
(shorter) regular flight is included in the reserve pairing, then called a mixed reserve pairing, that flight
can be executed if the reserve remains unused. This increased flexibility in reserve pairing definition
can lead to higher reserve utilisation rates and lower waste of (unused) reserve resources.

However, the design of reserve pairings for long-range airline cockpit crew facing these charac-
teristics has never been considered before. Therefore, this thesis addresses the airline reserve crew
pairing problem for long-range cockpit crew. The goal is to make recommendations on how reserve
patterns for long-range cockpit crew should be constructed in order to minimise the gap between ex-
pected reserve demand and scheduled reserve capacity.

To solve the airline reserve crew pairing problem, a research design framework is developed, with
a reserve pattern evaluation model and four reserve pattern optimisation algorithms at its core. The
evaluation model aims to determine specific performance measures of existing reserve patterns, which
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vi 0. Executive summary

indicate the quality of reserve patterns. The evaluation model is used in combination with the optimisa-
tion algorithms, which iteratively generate and evaluate reserve patterns. The optimal reserve patterns
generated by the optimisation algorithms are then compared to each other and to manually constructed
reserve patterns. Based on these comparisons, recommendations can be made about how the gap
between expected reserve demand and scheduled reserve capacity can be minimised.

The objective function of the optimisation process is defined as the sum of the number of reserve
days in the pattern (i.e. the reserve budget) and the number of premium days, which are required to
cover disruptions that cannot be covered by reserve pairings. A corresponding service level constraint
is introduced that enforces a minimum reserve budget.

The evaluation model uses repeated airline flight schedule simulations to evaluate reserve patterns.
It includes the functionality to evaluate reserve patterns that consist of reserve pairings with varying
lengths and of mixed reserve pairings, which cause additional flight disruptions in the future. These are
novel elements of the evaluation model. The model can simulate approximately a thousand weeks of
airline operations in one second, for realistically sized problems.

The optimisation algorithms are a pure random search technique, a Learning Automata Search
Technique (LAST), and two variants of a Greedy Randomised Adaptive Search Procedure, called
GRASP and GRASP-LF. The random search algorithm generates reserve patterns by randomly se-
lecting a subset of reserve pairings from a list of feasible reserve pairings, which are evaluated using
the reserve pattern. Over a large number of iterations, the best reserve pattern is selected. The LAST
algorithm is a novel adaption of an existing adaptive random search technique from Thathachar and
Sastry (1987). It has been adapted so that airline reserve crew pairing problem specific characteristics
could be utilised to improve the algorithmic performance. The GRASP and GRASP-LF algorithms are
also adaptions from an existing construction based algorithm from Feo and Resende (1995). The novel
GRASP and GRASP-LF algorithms for the airline reserve crew pairing problem utilise a concept called
reserve pairing potential, which is a measure of the amount of premium days that can be prevented by
a reserve pairing, to determine which reserve pairing should be added in each construction iteration.
Compared to the GRASP algorithm, the GRASP-LF algorithm first covers the longest flight of each day
in the airline schedule.

Three comparison experiments are done between the optimisation algorithms: (1) comparing per-
formance by objective function value, (2) comparing performance by number of premium days while
constraining the reserve budget, and (3) comparing static reserve pairing, where one reserve pattern is
made for an entire season, against dynamic reserve pairing using the GRASP algorithm, where reserve
patterns are made per month, including seasonality effects in crew absence rates.

In the first experiment, the GRASP algorithm achieves the best results. Compared to the manually
constructed reserve pattern a 12.4% decrease in required working days is observed, which corresponds
to a saving of 5.9 working days per week. Given the size of the total workforce of 104 FTEs, a total
decrease of 1.1% of the total workforce costs can be projected. The primary factor in the objective
function value improvement was shown to be a decrease in reserve budget. Next to the GRASP algo-
rithm, the GRASP-LF and LAST algorithms also generate solutions that are better than the manually
constructed reserve pattern.

In the second experiment, the GRASP-LF algorithm performs best, with a reduction of one premium
day per week. The reason that the GRASP-LF algorithm outperforms the GRASP algorithm in this
experiment is that the GRASP-LF algorithm covers more than the GRASP algorithm.

The final experiment shows that dynamic reserve pairing can be used to further reduce expected
costs of reserve patterns. Compared to the static manually created reserve patterns a 25.3% im-
provement has been realised. The dynamic GRASP method was 14.3% better than the static GRASP
method. However, the size of the data analysis that has been done to predict monthly absence rates,
should be increased to obtain more accurate performance measures of dynamic reserve crew pairing.

Following the experiments, it is concluded that the GRASP and GRASP-LF methods are both viable
methods to minimise the gap between scheduled reserve capacity and expected reserve demand. The
GRASP method performs better when the reserve budget is unconstrained, whereas the GRASP-LF
method should be used when the reserve budget is fixed. Additionally, it is found that dynamic reserve
crew pairing can be used to further increase the efficiency of the reserve crew pairing process compared
to current practice.
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1
Introduction

In an operational airline environment, disruptions to the planned flight schedule are unavoidable. Pos-
sible causes are weather conditions, technical failures, crew absenteeism, and many others. Distur-
bances can have propagating disruptive effects in the airline schedule, because aircraft, crew, and
passengers all are interconnected in airline networks (Belobaba et al., 2015). For example, a sin-
gle aircraft delay can cause delays to other aircraft, cause misconnections to passengers, and cause
reserve crew to be called in to replace delayed crew. Consequently, airline schedules cannot be ex-
ecuted exactly as planned, resulting in significant airline losses (Barnhart and Cohn, 2004; Barnhart
et al., 2003; Kohl et al., 2007). Therefore, it is imperative that schedule disruptions are resolved.

Within airline scheduling, disruption management focuses on resolving disruptions. Proactive dis-
ruption management is concerned with the creation of robust schedules, which perform well in practice,
given that disruptions are unavoidable. Robustness can be integrated in an airline schedule by various
means, such as introduction of slack times in aircraft and crew schedules, increasing the number of
resource swap opportunities, and the planning and scheduling of reserve crew and aircraft (Kohl et al.,
2007; Lettovskỳ et al., 2000).

When a crew absence is reported after the crew schedule has been published, open crew positions
arise in the schedule, causing the airline schedule to become inoperable. Reserve crew can be used
to cover the open positions, so that the airline schedule becomes operable again. In European airlines,
reserve crew generally consist of regular flight crew that have been assigned reserve pairings in their
crew schedules (Nissen and Haase, 2006). That is, crew are periodically assigned reserve pairings
instead of regular flight pairings. The airline reserve crew pairing problem consists of finding the set of
reserve pairings, called a reserve pattern, that minimises the effect of expected disruptions to an airline
flight schedule. Finding the optimal reserve pattern involves finding the number, length, and start times
of the pairings.

Since cockpit crew costs are, next to fuel, the biggest expense for an airline (Belobaba et al., 2015),
efficient reserve crew pairing is important to airlines. The benefits of reserve pairing optimisation are in-
creased reserve utilisation rates and decreased flight cancellation rates due to crew absence (Bayliss,
2016). Efficient reserve crew pairing is a difficult process due to the inherent unpredictability of re-
serve demand, resulting from crew absenteeism and propagating effects due to the interdependence
of airline schedule resources. The process is particularly difficult for intercontinental airline crew, who
operate schedules in which flight pairings are generally long and of irregular length. Reserve patterns
should be designed that cover these long irregular pairings to a maximum extent, given that the number
of reserve resources is limited. Despite the importance of designing efficient reserve crew patterns for
long-range cockpit crew, the problem has never been considered in academic literature before.

This thesis is involved with the airline reserve crew pairing problem for intercontinental cockpit crew.
It aims to answer the following research question:

How should airline long-haul cockpit reserve crew patterns be constructed in order to minimise the
gap between scheduled reserve capacity and expected reserve demand?

1
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The research objective is to make recommendations on minimising the gap between scheduled
reserve capacity and expected reserve demand of airline long-haul cockpit crew, by identification and
evaluation of possible reserve crew pairing methods that utilise airline schedule data.

To solve the airline reserve crew pairing problem for long range cockpit crew, a novel reserve pat-
tern evaluation model and a range of novel reserve pattern optimisation algorithms are developed.
The evaluation model can be used to measure the quality of existing reserve patterns, giving the user
detailed information about the strengths and weaknesses of existing reserve patterns. For the optimi-
sation algorithms, four algorithms are implemented that iteratively generate reserve patterns and use
the evaluation model to rate the quality of the generated reserve patterns, with the aim of finding re-
serve patterns with low expected costs. The optimisation algorithms are random search, an adaptive
random search procedure called Learning Automata Search Technique (LAST), and two variations of
a construction based algorithm, called Greedy Randomised Adaptive Search Procedure (GRASP) and
GRASP-LF. The latter three algorithms are novel adaptions from existing default algorithms, in which
specific characteristics of the airline reserve crew pairing problem are utilised to increase the algorithm
performance.

Using the evaluation model and the optimisation algorithms, a comparison is made between the
different algorithms in terms of their suitability towards creating high quality reserve patterns. Based on
this, recommendations are made on how the gap between scheduled reserve capacity and expected
reserve demand can be minimised.

This thesis is structured as follows. In Chapter 2 an investigation into existing literature related to
the airline reserve crew pairing problem is presented. The literature study consists of two parts: (1)
defining the research gap, and (2) identifying relevant methodologies towards solving the airline reserve
crew pairing problem, also from other personnel scheduling domains. The high level research design
of this project is presented in Chapter 3, after which the evaluation model and optimisation algorithms
are detailed in Chapters 4 and 5, respectively. The setup and results of the experiments comparing
the different optimisation algorithms are presented in Chapter 6. Afterwards, the findings of the model
sensitivity analysis that has been done are shown in Chapter 7. Finally, the conclusions following from
this project, along with a number of recommendations, are presented in Chapter 8.



2
Literature review

This chapter presents an exhaustive review of literature geared towards airline reserve crew. In par-
ticular, the airline reserve crew pairing problem is considered. In Section 2.1, a knowledge gap in the
available literature concerning airline reserve crew pairing is identified. This section introduces the
reader to the airline scheduling problem and increasingly narrows the scope until reserve crew pair-
ing is considered. Afterwards, the state of the art is compared with the industry practice and based
on this a knowledge gap is identified. With the gap known, feasible problem approaches are investi-
gated in Sections 2.2 to 2.4. Because the amount of literature dedicated towards airline reserve crew
is limited, personnel scheduling references from other domains are also consulted, focusing explicitly
on stochastic problems. Possible problem approaches are decomposed into three parts: Section 2.2
presents various scheduling objectives and approaches to evaluate personnel schedules, Section 2.3
considers demand determination methods, and Section 2.4 discusses solution methods to generate
personnel schedules. The three parts are integrated in Section 2.5, where a complete synthesis of the
literature review is given.

2.1. Research gap
This section starts out with an succinct definition of the overall airline scheduling problem in Subsection
2.1.1. Next, crew scheduling is discussedmore elaborately in Subsection 2.1.2, focusing specifically on
robust crew scheduling and crew recovery (i.e. disruption management). The scope is then narrowed
further in Subsection 2.1.3, zooming in on existing literature about airline reserve crew. After this, a
gap in the literature is identified in Subsection 2.1.4.

2.1.1. Airline scheduling
Airlines face multiple challenging optimisation problems across the entire spectrum of their activities.
Among these is airline scheduling, which involves designing aircraft and crew schedules to maximise
airline profitability (Barnhart et al., 2003). These problems are perceived too complex to solve integrally
due to factors such as network characteristics, crew regulations, maintenance requirements, dynamic
operating environments, and problem size (Barnhart et al., 2003). Therefore, the airline scheduling
problem is generally decomposed into several smaller problems that are solved sequentially (Barnhart
et al., 2003; Belobaba et al., 2015; Clausen et al., 2010; Weide et al., 2010). The subproblems can be
defined as follows:

1. Schedule design Definition of the airline flight schedule, including destinations, frequencies and
flight times.

2. Fleet assignment Allocation of aircraft types to each flight in the schedule.
3. Aircraft maintenance routing Allocation of individual aircraft (i.e. aircraft tail numbers) to each

flight in the schedule, while ensuring that aircraft maintenance requirements are satisfied.
4. Crew scheduling Allocation of crews to each flight in the schedule such that personnel costs are

minimised.

3
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The crew scheduling problem is typically subdivided into crew pairing and crew rostering (Kohl et al.,
2007). In the crew pairing phase, round trips (pairings) from and to airline home bases are constructed.
The pairings must cover all crew positions defined by the flights in the airline timetable. In the crew
rostering phase the pairings are assigned to personal crew schedules (Kohl et al., 2007). On top of
this, all other activities (e.g. simulator training, spare time) are allocated in the crew rostering phase.

2.1.2. Crew disruption management
Operational disturbances such as extreme weather, technical failures, or crew absenteeism cause dis-
ruptions to the planned airline schedule. Airline disruption management focuses on resolving schedule
disruptions as effectively as possible (Kohl et al., 2007). Crew absenteeism can originate from var-
ious causes, among which are crew illness and missed crew connections or crew expiration due to
delay (Belobaba et al., 2015). These resource shortages cause open crew positions in the airline flight
schedule, resulting in an inoperable flight schedule. To cover open crew positions, reserve crew can be
scheduled and utilised (Kohl et al., 2007). Thus, airline reserve crew and crew disruption management
are related research topics. This section presents previous research in airline disruption management
tailored towards crew scheduling, and identifies to what extent reserve crew have been included. First,
robust crew scheduling is considered, after which crew schedule recovery is treated.

Robust crew scheduling
Robustness can be seen as proactive disruption management (Clausen et al., 2010): airlines antici-
pate that disruptions will occur and consequently incorporate a degree of stability and flexibility in their
schedules. Stability of a schedule is defined as being able to continue operating as planned by ab-
sorbing minor schedule disruptions, whereas flexibility of a schedule is defined as the ability to recover
easily and quickly after a schedule disruption has occurred (Ionescu and Kliewer, 2011; Dück et al.,
2012; Soykan and Erol, 2014). Kohl et al. (2007) explain some techniques to incorporate robustness
in an airline schedule:

• Add slack time to minimum connection times. This introduces stability, since small disruptions
can be endured without making any changes to the schedule.

• Let aircraft and crew stay together as much as possible. This introduces flexibility, because
knock-on effects of disruptions are minimised.

• Synchronise crew connections and aircraft connections. This introduces flexibility, since crew
and aircraft can be swapped, allowing quick schedule recovery.

• Create single return flight pairings from and to the airline hub. This leads to a decreased
probability of disruptions occurring at outstations, increased flexibility in cancellation of entire
pairings, and efficient pooling of airline resources at the hub.

• Scheduling reserve crew and reserve aircraft, which can be used to increase schedule stability
by absorbing disrupted resources. Kohl et al. (2007) mention the high costs incurred with this
measure.

Ehrgott and Ryan (2002) aim to increase the scheduled ground time available for crew connections
(i.e. introduction of slack times). A multi-objective optimisation is performed, acknowledging that an
increase in robustness will lead to an increase in crew costs. They generate Pareto optimal solutions
with varying degrees of robustness and costs. Schaefer et al. (2005) also aim to introduce robustness
by increasing slack times of original schedules. They differentiate between the deterministic (theoreti-
cally optimal) and the stochastic (practically optimal) crew scheduling problem. Their model assumes
that no flights are cancelled and that resource swapping is not possible: there are no interaction effects
between aircraft and crews. Yen and Birge (2006) challenge this assumption. They solve the stochastic
scheduling problem while taking into account dependencies between aircraft and crew, with the aim to
minimise the propagated delay in the airline schedule. Dunbar et al. (2012) also aim to minimise the
propagated delay, but where Yen and Birge (2006) only solve the crew scheduling problem, Dunbar
et al. (2012) focuses on the integrated aircraft routing and crew scheduling problem. They claim that
better decisions can be made when the dependencies between both problems are considered. Finally,
Soykan and Erol (2014) object to minimise propagated delay within a crew schedule. Like Ehrgott
and Ryan (2002), they consider a trade-off between robustness and schedule costs. Even though the
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scheduling and planning of reserve crew are possible measures to include schedule robustness (Kohl
et al., 2007), none of the above references included reserve crew in their analyses.

Shebalov and Klabjan (2006) aim to increase schedule flexibility by increasing the number of possi-
ble crew swaps. Their objectives are to minimise crew costs and to maximise the number of crews that
can potentially be swapped. Their model does allow for reserve crew, but it assumes that a reserve
schedule is already known in advance. Gao et al. (2009) mention that crew scheduling should be in-
tegrated with aircraft routing to increase solution quality. Therefore, they consider crew connections
within a fleet assignment model. Their aim is to limit the number of fleet types and crew bases (the
crew home airport) that serve each airport, which increases the possibility of resource swaps. Dück
et al. (2012) also solve the integrated fleet and crew scheduling model, but aim to maximise the number
of possible crew swaps. They mention the use of reserve crew to increase schedule robustness, but
do not explicitly model it. Similar to integrated crew and aircraft scheduling, Weide et al. (2010) try
to increase schedule robustness by keeping aircraft and crew together to a maximum extent. Finally,
Ionescu and Kliewer (2011) solve the stochastic crew scheduling problem with the aim to increase swap
opportunities for crew. While the use of reserve crew is mentioned as a method to recover a disrupted
schedule, it is not explicitly modelled.

Summarising, the majority of previous research has focused on robust crew scheduling, not on
robust crew pairing. Common robustness measures are increasing slack times and the number of
swap opportunities in crew schedules. Since the focus is on crew scheduling, reserve pairing has
not been considered in the above references. Some mention the possibility of using reserve crew to
increase robustness, but do not explicitly include the robustness measure in their solutions. At best, a
set of already known reserve pairings is assigned to crews in the rostering phase.

Crew schedule recovery
Crew recovery can be seen as reactive disruption management: once a disruption has occurred, the
schedule should be adjusted such that the original schedule is restored while minimising costs (Kohl
et al., 2007). After a disruption has occurred, the schedule must be recovered, possibly by exploit-
ing one or more robustness techniques. The crew recovery problem is similar to the crew scheduling
problem. However, the objectives of both problems differ: in the crew scheduling problem one optimal
solution is desired and the solution time is not restrictive, whereas in the crew recovery problem (multi-
ple) acceptable solutions should be generated in a short time window (Clausen et al., 2010; Wei et al.,
1997). To decrease the solution time, the problem size is decreased by considering small time windows
(e.g. a couple of hours) and by limiting the number of crew considered for rescheduling (Clausen et al.,
2010).

Wei et al. (1997) were the first to consider irregular operations in crew scheduling. They use a
multi-commodity network flow problem to repair crew pairings. For each crew disruption, a candidate
crew list is generated that contains the crews that can be swapped with the disrupted crew. Reserve
crew are included in this candidate crew list. The reserve pairings (i.e. the number of reserves and
their starting times) are assumed known in advance. A multi-commodity network representation is also
used by Stojković et al. (1998), who aim to minimise crew costs and the number of deviations from the
original schedule. Reserve crew are part of the set of candidate crew members that are considered for
recovery, but the reserve pairings are required as model input. Yu et al. (2003) and Abdelghany et al.
(2004) use similar problem setups, where the reserves are used as input to the list of candidate crew
members under consideration. Nissen and Haase (2006) specifically focus on crew rescheduling at
the duty period level instead of the pairing level (a pairing can consist of multiple duty periods). This
leads to shorter rescheduling horizons, resulting in faster solution times. Nissen and Haase (2006) also
assume a known set of reserve pairings that can be used in recovery.

The crew recovery problem has been integrated with other sub-problems of the airline scheduling
problem. Stojković and Soumis (2001) and Stojković (2005) expand their original multi-commodity
network model to include flight rescheduling. Even though these models are able to take reserve crew
into account, they were solved without consideration of reserve crew. The combined crew and aircraft
recovery problem has been approached by Le and Wu (2013) and Zhang et al. (2015). The problems
were modelled as time-space networks with the aim of minimising recovery costs. Recovery measures
included were resource swapping, crew deadheading, and delaying of flights. Use of reserve crew
was also possible, but the reserve pairings were assumed to be known in advance by both studies.
However, Zhang et al. (2015) did not use any reserve pairings in their experiments, because reference
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data could not be found. Finally, the integrated aircraft, crew, and passenger recovery problem has
been the subject of research by Kohl et al. (2007), Abdelghany et al. (2008), Petersen et al. (2012),
Maher (2015a), and Maher (2015b). They all assume that reserve schedules are available in advance.
However, Abdelghany et al. (2008) mention that reserves are assumed to be available at any time the
schedule of an originally scheduled crew member becomes invalid and no crew swaps are available.
Petersen et al. (2012) do not explicitly model reserve crew, and assume that all crew that is on duty
can be used.

Similar to robust crew scheduling, most references on crew recovery focus on crew rescheduling,
not on the crew pairing problem. If reserve crew is considered in recovery models, it is incorporated
by adding a set of reserve crew members to a set of candidate crew members, which can be used
to replace or swap with disrupted crew. The set of reserve pairings is used as input for the recovery
models, where it is assumed that the reserve pairings are determined in advance.

2.1.3. Airline reserve crew
The amount of research specifically dedicated to airline reserve crew is limited. The first research to-
wards the topic has been conducted by Gaballa (1979), who optimises the balance between costs from
reserve cabin crews and the costs of overnight delays at Qantas Airways. This is done using analytical
methods, where the expected reserve demand originates from historical data. The expected amount of
overnight delays per period is computed using conditional probabilities. Various sets of reserve pairings
(differing in reserve numbers and start times) are compared to each other. Gaballa (1979) found that
the number of reserve crews in operation was too conservative. However, the research was limited to a
single case study for which a limited number of manually constructed reserve schedules was analysed.
Methods to automatically generate reserve schedules were not developed.

Dillon and Kontogiorgis (1999) performed a research for US Airways to optimise the bid-lines of
dedicated reserve crew. Through a set-covering approach all possible month long legal bid-lines were
enumerated. A planner manually had to determine the reserve demand for each day, fleet type and
crew rank. An integer optimisation model was used to determine the bid-lines to be used, where the
quality of each bid-line was measured in the objective function.

The amount and start times of cabin crew reserves at KLM Royal Dutch Airlines (KLM) were de-
termined by Paelinck (2001). An analytical model was developed to predict the remaining number of
reserves per time period, based on conditional probabilities. The expected reserve demand per day,
originating from flight disruptions, was derived from historical data. The expected remaining number
of reserves could be computed per day, given that they are used to cover disrupted flights. A set of
reserve pairings with known length and start times was required as model input. The model by Paelinck
(2001) only served to evaluate sets of reserve pairings, while the creation of reserve pairings was not
considered. Instead a trial and error approach was proposed to iteratively devise a set of reserve
pairings that matches the expected demand.

Sohoni et al. (2004) focused on estimating long-term staffing levels of reserve crew by considering
the cost trade-off between the amount of reserves and the amount of premium pay hours that must
be endured when there is a reserve shortage. They also consider voluntary flying and reserve de-
mand resulting from vacation and training activities. Using a similar line of reasoning, Sohoni et al.
(2006) simultaneously address the planning and scheduling of airline reserve crew by predicting re-
serve demand based on open time trips resulting from bidding-invoked conflicts that are present in
U.S. based airlines, and from disturbances in daily operations. This is followed by an optimisation
where the expected reserve demand is covered with a minimal number of (dedicated) reserve crew.
The optimisation is done in two phases: first the expected reserve demand is covered with a minimum
amount of reserve duty periods, with lengths ranging from three to five days. Then, the duty periods
are combined into month long legal work patterns. This research was conducted in collaboration with a
U.S. airline. Therefore, the majority of reserve demand exists due to bidding-invoked conflicts (instead
of due to operational disturbances, as in European airlines). Total reserve demand compared to Euro-
pean airlines is therefore much higher, which explains why up to 30% of the total crew in U.S. airlines
may be dedicated reserve crew (Sohoni et al., 2006).

Another research in collaboration with KLM was performed by Bijvank et al. (2007), who also con-
sidered cabin crew reserve pairing at KLM. Their aim was to determine a good reserve strategy, con-
sisting of the number of reserve pairings that have to start each time interval, and the configuration of
the reserve pairings (i.e. the length and the placement of on-duty and off-duty days). To determine
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the number of starting reserves, they use a minimal flight reserve cover ratio (i.e. it should be able
to cover at least a percentage of all flights starting at any point in time). For the configuration of the
reserve pairings, several approaches were investigated. One of these was to set reserve pairing length
equal to the length of the longest regular flight pairing at each start time. A statistical model (based
on historical data of crew disruptions) was employed to estimate the number and length of reserve
pairings so that with a certain confidence interval sufficient reserves are available. Note that contrary
to U.S. based airlines, European airlines often do not have dedicated reserve crew. Reserve duties
are covered by regular crew who are periodically scheduled to be on stand-by. Related to this, Bijvank
et al. (2007) also consider the risk of secondary disruptions, which may occur when a reserve is used
to cover a pairing that is longer than its original reserve duty length. The original pairing of this reserve
after its reserve duty should then be covered by a second reserve. They account for this by scheduling
soft flight pairings, with corresponding reserves (i.e. reserves are scheduled while keeping in mind that
secondary disruptions may occur).

Recently, Bayliss (2016) wrote a doctoral thesis concerning the airline reserve cabin crew pairing
problem under uncertainty, from which parts are presented in Bayliss et al. (2012), Bayliss et al. (2013),
and Bayliss et al. (2017). In Bayliss et al. (2012), an analytical model is introduced that considers crew
unavailability to evaluate a set of reserve crew pairings. The aim of the model is to evaluate the set
of pairings by computing the total expected crew absence when an airline flight schedule is executed.
Note that the analytical model is only used to evaluate the reserve pairings. Therefore it is combined
with a number of solution methods to generate the sets of reserve pairings. The methods are dynamic
programming, several (meta)heuristics and a number of simpler rule based approaches. The evaluation
model was used during each iteration of the optimisation to compute the total expected crew absence
for the set of reserve pairings. After optimisation, the generated sets of reserve pairings from the
solution methods were validated by repeat simulations of airline flight schedules. It is mentioned that
the probabilities for crew absence should be obtained from historical data, but the model was tested
with uniform crew absence probabilities.

A similar methodology has been applied to consider crew related delay instead of crew absence in
Bayliss et al. (2013). Instead of using historical data to predict crew absence, a simulation model is
used to estimate (propagated) delay probabilities, given that other recovery actions such as resource
swapping are used first. With these delay probabilities known, the reserve pairings are generated
similarly to Bayliss et al. (2012), now aiming to minimise the expected delay. Again, the generated
reserve pairings were evaluated by repeat simulations. In the thesis (Bayliss, 2016), the two previous
models were integrated to account for simultaneous crew absence and crew delay.

A different approach is introduced in Bayliss et al. (2017), where disruption scenarios are generated
using airline operations simulations that account for journey time and crew presence uncertainty. A set
of disruption scenarios is then used as input to model a mixed integer programming model, which has
the objective to find a reserve crew schedule that minimises the expected overall disruption level for the
set of input scenarios. Contrary to the probabilistic approaches, this approach simultaneously solves
for a reserve schedule and a reserve use policy (i.e. which reserve should be used at what time).

Throughout the research of Bayliss (2016), reserve pairings are only defined through the starting
times of reserve crew. The length of reserve pairings is a fixed value of two weeks. Furthermore, it
is assumed that reserve pairings consist entirely out of reserve duties. Bayliss (2016) states that this
definition is representative of KLM practices, from which data was acquired.

These assumptions can be challenged: reserve pairings can be variable in length and they may
contain regular flight duties. This leads to increased flexibility in creating reserve schedules, which is
especially relevant to long-range cockpit crew. There are two reasons for this. Firstly, cockpit crew are
the most expensive human resources for an airline (Bayliss, 2016), indicating the need for cost efficient
reserve crew pairings. Secondly, as a result from longer flight duties and crew rest requirements, long-
haul crew pairings are generally longer than short-haul pairings. Reserve crew pairings should be able
to cover the long-haul flight pairings in full, resulting in a high number of unused reserve days (i.e. a
waste of resources) if the reserve pairing remains unused. If a regular flight duty is included as part
of the reserve pairing, that flight can be executed when the reserve remains unused. Additionally, the
variability in the length of the regular flight pairings requires that reserve pairings are also variable in
length to attain a cost effective set of reserve crew pairings. No previous work has been found that
approaches the reserve crew pairing with these problem characteristics.
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2.1.4. Defining the research gap
In airline disruption management, the use of reserve crew is widely recognised as a measure to recover
from operational disruptions. However, crew recovery literature assumes that the reserve crew pairings
are already known. In robust airline scheduling, scheduling reserve crew is named as a measure to
increase the robustness of an aircraft schedule. Yet, the majority of the literature aims to introduce
robustness by increasing slack times in schedules and by increasing crew swap opportunities. The
design of the pairings for airline reserve crew is often assumed to be solved already. In short, reserve
crew pairing optimisation is overlooked, even though crew are expensive resources (Kohl et al., 2007).

Specific research on airline reserve crew has focused on planning and scheduling problems for
reserve crew. The integrated planning and rostering approach by Sohoni et al. (2006) considers the
problem at a tactical level, by producing monthly schedules of on-duty and off-duty days. The work
of Paelinck (2001) and Bayliss (2016) is dedicated to airline reserve crew pairing, focusing on cabin
crew. The reserve pairings in these references are defined only through the pairing start times. It is
assumed that the length of the reserve pairings is constant and known in advance. This assumption
is too conservative: reserve pairings can vary in length from day to day, or even on the same day.
Additionally, previous research assumes that the reserve pairings are entirely dedicated to reserve
duties. Yet, reserve pairings may be combinations of reserve duties and regular flight duties.

In practice, it is found that these characteristics for reserve crew pairing (variable pairing length and
inclusion of regular flight duties) are most relevant to long-range (i.e. intercontinental) cockpit crew.
A number of reasons can be given for this. Firstly, cockpit crew are the most expensive type of crew
(Bayliss, 2016) for an airline. Secondly, intercontinental pairings generally have a higher duration than
short-haul pairings. The full length of these longer pairings should be covered by reserve pairings in
a reserve schedule. If the reserve pairings consist entirely of reserve duty days, there is a high waste
of resources when the reserve remains unused. If a (shorter) regular flight is included as part of a
reserve pairing, that flight can be executed if the reserve remains unused. On top of this, it may be
advantageous to vary the reserve pairing length, depending on the length of the pairings in the flight
schedule. This yields a higher reserve utilisation rate and a lower waste of resources, which is important
for scheduling costly cockpit crew.

These characteristics, specifically observed in long-range cockpit reserve crew pairing, have never
been applied to the airline reserve crew pairing problem before. Hence, the research gap is defined
as the design of reserve pairings with variable reserve pairing lengths and combined reserve and flight
duties.

The remainder of this literature review focuses on solution approaches to the airline reserve crew
pairing problem. The problem can be decomposed into three parts: (1) schedule objective and evalua-
tion, (2) demand determination, and (3) capacity allocation. Sections 2.2 to 2.4 consider each of these
parts sequentially. In Section 2.5, a synthesis of all methodologies from Sections 2.2 to 2.4 will be
given. Here, it will be shown that combining methodologies from each part leads to complete problem
approaches for the airline reserve crew pairing problem.

Because the amount of literature dedicated towards airline reserve crew is limited, references from
other personnel scheduling domains are also consulted, focusing explicitly on stochastic problems. This
is in line with the characteristics of the airline reserve crew pairing problem: the amount of reserves re-
quired depends on the probabilities of flights being disrupted. That is, the reserve crew pairing problem
is stochastic.

2.2. Scheduling objectives and evaluation
The quality of personnel schedules should be evaluated based on assessment criteria. These criteria
are expressed in objective functions whose values express the quality of the schedule. This allows to
compare the quality of schedules generated by different solution methods independently to each other.
In Subsection 2.2.1 a number of optimisation objectives are presented. Subsection 2.2.2 discusses
evaluation of complex objective functions. A synthesis of the approaches presented in this section is
given in Subsection 2.2.3.
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2.2.1. Scheduling objectives
The quality of a personnel schedule is measured by an objective function. This section presents a num-
ber of objectives that are of interest to reserve crew pairing. The general objective function formulation
of the reserve crew pairing research of Bayliss (2016) is shown in Equation 2.1. The objective is to
minimise the expected value of disruptions 𝐸, given a set of reserve pairings, a reserve use policy, an
airline schedule, uncertainty, and an airline recovery policy.

min
፱∈ፗ,፲∈ፘ

𝐸(𝑓(𝑥, 𝑦, 𝑆, 𝑈, 𝑃)) (2.1)

where

𝑥 = the set of reserve pairings from all possible sets of reserve pairings 𝑋
𝑦 = reserve use policy from the set of reserve use policies 𝑌
𝑆 = the airline flight schedule
𝑈 = uncertainty in the airline operations
𝑃 = the airline recovery policy

The paper by Bayliss et al. (2012) focused purely on crew absence as the source of disruptions.
Therefore, the objective was to find a set of reserve pairings that minimised the resulting crew ab-
sence probabilities. A number of objective functions were compared: the minimum of the sum of all
probabilities, of the maximum probability, of the standard deviation, and of the coefficient of variation.
Experiments were conducted with each of these objective functions, and the total sum of absence prob-
abilities over the entire flight schedule was found to yield the lowest cancellation rate and the highest
reserve crew utilisation rate. Therefore, Bayliss et al. (2012) used this objective function for further
research.

The expected reserve crew utilisation rate and the expected cancellation rate were derived from
crew absence probabilities (Bayliss et al., 2012). The first is computed using Equation 2.2, where 𝑝። is
the probability of crew absence for flight 𝑖, 𝑝ᖤ። the same probability after taking into account the reserve
schedule, and 𝑅 the total number of reserves. The cancellation rate is defined as the number of flights
without crew over the total number of flights 𝑁, as shown in Equation 2.3. For both the crew utilisation
rate and the cancellation rate, expected theoretical values and experimental values were computed.

Expected reserve crew utilisation rate = (∑ፍ።዆ኻ 𝑝።) − (∑
ፍ
።዆ኻ 𝑝

ᖤ
። )

𝑅 (2.2)

Expected cancellation rate =
∑ፍ።዆ኻ 𝑝

ᖤ
።

𝑁 (2.3)

The paper of Bayliss et al. (2013) has similar objectives to Bayliss et al. (2012), but focused on crew
related delay instead of crew absence. The objective was to find a set of reserve crew pairings such that
the total expected crew related delay was minimised. On top of the cancellation rate, the reserve crew
utilisation rate, and the solution time, the average crew delay, the average total delay and the probability
of delays larger than 30 minutes were used as assessment criteria. Given that the objective was to
minimise crew related delay, the average crew delay was used as the main performance measure
(Bayliss et al., 2013).

Bayliss et al. (2017) described a simulation scenario based method aimed to minimise the total
cancellation measure over all disruptions in all scenarios. The disruptions included both delays and
cancellations. To devise a single performance measure for both delays and cancellations, delays were
converted to a cancellation measure, where the severity of the delay influenced the value of the cancel-
lation measure. The equation for the cancellation measure for a single departure in a single scenario
𝑐𝑚፡ is given in Equation 2.4, where 𝑡𝑑፡ is the total delay of departure ℎ, 𝑐𝑑፡ the crew related delay
at departure ℎ (i.e. the delay that can be absorbed by reserve crew), 𝐶𝑇 the cancellation threshold at
which delayed flights are cancelled, and 𝑛 the delay exponent, which allows the decision maker to set
a balance between absorbing delays or cancellations.

𝑐𝑚፡ = (
𝑡𝑑፡ − 𝑐𝑑፡

𝐶𝑇 )
፧

(2.4)
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Throughout the research by Bayliss (2016), the objective was to minimise the total number of ex-
pected operational disruptions, given a fixed capacity of reserve crew. Even though reserve crew
utilisation was used as a performance measure, a low reserve utilisation rate is not explicitly penalised.
Therefore, it is impossible to investigate the effects of changing number of reserve crew, other than
through trial and error. In other words, the optimal balance between reserve capacity and reserve
demand is not being considered.

In contrast, the research towards reserve bus driver scheduling by Jönsson (1987) does consider
the balance between capacity and demand. In the objective function a weighted sum of average costs of
unused reserve bus drivers and the costs of cancelled bus tours is considered. The first part increases
with the size of the reserve capacity, whereas the second part decreases with the size of the reserve
capacity. Therefore, an optimum can be found for a certain reserve capacity. This allows for an implicit
sizing of the reserve capacity and thus find an optimal balance between capacity and demand that
minimises the total expected costs. A fixed ratio between the costs of cancelled tours and unused
reserves was defined as input for the model.

A parallel to the airline reserve crew pairing problem can be seen here. The costs for unused airline
reserve crew and the costs for cancelling a flight (or paying premium fee to crew working overtime) can
be defined. A balance between the amount of reserve crew and the amount of cancelled flights can
then be found such that the overall costs for both factors are minimised.

The objective of minimising costs while satisfying a predefined service level is widely used in ref-
erences concerning call centre problems (Alfares, 2007; Cezik and L’Ecuyer, 2008; Ertogral and Ba-
muqabel, 2008; Ingolfsson et al., 2010). This can be translated to the airline reserve crew pairing
problem: a service level can be defined for a certain flight schedule that expresses the percentage of
time periods during which sufficient reserve crew should be available to cover flight disruptions. The
required reserve levels for a flight schedule can be determined to satisfy the service level. Service
levels can be defined globally (i.e. for a complete schedule) or locally (i.e. per discrete time period).
The global approach may result in variations of the service level over time, whereas it is expected that
reserves are overstaffed to guarantee the minimum service level in each period with locally defined
service levels.

In the paper by Bijvank et al. (2007), a statistical model was developed using an equivalent to a ser-
vice level. The minimum required reserve capacity so that the probability of requiring more reserves
than available is below a threshold, had to be determined. Three assessment criteria are defined by Bi-
jvank et al. (2007): (1) the expected number of unused reserves; (2) the expected number of secondary
disruptions; (3) the expected number of disruptions the cannot be covered by the reserve schedule.

Schedule cost minimisation is widely used in personnel scheduling literature as an objective in the
optimisation. For example, Sohoni et al. (2006) aim to minimise total crew costs while covering all
expected uncovered trips. In addition, over-covered trips (i.e. trips with possibly redundant crew allo-
cated) are penalised. As an assessment criteria, the number of uncovered trips is used (Sohoni et al.,
2006). Cost minimisation is also used as an objective in Elshafei and Alfares (2008), Yan et al. (2008),
and Parisio and Jones (2015), among others. Here, each crew is given a certain cost to be sched-
uled. It is expected that this approach is not directly applicable to the airline reserve crew scheduling
problem. This is because reserve crew are not dedicated reserve crew, but are simply regular flight
crew that are sometimes allocated reserve duties. No direct extra costs are incurred for reserve duties,
which makes a direct cost minimisation difficult.

2.2.2. Schedule evaluation models
For optimisation problems encountered in a stochastic setting, it is difficult to directly formulate an
objective function (Gosavi, 2015). For example, this can be caused by non-linear or probabilistic effects.
Separate evaluation models can be created for these problems that find the objective function value.
These models can either be analytical models or simulation models.
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Analytical evaluation models
Paelinck (2001) developed an analytical model to evaluate a set of reserve pairings. The objective
was to calculate the number of remaining (unused) reserves, which was calculated using conditional
probabilities. The probability 𝑃፮ of using a reserve crew on a given day was computed as in Equation
2.5. Then, the probability 𝑃ፚ of a reserve still being available 𝑛 days after the start day was computed
as in Equation 2.6. The expected number of remaining reserve crew on a single day was found by
summing the result of Equation 2.6 for all reserves covering that day.

𝑃፮ =
average # of reserves used per day

# of daily reserve crews (2.5)

𝑃ፚ = (1 − 𝑃፮)፧ (2.6)

By performing these calculations for each day in the schedule, the quality of the reserve pairings
can be evaluated. To increase the accuracy, Equation 2.6 was also evaluated with hourly time periods.
A drawback of this model is that it used constant usage probabilities per day, whereas in reality there
may be large fluctuations over the day. Also, this model does not take into account dependencies
between overlapping reserve pairings (i.e. the use of a reserve pairing may reduce further demand).

The model from Paelinck (2001) served as the starting point for the research of Bayliss et al. (2012),
who researched the airline reserve crew pairing problem for cabin crew. The objective was to generate
a set of reserve pairings that minimises the overall probability of crew absence. The model requires
crew absence probabilities 𝑄 for each individual departure in the flight schedule which are assumed to
be independent from each other. The model then calculates the resulting crew absence probabilities
𝑃, given that absent crew can be replaced by reserve crew. For each flight 𝑗 covered by each reserve
𝑘 the reserve availability probability 𝑟፣፤ and crew absence probability 𝑝፣ were updated according to
Equations 2.7 and 2.8.

𝑟፣ዄኻ፤ = 𝑟፣፤ (1 − 𝑝፣) (2.7)

𝑝፣ = 𝑝፣(1 − 𝑟፣፤ ) (2.8)

By propagating through all reserve pairings, the total effect of reserve crews on the absence prob-
abilities can be calculated. Due to the overlapping reserve crews, the objective function is a non-linear
function, which is evaluated step-by-step by the evaluation model. The model considers crew absence
as the only source of reserve crew demand, and reserve use as the only recovery measure. However,
given that Bayliss et al. (2012) include short-haul flights in the research, this model is not a realistic
representation of the problem. Especially for short-haul traffic, crew delay can be a significant factor in
reserve demand, and there are additional recovery measures such as resource swapping.

The crew absence model (Bayliss et al., 2012) was adapted in Bayliss et al. (2013) to model crew
delay probabilities. Similar to crew absence, crew delay can be expressed considering delay distribu-
tions from historical data. Added difficulties for this model are incorporation of delay propagation and
resource swapping. Therefore, the delay probabilities for all crew members were derived through a
simulation. The probabilistic model from Bayliss et al. (2013) then calculates the resulting delay prob-
abilities under a set of reserve pairings. The probabilistic model accounts both for direct delays and
delay that propagated through the schedule.

In Bayliss (2016), the previous models are extended further into a statistical delay propagation
model. This model considers both crew absence and crew delay. In fact, this model takes the output of
the crew absence model as an input, and then accounts for delay propagation, while including the pos-
sibility of crew and aircraft swaps to recover from disruptions. To capture both crew absence and delay
in one model, its complexity and required evaluation time increase accordingly. In fact, the crew delay
induced reserve demand was too demanding in terms of computational time when used iteratively with
an optimisation method. Therefore, crew absence was used as the only reserve demand source for all
models. Note that the evaluation models by Bayliss (2016) are already too computationally demanding
when there is one type of reserve pairing. It is expected that model complexity increases when reserve
pairings of variable length and with regular flight duties must be included.

In the call centre domain, queuing models are employed to evaluate service levels for given staffing
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levels. In Section 2.2 it is said that the objective generally concerns a cost minimisation while satisfying
minimum service levels. The service levels are expressed as non-linear constraints in the mathematical
model. Hence, instead of using an evaluation model to measure the objective function, a queuing
evaluation model is used to measure the value of the service level constraints.

Ingolfsson et al. (2010) use this technique iteratively to solve the call centre staffing problem. Gener-
ated staffing levels are evaluated by a queuingmodel that evaluates non-linear service level constraints.
Because these constraints are non-linear, it is possible that generated schedules do not satisfy these
service levels. At time periods where the service level is not reached, a scheduling model tries to
improve the staff schedules at these points. The improved schedules are then tested in the queuing
model again.

Simulation evaluation models
Cezik and L’Ecuyer (2008) and Avramidis et al. (2010) solve comparable problems which focus on
call centres where agents have multiple types of skills. Agents are part of groups that possess a
fixed subset of all available skills. The goal of the research is to minimise the operating costs under a
minimum service level. The service level is defined such that a fraction of calls that is answered within a
certain time limit, exceeds a set threshold. The service levels are defined as non-linear functions. Cezik
and L’Ecuyer (2008) mention that the service levels functions are too complicated to evaluate exactly.
Hence, they revert to a simulation model that can estimate the service levels. Based on the results
of these simulations, additional constraints are added to improve the service level approximation. By
this method, the optimal solution can be approximated, and convergence to the optimal solution is only
fully obtained if the number of simulated scenarios goes to infinity. However, this would significantly
increases the required solution time.

Gurvich et al. (2010) also utilise a simulation evaluation model to solve a call centre staffing prob-
lem. In an iterative manner, a simulation model evaluates the service level constraints for a certain
staffing level. When any of the constraints is violated, the staffing levels are updated and re-simulated
to check for constraint violation.

Bayliss (2016) developed a simulation model with the purpose of validating and comparing reserve
crew schedules that were generated through a variety of solutionmethods. Themodel simulated the op-
erations of an airline schedule in a single hub and spoke network. The simulation propagated through
all flights in the schedule in the order of departure. For each departure, crew are either present or
absent, based on a statistical distribution. In case of crew absence, depending on reserve crew avail-
ability, a flight is either cancelled or covered by reserve crew. The simulation then checks if the flight is
delayed due to propagated effects of previous events. If the delay is above a certain threshold, possible
recovery actions are considered, or the flight is cancelled. Otherwise, the flight is executed, with a flight
duration that is based on a statistical distribution as well.

To obtain reliable comparison results, 20,000 repeat simulations were run for each set of reserve
pairings that was evaluated. The performance measures that were tracked included the cancellation
rate, the reserve utilisation rate, and the amount of delay. These performance measures correspond
to the performance measures presented in Section 2.2 and thus express a measure for the quality of
the generated solution. Through this, the performance of the analytical model could be validated via
the simulation model.

The simulation model was not used to evaluate reserve pairings during the solution process (i.e. to
evaluate the objective function during optimisation). It is unknown why this approach was not pursued,
given that the analytical models became too complex when representing a realistic operational envi-
ronment. In these cases, simulations can be used to evaluate the solution, without a closed expression
for the objective function (Gosavi, 2015).

2.2.3. Synthesis of scheduling objectives and evaluation
This chapter has focused on scheduling objectives and on schedule evaluation. A synopsis of possible
scheduling objectives is given below:

• Minimise resource shortages;
• Minimise combined unused resources and resource shortages;
• Minimise required resources while satisfying service level;
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• Minimise schedule costs.

The research by Bayliss (2016) aimed to minimise the eventual number of expected disruptions,
given that a set of reserve pairings can be used to cover these disruptions. The pairings are evaluated
by measuring the number of disruptions that could not be covered by the reserve pairings. In other
words, resource shortages are measured. This objective is useful when the available reserve capacity
(i.e. the number of reserve days that can be allocated) is fixed.

If capacity requirements are relaxed, a combined minimisation of unused resources and resource
shortages is a feasible alternative. The objective function is a weighted sum of unused resources
and resource shortages, where one part increases with the number of resources and the other part
decreases. This has two of advantages. First, automatic sizing of the resource capacity is possible.
This gives the decision maker insight in the required reserve capacity for cost effective operations.
Second, the weights for each part can be adjusted, so that the decision maker can express preferences
for one of the objective parts.

Schedule cost minimisation can also be the objective for personnel scheduling problems. In these
problems, each crew has a certain cost when it is scheduled. The aim of the optimisation model is to
find the set of crews that meets the minimum staffing or service levels with the lowest overall costs. This
approach is not feasible for the airline reserve crew pairing problem, because airline reserve crew are
simply regular crew that are sometimes allocated reserve pairings. No direct extra costs are incurred
for executing reserve pairings compared to regular flight pairings.

Finally, analytical and simulation schedule evaluation models were discussed. These models can
be employed when the objective or constraints are too complex to express in a single function. They
are generally used iteratively during the optimisation process, to calculate the value of the objective
function or a constraint. Whether these models will be useful in solving the airline reserve crew pairing
problem, depends on the problem approach that is pursued.

2.3. Demand determination
Section 2.2 presented a range of personnel scheduling objectives and methods to evaluate schedules,
whereas Section 2.4 will cover methods to create schedules. However, before schedules can be cre-
ated, the demand for the resources in the schedule (i.e. required staffing levels) should first be known.
This section discusses how this demand can be determined.

The demand for airline reserve crew originates from absence of originally scheduled crew. Crew ab-
sence is uncertain, for example due to illness, meaning that the demand for reserve crew is stochastic.
In other domains for personnel scheduling, demand for resources can also be stochastic. For example,
in retailing or in the call centre domain, customer arrivals are often random. Therefore, it is possible to
identify approaches from these domains and translate those to the airline reserve crew pairing problem.

2.3.1. Demand data distributions
Required resource levels can be estimated by analysing historical demand data. Parisio and Jones
(2015) do this when considering an employee scheduling problem for a number of retail stores. They
analyse 44 weeks of historical data on customer arrival patterns to estimate the demand for employees.
The arrival distribution patterns are later used to determine the set of optimal work shifts for a fixed
number of employees. Parisio and Jones (2015)mention the importance to include demand fluctuations
and employee absences as significant external factors that should be considered in employee schedule
design.

Bayliss et al. (2012) analyse seven years of historical crew absence data to determine the proba-
bility that a crew member is absent for each flight in a flight schedule. These probabilities are assumed
to be independent from each other, and to be the only cause of reserve crew demand. Therefore, this
data distribution could be used to estimate reserve crew demand. Bayliss et al. (2013) derived flight
duration distributions from historical data, but the size of this data set was only one month. These
distributions were used to estimate reserve crew demand originating from delayed flights.

Instead of deriving a demand distribution directly from historical data, the data can also be fitted
to a theoretical probability distribution, which is then used to generate a demand profile. Yan et al.
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(2008) take this approach when determining the optimal design of work shifts for an air cargo termi-
nal. It is stated that the majority of the research towards shift design problems assumes deterministic
demand profiles. However, the performance of these deterministic models is reduced when stochastic
demands occur in actual operations. Therefore, stochastic demand should be taken into account to
maintain optimal scheduling solutions (Yan et al., 2008). The demand distribution was based on a nor-
mal distribution, where the mean and standard deviation were based on one month of actual manpower
demand data.

Similarly, Jönsson (1987) created a model to determine the number of bus driver reserves for a
Swedish bus company. This is the only application of reserve crew shift design in other modes of
transportation that was found. The demand distribution follows from variation in demand over time
resulting from the company timetable and unpredictable short-term absenteeism of bus drivers. A
Poisson probability distribution was used for the absence of bus drivers in each time period, which is
expressed by Equation 2.9. In this equation, 𝑋፭ represents the number of absent drivers in period 𝑡
and 𝜆፭ the absence rate of period 𝑡.

𝑝፭(𝑋፭ = 𝑘) =
𝜆፤፭
𝑘! 𝑒

ዅ᎘ᑥ (2.9)

Vassilacopoulos (1985) solved the problem of allocating doctors to shifts in an emergency depart-
ment. It is mentioned that the patient arrival rate varies considerably in these environments. An analysis
of patient arrival data of a hospital revealed that the hourly patient arrival rate could be approximated by
a Fourier series. There were three harmonics, with periods of 8, 12, and 24 hours that caused varying
arrival rates throughout the day. On top of this, statistically significant differences between individual
days of the week were found, as well as seasonality effects. The seasonality effects were not included
in generating the demand patterns, because the time span of the problem was only one week.

The planning problem for a financial centre across multiple locations with limited office space and
constrained recruitment capacity, under fluctuating workforce demand was addressed by Zhu and Sher-
ali (2009). They compared planning models both under deterministic and stochastic demand and found
that using stochastic demand resulted in schedules that required less adaptions during operations. For
the stochastic demand profiles, a normal distribution was assumed where the average was based on
demand data provided by the financial centre. The standard deviation was assumed to be twice the
mean.

Demand profiles can also be generated from synthetic probability distributions, where the parame-
ters are assumed instead of derived from historical data. This approach is taken by Pinker and Larson
(2003), who determine staffing levels in a general service environment with flexible working hours and
uncertainty in demand and employee presence. A Poisson probability distribution was used to deter-
mine the amount of work arriving in each time period, and a binomial distribution was used to determine
employee absence. This data is purely theoretical though: the work arrival rate is assumed to have a
mean of 20, where units are not specified.

Similar approaches are taken in two examples of the widely studied nurse scheduling problem.
Gnanlet and Gilland (2009) compare various combinations of resource flexibility (bed upgrades and
cross-trained and external nurses) to satisfy stochastic patient demand. The demand was defined
as the number of patients per hospital unit. These values were generated from a uniform probability
distribution. Campbell (2012) considers the scheduling of on-call overtime shifts for nurses to decrease
costs and increase the quality of service. The demand was directly defined as the number of nurses
required per shift, with values derived from a probability distribution with a mean of 30 nurses per shift.
The type of distribution was not specified.

Easton and Goodale (2005) and Easton (2011, 2014) wrote a series of papers about workforce
scheduling considering uncertain demand and uncertain employee presence. Cross-trained employees
are also taken into account. Here lies a parallel to the airline reserve crew pairing problem, where airline
crew are allowed to fly below their rank (e.g. a captain flying as first officer), and crew may be trained to
operate multiple aircraft types (Bayliss, 2016). Easton (2014) mentions that cross-training employees
helps to increase service levels by being able to pool resources, leading to increased productivity
levels. The models are constructed assuming that probability distributions for demand profiles and
employee attendance are known in advance. The demand profiles are presented as a general random
variable with a probability density function and cumulative density function, whereas the absence rate



2.3. Demand determination 15

is expressed as a mean value over all periods.

2.3.2. Demand modelling
The previous section describes how demand data distributions can be expressed. These distributions
do not always directly express the required staffing levels per time period. For example, they may
represent a customer arrival distribution or an employee absence distribution. This section shows how
demand models can use such distributions for further demand determination. First, analytical models
are presented and afterwards simulation models are considered.

These methods are applied differently compared to the evaluation models presented in Section
2.2. Those models are used to evaluate generated personnel schedules, either iteratively during the
solution process or afterwards for validation purposes. Here, the models are used before solving the
problem to determine a demand profile which is used as input for the solution process.

Analytical demand models
Jönsson (1987) used a Poisson distribution to express the number of short term absent bus drivers in
each time period. This distribution was used in combination with a minimum service level that is defined
as the percentage of scheduled buses that will be in operation specified per time period. Through this,
the minimum number of drivers in the buffer (i.e. reserve) required in each period is derived from the
desired service level, given the Poisson distributed crew absence variables.

A similar approach is taken by Vassilacopoulos (1985), who proportionally assigns a fixed available
capacity of doctor hours corresponding to arrival rate of patients in each time period. Equation 2.10 is
a simplified representation that was used to determine the number of doctors per time period.

𝑞፭ =
𝑁
𝜆 𝜆፭ 𝑡 = 1, 2, … , 𝑇 (2.10)

In this equation 𝑞፭ is the number of doctors required in period 𝑡, 𝑁 is the total number of available
doctor hours per week, 𝑇 is the number total number of periods in the scheduling horizon, 𝜆፭ is the
patient arrival rate in period 𝑡, and 𝜆 is the average patient arrival rate over all periods. By a dynamic
programming algorithm, these variables were converted to integer numbers.

Bijvank et al. (2007) used a statistical model to determine the number of airline reserve cabin crew
at KLM required in each time period. Their model uses a binomial distribution to ensure that the proba-
bility of requiring more reserve capacity than allocated is small (for example 5%). This is a comparable
approach to the service level that was used in Jönsson (1987).

In the call centre domain, the arrival rate of incoming calls is often regarded as the stochastic variable
(Pot et al., 2008; Gurvich et al., 2010; Ertogral and Bamuqabel, 2008). On top of this, the required time
to serve a customer varies with a certain distribution and customers can be put in a waiting line before
they are served. Also, multiple types of personnel are often considered: those specialised in one type
of service and those that are cross trained to handle multiple call types. To include these effects, the
staffing requirements are often determined in two steps (Ertogral and Bamuqabel, 2008):

1. Estimate the number of incoming calls for each period in the planning horizon. This is determined
through a call arrival rate (Ertogral and Bamuqabel, 2008).

2. Given a certain service level requirement, determine the number of agents that are required
in each time period. The service levels are usually expressed in terms of customer waiting
times. The staffing levels are generally determined through queuing or simulation models (Al-
fares, 2007).

Alfares (2007) aimed to determine the minimum number of agents required in the short-term staffing
of a call centre on an hourly basis while satisfying a specified service level. The workload was derived
from five months of historical data on the number and the duration of calls received in each hour. This
data was applied in a queuing model that could determine the required staffing levels per hour. A
10% buffer was added to each time period to account for employee absenteeism, based on annual
vacations, training, and illness. This number was taken from the standard policy of the case study
company. Alfares (2007) did not have any data available on the distribution of inter-arrival times of the
customers. This is given as the primary reason why no simulations were used to predict the hourly
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demand. It is mentioned that simulation models are more flexible for this purpose, but require that all
stochastic parameter distributions are fully known.

A queuing model was also used by Ertogral and Bamuqabel (2008) in the call centre environment.
Given an hourly customer arrival pattern from historical data, a constant arrival rate for each time period
is approximated. The minimum number of agents to serve these customers is based on a queuing
model under a pre-specified service level.

Simulation demand models
Instead of using analytical models, simulations can be used to derive demand levels. This approach
is common in the formulation of stochastic programming models (Shapiro and Philpott, 2007; Shapiro
et al., 2009), where scenarios are constructed by random realisations of the stochastic variables. In
solving these problems it is aimed to find a solution that works well for the entire set of scenarios. A
challenge is to find realistic representations of the demand distributions, while aiming to keep the size
of the scenario set, and corresponding problem size, tractable (Yan et al., 2008; Zhu and Sherali, 2009;
Parisio and Jones, 2015).

Bayliss et al. (2017) took a similar approach for the airline reserve crew pairing problem. Through
simulations of an airline schedule without any reserves a set of disruption scenarios was generated.
For each of these scenarios, sets of feasible reserves to solve the disruptions in these scenarios were
constructed. These sets were later used to select the best possible reserves such that the total delay
and cancellations in the airline schedule were minimised. It is mentioned that the number of scenarios
has a large impact on both the quality and speed of any scheduling methods that are used in this
approach. Therefore, a scenario selection heuristic (SSH) was designed. The aim of this heuristic
was to make a smart selection of disruption scenarios, such that the operating environment can be
represented accurately with a smaller set of scenarios compared to adding each disruption scenario
that is simulated.

2.3.3. Rule-based methods
Aside from the approaches that have been described in Subsections 2.3.1 and 2.3.2, some other meth-
ods to quantify demand have been identified. Bijvank et al. (2007) use a minimal flight reserve cover
ratio, which is computed using Equation 2.11.

∑፣ 𝑇፣፤
∑፣ 𝑆፣፤

≥ 𝛼, ∀𝑘 (2.11)

Here, ∑፣ 𝑇፣፤ is the number of starting reserves of type 𝑗 on day 𝑘, ∑፣ 𝑆፣፤ is the number of flights of
type 𝑗 on day 𝑘, and 𝛼 is the cover ratio. The type 𝑗 can involve characteristics as length, rank, and
aircraft type. Bijvank et al. (2007) reported that a cover ratio of 4% is used in practice as well as in their
demand estimation.

Dillon and Kontogiorgis (1999) developed a model to automatically create monthly schedules for
reserve crew at US Airways. To determine the demand over the course of the month, an employee
from the planning department manually specified a demand target on each day of the month for all
combinations of crew base, aircraft type, and crew posting.

In other domains, similar methods were used by Davis and Reutzel (1981) and Elshafei and Alfares
(2008). Davis and Reutzel (1981) consider work processing at a bank, where the demand per time
period is variable and work that has not been processed in previous periods must be taken into the
next period. Even though the demand per period is allowed to vary, it is predetermined as model
input. Elshafei and Alfares (2008) consider a general personnel scheduling problem with the unique
characteristic that employee wages are dependent on scheduling decisions made previously. With
respect to the demand determination they assume that required labour demands per time period are
known in advance.

Bayliss (2016), who considered the airline reserve crew pairing problem for cabin crew, mentions
that it is not necessarily required to determine the expected demand at all. In theory, it is possible to
allocate a fixed, predetermined, capacity without any knowledge of expected demand. However, this
was shown to perform badly in closing the gap between demand and allocated capacity.
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2.3.4. Synthesis of demand determination methods
In this section various methods to determine the demand in a personnel scheduling environment have
been presented. A synopsis of these methods is given below:

• Derive demand distributions from historical data;
• Assume synthetic demand distributions;
• Use analytical models to determine demand levels;
• Use simulation models to determine demand levels;
• Use simple rules to express demand;
• Assume known demand;
• Do not take any demand into account.

The use of historical data allows to represent demand profiles based on operating environments
in practice. An advantage is that corresponding solutions are relevant to the problem encountered in
practice. A disadvantage of this approach is that the solutions have only been shown to be effective
for one data set. Another difficulty is that the data should contain the right information: the required
parameters should be available directly or be derivable from other data. The data set should also be
large enough to obtain reliable parameter values.

Synthetic data distributions counter the disadvantages above. Diverse operating environments can
be represented by varying the parameters in these distributions, such as arrival rates, averages and
standard deviations. It is also easier to implement synthetic data distributions, because no data analysis
is required. On the other hand, it can not be ensured that the data distributions are representative for
practical problems. Combining real and synthetic data can improve overall results: a range of synthetic
data distributions can be used to ensure that solution methods are robust to diverse demand profiles,
while data from practice can be used to validate the results.

Separate models can be developed to determine the demand levels for scheduling problems. These
models can be used when the data distributions described above do not directly express personnel
requirements. Both analytical and simulation models can be developed. Commonly used analytical
models are queuing models, where customer arrival rates and minimum service levels are model input
to determine the required staffing levels per time period. Simulation demand models are used to gen-
erate demand scenarios which are random realisations of the stochastic variables. A set of scenarios
is then used to represent the demand distribution. The challenge for scenario generation models is
to find accurate representations of data distributions while keeping the scenario set small, in order to
keep the problem size tractable.

Demand models are generally used before solving the optimisation problem (i.e. they are used to
derive model input). Therefore, their use is limited to scheduling problems where the decision vari-
ables do not influence the demand themselves. In the reserve crew pairing problem, the opposite
occurs when reserve pairings with regular flight duties are used. When such a reserve pairing is used
to cover an open position, another open position is created further on the horizon (the regular flight
duty cannot be executed anymore). Because the scheduling decisions influence the demand profile,
demand models are not feasible for the airline reserve crew pairing problem.

The use of one of the miscellaneous methods from Subsection 2.3.3 to determine demand can be
useful during the development stages of the research. When the demand representation is simplified,
it is easier to verify correct functioning of the models. However, if high quality reserve schedules are to
be obtained, these approaches are expected to be too simplistic.

2.4. Capacity allocation
This section explores solution methods that are used to create personnel schedules. Methods from
both the airline reserve crew domain and the general personnel scheduling domain will be presented.
Subsection 2.4.1 introduces various representations for the decision variables in a scheduling problem.
The values of these variables are decided on by expressing the variables in a model and solving it with
a solution method. Exact solution methods are presented in Subsection 2.4.2, heuristic methods are
presented in Subsection 2.4.3, and dynamic programming approaches are treated in Subsection 2.4.4.
Subsection 2.4.5 introduces some solution methods aimed specifically at simulation optimisation. A
number of simpler approaches toward capacity allocation are discussed in Subsection 2.4.6. Finally, a
synthesis and reflection of all presented methods is given in Subsection 2.4.7.
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2.4.1. Schedule representation
Depending on how an optimisation model is set up, the decision variables can have varying meanings.
In scheduling problems, the prevailing strategy is to first generate all allowable unique shifts or tours (a
tour consists of multiple shifts and includes days off). Each unique shift or tour is then represented by
a decision variable, which expresses the number of employees working that shift or tour. A vector with
values of each decision variable representing a shift or tour expresses a scheduling solution (Avramidis
et al., 2010).

Shifts can be distinct from each other through differences in start time, duration, required employee
qualifications, or type of work. For example, Ingolfsson et al. (2010) allow shifts to take 4, 6, or 8 hours
and start at the beginning of each discrete time interval. Breaks can be of varying duration and placed
flexibly in a shift, leading to a maximum of 288 allowable shifts. Similarly, Avramidis et al. (2010) define
shifts based on length, start time, and brake placement. On top of this, two agents types were defined.
Therefore, the decision variables represented the number of agents per type having a certain shift.

Easton (2011) defines a tour as a cyclic work schedule for one employee over a typical planning
horizon of one to four weeks. A tour consists of five consecutive workdays per 40 hour workweek.
Shifts take 9 hours with a one hour break after 4 hours of work. Shifts can start at any hour of the day,
given that they end on the same day. In the airline domain, Dillon and Kontogiorgis (1999) generate
employee bidlines with one month duration for reserve flight crews at US Airways. An integer variable
was included for each bidline in the model. The total number of bidlines led to about 15,000 decision
variables in the model.

Easton (2011) stresses that the number of decision variables rapidly grows with increased schedul-
ing flexibility. The tour definition of Easton (2011) only includes one shift type, to keep the problem
size tractable. However, Van den Bergh et al. (2013) mention that current scheduling problems tend
to prioritise employee satisfaction by offering increased flexibility in part-time contracts, flexible work
hours and employee preferences. It is challenging to incorporate this required flexibility in problem
representations like these, where a trade-off exists between scheduling flexibility and the number of
decision variables.

Bayliss (2016) assumes a fixed number of reserve crews with equal pairing length. Therefore,
the scheduling decisions reduce from determination of the number of employees per shift or tour, to
determination of the start time of each of the reserve crews. Thus, in Bayliss (2016) an employee
schedule was represented by a vector of reserve duty start times.

2.4.2. Exact solution methods
Alfares (2007) presents an integer programming model to solve the call centre staffing problem, where
the number of employees assigned to various weekly tours must be determined. The number of re-
quired employees per time period was determined by a queuing model. A constraint was added to
ensure that the scheduled capacity exceeded the number of required employees per period. A similar
model is presented by Ertogral and Bamuqabel (2008), who used a combination of a queuing model
and a simulation model to determine the number of employees per time period per skill type. On top
of the general scheduling model, an extended scheduling model is presented that allows to schedule
flexible workers. A case study that was done with the flexible worker model with an hourly require-
ment of approximately 50 agents, 168 time periods, and 1792 allowed schedules, was solved using
the branch-&-bound algorithm to optimality in roughly 1.5 hours of computational time. It is noted that
further research should be aimed towards a more computationally efficient method to solve the flexible
agent case.

Cezik and L’Ecuyer (2008) represent an employee call centre staffing problem with multi-skilled
employees through an integer programming model. Requirements on minimum service levels are
expressed through non-linear constraints. To handle the non-linearity of the constraints, simulations
are performed to estimate the service level. Corresponding linear constraints were added using the
cutting plane method. The authors report that adding the cuts is complex, and numerous heuristics are
employed to simplify the process. It is mentioned that when the problem size grows, the time required
for solving the integer program grows exponentially. To counter this, they propose to relax the integrality
constraints and round up any non-integer solutions. Cezik and L’Ecuyer (2008) report on an example
problem with 5 call types and 12 agent skill groups. A single iteration of the IP model was solved using
the simplex algorithm of the CPLEX optimisation suite in about a minute. After each iteration, new
service level estimates should be obtained and linear constraints should be added. The simulations
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required for estimation of the service level were the dominant factor in computational time, leading to
a total solution time of approximately 6 hours.

Avramidis et al. (2010) report that the iterative approach used by Cezik and L’Ecuyer (2008) yields
suboptimal solutions. They propose to integrate the simulation phase and the integer programming
problem with cut generation. In some cases better solutions were obtained, but a price was paid in
terms of computational complexity. For a problem with 52 time periods and 123 possible schedules,
computational times of more than 10 hours are reported, even with LP relaxations. Again, most of the
computational effort was spent on getting a representative set of scenarios. For this problem 35,000
simulations were performed, and the authors still experienced difficulty to find feasible solutions.

Bayliss et al. (2017) applied mixed integer programming to the airline reserve cabin crew pairing
problem. This integer programming model, called the mixed integer programming simulation scenario
model (MIPSSM), uses disruption scenarios that were generated through a simulation model, as has
been explained in Chapter 2.3.2. The aim of themodel is to solve over the set of disruptions scenarios to
find the best set of reserve crew pairings. Best in this context is defined as the schedule that minimises
the combined effect of delays and cancellations in a simulated airline schedule. Example problemswere
solved both with and without the scenario selection heuristic (SSH), based on a 3 day flight schedule
with 243 flights, 148 teams of crew, 37 aircraft, and 11 reserve crews, was considered. Without the SSH,
50 disruption scenarios were generated from this flight schedule, and the optimal reserve schedule
was found through the branch-&-cut algorithm in CPLEX in an average of 28 minutes over 20 repeats
(Bayliss et al., 2017). With the SSH, only 15 disruption scenarios were included, and the same problem
was solved in under 3 minutes, with comparable performance.

The schedules derived from the MIPSSM showed a relatively high spread in solution quality over all
repeats (Bayliss et al., 2017). This may indicate that the number of scenarios included in the MIPSSM
has not been large enough. There is a delicate balance here between a large set of disruption sce-
narios and the exponential increase in problem size (Bayliss et al., 2017). For further research, it is
suggested that the MIPSSM may be solved faster by a heuristic procedure.

Scheduling problems with stochastic demand can be represented by stochastic programming mod-
els (Shapiro et al., 2009). Yan et al. (2008) mention that two-stage stochastic models with recourse are
often used to solve scheduling problems under uncertainty. It is stated that in two-stage optimisation
problems, the decision variables are split into two groups. The first stage of decision making occurs
before random demand has occurred. That is, these decisions can be taken independent of uncer-
tain parameters. In the second stage, decisions are taken when random demand is known. Usually
the uncertainty is expressed through a set of scenarios that are individual realisations of the demand.
Optimal solutions are those that perform the best over all scenarios.

Yan et al. (2008) mention the importance of taking uncertainty into account when creating schedul-
ing solutions. They state that the performance of schedules created assuming known demand can
be reduced when applied to actual, stochastic operations. In their stochastic programming model, the
first-stage decision variables are set to be staffing variables and shift variables (i.e. the number of per-
sonnel, and the shifts that they must work). In the second stage the decision variables are expressed
as excess manpower variables and insufficient manpower variables. The optimisation model then min-
imises the number of man-hours given that the assigned crew meets the manpower demands of each
simulation scenario, during each time slot in the planning horizon. Example problems were solved with
approximately 700 man-hours to be scheduled and 6 different shift starting times. 60 scenarios were
simulated to represent the stochastic demand. To decrease solution times, the integrality constraints
were relaxed. The problem was solved to optimality by the simplex algorithm in CPLEX, in about one
hour, but it was noted that an increase in the number of scenarios leads to sharp increases in the model
run time.

A comparison for solving the personnel scheduling problem at a financial centre by an integer pro-
gramming approach and a stochastic programming approach was made by Zhu and Sherali (2009).
The integer programming model assumed a deterministic demand profile, whereas the stochastic pro-
gramming model used two-stage decisions where scenarios represented random realisations of the
demand data. These variations were based on a normal distribution, where the average was derived
from historical data. An example problem with 11 skill groups, 6 locations, and 12 time periods was
solved by the branch-&-cut algorithm in 22 seconds. For the stochastic programming approach only
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15 scenarios were used to vary the demand. A Benders’ decomposition was done to decompose the
problem, avoiding memory issues. An optimal solution was reached in over 10 hours. However, the
results obtained from the stochastic model were actually worse than from the deterministic model (more
adaptions to the original schedule were required). Other example problems with more scenarios (100+)
yielded better results for the stochastic approach, at the cost of even higher run times for comparable
problem sizes.

Easton (2011, 2014) developed stochastic programming models to solve personnel scheduling
problems in general service environments while facing uncertain demand and employee attendance.
Similar strategies are used as in Yan et al. (2008) and Zhu and Sherali (2009): in the first stage opti-
mal staffing and scheduling decisions are made without random realisations of demand and employee
absence known. Then, based on realised demand and attendance scenarios, the cross-trained em-
ployees are re-allocated to different times and locations, in order to hedge against these uncertain-
ties. Easton (2011) mentions that this approach leads to increased scheduling flexibility, which is an
efficient method to mitigate the effects of employee absenteeism. The way in which the uncertain
parameters are realised is different for both approaches. Easton (2011) uses simulations to express
the distributions for demand and attendance, whereas Easton (2014) uses predetermined estimates of
the expected sales numbers, given a certain personnel schedule and a certain realised demand and
employee attendance profile. Both models were solved through the branch-&-cut algorithm, but no
computational efforts required to solve any of the hypothetical example problems were reported.

2.4.3. Heuristic solution methods
The airline reserve crew pairing problem is a combinatorial optimisation problem (Bayliss, 2016). These
kind of problems have a finite solution space, which may quickly become too large to enumerate fully
(Bianchi et al., 2009; Yang et al., 2012). Various exact algorithms for combinatorial optimisation prob-
lems are subject to exponentially increasing solution times, which may lead to computational intractabil-
ity. Heuristic algorithms are designed to derive high quality solutions with limited computational effort,
without guarantee of finding a global optimum (Bianchi et al., 2009). In other words, computational
performance can be gained at the cost of solution accuracy (Yang et al., 2012).

This subsection investigates the applicability of heuristic solution methods to the airline reserve
crew pairing problem. First, the use of heuristic algorithms towards stochastic and dynamic scheduling
problems is presented, after which hybrid heuristics are introduced.

Applications to stochastic scheduling problems
Bianchi et al. (2009) mention in a survey paper that the application of metaheuristics to stochastic
combinatorial optimisation problems is a recent, but growing research area. However, most of the ap-
plications that are considered in this survey are stochastic travelling salesman problems and stochastic
vehicle routing problems. The use of heuristics to solve personnel scheduling problems with stochastic
demand is limited.

Easton and Mansour (1999) applied a genetic algorithm to personnel scheduling, with the aim to
find a single procedure to solve general set covering, and deterministic and stochastic goal programs.
Genetic algorithms are population based metaheuristic algorithms based on evolutionary principles
(Bianchi et al., 2009). In Easton and Mansour (1999), it is mentioned that the workforce demand in the
deterministic problem is usually determined by separate analysis techniques, such as queuing models.
This corresponds to the demand models presented in Section 2.3. The stochastic problem in Easton
and Mansour (1999) is modelled similarly to a stochastic programming model. For each realisation of
the demand, staffing constraints are defined for each time period. It was shown that for the general
set covering problem, the genetic algorithm was a factor 10 faster and closer to the true optimum
than a branch-and-bound algorithm. For the stochastic scheduling problem, the genetic algorithm was
compared to simulated annealing and tabu search metaheuristics, which were slightly outperformed in
solution quality by the genetic algorithm, for a comparable solution time.

The workforce scheduling problem with uncertain demand and variable employee productivity has
been approached by Thompson and Goodale (2006). They claim the linear representations of staff
scheduling problems are often inaccurate due to the stochastic nature of demand arrival. To cope with
the stochastic demand, Thompson and Goodale (2006) use a set of linear approximation functions,
implemented by a look up table. The resulting problem was solved by a variety of simulated annealing
heuristics, which yielded results that were close to optimality. The authors did not report any computa-
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tional efforts required to solve the problem, nor did they attempt to compare the algorithms to exact or
other heuristic approaches.

Bayliss (2016) is the only reference to apply heuristic solution methods to the airline reserve crew
pairing problem. The objective was to minimise the number of unresolved disruptions in a flight sched-
ule, given that reserves can cover disruptions. A variety of heuristic solution methods was used in
combination with analytical models to evaluate the objective function. Below an overview and compar-
ison between the heuristic applied by Bayliss (2016) is given. Afterwards, the heuristics are compared
to each other. Martí and Reinelt (2011) distinguish between construction methods and improvement
methods. Construction methods are heuristics that build up a solution from nothing, whereas improve-
ment methods are heuristics that start with some feasible solution and, step by step, aim to improve
the initial solution (Martí and Reinelt, 2011).

The Forwards Heuristic allocates reserve crew pairings one by one at starting times that decrease
the resulting probability of disruptions the most. The Backwards Heuristic starts with reserve crew
assigned to each departure in the flight schedule. Reserves are then removed one by one until a
solution is found that has the maximum number of allowable reserve crews. Note that the resulting
schedules from both the Fowards Heuristic and the Backwards Heuristic may be different, since the
non-linear objective order may be sensitive to the order in which reserves are added or removed.

The Basic Greedy heuristic builds a complete solution before evaluating the schedule. It directly al-
locates reserves to flights with the highest original disruption probability, until all reserves are assigned.

The improvement heuristics below are divided into local search based methods and population
based methods. Local search based methods explore solutions that are in the neighbourhood of the
current solution (i.e. solutions that only slightly differ from the current solution). Each iteration, the
solution moves to the most promising neighbouring solution, by which a path through the solution space
appears (Martí and Reinelt, 2011). All local search algorithms used the cut and insert neighbourhood,
which corresponds to shifting the start time of one reserve crew.

Hill Climbing is a basic local search heuristic. From an initial solution, it moves towards the best
neighbour if and only if it is better than the current solution. A considerable drawback of this approach
is that this search method tends to get stuck in local optimal solutions, which may perform relatively
bad from a global point of view.

The Tabu Search metaheuristic, as originally proposed by Glover (1989), uses the same neighbour-
hood as the Hill Climbing heuristic, but to avoid getting stuck in local optima a tabu list is incorporated
in the algorithm. This tabu list prevents that previously made moves are made again within a short
term. Also, non-improving moves are accepted, which means that the search path can escape from
local optima. In Bayliss (2016), 200 iterations were used and the tabu list had a length of 50 iterations.

Another metaheuristic employed is Simulated Annealing. This method is based on the cooling (an-
nealing) process of metals, aimed to intensify the search towards later stages of the solution procedure
(Kirkpatrick et al., 1983). Bayliss (2016) uses a temperature reduction every 4 iterations, and a tem-
perature reduction factor of 0.999. The initial and final temperatures are 3 and 0.001, respectively.
Non-improving moves may be selected with a certain probability, which decreases as the search pro-
cess progresses.

The Variable Neighbourhood Search method was proposed as a new metaheuristic by Mladenović
and Hansen (1997). It uses a multitude of predefined neighbourhoods in sequence, in combination with
a local search algorithm. The neighbourhoods are used in a fixed order and in each iteration a random
solution from the current neighbourhood is generated. From this solution, a local search technique is
applied to improve the best solution found so far. If no improving solution can be found, the search
progresses to the next neighbourhood in the sequence. If a better solution is found, the first neighbour-
hood in the sequence is used again. The solution procedure ends when the final neighbourhood in the
sequence yields no improving solutions. Bayliss (2016) used five neighbourhoods, but did not explain
how these neighbourhoods work.

Genetic algorithms belong to the class of population based algorithms, which perform search pro-
cesses that describe the evolution of a set of solutions in the search space, instead of the trajectory of
a single solution, as in local search methods (Blum and Roli, 2003). Genetic algorithms can be defined
as computational models of evolutionary processes (Blum and Roli, 2003), where solutions are defined
as strings of genetic code (Bayliss, 2016). These strings are mutated to create offspring, which base
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most of their genetic code on their parents, but are changed according to certain crossover rules. The
idea is that parents with a high fitness level (i.e. a favourable objective function value) create fit off-
spring. At each iteration the least fit strings are eliminated, which guides the search process towards
a global optimal solution (Blum and Roli, 2003). For the reserve crew pairing problem, Bayliss (2016)
uses single point crossover and a mutation rate of 0.001 (i.e. one in a thousand genes gets changed).
The population size is 100 and 100 iterations are performed (Bayliss, 2016). It is mentioned that the
mutations may lead to unfeasible solutions, where the incorrect amount of reserve crew was scheduled.
This was solved through application of the Forwards Heuristic or Backwards Heuristic which added or
removed reserves one by one.

Ant Colony Optimisation was originally proposed by Dorigo et al. (1996), and is based on the for-
aging behaviour of ants (Blum and Roli, 2003). Ants are able to efficiently find shortest paths between
food sources and their nest by leaving pheromones on these paths, which are sensed by other ants.
As a system converges, shorter paths gradually obtain a higher concentration of these pheromones,
leading to increased activity by the ants on these paths. Dorigo et al. (1996) describes the depositing
of pheromones as a means to provide positive feedback, which allows for rapid discovery of good so-
lutions. Also, Dorigo et al. (1996) says that the use of a colony is a means of distributed computation,
which prevents early convergence towards a possible local sub optimal solution. Bayliss (2016) de-
scribes a system with 100 ants where each ants visits a number of reserve duty start times equal to the
total number of reserve crew. That is, each route of an ant defines a complete set of reserve pairings.
Based on the cumulative distribution of disruptions, a certain amount of pheromones are deposited.
Over 200 iterations, 5% of the pheromones is removed on each route in each iteration. Through this
scheme, improved sets of reserve crew pairings emerge as paths with large amounts of pheromones
on them (Bayliss, 2016).

All of the heuristic procedures described above, were compared to each other and to an enumera-
tion algorithm by Bayliss (2016) in a series of 20 example problems. The algorithms were compared by
objective value (sum of disruption probabilities) and required solution time. The enumeration algorithm
required 1296 seconds per problem to obtain optimal solutions. The Tabu Search and Genetic Algo-
rithm methods were able to derive optimal solutions. The Tabu Search method required 32 seconds,
and the Genetic Algorithm required 9 seconds. The Simulated Annealing and Variable Neighbourhood
Search methods also yielded low optimality gaps, but slightly worse than the Tabu Search algorithm
with similar run times. The Hill Climbing heuristic yielded near optimal objective function values with run
times of only a couple of seconds. The other heuristics all performed worse than the aforementioned
ones.

Hybrid heuristic methods
The solution methods in Bayliss (2016) have been used to create sets of reserve crew pairings that
are defined only by their start times. The performance of these methods in terms of objective function
values and required solution time is unknown when reserve pairings vary in length and are allowed
to include regular flight duties. This added flexibility increases the size and changes the structure of
the solution space, which can influence the effectiveness of above heuristics. For example, the local
search algorithms use a neighbourhood definition that only allows changing pairing start times. This
does not allow a full exploration of the solution space when the pairings are defined more flexible.

Van den Bergh et al. (2013) find that hybrid heuristic techniques are increasingly being used to solve
personnel scheduling problems. These techniques combine multiple (meta)heuristic algorithms into
new solution procedures, aimed to increase the overall method effectiveness (Van den Bergh et al.,
2013; Blum et al., 2010). Blum and Roli (2003) describe that intensification and diversification are
central concepts in driving such heuristic methods towards high performance. Intensification is defined
as adaptation of the search strategy to encourage move combinations and solution features that were
found to perform well before, whereas diversification is defined as encouraging the search process to
visit regions of the solution space that have not been visited before (Glover and Laguna, 2013). Hybrid
heuristics have not been considered by Bayliss (2016), so it is unknown if their application to the airline
reserve crew pairing problem is an effective way of solving it, in terms of solution quality and time.
Below, some examples from the general personnel scheduling literature are presented that combined
multiple (meta)heuristic methods and could be translated to the airline reserve crew pairing problem.
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Brusco and Jacobs (1998) apply a simulated annealing algorithm to general personnel scheduling
problems. Their aim is to minimise employee costs while satisfying a minimal staffing requirement over
a number of time periods. They claim that simulated annealing algorithms require high computational
effort before converging to an optimal solution. To converge to the optimal solution, separate proce-
dures were defined that removed (drop routines) and added (build routines) employees from and to the
schedule. The drop routines were based on the sum of understaffing that would result from dropping
each active tour from the schedule. This sum was divided by the costs of the tour, where the tour with
the smallest ratio was removed. The build routines were based on the sum of understaffing covered by
a tour, divided by the costs of the tour. The tour with the largest ratio was added to the schedule. It was
found that the best solutions generated were 28% closer to the lower bound than a practical solution
implemented for airport ground scheduling.

Burke et al. (2003) describe a framework based on a variable neighbourhood search approach
that is used to solve nurse scheduling problems. They describe that large neighbourhoods promote
diversification and that small neighbourhoods promote intensification. They also propose the use of
neighbourhood-algorithm pairs. For large neighbourhoods, fast solution algorithms are required so
that interesting regions in the solution space are quickly identified. On the other hand, thorough al-
gorithms should be used for smaller neighbourhoods that can intensely search for optima. For each
neighbourhood-algorithm pair, unique stopping criteria are defined. Burke et al. (2003) use a multitude
of neighbourhood-algorithm pairs in a variable neighbourhood search framework, which was shown to
yield favourable schedules in highly constrained environments. They conclude that for problems with
complex search spaces problem specific neighbourhoods can be developed that increase the appli-
cability of regular heuristics. They claim that it is beneficial to perform intensive local search in the
immediate surrounding of a schedule until an optimum is found. Afterwards, the exploration of wider
environments by varying the neighbourhood is advised.

The usage of a search framework that includes multiple optimisation algorithms to balance diversi-
fication and intensification is explored by Xu et al. (2015). They developed a teaching-learning based
algorithm consisting of three phases to solve a job-shop scheduling problem where the job processing
times are stochastic. In the first (teaching) phase a genetic algorithm is used that creates offspring from
the best solution (the teacher) and each other solution (the students) in the population. In the second
(learning) phase a fraction of the best students are crossed-over with each other. In the third (study-
ing) phase, a greedy local search is used to improve the best solution so far. A comparison in solving
some benchmark problems with a number of existing algorithms demonstrated the effectiveness of the
proposed algorithm.

2.4.4. Dynamic programming
Hillier (2012) defines dynamic programming as a modelling technique to make a sequence of inter-
related decisions, where an optimal combination of decisions must be found. It is mentioned that
no standard mathematical formulation exists for dynamic programming problems, but that careful un-
derstanding of a problem structure is required to determine whether or not a problem lends itself for
dynamic programming.

A basic dynamic programming problem consists of a number of stages, where a decision is required
at each stage. At each stage, a number of states describe the various conditions that a system can be
in. A decision must be taken at each stage that transforms the system from a current state to a state
corresponding to the next stage. The aim of dynamic programming is to find a series of decisions (an
optimal policy) for the overall problem, so that an objective is achieved (Hillier, 2012).

A multi-stage problem is faced by Davis and Reutzel (1981), who consider processing operations at
a bank. This problem structure is dynamic because work may be backlogged: when not enough staff
was available in a previous period to process all incoming work, the work that is leftover may continue
into the next period. The objective function is a cost minimisation, where costs are incurred both from
staffing numbers and unprocessed work at the end of the day. Davis and Reutzel (1981) define the
stages as the number of periods until the end of the operations. The state of the system is defined
through the number of employees who started their shift prior to the current stage and the amount
of processing backlog. The amount of backlog was discretised to decrease the number of possible
states, which was necessary to prevent a computationally intractable problem. It is recognised that the
number of unique shifts that continues into future stages grows rapidly, and an increase in the number
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of shifts may lead to excessive computing times. The decision variables were defined as the number
of employees that would start a shift in the current stage. A case study with 9 stages and 9 types of
shifts was solved for two step sizes in the discretisation of the backlog levels. The number of possible
combinations for staff levels ranges from 38,760 to 593,775. Solution times were reported of about 5
minutes for the largest problem instances. However, in terms of solution times and solution quality, the
dynamic programming model did not outperform an integer programming approach (Davis and Reutzel,
1981).

The allocation of doctors to shifts in a hospital emergency department was solved through a dynamic
programming approach by Vassilacopoulos (1985). The stages were defined as the number of time
periods in the scheduling horizon, whereas the number of states followed from the change in staffing
levels with respect to the previous period, which is a strategy to reduce the possible number of states
of the system. Vassilacopoulos (1985) did not report any solution times required to solve the problem.

Jönsson (1987) applied dynamic programming to determine the number of reserve bus drivers. The
aim is to find the policy that minimises the costs for unused bus drivers, the costs for cancelled bus
tours, and the costs for changing the reserve buffer level. The state of their model is defined through
the current buffer level, the total number of reserves that started before the current stage, and the total
number of buffer level changes up to and including the current period. The decision variable is defined
as the change in buffer level size in the current period. The minimum shift length was defined to be
4 hours in sequence. Through this requirement, the number of possible decisions in each stage was
implicitly constrained, which was important to keep solution times within acceptable limits. It is also
noted that the number of allowed changes in the buffer level can be constrained manually if the shift
length limitation is not sufficient. No results were given with respect to solution times for the examples
that were considered. A comparison with other approaches or the current practice in industry has not
been done either.

With respect to the reserve crew pairing problem, Bayliss et al. (2012) describe a pruned dynamic
programming algorithm to determine the optimal starting times for reserve cabin crew. The stages are
defined through the departure number of flights in an airline schedule, and the states are defined by
the number of reserve crew assigned. The decision variables are defined binary: whether a reserve
is scheduled at this departure or not. To reduce the size of the solution space upper bounds and
lower bounds are heuristically estimated. Therefore, Bayliss et al. (2012) describe that this method is
essentially a heuristic algorithm, but with a high probability of attaining optimal solutions. It is stated that
this method can be made faster and more ruthless, or slower and more careful by tuning the upper and
lower bounds. The aim of the model was to minimise the sum of cancellation probabilities for all flights
in the schedule, given a set of reserve pairings. Therefore, this algorithm was used iteratively with the
analytical evaluation model (Bayliss et al., 2012; Bayliss, 2016) that has been described in Section 2.2.
Optimal solutions were obtained for an example problem with 25 stages and 9 available reserves in
38 seconds (3% of the time required for full enumeration). Note that the definition of reserve pairings
is rigid: it is only defined by the pairing start time and the pairing length is fixed. For reserve pairings
with variable lengths it is expected that the number of decisions and states increases exponentially,
because there is more flexibility in defining possible pairings.

Elshafei and Alfares (2008) describe a general personnel scheduling problem with a unique cost
structure, where employee costs are dependent on scheduling decisions made in previous stages.
Therefore, dynamic programming is applied to solve this problem. Their objective is to minimise the
total labour costs. The stages are the days in the planning horizon and the states are combinations
of feasible days-off schedules defined for all employees at a certain time period. The amount of em-
ployees is considered fixed, and determined based on rule-based methods and a certain demand. The
authors do not report on the total number of states in each stage, which makes it difficult to judge the
computational efficiency of this method.

Dynamic programming can also be applied when the outcome of decisions is uncertain. These are
Markov decision problems, which can be termed as dynamic programming where decisions are made
under uncertainty (Koole and Pot, 2005). This approach is taken by Pinker and Larson (2003), who try
to determine the number of regular and flexible employees that should be employed such that labour
costs and the costs incurred by backlogging work are minimised. They consider uncertainty in demand
and in employee absenteeism, where each employee has an independent probability of being present.
Different decisions are taken in even and odd stages: in even stages the usage of contingent workers
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is decided on, in uneven stages decisions are made on worker overtime. Pinker and Larson (2003)
mention that solving the dynamic programming model can be computationally intensive. It is noted that
every time the problem size doubles, the expected run time increases by a factor 16.

Problems in the call centre environment have been solved using dynamic programming by Koole
and Pot (2005). The objective of this research was to obtain good call routing policies (i.e. which
agent skill group answers which call). Koole and Pot (2005) mention that a shortcoming of dynamic
programming is that for high-dimensional systems (e.g. call centres) the state space becomes too large,
leading to problems that are computationally intractable. In the literature, this is known as the curse
of dimensionality (Bertsimas and Demir, 2002; Powell, 2009). Therefore, Koole and Pot (2005) revert
to approximate dynamic programming (ADP). Powell (2009) coins ADP as an umbrella for modelling
techniques that solve problems that are large, complex, and usually stochastic. The essence of ADP
is that the function that expresses the value of a state is approximated by a statistical function. It is
recognised that the effectiveness of ADP strongly depends on the specific problem structure, and how
that structure is exploited. Powell (2009) says that the technique often works well in theory, but does
not always deliver in the field.

Koole and Pot (2005) employ an ADP technique that only considers a subset of all possible states,
which is called the set of representative states. They do this by running simulations of the call centre
environment, that randomly pass some of the possible states in the system. The simulation scenarios
are selected either at random or such that the error in linearisation of the value function is minimised.
Koole and Pot (2005) report that the random selection of scenarios yields results that are hardly any
better than manually constructed policies. The second method yielded improved results, but for this
method no reports were made on the computational burden of the program.

2.4.5. Simulation optimisation methods
Optimisation problems where a closed expression for the objective function is not available, or where
the objective function is too complex to evaluate exactly, can be solved by simulation optimisation. A
simulation model is then used to obtain a noisy estimate of the expected performance of a solution,
as has been described in Subsection 2.2.2. Andradóttir and Prudius (2009) mention the importance
to design specialised methods that are able to obtain near-optimal solutions in the presence of noise.
This section presents a number of solution methods suitable for simulation optimisation.

First, two general frameworks from Andradóttir and Prudius (2009) and Xu et al. (2010) are dis-
cussed. Both frameworks balance computational effort between explorative global search, exploitative
local search, and simulation estimation. The aim of global search methods is to identify promising
regions in the entire solution space. For global search methods, the probability of identifying better
solutions decreases over time. Therefore, local search methods should be used to search for better
solutions in the promising region (Andradóttir and Prudius, 2009).

Andradóttir and Prudius (2009) propose to integrate the three components in their Balanced Explo-
rative and Exploitative Search with Estimation (BEESE) framework. The framework switches between
global search and local search depending on what is expected to be most appropriate at the current
state of the search process. The switching point is determined by tracking the improvement in the
objective function value between fixed review points. When the improvement between these points is
below a certain threshold, a switch is made. When the switch is performed too early, a non-optimal
subregion is locally searched, whereas switching too late puts too much effort in finding promising sub-
regions. The simulation estimation component has also been integrated in the framework: with a fixed
probability an optimisation algorithm is used, otherwise additional simulations of the best solution found
so far are done to increase the accuracy of the estimated objective value. No specific algorithms were
proposed as global or local search methods. Instead, it is said that the framework is general enough
to include most search methods available in the literature.

Xu et al. (2010) proposed a similar framework that identifies solutions that are statistically guaran-
teed to be close to the optimum, without having to visit all solutions. Instead of integrating the framework
components, the Industrial Strength COMPASS (ISC) framework performs a global search phase, a
local phase, and a clean up phase in sequence. For the global search phase, a genetic algorithm is
used to identify promising regions in the solution space. When the genetic algorithm fails to improve the
solution quality in a fixed number of iterations, or a fixed computational budget is exceeded, the local
phase is started. For each of the feasible regions identified in the global search phase, the COMPASS
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algorithm is used. The COMPASS algorithm is a search method developed for simulation optimisation,
guaranteeing local convergence (Hong and Nelson, 2006). The COMPASS algorithm is basically a
hill climbing algorithm with an adaptive neighbourhood structure, from which solutions are randomly
sampled. In the ISC framework, the neighbourhood structure is defined by the adaptive hyperbox al-
gorithm from Xu et al. (2013). This algorithm constructs the neighbourhood based on previously visited
solutions that are closest to the incumbent solution. The benefit of the adaptive hyperbox algorithm is
its scalability for high-dimensional problems (i.e. problems with many decision variables). In the ISC
clean-up phase, a statistical ranking and selection procedure is used to identify the best solution from
the set of local optima. Ranking and selection procedures guarantee that the probability of selecting
the best solution from the set exceeds a user-specified value (Gosavi, 2015).

The above frameworks are flexible to the specific optimisation algorithms that are used. Below,
a number Stochastic Adaptive Search (SAS) methods from the simulation optimisation literature are
presented which can be used as search algorithms in an optimisation framework. SAS techniques tend
to adapt during the search process, based on experiences with previous solutions (Gosavi, 2015). They
have been the dominant paradigm for designing simulation optimisation algorithms with large solution
spaces (Xu et al., 2013).

Thathachar and Sastry (1987) developed a global search method to learn optimal decisions by
modelling a problem as a game played by a team of cooperating learning automata, with the aim of
maximising the reward in the game. Gosavi (2015) describes that the method starts like a pure random
search, but starts adapting by updating the probabilities of selecting decision variable values based on
the objective function values of previous solutions. Decision variable values that produce good solutions
are rewarded through an increase in their selection probability, whereas bad decision variable values
see their selection probabilities decrease. For the algorithm to converge quickly, accurate upper and
lower solution bounds should be set. When these are too conservative, the convergence of the search
process is slowed.

Similar to the learning automata method, the Model Reference Adaptive Search (MRAS) method
uses a probabilistic distribution to generate candidate solutions (Hu et al., 2007). The distribution
is updated based on observations in the previous iteration, aiming to bias the search towards high
quality solutions. A difference between the learning automata method and the MRAS method is that
MRAS learns about complete solutions in the solution space, instead of individual decision variables.
Therefore, for large solution spaces, computer memory issues can arise.

Gosavi (2015) mentions the Greedy Randomised Adaptive Search Procedure (GRASP) as an SAS
method that can be used for combinatorial simulation optimisation problems. Feo and Resende (1995)
describe that the GRASP method consists of a greedy adaptive construction phase, followed by an
improvement phase on the constructed solution. In the construction phase, solutions are iteratively
generated, one element at a time. The element to be added is selected randomly from a list of elements
that have the largest benefit to the objective function. After an element is added, the benefit of each
element is adapted based on the solution so far. The aim of the construction phase is to create high
quality initial solutions for the local search procedure (Feo and Resende, 1995). This is comparable
to identifying promising regions during the global search in the above frameworks. Feo and Resende
(1995) indicate that GRASP is flexible to the algorithm used in the improvement phase. An example is
given where genetic algorithm mutation procedures are used to enhance the local search.

Stochastic comparison is a global randomSASmethod proposed by Gong et al. (2000). Themethod
uses random search to avoid dependence on a neighbourhood structure, realising that poor neighbour-
hood structures can hurt algorithm performance. The aim of the algorithm is to guarantee convergence
to an optimal solution while the evaluation function is noisy. Given are an initial solution 𝑋ኺ and a
randomly generated candidate solution in iteration 𝑘, 𝑋፤. 𝑋ኺ should be replaced by 𝑋፤ if the objective
function value for 𝑋፤ is better than 𝑋ኺ for all 𝑀፤ times both solutions are compared to each other. 𝑀፤
increases as 𝑘 increases, so that the influence of noise decreases as the iteration count increases. This
is beneficial, because the convergence of the objective function value is asymptotic. Gong et al. (2000)
showed that the algorithm has better convergence properties than a simulated annealing algorithm,
where convergence was harmed due to noise in the objective function values.

The Nested Partitions (NP) method has been developed by Shi and Ólafsson (2000) and has been
adapted for stochastic optimisation in Shi et al. (2000). The algorithm divides the solution space into a
most promising region and a surrounding region. At each iteration, the promising region is partitioned
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(i.e. divided) into𝑀 disjoint subregions, according to a predetermined partitioning scheme. Each of the
subregions and the surrounding regions are randomly sampled and the sampled solutions are eval-
uated by simulation. The region that on average yields the best objective function value, is selected
as the most promising region for the next iteration. Eventually, there will be regions that contain only
one point in the solution space, called singleton regions. The optimal solution of the NP method is the
solution in the singleton region that has been visited most often. The partitioning scheme (i.e. how the
partitions are defined) implicitly imposes a structure on the solution space. Therefore, the effectiveness
of the NP method depends on how the partitioning is done. This can be a disadvantage for simulation
optimisation problems, where little is known about the structure of the solution space (Amaran et al.,
2014).

The global search algorithms presented above converge to the optimal solution, even if the objective
function is evaluated by a simulationmodel. However, they are asymptotically convergent, meaning that
the global optimum is only obtained if the number of iterations goes to infinity. In practice, the available
computational effort is always limited, which is a disadvantage for these global search algorithms.
The proposed frameworks from Andradóttir and Prudius (2009) and Xu et al. (2010) aim to cover this
drawback by enhancing the global search with local search, with the goal to obtain high quality solutions
with limited computational effort.

2.4.6. Rule-based methods
Similar to demand determination, some straightforward capacity scheduling approaches have been
used in the literature. For instance, Bayliss (2016) used a full enumeration to find the best set of
reserve pairings. This approach is guaranteed to find the best solution possible, since each and every
combination is considered. However, for many combinatorial optimisation problems, a full enumeration
quickly becomes computationally intractable (Bayliss, 2016).

Another approach taken by Bayliss (2016) is to base the start times of reserve pairings on demand
that follows from repeated simulations of an airline schedule without a reserves present. The total
reserve demand over all simulation runs can be represented in a graph with the departure number on
the horizontal axis and the number of required reserve crew on the vertical axis. Reserve crew is then
allocated at intervals with an equal area under the required reserve graph. This method was also used
iteratively, where the generated reserve pairings were used for new simulations. Bayliss (2016) states
that it is possible that this approach never converges to an optimal solution.

Bijvank et al. (2007) investigated the effect of the length of the reserve pairings on the quality of
the sets of reserve pairings. Their strategy was to look at the longest flight in each day of the flight
schedule, and copy that length to the length of the reserve pairings. The number of reserve pairings
was adjusted so that the total reserve capacity remained approximately equal. Throughout the paper,
Bijvank et al. (2007) make a number of assumptions that undermine the validity of this research. For
example, they assume that a reserve can be called for duty for a period of 24 hours (i.e. everything
is rounded to days). They also assume complete knowledge of all disruptions before the reserves
pairings are designed, and days off for reserves are completely neglected.

Finally, Paelinck (2001), who developed an analytical model to evaluate a set of reserve pairings,
proposed to derive optimal reserve pairings through trial-and-error. Manually constructed solutions can
be evaluated using the analytical model. Similarly, Gaballa (1979) also used manually constructed sets
of reserve pairings as an input.

2.4.7. Synthesis of capacity allocation methods
In this section, various methods to allocate the capacity in a personnel scheduling environment have
been presented. A synopsis of these methods is given below:

• Exact solution methods;
• Heuristic solution methods;
• Dynamic programming;
• Simulation optimisation methods;
• Rule-based methods.



28 2. Literature review

Exact solution methods for stochastic scheduling problems are generally used to solve (stochastic)
integer or linear programming models. The models are solved by optimisation packages, which employ
algorithms such as branch & bound or the simplex algorithm. When the model for a scheduling prob-
lem is non-linear, the objective function or constraint values can be approximated through relaxation
of the non-linear functions. By application of linear cuts, the optimal solution is approximated in an
iterative manner. The relaxation and cutting process is found to be complicated and computationally
complex. Numerous heuristic procedures are applied to simplify the problem. The airline reserve crew
pairing problem is non-linear because of the possibility of overlapping reserve pairings. Therefore, the
suitability of using linear programming for the airline reserve crew pairing problem appears limited.

Stochastic programmingmodels have been applied in a variety of scheduling problemswith stochas-
tic demand. These kind of problems are generally solved as two stage problems, where initial staffing
levels are determined in the first step, assuming known demand. The second stage variables are often
adaptions to the initial staffing levels, which reduces the number of decision variables. This is only
possible when the number of available shifts is small, which does not hold for the airline reserve crew
pairing problem in this research. It is expected that due to the variable reserve pairing length and the
ability to include regular flight duties, the available number of patterns (shifts) is too large to effectively
employ stochastic programming.

Dynamic programming can be used to solve multi-stage problems, possibly with stochastic demand.
For dynamic programming methods, it is vital that the model structure is defined such that it lends itself
well for a dynamic programming setup (Powell, 2009). It is especially important that the number of
stages and states in the problem is limited, for the problem to remain computationally tractable. In
many of the problems encountered in the literature, this is done by adjusting a certain staffing level
through all stages. The possible number of adjustments usually has a smaller range than the absolute
staffing levels, which reduces the number of states. For the airline reserve crew pairing problem, it is
impractical to represent the large number of possible reserve pairings in a structure that is viable for a
dynamic programming model.

Above, it was found that it is difficult to use exact solution methods for non-linear optimisation prob-
lems. Also, it was seen that the expected performance of exact solution methods and dynamic pro-
gramming solutions suffers from increasing problem scales. The airline reserve crew pairing problem
is both non-linear and has a large solution space. For such problems, heuristic solution methods can
be used to derive high quality solutions for large scale non-linear problems with limited computational
effort (Bianchi et al., 2009). However, a drawback of heuristic methods is that there is no guarantee
that a global optimum is found during the solution process.

The application of heuristic solution methods to scheduling problems with stochastic demand is
limited (Bianchi et al., 2009). For the airline reserve cabin crew pairing problem, a variety of heuristic
methods was applied (Bayliss, 2016). In this problem, the reserve pairings were only defined by their
starting time. That is, their length was fixed and no regular flight duties were placed in the reserve
pairings. It is unknown how the heuristics perform for problems with more flexible reserve pairing def-
initions, resulting in a larger solution space. Resulting, the neighbourhood structure for local search
heuristics in Bayliss (2016) does not allow full exploration of the solution space when the reserve pair-
ings are defined more flexible.

Hybrid heuristic solution methods are increasingly being used to solve personnel scheduling prob-
lems (Van den Bergh et al., 2013). These techniques combine multiple heuristic algorithms into new
solution procedures that balance exploration and exploitation of the solution space, hereby increas-
ing the overall performance of the solution method. No hybrid heuristics have been developed for the
airline reserve crew pairing problem, so it is unknown if these methods are effective in solving it.

Simulation optimisation can be used when analytical evaluation of the objective function is too com-
plex, and a simulation model is used instead. If this is required, solution methods are available that
have been shown to converge when there is noise in the objective function values. Two frameworks
were developed to obtain high quality solutions in simulation optimisation problems. Comparable to
the hybrid heuristic solution methods, the frameworks balance between explorative global search and
exploitative local search. The global search algorithms for simulation optimisation generally converge
asymptotically to the global optimum. Hence, local search algorithms should enhance the global search
to obtain high quality solutions with limited computational effort.
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2.5. Synthesis of literature review
This literature study consists of two parts. The first part establishes a knowledge gap in the available
literature concerning airline reserve crew. The second part identifies possible problem approaches that
can be employed to solve the airline reserve crew pairing problem in the novel application area.

When establishing the knowledge gap in Section 2.1, it is found that the amount of research con-
cerned with airline reserves is limited. In particular, the design of reserve crew pairings that are as-
signed to regular crew who are periodically assigned reserve pairings has received little attention, even
though this approach is considered industry practice. References focusing on crew disruption manage-
ment generally assume that a set of reserve crew pairings has already been determined, which can
be used to cover open crew positions. The current state of the art has focused on solving the airline
reserve crew pairing problem for cabin crew. For this, the flexibility in how reserve pairings can be
defined is limited: reserve crew pairings are fully defined through pairing start times. It is assumed
that the length of the reserve pairings is constant and known in advance. Moreover, reserve pairings
are assumed to be fully dedicated to reserve duties. These assumptions can be challenged: reserve
pairings may vary in length and they can be combinations of reserve duties and regular flight duties.

These characteristics are especially relevant to long-range cockpit crew. Two reasons can be given
for this. Firstly, cockpit crew are themost expensive type of crew for an airline (Bayliss, 2016). Secondly,
regular long-range (i.e. intercontinental) flight pairings generally have a higher duration than short-haul
pairings. To cover these long pairings, long reserve pairings are required as well. If these reserve
pairings remain unused, the combination of long reserve pairings and expensive crew leads to a high
waste of resources. If a (shorter) regular flight is included in the reserve pairing, that flight can be
executed if the reserve remains unused. This increased flexibility in reserve pairing definition can
lead to higher reserve utilisation rates and lower waste of (unused) reserve resources. However, the
design of reserve pairings for long-range airline cockpit crew facing these characteristics has never
been addressed before. Therefore, solving the airline reserve crew pairing problem for long-range
cockpit crew is a relevant novel application.

Based on the identified gap in the literature, a research question has been defined that will be
answered if a research is conducted that closes the knowledge gap:

How should airline long-haul cockpit reserve crew patterns be constructed in order to minimise the
gap between scheduled reserve capacity and expected reserve demand?

The objective is to make recommendations on minimising the gap between scheduled reserve ca-
pacity and expected reserve demand of airline long-haul cockpit crew, by identification and evaluation
of possible reserve crew pairing methods that utilise airline schedule data.

Sections 2.2 to 2.4 have reflected on problem approaches to solve the airline reserve crew pairing
problem. Because the available literature specifically tailored towards this problem is limited, other
personnel scheduling domains have been consulted, focusing on stochastic problems. From this, an
overview of available problem approaches could be created, and assessed whether these approaches
can be translated to suitable strategies for solving the airline reserve crew pairing problem.

The problem approaches from the personnel scheduling literature were divided into three parts that
in general compose a personnel scheduling problem: scheduling objectives and evaluation, demand
estimation, and capacity allocation. Sections 2.2 to 2.4 present an overview of the available methods
for each of these parts, and reflect on their suitability to the airline reserve crew pairing problem. How-
ever, the discussion so far has only focused on each of the parts separately, even though a complete
problem approach has to link these parts together. Below, a synthesis of the available methods is
provided, such that complete problem approaches can be defined.

In Table 2.1 an overview of the methods for each of the parts of a personnel scheduling problem
is given, based on the findings from Sections 2.2 to 2.4. In essence, this table is a schematic repre-
sentation of the identification of the methods for each of the parts. Complete problem approaches can
be defined by choosing a method from each of the columns in Table 2.1, and combining them. How-
ever, in the previous sections it was found that some methods are ill-suited to be included in problem
approaches. Below, the suitability of the methods in Table 2.1 is further discussed.
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Table 2.1: Overview of all methods discussed in this literature study. Complete problem approaches can be devised by combining methods from each column.

Scheduling objective Demand determination Capacity allocation
• Minimise resource shortages • Directly from historical data • Exact solution method
• Minimise combined resource shortages • Derive theoretical data distribution • Heuristic solution method

and unused resources from historical data • Dynamic programming
• Minimise required resources while satisfying • Theoretical data distribution • Simulation optimisation method

service level • Rule based method • Rule-based method
• Minimise schedule costs • Assume known demand
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The objective of minimising resource shortages is feasible when there is a fixed number of available
resources that must be allocated in the schedule. Given that the demand is unpredictable in stochastic
scheduling problems, the optimisation consists of allocating the limited available resource capacity
such that the expected demand is covered to a maximum extent. This scheduling objective was used
by Bayliss (2016) for the airline reserve crew pairing problem, who aimed to minimise the eventual
number of expected disruptions, given that a fixed number of allocated reserve crew could be used to
cover disrupted flights.

A disadvantage of the previous objective is that the resource capacity cannot be based on the ex-
pected resource demand. That is, the resource capacity cannot be sized automatically. A combined
cost minimisation of unused resources and resource shortages solves this limitation. In addition, deci-
sion makers are able to shift the focus of the optimisation, either towards minimising unused resources
or towards minimising resource shortages. A drawback of this objective is that the problem must be
solved independently from other operations. If this is not the case, the optimised resource capacity can
be inaccurate. In this literature review, no references were found that approached the airline reserve
crew pairing problem with this scheduling objective.

Depending on the operational environment, the objectives posed above can be computationally
intensive to evaluate. It requires an expression for stochastic demand, and computation of how well
the allocated capacity covers the demand. When the objective is too complex to express in a single
function, separate evaluation models can be used to calculate the value of the objective function. Both
analytical and simulation evaluation models from the literature have been presented. Even though
these models are able to evaluate complex objectives, a limitation is that it can be computationally
intensive to do so. With respect to the reserve crew pairing problem, only analytical evaluation models
have been used to derive the objective function value. The effectiveness of using simulation evaluation
models is unknown.

Significantly less complicated to evaluate are the costs incurred for allocating the resources in a
personnel schedule. However, minimising schedule costs, possibly while satisfying a minimum service
level, is not a feasible objective for the airline reserve crew pairing problem. This is because reserve
pairings are executed by regular flight crew who are periodically assigned reserve pairings, meaning
that there are no direct costs incurred for scheduling reserve pairings.

Given that stochastic scheduling problems have been consulted, probability distributions are gen-
erally employed to represent demand profiles. They can be derived using historical data from practical
problems, or synthesised using theoretical parameters. A drawback of using historical data from prac-
tice is that eventual solutions may only be effective for a small range of problems. In addition, the
data from practice should be available and there should be sufficient data to obtain reliable parameter
values. These drawbacks do not occur when synthetic data distributions are devised. However, such
distributions can be non-representative for practical problems. A combination of real and synthetic data
distributions can improve overall results: a range of synthetic data distributions can be used to ensure
that solution methods are robust to diverse demand profiles, while data from practice can be used to
validate that the used methods are also effective in solving practical problems.

The required resource demand can also be assumed, or simple rule-based approaches can be used
to determine the demand levels. This can be helpful during the development stages of the research.
However, when high quality solutions are to be obtained, it is expected that these demand determina-
tion methods are too simplistic.

For the capacity allocation part, it was found that exact solution methods in combination with linear
programming models require complicated linear approximations when the problem characteristics are
non-linear (i.e. the objective function or constraints are non-linear functions). In particular, the evalua-
tion of the non-linear functions to determine if linear cuts should be added is computationally intensive
and requires excessive solution time. Depending on the scheduling objective, the objective function
of the airline reserve crew pairing problem can be non-linear. This occurs due to possibly overlapping
reserve pairings, which cause interaction effects that affect the objective function value. Given these
characteristics, it is expected that an exact solution process of a linear programming model for the
airline reserve crew pairing problem is difficult to implement.

Stochastic programming models using exact solution methods to solve stochastic scheduling prob-
lems suffer from scalability issues. A set of demand scenarios is generally used to represent the uncer-
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tainty in the demand profile, where the optimisation objective is to find a solution that works well for the
set of scenarios. The challenge that arises here is to find a a set scenarios that accurately represents
the demand, but is still small enough to remain computationally tractable. Due to this, most references
experienced excessive solution times to solve their stochastic programming models, and had to allow
linear relaxations so that faster solution methods could be used.

Similarly, dynamic programming models should be structured such that solving the model remains
computationally tractable. In particular, the number of stages and states in the problem should be
limited. Whether this can be done successfully, depends on the nature of the problem. For the airline
reserve crew pairing problem, it is impractical to represent the large number of possible reserve pairings
in a structure that is viable for a dynamic programming model.

Given the non-linear problem characteristics, and the scalability issues of the airline reserve crew
pairing problem, heuristic solutionmethods can be employed. Heuristic methods can derive high-quality
solutions with limited computational effort, at the price of not being able to guarantee global optimality in
solving the problem. Heuristic solution methods have been applied to the reserve crew pairing problem
before. However, these heuristics were considered in problems where the reserve pairings were only
defined by their starting time. The length of the pairings was fixed and no regular flights duties could
be included in the reserve pairings. Heuristic solution methods have not been used in solving airline
reserve crew pairing problems where reserve pairings can be defined more flexible. Therefore, their
performance in solving these kind of problems is unknown.

In addition, hybrid heuristic methods were identified as techniques that combine multiple heuristic
algorithms into new solution procedures. The aim of these methods is to effectively balance exploration
and exploitation of the solution space, hereby increasing solution quality. Such hybrid heuristics have
been successful in solving scheduling problems in other domains, but have never been applied to the
airline reserve crew pairing problem. Therefore, the effectiveness of these methods in solving this
problem is still unknown.

Finally, specific simulation optimisation methods can be used to generate personnel schedules if
the objective function must be evaluated by a simulation model due to its complexity. This introduces
noise in the objective function value, which influences convergence properties of solution methods.
Despite the positive convergence behaviour under stochastic evaluation of these methods, they are
generally asymptotically convergent to the global optimum. This means that infinitely many iterations
are required to obtain the optimum, which is a large drawback for these solution methods. To improve
the effectiveness of simulation optimisation, frameworks have been proposed that combine explorative
global search and exploitative local search techniques. Simulation optimisation solution methods have
never been considered for the airline reserve crew pairing problem.

All in all, feasible objectives were found to be minimisation of resource shortages or a combined
minimisation or resource shortages and unused resources. The second objective has never been
applied to the airline reserve crew pairing problem before. With respect to demand determination, it
is feasible to express the stochastic demand using data distributions from historical demand data or
from synthetic parameters. A combination of both methods can be used to neutralise the drawbacks
observed in the individual methods. For the capacity allocation, the use of hybrid heuristic methods
has been successful in solving personnel scheduling problems, but these methods have never been
applied to the airline reserve crew pairing problem before. Therefore their effectiveness towards solving
this problem is still unknown. The same holds for simulation optimisation methods. If the reserve crew
pairing problem requires a simulation model to evaluate solutions, simulation optimisation methods are
another original method to solve the airline reserve crew pairing problem.



3
Research design

The remaining chapters of this thesis aim to answer the research question that has been defined.
This chapter discusses the high level research design of the project. First, the scope of the project is
explained in Section 3.1. In Section 3.2 a research framework is presented that has been made with
the goal of solving the airline reserve crew pairing problem, and thus reaching the research objective.
Finally, the assumptions that were made in developing the models and performing the research are
listed in Section 3.3.

3.1. Project scope
This section defines the context of the airline reserve crew pairing problem with respect to the general
airline crew scheduling process. In Figure 3.1, the airline crew scheduling process is shown. The input
for crew scheduling is an airline flight schedule, indicating which flights have to be flown at what times,
and the corresponding aircraft types that the flights should be flown with. Using this information, crew
pairings are constructed that consist of sequences of duties and layovers, beginning and ending at a
crew base. The crew pairing problem consists of creating a set of pairings that covers all flights in
the flight schedule while complying with crew regulations such as minimum and maximum layover rest
and pairing lengths. For long-haul flights, the crew pairing problem is relatively straightforward, since
pairings in general exist of single return flight from and to an airline hub, satisfying the minimum rest
requirements.

Airline flight

schedule

Crew pairing

problem

Reserve

crew pairing

problem

Crew

assignment

problem

Figure 3.1: Position of reserve crew pairing problem in crew scheduling process.

In Figure 3.1, it can be seen that the airline reserve crew pairing problem is a separate problem that
is solved in parallel to the regular crew pairing problem. In the airline reserve crew pairing problem,
reserve patterns are constructed, which are defined as sets of reserve pairings. Reserve pairings
are pairings that include at least one day of reserve duty. Differentiation is made between pure reserve
pairings andmixed reserve pairings. In pure reserve pairings, the full reserve pairing consists of reserve
days.

Pure reserve pairing
A crew pairing of which each day is a reserve duty day.

In mixed reserve pairings, a regular flight pairing follows after a number of reserve days.

33
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Mixed reserve pairing
A crew pairing in which a regular flight follows after a number of reserve duty days.

In Figure 3.2, examples of a pure and amixed reserve pairing are given. In this figure, RES indicates
a reserve duty and FLT represents a day of a flight pairing. The advantage of mixed reserve pairings
is that long flight pairings can be covered with a relatively low number of reserve days that have to
be invested. This gives the airline the opportunity to cover a wide range of flight pairings, of varying
length and start time, while keeping the number of invested reserve days low. A disadvantage of using
mixed reserve pairings is that secondary disruptions are initiated by using a mixed reserve pairing,
because the initial flight assigned to the reserve crew cannot be executed by that crew anymore. These
secondary disruptions have to be covered by other reserve crew, possibly causing tertiary disruptions,
or more. This snowball effect of disruptions can be stopped by using pure reserves, whose usage does
not cause a secondary disruption.

MON TUE WED THU FRI SAT SUN

Pure RES RES RES RES RES RES

Mixed RES RES FLT FLT FLT FLT

Figure 3.2: Pure reserve pairing (top) and mixed reserve pairing (bottom). Usage of a mixed reserve pairing causes secondary
disruptions, because the original flight in the mixed reserve pairing cannot be executed by its original crew anymore.

The output from the regular crew pairing problem and the reserve crew pairing problem is a set
of regular flight pairings and reserve pairings that have to be assigned to crew. This is done in the
crew assignment problem, which has the goal to cover all pairings by a crew member, while satisfying
minimum rest requirements between pairings. That is, the output of the reserve crew pairing problem
serves as the input of the crew assignment problem. When mixed reserve pairings are assigned, a
regular flight pairing has to be included as part of the reserve pairing. The flight that is assigned to a
mixed reserve pairing is not determined in advance and can vary per instance of the reserve pairing.

Figure 3.3 illustrates a generic crew scheduling process with respect to a time horizon until the
flights are operated. On a strategic level, the size of the workforce has to be determined based on
the airline network and operations, where distinctions are made per posting (i.e. aircraft type) and
operational rank. Part of this problem are the transitions that crew can make between postings and
ranks. Given the workforce size for a specific crew type, a planning margin is required based on illness
and operational disturbances. During this process, a reserve budget is determined, which represents
the amount of days that should be included in the reserve patterns.
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Figure 3.3: Position of reserve crew pairing problem in airline crew scheduling process.

With the reserve budget known, reserve patterns are constructed based on the flight schedule per
posting and rank. The reserve patterns are taken into account in the scheduling process, where crew
are assigned flight pairings, reserve duties, and other activities such as training or vacation. In other
words, the crew assignment problem is solved in this phase. During this phase, crew are allowed to
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request specific flight pairings and leave periods. Four weeks in advance, the crew schedules are fixed
and published. From this point on, disruptions that are inflicted on the schedule possibly require the
usage of reserve crew to cover the disruption. In Figure 3.3, it can be seen that the airline reserve crew
pairing problem is situated between the planning and scheduling process. This agrees with Figure 3.1,
where the resulting set of reserve pairings is used as an input for the crew assignment problem. That
is, the airline reserve crew pairing problem requires input from a strategic planning and delivers output
for the assignment process.

The position of the airline reserve crew pairing problem within the generic crew scheduling process
allows to set the model specifications. Given that the problem is positioned between planning and
scheduling, the maximum run time of the model is not a critical factor, as opposed to for example
recovery problems, where ad-hoc solutions have to be generated in small time periods. However, in
order to execute required experiments in a practical amount of time, it is decided that the model should
return reserve patterns for realistically sized problems in the order of a couple of hours or less.

Furthermore, it should be feasible to complete the project within the duration of a master thesis,
which is a period of nine months. For this, the scope of the project should be limited. Therefore, it
has been decided to isolate the airline reserve crew pairing problem from the overall crew scheduling
problem. This implies that various assumptions are made to be able to obtain a workable project scope.
The assumptions are detailed further in Section 3.3.

Finally, it is preferred that the reserve crew pairing model is developed so that it can be implemented
in a more elaborate crew scheduling model in the future. For this, the inputs and outputs of the reserve
crew pairing model should be generic, allowing additional models to be developed that can accurately
determine or utilise the input and output of the reserve pairing model, respectively.

3.2. Design framework
The framework that serves as the basis of the research design is shown in Figure 3.4. The approach
that has been chosen to achieve the research objective is to develop various optimisation methods that
can be used to generate reserve patterns. Through a comparison of these methods the best method
to create reserve patterns can be identified. Using this knowledge, recommendations can be made on
how the gap between scheduled reserve capacity and expected reserve demand can be minimised.
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Figure 3.4: Design framework for the airline reserve crew pairing problem.

The core of the framework consists of the reserve pattern evaluation model and the reserve pattern
optimisation algorithms. The function of the evaluation model is to determine specific performance
measures of existing reserve patterns, which indicate the quality of the reserve pattern. The reserve
patterns that are evaluated can either be manually created by a human scheduler or be computer
generated. The evaluation model is used in combination with four optimisation algorithms. The optimi-
sation algorithms iteratively generate reserve patterns and evaluate them using the evaluation model,
aiming to return the best reserve patterns in terms of the performance measures after the optimisation
process has finished. The four optimisation algorithms are introduced here:

1. Random search
The random search algorithm generates reserve patterns as combinations of randomly selected
reserve pairings. This algorithm has previously been applied to the airline reserve crew pairing
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problem by Bayliss (2016), but it is the first time that it is applied to the airline reserve crew pairing
problem for long-haul cockpit crew. This algorithm is important for the research project for two
reasons:

(a) Random search is straightforward to implement, hence it can be used to demonstrate a proof
of concept of solving the airline reserve crew pairing problem;

(b) The other three optimisation algorithms use more advanced optimisation procedures, but all
incorporate some element of randomised search. Therefore, the random search algorithm
serves as a benchmark method that demonstrates the added effect of the other optimisation
methods over a pure random search.

2. Learning Automata Search Technique (LAST)
The LAST algorithm is a random search technique first introduced by Thathachar and Sastry
(1987), that uses adaptive search procedures to improve the performance of the random search
algorithm. The motivation to use LAST in this research project is that learning based optimisation
techniques have never been applied to the airline reserve crew pairing problem before. Therefore,
their performance is still unknown. From a methodological viewpoint, this is a novel element in
the scientific domain.
A description of the general LAST method found in Gosavi (2015) is used as the basis for this
algorithm. The method starts like a pure random search, but starts adapting by updating the
probabilities of selecting decision variable values based on the objective function values of pre-
vious solutions. Decision variable values that produce good solutions are rewarded through an
increase in their selection probability, whereas bad decision variable values see their selection
probabilities decrease. In this research project, the general method has been enhanced to deal
with the airline reserve crew pairing problem more effectively, which is a novel element of this
research. The way that the algorithm is made specific for the airline reserve crew pairing problem
is that learning rate weights are introduced that increase or decrease the learning rate for specific
reserve pairings, based on their performance in previously generated solutions.

3. Greedy Randomised Adaptive Search Procedure (GRASP)
The third optimisation algorithm is a construction based algorithm called GRASP, which is based
on a general GRASP algorithm as devised by Feo and Resende (1995). The general GRASP
algorithm starts from a zero solution, and adds one decision variable per iteration, depending
on which decision variable improves the objective function the most during that iteration. In this
research, the algorithm is adapted specifically for the airline reserve crew pairing problem, which
is a novel point of this research.
The GRASP algorithm is particularly interesting to the airline reserve crew pairing problem be-
cause the use of mixed reserve pairings influences which decision variable (i.e. reserve pairing)
is optimally used in the next iteration. Similar to the LAST algorithm, the GRASP algorithm is
newly enhanced, specifically for the problem considered in this research. To gain computational
performance, the contribution of each reserve pairing when added to the incumbent solution is
predicted (the pairing potential). The pairing potential is based on the number of flights that a
reserve pairing covers and the disruption probabilities of those flights.

4. Greedy Randomised Adaptive Search Procedure - Longest Flights (GRASP-LF)
The GRASP-LF method is newly devised for this research project and is a variation to the regular
GRASP method. It is based on rules taken from the current industry practice, where the longest
flights on each day in the schedule are covered first. It is currently unknown if this approach yields
high quality reserve patterns. Therefore it is included in this research.

The evaluation model and optimisation algorithms are considered in more detail in Chapters 4 and
5, respectively. The input for the optimisation process is an airline flight schedule which is used to
measure the quality of reserve patterns against. That is, a reserve pattern should always be optimised
for a corresponding flight schedule, meaning that the reserve pattern is only optimised for that specific
flight schedule. In other words, the flight schedule serves as the input problem for the airline reserve
crew pairing problem. Flight information of individual pairings should be included in the flight schedule.
Part of this information are the lengths of the pairings, which are of influence to reserve crew pairing
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for long-haul crew. The pairings in long-haul flight schedules generally span multiple days and vary
significantly in length from flight to flight. Given that a reserve pattern should be optimised for a flight
schedule, the reserve pattern should take this high variability in flight pairings into account. This means
that the algorithms should be able to create reserve patterns where the reserve pairings vary in length
as well. Compared to the state of the art in the literature as currently set by Bayliss (2016), this is the
main novelty from an application viewpoint.

The input scenario for the comparison experiments is based on the KLM flight schedule for the Air-
bus A330 posting for the first officer rank, and can be found in Appendix A. The flight schedule consists
of 78 flights ranging in length from three to eight days, as shown in Table 3.1. It can be seen that the
majority of pairings is either three or four days is length. The seven and eight day pairings are interest-
ing from an experimental point of view, because covering these flights requires long reserve pairings,
which are inefficient for the majority of the flights, given that they cause wasted reserve days when they
are used for short flights. The primary disruption probabilities are derived from historical roster data,
and are based on first officer absence rates. The planned and maximum flight duty periods and the
reserve buffer period were available for use. The premium weight, which expresses the expected dif-
ficulty towards finding crew at premium cost for a flight, has been based on the disruption probabilities
per flight, where flights with high disruption probabilities have high premium weights.

Table 3.1: Pairing length per day in the problem scenario flight schedule.

Weekday
Pairing length MON TUE WED THU FRI SAT SUN Total

3 6 4 6 5 3 4 6 34
4 5 6 4 7 7 5 4 38
5 - - - - - 1 1 2
6 - - - - - - - -
7 - - - - 1 - 1 2
8 - 1 - - - - 1 2

Total 10 11 10 12 11 10 13 78

The manually constructed reserve pattern corresponding to the flight schedule is used to compare
the reserve patterns from the optimisation models with. This pattern can be found in Appendix A as
well. The reserve pattern consists of thirteen reserve pairings having a total reserve budget of 45 days,
with at least one pairing starting per day. All reserve pairings except for four are mixed reserve pairings,
aiming to cover almost all flights. The only flight that is not covered is flight 72. Even though the aim in
constructing this manual reserve pattern was to cover all flights, it has been chosen to leave this flight
uncovered because it is known as a popular flight with a high request rate, indicating that it is easy to
find premium flying crew for this flight.

Part of the problem input are disruption probabilities per flight. These are derived from one year
of historical cockpit crew roster data of KLM. This data has been analysed to determine the reserve
crew demand for each flight flown in that year per operational rank (i.e. captain, first officer, second
officer). Any differentiation between causes of reserve crew demand has not been made, so it does not
matter if a reserve is required due to crew illness or an operational disturbance. Fact is that a reserve
is required and when creating reserve patterns this should be accommodated.

The reserve demand data per flight has been aggregated to obtain crew absence (i.e. disruption)
probabilities per destination, month, and day of the week. Exploiting this reserve demand data intro-
duces opportunities compared to the current way of working in practice, where reserve patterns are
manually constructed twice per year per rank and division, based on only the start time and length of
the pairings in the flight schedule. Using automated and optimised reserve crew pairing, new reserve
patterns can be made on a weekly or monthly basis where the disruption probabilities of the flights are
not only different per destination, but also adjusted per week or month. This allows the user to include
seasonality effects in the design of reserve crew patterns. Hence, instead of creating reserve patterns
that are created towards covering an average week in a half year period, it will be possible to create
short term reserve patterns for much smaller time periods, increasing the margin between the current
solutions in practice and the potential of optimised reserve crew pairing.

The regulations that hold for the reserve crew pairing problem primarily follow from European rules
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concerning flight and duty time limitations, as defined in the publication by the Council of European
Union (2014). This protects airline crew from having insufficient rest in between duties and pairings.
The labour agreements that have been implemented in the model are derived from KLM practices, and
are defined as follows:

• Themaximum length of reserve pairings per posting per rank per day cannot exceed themaximum
flight length on that day.

• There are two types of reserve duty, called reserve and standby. When crew are on reserve duty,
they are available for a predefined time period (usually 12 hours) and can be called in for a flight
duty between those hours. Standby crew can only be called in for duty between 9h and 10h on
the day of operations or between 20h and 22h on the day before operations.

• When a reserve pairing is not utilised for three consecutive days, it cannot be utilised from the
fourth day onward.

It is possible to define these labour agreements flexibly in the model, or to exclude them altogether.
This makes that the model is generic for a wider variety of airlines.

The goal of this research is to make recommendations on how reserve patterns should be gen-
erated for long-haul cockpit crew. To make these recommendations, the reserve pattern optimisation
algorithms will be used to generate reserve patterns for the KLM A330 first officer case study. The
performance and the results of the model will be analysed and compared to each other and to manu-
ally constructed reserve patterns that are currently in use. Based on the performance of the models,
recommendations are then made about how reserve patterns should be constructed.

3.3. Assumptions
This section lists and explains the main assumptions that have been made during the development of
the reserve crew pairing models. These assumptions have to be made to isolate the problem from the
overall scheduling process, which is required to define a project that is solvable in feasible time.

• Only long-haul intercontinental crew is considered.

• Flight pairings consist of single return flights from an airline hub. For long-haul crew, this is often
the case in practice, and allows to represent a flight schedule as a list of departures from an airline
hub.

• The airline uses a single base for its operations, implying that crew cannot be swapped between
bases, and that all disruptions originate and are resolved at the single crew base.

• Reserve crew usage and premium flying are the only recovery measure from crew related disrup-
tions. This allows to isolate the problem from the overall crew scheduling process. For long-haul
crew, this assumption is acceptable to make, because the potential of other recovery measures
such as resource swapping or flight delaying is limited.

• When a reserve pairing is utilised for recovery, it cannot be used for subsequent disruptions
anymore.

• When premium flying is required for recovery, the entire flight has to be flown against a premium.
A fixed number of required premium days per flight is known in advance.

• Disruptions are generated and resolved per flight, in the order of departure. It is assumed that all
disruptions occur before departure, meaning that disruptions do not occur at outstations.

• Reserve holding is not allowed, meaning that a reserve has to be used if it that reserve pairing is
feasible to cover a flight. In practice, this can occur.

• The reserve crew pairing problem is solved separately per posting and rank. This means that
flying below rank (e.g. a captain acting as first officer) is not possible. Also, crew qualifications
(e.g. a qualification to serve a specific destination) are neglected.

• Reserve crew absence and recovery of crew (after illness) is excluded from the model.
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Pattern evaluation

This chapter details how airline reserve patterns are evaluated, with the aim to determine the quality
of the reserve pattern. For this, the objective function of this project is considered first, in Section
4.1. Afterwards, the required input to evaluate reserve patterns is described in Section 4.2. Then,
two models are explained that are considered to evaluate reserve patterns with. Section 4.3 details a
simulation model, whereas Section 4.4 details an analytical model. The model output is presented in
Section 4.5 and the model verification is presented in Section 4.6.

4.1. Objective function
Reserve patterns have to be evaluated to determine the quality of the patterns. The quality of a solu-
tion should represent how well it achieves the objectives of the decision maker. An objective function
expresses these objectives in mathematical terms, so they can be measured in optimisation studies.
The objective of this project is to minimise the gap between allocated reserve capacity and expected
reserve demand. With this in mind, a number of objective functions have been considered, which are
discussed below. The first alternative objective function is shown in Equation 4.1.

min unused reserve days +𝑤፩ ⋅ premium days (4.1)

In this function, 𝑤፩ is the relative weight given to the number of premium days, with respect to the
number of unused reserve days. This allows the decision maker to prioritise between both factors in
the objective function. In practical terms, this objective function aims to minimise inefficiencies from
airline operations: unused reserve days are days during which crew did not execute any flights and
crew flying at premium cost is more expensive than regular flying. It is expected that an increase in
one factor leads to a decrease in the other: increasing the reserve budget decreases the expected
number of premium days, but is likely to increase the number of unused reserve days. The optimal
objective function value is expected at the point where the unused reserve days and premium days are
appropriately balanced according to their weights, as illustrated in Figure 4.1.
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Figure 4.1: Expected shape (qualitative) of the objective function as a combination of unused reserve days and premium days.

The main disadvantage of this objective function is that it does not say anything about the costs that
are required to operate all flights in the flight schedule. Unused reserve days are wasted resources
compared to used reserve days, but an airline has equal expenses for both unused and used reserve
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days. In other words, this objective function has limited practical value. Another disadvantage is that
this objective function can cause the model to be prejudiced towards using mixed reserve pairings.
These pairings cause additional secondary disruptions which impose a high reserve usage rate, which
would result in a lower number of unused reserve days and thus a lower objective value. However,
causing additional disruptions for the sake of using more reserves is not desirable.

To address the downsides of the objective function in Equation 4.1, an alternative objective function
is presented in Equation 4.2.

min reserve budget + premium days (4.2)

The reserve budget in Equation 4.2 is expressed as the number of reserve duty days that are used
to create the reserve pairings. When are reserve pairing is not used, the number of reserve days in
the pairing are lost days. Following this, this objective function aims to minimise the number of days
that are required to ensure that all disruptions are resolved, be it using reserve crew or using crew
flying at premium cost. For this objective function it is also expected that an increase in reserve budget
decreases the number of premium days, as shown in Figure 4.2. The objective functions in Equations
4.1 and 4.2 both allow to automatically determine a required reserve budget. However, in both objective
functions, it is expected that resulting reserve budgets corresponding with optimal objective values will
be too low. This can be explained by considering the practical meaning of reserve days and premium
days. A reserve day should be considered as an insurance against propagating disruptive effects: it
has a chance of being used, meaning that value is only added by reserve days a fraction of the time.
On the other hand, premium days are (1) only required when a flight is disrupted, which is depending
on chance, and (2) always generate value to the airline once required. Therefore, it is expected that
the model will favour solutions with a relatively high number of premium days, because they are more
efficient in resolving disruptions.
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Figure 4.2: Expected shape (qualitative) of the objective function as a combination of reserve budget and premium days.

A risk in automatic sizing of the reserve budget, is that the model does not take into account a
number of social effects that exist in practice. There is a natural aversion against flying against premium
cost, due to reasons shown below:

• Crew dislike changes to their schedules;

• Finding crew for premium flying is uncertain and its success depends on time, destination, and
crew absence within the division and rank;

• Finding crew for premium flying becomes harder when it occurs more often, also implying that
premium costs depend on the operational ‘social state’;

• Premium flying imposes additional disruptive effects to crew schedules

Accurately modelling these effects is considered out of scope for this project. Therefore, two alter-
native objective functions are shown in Equations 4.3 and 4.4.

min reserve budget + premium days
subject to budget ≈ budget requirement

(4.3)

min reserve budget + premium days
subject to service level ≥ service level requirement

(4.4)
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Both objective functions allow the decision maker to reflect the operational social state in a con-
straint that imposes a minimum value for the reserve budget in the optimal solution. In Equation 4.3,
this is done directly via a budget constraint, which enforces a predetermined number of reserve days
in the reserve pattern. A disadvantage of Equation 4.3 is that the social state of the system can not
intuitively be summarised in a single reserve budget value. To counter this, the objective function in
Equation 4.4 allows the decision maker to impose a minimum service level on the airline operations.
The service level is expressed as a percentage of time during which the number of flights that is flown
at premium costs is below a certain value. For example, in 95% of the flight schedule repetitions (e.g
weeks) there can be no more than three flights flown at premium costs. It is expected that the service
level increases as the reserve budget increases, as depicted in Figure 4.2. This is a muchmore intuitive
method for the decision maker to express budget requirements for the reserve pattern. Summarising,
the objective function in Equation 4.4 measures the number of days that are required to operate the
flight schedule, given that crew disruptions occur and need to be covered by reserve crew. On top of
this, social effects that are apparent in practice are intuitively represented in the form of a service level,
which expresses the fraction of time during which a minimum number of flights is flown without using
premium flying. Therefore, this objective function is chosen to optimise the reserve patterns with.

No closed expression for the number of premium days has been defined, because these values can
only be determined by subjecting a reserve pattern to the execution of an airline flight schedule. Due
to the interaction between the flight schedule and the reserve pattern, and between individual pairings
in the reserve pattern, the expressions would be complex non-linear functions.

Instead, separate evaluation models have been investigated to obtain values for the number of
premium days. In Section 4.3, a simulation evaluation model is detailed, whereas Section 4.4 presents
an analytical evaluation model. But first, the model input is described in Section 4.2

4.2. Model input
The goal of the evaluation models is to determine how good a reserve pattern is when it is used in
combination with an airline flight schedule. Therefore, the airline flight schedule and the proposed
reserve pattern are the required inputs for the evaluation models.

Airline flight schedule
The airline flight schedule is a list of departures from the airline hub for a single aircraft type and crew
rank. The airline schedule could span an arbitrary number of days, but in practice schedules often
repeat on a weekly basis. It is assumed that the airline flight schedule is a standard schedule that
repeats indefinitely. That is, after the last day in the flight schedule, the first day is operated again. For
each flight, the following characteristics should be specified:

• Flight ID - The departure number of the flight.

• Destination - The destination of the flight.

• Crew reporting - The day and start time of the flight duty period.

• Disruption probability - The probability that a reserve crew is required, excluding secondary
disruptions (i.e. disruption following from using mixed reserves).

• Route length - The number of flight days in the flight pairing.

• Rest length - The number of rest days in the flight pairing.

• Planned flight duty period - The planned duration that the crew has to be on duty to execute
the flight.

• Maximum flight duty period - The maximum duration that the crew is allowed to be on duty to
execute the flight. This number depends on the departure time, the number of cockpit crew, and
the on-board rest facilities.

• Reserve buffer period - Extension of the maximum flight duty period for a reserve crew that is
assigned to this flight. The number depends on the number of cockpit crew.
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• Premium weight - A multiplier for the amount of premium days that should be counted when no
reserve crew is available for the flight. This allows the decision maker to express particular ease
or difficulty in finding premium crew for each flight.

Reserve pattern
The reserve pattern consists of a list of reserve pairings that are used to cover open crew positions on
the flights in the flight schedule. The reserve pattern should have the same time span as the airline
flight schedule. That is, reserve pairings can start on the same days as the days in the flight schedule.
Similar to the flight schedule, it is assumed that the reserve pattern is repeated indefinitely. For each
reserve pairing. the following characteristics should be specified:

• Reserve ID - The identification number of the reserve pairing.

• Crew reporting - The day and start time of the reserve duty period for the first or first two days.

• Pairing length - The total number of days in the reserve pairing, including flight days in mixed
reserves.

• Mixed flight length - The number of days of the flight pairing that is part of a mixed reserve
pairing. If no flight is part of the reserve pairing, this value equals 0

• Mixed flights - The flight IDs that can be assigned as flight in a mixed reserve pairing.

• Assign probabilities - The probability that a flight is assigned as the flight in a mixed reserve
pairing for each flight of the mixed flights. These probabilities should sum to 1.

Besides the flight schedule and the reserve pattern, the service level requirements should be deter-
mined by the model user. This entails setting a maximum number of flights that can be flown against
premium costs, and the fraction of time during which this number can be exceeded.

4.3. Simulation model
A simulation model has been developed to evaluate reserve patterns. This model estimates the ob-
jective function numerically, instead of deriving it exactly. The concept of the model is that of a basic
disruption recovery model, where the operations of an airline flight schedule are simulated. Flights can
get disrupted and recovered. All disruptions follow from crew absence and the only recovery mea-
sures are the use of reserve crew or premium payed crew overtime. The flight schedule is repeated
𝑁 times (i.e. repetitions), and each departure 𝑑 in the flight schedule is considered in each repetition.
A flowchart of the simulation evaluation model is shown in Figure 4.3. The steps in the flowchart are
further detailed below, where the numbers in the header correspond to their respective blocks in the
flowchart.

Assign flights (EV.2)
When mixed reserve pairings are used to cover open positions, the flights originally assigned to the
reserve pairing cannot be executed by the reserve crew anymore. In other words, using a mixed
reserve to cover an open position, will always cause another open position to a later flight in the airline
schedule. To include these effects, a unique flight from the flight schedule first has to be assigned to
each mixed reserve pairing in the reserve pattern before the disruption and recovery process can be
simulated.

First, all feasible flights from the flight schedule that can be assigned to each mixed reserve pairing
in the reserve pattern are determined. There are two requirements for this: (1) the length of the flight in
the flight schedule should be equal to the number of flight days in the reserve pairing; (2) the last day
of the flight in the flight schedule should be equal to the last flight day of the mixed reserve pairing.

Figure 4.4 shows one mixed reserve pairing and a number of flight pairings. For each of the flight
pairings, it is indicated whether it can be assigned as the flight in the mixed reserve pairing. The BAH
and DCA flights fulfil the two requirements posed above. The CPT and LOS flights are both too long
and the SFO flight is too short to be assigned as the mixed flight. In theory, the first requirement can
be relaxed, so that shorter flights can also be assigned to mixed reserve pairings, given that the mixed
flight ends on the same day as the reserve pairing. The ACC flight in Figure 4.4 is an example of such
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Figure 4.3: Flowchart of the simulation evaluation model.

MON TUE WED THU FRI SAT SUN MON

Reserve RES RES FLT FLT FLT FLT

Flights BAH BAH BAH BAH

DCA DCA DCA DCA

CPT CPT CPT CPT CPT

LOS LOS LOS LOS LOS LOS

SFO SFO SFO

ACC ACC ACC

Figure 4.4: Example showing which flight pairings can be assigned as the flight in a mixed reserve pairing.

a flight. However, this is unwanted in practice, because it leads to an extra unused reserve day when
the reserve pairing is not used.

Second, the model determines the probability that each of the feasible flights is assigned to a mixed
reserve pairing. Two possible strategies (i.e. assign policies) have been implemented in the evaluation
model: equal probability and lowest disruption first. In the equal probability policy, each feasible flight
is assigned with equal probability. For example, if there are four feasible flights, each flight is assigned
with a probability of 0.25. This policy is representative of current industry practice, where flights are
randomly assigned to mixed reserve pairings. In the lowest disruption first policy, the flight with the
lowest disruption probability that has not yet been assigned to a mixed reserve pairing, is assigned
with a probability of 1. In Chapter 7, it is explained which policy is used for the experiments.

The feasible flights and assignment probabilities are determined for each mixed reserve pairing
before the first repetition of the disruption simulator has started. However, the flights assigned to mixed
reserve pairings can vary per repetition of the flight schedule. Therefore, for each repetition of the
flight schedule (i.e. 𝑁 times), a new flight should be selected based on the assignment probabilities
of the reserve pairing. Because the feasible flights and assignment probabilities have already been
determined, the flight realisation can be done fast for each repetition, by weighted random choices of
the feasible flights. The assigned flights are tracked to avoid that the same flight is assigned multiple
times in the same repetition.

Generate disruption (EV.4)
After flights are assigned to the mixed reserve pairings in the reserve pattern, each departure from the
airline hub is considered in order of crew reporting time. Since the evaluation model is a disruption
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and recovery simulator, disruptions should be generated for flights in the flight schedule. This is done
using the disruption probability of the flight and a random number generator. When the random number
is lower than or equal to the disruption probability of the flight, the flight is disrupted, meaning that a
reserve crew is required to cover a vacant crew position.

Recovery (EV.6 / EV.7 / EV.8 / EV.10)
The recovery process is defined as checking for feasible and available reserve pairings and utilising
them to cover an open crew position. To improve the computational performance of the recovery pro-
cess, the feasible reserve pairings and the preferred reserve usage order for each flight in the flight
schedule are determined before the disruption simulations are started. Figure 4.5 presents for a variety
of reserve pairings whether they can be used to cover the BAH flight pairing. The following require-
ments should be satisfied for a reserve pairing to be feasible to cover an open crew position on a
flight:

1. The reserve pairing days should cover the flight pairing days: the first day of the flight should be
larger than or equal to the first day of the reserve pairing and the last day of the flight should be
smaller than or equal to the last day of the reserve pairing. The second and last reserve pairings
in Figure 4.5 violate this requirement.

2. The flight must depart within three days of the reserve pairing start day. The first reserve pairing
in Figure 4.5 violates this requirement.

3. For mixed reserve pairings, the flight must depart before the start day of the flight assigned to the
reserve pairing. The fourth reserve pairing in Figure 4.5 violates this requirement.

4. The flight must depart within twelve hours of the reserve pairing reporting time. The fifth and sixth
reserve pairings in Figure 4.5 violate this requirement.

5. The maximum flight duty period for the reserve crew cannot be exceeded. This requirement is
checked through Equation 4.5.

Flight reporting time − reserve reporting time − reserve buffer ≤
maximum FDP − planned FDP (4.5)

MON TUE WED THU FRI SAT SUN MON

Flight 15:00 BAH BAH BAH

Reserves 9:00 RES RES RES RES RES RES

9:00 RES RES RES RES

9:00 RES RES RES RES RES

9:00 RES FLT FLT FLT FLT

2:00 RES RES RES RES RES

16:00 RES RES RES RES RES

9:00 RES FLT FLT FLT FLT

9:00 RES RES RES

(2)

(1)

(3)

(4)

(1)

(4)

Figure 4.5: Example showing how feasible reserves to cover an open crew position on a flight are determined, including which
requirements are violated.

For each flight, the order in which the feasible reserves are preferably used for recovery (i.e. reserve
usage policy) has to be determined. Two reserve usage policies have been defined: earliest start time
and minimum waste days. In the earliest start time policy, the feasible reserve pairings are sorted by
ascending reporting day and time. That is, the reserve pairing with the earliest starting time is used
for recovery first. The minimum waste days policy aims to minimise loss days in utilising reserves for
recovery. This is done by sorting the feasible reserve pairings by increasing number of waste days,
where waste days are defined as the number of days between the last day in the reserve pairing and
the last day of the flight. The chosen reserve usage policy for the experiments is determined in the
sensitivity analysis in Chapter 7.

The recovery process during the disruption simulations becomes straightforward when the feasible
reserve pairings and preferred reserve usage order have already been determined. When a reserve
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crew is required for a flight, the feasible reserves are checked in the reserve usage order. When a
feasible reserve has not yet been used to cover an open crew position of an earlier flight, it will be used
to solve the current disruption. When the reserve has already been used, the next feasible reserve in
the reserve usage order is considered, until the disruption is solved or all feasible reserves have been
considered. It is not possible to refrain from using a reserve to save it for later disruptions.

When a reserve pairing is used, it will be labelled ‘used’ and the number of wasted reserve days (i.e.
the inefficiency of using the reserve) are determined. This number is calculated with Equation 4.6. The
wasted reserve days are incremented to the total number of unused reserve days over all simulations.

Wasted reserve days = flight start day − reserve start day + reserve end day − flight end day (4.6)

When no reserve pairing is available anymore, premium pay needs to be offered to other crew. It
is assumed that the number of premium pay per flight is known in advance, and is specified as part
of the flight schedule input data. This number is added to the total number of premium days over all
simulations.

Update disruption probabilities (EV. 9)
If a mixed reserve pairing is used to cover an open crew position, the flight that was originally assigned
to this pairing gets disrupted as well. This secondary disruptive effect is included by updating the
disruption probability of the originally assigned flight to 1.0, meaning that it is certain that the flight is
disrupted. Since the airline schedule is considered in order of departure, flights originally assigned to
mixed reserves will always be considered later than all flights that can be covered by themixed reserves.
Because these mixed flights are considered after their disruption probability has been updated, the
updated disruption probability will be used when the mixed reserve flight is considered.

Unused reserve days (EV. 13)
Next to wasted reserve days following from suboptimal utilisation of reserve pairings to cover open
crew positions (i.e. the flight does not fit perfectly in the reserve pairing), unused reserve days can also
follow from reserve pairings that have not been used entirely at the end of a repetition of the airline
flight schedule. Therefore, at the end of each repetition, the number of unused reserve days following
from all unused reserve pairings (i.e. reserve pairings without the ‘used’ label) has to be added to the
incumbent number of wasted reserve days. For a single unused pairing, the number of unused reserve
days is computed using Equation 4.7. It can be seen that for mixed reserve pairings, only the reserve
days before the mixed flight begins are taken into account.

Unused reserve days = reserve pairing length −mixed flight length (4.7)

Simulation continuity (EV. 14)
Above, the steps in the simulation evaluation model flowchart that have to be taken each repetition are
described. The simulation will obtain accurate performance measurements for a reserve pattern by
performing these steps for a high number of repetitions. For the airline reserve crew pairing problem,
these repetitions cannot be seen independently from each other: what happens in one repetition, can
influence the results of previous and future repetitions. The reason for this is that the flight pairings
in the airline schedule and the reserve pairings in the reserve pattern span multiple days. Possibly,
these pairings can continue into future repetitions. For example, if a five day flight departs on Sunday
(where the airline schedule is repeated every week), the flight does not finish until Thursday of the
next repetition. Therefore, a reserve pairing that has started in a previous repetition, is able to cover
an open position on a flight departing in the current repetition, as shown in Figure 4.6. In this figure,
it is assumed that the flight schedule runs from Monday to Sunday. The reserve pairing starting on
Saturday is able to cover the flight starting on Monday.

Similarly, a mixed reserve pairing that is used to cover an open position in the current repetition, can
cause a secondary disruption in a later repetition. An example of this situation is shown in Figure 4.7.
Again, it is assumed that the flight schedule runs from Monday to Sunday. Using the reserve pairing
starting on Saturday, causes a secondary disruption on Monday in the next repetition.

To include these effects, the evaluation model does not simulate 𝑁 independent repetitions, but
simulates 𝑁 repetitions in sequence. When determining which flights can be assigned to mixed reserve
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SAT SUN MON TUE WED THU FRI

Reserve RES RES RES RES RES RES RES

Flight BAH BAH BAH BAH

Previous repe!!on Current repe!!on

Figure 4.6: Reserve pairings that started in previous repetitions are able to cover flights in the current repetition.

SAT SUN MON TUE WED THU FRI

Reserve RES RES FLT FLT FLT FLT FLT

Current repe!!on Next repe!!on

Figure 4.7: Mixed reserve pairings can cause secondary disruptions in future repetitions.

pairings and which reserve pairings are feasible for each flight, the simulation continuity is taken into
account. Feasible flights to assign to mixed reserve pairings are not only distinct by their flight ID, but
also by the number of airline schedule repetitions into the future. Similarly, the feasible reserves to
cover an open crew position are defined both through the reserve ID and the number of flight schedule
repetitions into the past.

Before the disruption and recovery simulations are started, the maximum required number of repe-
titions that must be looked ahead or back is derived from the airline schedule and the reserve pattern.
During the simulations, a set of this number of repetitions is tracked simultaneously. This allows the
model to use reserves from previous repetitions and to cause secondary disruptions to flights in future
repetitions. When a repetition is finished, the oldest repetition in the set at that point is removed and a
new repetition is appended to the set. For the new repetition, all the reserve pairings are unused and
no secondary disruptions exist yet.

Because the evaluation model is able to simulate multiple repetitions in sequence, the model can
handle airline schedules of arbitrary length. In practice, airline schedules commonly are repeated
weekly, but in this model reserve patterns for one day long airline schedules can be evaluated as well.

To illustrate the simulation continuity, consider the example in Figure 4.8. The standard airline
schedule consists of only one day of operations, with one departure to BAH. The corresponding reserve
pattern consists of one six day reserve pairing. In the non-continuous situation, the only feasible reserve
for the BAH flight is the reserve pairing starting on the same day as the departure. However, in the
continuous situation, the same flight can be covered by three instances of the reserve pairing: from the
current repetition and the previous two repetitions. Therefore, the model has to simultaneously keep
track of three repetitions. For instance, if the third flight to BAH is disrupted, and the earliest start time
reserve usage policy is used, the reserve pairing from two repetitions before would be considered first.
If it is still available, then the reserve from this repetition will be labelled ‘used’.

DAY 1

Reserve RES RES RES RES RES RES

Flight BAH BAH BAH BAH

DAY 1 DAY 1 DAY 1 DAY 1

Reserves RES RES RES RES RES RES

RES RES RES RES RES RES

RES RES RES RES RES RES

RES RES RES RES RES RES

Flights BAH BAH BAH BAH

BAH BAH BAH BAH

BAH BAH BAH BAH

BAH BAH BAH BAH

Figure 4.8: Translation of a standard airline schedule and reserve pattern to a continuous situation as required during
simulation.

Finally, when starting the disruption and recovery simulations, the first few repetitions do not have
information about used and available reserve pairings from previous repetitions, because these rep-
etitions have not been simulated yet. To initiate the simulation process, for the first few repetitions it
is assumed that reserve pairings from previous iterations are all unused. This can lead to inaccurate
performance measurements. Therefore, the first 𝑁፜ repetitions should not be included in calculating
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the performance measures, so that the simulation can converge to a steady state of used and unused
reserves in previous repetitions. Preliminary experiments show that a fixed value of twenty repetitions
is sufficient to converge towards a steady state.

4.4. Analytical model
The advantage of the simulation model is that it is a straightforward method to estimate the quality of
a reserve pattern, even though the operational relations are complex. However, there are two notable
drawbacks to using simulation evaluation: (1) the simulation model is stochastic, meaning that there
is uncertainty in the model outcome, and (2) a large number of repetitions are required to mitigate the
stochasticity of the model, which can be computationally expensive. Therefore, an analytical model is
presented in this section with the aim to obtain exact expressions with reduced computational effort.
The method is based on previous work by Paelinck (2001) and Bayliss (2016). The main adaptions
with respect to the model by Bayliss (2016) are the inclusion of mixed reserve pairings and pairings of
variable length. Below, the working principle of the analytical method for this project is presented.

Table 4.1 shows the notation that is used for the analytical model. A reserve combination can be
considered to be a state of the reserve pattern during operations, indicating which reserves are still
available and which cannot be used to cover disrupted flights anymore. For example, when there are
only two reserve pairings in the reserve pattern, there are four reserve combinations:

1. Both pairings available;

2. Only the first pairing available;

3. Only the second pairing available;

4. No pairings available.

Table 4.1: Notation for analytical evaluation model.

Symbol Meaning
𝑝፟ Initial disruption probability of flight 𝑓
𝑝eff,፟ Disruption probability of flight 𝑓 after reserve usage
𝑟። Reserve usage probability for reserve 𝑖
𝑎፟፜ Availability probability of reserve combination 𝑐 before flight 𝑓
𝑎፟፜,። Availability probability of reserve combination 𝑐 without reserve 𝑖 before flight 𝑓
𝑏፟ Cumulative availability probability of reserves for flight 𝑓

In the beginning, 𝑎ኻኺ, the probability of all reserves still being available, equals 1.0. Similarly, 𝑟። = 0
for all 𝑖 ∈ 𝐼 and 𝑏፟ = 0 for all 𝑓 ∈ 𝐹. The analytical model considers each flight sequentially, ordered
by ascending departure day and time. For the first reserve in the reserve order of this flight, Equations
4.8 to 4.11 should be evaluated for each reserve combination in which the first reserve is still available.

Δ𝑎፟፜ = −𝑎፟ዅኻ፜ 𝑝፟ (4.8)

Δ𝑎፟፜,። = +𝑎
፟ዅኻ
፜ 𝑝፟ (4.9)

𝑟። = 𝑟። + 𝑎፟ዅኻ፜ 𝑝፟ (4.10)

𝑏፟ = 𝑏፟ + 𝑎፟ዅኻ፜ (4.11)

For the next reserves in the reserve order, the same equations should be evaluated, but only for
the reserve combinations in which that reserve is still available and that have not been considered
yet when earlier reserves in the reserve order were considered for this flight. When all reserves for a
certain flight are considered, the effective disruption probability is determined via Equation 4.12. By
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propagating through all flights in the flight schedule, the number of premium days can be determined
from the effective disruption probabilities.

𝑝eff,፟ = 𝑝፟(1 − 𝑏፟) (4.12)

There are two drawbacks to the analytical model. The first is that the effective disruption probabilities
of flights depend on which flights are assigned as flights in mixed reserve pairings. This is due to
the secondary disruptions that are caused when mixed reserve pairings are used. In this case, the
primary disruption probability is 1.0 for reserve combinations in which the mixed reserve pairing is used.
Because the pattern quality is dependent on which flights are assigned to the mixed reserve pairings, a
separate evaluation should be done for each combination of assigned flights to mixed reserve pairings.
This results to an exponential increase in required computational effort.

The second drawback is a consequence of the reserve usage order that is defined differently for
each flight. Due to this, all reserve combinations have to be tracked. The number of reserve combina-
tions increases exponentially with the number of reserves. The continuity effects that were described
in Section 4.3 also have to be taken into account, increasing the number of reserve combinations even
further.

These two effects make that for realistically sized problems, the analytical model is in fact slower
than the simulation model is for a reasonable number of repetitions. Therefore, it is decided to continue
with the simulation model as the method to determine the quality of reserve patterns.

4.5. Model output
The pattern evaluation model computes the performance of a reserve pattern when it is used to recover
from disruptions given that an airline flight schedule is executed.

Objective function
The outputs related to the objective function that are computed by the evaluation model as shown in
Table 4.2.

Table 4.2: Objective function outputs of the reserve pattern evaluation model.

Output
Objective function value
Reserve budget
Premium days
Unused reserve days
- From unused pairings
- From inefficient reserve usage

The overarching performance indicator is the objective function value, which follows from evaluating
Equation 4.4. It is a single number that expresses the overall quality of the solution, where lower values
indicate better solutions. To evaluate Equation 4.4, the number of premium days should be known. This
number follows directly from the evaluation model, as explained in Section 4.3. By keeping track of
these numbers separately, solutions can be assessed based on both elements of the objective function.
This is important because of the inverse relationship between both elements in the objective function:
an increase in reserve budget is likely to cause a decrease in premium days. Therefore, solutions can
have similar objective function values, with different numbers of reserve budget and premium days.
For the number of unused reserve days, a further differentiation is made between days following from
unused pairings and days following from inefficient utilisation of reserves (i.e. when a flight is shorter
than a reserve pairing).

Reserve pairing information
On top of general objective function information, the simulation evaluation model allows to extract
detailed performance metrics of individual reserve pairings in the reserve pattern. For each reserve
pairing, the information shown in Table 4.3 is tracked.

The reserve usage per flight gives insight in which reserve pairings are used to cover disruptions
per flight in the airline schedule. The sum of the reserve usage per flight gives the total reserve usage
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Table 4.3: Reserve pairing outputs of the reserve pattern evaluation model.

Output
Reserve usage probability per flight
Total reserve usage probability
Premium cost prevented
Unused reserve cost caused
Effective reserve pairing benefit

probability per reserve pairing. Naturally, high reserve usage probabilities are preferred for high quality
reserve patterns, because the waste of resources is the lowest for these pairings. For each reserve
pairing, the objective function decrease following from prevented premium days and the objective func-
tion increase following from caused unused reserve days are tracked as well. Subtracting these two
numbers gives an indication of the effective benefit of a reserve pairing. The effect of individual pairings
cannot be seen separate from the overall reserve pattern, because mixed reserve pairings can cause
secondary disruptions that need to be covered elsewhere in the reserve pattern.

Flight information
Similar to the reserve pairings, detailed information can be derived from the evaluation model for each
individual flight in the airline schedule. The outputs that are tracked are shown in Table 4.4.

Table 4.4: Flight outputs of the reserve pattern evaluation model.

Output
Total disruption probability
Secondary disruption probability
Effective disruption probability
Reserve IDs covering flight

Most outputs are concerned with tracking disruptions during the simulation process. Firstly, the total
disruption probability is computed, which consists of primary and secondary disruptions (i.e. following
from mixed reserve usage). Note that this number can be higher than the initial disruption probability
value from the flight schedule input. The amount of secondary disruptions is tracked separately as
well, to assess the effect of using mixed reserve pairings. The amount of unresolved disruptions is
expressed through the effective disruption probability, which is the disruption probability of a flight given
that reserve pairings can be used to cover open positions. Finally, the reserve pairings that can be used
to cover open positions on the flight are extracted as well.

4.6. Verification
In this section, a system test for the evaluation model is done in which a small airline flight schedule
will be disrupted and recovered using a reserve pattern. The reserve pattern will be evaluated both
manually (using the analytical model) and numerically (using the simulation model). Through this, it
will be shown that the results of both evaluations support each other, indicating a proper functioning of
the simulation evaluation model as a whole.

The reserve pattern and flight schedule that are evaluated are shown in Figure 4.9. The first reserve
is able to cover the flights to HAV, DAR, and KGL. Since the first reserve is a mixed reserve, it cannot
be used to cover any flights after the mixed reserve has started. Hence, the MCT and LOS flights
can be assigned as mixed flights to the first reserve, but cannot be covered by this reserve if they are
disrupted. The second reserve pairing is able to cover all but the HAV flight.
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MON TUE WED THU FRI SAT SUN

   07:00      RES FLT FLT FLT FLT

     RES      RES RES RES RES

09:00 HAV HAV HAV HAV HAV

09:00 DAR DAR DAR DAR

09:00 KGL KGL KGL KGL

09:00 MCT MCT MCT

09:00 LOS LOS LOS

Reserves

Flights

Figure 4.9: Reserve pattern and flight schedule for the evaluation model system verification.

The disruption probabilities, premium weights and the reserve usage order for each flight are shown
in Table 4.5. For this derivation, arbitrary values have been chosen, but the order of magnitude corre-
sponds to values encountered in industry practice.

Table 4.5: Flight schedule information for evaluation model system verification.

Disruption Premium Reserve
ID Destination probability weight order
1 HAV 0.08 1.0 1
2 DAR 0.10 1.1 1, 2
3 KGL 0.12 1.3 1, 2
4 MCT 0.14 1.4 2
5 LOS 0.16 1.5 2

Below, the analytical evaluation of the reserve pattern is presented for the corresponding flight
schedule. The evaluation considers each flight in the order of departure. For each flight, all reserves
in the reserve order will be considered to reduce the effective disruption probability. Due to the reserve
order that differs for each flight, one must keep track of all possible combinations of reserve pairings
being still available and having already been used. This will be done using a vector representation,
where an A indicates a reserve being available and an N indicates a reserve not being available:

AA NA AN NN
[ 1.0 0.0 0.0 0.0 ]

Before the first flight is considered, both reserves are still available with a probability of 1.0: AA = 1.0.
The symbol 𝑎፟፜ will be used to represent the probability that reserve combination 𝑐 is still available
before the start of flight 𝑓. For example, 𝑎ኻAA = 1.0 and 𝑎ኻNA = 𝑎ኻAN = 𝑎ኻNN = 0.0. The probability that
reserve 𝑖 is used will be expressed by 𝑟።. The initial and effective (i.e. after reserve consideration)
disruption probabilities of flight 𝑓 are defined as 𝑝፟ and 𝑝eff,፟, respectively. For the HAV flight, knowing
that 𝑎ኻAA = 1.0 and reserve 1 is the first reserve in the reserve order, the situation changes as follows:

Δ𝑎ኼAA = −𝑎ኻAA𝑝ኻ = −1.0 ⋅ 0.08 = −0.08
Δ𝑎ኼNA = +𝑎ኻAA𝑝ኻ = +1.0 ⋅ 0.08 = +0.08
𝑟ኻ = 𝑟ኻ + 𝑎ኻAA𝑝ኻ = 0.0 + 1.0 ⋅ 0.08 = 0.08

Reserve 1 covers the HAV flight without causing any wasted reserve days, because the lengths
of both pairings are equal. Therefore, the wasted reserve days do not need to be updated. Since
the probability that no reserves are available equals 0.0, 𝑝eff,ኻ = 0.0. Taking into account the changing
reserve availability combinations, the reserve combination availability probabilities for flight 2 are shown
below:

AA NA AN NN
[ 0.92 0.08 0.0 0.0 ]

Both reserve 1 and reserve 2 can be used to cover disruptions to flight 2. For the situation where
𝑎ኼAA = 0.92, reserve 1 will be used, since this reserve is higher in the reserve order for the DAR flight.
Using reserve 1, the parameters change as shown below:
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Δ𝑎ኽAA = −𝑎ኼAA𝑝ኼ = −0.92 ⋅ 0.10 = −0.092
Δ𝑎ኽNA = +𝑎ኼAA𝑝ኼ = +0.92 ⋅ 0.10 = +0.092
𝑟ኻ = 𝑟ኻ + 𝑎ኼAA𝑝ኼ = 0.08 + 0.92 ⋅ 0.10 = 0.172

In 8% of the time, reserve 1 is not available anymore to cover flight 2. In that case, reserve 2 has
to be used. If 𝑎ኼNA = 0.08, the following changes take place:

Δ𝑎ኽNA = −𝑎ኼNA𝑝ኼ = −0.08 ⋅ 0.10 = −0.008
Δ𝑎ኽNN = +𝑎ኼNA𝑝ኼ = +0.08 ⋅ 0.10 = +0.008
𝑟ኼ = 𝑟ኼ + 𝑎ኼNA𝑝ኼ = 0.0 + 0.08 ⋅ 0.10 = 0.008

Reserve 2 covers the DAR flight without any wasted reserve days, but for reserve 1, one wasted
reserve day has to be counted when it is used to cover the DAR flight, which happens in 9.2% of the
time. Again, the probability that no reserves are available equals 0.0, so 𝑝eff,ኼ = 0.0. When all deltas
are summed and added to the reserve availability combinations, the situation at the start of flight 3 is
as shown below:

AA NA AN NN
[ 0.828 0.164 0.0 0.008 ]

For the KGL flight, again reserve 1 and reserve 2 can be used, where reserve 1 is the preferred
reserve to use. Given that 𝑎ኽAA = 0.828, the parameters get updated as shown below:

Δ𝑎ኾAA = −𝑎ኽAA𝑝ኽ = −0.828 ⋅ 0.12 = −0.0994
Δ𝑎ኾNA = +𝑎ኽAA𝑝ኽ = +0.828 ⋅ 0.12 = +0.0994
𝑟ኻ = 𝑟ኻ + 𝑎ኽAA𝑝ኽ = 0.172 + 0.828 ⋅ 0.12 = 0.271

Similarly, when 𝑎ኽNA = 0.164, using reserve 2 causes the following adaptions:

Δ𝑎ኾNA = −𝑎ኽNA𝑝ኽ = −0.164 ⋅ 0.12 = −0.0197
Δ𝑎ኾNN = +𝑎ኽNA𝑝ኽ = +0.164 ⋅ 0.12 = +0.0197
𝑟ኼ = 𝑟ኼ + 𝑎ኽNA𝑝ኽ = 0.008 + 0.164 ⋅ 0.12 = 0.0277

Similar to flight 3, in 9.9% of the time, one reserve day is wasted when reserve 1 is used to cover the
KGL flight. In 0.8% of the time, both reserves have already been used before the start of the KGL flight.
Therefore 𝑝eff,ኽ = 0.008 ⋅ 𝑝ኽ = 0.008 ⋅ 0.12 = 0.00096. At the start of flight 5, the reserve availability
combinations are as follows:

AA NA AN NN
[ 0.729 0.244 0.0 0.0277 ]

When considering the MCT and LOS flights, it should be taken into account that the situation prop-
agates differently depending on which flight is assigned to mixed reserve 1. The model assumes that
each of the flights is assigned half of the time. First, assume that MCT is assigned to the first reserve
as the mixed flight. Then, for the MCT flight, given that 𝑎ኾAA = 0.729 and only reserve 2 can be used:

Δ𝑎኿AA = −𝑎ኾAA𝑝ኾ = −0.729 ⋅ 0.14 = −0.102
Δ𝑎኿AN = +𝑎ኾAA𝑝ኾ = +0.729 ⋅ 0.14 = +0.102
𝑟ኼ = 𝑟ኼ + 𝑎ኾAA𝑝ኾ = 0.0277 + 0.729 ⋅ 0.14 = 0.130

In 24.4% of the time, reserve 2 is still available while reserve 1 was used to cover one of the earlier
flights. For this proportion, the disruption probability 𝑝ኾ changes to 1.0, because using reserve 1 causes
a secondary disruption to the mixed MCT flight. The probability parameters then change as shown
below:

Δ𝑎኿NA = −𝑎ኾNA𝑝ኾ = −0.244 ⋅ 1.0 = −0.244
Δ𝑎኿NN = +𝑎ኾNA𝑝ኾ = +0.244 ⋅ 1.0 = +0.244
𝑟ኼ = 𝑟ኼ + 𝑎ኾNA𝑝ኾ = 0.130 + 0.244 ⋅ 1.0 = 0.373
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In all other cases, no reserves are available to cover the flight 4. This occurs in 2.77% of the time.
Since reserve 1 has already been used in this situation, 𝑝ኾ = 1.0 in calculating the effective disruption
probability: 𝑝eff,ኾ = 0.0277 ⋅ 𝑝ኾ = 0.0277 ⋅ 1.0 = 0.0277. For the final flight, the starting situation is as
follows (still assuming that the mixed flight of reserve 1 is flight 4):

AA NA AN NN
[ 0.627 0.0 0.102 0.271 ]

In this case, the only reserve combination that can still be used to cover a disrupted flight is 𝐴𝐴,
because only reserve 2 can be used to cover this flight, and 𝑁𝐴 = 0.0. Knowing that 𝑎኿AA = 0.627, the
situation changes as follows:

Δ𝑎endAA = −𝑎኿AA𝑝኿ = −0.627 ⋅ 0.16 = −0.100
Δ𝑎endAN = +𝑎኿AA𝑝኿ = +0.627 ⋅ 0.16 = +0.100
𝑟ኼ = 𝑟ኼ + 𝑎኿AA𝑝኿ = 0.373 + 0.627 ⋅ 0.16 = 0.474

In all other cases, or in 37.3% of the time, no reserve is available to cover the LOS flight. This leads
to 𝑝eff,኿ = 0.373 ⋅ 𝑝኿ = 0.373 ⋅ 0.16 = 0.0597.

Using the same equations and logic, the same derivation can be done assuming that flight 5 is
assigned as the mixed flight of reserve pairing 1. For this situation, the resulting parameters of interest
are 𝑟ኼ = 0.474, 𝑝eff,ኾ = 0.00388, and 𝑝eff,኿ = 0.0781. Given that flights 4 and 5 are each assigned as
mixed flights half the time, the resulting effective disruption probabilities for these flights become:

𝑝eff,ኾ = 0.5 ⋅ 0.0277 + 0.5 ⋅ 0.00388 = 0.0158
𝑝eff,኿ = 0.5 ⋅ 0.0597 + 0.5 ⋅ 0.0781 = 0.0689

The same problem has also been solved using the simulation evaluation model, using one million
repetitions to estimate the parameter values. In Table 4.6, several parameter values for this problem
are compared between the analytical evaluation and the numerical evaluation. It can be seen that the
results between both methods are in support of each other, with maximum differences no larger than
0.5%. From this it can be concluded that the evaluation model functions correctly for the purpose of
reserve pattern evaluation.

Table 4.6: Comparison of parameter values between analytical evaluation and numerical evaluation.

Parameter Analytical value Numerical value % difference
𝑝eff,ኻ 0.0 0.0 0.0
𝑝eff,ኼ 0.0 0.0 0.0
𝑝eff,ኽ 0.00096 0.000946 0.001
𝑝eff,ኾ 0.015778 0.015681 0.010
𝑝eff,኿ 0.068928 0.069285 0.036

𝑟ኻ 0.27136 0.27131 0.005
𝑟ኼ 0.47363 0.47458 0.095

Wasted reserve days 0.63731 0.63874 0.143
Unused reserve days 4.08912 4.08446 0.466
Premium days 0.50816 0.50967 0.151



5
Pattern optimisation

This chapter details the optimisation algorithms that have been developed for the airline reserve crew
pairing problem. In total, four algorithms are considered, but the reserve pattern representation in
these algorithms is first discussed in Section 5.1. The first two algorithms are based on random search
procedures. The first algorithm is a pure random search and is explained in Section 5.2. The sec-
ond algorithm is called the Learning Automata Search Procedure (LAST), and is detailed in Section
5.3. The final two algorithms are construction based algorithms, called Greedy Randomised Adaptive
Search Procedure (GRASP) andGRASP-Longest Flights (GRASP-LF). Thesemethods are considered
in Sections 5.4 and 5.5, respectively.

5.1. Pattern representation
In this section, the method of defining reserve patterns is explained. This method consists of two parts:
unique pairing generation and mathematical reserve pattern representation.

Unique pairings
Before the optimisation process is started, first all possible unique reserve pairings that can be used
in a reserve pattern are generated. For this, standard pairing lengths, standard mixed flight lengths,
and standard duty start times and durations have to be specified. Then, for each day, all feasible
combinations of above variables are enumerated and appended to a list of reserve pairings. Infeasible
pairings are pairings that either:

• are longer than the longest flight starting on the same day as the first day of the reserve pairing;
• do not have any feasible flights that can be assigned as flights, in the case of mixed reserve
pairings;

• do not cover any flights.

For each reserve pairing, the same characteristics as in Chapter 4.2 should be specified. Reserve
pairings that start with at least two reserve days after each other, can have different duty start times
and durations per day. The duty times are only specified for the first two days, because during latter
days reserves can only be utilised the day before. In case there is only one reserve day before a mixed
reserve flight starts, there can only be one duty start time and duration.

Mathematical pattern representation
With all feasible reserve pairings known and available in a list, reserve patterns are mathematically
easily denoted as a vector of integer numbers. Each position in the vector corresponds to the unique
reserve pairing on the same location in the vector of feasible reserve pairings. A reserve pattern is
defined as a vector of integer numbers, where the value of the integer indicates the number of times
the related reserve pairing is used in the reserve pattern.
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5.2. Random search
The first optimisation algorithm is a random search procedure, where reserve patterns are generated
by randomly selecting a subset of reserve pairings from the set of unique reserve pairings. The steps
that are taken in this optimisation method, are shown in the flowchart in Figure 5.1. Below, separate
parts of the flowchart are discussed in more detail. The numbers in the headers correspond to the
blocks in the flowchart.
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Figure 5.1: Flowchart of the random search optimisation method.

Initialisation (RS.1)
At the start of the optimisation process, the initial pattern density has to be set. This variable determines
the selection probability of each pairing in the list of unique pairings, an thus determines how many
reserve pairings are on average in the reserve pattern. For the random search algorithm, this value is
constant and equal for each unique pairing. Its value is determined using a sensitivity analysis.

Pairing selection (RS.4 / RS.5 / RS.6)
With the initial pattern density known, individual reserve pairings can be selected based on this number.
For each reserve pairing in the list of unique feasible pairings, its usage is decided as follows. A random
number is generated using a random number generator. When the random number is lower than or
equal to the pattern density (i.e. selection probability), then the pairing is included in the reserve pattern.

Pattern compatibility (RS. 7)
When reserve pairings are selected at random, it is possible that the resulting reserve pattern is not
compatible with the flight schedule. This occurs when then are more mixed reserve pairings with mixed
flights with a certain length and start day, than there are flights in the flight schedule with that length
starting on that day. For example, assume there are two mixed reserves starting on day one with a
length of four days, and a flight starting on day two, lasting three days. If there is only one three day
flight starting on day two of the flight schedule, then one of the two mixed reserve pairings cannot be
assigned a flight when the simulation evaluation model is run.

To avoid these incompatibilities, reserve pairings that are incompatible with the flight schedule are
removed randomly until the schedule is compatible. For this, the lengths of the departing flights are
counted and tracked for each day in the flight schedule. For each mixed reserve pairing that is included
in the reserve pattern, it is checked if there is at least one flight starting on the same day and with the
same length as the mixed flight. If a flight is available, the number of flights of that length on that day in
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the tracking variable is decreased by one. If no flight is available, the reserve pairing is removed from
the reserve pattern. Following this method, all reserve patterns are always compatible with the flight
schedule before they are evaluated.

Budget adaption (RS.8)
The service level constraint, introduced in Chapter 4, is used to improve the performance of the random
search method. When a solution is generated that satisfies the service level, the reserve budget of this
solution will be used as an upper limit for future solutions. A corresponding lower limit is enforced that
is always five days lower than the upper limit, so that each generated solution lies within a range of
budget values that have proven to generate solutions that satisfy the service level. The budget limits
decrease the size of the solution space, and ensure that no time is wasted by searching for solutions
with ineffective budget values. That is, when a pattern has been found that satisfies the service level,
future solutions should try to satisfy the service level with a lower reserve budget.

The model also has the functionality to directly impose a budget constraint on reserve patterns.
This means that the total number of reserve days in the reserve pattern that the solution should have,
is specified in advance. The budget constraint works both for solutions that should be lower than or
equal to a fixed budget value, or for solutions that should be equal to a budget value. Generated
solutions that do not comply with the budget, are termed infeasible.

Even though the random search method uses the pattern density to ensure that the number of
selected reserve pairings is accurate, most randomly generated reserve patterns do not satisfy the
budget constraint. To avoid that a lot of time is wasted by evaluating infeasible solutions, infeasible
reserve patterns are ‘repaired’ until the budget constraint is satisfied. If the reserve pattern has more
reserve days than the budget allows, reserve pairings are randomly dropped one-by-one from the
reserve pattern. On the other hand, when the reserve pattern is short on reserve days, reserve pairings
that are not yet in the reserve pattern are added randomly one-by-one. When pairings are considered
to be added to the reserve pattern, it is ensured that the reserve pattern budget does not exceed the
constraint value afterwards. Otherwise, pairings have to be removed from the pattern again. After
each pairing that is removed or added, the budget is recalculated, and a decision to remove or add
additional pairings is made. Also, after each pairing that is added to the reserve pattern, the pattern
compatibility has to be ensured again, as explained above. Using this method, it is ensured that each
generated reserve pattern is always compatible with the flight schedule and always satisfies any budget
constraints. Afterwards, the generated solution is evaluated by the simulation evaluation model.

Iterations (RS.10 / RS.11 / RS.12 / RS.13 / RS.14)
After the solution has been evaluated by the evaluation model, the integer reserve pattern and the
corresponding objective function value are stored by the model. The previous steps that have been
described, detail only one iteration of the random search algorithm. However, this process should
be repeated for a large number of iterations for the algorithm to be effective. Over the course of the
optimisation process, a large number of random reserve patterns are evaluated and stored. A stopping
criterion is imposed on the algorithm by limiting the number of iterations that can be done. After the
final iteration, the solution with the lowest objective function value in the memory, is selected as the
best solution.

During the random search process, the computational effort invested in evaluating each randomly
generated solution is limited, to obtain an appropriate balance between computational performance
and solution accuracy. However, for the final solution, a more accurate quality estimate is obtained.
This is done by evaluating the optimal solution with the evaluation model for 25000 consecutive weeks.
This number is sufficient to obtain reliable performance measures for the generated reserve pattern.

5.3. LAST
The LAST algorithm is a random search technique first introduced by Thathachar and Sastry (1987),
that uses adaptive search procedures to improve the solution quality of the random search algorithm.
Gosavi (2015) describes that the method starts like a pure random search, but starts adapting by up-
dating the probabilities of selecting decision variable values based on the objective function values
of previous solutions. Decision variable values that produce good solutions are rewarded through an
increase in their selection probability, whereas bad decision variable values see their selection probabil-
ities decrease. Also when decision variables are not included in the solution, their selection probability
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changes, using the scheme in Figure 5.2. For the algorithm to converge quickly, accurate upper and
lower solution bounds should be set. When these are too conservative, the convergence of the search
process is slowed.

+

-

-

+

Pairing used Pairing not used

Good solu!on

Bad solu!on

Figure 5.2: Scheme indicating how selection probabilities are updated for different generated solutions, where a + indicates an
increasing selection probability and a - indicates a decreasing selection probability.

The LAST optimisation procedure is comparable to the random search algorithm, and its corre-
sponding flowchart is shown in Figure 5.3. In this figure, it can be seen that the only extra steps are the
blocks LA.11 to LA.13: determining the reserve pairing benefit, updating the selection probabilities, and
updating the best normalised objective values. On top of that, the algorithm initialisation (block LA.1)
requires extra work. These adaptions from the random search algorithm to obtain the LAST algorithm
are detailed in the following paragraphs.
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Figure 5.3: Flowchart of the LAST optimisation algorithm that has been adapted for the airline reserve crew pairing problem.

Initialisation (LA.1)
Equal to the random search algorithm, first the initial pattern density should be determined. This value
determines the probability that each decision variable (i.e. reserve pairing) is included in the reserve
pattern, and thus determines the number of reserve pairings in the reserve pattern. However, where
the random search algorithm required only one single value for the selection probability, the LAST
algorithm requires that a distinct selection probability is defined per decision variable. In fact, it requires
a selection probability per decision variable value. For the airline reserve crew pairing problem, it is
assumed that decision variable values can either be 0 or 1. That is, a pairing is either included in the
reserve pattern, or it is not. Let 𝑝፦(𝑖, 𝑎) be the selection probability of value 𝑎 for decision variable 𝑖
during iteration number 𝑚. Then,

𝑝ኻ(𝑖, 0) = 1.0 − initial density ∀𝑖 ∈ 𝐼
𝑝ኻ(𝑖, 1) = initial density ∀𝑖 ∈ 𝐼 (5.1)
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Furthermore, an upper bound 𝑅፦ፚ፱ and lower bound 𝑅፦።፧ should be defined, which will be used to
determine the relative solution quality of generated reserve patterns. Since these values are not known
in advance, they should be estimated. The estimates should be done such that the interval between
𝑅፦።፧ and 𝑅፦ፚ፱ is as small as possible, without generated reserve patterns falling outside the interval.
The model determines the bounds by generating and evaluating ten random solutions per bound. For
the lower bound, the solution with the lowest objective function value is multiplied by a factor 0.5 to
obtain the lower bound. For the upper bound, the solution with the largest objective function value is
multiplied by a factor 1.15 to obtain the upper bound. Preliminary experiments show that these values
provide a small interval without solutions lying outside the bounds.

Finally, the best normalised objective function value associated with each decision variable value
should be initiated. Since no solutions have been generated yet, this value is 1.0 for each decision
variable value. Let 𝐵(𝑖, 𝑎) be the best normalised objective function value for decision variable 𝑖 with
value 𝑎. Then,

𝐵(𝑖, 𝑎) = 1.0 ∀𝑖 ∈ 𝐼, 𝑎 ∈ 𝐴(𝑖) (5.2)

Updating selection probabilities (LA.11 / LA.12)
After a reserve pattern has been generated and evaluated, the selection probabilities 𝑝፦ዄኻ(𝑖, 𝑎) have
to be updated so that the random search process becomes adaptive. For each decision variable 𝑖, for
each value 𝑎, it should be checked if 𝐵(𝑖, 𝑎) is larger or smaller than 𝐵(𝑖, 𝑥(𝑖)). Here, 𝑥(𝑖) is the value of
decision variable 𝑖 during the current iteration 𝑚. If 𝐵(𝑖, 𝑎) is larger than 𝐵(𝑖, 𝑥(𝑖), there is an indication
that 𝑎 is a worse value for decision variable 𝑖 than 𝑥(𝑖), because a better solution was found with 𝑥(𝑖)
than with 𝑎. Therefore, the selection probability for 𝑎 should be decreased and for 𝑥(𝑖) it should be
increased. If 𝐵(𝑖, 𝑎) is larger than 𝐵(𝑖, 𝑥(𝑖)), the selection probability 𝑝፦ዄኻ(𝑖, 𝑎) should be updated
using Equation 5.3. On the other hand, if 𝐵(𝑖, 𝑎) is smaller than 𝐵(𝑖, 𝑥(𝑖)), then the exact opposite is
true and Equation 5.4 should be used to update the selection probability.

𝑝፦ዄኻ(𝑖, 𝑎) = 𝑝፦(𝑖, 𝑎) − 𝑤᎙(𝑖)𝜇[𝐵(𝑖, 𝑎) − 𝐵(𝑖, 𝑥(𝑖))]𝑝፦(𝑖, 𝑎) (5.3)

𝑝፦ዄኻ(𝑖, 𝑎) = 𝑝፦(𝑖, 𝑎) + 𝑤᎙(𝑖)𝜇[𝐵(𝑖, 𝑥(𝑖)) − 𝐵(𝑖, 𝑎)]
[1 − 𝑝፦(𝑖, 𝑎)]𝑝፦(𝑖, 𝑥(𝑖))

|𝐴(𝑖)| − 1 (5.4)

In these equations, 𝜇 is the learning rate and 𝑤᎙ is the learning rate weight. In Chapter 4.5 the
reserve pairing benefit to a solution was described, indicating the contribution a pairing has in terms of
prevented premium days and the burden a pairing has in terms of caused unused reserve days. These
benefits are used to determine the learning rate weight 𝑤᎙ in Equations 5.3 and 5.4. In Equation 5.3,
reserve pairings with a high benefit should have a higher learning rate, but in Equation 5.4, pairings
with a high benefit should have a lower learning rate, as shown in Equation 5.5.

𝑤᎙(𝑖) =
⎧

⎨
⎩

1 − benefit(i)
∑ᑀᑚᎾᎳ benefit(i)

if 𝐵(𝑖, 𝑎) < 𝐵(𝑖, 𝑥(𝑖))
1 + benefit(i)

∑ᑀᑚᎾᎳ benefit(i)
if 𝐵(𝑖, 𝑎) > 𝐵(𝑖, 𝑥(𝑖))

1 if 𝑥(𝑖) = 0
(5.5)

When 𝑎 equals 𝑥(𝑖), 𝐵(𝑖, 𝑎) will never be larger or smaller than 𝐵(𝑖, 𝑥(𝑖)), which means that the
selection probability of 𝑥(𝑖) is never updated using Equations 5.3 and 5.4. To resolve this, 𝑝፦ዄኻ(𝑖, 𝑥(𝑖))
should be updated using Equation 5.6, after all other decision variable values have been updated.

𝑝፦ዄኻ(𝑖, 𝑥(𝑖)) = 1 −
ፚ዆|ፀ(።)|

∑
ፚጽ፱(።);ፚ዆ኻ

𝑝፦ዄኻ(𝑖, 𝑎) (5.6)

Updating normalised objective value (LA.13)
After the selection probabilities have been updated, the best normalised objective function values as-
sociated with each decision variable value 𝐵(𝑖, 𝑎) should be updated. First, the normalised objective
function value for the current solution should be computed, using Equation 5.7. Here, 𝐹 is the nor-
malised objective function value and 𝑅 is the regular objective function value.
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𝐹 = 𝑅 − 𝑅፦።፧
𝑅፦ፚ፱ − 𝑅፦።፧

(5.7)

Afterwards, for each decision variable, it should be checked if the current solution has a lower
normalised objective function value for the selected decision variable value than the lowest normalised
objective function value found so far. If this is the case, than Equation 5.8 should used to update the
normalised objective function value.

𝐵(𝑖, 𝑥(𝑖)) = 𝐹 (5.8)

Summarising, the LAST algorithm uses the same framework as the random search optimisation
algorithm: solutions are generated by randomly selecting reserve pairings based on a selection prob-
ability. However, instead of a constant selection probability, the LAST algorithm defines a separate
selection probability per pairing, which is updated based on the benefit of the pairing to the resulting
reserve pattern.

5.4. GRASP
The third optimisation algorithm is a construction based algorithm adapted from the generic Greedy
Randomised Adaptive Search Procedure (GRASP) from Feo and Resende (1995). The algorithm is
specifically adapted for the airline reserve crew pairing problem, which has never been done in the
literature before. The algorithm starts from a zero solution (i.e. an empty reserve pattern) and adds
reserve pairings one by one to construct feasible reserve patterns. At each construction iteration, the
reserve pairing that should be added is determined by ordering all unique pairings in a candidate list
based on their potential, which is a measure of the amount of premium days that can be prevented
by the reserve pairing. After each reserve pairing that is added to the reserve pattern, the potential of
each unique pairing is recalculated. Due to this, the algorithm is adaptive, as the potential reflects the
impact of selecting the previous element. The GRASP procedure that has been designed for the airline
reserve crew pairing problem is displayed in the flowcharts of Figures 5.4 and 5.5. In the remainder of
this section, the steps in the flowchart are detailed further, where the numbers in the headers indicate
the corresponding blocks in the flowcharts.

Evaluate zero
solution

Start End
Generate zero

solution

Set zero solution
as incumbent

solution

Select all unique
pairings as

feasible pairings

Stopping 
 criterion

met?

Extended
evaluation of best

solution

Select best
solution satisfying

service level

Perform add
pairing flowchart

NO

YES

GR.1 GR.2

GR.3

GR.4

GR.5

GR.7

GR.8

G
R
.6

Figure 5.4: Flowchart of one repetition of the GRASP optimisation method that has been developed for the airline reserve crew
pairing problem.

Zero solution (GR.1 / GR.2 / GR.3)
The GRASP algorithm adds one reserve pairing to the reserve pattern per iteration. However, before
pairings can be added, first an initial solution has to be generated and evaluated. The initial solution
is always the zero solution: the mathematical reserve pattern representation consists solely of zeros.
The performance of the empty reserve pattern given an airline flight schedule is required to determine
the potential of all unique reserve pairings, defined as the feasible pairings.
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Figure 5.5: Flowchart showing how pairings are added in the construction based optimisation methods that have been
developed in this research for the airline reserve crew pairing problem.

Pairing potential (GR.4 / AP.1 / AP.2 / AP.3 / AP.4)
The next step after the zero solution has been generated is to determine which reserve pairing should
be added to the incumbent zero solution during the current iteration.

Firstly, all feasible pairings should be defined. For the GRASP method, the feasible pairings are the
same as all unique reserve pairings as described in Section 5.1, because any infeasible pairings are
already excluded from the list of unique pairings and there are no restrictions on which pairings can be
added to the reserve pattern.

Secondly, the potential of each of the feasible pairings is determined. The potential is a measure of
the benefit to the objective function that a reserve pairing can have when it is added to the incumbent
solution. The potential of a reserve pairing is determined using a methodology similar to the analytical
evaluation model, where the reserve availability decreases when a reserve pairing increasingly covers
flights. For each reserve pairing, the initial potential 𝑃 should be set to 0.0 and the initial reserve
availability 𝑟 should be set to 1.0. Then, for each flight 𝑓 in the flight schedule that the reserve pairing
is able to cover, the following steps should be taken.

1. Determine the decrease in disruption probability Δ𝑝 caused by the reserve pairing using Equation
5.9.

Δ𝑝 = 𝑝eff,፟ ⋅ 𝑟 (5.9)

where 𝑝eff is the effective disruption probability of the flight, before the reserve pairing is added
and 𝑟 is the reserve availability.

2. Update the reserve availability using Equation 5.10.

𝑟 = 𝑟(1.0 − 𝑝eff,፟) (5.10)

3. Increase the reserve pairing potential using Equation 5.11.

𝑃 = 𝑃 +
Δ𝑝𝑤፩,፟𝑙፟

𝑙፫
(5.11)
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where 𝑤፩,፟ is the premium weight and 𝑙፟ is the number of route days of flight 𝑓, and 𝑙፫ is the
length of the reserve pairing 𝑟.

Restricted candidate list (AP.5)
With the potential of each pairing known, a restricted candidate list (RCL) is constructed. The RCL
includes a number of reserve pairings with the highest potential. The number of reserve pairings in
the RCL depends on the number of candidate pairings 𝑘 that will be evaluated and a multiplier 𝑐፤ that
can be adjusted by the user. For example, if 𝑘 = 5 and 𝑐፤ = 3, then the 15 pairings with the highest
potential are included in the RCL.

From the RCL, 𝑘 reserve pairings are selected as candidate pairings. This is done using a weighted
random selection without replacement where the candidates with the highest potential have the highest
probability of being selected. The selection probability 𝑞። of reserve pairing 𝑖 in the RCL is obtained
through Equation 5.12, which enforces an exponentially decreasing selection probability, assuming that
reserve pairings in the RCL are ordered by decreasing potential. The parameter values in this function
have been determined from preliminary experiments, ensuring a proper balance between biasing the
top pairings and not neglecting the reserve pairings lower on the RCL.

𝑞። =
20ኺ.ዃዅ

Ꮂ.Ꮊ(ᑚᎽᎳ)
ᑜᑔᑜᎽᎳ

∑ፈ።዆ኻ 20
ኺ.ዃዅ Ꮂ.Ꮊ(ᑚᎽᎳ)ᑜᑔᑜᎽᎳ

(5.12)

Candidate evaluation and addition (AP.6 - AP.14)
Each of the selected candidate pairings is added to a separate instance of the incumbent solution,
after which the solutions are evaluated by the simulation model. To determine which of the candidate
pairings should be added to the incumbent solution of the next iteration, a selection policy is followed.
The user of the model is able to choose one out of three selection policies. The selection policies are:

(a) Select the solution with the lowest number of unused reserve days. This enforces that solutions
arise that have high reserve utilisation rates.

(b) Select the solution with the lowest objective value. This results in the steepest possible descent
in objective value, possibly at the cost of low reserve utilisation rates.

(c) Select the solution with the lowest combined value of unused reserve days and objective value,
where the unused reserve days have a weighing factor of 0.75 and the objective value has a
weighing factor of 0.25. This policy aims to combine the two policies above, choosing the solution
that decreases the objective function the most when multiple solutions have a comparably good
number of unused reserve days. The weights have been chosen so that the number of unused
reserve days is the leading parameter, but only when the objective function is much better for
alternatives, the objective function value is dominant.

Iterations (GR.6 / GR.7 / GR.8)
The algorithm keeps adding reserve pairings to the reserve pattern until the budget exceeds the value
of the budget constraint. If no budget constraint value is specified, pairings will keep being added until
the ratio between unused reserve days and premium days exceeds 12.0. This value is chosen so that
the algorithm keeps adding pairings until the optimal budget has been surpassed by a safe margin.

From all solutions that were visited during the reserve pattern construction, the solution with the
lowest objective function value, that satisfies the budget constraint, is selected as the optimal solution.
Since this optimisation algorithm uses random elements in the solution procedure, there is a chance
that a poor combination of reserve pairings is selected, leading to a bad optimal solution. To prevent
this from happening, the model is able to repeat the entire optimisation process an arbitrary number of
times. The reserve pattern with the lowest objective function value from all repetitions is then selected
as the optimal solution.

5.5. GRASP-LF
The fourth optimisation algorithm is an adaption of the GRASP method and is called the Greedy Ran-
domised Adaptive Search Procedure - Longest Flights (GRASP-LF) method. The GRASP-LF method
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first adds one reserve pairing per day in the flight schedule, which covers the longest flight pairing start-
ing on that day. In case there are multiple longest flights, the earliest longest flight of that day is chosen,
because there is a chance that subsequent longest flights are covered as well. After the longest flight
on each day is covered, the regular GRASP method is started with the incumbent solution, as shown
in Figure 5.6.

The idea of first covering the longest flight per day is taken from reserve pattern design principles
that are currently used in practice when reserve patterns are created manually. In these patterns,
it is aimed to cover a maximum number of flight pairings with one reserve pairing, which results in
covering the longest flight on each day. Using this policy in an automated model has two advantages:
(1) generated reserve patterns are more likely to cover a high number of flights in the flight schedule,
which decreases the expected number of premium days, and (2) the generated reserve patterns will
reflect the current reserve patterns, which is helpful for validation purposes.
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Figure 5.6: Flowchart of one repetition of the GRASP-LF optimisation method that has been developed for the airline reserve
crew pairing problem.





6
Comparison experiments

This chapter considers the experiments that are performed to compare the reserve pattern optimisation
algorithms. Firstly, the comparisons that are done between the algorithms are described in Section 6.1.
Secondly, the results of the experiments are presented in Section 6.2. Finally, the results are validated
in Section 6.3 and discussed in Section 6.4.

6.1. Experiment descriptions
A number of experiments will be done to compare the optimisation algorithms with each other and with
the manually constructed reserve pattern:

1. Objective value
For the first experiment, the optimisation algorithms will be run and the solutions from the al-
gorithms and the manual solution will be compared by objective function value. This can be
considered to be the primary experiment that is done, since it analyses which algorithm is able to
create solutions with the lowest cost, while satisfying the required service level. In this experiment
the solution process of the algorithms is also analysed and discussed.

2. Premium days
Since both factors in the objective function are different in magnitude, the second experiment aims
to determine which of the algorithms is able to minimise the number of premium days, given that a
fixed budget is imposed. Equal to the first experiment, comparisons with the manual solution are
done. On top of this, the best algorithms for the first and second experiments will be compared
to each other, to see if the best optimisation method differs per objective.

3. Dynamic reserve pairing
In the third experiment, the potential of automated reserve crew pairing will be demonstrated by
considering seasonality effects in crew absence data. Instead of solving the problem scenario
using average crew absence data, the problem will be solved separately for different time peri-
ods, with adjusted crew absence data. By comparing this against the static solutions of the first
experiment, the difference in objective value, and thus the advantage of dynamic reserve crew
pairing can be analysed.

Model settings
Following from a pre-experiment sensitivity analysis, that is described separately in Chapter 7, the
settings in Appendix B are used for the experiments. Furthermore, the required service level is derived
from the manual solution, requiring less than three flights being flown at premium cost in 97.1% of the
time.

6.2. Results
This section presents and analyses the results of the experiments that were done to compare the
optimisation algorithms. The results are discussed per experiment.

63
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Experiment 1: Objective value
The first experiment aims to compare the optimisation algorithms by their optimal objective function
values. The experiment has been performed three times for each optimisation algorithm, and the best
result per algorithm is used for the comparison. The main performance measures for the results from
this experiment are shown in Table 6.1, and the full reserve patterns per method can be found in
Appendix C. To evaluate the generated reserve patterns, the simulation model required 24.4 seconds
on average to simulate 25000 weeks. Given that the reserve patterns are complex to evaluate because
of the combinations of pure and mixed reserve pairings with varying lengths, the simulation model is
fast enough based on the project specifications.

It can be seen that the GRASP optimisation method achieves the best result with respect to the
objective function, with a value of 41.44. Compared to the manually constructed reserve pattern, a
12.4% improvement is observed. The percentage improvement translates to a saving of 5.9 working
days on a weekly basis. The corresponding size of the total workforce in this example equals 104
FTEs. Given that one FTE amounts to five working days per week, a total decrease of 1.1% of the
total workforce costs can be projected. The LAST and GRASP-LF methods also manage to yield lower
objective function values than the manual solution, with 2.7% and 5.7% improvements, respectively.
The random search method is the only algorithm that is unable to improve on the existing solution.

Table 6.1: Performance measures for experiment 1 for the manual solution and all optimisation methods.

Performance measure Manual Random LAST GRASP GRASP-LF
Objective function value 47.31 52.77 46.03 41.44 44.61
Reserve budget 45 49 43 38 42
Premium days 2.31 3.77 3.03 3.44 2.61
Service level 0.9714 0.9773 0.9785 0.9734 0.9706
Optimisation time [s] - 4343 5078 498 568
Reserve pairings (pure) 13 (4) 11 (5) 10 (4) 10 (4) 12 (3)
Unused reserve days 21.97 23.93 18.82 14.92 19.20
Flights covered 77 70 75 74 76
Disruption improvement 81.7% 81.1% 84.9% 82.5% 82.7%

It can be seen that the service level constraint functions as it is supposed to, since the service level
is comparable across the manual solution and the computer generated solutions. The improvements in
objective function value are obtained by a decrease in the reserve budget that is needed to obtain the
required service level. This result could be expected, since the reserve budget is a larger component
in the objective function than the number of premium days, as was explained in Chapter 4.1. In other
words, it is more efficient to decrease the number of reserve days than the number of premium days.
For example, the solution generated by the GRASP method allocates seven reserve days per week
less than the manual solution, but this generates on average only 1.13 premium days per week extra.

The disruption improvement is defined as the average percentage improvement for all flights be-
tween the initial and effective disruption probabilities. The results show that high values for this metric
do not guarantee a low number of premium days too. For example, the LAST algorithm achieves the
highest percentage disruption improvement, but the manual solution yields the lowest number of pre-
mium days. This can be explained by considering the flights that are not covered for each reserve
pattern. It can be seen that higher values in premium days are related to longer flights not being
covered, which lead to a relative high number of premium days. This is supported when looking at
the number of flights covered: solutions with a large number of covered flights in general lead to low
numbers of premium days. Similarly, the percentage disruption improvement and the service level are
also correlated, because both of these metrics are indications for the number of disruptions not being
covered. The disruption improvement percentage also depends on the ratio between pure and mixed
reserve pairings. Mixed reserve pairings cause secondary disruptions, which influence the effective
disruptions probabilities of certain flights. This is why the LAST algorithm scores better on the disrup-
tion improvement percentage compared to the GRASP and GRASP-LF methods. The reserve patterns
generated by the GRASP and GRASP-LF methods both feature some flights of which the effective dis-
ruption probabilities are not reduced as a consequence of secondary disruptions, even though they are
covered by reserve pairings.
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When considering the required optimisation time of the solution methods, large differences are
found. The GRASP method is the fastest with a required optimisation time of 498 seconds, whereas
the GRASP-LF method needed 568 seconds to generate the solution. This marginal difference can
be explained by the total number of iterations that were performed over all repeats by each optimisa-
tion algorithm until the stopping criterion was met, which is 71 for GRASP and 74 for GRASP-LF. This
value is higher for the GRASP-LF method because it requires to use long reserve pairings in the first
iterations to cover the longest flight on each day. The results show that these long pairings lead to a
high number of unused reserve days (following from a low reserve usage rate) and only prevent a low
number of premium days (i.e. they are inefficient). Therefore, the stopping criterion is met at a higher
number of iterations. This effect is enlarged due to the fact that solutions with more reserve pairings
take longer to evaluate. The optimisation time of the random search and LAST methods are a order
of magnitude larger than for the other two methods, which is also explained by the higher number of
iterations (4000) that is performed for these methods. The LAST algorithm is slower than the random
search algorithm for two reasons: (1) the selection probabilities and best normalised objective values
have to be updated each iteration, and (2) more solutions are evaluated because the bounds are re-
calculated during the optimisation process.

Figure 6.1 shows the progression of the optimal objective function value for the random search and
the LAST optimisation methods. The combination of the initial reserve pattern density and the budget
adaptions that have been described in Chapter 5.2 cause a steep descent in optimal objective function
value in the initial optimisation phase. The initial density value results in reserve patterns with high
budgets. As soon as a solution is found that satisfies the service level constraint (as indicated by a
encircled solution in the graph), the random search and LAST optimisation methods continue searching
for reserve patterns with lower but comparable reserve budgets. In time, this decreases the reserve
budget and thus the objective function value.

It can be seen that the random search method stops improving sooner than the LAST method. This
can be credited to the adaptive search procedure that is used in the LAST method. Due to this, reserve
patterns with favourable reserve pairings are generated more often, which increases the chance of
improving the objective function value.

In Figures 6.2 and 6.3 the optimisation process of the GRASP and GRASP-LF methods, respec-
tively, is visualised. The solid line shows the path of objective function values that were selected at
each iteration. At each iteration, a number of dashed side paths are shown that show the objective
values of the other candidate solutions that were evaluated. In Figure 6.2, going from iteration two to
three, the effect of the selection policy can be seen. Instead of selecting the candidate with the lowest
objective function value, the candidate with the lowest weighted combination of unused reserve days
and objective function is selected.

In these figures the nature of the objective function and the effect of the service level constraint can
be seen. Due to the larger factor of reserve budget compared to premium days, the objective function
almost exclusively increases at each iteration. That is, each reserve pairing that is added results in a
sharper increase in reserve budget than the decrease in premium days. Therefore, to avoid the optimal
solution from having an impractically low reserve budget, the service level constraint implicitly enforces
a minimum budget. The visited solutions (i.e. feasible solutions) that satisfy the service level constraint
are encircled in the graph. Of all feasible solutions, the one with the lowest objective function value is
chosen as the optimal solution. This solution is indicated with a filled circle in the graph. As can be
seen, the optimal solution does not have to come from the selected candidates. Instead, any solution
that has been visited by during the optimisation process is eligible to be the optimal solution.

The difference between theGRASP and theGRASP-LF is notable in the first seven iterations (during
which they are different). Because the GRASP-LF has to cover the longest flight on each day, inefficient
long reserve pairings, as explained above, have to be used. Therefore, the followed path in the GRASP-
LF algorithm increases sharper during the first seven iterations. However, it can be seen that the
objective function increase after the first seven iterations is sharper for the GRASP method than for
the GRASP-LF method. This is a result of the high potential pairings that the GRASP algorithm has
already added in the first seven iterations. These can still be added by the GRASP-LF algorithm after
the longest flights have been covered.
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Figure 6.1: Objective function progression of experiment 1 for the random search and LAST methods.
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Figure 6.2: Objective function progression during the best repetition of experiment 1 for the GRASP method.
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Figure 6.3: Objective function progression during the best repetition of experiment 1 for the GRASP-LF method.
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Experiment 2: Premium days
In the second experiment, the reserve budget, which is the main contributor to the objective function
value, is constrained. Due to this, the other contributor to the objective function value, the amount of
premium days, becomes the main performance measure of a reserve pattern. Therefore, this essen-
tially allows a comparison of the optimisation algorithms with respect to the amount of premium days
that can be prevented. In this experiment a comparison between the best algorithms for experiments
1 and 2 is also made.

In Table 6.2 themain performance indicators for this experiment are shown. First of all, it can be seen
that the objective function value for the manual solution is the lowest, even though the manual solution
yields more premium days than all but the random search optimisation algorithms. This is a result of
how the budget constraint is implemented in practice, which allows a margin of one reserve day more or
less than the required budget value. This is done to increase the number of feasible solutions, with the
aim of finding a feasible solution with a low number of premium days. This is especially relevant to the
construction based optimisation algorithms, which visit relatively few solutions during the optimisation
process. Therefore, there is a chance that during the optimisation process not a single solution is visited
that exactly satisfies the budget constraint. By increasing the margin of the budget value by one, this
chance is decreased.

Table 6.2: Performance measures for experiment 2 for the manual solution and all optimisation methods.

Performance measure Manual Random LAST GRASP GRASP-LF
Objective function value 47.31 49.76 48.31 47.78 47.36
Reserve budget 45 46 46 46 46
Premium days 2.31 3.76 2.31 1.78 1.36
Service level 0.9714 0.9640 0.9877 0.9847 0.9806
Optimisation time [s] - 4426 5331 509 600
Reserve pairings (pure) 13 (4) 14 (3) 12 (4) 17 (3) 13 (3)
Unused reserve days 21.97 23.68 20.58 20.58 20.37
Flights covered 77 74 75 76 78
Disruption improvement 81.7% 77.8% 89.0% 88.9% 88.0%

Secondly, compared to the first experiment, where the GRASP algorithm proved best, the GRASP-
LF algorithm is more effective for the second experiment. With 1.36 expected premium days per week,
it scores 41.1% better compared to the manual solution. The GRASP method manages to yield a
22.5% improved solution compared to the manual solution. The reason that the GRASP-LF method
outperforms the GRASP method is because the number of flights covered with the GRASP-LF method
is larger. Since the longest flight per day is covered first, even though covering these flights is ineffective
considering the reserve usage rate, there are no premium days resulting from these flights. TheGRASP
method does not cover two of the longest flights, which results in an increase in premium days compared
to the GRASP-LF method.

The random search based algorithms were unable to derive solutions that were better than the man-
ual solution. However, when considering the service level and the disruption improvement percentage,
the LAST method and the GRASP and GRASP-LF methods all outperform the manual solution. Again,
these metrics are an indication of the number of uncovered flights, whereas the number of premium
days also takes into account the lengths of the flight pairings. The reserve pattern of the LAST algorithm
(see Appendix C) supports this statement: three of the longest flights are not covered by the reserve
pattern.

In Figure 6.4 the optimal objective function value progression is shown for the random search and
LAST optimisation methods, where the vertical axis represents the number of premium days in the
reserve pattern. Compared to Figure 6.1, for experiment 1, the feasible solutions have not been indi-
cated in the graph. This is because the random search based optimisation methods use the budget
constraint value to make the budget of the reserve pattern compatible with the constraint value before
the pattern is evaluated. That is, every solution that is considered for the random search and LAST
algorithms is a feasible solution when a budget constraint is present. In theory, the methods should be
more effective in finding reserve patterns with few premium days when a budget constraint is present,
compared to experiment 1, which leaves the budget open. This is because the size of the feasible
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solution search space is limited due to the budget constraint. However, the relative performance of
the algorithms between experiment 1 and experiment 2 cannot be compared, because the objective
functions are of a different nature.

It can be seen that, similar to experiment 1, the LAST method outperforms the random search
method. Compared to experiment 1, the optimal objective function value decreases less steeply. This
can be explained by the presence of the budget constraint. Since no budget constraint is present in
experiment 1, the optimisation process begins with conservative budgets. As a result, the budget,
and thus the objective function value, decrease fast in the beginning. In experiment 2, the required
budget is already known, so all improvement in objective function value has to come from decreasing
the number of premium days. As can be expected, the improvement in the objective function value is
still the fastest in the first couple of hundred iterations. The LAST algorithm manages to keep improving
in objective function value for a larger number of iterations compared to the random search algorithm.

In Figures 6.5 and 6.6 the objective function progression for the GRASP and GRASP-LF methods
is depicted. Compared to experiment 1, a number of differences can be noted. Firstly, the objective
function (i.e. number of premium days) decreases as the number of iterations increases. This is an
effect of isolating the premium days component from the objective function. Secondly, it can be seen
that the selection policy is critical for this experiment. Currently, the candidate with the lowest weighted
sum of unused reserve days and objective function value is selected as the optimal candidate. If instead
the solution is selected that decreases the objective function the most, a much steeper descending path
would be followed. In the figures, this can be seen from the dashed lines (i.e. other candidates) that
are below the path followed by the selected candidates. Even though the descent in objective function
value would be steeper, from preliminary tests it followed that the resulting number of premium days
corresponding to the required budget is in fact larger. This is because a steepest descent by premium
days causes only pure reserve pairings to be used. Pure reserve pairings do not cause secondary
disruptions and thus decrease the number premium days by a larger amount. Using only pure reserve
pairings results in a poor coverage over all flights, because pure reserve pairings require more budget
than mixed reserve pairings. Thirdly, the number of feasible solutions in experiment 2 (i.e. solutions
that satisfy the budget constraint) is smaller than the number of feasible solutions in experiment 1 (i.e.
solutions that satisfy the service level requirement). For example, in Figure 6.5 only three feasible
solutions were visited. This illustrates the need for the margin in the reserve budget constraint value.

Experiment 3: Dynamic reserve pairing
In the third experiment, the effects of including seasonality in the reserve pairing problem are investi-
gated. For this, the problem scenario is solved separately for each month in the summer season for
which the flight schedule is valid. For each month, the disruption probabilities per flight are adjusted
for the relative crew absence rate per month. Thus when the average crew absence rate during a
month was low, the disruption probabilities are decreased correspondingly. The adaption weights that
are used have been derived from historical roster data and are presented in Table 6.3. For the third
experiment, only the GRASP method is investigated, because this algorithm yielded the best results in
first experiment.

Table 6.3: Absence rate adjustments per month for the period during which the flight schedule is valid.

Average April May June July August September October
Absence rate % 5.22 3.34 5.19 4.02 3.14 4.43 6.43 6.22
Weight 1.0 0.64 0.99 0.77 0.60 0.85 1.23 1.19

In Figure 6.7, the optimal objective function values per month are shown for the manually con-
structed reserve pattern, and the statically and dynamically generated reserve patterns from theGRASP
method. The statically generated reserve pattern uses the average crew absence rate, corresponding
to a weight of 1.0. That is, the static reserve pattern is based on the problem scenario of experiment 1,
and the same pattern is used for each month. The dynamically generated reserve patterns are made
separately for each month, where the flight schedule used different disruption probabilities per month.
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Figure 6.4: Objective function progression of experiment 2 for the random search and LAST methods.
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Figure 6.5: Objective function progression during the best repetition of experiment 2 for the GRASP method.
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Figure 6.6: Objective function progression during the best repetition of experiment 2 for the GRASP-LF method.
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Figure 6.7: Optimal objective function value per month for the manual reserve pattern and statically and dynamically GRASP
generated reserve patterns.

When the same reserve pattern is used for each month, the only variation in objective function value
comes from the number of premium days, which is the minor factor in the objective function. In months
where the crew absence rate is above the average value, the objective function value is larger than in
experiment 1, with the opposite being true for months with lower crew absence rates. However, when
different reserve patterns are created per month, large differences in the objective function values
can be noticed from month to month. In months with low crew absence rates, the model is able to
allocate lower reserve budgets in the optimal solutions. On average, the improvement in objective
function value using monthly generated reserve patterns is 11.9 days per week (25.3%) compared to
the manual solution and 5.9 days per week (14.3%) compared to the static solution.

In Figure 6.7 it can be seen that in September and October the dynamic solution is worse than the
static solution. This can be explained by considering the service level, which is depicted in Figure 6.8. In
September andOctober, where the crew absence rates are above average, the average reserve pattern
is not sufficient to reach the required service level of 0.971. When looking at the dynamic solution, it
can be seen that generated reserve patterns are constant in their service level over the months. This
can be considered another advantage, next to a more cost effective solution. In summary, dynamic
reserve crew pairing allows an airline to provide a constant and minimum level of service at minimum
costs, which is a large improvement over the current situation.
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Figure 6.8: Service level per month corresponding to the manual reserve pattern and statically and dynamically GRASP
generated reserve patterns.

6.3. Validation
This section presents the findings of the results validation that has been done for this research project.
The aim of the validation process is to ensure that the generated results (i.e. the reserve patterns) are
sufficiently accurate for their intended purpose, which is use of the reserve patterns in practice. The
validation process for this project consisted of three parts:

• A comparison of the generated reserve patterns with the existing manually constructed reserve
patterns;

• Face validation with the KLM crew scheduler who created the existing manually constructed re-
serve patterns, but is now employed as a crew controller, who resolve crew disruptions and thus
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use the reserve pairings;

• Qualitative comparison of the performance measures with data from practice of the solutions after
evaluation using the simulation evaluation model.

The conclusions from the results validation process are the following:

• The results are valid within the project scope Following from the comparison of the manually
constructed reserve patterns and the consultation of the crew scheduler, the reserve patterns
have been shown to be usable as reserve patterns in practical situations. Within the scope of the
model, the generated reserve patterns are valid to cover the corresponding input flight schedules.
From this it follows that the relevant labour agreements and regulations have been implemented
correctly in the model, concluding that the model results are valid.

• Factors that limit the validity Given that the model scope has been defined such that the airline
reserve crew pairing problem can be isolated from the overall crew scheduling problem, a number
of points were brought up during the expert consultation that can improve the validity of the results
for a wider scope.

– Recovery measures The model assumes that the only recovery measures for a crew dis-
ruption are reserve usage and premium flying. Moreover, when reserves are still available
for recovery, they have to be used. In practice, reserve pairings can sometimes be saved for
specific flights, for which experience has shown that these flights are difficult to cover using
premium flying. Instead of using a reserve pairing, it is chosen to divert to premium flying.
This is supported by the qualitative data comparison that has been done. The number of
premium days in practice was found to be larger than in the model. However, it is consid-
ered outside the scope of this project to implement the decision making process of the crew
controller in the model.

– Flight coverage It was found that it is preferred from the perspective of the crew controller
that all flights in the flight schedule are covered by at least one reserve pairing, preferably
starting on the same day as the flight pairing. The model does not currently support this, but
a model extension through the implementation of an additional constraint can provide this
option in the results.

– Reserve pairings Another preference from crew controllers is that a minimum number of
pure reserve pairings is included in the reserve pattern. Even though mixed reserve pairings
are useful to cover a wide spread of flights with a limited reserve budget, primary disruptions
eventually have to be covered by a pure reserve pairing in order to stop the snowball dis-
ruptive effect. By enforcing a minimum number of pure reserve pairings, it can be ensured
that a minimum number of primary disruptions following from crew absence can be covered
during operations.

Summarising, the model provides sufficiently accurate results given the present regulations and
labour agreements. However, for the model to be more relevant to practical operations, some of the
model assumptions should be lifted so that the validity of the results is improved.

6.4. Discussion of results
Having completed all tests for the comparison experiments, the results can be discussed. The reserve
pattern simulation evaluation model is considered first. This model has been shown to be effective
in the evaluation of reserve patterns, which can be defined in a more complex manner compared to
the existing scientific state of the art. This follows from the use of mixed reserve pairings and pairings
of variable length. Despite the increased complexity, no impractical computational times are experi-
enced. A realistically sized flight schedule can be simulated for a thousand weeks in approximately
one second. It was found that a similar analytical model became too complex for the reserve pattern
flexibility required in this research, yielding impractical computational times. Another advantage of the
simulation model is that it is straightforward to include extra functions or constraints in the model. The
main drawback of the simulation model, the stochasticity in the model outcome, can be mitigated by
increasing the number of simulation repetitions. Because of the computational efficiency of the model,
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this can be done without loss of practical use.

Secondly, the optimisation algorithms are considered. In total, four algorithms have been devel-
oped and compared. The LAST, GRASP, and GRASP-LF methods are novel methods in solving the
airline reserve crew pairing problem. Across the first two tests, the random search and LAST optimi-
sation methods are outperformed by the construction based methods (GRASP and GRASP-LF), both
in terms of objective function values and required optimisation times. The best result in the first test
was generated by the GRASP algorithm, which yielded a 12.4% improvement over the manually con-
structed reserve pattern. This improvement was primarily achieved by a reduction in reserve budget.
However, for the second test, where the reserve budget was constrained, the GRASP-LF method was
shown to be most effective. This method yielded an improvement of one premium day per week (a
41.4% improvement) compared to the manual solution.

The reason that the random based optimisation techniques are not effective for this problem is due
to the size of the solution space. A high number of iterations is required for the random search and
LAST methods to converge towards high quality solutions, resulting in impractically high computational
times. Combining this with a simulation evaluation method results in optimisation methods that do not
yield satisfying results within the specified run time. The LAST method does manage to converge at
a faster rate than the random search algorithm, but due to the large number of decision variables it is
still difficult to randomly generate patterns that consist of a set of pairings which work well together.

The novel GRASP and GRASP-LF methods are able to generate reserve patterns much faster
because only one reserve pattern is generated per repetition, even though only one pairing is added
per iteration. Due to this, fewer reserve patterns have to be evaluated, leading to lower computational
times. The fact that reserve pairings are added one-by-one is also beneficial for the solution quality.
Since the potential of pairings is re-evaluated after each pairing that is added, the GRASP and GRASP-
LF algorithms are able to adapt to the effect of reserve pairings that were added before. Due to this,
these methods are able to create reserve patterns that effectively cover the reserve demand following
from the flight pairings in the airline schedule.

Depending on the goal of the decision maker, either the GRASP or GRASP-LF methods can be
used. When it is aimed to automatically size the reserve budget that should be allocated to achieve
a minimum service level, which is a novel application with respect to airline reserve crew pairing, the
GRASP method should be used. However, when a reserve budget has already been decided on, the
GRASP-LF method is better able to allocate these reserve days so that a lower number of premium
days is obtained.

Finally, the effects of dynamic reserve crew pairing have been considered in the third test. From
this test it follows that creating reserve patterns for smaller time spans is beneficial compared to static
reserve crew pairing. Dynamic reserve crew pairing allows to include seasonality effects in the deter-
mination of reserve budgets, which prevents oversized reserve patterns in time periods with low crew
absence rates and undersized reserve patterns in time periods with high crew absence rates. In combi-
nation with the novel service level constraint, the reserve patterns can be regularly adapted to provide
constant service levels over time.



7
Sensitivity analysis

This chapter presents the results of the pre-test sensitivity analysis that has been done to solve the
reserve crew pairing problem. The aim of the sensitivity analysis is twofold: (1) to determine the extent
to which the model output changes when the input parameters of the model are changed, and (2) to de-
termine which input parameter values yield the best results. In Section 7.1, the analysis of parameters
relevant to the evaluation model are discussed. Thereafter, Sections 7.2 and 7.3 present the sensitivity
analysis for the random search based and construction based methods, respectively.

7.1. Evaluation model
For the evaluation model, the reserve use policy, the mixed flights assignment policy and the input
schedule size have been investigated. For each experiment in this section the manual reserve pattern
has been used for the comparisons.

Use policy
The reserve use policy defines which reserve pairing is used to cover a disrupted flight pairing. There
are two options: (1) by earliest start time or (2) by minimum number of wasted reserve days. In Table
7.1, the results for this analysis are shown. The evaluation model yields better objective function values
for the minimum waste days policy with slightly improved run times. The difference in objective value
is the result of a lower number of premium days. This shows that using reserve pairings are the best
fit for a disrupted flight is better than using the reserve that has started earliest. An explanation for the
higher number of premium days for the earliest start time policy is that long reserve pairings are likely
to be used for short flights, leaving long flights vulnerable to premium flying. Therefore, the minimum
waste days usage policy is chosen for the experiments.

Table 7.1: Comparison between reserve usage policies in the evaluation model.

Parameter value Average objective value Average run time [s]
Minimum waste days 47.31 25.2
Earliest start time 48.29 26.5

Assignment policy
The assignment policy determines which flight is assigned to mixed reserve pairings in the reserve
pattern. Again, two possible settings can be chosen: (1) equal probability for each possible flight that
can be assigned or (2) the flight with the lowest initial disruption probability. In Table 7.2 it can be
seen that the difference between both settings is negligible. Hence, the equal probability setting is
chosen to be used for the experiments, since it is a better reflection of the current way of working in
practice. An explanation for limited impact of this setting is that absence of reserve crew is neglected
in this research. Otherwise, reserve crew absence can be related to the disruption probability of the
mixed flight, where flights with low disruption probabilities indicate increased reserve crew presence.
Following this, more notable differences between the mixed flight assignment policies can be noted.
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Table 7.2: Comparison between mixed flight assignment policies in the evaluation model.

Parameter value Average objective value Average run time [s]
Equal probability 47.34 25.1
Lowest disruption first 47.31 25.2

Schedule size
To test the sensitivity of the evaluation model to the size of the input schedules, a range of tests is
conducted in which the number of flights and reserves in the input schedules is multiplied by differ-
ent factors. For each test, the flight schedule and reserve pattern are copied a number of times. For
example, if the multiplication factor is 3, then there are 234 flights and 39 reserve pairings, instead of
78 flights and 13 reserves. For each departure, three identical departures take place, and for each
reserve pairing, three identical reserve pairings start at the same time. Figure 7.1 shows the primary
assessment criteria for the different multiplication factors. The figure shows that the objective function
value increases linearly with increasing schedule size. When decomposing both factors of the objective
function, linear trends are seen for both the reserve budget and number of premium days. In contrast,
the required evaluation time increases exponentially, at a slightly faster rate than the linear trend. This
is explained by considering that besides the increasing number of flights, the number of feasible re-
serves for recovery per flight also increases. Resulting, more reserve pairings should be considered in
recovery, which takes longer per flight.
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Figure 7.1: Objective function value comparisons between different input schedule sizes in the evaluation model.

7.2. Random search based methods
This section describes the sensitivity analyses that have been done for the parameters of the random
search based methods. The pure random search and LAST methods are evaluated for the number of
iterations, the initial schedule density, and the number of simulation repetitions. For the LAST method,
the sensitivity of the learning policy, learning rate and random fraction are also evaluated.

Iterations
To investigate the sensitivity of the number of iterations, the random search and LAST methods were
executed with 10000 iterations. The best objective function value visited up to each iteration was stored
and plotted on the horizontal axis in Figure 7.2. The run time has also been plotted in the figure, but has
been calculated as a fraction of the total run time at 10000 iterations. Therefore, it should be used as an
indication for the run time, instead as an exact prediction. It can be seen that the largest improvements
in objective function values are made in the first 3000 iterations, after which the rate of convergence
decreases. The LAST algorithm is able to decrease the optimal objective function value at a faster rate,
which can be accredited to the adaptive search procedure. For the experiments, an iteration number
of 4000 is chosen, because a further increase would lead to run times that are practically out of scope
for this research.
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Figure 7.2: Objective function value comparisons between different iteration numbers for the random search and LAST
methods.

Initial density

The initial density determines the probability that each reserve pairing in the list of unique reserve
pairings is included in the reserve pattern during the first iteration. Thereafter, the selection probabilities
are adapted for the LAST algorithm, but remain constant in the random search algorithm. Resulting
from this, it can be seen in Figure 7.3 that the initial density has a larger effect on the objective function
value for the LAST algorithm than for pure random search. The LAST algorithm performs better for
initial density values of 0.025 and 0.05 than for 0.1 and 0.2. This is because the number of reserve
pairings that are selected in the reserve pattern are closer to the optimal solution for the lower initial
density values than for the larger values. For the pure random search, there is no difference between
the initial density values, because the service level constraint enforces a budget after the pairings have
been selected using the initial density.
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Figure 7.3: Objective function value comparisons between different initial density values for the random search and LAST
methods.

Simulation repetitions

Figure 7.4 shows the average optimal objective function value for a number of simulation repetition
values. Correspondingly, in Figure 7.5 the acquired service level of the optimal solution is plotted for
the same simulation repetition values. The general trend that is apparent is that when the number
of simulation repetitions increases, the objective function value also increases. This is because for
low numbers of simulation repetitions, the generated solutions are evaluated less carefully, leading to
increased bias in the service levels. When the optimal solutions are evaluated further, the service level
turns out to be lower than initially estimated, which can be seen in Figure 7.5: for low values of 𝑁,
the service level is lower than required in the experiments. Therefore, to ensure that the generated
optimal solutions from the pure random search and LAST methods have limited bias for solutions with
too low service levels, a simulation repetitions value of 1500 has been chosen. This does come at a
computational cost, but a higher priority to accurate service level estimation is given.
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Figure 7.4: Objective function value comparisons between different amount of repetitions for the random search and LAST
methods.
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Figure 7.5: Service level comparisons between different amount of repetitions for the random search and LAST methods.

Learning policy
The learning policy determines which metric is used to adapt the selection probabilities in the LAST
algorithm. The learning policy parameter basically serves as a surrogate objective function that is only
used for the learning aspect of the LAST algorithm. In Table 7.3 the results for three learning policies are
shown. If the sum of premium days and reserve budget is used for the learning policy, the budget days
would be dominant in this metric, and the algorithm would be unable to learn which reserve pairings
are effective at covering flights and thus preventing premium days. Therefore, this metric yields high
objective values. On the other hand, only using premium days for learning will create a bias for pure
reserve pairings, since the number of reserve days is irrelevant in this metric. A combination of premium
days and unused reserve days results in the best performance. This metric incorporates the fact that
reserve pairings should use their reserve days at a high rate, but also aims to minimise the number
of premium days. Therefore, the sum of premium days and unused reserve days is used to base the
learning process of the LAST algorithm on.

Table 7.3: Comparison between learning policies for the LAST method.

Parameter value Average objective value Average run time [s]
Premium + unused 48.10 5622.7
Premium 51.21 5678.0
Premium + budget 53.69 5681.0

Learning rate
The learning rate determines the extent to which the selection probabilities of the decision variables
are adapted after each iteration, with the aim of increasing the probability that high quality solutions are
identified. A balance between convergence towards high quality pairings and maintaining randomness
in the search procedure should be aimed for in determining the learning rate. If the learning rate is too
high, there is a chance that the LAST algorithm visits the same solutions over and over again. This
is what happens for the learning rates of 0.02 and 0.04 in Figure 7.7. It can be seen that roughly the
first ten decision variables have high selection probabilities, but after that there is a steep decrease
towards a selection probability of zero for all other decision variables. Due to this, the diversity in
reserve patterns generated is low. For the learning rates of 0.005 and 0.01, the selection probability of
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the first ten decision variables is lower, but decreases towards zero for other decision variables much
slower. In Figure 7.6 it can be seen that the performance of the higher learning rates is inferior to that
of the lower learning rates. On the other hand, if the learning rate is too low, the learning process can
be too slow and high quality reserve pairings do not arise. Therefore, a learning rate of 0.01 is chosen
for the experiments.
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Figure 7.6: Objective function value comparisons between different learning rate values for the LAST method.
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Figure 7.7: Selection probability of decision variables after the final iteration, in descending order, for different learning rate
values for the LAST method.

Random fraction
The random fraction determines how many reserve patterns are generated using the initial density
selection probability values and howmany are generated using the adapted selection probability values
following from the LAST algorithm. The aim of the random fraction is to ensure that some solution
diversity is always maintained, even if the adapted selection probabilities have fully converged. In
Figure 7.8, the average objective value and the run time for different random fractions have been
plotted. For a random fraction of two (i.e. one in two generated solution uses the initial density) the
objective values are much higher than for the other evaluated parameter values. An explanation for this
is that the effect of the LAST algorithm is too small for it to have a positive effect on the solution value.
Over all evaluated values, no clear trend is identified, but for a random fraction of three low objective
function values were found. Therefore, this value was used in the experiments.
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Figure 7.8: Objective function value comparisons between different random fraction values for the LAST method.

7.3. Construction based methods
The sensitivity of five parameters has been investigated for the construction based methods. These
are the number of repeats, the population size, the candidate multiplier, the number of simulation rep-
etitions, and the selection policy. Both the GRASP and GRASP-LF methods are considered simulta-
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neously. At the end of this section, the sensitivity of the GRASP method to the service level constraint
is considered.

Repeats
The number of repeats defines how many times the optimisation algorithm is executed, before the
optimal solution is selected from the repetition with the lowest objective value. It is expected that a
higher number of repeats leads to lower objective values but an increased run time: the probability
of encountering a repeat with a low objective function value increases when more time is invested in
generating solutions. Figure 7.9 supports this hypothesis, although the trend is strongest for lower
number of repeats. The objective value stops improving when the number of repeats surpasses four.
This indicates that doing four repeats already yields a sufficiently large chance of finding high quality
solutions. Therefore, this value has been chosen for the experiments. It can also be seen that the trend
is stronger for the GRASP-LF method than for the GRASP method, meaning that the GRASP method
is more consistent in generating high quality solutions.
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Figure 7.9: Objective function value comparisons between different numbers of repeats for the construction based methods.

Population size
The population size determines the number of candidate pairings that are evaluated at each construc-
tion iteration. From all evaluated pairings, the best one according to the selection policy, is selected
for the next iteration. In Figure 7.10, an interesting trend can be noticed: the algorithm performance
improves for increasing population sizes, with a minimum at a population size of four to five. The im-
provement is explained by realising that by evaluating more reserve pairings, the chance of evaluating
a favourable reserve pairing increases. However, when the population size is increased further, the
algorithm performance deteriorates again. Paired with this, a non-linear increase in computational time
can be noticed. An explanation for this is that it is more likely that incompatible reserve pairings are
added as candidates when the population size increases. When this occurs, a reserve pairing also
has to be removed from the reserve pattern to make the pattern compatible again. No pairings are
effectively added to some candidate solutions, which is beneficial considering the selection policy. In
other words, the construction algorithms struggle to efficiently add reserve pairings to the patterns at
each construction iteration, leading to deteriorated algorithm performance.
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Figure 7.10: Objective function value comparisons between different population sizes for the construction based methods.

Candidate multiplier
The candidate multiplier determines the size of the pool of unique reserve pairings from which the
candidate pairings in the population are selected, ranked by pairing potential. This implies that the
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minimum value of this parameter should be one, so that at least one unique reserve pairing is available
per candidate in the population. Figure 7.11 shows the performance of the GRASP and GRASP-LF
algorithms for various values of the candidate multiplier parameter. The performance of both algo-
rithms is constant for lower values of the candidate multiplier, but a decrease in performance can be
seen when all unique pairings are included in the pool from which candidate pairings are selected.
For the experiments, a value of 2.5 has been chosen, which provides a balance between (weighted)
randomised selection procedures and limiting the size of pool.
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Figure 7.11: Objective function value comparisons between different candidate multiplier numbers for the construction based
methods.

Simulation repetitions
With respect to the number of simulation repetitions, similar trends to the random search basedmethods
can be noticed: an increase in the number of repetitions results in a more accurate estimation of
the quality of generated solutions. This leads to higher service levels and objective function values
for higher numbers of simulation repetitions. To enforce an equal bias between all four optimisation
algorithms, the same number of repetitions is chosen: 1500. At this value, the estimated service levels
of the optimal solutions approach the required levels, and further increasing the number of repetitions
only increases required run times.
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Figure 7.12: Objective function value comparisons between different amount of repetitions for the construction based methods.
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Figure 7.13: Service level comparisons between different amount of repetitions for the construction based methods.

Selection policy
The selection policy determines which candidate pairing is added to the incumbent solution during each
construction iteration. Table 7.4 presents the algorithm performance for the three selection policies
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that have been investigated: minimum number of unused reserve days, minimum objective value, or
a weighted combination of those factors. It can be seen that there are only minor variations in the
performance of the selection policies, which can be accredited to the limited number of repetitions of
the sensitivity analysis. This is supported by the results from the experiments in Chapter 6: in Figures
6.2 and 6.3 the followed path is the path using the weighted combination selection policy, which is
almost identical to the minimum objective value.

For the second test the selection policy is more relevant. In Figures 6.5 and 6.6 it can be seen that
the path followed by the weighted combination selection differs strongly from the path of the minimum
objective value (i.e. steepest descent). If the minimum objective value was chosen as the selection
policy, only pure reserve pairings would be added, since the number of unused reserve days (i.e. the
usage rate of reserve pairings) is irrelevant. Therefore, the combination selection policy is chosen for
the experiments.

Table 7.4: Comparison between mixed flight assignment policies in the evaluation model.

GRASP GRASP-LF
Parameter value Objective Run time Objective Run time
min Unused reserve days 38.47 526.4 45.01 541.7
min 0.75 ⋅ unused+ 0.25 ⋅ objective 39.77 415.6 44.29 459.6
min Objective value 39.56 455.2 45.11 410.1

Service level
In Figure 7.14 the optimal objective function value (7.14-a) and the corresponding reserve budget (7.14-
b) and number of premium days (7.14-c) are shown for a range of service level constraint values. Each
graph in the figure represents a value for the maximum number of flights that can be flown at premium
cost per repetition of the flight schedule. On the horizontal axis the fraction of flight schedule repetitions
during which this number of flights cannot be exceeded, has been plotted. Most notable from these
graphs is the exponential increase in objective function value and reserve budget, and the exponential
decrease in premium days, when the service level approaches values of 1.0. This is the result of the
increasingly demanding smoothness in the operation of flights. When the service level is required to be
1.0, the maximum number of flights flown at premium cannot be exceeded in a single flight schedule
repetition. This requires a large number of reserve days. It can also be seen that the exponential
increase is sharper when the maximum number of premium flights is lower, which is also a result of the
increasingly demanding operational requirements in terms of premium flights.

When the maximum number of flights equals four or five, and the service level requirements are
low, the optimal solutions show that no reserves should be used. This means that the required service
levels can be obtained, even if all disrupted flights are flown at a premium. Correspondingly, the entire
objective function value follows from the number of premium days.
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Figure 7.14: Objective function value comparisons between different values for the service level constraint for the GRASP
method.



8
Conclusions and recommendations

This final chapter presents the conclusions of the research in Section 8.1, lists the research contri-
butions of the project in Section 8.2, and offers a number of recommendations for further research in
Section 8.3.

8.1. Conclusions
This thesis has considered the airline reserve crew pairing problem for long-range cockpit crew. The
central research question that was defined is presented below:

How should airline long-haul cockpit reserve crew patterns be constructed in order to minimise the
gap between scheduled reserve capacity and expected reserve demand?

Following a literature review, it was found that airline reserve crew has only been considered
sparsely in research. The state of the art in reserve crew pairing provides limited means to create
efficient reserve crew patterns for airlines in practice. It is assumed that reserve crew patterns consist
solely of reserve pairings of constant length and that the reserve pairings consist only of reserve duty
days. When these assumptions are used to create reserve patterns for long-haul crew in practice, large
numbers of unused reserve days are the result. This is a consequence of the large variability in flight
pairing length that is apparent in long-haul crew schedules, in combination with the constant length of
reserve pairings. A more realistic approach is to use reserve pairings with variable lengths and reserve
pairings that can be combinations of reserve duty days and regular flights. This creates the opportunity
to create cost efficient reserve patterns for the extensive range of flights in long-haul airline schedules.
This is most relevant to cockpit crew schedules, who are the most expensive human resources for an
airline.

To address the research question, a reserve pattern evaluation model and four optimisation algo-
rithms to generate reserve patterns were developed. The scheduled reserve capacity, which is reflected
in a reserve pattern, is subjected to flight schedule simulations in the evaluation model. This results in
a prediction of the expected reserve demand. Hence, using the simulation evaluation model, the gap
between the scheduled reserve capacity and the expected reserve demand can be determined. The
evaluation model is used iteratively in combination with one of the optimisation algorithms, which aim
to generate reserve patterns that minimise the gap. The objective of the optimisation was defined to
minimise the sum of the reserve budget (in days) and the number of premium days. A corresponding
service level requirement was introduced to implicitly enforce a minimum reserve budget (i.e. capacity)
in an intuitive manner.

For the evaluation model, both analytical evaluation and simulation evaluation were considered.
It was found that for the analytical evaluation model the complexity of the operations encountered
by long-haul cockpit crew was too complex to yield practically applicable computational performance.
Therefore, the simulation evaluation model was used to determine the effectiveness of generated re-
serve patterns, being able to evaluate approximately a thousand weeks of operations in one second,
for realistically sized problem sizes.
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The four optimisation algorithms were a pure random search technique, an adaptive random search
technique called LAST, and two adaptions to a greedy randomised adaptive construction based algo-
rithm, called GRASP andGRASP-LF. The latter three algorithms are novel adaptions from existing stan-
dard techniques. All algorithms use characteristics specific to the airline reserve crew pairing problem to
improve algorithm performance. Three comparison experiments between these algorithms allowed to
make recommendations on how reserve crew patterns for long-haul cockpit crew should be scheduled.
The first comparison experiment aimed to compare objective function values between the algorithms.
It revealed that the construction based algorithms outperformed the random search based methods,
while also yielding lower computational times. Compared to a manually constructed reserve pattern,
the GRASP method yielded the best result with a 12.4% improvement requiring a computational time
of 498 seconds. The percentage improvement translates to a saving of 5.9 working days on a weekly
basis. The corresponding size of the workforce in this example equals 104 FTEs. Given that one FTE
amounts to five working days, a total decrease of 1.1% of the total workforce costs can be projected.
The main improvement in the first experiment came from decreasing the reserve budget, which is the
main component in the objective function. The second comparison experiment, where the reserve bud-
get was fixed and the number of premium days was minimised, showed that the GRASP-LF method
yielded the best results. A qualitative relation between the number of flights covered and the number of
premium days was found. A final comparison investigated the effect of dynamic reserve crew pairing,
where reserve patterns are made for shorter time periods, using corresponding flight disruption data.
This approach allows to provide constant service levels over time, compared to static solutions. The
results from this experiment indicate that dynamic reserve crew pairing can be utilised to obtain 14.3%
more efficient reserve patterns compared to the static solution. This amounts to an additional saving
of 5.9 working days per week over the static solutions.

In summary, the GRASP and GRASP-LF methods are both viable methods to create reserve crew
patterns that minimise the gap between scheduled reserve capacity and expected reserve demand. De-
pending on the objectives of the decision maker, either the GRASPmethod or the GRASP-LFmethod is
most cost efficient. When the reserve budget in unconstrained, the GRASP method yields the best re-
sults, but if a minimisation of premium days with a fixed reserve budget is required, then the GRASP-LF
method performs best. Additionally, dynamic reserve crew pairing shows potential to further optimise
the reserve crew pairing process compared to current practice. Preliminary experiments indicate im-
provements of 14.3%, but further research should be done to obtain more accurate estimates.

8.2. Research contributions
Conclusions about the contributions of this research towards the scientific body are divided into appli-
cational and methodological novelties.

Problem definition
The airline reserve crew pairing problem has never been considered for long-haul cockpit crew before.
Compared to the state of the art, this problem requires the use of reserve pairings of variable length
which allow regular flights after reserve duty days. These characteristics are especially relevant to
long-range cockpit crew, since (1) these are the most expensive type of human resources for an airline
(2) long-haul crew generally operate longer flight pairings of varying lengths compared to short-haul
crew.

Simulation optimisation
Reserve pattern optimisation via simulation evaluation is a novel method that is applied in this project.
The complex operational characteristics of long-range cockpit crew result in impractically high compu-
tational requirements when analytical evaluation models are used. A fast simulation evaluation model
allows to measure the quality of reserve patterns in complex operations with acceptable computational
requirements.

Development of optimisation algorithms specifically for this problem
The novel LAST, GRASP, and GRASP-LF algorithms were created from existing default optimisation
algorithms. Each of the algorithms uses problem specific characteristics to increase its optimisation
performance. The LAST algorithm uses the benefit (positive contribution to the objective value) of a
reserve pairing to adapt the learning rate for the respective decision variables. Similarly, the GRASP
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and GRASP-LF algorithms use the potential (a forecast of the amount of premium days prevented)
of all reserve pairings to determine which pairings should be added at each construction iteration.
Furthermore, the GRASP-LF algorithm is a novel adaption of the GRASP method that mimics the
manual way of constructing reserve patterns: by covering the longest flight on each day in the flight
schedule.

Comparison of algorithms
A comparison between the novel optimisation algorithms has never been done before. Therefore,
the comparison between the optimisation algorithms is also a research contribution. With the pure
random search algorithm as a benchmark method, the other algorithms show how alterations of the
default random searchmethod can improve the resulting solution quality. Given that the tests compared
different objectives, different outcomes for each of these objectives were found.

8.3. Recommendations
For further research, a variety of directions is offered that can be pursued. The recommendations are
both aimed at further theoretical research or at the implementation of this project in practice.

Crew scheduling modelling
The reserve crew pairing problem that is considered in this research has been isolated from the over-
all crew scheduling problem, in order to obtain a workable project scope. Following from this, the
model can be used independently from the overall crew scheduling process, given that the required
input is defined externally and the generated output is manually processed for further use in the crew
scheduling process. An alternative to this approach is to incorporate airline reserve crew pairing in the
overall crew scheduling process. For example, the current airline flight schedules can automatically
be adapted for each time period that reserve patterns are made. Corresponding flight disruption data
can be estimated automatically and adapted when required. The output from the reserve crew pairing
process can automatically be included in the assignment process, where pairings are assigned to in-
dividual crew. The values for the service level constraints can be automatically adapted based on the
social state of the overall crew scheduling model. Through a system of feedback, various parts of the
overall model can iteratively be used to obtain balanced and supportive model inputs and outputs.

Disruption timing
The current model assumes that flight disruptions come in the exact order of the flights in the flight
schedule. A more accurate representation would be to approximate the disruption timing following
representative distributions that vary over time.

Extended model functions
To increase the practical value of themodel, a number of additional functions can be implemented which
represent operations as encountered in practice. An example is to include a constraint that enforces
that specific flights in the flight schedule are always covered by a reserve pairing, or a constraint that
enforces a minimum number of pure reserve pairings. Another example is to include other recovery
measures in the model, such as type swapping or flight delaying. On top of this, flight cancellations
can be introduced when crew readiness towards flying at premium costs cannot be expected.
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A
Problem scenario

Table A.1: Problem scenario flight schedule. All times expressed in fraction of days. Destinations have been stripped from the
flight schedule for confidentiality reasons.

Flight Dep Disrupt Route Rest Planned Max Buffer Premium
ID Dest time prob days days FDP FDP period weight
1 0.38 0.048 4 3 0.497 0.667 0.333 1.411
2 0.38 0.038 4 3 0.399 0.667 0.250 1.286
3 0.4 0.055 4 3 0.399 0.542 0.250 1.500
4 0.41 0.038 3 3 0.417 0.667 0.333 1.286
5 0.47 0.015 3 4 0.427 0.542 0.250 1.000
6 0.47 0.026 4 3 0.566 0.667 0.333 1.140
7 0.5 0.047 4 3 0.403 0.490 0.250 1.392
8 0.53 0.043 3 2 0.333 0.542 0.250 1.348
9 0.53 0.031 3 3 0.486 0.521 0.250 1.198
10 0.56 0.050 3 4 0.427 0.542 0.250 1.431
11 0.59 0.022 3 4 0.375 0.521 0.250 1.091
12 1.35 0.026 4 3 0.333 0.542 0.250 1.136
13 1.4 0.052 4 3 0.399 0.542 0.250 1.460
14 1.41 0.038 4 3 0.417 0.667 0.333 1.286
15 1.42 0.055 3 2 0.337 0.542 0.250 1.498
16 1.47 0.015 4 4 0.427 0.542 0.250 1.000
17 1.47 0.026 4 3 0.566 0.667 0.333 1.140
18 1.53 0.043 3 2 0.333 0.542 0.250 1.348
19 1.54 0.031 3 3 0.486 0.521 0.250 1.198
20 1.56 0.050 4 4 0.427 0.542 0.250 1.431
21 1.59 0.022 3 4 0.375 0.521 0.250 1.091
22 1.9 0.031 8 3 0.406 0.458 0.250 2.000
23 2.38 0.048 3 4 0.497 0.667 0.333 1.411
24 2.38 0.038 3 4 0.399 0.667 0.333 1.286
25 2.4 0.055 4 3 0.399 0.542 0.250 1.500
26 2.42 0.055 3 2 0.337 0.542 0.250 1.498
27 2.47 0.026 4 3 0.566 0.667 0.333 1.140
28 2.5 0.047 4 3 0.403 0.490 0.250 1.392
29 2.53 0.043 3 2 0.333 0.542 0.250 1.348
30 2.54 0.031 3 3 0.486 0.521 0.250 1.198
31 2.56 0.038 4 2 0.434 0.542 0.250 1.286
32 2.59 0.022 3 4 0.375 0.521 0.250 1.091
33 3.35 0.026 4 3 0.333 0.542 0.250 1.136
34 3.38 0.048 4 3 0.497 0.667 0.333 1.411
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Flight Dep Disrupt Route Rest Planned Max Buffer Premium
ID Dest time prob days days FDP FDP period weight
35 3.38 0.038 3 4 0.399 0.667 0.333 1.286
36 3.4 0.052 4 3 0.399 0.542 0.250 1.460
37 3.41 0.038 4 3 0.417 0.667 0.333 1.286
38 3.42 0.055 3 2 0.337 0.542 0.250 1.498
39 3.47 0.015 4 4 0.427 0.542 0.250 1.000
40 3.47 0.026 4 3 0.566 0.667 0.333 1.140
41 3.53 0.043 3 2 0.333 0.542 0.250 1.348
42 3.54 0.031 3 3 0.486 0.521 0.250 1.198
43 3.56 0.050 4 4 0.427 0.542 0.250 1.431
44 3.59 0.022 3 4 0.375 0.521 0.250 1.091
45 4.38 0.038 4 3 0.399 0.667 0.333 1.286
46 4.4 0.052 4 3 0.399 0.542 0.250 1.460
47 4.42 0.055 4 2 0.337 0.542 0.250 1.498
48 4.47 0.026 4 3 0.566 0.667 0.333 1.140
49 4.47 0.049 4 3 0.566 0.708 0.333 1.421
50 4.5 0.047 4 3 0.403 0.490 0.250 1.392
51 4.53 0.043 3 2 0.333 0.542 0.250 1.348
52 4.54 0.031 3 3 0.486 0.521 0.250 1.198
53 4.56 0.038 4 2 0.434 0.542 0.250 1.286
54 4.59 0.022 3 4 0.375 0.521 0.250 1.091
55 4.9 0.031 7 3 0.406 0.458 0.250 2.000
56 5.35 0.026 5 3 0.333 0.542 0.250 1.136
57 5.38 0.048 3 4 0.497 0.667 0.333 1.411
58 5.4 0.052 4 3 0.399 0.542 0.250 1.460
59 5.41 0.038 3 3 0.417 0.667 0.333 1.286
60 5.47 0.015 4 4 0.427 0.542 0.250 1.000
61 5.47 0.026 4 3 0.566 0.667 0.333 1.140
62 5.53 0.043 3 2 0.333 0.542 0.250 1.348
63 5.54 0.031 4 2 0.486 0.521 0.250 1.198
64 5.56 0.050 4 4 0.427 0.542 0.250 1.431
65 5.59 0.022 3 4 0.375 0.521 0.250 1.091
66 6.38 0.048 3 4 0.497 0.667 0.333 1.411
67 6.38 0.038 3 4 0.399 0.667 0.333 1.286
68 6.4 0.052 4 3 0.399 0.542 0.250 1.460
69 6.41 0.038 3 3 0.417 0.667 0.333 1.286
70 6.42 0.055 4 2 0.337 0.542 0.250 1.498
71 6.47 0.026 4 3 0.566 0.667 0.333 1.140
72 6.42 0.049 7 4 0.566 0.708 0.333 1.421
73 6.5 0.047 3 4 0.403 0.490 0.250 1.392
74 6.53 0.043 3 2 0.333 0.542 0.250 1.348
75 6.54 0.031 4 2 0.486 0.521 0.250 1.198
76 6.56 0.038 5 2 0.434 0.542 0.250 1.286
77 6.59 0.022 3 4 0.375 0.521 0.250 1.091
78 6.9 0.031 8 3 0.406 0.458 0.250 2.000
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MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RD RD RD

ID 2 RT 07:00 RD RD RD

ID 3 RT 16:00 RT 10:59 SB SB RD RD RD RD

ID 4 RT 07:00 RT 07:00 SB SB

ID 5 RT 07:00 RD RD RD

ID 6 RT 07:00 RT 07:00 SB SB

ID 7 RT 07:00 RD RD RD

ID 8 RT 07:00 RT 07:00 SB SB

ID 9 RT 16:00 RT 10:59 RD RD RD RD RD

ID 10 RT 07:00 RT 07:00 RD RD RD

ID 11 RT 07:00 RT 07:00 SB SB

ID 12 RT 07:00 RD RD RD RD

ID 13 RT 16:00 RT 10:59 SB SB RD RD RD RD

Figure A.1: Manually constructed reserve pattern for the problem scenario.





B
Model settings

Table B.1: Model settings for the evaluation model.

Setting Value
Use policy Minimum waste days
Assign policy Equal probability
N 25000
Day costs 1.0

Table B.2: Model settings for the random search and LAST optimisation methods.

Setting Value
Iterations 4000
N 1500
Initial density 0.05
Learning policy min unused + premium
Random fraction 3
Learning rate 0.01

Table B.3: Model settings for the GRASP and GRASP-LF methods.

Setting Value
Repeats 4
Population size 5
Candidates multiplier 2.5
N 1500
Selection policy min 0.75 ⋅ unused+ 0.25 ⋅ premium
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C
Test results

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RT 07:00 SB SB

ID 2 RT 16:00 RT 07:00 SB SB

ID 3 RT 07:00 RT 11:00 RD RD RD RD

ID 4 RT 07:00 RT 07:00 SB RD RD RD RD

ID 5 RT 11:00 RT 11:00 RD RD RD

ID 6 RT 07:00 RT 07:00 SB SB

ID 7 RT 07:00 RT 16:00 SB SB

ID 8 RT 07:00 RT 11:00 SB SB

ID 9 RT 11:00 RT 11:00 SB RD RD RD

ID 10 RT 07:00 RT 07:00 RD RD RD

ID 11 RT 11:00 RT 16:00 RD RD RD

Figure C.1: Reserve pattern for test 1 for the random search method.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 11:00 RT 11:00 SB SB

ID 2 RT 07:00 RT 07:00 RD RD RD RD

ID 3 RT 11:00 RT 16:00 RD RD RD

ID 4 RT 07:00 RT 07:00 SB SB

ID 5 RT 07:00 RT 11:00 SB SB

ID 6 RT 11:00 RD RD RD

ID 7 RT 07:00 RT 16:00 RD RD RD

ID 8 RT 07:00 RT 07:00 SB SB RD RD RD

ID 9 RT 07:00 RT 07:00 SB SB SB

ID 10 RT 07:00 RT 07:00 SB RD RD RD RD

Figure C.2: Reserve pattern for test 1 for the LAST method.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 11:00 RT 07:00 SB SB

ID 2 RT 07:00 RT 07:00 RD RD RD

ID 3 RT 07:00 RT 07:00 RD RD RD

ID 4 RT 07:00 RT 07:00 SB SB

ID 5 RT 07:00 RD RD RD

ID 6 RT 11:00 RT 07:00 SB SB

ID 7 RT 07:00 RD RD RD

ID 8 RT 16:00 RT 07:00 SB SB

ID 9 RT 07:00 RT 07:00 RD RD RD

ID 10 RT 07:00 RT 07:00 RD RD RD RD

Figure C.3: Reserve pattern for test 1 for the GRASP method.
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98 C. Test results

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RD RD RD

ID 2 RT 07:00 RT 11:00 SB SB

ID 3 RT 07:00 RT 07:00 SB SB SB

ID 4 RT 07:00 RD RD RD

ID 5 RT 16:00 RT 07:00 SB SB RD RD RD RD

ID 6 RT 07:00 RD RD RD

ID 7 RT 07:00 RT 07:00 RD RD RD

ID 8 RT 07:00 RT 07:00 RD RD RD RD RD

ID 9 RT 07:00 RT 07:00 SB SB SB

ID 10 RT 07:00 RT 07:00 RD RD RD

ID 11 RT 07:00 RT 07:00 RD RD RD

ID 12 RT 16:00 RT 11:00 SB SB RD RD RD RD

Figure C.4: Reserve pattern for test 1 for the GRASP-LF.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RT 07:00 SB SB

ID 2 RT 07:00 RD RD RD RD

ID 3 RT 16:00 RT 07:00 SB RD RD RD

ID 4 RT 16:00 RT 07:00 SB RD RD RD RD

ID 5 RT 07:00 RT 16:00 SB SB

ID 6 RT 07:00 RD RD RD

ID 7 RT 07:00 RT 07:00 SB SB RD RD RD

ID 8 RT 11:00 RT 16:00 RD RD RD

ID 9 RT 07:00 RT 07:00 SB SB SB

ID 10 RT 07:00 RD RD RD

ID 11 RT 07:00 RT 11:00 SB RD RD RD

ID 12 RT 11:00 RT 07:00 RD RD RD

ID 13 RT 11:00 RT 07:00 RD RD RD RD

ID 14 RT 11:00 RT 11:00 RD RD RD RD

Figure C.5: Reserve pattern for test 2 for the random search method.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RT 16:00 SB SB

ID 2 RT 07:00 RD RD RD

ID 3 RT 07:00 RT 11:00 SB RD RD RD

ID 4 RT 07:00 RT 07:00 RD RD RD RD

ID 5 RT 07:00 RT 07:00 SB SB

ID 6 RT 07:00 RT 11:00 SB SB

ID 7 RT 07:00 RT 07:00 SB RD RD RD RD

ID 8 RT 11:00 RD RD RD RD

ID 9 RT 07:00 RT 16:00 RD RD RD

ID 10 RT 07:00 RT 07:00 SB SB SB

ID 11 RT 07:00 RT 07:00 SB SB RD RD RD

ID 12 RT 11:00 RD RD RD RD

Figure C.6: Reserve pattern for test 2 for the LAST method.

MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RD RD RD

ID 2 RT 07:00 RT 07:00 SB SB SB

ID 3 RT 07:00 RD RD RD

ID 4 RT 07:00 RT 11:00 RD RD RD

ID 5 RT 11:00 RT 07:00 SB SB

ID 6 RT 07:00 RD RD RD

ID 7 RT 07:00 RD RD RD

ID 8 RT 07:00 RD RD RD

ID 9 RT 07:00 RD RD RD

ID 10 RT 11:00 RT 11:00 SB SB

ID 11 RT 07:00 RT 07:00 RD RD RD

ID 12 RT 07:00 RT 07:00 RD RD RD RD

ID 13 RT 16:00 RT 07:00 SB RD RD RD RD

ID 14 RT 07:00 RT 07:00 RD RD RD

ID 15 RT 07:00 RT 07:00 RD RD RD

ID 16 RT 07:00 RT 07:00 RD RD RD

ID 17 RT 07:00 RT 07:00 SB RD RD RD RD

Figure C.7: Reserve pattern for test 2 for the GRASP method.
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MON TUE WED THU FRI SAT SUN MON TUE WED THU FRI SAT SUN

ID 1 RT 07:00 RT 07:00 RD RD RD

ID 2 RT 07:00 RT 11:00 RD RD RD

ID 3 RT 16:00 RT 07:00 SB SB RD RD RD RD

ID 4 RT 07:00 RT 11:00 SB SB

ID 5 RT 07:00 RT 11:00 SB SB

ID 6 RT 07:00 RD RD RD

ID 7 RT 07:00 RT 07:00 RD RD RD

ID 8 RT 07:00 RT 07:00 SB RD RD RD

ID 9 RT 16:00 RT 07:00 RD RD RD RD RD

ID 10 RT 07:00 RT 07:00 SB SB

ID 11 RT 07:00 RT 07:00 SB RD RD RD RD

ID 12 RT 11:00 RT 07:00 RD RD RD

ID 13 RT 16:00 RT 07:00 SB SB RD RD RD RD

Figure C.8: Reserve pattern for test 2 for the GRASP-LF.
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