
High-Performance
Optimization of
DNA Long Read
De Novo Assem-
bler

Kaiyi Zhao

High-
Performance
Optimization of
DNA Long Read

De Novo
Assembler

by

Kaiyi Zhao

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Thursday August 29, 2024 at 13:30 PM.

Student number: 5797594
Project duration: November 6, 2023 – August 29, 2024
Thesis committee: Dr. Zaid Al-Ars, Computer Engineering Lab, TU Delft, supervisor

Dr. Jasmijn Baaijens, Bioinformatics Lab, TU Delft
Dr. Tanveer Ahmad, National Cancer Institute, National Institutes of Health

This thesis is confidential and cannot be made public until August 28, 2024.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Contents

1 Introduction 5
1.1 Context . 5
1.2 Challenges, Problem Statement and Research Questions 5
1.3 Contribution . 6
1.4 Thesis Layout. 7

2 Background 9
2.1 DNA long-read sequencing . 9
2.2 Assembly Pipeline: From Basecalling to Polishing . 9
2.3 Assembly algorithm: Flye . 10
2.4 Sequence Alignment Algorithms. 12
2.5 Parallel Computing . 13
2.6 Amdahl’s Law. 15

3 Methods 17
3.1 General Polisher . 17

3.1.1 Purpose and Implementation . 17
3.1.2 Initial Performance Enhancements . 17
3.1.3 SIMD Optimization . 20

3.2 Dinucleotide Fixer . 22
3.2.1 Purpose and Implementation . 22
3.2.2 Separate Alignment Class for Dinucleotide Fixer 22

3.3 Bubble Processor. 22
3.3.1 Purpose and Implementation . 22
3.3.2 New Multi-threaded Architectures . 23

4 Experiments 27
4.1 Experimental Setup . 27
4.2 Flye Profile . 28

4.2.1 Bateria Dataset . 28
4.2.2 Human Genome Dataset. 28

4.3 Performance Comparison . 31
4.3.1 Bacteria Dataset . 31
4.3.2 Human Genome Dataset. 32

5 Discussion 37

6 Conclusions 39
6.1 Conclusions. 39
6.2 Recommendations . 40

A Appendix 43

iii

List of Figures

2.1 The different stages of the genome assembly pipeline 10
2.2 Time distribution across different stages of the Flye assembler on bacteria genome dataset 11
2.3 Time distribution across different stages of the Flye assembler on human genome dataset 11
2.4 Image (a) displays the data dependencies within the Needleman-Wunsch algorithm and

Image (b) shows the intra-vectorization approach for utilizing SIMD to optimize its per-
formance. 14

2.5 Amdahl’s Law applied to the Flye’s polisher, showing overall speedup versus speedup
for error correction for two datasets. 15

3.1 The calculation and the deletion operations of the forward and reverse score matrices.
Image (a) displays the original forward matrix, Image (b) shows the original reverse ma-
trix and Image (c) presents the enhanced reverse matrix. 18

3.2 The padding process for reads and score matrix in AVX instruction calculations. 21
3.3 The original multi-threaded architecture (Design 1). 23
3.4 The improved multi-threaded architecture (Design 2), featuring enhancements such as

writing to separate files and utilizing batch processing for increased efficiency. 24
3.5 The improved multi-threaded architecture (Design 3) designed for handling a large num-

ber of threads, incorporating a dedicated thread for file reading and employing double
buffering for enhanced performance. 24

4.1 Time distribution across different stages of Flye assembler on bacteria dataset with de-
tailed polishing steps before and after acceleration running with one thread. 29

4.2 Time distribution across different stages of Flye assembler on the human genome dataset
running with 64 threads with detailed polishing steps before and after acceleration. . . . 30

4.3 Runtime comparison across different threading (log2 scale for both axes): baseline vs
avx2_opt vs avx512_opt . 32

4.4 Comparison of speedups for avx2_opt and avx2_multithread_opt against the baseline
on the human genome dataset running with 64 threads. 33

4.5 CPU utilization comparison for the human genome dataset across different settings:
baseline vs avx2_opt vs avx2_multithread_opt . 35

4.6 Runtime comparison across different threading (log2 scale for both axes) on 1 million
bubbles: baseline vs avx2_multithread_opt . 36

5.1 Amdahl’s Law applied to the Flye polisher, showing overall speedup versus speedup for
error correction for two datasets. 38

v

List of Tables

4.1 Details of Intel Xeon Silver 4114 and AMD EPYC 7532 CPUs 27
4.2 Description of various designs and their SIMD optimizations. 27
4.3 Profiling Data (mm:ss) for Flye and Polishing components on the bacteria dataset

running with one thread: baseline vs avx2_opt vs avx512_opt 28
4.4 Profiling Data (seconds) for BubbleProcessor and GeneralPolisher components

on the bacteria dataset running with one thread: baseline vs avx2_opt vs avx512_opt . 28
4.5 Profiling Data (d-hh:mm:ss) for Flye and Polishing components on the human genome

dataset running with 64 threads: baseline and avx2_multithread_opt 29
4.6 Profiling Data (seconds) for BubbleProcessor and GeneralPolisher components

on the human genome dataset running with 64 threads: baseline, avx2_opt and avx2_multithread_opt 31

A.1 Statistical Parameters of the P6-C4 Protocol . 43

vii

List of Algorithms
1 getScoringMatrix . 19
2 getRevScoringMatrix . 19
3 deletion . 44
4 substitution . 44
5 insertion . 45

ix

Abstract
This thesis focuses on accelerating the polishing stage of the Flye genome assemblers. Flye is a
de novo assembler designed for long reads produced by modern sequencing technologies, excelling
in handling large genomes with high accuracy and efficiency. A crucial component of the assembly
process is the polishing stage, which refines the draft assembly to correct errors and improve overall
accuracy. However, this stage is computationally intensive and time-consuming, presenting a signifi-
cant bottleneck in genome assembly workflows.

To address this, a novel multi-threading architecture is introduced, significantly reducing mutex con-
tention by minimizing the use and acquisition times of mutexes within the bubble processor. Addi-
tionally, advanced vectorization techniques using AVX (Advanced Vector Extensions) instructions are
incorporated to process multiple reads simultaneously. These optimizations effectively parallelize the
polishing process and exploit modern CPU capabilities for enhanced performance.

Benchmarking the enhanced polishing stage on both bacteria and human genome datasets demon-
strates a substantial improvement in processing time. For the bacteria dataset, the error correction pro-
cess achieves speedups of 3.0x and 4.3x using AVX2 and AVX-512 instructions running on one core,
respectively. The process realizes speedups of 2.6x and 2.7x with AVX2 and AVX-512 running on eight
cores. For the human genome dataset, the process demonstrates a speedup of 4.0x when handling
1 million bubbles running on one core, while 32 cores yield a speedup of 2.3x for the same dataset.
Applying AVX2 to the complete dataset on 64 cores results in a speedup of 1.4x. This acceleration not
only reduces computational costs but also expedites the overall genome assembly process, making it
more feasible for large-scale and time-sensitive genomic studies. The implementation is available on
GitHub.

1

https://github.com/kaiyizh/Flye.git

Acknowledgments
I would like to express my deepest gratitude to those who have supported and guided me throughout
my master’s thesis journey.

Dr. Zaid Al-Ars, my thesis advisor, has been an unwavering source of guidance and support. Our
weekly meetings were instrumental in keeping my research on track, and his insightful advice helped
me navigate through various challenges. His dedication and expertise have been invaluable from the
start to the completion of my thesis.

Dr. Tanveer Ahmad, my external supervisor, played a crucial role in helping me quickly immerse
myself in this research area. His guidance throughout the research process was essential in shaping
the direction and outcome of my work. I am grateful for his mentorship and the time he devoted to
ensuring my success.

Dr. Jasmijn Baaijens, a member of my thesis committee, took time out of her busy schedule to be
part of this important milestone in my academic journey. I sincerely appreciate her commitment and
her valuable contributions to my thesis.

To my family, who have been a constant source of strength and encouragement, I owe a profound
debt of gratitude. During my master’s studies, I experienced the loss of my grandmother and grand-
father. Their love and support have always been with me, and I know they would be proud of this
achievement. My family’s persistent support helped me complete this thesis.

Lastly, I want to thank my roommate, Tian, who has been more than just a friend. We first met
during our bachelor’s studies, and together we embarked on this journey to the Netherlands to pursue
our master’s degrees. Over the past two years, we have studied together, played volleyball, and even
traveled on vacations. We have supported each other through the ups and downs of our thesis work,
and I am grateful for his companionship. I am thrilled that we can celebrate our graduation together.

3

1
Introduction

1.1. Context
Genome assembly is a vital process in genomics that reconstructs an organism’s complete genome
sequence from short DNA fragments, similar to solving a complex puzzle. Advances in high-throughput
sequencing technologies have dramatically increased the amount of data available, generating millions
of short sequences, or ”reads.” These require advanced computational tools to accurately assemble the
genome. There are two main types of genome assembly: de novo assembly, which builds genomes
without a reference, and reference-guided assembly, which uses a related genome as a guide to en-
hance accuracy and reduce complexity. Genome assembly is crucial beyond basic research, impacting
evolutionary biology, medicine, and agriculture by facilitating the identification of genetic variations, un-
derstanding evolutionary relationships, and improving crops through genetic engineering.

Accurate genome assembly faces challenges due to repetitive regions. While long single-molecule
sequencing reads can resolve genomic repeats more effectively than short-read data, many long-read
assembly algorithms lack the necessary repeat characterization for optimal assemblies. Flye [10] is
a long-read de novo assembly algorithm that generates arbitrary paths in an unknown repeat graph,
termed disjointigs, and then constructs a precise repeat graph from these error-prone disjointigs. Flye
is evaluated against five leading assemblers, demonstrating that it produces superior or comparable
assemblies with significantly greater speed.

Polishing is one of the most time-consuming components in the Flye workflow. This crucial step in
genome assembly greatly improves the accuracy of the draft genome by correcting sequencing errors.
ABruijn, as first introduced by Lin et al. [14], included a polisher. Flye’s polisher builds upon this
foundation, enhancing both accuracy and speed. ABruijn employs the BLASR algorithm [3], while Flye
utilizes minimap2 [13] to align sequencing reads against the draft genome. Initially, these alignments
are prone to inaccuracies due to the error-prone nature of the draft genome. To address this, the
alignments are refined to achieve precise error correction. Thismethod involves partitioning themultiple
alignments of reads into shorter segments, known as mini-alignments. Each mini-alignment segment
is then individually error-corrected to produce a consensus sequence.

1.2. Challenges, Problem Statement and Research Questions
Although the Flye polisher leverages advanced heuristics and sophisticated software libraries, its per-
formance significantly lags behind the optimal computing capabilities of modern CPUs. Significant
research efforts have been dedicated to accelerating various stages of reference-based short-read
sequencing, such as the Burrows-Wheeler Aligner (BWA) [2] [8], as well as haplotype calling [1] [18].
However, the acceleration of de novo-based long-read assembly remains an ongoing area of research.
Currently, there is limited research aimed at enhancing Flye’s computational efficiency. One notable
attempt focuses on improving its memory usage [7]. However, efforts to enhance CPU utilization and
reduce the overall computation time remain largely unexplored.

Genome assembly is a foundational process in genomic research, allowing researchers to recon-
struct complete genomes from sequence data. The polishing phase, which corrects errors in the initial
assembly, is crucial for ensuring the accuracy and completeness of the final genome. However, this

5

6 1. Introduction

phase is often computationally intensive and time-consuming, posing a significant bottleneck in genome
assembly pipelines. Flye is a leading long-read de novo assembler known for its ability to construct
repeat graphs and assemble complex genomes effectively. Despite its strengths, Flye faces significant
performance challenges during the polishing phase. These challenges primarily stem from suboptimal
utilization of modern CPU capabilities, resulting in inefficiencies that hinder its overall performance. Ad-
dressing these inefficiencies is essential for improving the speed and accuracy of genome assemblies.
This thesis aims to identify and address specific limitations in Flye’s polishing phase to optimize CPU
resource usage and enhance the overall performance of the genome assembly process.

To guide this investigation, we propose the following research questions:

1. How can a newmulti-threading architecture be designed tominimizemutex contention and
enhance parallel processing in the Flye polishing step? This question focuses on improving
thread management and synchronization to utilize CPU cores more efficiently.

2. What is the impact of using modern SIMD instruction sets (e.g., AVX2 and AVX-512) on the
performance of the Flye polisher? This question explores how advanced vector processing
units can accelerate error correction by processing multiple data points simultaneously.

3. How does the performance of the optimized polisher compare to the original Flye polisher
in terms of processing speed and accuracy? This question aims to quantify the improvements
in speed and verify that optimizations maintain or improve assembly accuracy.

4. What are the trade-offs between computational speed and resource usage in the optimized
Flye polisher? This question investigates the balance between increased processing speed and
demands on computational resources, such as memory and CPU load.

By addressing these questions, this thesis seeks to significantly improve the efficiency of genome
polishing processes, thereby enhancing the overall performance of genome assembly pipelines and
facilitating more rapid and accurate genomic research.

1.3. Contribution
This thesis aims to enhance the error correction process of the polisher. To expedite the error correction
step, we developed a parallel polishing algorithm adopting a new multi-threading architecture and uti-
lizing single-instruction multiple-data (SIMD) techniques, leveraging modern CPUs’ vector processing
units (VPUs).

A multithreading architecture is designed to create and manage jobs across multiple cores, enabling
the utilization of all available cores on a CPU which significantly enhances performance by parallelizing
tasks. In original multithreaded architecture, a mutex (mutual exclusion) is used to prevent concurrent
access to shared resources, ensuring data integrity. However, using mutexes can introduce perfor-
mance bottlenecks due to increased waiting times when multiple threads attempt to access the same
resource. Our new architecture minimizes the critical sections controlled by mutexes and reduces the
number of times these mutexes need to be accessed. This improvement is particularly beneficial when
handling large number of threads, as it decreases contention and overhead, resulting in better overall
performance.

SIMD instructions are designed to simultaneously perform the same operation across multiple data
points, thereby enabling parallel computation. Although Streaming SIMD Extensions (SSE) offer a
128-bit SIMD instruction set, they were not suitable for our needs, as our processing requires handling
64-bit data. With SSE, we could only process two data items at a time, which did not yield significant
performance improvements due to the associated overhead. Modern CPUs feature Advanced Vector
Extensions (AVX2 and AVX-512), which support 256-bit and 512-bit SIMD instructions, respectively.
These extensions allow for the simultaneous processing of four and eight 64-bit data items, providing
substantial performance gains despite the overhead involved in using SIMD instructions.

In all of our optimizations, we ensured that the final output remained entirely consistent with that of
Flye, enabling users to effortlessly switch to a faster version of Flye whenever increased computational
speed is needed. We evaluated our optimized polisher implementation against the original by testing
it on Human002 Oxford Nanopore (Ultra-long GridION data) [23]. Our results showed up to a 1.4-fold
increase in processing speed.

1.4. Thesis Layout 7

1.4. Thesis Layout
This thesis is organized into six chapters, each focusing on different aspects of the research to guide
the reader through the process of optimizing the Flye polishing phase.

Chapter 1 sets the context for our research by discussing the importance of DNA assembly in ge-
nomics and the role of the Flye assembly algorithm, with a focus on its polishing phase. We highlight
the challenges associated with this process, particularly the time-consuming nature of polishing and
the lack of existing work aimed at improving its performance. To address these challenges, we present
four research questions that guide our investigation. The core contribution of this thesis is to enhance
the efficiency of the polishing phase by improving multithreading capabilities and leveraging SIMD tech-
niques, ensuring that the speedup is achieved without altering the accuracy of the output.

Chapter 2 covers the key components of DNA long-read sequencing and genome assembly. We
begin by discussing the advantages and disadvantages of long-read sequencing. Next, we outline the
assembly pipeline, from basecalling to polishing, and highlight the Flye assembly algorithm, focusing
on its workflow and polishing capabilities. We also compare sequence alignment algorithms, namely
Needleman-Wunsch and Smith-Waterman, and describe the application of the Needleman-Wunsch al-
gorithm in Flye’s polisher. Additionally, we explore parallel computing techniques like multi-threading
and SIMD, which enhance computational efficiency, and introduce Amdahl’s Law to explain the poten-
tial gains from parallelization in genome assembly processes.

Chapter 3 details the implementation and optimization of various components to enhance the pol-
ishing process. We begin by discussing the General Polisher, outlining its purpose, initial performance
enhancements, and the application of SIMD optimization to speed up processing. Next, we introduce
the Dinucleotide Fixer, explaining its purpose and the implementation of a separate alignment class
tailored for this function. Finally, we describe the Bubble Processor, focusing on its role in resolving
complex assembly issues and the development of new multi-threaded architectures to improve effi-
ciency.

Chapter 4 describes the experimental setup used to evaluate the performance of our proposed opti-
mizations in the Flye assembler. We profile the Flye algorithm using both bacterial and human genome
datasets, analyzing the time distribution across different stages of the assembler with detailed attention
to the polishing steps. Performance comparisons are made between different designs, emphasizing
runtime and CPU utilization with varying numbers of threads and different SIMD instructions (AVX2,
AVX-512).

Chapter 5 presents and interprets the results of the experiments, comparing the performance of the
original and optimized Flye polishers. It explores the implications of these findings for genome assem-
bly efficiency and accuracy.

Chapter 6 summarizes the key findings and contributions of the thesis. It discusses the broader
impact on genomic research and suggests directions for future work, including potential technologies
to optimize flye’s polisher.

2
Background

2.1. DNA long-read sequencing
DNA long-read sequencing is an innovative technology that has transformed genomic research by pro-
viding much longer sequences of DNA compared to traditional short-read methods. This approach
enables more accurate analysis of complex genomic regions, structural variations, and repetitive se-
quences that are difficult to resolve with short reads. The main platforms for long-read sequenc-
ing are Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT). PacBio uses Sin-
gle Molecule Real-Time (SMRT) technology [5], producing reads over 10,000 base pairs long, and
sometimes exceeding 100,000 base pairs. ONT employs nanopore sequencing [4], which measures
electrical changes as DNA passes through a nanopore, offering reads that can exceed hundreds of
kilobases.

Long-read sequencing provides several advantages over short-read methods. It improves genome
assembly and the detection of structural variations such as insertions, deletions, inversions, and translo-
cations. It also resolves highly repetitive regions, offering clearer insights into genome architecture, and
facilitates haplotype phasing, which is important for understanding genetic diversity and disease asso-
ciations [15]. Despite these advantages, long-read sequencing faces challenges, such as higher error
rates compared to short-read sequencing, especially with ONT. However, ongoing improvements in se-
quencing chemistry, bioinformatics tools, and error correction algorithms are addressing these issues.
The integration of long-read sequencing with complementary technologies, along with reductions in
cost and improvements in read accuracy, is expected to expand its accessibility and application across
various research domains [6].

2.2. Assembly Pipeline: From Basecalling to Polishing
As shown in Figure 2.1, the assembly pipeline for long-read sequencing transforms raw data into high-
quality genome assemblies through a series of critical steps: basecalling, read correction, assembly,
and assembly refinement.

Basecalling is the initial step, where raw signals from sequencing platforms, such as the electrical
signals in Oxford Nanopore Technologies (ONT) or the fluorescence signals in Pacific Biosciences
(PacBio), are converted into nucleotide sequences. Advanced machine learning algorithms, including
neural networks, are employed to enhance the accuracy of these conversions, producing sequences
accompanied by quality scores that guide subsequent steps.

Following basecalling, read correction addresses the inherent higher error rates of long-read se-
quencing. This process involves detecting and correcting common sequencing errors like insertions,
deletions, and substitutions. Tools such as Canu [11] and FMLRC2 [16] align reads to each other to
identify consensus sequences and correct errors, sometimes incorporating short-read data to leverage
its high accuracy.

The corrected reads are then assembled into a coherent genome sequence. This involves identi-
fying overlaps between reads and constructing contigs—long, contiguous sequences—using overlap
information. Assemblers like Flye [10] and wtdbg2 [19] often utilize graph-based techniques to manage
complex regions and ensure a robust assembly structure.

9

10 2. Background

Basecalling

Read Correction

Assembly

Polishing

Raw signal data

Error-prone DNA reads

Corrected DNA reads

Draft assembly

Improved assembly

Flye

Figure 2.1: The different stages of the genome assembly pipeline

Finally, the polishing step refines the assembled genome, correcting remaining errors and improving
the overall quality. Polishing tools, such as Racon [21] and Medaka align the original reads back to
the contigs to detect and correct discrepancies, often using iterative processes to enhance accuracy.
Additional data, like short reads, may be integrated during polishing to further improve the assembly.
Through these steps, the assembly pipeline efficiently transforms raw sequencing data into high-quality
genomic sequences, enabling detailed exploration of complex genomic structures.

2.3. Assembly algorithm: Flye
Workflow of Flye
Flye is an advanced assembly pipeline specifically designed for long-read sequencing data, offering an
efficient and streamlined process for generating high-quality genome assemblies. The assembly pro-
cess in long-read sequencing involves several critical stages, including basecalling, read correction,
assembly, and assembly refinement. Flye is capable of handling raw reads directly from the basecall-
ing stage, thereby simplifying the pipeline by removing the need for a separate read correction step.
This makes Flye particularly advantageous for users seeking to minimize preprocessing steps without
compromising on the quality of the assembly. Flye also integrates an intrinsic polishing stage, which
refines the initial assembly by correcting errors and improving the overall accuracy of the output. This
polishing step is crucial in enhancing the quality of the final contigs, ensuring they are polished and re-
liable for subsequent analysis. By combining these functionalities, Flye serves as a complete solution
for long-read sequencing assembly, transforming raw sequence data into polished contigs with minimal
user intervention.

There are five stages in flye workflow: Assembly, Consensus, Repeat, Contigger, and Polishing.
It begins by identifying solid k-mers, which are k-mers with sufficient frequency to minimize errors
and extends contigs by detecting overlaps between reads. The initial assembly stage may contain
misassemblies, as repeats are not yet resolved. Flye then refines the assembly by aligning reads to
the draft contigs using minimap2, improving accuracy through consensus sequence calling. In the
repeat analysis phase, Flye constructs a repeat graph, collapsing and resolving repeats with the help
of read information and graph structure. This process produces contiguous sequences representing
genome segments. Finally, Flye polishes the assembly by aligning all reads to the current assembly
and correcting errors using a maximum likelihood approach, with additional polishing cycles enhancing
quality further. The first four stages in flye workflow is matched to the read correction and assembly

2.3. Assembly algorithm: Flye 11

Assembly (14.03%)
Consensus (20.31%)
Repeat (3.59%)
Contigger (0.11%)
Polishing (61.88%)

Figure 2.2: Time distribution across different stages of the Flye assembler on bacteria genome dataset

Assembly (59.74%)
Consensus (11.86%)
Repeat (5.90%)
Contigger (0.80%)
Polishing (20.89%)

Figure 2.3: Time distribution across different stages of the Flye assembler on human genome dataset

steps in the assembly pipeline. And the last stage in flye workflow is matched to the polishing step in
the assembly pipeline.

The time required for the assembly of different genomes varies significantly, and this variation is
also reflected in the time distribution across all five stages of the process. For instance, as shown in
Figure 2.2, the assembly of a bacterial genome dataset consumes 14.03% of the total processing time,
whereas the polishing stage accounts for 61.88% of the time. In contrast, as depicted in Figure 2.3, the
assembly of a human genome dataset occupies 59.74% of the total time, while polishing takes 20.89%.
Despite these differences in time distribution across various datasets, polishing consistently ranks as
either the first or second most time-intensive stage in the Flye workflow. Therefore, accelerating the
polishing stage is crucial for enhancing the overall efficiency of the pipeline.

Polisher of Flye
Flye’s polishing process begins by aligning all sequencing reads to the current assembly usingminimap2-
fast [9], an efficient aligner optimized for long-read sequences. Minimap2-fast is an improved version
of the widely used minimap2 [13] software. Improvements are made through multiple optimizations us-
ing single-instruction multiple-data parallelization, efficient cache utilization, and a learned index data
structure to accelerate seeding, chaining, and pairwise sequence alignment. These optimizations result
in up to a 1.8-fold reduction in end-to-end mapping time while maintaining identical output. Minimap2-
fast is a highly optimized tool, which is why it is used for alignment in the polishing stage of genome

12 2. Background

assembly. The assembly is then divided into ”bubbles,” or smaller segments that highlight potential
error regions. This segmentation allows Flye to perform targeted error correction. Within each bubble,
Flye uses a maximum likelihood approach to assess the probability of different nucleotide sequences,
selecting those that best fit the observed data. This systematic correction reduces errors and improves
assembly quality. The polishing process can be repeated iteratively, leading to further improvements
for some datasets. By refining errors through successive rounds of polishing, Flye is an effective tool
for generating high-quality genomic assemblies, essential for advancing genomics research.

2.4. Sequence Alignment Algorithms
In the field of bioinformatics, sequence alignment is a fundamental technique used to identify regions
of similarity between DNA, RNA, or protein sequences. Two widely used algorithms for this purpose
are the Needleman-Wunsch [17] and Smith-Waterman [20] algorithms. Both algorithms utilize dynamic
programming to perform sequence alignments, but they are designed for different types of alignment
tasks.

Needleman-Wunsch Algorithm
The Needleman-Wunsch algorithm, introduced in 1970, is a global alignment algorithm. It aligns entire
sequences from end to end and is particularly useful when the sequences are of similar length and
expected to be homologous across their entire length. The algorithm constructs a scoring matrix where
each cell represents the best alignment score up to that position. It fills the matrix using a recursive
formula that considersmatches, mismatches, and gaps, which allows the optimal alignment to be traced
back from the last cell of the matrix.

Smith-Waterman Algorithm
In contrast, the Smith-Waterman algorithm, developed in 1981, is designed for local alignment. It
identifies the optimal alignment between sub-sections of sequences, which is beneficial when dealing
with sequences that may contain conserved regions interspersed with divergent or non-homologous
segments. Like the Needleman-Wunsch algorithm, the Smith-Waterman algorithm uses dynamic pro-
gramming to fill a scoring matrix. However, it differs in that negative scores are replaced with zeros,
allowing the algorithm to identify the highest scoring sub-region within the matrix.

Comparison of Needleman-Wunsch and Smith-Waterman Algorithms
While both algorithms employ dynamic programming to compute sequence alignments, they have key
differences that suit them to different types of alignment tasks. Both algorithms use a dynamic program-
ming matrix to calculate alignment scores. They fill the matrix based on recursion relations involving
scores for matches, mismatches, and gaps. Both algorithms can utilize customizable scoring matrices
to determine match, mismatch, and gap penalties, which allows for flexible alignment based on spe-
cific biological contexts. The most significant difference is that Needleman-Wunsch performs global
alignment, focusing on aligning entire sequences, whereas Smith-Waterman performs local alignment,
targeting the most similar sub-sequences within the larger sequences. In Needleman-Wunsch, the
scoring matrix is initialized to allow alignment from the beginning of the sequences, and the traceback
is performed from the bottom-right corner to the top-left. In Smith-Waterman, the matrix is initialized to
zero, and the traceback starts from the highest-scoring cell, allowing the identification of local matches.
Needleman-Wunsch is best suited for comparing sequences of similar length that are believed to be
homologous throughout their entirety. On the other hand, Smith-Waterman is advantageous when
dealing with sequences of varying lengths or when conserved regions are expected to be embedded
within non-homologous sequence contexts.

How Needleman-Wunsch Algorithm is Used for Flye’s Polisher
One of the steps in polishing involves correcting errors in each bubble using a maximum likelihood
approach. This step takes a bubble as input, which includes read segments and a consensus sequence.
The output is the consensus sequence that best represents all the read segments. To accomplish this,
two scoringmatrices are constructed for each pair of read segments and the consensus sequence using
the Needleman-Wunsch algorithm: one forward and one backward. During this process, mutations
such as deletions, insertions, or substitutions are introduced into the consensus sequence. The scores

2.5. Parallel Computing 13

for each read segment and the consensus sequence are calculated using these two matrices without
needing to rerun the Needleman-Wunsch algorithm. The final score is determined by multiplying all
the individual scores. If this final score is higher, the mutation is recorded. For example, when a
deletion operation is introduced at any possible location in the consensus sequence, a comparison is
made across all the higher scores, and only the sequence with the highest score is accepted. This
process is repeated iteratively—building forward and backward scoring matrices and identifying the
best single nucleotide mutation—until the consensus sequence no longer changes. At this point, the
consensus sequence best represents all the read segments. The Needleman-Wunsch algorithm is a
time-consuming process, and this operation is computed many times: the number of bubbles times the
number of read segments for each bubble, multiplied by two. The computation is linear with respect to
the genome length and the coverage. For human genome assembly, the large size of the sequence
and the high coverage required for greater accuracy significantly increase the number of Needleman-
Wunsch calculations compared to a small genome assembly.

2.5. Parallel Computing
BWA-MEM [12] is a widely used tool for mapping short reads to reference sequences due to its speed
and accuracy. Various studies have accelerated BWA-MEM using different computing technologies.
CPUs, with multithreading and SIMD capabilities, are commonly used to enhance performance through
parallel processing, as seen in [22]. GPUs, known for their massive parallelism, have also been em-
ployed to speed up alignment tasks, as demonstrated by [8]. FPGAs offer custom hardware-level
optimizations, providing significant speedups, as explored by [2]. This thesis will focus exclusively on
optimizing Flye for CPUs, leveraging multithreading and SIMD for accessible and cost-effective im-
provements.

Parallel computing leverages advanced hardware architectures to boost software performance by
executing multiple processes or operations simultaneously. Two crucial techniques in this domain are
multi-threading and SIMD (Single Instruction, Multiple Data). Each technique utilizes hardware capa-
bilities to optimize computational efficiency and speed. In practice, both multi-threading and SIMD are
employed together to maximize computational efficiency. Multi-threading manages concurrent tasks
across multiple cores, while SIMD accelerates data processing within each core. This combined ap-
proach leverages the strengths of both techniques, utilizing the full potential of modern processor ar-
chitectures to achieve superior performance for complex and data-intensive applications.

Multi-threading
Multi-threading takes advantage of multi-core processors by dividing a single application into multiple
threads that run concurrently. Each thread operates independently, allowing the processor to handle
several tasks simultaneously. Modern processors are designed with multiple cores, each capable of
executing its own thread. This parallelism is crucial for applications that perform numerous concur-
rent operations, such as web servers or complex simulations. By distributing tasks across multiple
cores, multi-threading ensures that the processing power of each core is utilized effectively, leading to
improved performance and responsiveness in software applications.

In the error correction process, the input consists of raw bubbles, while the output is polished bub-
bles. The process starts with an input bubble file that contains all the bubbles to be processed. Once
a batch of bubbles is loaded from the file into memory, these bubbles can be distributed across mul-
tiple threads, allowing the polishing process to be executed in parallel. Multi-threading is an intuitive
approach for this process since the error correction task can be parallelized by dividing the bubbles
among different threads. However, several challenges must be addressed. For instance, the input file
may be large, which can result in significant reading times. Additionally, the variability in bubble lengths
can lead to inconsistent runtime across threads. Although the concept of using multi-threading for error
correction is promising, the implementation requires careful consideration of these factors to ensure
efficiency and effectiveness.

SIMD
SIMD enhances performance by utilizing specialized hardware instructions that perform the same op-
eration on multiple data elements simultaneously. Processors equipped with SIMD capabilities, such
as Intel’s SSE or AVX instruction sets, are designed to handle large volumes of data efficiently. SIMD

14 2. Background

sequence a

sequence b

(a) (b)

Figure 2.4: Image (a) displays the data dependencies within the Needleman-Wunsch algorithm and Image (b) shows the intra-
vectorization approach for utilizing SIMD to optimize its performance.

instructions operate on data vectors, allowing a single instruction to process multiple data points in par-
allel. This is particularly beneficial for data-parallel tasks, such as multimedia processing or scientific
computations, where the same operation needs to be applied to many data elements. SIMD instruc-
tions reduce the number of required operations and improve memory bandwidth utilization, resulting in
faster and more efficient data processing.

In SIMD processing, two primary approaches are used for alignment: intra-vectorization and inter-
vectorization. Each method has distinct advantages and disadvantages depending on the specific use
case. In Figure 2.4(a), the data dependencies of the Needleman-Wunsch algorithm are illustrated. In
the first column, each cell depends on the cell above it, while in the first row, each cell relies on the cell
to its left. For all other cells, the value depends on the left, above, and diagonal (cross) cells, reflecting
the dynamic programming approach used to compute alignment scores. Figure 2.4(b) demonstrates
the intra-vectorization approach using SIMD operations to optimize performance. The data within the
red rectangle can be accessed simultaneously, allowing these elements to be calculated together,
thereby enhancing computational efficiency by processing multiple sequence elements concurrently.
This approach parallelizes the calculation within an alignment process of a single read, making it par-
ticularly effective for scenarios requiring only one alignment at a time, such as database queries. It
ensures that operations on individual alignment cells are handled concurrently, optimizing performance
for single alignment tasks. Inter-vectorization, on the other hand, is suited for scenarios where mul-
tiple alignments need to be processed simultaneously. The efficiency of inter-vectorization depends
on the number of reads and the specific SIMD instruction set used, as it allows for parallel processing
of several alignment tasks. This method is especially useful when dealing with multiple alignments
simultaneously, such as in error correction processes involving numerous segments. For error correc-
tion in a bubble, global alignment is required between each segment and the consensus sequence.
In this context, each bubble contains multiple segments with similar lengths, minimizing unnecessary
computations. Consequently, inter-vectorization proves advantageous for error correction, as it can
efficiently handle multiple segments and alignments concurrently, reducing overhead and enhancing
overall performance.

2.6. Amdahl’s Law 15

1 2 3 4

1

1.2

1.4

1.6

1.8

2

Speedup for error correction

O
ve
ra
ll
sp
ee

du
p

Amdahl’s Law

bacteria dataset
human genome dataset

Figure 2.5: Amdahl’s Law applied to the Flye’s polisher, showing overall speedup versus speedup for error correction for two
datasets.

2.6. Amdahl’s Law
Amdahl’s Law is a principle that highlights the potential speed-up of a computational process when
only a portion of it is optimized. In the context of Flye’s polishing step, which includes alignment,
bubble splitting, and error correction, Amdahl’s Law can help us understand the impact of improving
each component. Flye’s polisher incorporates Minimap2 for the alignment algorithm, a well-optimized
tool known for its efficiency. The second component, splitting alignment into bubbles, is relatively
quick and does not significantly contribute to processing time. Thus, the error correction phase is the
primary candidate for optimization. The proportion of time dedicated to error correction varies with
the dataset. For instance, in the bacteria dataset, error correction accounts for 69.52% of the total
polishing time, whereas, in the human genome dataset, it constitutes 43.47%. This variation suggests
that optimizing error correction can lead to substantial overall speed-ups, depending on the dataset.
Figure 2.5 illustrates that optimizing error correction yields considerable improvements in processing
speed for these datasets. AVX2, with its 256-bit data lanes capable of processing 4 data elements
simultaneously, theoretically offers up to a 4x speedup for error correction. However, achieving this
maximum speedup is impractical due to the overhead associated with implementing AVX instructions.
The figure demonstrates the realistic speedups achieved for error correction, ranging from 1x to 4x.

3
Methods

3.1. General Polisher
3.1.1. Purpose and Implementation
Each bubble contains read segments 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 = 𝑠𝑒𝑔1, 𝑠𝑒𝑔2, … , 𝑠𝑒𝑔𝑚, and our objective is to deter-
mine a consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 that maximizes the probability 𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) =
∏𝑚𝑖=1 𝑃𝑟(𝑠𝑒𝑔𝑖|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠), where 𝑃𝑟(𝑠𝑒𝑔𝑖|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) represents the probability of producing segment
𝑠𝑒𝑔𝑖 from the consensus sequence 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠. Given an alignment between a segment 𝑠𝑒𝑔𝑖 and
the consensus 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠, 𝑃𝑟(𝑠𝑒𝑔𝑖|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) is defined as the product of the match, mismatch,
insertion, and deletion rates for all positions in this alignment. These rates should be derived from
aligning any reads to a reference genome. A segment with a median length is selected from each
bubble, and whether the consensus sequence for each bubble can be improved by introducing a sin-
gle mutation in the selected segment is iteratively assessed. If a mutation is found that increases
𝑃𝑟(𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠|𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠), the mutation that results in the maximum increase is chosen and the pro-
cess is repeated until convergence. The final sequence is then output as the error-corrected sequence
of the bubble.

3.1.2. Initial Performance Enhancements
Before incorporating SIMD instructions, several optimizations were applied to enhance the general
polisher’s efficiency. Firstly, the intermediate vector used in the substitution (algorithm 4) and
insertion (algorithm 5) functions was eliminated. This modification not only streamlined the code
but also resulted in improved performance and reduced memory usage. Secondly, unnecessary ini-
tialization within the getScoringMatrix (algorithm 1) function was eliminated. Instead of initializing
the entire 2D score matrix to zero, only the first element was set to zero. This optimization leverages
the nature of the forward-backward dynamic programming algorithm, where subsequent matrix cells
are computed using initialized values. This approach significantly reduces the initialization overhead,
which is crucial given that initializing a large memory block to zero is time-consuming. The time com-
plexity of this operation is proportional to 𝑙𝑒𝑛(𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠)×𝑙𝑒𝑛(𝑠𝑒𝑔𝑖), which becomes quadratic relative
to the size of the reads, making it particularly inefficient for larger datasets. Thirdly, a new function,
getRevScoringMatrix (algorithm 2), was introduced specifically to handle backward dynamic pro-
gramming. Previously, the getScoringMatrix function was used for both forward and backward
dynamic programming (by reversing the inputs 𝑠𝑒𝑔𝑖 and 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠) to obtain the forward score ma-
trix and backward score matrix. This dual-purpose approach complicated the implementation of the
following deletion (algorithm 3), substitution, and insertion functions, especially when inte-
grating AVX instructions later on. Figure 3.1 illustrates a deletion operation on the second element
of 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠. Figure 3.1(a) depicts the forward score indices, while Figure 3.1(b) shows the reverse
score indices computed using the getScoringMatrix function. Figure 3.1(c) illustrates the reverse
score indices using the getRevScoringMatrix function. The index of the reverse score increments
by one in the row index, while the column index remains unchanged.

17

18 3. Methods

consensus

segi0

0

y-1

x-1

0

y-1

x-1

0

0

0

consensus

segi

1
2

12

(a) (b)

consensus

segi0

0

y-1

x-1
0

1

1
2

(c)

Figure 3.1: The calculation and the deletion operations of the forward and reverse score matrices. Image (a) displays the original
forward matrix, Image (b) shows the original reverse matrix and Image (c) presents the enhanced reverse matrix.

3.1. General Polisher 19

Algorithm 1 getScoringMatrix
Require: Strings 𝑣, 𝑤; ScoreMatrix 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡
Ensure: Alignment score
1: Initialize 𝑠𝑐𝑜𝑟𝑒 ← 0
2: for 𝑖 ← 0 to |𝑣| − 1 do
3: 𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑣[𝑖],′−′)
4: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 + 1, 0] ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, 0] + 𝑠𝑐𝑜𝑟𝑒
5: end for
6: for 𝑖 ← 0 to |𝑤| − 1 do
7: 𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(′−′, 𝑤[𝑖])
8: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[0, 𝑖 + 1] ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[0, 𝑖] + 𝑠𝑐𝑜𝑟𝑒
9: end for

10: for 𝑖 ← 1 to |𝑣| do
11: 𝑘𝑒𝑦1 ← 𝑣[𝑖 − 1]
12: for 𝑗 ← 1 to |𝑤| do
13: 𝑘𝑒𝑦2 ← 𝑤[𝑗 − 1]
14: 𝑙𝑒𝑓𝑡 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, 𝑗 − 1] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(′−′, 𝑘𝑒𝑦2)
15: 𝑢𝑝 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 − 1, 𝑗] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑘𝑒𝑦1,′−′)
16: 𝑐𝑟𝑜𝑠𝑠 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 − 1, 𝑗 − 1] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑘𝑒𝑦1, 𝑘𝑒𝑦2)
17: 𝑠𝑐𝑜𝑟𝑒 ←max(𝑙𝑒𝑓𝑡, 𝑢𝑝)
18: 𝑠𝑐𝑜𝑟𝑒 ←max(𝑠𝑐𝑜𝑟𝑒, 𝑐𝑟𝑜𝑠𝑠)
19: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, 𝑗] ← 𝑠𝑐𝑜𝑟𝑒
20: end for
21: end for
22: return 𝑠𝑐𝑜𝑟𝑒

Algorithm 2 getRevScoringMatrix
Require: Strings 𝑣, 𝑤; ScoreMatrix 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡
Ensure: Alignment score
1: Initialize 𝑠𝑐𝑜𝑟𝑒 ← 0
2: for 𝑖 ← |𝑣| − 1 down to 0 do
3: 𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑣[𝑖],′−′)
4: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, |𝑤|] ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 + 1, |𝑤|] + 𝑠𝑐𝑜𝑟𝑒
5: end for
6: for 𝑖 ← |𝑤| − 1 down to 0 do
7: 𝑠𝑐𝑜𝑟𝑒 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(′−′, 𝑤[𝑖])
8: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[|𝑣|, 𝑖] ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[|𝑣|, 𝑖 + 1] + 𝑠𝑐𝑜𝑟𝑒
9: end for

10: for 𝑖 ← |𝑣| down to 1 do
11: 𝑘𝑒𝑦1 ← 𝑣[𝑖 − 1]
12: for 𝑗 ← |𝑤| down to 1 do
13: 𝑘𝑒𝑦2 ← 𝑤[𝑗 − 1]
14: 𝑟𝑖𝑔ℎ𝑡 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 − 1, 𝑗] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(′−′, 𝑘𝑒𝑦2)
15: 𝑑𝑜𝑤𝑛 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, 𝑗 − 1] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑘𝑒𝑦1,′−′)
16: 𝑐𝑟𝑜𝑠𝑠 ← 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖, 𝑗] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑘𝑒𝑦1, 𝑘𝑒𝑦2)
17: 𝑠𝑐𝑜𝑟𝑒 ←max(𝑟𝑖𝑔ℎ𝑡, 𝑑𝑜𝑤𝑛)
18: 𝑠𝑐𝑜𝑟𝑒 ←max(𝑠𝑐𝑜𝑟𝑒, 𝑐𝑟𝑜𝑠𝑠)
19: 𝑠𝑐𝑜𝑟𝑒𝑀𝑎𝑡[𝑖 − 1, 𝑗 − 1] ← 𝑠𝑐𝑜𝑟𝑒
20: end for
21: end for
22: return 𝑠𝑐𝑜𝑟𝑒

20 3. Methods

3.1.3. SIMD Optimization
Implementing SIMD instructions for the general polisher involves several key steps: padding, con-
strained calculation, memory reorganization, and pre-computation.

Padding
Polishing requires performing the alignment operation on the 𝐶𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 and each 𝑠𝑒𝑔𝑖. We adopt
inter-read vectorization to compute batches of score matrices instead of processing them one at a
time. For each bubble, the 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 are sorted according to their length. Padding is performed on
the number of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 and the length of each 𝑠𝑒𝑔𝑖. The general polisher calculates a 64-bit integer
score. Taking AVX2 as an example, it can process 256 bits at a time, which equates to calculating four
64-bit scores simultaneously. Therefore, the batch size is set to four. As shown in In Figure 3.2(a),
to handle cases where the number of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 is not a multiple of four, the last 𝑠𝑒𝑔𝑚 is duplicated
multiple times to ensure there are no remaining segments when processing in batches of four. To
accommodate varying lengths of 𝑠𝑒𝑔𝑖, the length of the last 𝑠𝑒𝑔𝑖 in a batch is used as the target length
for padding all other segments. In Figure 3.2(b), the colored cells represent meaningful values, while
the uncolored cells serve to handle varying segment lengths and are not required for calculation. The
score calculation necessitates careful constraints to ensure that only meaningful scores are computed.

Constrained calculation
Assume the length of 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑠 is 𝑚. If 𝑚 is a multiple of four, no padding is required. The final score
is computed by adding the scores of four segments per batch and summing all intermediate scores. If
𝑚 is not a multiple of four, the last segment 𝑠𝑒𝑔𝑚 needs to be duplicated (4 − (𝑚 mod 4)) times. All
batches, except the last one, are processed as above. For the last batch, only (𝑚 mod 4) scores are
added to obtain the final score. Assume the batch index is 𝑏, and the first segment in batch 𝑏 is 𝑠𝑒𝑔4𝑏.
Since the segments are sorted by ascending length, 𝑠𝑒𝑔4𝑏 is the shortest, allowing normal calculation
up to its length. As the calculation progresses, the results should not overwrite the corresponding cell
in the score matrix associated with 𝑠𝑒𝑔4𝑏; instead, the value should remain the same as in the previous
cell, necessitating an additional operation. A comparison mask, 𝑐𝑚𝑝_𝑚𝑎𝑠𝑘, is introduced to store the
comparison result between the vector 𝑐𝑜𝑙 and 𝑙𝑒𝑛. Here, 𝑐𝑜𝑙 consists of four identical values of the
current column, and 𝑙𝑒𝑛 is a vector containing the lengths from 𝑠𝑒𝑔4𝑏 to 𝑠𝑒𝑔4𝑏+3. This 𝑐𝑚𝑝_𝑚𝑎𝑠𝑘 is
utilized in a blending operation, determining whether the score should retain its previous value or adopt
the newly calculated value based on 𝑐𝑚𝑝_𝑚𝑎𝑠𝑘. This constrained calculation ensures that the result
remains consistent after padding.

Memory reorganization
To optimize the memory access pattern for AVX2 instructions, the memory layout for the forward and re-
verse score matrices has beenmodified. The original layout consists of a continuous 1Dmemory chunk
representing a 2D score matrix for each 𝐶𝑜𝑛𝑠𝑒𝑛𝑐𝑒 (row) and 𝑠𝑒𝑔𝑖 (column). The modified memory lay-
out remains 1D but now represents a forward and reverse 3D matrix for each 𝐶𝑜𝑛𝑠𝑒𝑛𝑐𝑒 and a batch
of 𝑠𝑒𝑔 values (from 𝑠𝑒𝑔4𝑏 to 𝑠𝑒𝑔4𝑏+3). This transformation effectively introduces a depth dimension,
converting the original 2D matrix into a 3D matrix. In the 2D matrix layout, the column values are stored
contiguously. In contrast, the 3D matrix layout stores the depth values contiguously. Specifically, for a
2D matrix, the memory location of a cell (𝑖, 𝑗) is calculated as:

index(𝑖, 𝑗) = 𝑖 × cols+ 𝑗

For the 3D matrix, the computation of four cells (𝑖, 𝑗, 0) to (𝑖, 𝑗, 3) is performed simultaneously, with
their memory locations calculated as:

index(𝑖, 𝑗, 𝑑) = 𝑖 × cols × 4 + 𝑗 × 4 + 𝑑 for 𝑑 = 0, 1, 2, 3

This layout modification ensures that the data is contiguous in memory when accessing the depth
dimension, which enhances the efficiency of SIMD operations. By computing multiple depth values
simultaneously, we reduce cache misses and improve the algorithm’s overall performance.

3.1. General Polisher 21

(a) Depicts the padding process for reads in the final batch. The gray rectangle represents the original reads, while the dashed rectangle indicates
the padded areas. Two types of padding are applied: first, each read is padded to match the length of the longest read in the batch; second, the
total number of reads is padded to be a multiple of the batch size.

(b) Shows the score matrix for the final batch. The gray area represents meaningful data, while the transparent area indicates padding used for
calculation purposes. This padding is necessary but not relevant to the final results.

Figure 3.2: The padding process for reads and score matrix in AVX instruction calculations.

22 3. Methods

pre-computation
The probabilities for match, miss, delete, and insertion events can be found in Appendix A.1. The
function probToScore computes the alignment score from a given probability 𝑝 using the formula:

score = round(ln(𝑝) × 131072)

where ln(𝑝) is the natural logarithm of the probability 𝑝, and the constant 131072 is equivalent to 217.
To facilitate rapid score lookups, a substitution matrix is implemented. Although a 5×5matrix would

suffice, a 256 × 256 matrix is utilized for efficiency. This design allows for direct indexing using ASCII
values. For example, to retrieve the score for a match involving character 𝐴 (ASCII value 65), the index
is computed as 65× 256+65. In the original implementation, substitution values are computed during
runtime. However, in the SIMD-optimized version, all values are pre-calculated. This pre-computation
enables direct loading of values into AVX registers, thereby eliminating computational delays. Data stor-
age is optimized for cache efficiency. For each batch of operations, five 2D matrices are maintained.
Each matrix corresponds to the scores from a character to segments seg𝑖 , seg𝑖+1, seg𝑖+2, seg𝑖+3. Con-
sequently, the dimensions of each matrix are len(seg𝑖+3) × batch size. These pre-calculated matrices
are utilized across the alignment, insertion, and substitution functions, ensuring efficient
reuse of computed values and significantly reducing the need for recalculations.

3.2. Dinucleotide Fixer
3.2.1. Purpose and Implementation
The DinucleotideFixer class is designed to optimize sequences by adjusting dinucleotide runs
within a candidate sequence. Its primary purpose is to refine the sequence within a structure referred
to as a bubble, ensuring that it aligns more closely with a set of provided reference sequences, or
branches. The fixBubble method, central to this class, assesses the quality of the alignment of a
candidate sequence by evaluating the likelihood scores derived from a global alignment process. If the
sequence contains a long run of repeated dinucleotides, the method attempts to modify the length of
these runs by either inserting or deleting dinucleotide pairs. The class employs the helper method get-
DinucleotideRuns to identify the position and length of the longest run of repeated dinucleotides.
If either increasing or decreasing the dinucleotide run improves the alignment score compared to the
original sequence, the sequence is updated, and this change is logged for potential polishing steps.
This process allows the DinucleotideFixer class to enhance the structural integrity and biological
plausibility of the sequence by fine-tuning repetitive dinucleotide motifs.

3.2.2. Separate Alignment Class for Dinucleotide Fixer
In contrast to the alignment function used in the GeneralPolisher, which employs both forward
and backward dynamic programming processes and retains a score matrix for subsequent use, the
DinucleotideFixer requires only the final alignment score. The original alignment function, op-
timized with SIMD for performance, is designed for comprehensive alignment tasks, which involves
additional memory overhead and computation. To address this, a specialized alignment function
was developed specifically for the DinucleotideFixer. This new implementation performs a sin-
gle forward dynamic programming pass, thereby streamlining the calculation process and significantly
reducing memory usage. This approach enhances both computational efficiency and memory man-
agement, tailored to the specific needs of dinucleotide run adjustment.

3.3. Bubble Processor
3.3.1. Purpose and Implementation
In the previous section, a general polisher was introduced, which polishes a single bubble at a time.
This section describes the bubble processor, a tool designed to read input data from a file, polish
bubbles using multiple threads, and write the processed data to an output file. For small datasets,
these three tasks can be executed sequentially. However, as the dataset size increases, reading data
from the file can become time-consuming, and loading all data into memory can lead to high memory
consumption. To address these challenges, a multi-threaded architecture (Figure 3.3) is employed.

3.3. Bubble Processor 23

Input File
read bubbles

Vector

Thread 1

Thread n

assign a bubble

polish bubbles

Output
File

write a bubble

mutex mutex

Figure 3.3: The original multi-threaded architecture (Design 1).

This approach involves several key steps. First, a default batch size of 100 is used to read data from
the file. This limits the amount of data loaded into memory at any given time, reducing memory con-
sumption. Second, after a batch of data is read into memory, multiple threads are deployed to process
the bubbles. Each thread attempts to retrieve a bubble from memory, polish it, and write the output to
a single file. This process continues until all bubbles in the batch are processed. Third, the first thread
to complete its work starts reading the next batch of data. This process repeats until all bubbles in the
file are polished. By overlapping data reading with bubble polishing, part of the data reading time is
effectively hidden behind the processing time, thereby reducing the total runtime. However, the imple-
mentation relies heavily on mutexes for managing concurrent access to memory and the output file.
When all threads try to retrieve a bubble or write to the file simultaneously, it leads to notable waiting
times due to mutex contention.

3.3.2. New Multi-threaded Architectures
In the original design, bubble polishing was performed using multiple threads. However, the polished
bubbles were written to a single output file, necessitating the use of a mutex to prevent data races. This
approach led to significant contention and waiting times due to frequent mutex acquisition. Our new
approach (design_2, Figure 3.4) addresses this issue by binding each thread to a separate output
file. This allows the polished bubbles to be written concurrently without the need for mutexes, thus
eliminating the associated contention. Furthermore, we have optimized the processing of bubbles by
introducing batch processing. Instead of assigning a single bubble to each thread at a time, a batch
of bubbles is now allocated to each thread. This reduces the frequency of mutex acquisitions, as the
mutex is only acquired once per batch, rather than once per bubble. Consequently, the mutex ac-
quisition time is approximately inversely proportional to the batch size. A larger batch size reduces
the total mutex acquisition time, thereby shortening the waiting period for threads. However, choosing
an appropriate batch size is crucial. If the batch size is too large, the reading, polishing, and writing
operations might be executed sequentially, negating the benefit of hiding reading time behind polish-
ing. Therefore, the batch size must be carefully determined to balance these factors. Additionally, the
number of bubbles varies across datasets, influencing the optimal batch size. The choice of batch size
must consider the specific characteristics of each dataset to maximize performance.

To enhance the efficiency of our multi-threaded architecture, we introduced design_3 (Figure 3.5).

24 3. Methods

Queue

Thread 1

Thread n

polish bubbles

Output
File

write a bubble

mutex

Output
File

assign bubbles

Queue

Queue
assign a bubble

Input File

read bubbles

Figure 3.4: The improved multi-threaded architecture (Design 2), featuring enhancements such as writing to separate files and
utilizing batch processing for increased efficiency.

Queue

Thread 1

Thread n-1

polish bubbles

Output
File

write a bubble

mutex + conditional variables

Output
File

assign bubbles

Queue

Queue
assign a bubble

Input File
read bubbles

Queue

swap buffers

Figure 3.5: The improved multi-threaded architecture (Design 3) designed for handling a large number of threads, incorporating
a dedicated thread for file reading and employing double buffering for enhanced performance.

3.3. Bubble Processor 25

Unlike design_2, design_3 incorporates an additional component, the bubble processor pro,
specifically designed to handle situations involving a large number of threads. In scenarios with a small
number of threads, the standard bubble processor is utilized. In this configuration, all threads are
dedicated to polishing tasks. Once a thread completes its current task, it retrieves the next batch of
bubbles for processing. After the retrieval process, all threads work together to polish the new batch
of bubbles. When the number of threads is large, the bubble processor pro comes into play.
This version reserves one thread exclusively for reading tasks, while the remaining threads focus on
polishing. This setup allows reading and polishing processes to occur simultaneously, reducing idle
time as reading tasks are masked by the polishing operations. However, this approach does sacrifice
one thread for polishing, making it only advantageous when the number of threads is sufficiently large
to justify the trade-off. Additionally, bubble processor pro implements double buffering. This
technique enables simultaneous operations: one buffer is used for reading bubbles from a file, while
the other distributes bubbles to threads for processing. When the second buffer is depleted and the
first buffer is replenished, the buffers swap roles, allowing continuous processing and reading without
interruptions.

4
Experiments

4.1. Experimental Setup
The experiments were conducted using two distinct server clusters. The first server is equipped with
an Intel Xeon Silver 4114 CPU, which supports AVX2 and AVX512 instruction sets, 96 GB of RAM, and
1 TB of local storage. The second server features a AMD EPYC 7532, which supports only the AVX2
instruction set, 1 TB of RAM, and 1 TB of local storage. The detail of Intel Xeon Silver 4114 and AMD
EPYC 7532 CPUs can be found in Table 4.1. The optimized polisher was evaluated on two datasets:
the E. coli P6-C4 PacBio data (bacterial dataset) and the HG002 (NA24385) Oxford Nanopore Ultra-
long GridION data (human genome dataset). Due to the memory limitations of the first server, the
polisher was tested on the HG002 dataset exclusively on the second server. The polisher was tested
on the E. coli dataset not only on the first server to observe the effects of AVX512 optimizations but
also on the second server to see the effects of high parallelism levels.

Intel Xeon Silver 4114 AMD EPYC 7532
Sockets × Cores × Threads 2 × 10 × 2 2 × 32 × 2
AVX register width (bits) 512, 256, 128 256, 128
Vector Processing Units (VPU) 2/Core 2/Core
Base Clock Frequency (GHz) 2.20 2.40
L1D Cache (KB) 32 32
L2 Cache (KB) 1024 512
L3 Cache (MB) / Socket 13.75 256

Table 4.1: Details of Intel Xeon Silver 4114 and AMD EPYC 7532 CPUs

Figure 4.2 shows the description of various designs. baseline refers to the original multi-thread
architecture, serving as the baseline for our comparisons. design_2 and design_3, introduced in
the Method section, represent the new multi-thread architectures. Each architecture variant is further
optimized using different SIMD instructions, denoted by avx2 and avx512. These optimizations are
applied to the GeneralPolisher and DinucleotideFixer components. For instance, baseline
represents the baseline architecture without additional SIMD optimization, while avx2_multithread_opt
refers to the new multi-thread architecture with AVX2 optimization.

Design Name Description
baseline The baseline for our comparisons.
avx2_opt The baseline architecture with AVX2 optimization.
avx512_opt The baseline architecture with AVX-512 optimization.
avx2_multithread_opt The new multi-thread architecture with AVX2 optimization.

Table 4.2: Description of various designs and their SIMD optimizations.

27

28 4. Experiments

Bacteria Dataset baselinse avx2_opt avx512_opt
Profiling flye
assembly 05:12 - -
consensus 07:32 - -
repeat 01:19 - -
contigger 00:02 - -
polishing 22:59 - -

Profiling polishing
minimap2 01:53 - -
make bubbles 05:05 - -
correct errors 15:55 5:17 3:39

Table 4.3: Profiling Data (mm:ss) for Flye and Polishing components on the bacteria dataset running with one thread:
baseline vs avx2_opt vs avx512_opt

Component baseline avx2_opt avx512_opt
BubbleProcessor (Total: 947.98 / 317.18 / 219.36)
GeneralPolisher 809.50 265.63 177.49
DinucFixer 76.59 10.94 6.12
Other 61.89 40.61 35.75

GeneralPolisher
Alignment 308.81 143.14 81.39
Deletion 43.97 32.30 33.35
Insertion 299.04 53.98 35.79
Substitution 148.71 26.92 18.68
Other 8.97 60.84 50.15

Table 4.4: Profiling Data (seconds) for BubbleProcessor and GeneralPolisher components on the bacteria dataset running
with one thread: baseline vs avx2_opt vs avx512_opt

4.2. Flye Profile
4.2.1. Bateria Dataset
The Flye assembler was executed on a bacterial dataset using a single-threaded configuration. Table
4.3 shows the profiling results for the bacteria dataset. Analysis of the runtime distribution (Figure 4.1a)
revealed that the polishing stage constitutes 61.88% of the total processing time. Within the polishing
stage, the breakdown of time allocation is as follows: minimap2 accounts for 8.24%, creating bubbles
takes up 22.24%, and error correction comprises 69.52% of the time. These results indicate that the
polishing stage is the most time-consuming component of the assembly process. Furthermore, error
correction, which is the primary focus of this thesis, emerges as the most time-intensive sub-process
within the polishing stage.

Further profiling was conducted on the error correction component of the polishing stage. As de-
tailed in Table 4.4, the BubblesProcessor, which handles error correction, requires a total of 947.98
seconds. Among its sub-components, GeneralPolisher is the most time-consuming, accounting for
809.50 seconds, or approximately 85.39% of the total processing time. This indicates that optimizing
GeneralPolisher could substantially decrease overall processing time. The DinucFixer accounts
for 8.08% of the total time, making it the second largest contributor. The remaining time is attributed to
I/O operations and multi-threading overhead. Within GeneralPolisher, the alignment and insertion
processes are the most time-intensive, representing 75.09% of its total processing time.

4.2.2. Human Genome Dataset
The Flye assembler was executed on an HG002 human genome dataset using all 64 threads (32
cores) on a single socket. Table 4.3 shows the profiling results for the human genome dataset. As
shown in Figure 4.2a, the polishing stage accounted for 20.89% of the total processing time, with the

4.2. Flye Profile 29

Assembly Consensus Repeat Contigger Polishing
0

10

20

30

40

50

60

70

43.2

13.7
14

20.3

3.6 0.1 5.1

Pe
rc
en

ta
ge

minimap2
make bubbles
correct errors

(a) Baseline

Assembly Consensus Repeat Contigger Polishing
0

10

20

30

40

50

60

70

14.8

20.6

21.1
30.5

5.3 0.1
7.6

Pe
rc
en

ta
ge

minimap2
make bubbles
correct errors

(b) avx512_opt

Figure 4.1: Time distribution across different stages of Flye assembler on bacteria dataset with detailed polishing steps before
and after acceleration running with one thread.

Human Genome Dataset baseline avx2_multithread_opt
Profiling flye
assembly 2-08:08:46 -
consensus 0-11:08:39 -
repeat 0-05:32:53 -
contigger 0-00:45:09 -
polishing 0-19:37:49 -

Profiling polishing
minimap2 0-08:52:51 -
make bubbles 0-01:38:25 -
correct errors 0-08:05:29 0-5:52:43

Table 4.5: Profiling Data (d-hh:mm:ss) for Flye and Polishing components on the human genome dataset running with 64
threads: baseline and avx2_multithread_opt

30 4. Experiments

Assembly Consensus Repeat Contigger Polishing
0

10

20

30

40

50

60

70

8.7
1.8

59.7

11.9
5.9 0.8

9.5

Pe
rc
en

ta
ge

minimap2
make bubbles
correct errors

(a) Baseline

Assembly Consensus Repeat Contigger Polishing
0

10

20

30

40

50

60

70

6.3
1.8

61.8

12.3
6.1 0.8

9.8

Pe
rc
en

ta
ge

minimap2
make bubbles
correct errors

(b) avx2_multithread_opt

Figure 4.2: Time distribution across different stages of Flye assembler on the human genome dataset running with 64 threads
with detailed polishing steps before and after acceleration.

4.3. Performance Comparison 31

Component baseline avx2_opt avx2_multithread_opt
BubbleProcessor (Total: 28679.28 / 25454.06 / 20713.96)
GeneralPolisher 25255.13 13791.92 18044.59
Waiting 2370.28 11276.43 2175.38
DinucFixer 880.62 164.05 312.84
Other 173.25 221.66 181.15

GeneralPolisher
Alignment 10059.64 5829.22 6865.57
Deletion 1349.87 2796.77 3339.32
Insertion 10786.70 4119.11 5805.63
Substitution 3014.19 870.35 1364.64
Other 44.73 176.47 669.43

Table 4.6: Profiling Data (seconds) for BubbleProcessor and GeneralPolisher components on the human genome dataset
running with 64 threads: baseline, avx2_opt and avx2_multithread_opt

error correction process within this stage consuming 43.47% of that time. Although the polishing stage
is no longer the most time-consuming part for the human genome dataset, it still requires nearly 20
hours to complete. The Flye polisher also functions as a versatile standalone tool, capable of refining
existing assemblies produced by other assemblers. This feature allows researchers to integrate Flye’s
advanced polishing algorithms into various workflows, enhancing the accuracy and quality of genomic
assemblies across different projects. As the final stage in the assembly process, polishing is crucial
for ensuring accuracy. Flye executes a single polishing iteration by default, but additional iterations
can correct a small number of residual errors, potentially improving overall assembly quality. However,
these extra iterations increase processing time, making the optimization of the Flye polisher essential
as it enables researchers to achieve high-quality assemblies efficiently, balancing the trade-off between
accuracy and computation time.

To further investigate the error correction process during the polishing stage, we analyze the time
distribution shown in Table 4.6. The GeneralPolisher sub-process dominates the time expenditure,
constituting approximately 88.06% of the total execution time for the BubbleProcessor. Within Gen-
eralPolisher, the alignment task requires about 35.08% of the total time, while the insertion task
takes roughly 37.61%. In contrast, the dinucFixer sub-process accounts for only about 3.07% of the
total processing time. Additionally, the wait time represents 8.26% of the BubbleProcessor duration.
The profiling results indicate that the primary bottleneck is within the GeneralPolisher, specifically
due to the time-intensive alignment and insertion tasks, which together account for over 70% of the total
processing time. Notably, the dinucFixer is no longer the second most time-consuming component;
instead, the wait time has become a more significant factor compared to the results obtained from the
bacteria dataset.

4.3. Performance Comparison
4.3.1. Bacteria Dataset
In this experiment, we assembled the bacterial dataset using a single thread, comparing the baseline
and a optimized versions of the architecture. Figure 4.1 shows the time distribution across different
stages of Flye assembler on the bacteria dataset before (Figure 4.1a) and after acceleration (Figure
4.1b). The error correction process during the polishing stage was previously the most significant
bottleneck in the Flye workflow, accounting for 42.92% of the total processing time. However, after
implementing acceleration techniques, the time required for this stage has been significantly reduced,
now comprising only 14.78% of the overall processing time. Consequently, it has shifted to become
the fourth most time-consuming component in the Flye workflow.

The optimizations significantly enhanced the performance of the GeneralPolisher and Dinu-
cleotideFixer components. For the BubblesProcessor, the total execution time decreased from
947.98 seconds to 317.18 seconds with AVX2 optimization and further to 219.36 seconds with AVX512
optimization, achieving an overall speedup of approximately 4.32 times. Within the GeneralPol-
isher component, execution time was reduced from 809.50 seconds to 265.63 seconds with AVX2

32 4. Experiments

20 21 22 2325

26

27

28

29

210

Number of Threads (log2)

R
un

tim
e
(lo

g 2
se
co
nd

s)

Bubble Processor Runtime vs. Number of Threads

baseline
avx2_opt

avx512_opt

Figure 4.3: Runtime comparison across different threading (log2 scale for both axes): baseline vs avx2_opt vs avx512_opt

and then to 177.49 seconds with AVX512, yielding a combined speedup of about 4.56 times. The Din-
ucleotideFixer component saw its execution time drop from 76.59 seconds to 10.94 seconds with
AVX2 and further to 6.12 seconds with AVX512, resulting in a substantial speedup of approximately
12.51 times.

Figure 4.3 illustrates the runtime performance of the BubbleProcessor as the number of threads
increases, comparing three different implementations: Baseline, AVX2, and AVX512. The graph uses
a log2 scale for both the number of threads and the runtime, enabling a clear view of the performance
trends across exponential increases in these variables. As expected, the runtime decreases with an
increasing number of threads for all three implementations, demonstrating the effectiveness of paral-
lelization. The Baseline implementation shows the highest runtimes across all thread counts, with a
runtime of 947.98 seconds for a single thread, reducing to 142.67 seconds at eight threads. This repre-
sents a speedup of approximately 6.64 times. The AVX2 implementation improves upon the Baseline,
starting at 317.18 seconds with one thread and dropping to 54.65 seconds with eight threads, resulting
in a speedup of about 5.80 times. The AVX512 implementation further enhances performance, start-
ing at 219.36 seconds with one thread and reducing to 52.83 seconds with eight threads, achieving a
speedup of around 4.15 times. Notably, the performance gains between the AVX2 and AVX512 imple-
mentations narrow as the number of threads increases, highlighting diminishing returns from additional
vectorization optimizations at higher parallelism levels.

4.3.2. Human Genome Dataset
In this experiment, we assembled the human genome dataset using 64 threads (32 cores) on a single
socket, comparing the baseline and a optimized versions of the architecture. Figure 4.2 shows the
time distribution across different stages of Flye assembler on the human genome dataset before (Fig-
ure 4.2a) and after acceleration (Figure 4.2b). Figure 4.4 presents a comparison of speedups between
avx2_opt and avx2_multithread_opt relative to the baseline. The experimental results demonstrate
that during the entire polishing stage, the avx2_opt implementation achieves a speedup of 1.12x, while
avx2_multithread_opt shows a more significant improvement with a speedup of 1.21x, reducing the
overall processing time by 2 hours and 20 minutes compared to the original polisher. When focusing
on specific components, the BubbleProcessor exhibits a speedup of 1.1x with avx2_opt, whereas
avx2_multithread_opt achieves a markedly higher speedup of 1.4x. In contrast, for the GeneralPol-
isher, avx2_opt outperforms avx2_multithread_opt with a speedup of 1.8x compared to 1.4x. To fur-
ther investigate the causes of these performance variations, a detailed profiling of the subcomponents
was conducted, yielding valuable insights into the observed differences.

4.3. Performance Comparison 33

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Polisher

BubbleProcessor

GeneralPolisher

1

1

1

1.12

1.1

1.8

1.21

1.4

1.4

Speedup

Speedup of Different Designs

baseline
avx2_opt

avx2_multithread_opt

Figure 4.4: Comparison of speedups for avx2_opt and avx2_multithread_opt against the baseline on the human genome dataset
running with 64 threads.

34 4. Experiments

Table 4.6 presents a comparative analysis of the BubbleProcessor execution times, highlighting
a reduction in total processing time with the avx2_opt configuration. This design achieves an 11.25%
increase in speed over the baseline. Key improvements in avx2_opt include a substantial decrease
in the GeneralPolisher processing time, from 25,255.13 seconds to 13,791.92 seconds, yielding a
1.8-fold speedup due to the enhanced performance provided by AVX2 optimizations. Moreover, the
DinucleotideFixer process experiences a significant reduction in execution time, dropping from
880.62 seconds to 164.05 seconds. This demonstrates the efficacy of the optimizations applied in this
section of the pipeline. However, it is important to note the increase in wait times, indicating a bottleneck
in the original multi-threaded architecture. Consequently, despite the substantial decrease in compu-
tation time, the overall reduction in processing time is modest, primarily due to these increased wait
times. This analysis suggests that further optimization of the data access and scheduling strategies is
necessary to fully capitalize on the computational enhancements. We introduced a new multithreaded
architecture that writes to separate files and employs batch processing to reduce waiting time. The run-
time results are under the avx2_multithread_opt configuration. This change reduced the waiting
time significantly, from 11,276.43 seconds to 2,175.38 seconds. Although the processing time for Gen-
eralPolisher and DinucleotideFixer increased slightly, the overall runtime is shorter compared
to the avx2_opt configuration. This adjustment achieves a 1.4-fold speedup over the baseline.

Figure 4.5 illustrates the CPU utilization over time for three different settings, each utilizing 64
threads (32 physical cores). Due to the long runtime of the experiments, the utilization data is only
shown for a fixed, short period to represent the overall process. In Figure 4.5a, the CPU utilization is
consistently high, indicating that all cores are actively engaged in polishing the bubbles. In contrast,
Figure 4.5b shows a significant drop in average CPU utilization. Many cores remain idle because the
time required for polishing is significantly reduced, making it comparable to the time needed for reading
bubbles. Consequently, cores that have completed their work must wait for bubble reading, leading
to lower CPU utilization. This observation correlates with the runtime results for avx2_opt, which
shows significant improvement in polishing time but only a modest overall runtime reduction due to
increased waiting time. Conversely, Figure 4.5c demonstrates high CPU utilization, comparable to that
of baseline. This indicates that the enhanced multithreaded architecture effectively reduces waiting
time. In this scenario, the reading process can lag behind the polishing process, ensuring that the CPU
resources are fully utilized.

The experiment demonstrates that avx2_multithread_opt consistently outperforms baseline
when evaluated with both 64 threads (utilizing hyper-threading) and 32 threads (using only physical
cores). This section extends the comparison of avx2_multithread_opt and baseline to a broader
range of thread counts: 1, 2, 4, 8, and 16. In this context, a key assumption is that doubling the
number of threads should ideally halve the runtime. However, running with a low thread count results
in extremely prolonged execution times. To mitigate this, the experiment employs 1 million bubbles,
significantly reducing the total execution time. As illustrated in Figure 4.6, avx2_multithread_opt
consistently exhibits superior performance compared to baseline. For baseline, performance scales
predictably with increasing threads: doubling the number of threads from 1 to 8 results in approx-
imately halving the runtime. However, the speedup from 8 to 16 threads is 1.67, and from 16 to 32
threads is 1.41, indicating diminishing returns. Notably, for avx2_multithread_opt the runtime with
16 threads exceeds that with 8 threads, an anomaly for which we currently have no explanation. De-
spite this, avx2_multithread_opt remains substantially faster than baseline even with 16 threads.
avx2_multithread_opt achieves a performance improvement factor of 4.06 times over baseline
with a single thread and 2.26 times faster with 32 threads. Furthermore, while baseline scales slightly
better with additional threads, avx2_multithread_opt maintains a clear performance advantage
overall.

4.3. Performance Comparison 35

0 50 100 150 200 250 300
Runtime (seconds)

0

20

40

60

80

100
Ut

iliz
ati

on
 (%

)

%user
%system
%iowait
%idle

(a) Baseline CPU utilization over time: The CPU utilization remains consistently high throughout the entire period.

0 50 100 150 200 250 300
Runtime (seconds)

0

20

40

60

80

100

Ut
iliz

ati
on

 (%
)

%user
%system
%iowait
%idle

(b) CPU utilization over time for avx2_opt: The CPU utilization is generally around 60%, with occasional spikes.

0 50 100 150 200 250 300
Runtime (seconds)

0

20

40

60

80

100

Ut
iliz

ati
on

 (%
)

%user
%system
%iowait
%idle

(c) CPU utilization over time for avx2_multithread_opt: The CPU utilization remains consistently high throughout the observation period, similar to
the baseline.

Figure 4.5: CPU utilization comparison for the human genome dataset across different settings: baseline vs avx2_opt vs
avx2_multithread_opt

36 4. Experiments

20 21 22 23 24 25
26

27

28

29

210

211

212

Number of Threads (log2)

R
un

tim
e
(lo

g 2
se
co
nd

s)

Bubble Processor Runtime vs. Number of Threads

baseline
avx2_opt

avx2_multithread_opt

Figure 4.6: Runtime comparison across different threading (log2 scale for both axes) on 1 million bubbles: baseline vs
avx2_multithread_opt

5
Discussion

In this thesis, a novel multithreaded architecture and SIMD instruction set is introduced, evaluating its
performance on two distinct datasets: the bacteria dataset and the human genome dataset. The exper-
iments were conducted using two different CPUs: the Intel Xeon Silver 4114 and the AMD EPYC 7532.
The results reveal variations in runtime distribution across different datasets and processor configura-
tions. Figure 5.1 builds upon Figure 2.5, with dots representing the speedups achieved for the error
correction process under various conditions, as well as the corresponding speedups for the entire pol-
ishing stage. Each dot will be discussed in detail in the subsequent sections. For the bacteria dataset,
the polishing stage accounts for 61.69% of the total processing time, with the error correction process
constituting 69.52% of the polishing stage’s duration. When running on a single core, the error correc-
tion process achieves speedups of 3.0x and 4.3x with AVX2 and AVX-512 instructions, respectively.
This results in overall speedups of 1.9x and 2.1x for the entire polishing process. When utilizing eight
cores, the error correction process realizes speedups of 2.6x and 2.7x with AVX2 and AVX-512, lead-
ing to overall speedups of 1.7x and 1.8x for the polishing process. In the case of the human genome
dataset, the polishing stage represents 20.89% of the processing time, with the error correction process
making up 43.47% of this polishing time. Here, the error correction process demonstrates a speedup of
4.0x with AVX2 on a single core when processing 1 million bubbles. With 32 cores, the speedup is 2.3x
for the same dataset. The error correction process achieves a 1.4x speedup using AVX2 on 64 cores
when applied to the complete dataset, resulting in an overall 1.14x speedup for the entire polishing
process. The findings indicate that the proposed multithreaded architecture and SIMD instruction set
significantly enhance performance compared to the baseline across both datasets, processors, and
thread counts. The improved version demonstrates substantial speedups, confirming its effectiveness
in accelerating the polishing process for various data sizes and computational environments.

Several unexpected results emerged from the performance analysis. First, the runtime for the
deletion function within the GeneralPolisher did not decrease as significantly with SIMD instruc-
tions compared to other functions. As illustrated in Figure 4.4, the performance improvement for the
deletion function was less pronounced. In some cases, as shown in Figure 4.6, the runtime even
increased compared to the baseline. Switching from the SIMD-optimized version of the deletion
function to the original implementation in avx2_opt and avx2_multithread_opt yielded similar
runtimes. This similarity can be attributed to the fact that, although the original deletion function
does not explicitly utilize SIMD instructions, the compiler appears to optimize the code with SIMD in-
structions at the assembly level. While this compiler optimization explains why the runtime remains
relatively constant regardless of whether the SIMD-optimized or original deletion function is used
for avx2_opt and avx2_multithread_opt, it does not fully account for the lesser improvement
observed with SIMD instructions or, in some instances, the worsened performance.

Second, as shown in Figure 4.3, the performance gains between AVX2 and AVX-512 diminish as
the number of threads increases, indicating that additional vectorization optimizations offer diminishing
returns at higher levels of parallelism. Specifically, AVX2 and AVX-512 achieve speedups of 3.0x and
4.3x, respectively, on a single core. However, these speedups drop to 2.6x and 2.7x when using
eight cores. Similarly, Figure 4.6 demonstrates that the performance improvement from AVX2 over the
baseline also decreases with increasing threads. For instance, the error correction process shows a

37

38 5. Discussion

1 2 3 4 5

1

1.2

1.4

1.6

1.8

2

2.2

Speedup for error correction

O
ve
ra
ll
sp
ee

du
p

Amdahl’s Law

bacteria dataset
human genome dataset

Figure 5.1: Amdahl’s Law applied to the Flye polisher, showing overall speedup versus speedup for error correction for two
datasets.

4.0x speedup with AVX2 on a single core for processing 1 million bubbles, but this speedup diminishes
to 2.3x with 32 cores. One possible reason for this reduction in vectorization benefits at higher core
counts can be attributed to other performance bottlenecks, such as memory bandwidth limitations and
increased contention for shared resources. Vectorization is most effective when data fits within the
cache hierarchy and can be efficiently streamed to vector units. As the number of cores increases,
the pressure on memory subsystems and interconnects often offsets the advantages of wider vector
registers. Consequently, while vectorization significantly enhances performance on a single core, its
impact diminishes as the core count rises if there is contention for shared resources.

6
Conclusions

6.1. Conclusions
In this chapter, we revisit the research questions posed at the beginning of this thesis and evaluate how
the findings from the research have addressed them. Each research question will be examined in the
context of the solutions and improvements proposed in the study. By doing so, we aim to demonstrate
the contributions of this work to the field and outline how the research objectives have been achieved.

Research question 1. How can a new multi-threading architecture be designed to minimize
mutex contention and enhance parallel processing in the Flye polishing step? The Flye pol-
isher’s error correction process originally used parallel processing to maximize CPU core utilization by
reading bubbles from a file into memory and distributing them across multiple threads. Although the
polishing process itself was parallelized, both reading and writing operations were handled by a single
thread. This created a bottleneck, as writing the polished bubbles to an output file was sequential and
caused delays due to mutex contention. The new multithreaded architecture proposed in this thesis
addresses these limitations by introducing several key improvements. First, the writing process is par-
allelized, allowing each thread to write its output to a separate file. These files are then combined at
the end of the process. This parallel writing approach reduces the overall writing time and eliminates
the need for mutex locks, significantly decreasing wait times. Second, the new design incorporates
batch processing. In the original implementation, each thread acquired a mutex lock for every single
bubble it processed, resulting in frequent mutex contention. The improved architecture assigns a batch
of bubbles to each thread with a single mutex acquisition. This reduces the frequency of mutex locking
and unlocking, thereby minimizing contention and enhancing overall performance.

Research question 2. What is the impact of using modern SIMD instruction sets (e.g., AVX2
and AVX-512) on the performance of the Flye polisher? The use of modern SIMD instruction sets,
such as AVX2 and AVX-512, significantly impacts the performance of the Flye polisher by enhancing
the efficiency of its error correction process. By leveraging advanced vector processing units, multiple
data points can be processed simultaneously, accelerating the polishing process for a single bubble on
a single core. Each bubble consists of a consensus sequence and numerous segment sequences, with
the goal of finding a consensus sequence that best represents all segment sequences. This is achieved
by calculating score matrices between the consensus sequence and each segment sequence, followed
by iterative mutations to improve the scores. In sequential computing, these score matrices are calcu-
lated individually. In contrast, our SIMD implementation employs an inter-read vectorization approach,
allowing score matrices to be calculated in batches. The batch size is determined by the specific in-
struction set used. AVX2, capable of processing 256 bits simultaneously, handles four data points at
once, while AVX-512, with a capacity of 512 bits, processes eight data points concurrently. This parallel
processing capability of SIMD instruction sets results in a substantial reduction in computation time,
thereby improving the overall efficiency of the Flye polisher.

Research question 3. How does the performance of the optimized polisher compare to the
original Flye polisher in terms of processing speed and accuracy? The performance comparison
between the optimized polisher and the original Flye polisher demonstrates notable differences in pro-
cessing speed and confirms the preservation of assembly accuracy. Our tests show that the outputs

39

40 6. Conclusions

of both the original and improved versions are identical when run using a single thread. This deter-
ministic approach ensures that the sequence of polished bubbles remains consistent across runs, as
using multiple threads can alter this sequence. Once output consistency was verified, we proceeded to
evaluate processing speed. The optimized polisher consistently outperforms the original Flye polisher
in terms of runtime, with improvements observed under all tested conditions. However, the degree of
speedup varies depending on the dataset and the number of threads utilized. Specifically, while the op-
timized design shows significant speed advantages with fewer threads, the performance gap between
the original and optimized polishers narrows as the number of threads increases.

Research question 4. What are the trade-offs between computational speed and resource
usage in the optimized Flye polisher? The optimized Flye polisher introduces a trade-off between
computational speed and resource usage, particularly in terms of memory. This is evident in the new
multi-threaded design, where batch processing is employed. In this design, each thread is assigned a
batch of bubbles, which it processes sequentially. Once all the bubbles in a batch are polished, they
are collectively written to the output file. This batch writing approach reduces I/O overhead compared
to writing each bubble individually. However, it slightly increases memory usage due to the need to
store all bubbles in a batch before writing them. For the SIMD implementation, additional memory
is consumed due to padding and preprocessing. Padding ensures that all segments in a batch are
extended to match the length of the longest segment, which increases the memory required to store
score matrices. The space complexity for each score matrix is 𝑂(𝑛𝑚), where n is the length of the
sequences involved. Thus, padding results in a modest increase in memory usage. Furthermore, the
preprocessing step involves computing a 2D matrix to store certain values, with a space complexity of
𝑂(𝑛). Although this is relatively minor compared to the score matrix, it still contributes to the overall
memory consumption. This increase is especially noticeable when processing large datasets. For
example, the baseline approach requires 23 GB of memory, whereas the new approach with a batch
size of 10 requires 39 GB, and a batch size of 100k requires 209 GB. This increase is minimal compared
to the 507GB memory requirement of the previous stage, underscoring the efficiency of the optimized
design in balancing computational speed with resource usage.

In summary, the new multithreaded architecture implemented in the design increases the portion
of the process that can be parallelized, minimizes the time required for acquiring mutex locks and re-
duces waiting time. Additionally, SIMD instructions were utilized for the polishing process, leveraging
the vector processor unit’s capability to process 4 or 8 data points simultaneously. This approach ac-
celerated the polishing process. As a result, the output of the improved version remains identical to
previous versions, while the total runtime decreases across various settings (different datasets, differ-
ent thread counts) due to the multithreaded architecture, which reduces waiting time, and the SIMD
instructions, which reduce processing time. Although the new version increases memory usage, the
peak RAM consumption remains significantly lower than the peak RAM required for other stages in the
Flye workflow.

6.2. Recommendations
In this thesis, we introduced significant improvements to the Flye polisher, enhancing its performance
through parallelized multithreading and SIMD instruction sets. While these optimizations have demon-
strated gains in efficiency and speed, there remains potential for further development.

In future work, it is important to investigate the diminishing performance gains observed with in-
creasing parallelism when using vectorization optimizations such as AVX2 and AVX-512. The data
shows that while these optimizations provide substantial speedups on a single core, their effectiveness
decreases as the number of threads increases. This reduction in vectorization benefits at higher core
counts is likely due to bottlenecks such as memory bandwidth limitations and increased contention for
shared resources. Future research could explore strategies to mitigate these bottlenecks and enhance
the scalability of vectorized code in multi-core environments.

Future work can also focus on leveraging advancements in GPU technology to further accelerate
the Flye polisher. GPUs have emerged as a powerful tool for accelerating high-performance computing
tasks due to their ability to handle large-scale parallel processing. Unlike traditional CPUs, which have
a limited number of cores optimized for sequential processing, GPUs contain thousands of smaller
cores designed to execute many threads simultaneously. This architecture makes GPUs particularly
well-suited for data-parallel tasks that can be broken down into smaller, independent computations.

6.2. Recommendations 41

Given the parallel nature of the Flye polisher’s error correction process, integrating GPU acceleration
presents an exciting opportunity for future research.

A
Appendix

Type Event Probability
mat A 0.958
mat C 0.944
mat G 0.950
mat T 0.956
mis A->C 0.005
mis A->G 0.002
mis A->T 0.002
mis C->A 0.008
mis C->G 0.004
mis C->T 0.004
mis G->A 0.004
mis G->C 0.003
mis G->T 0.004
mis T->A 0.004
mis T->C 0.003
mis T->G 0.004
del A 0.032
del C 0.041
del G 0.039
del T 0.033
ins A 0.027
ins C 0.019
ins G 0.022
ins T 0.021
noins 0.912

Table A.1: Statistical Parameters of the P6-C4 Protocol

43

44 A. Appendix

Algorithm 3 deletion
Require: Index 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥, reads 𝑟𝑒𝑎𝑑𝑠; Forward and reverse score matrices 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠,

𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠
Ensure: Final score
1: Initialize 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 0
2: 𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤 ← 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥 − 1
3: 𝑟𝑒𝑣𝑅𝑜𝑤 ← 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥
4: for 𝑟𝑒𝑎𝑑𝐼𝑑 ← 0 to |𝑟𝑒𝑎𝑑𝑠| do
5: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
6: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
7: 𝑚𝑎𝑥𝑉𝑎𝑙 ← lowest possible value
8: 𝑐𝑜𝑙𝑠 ← |𝑟𝑒𝑎𝑑𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]|
9: for 𝑐𝑜𝑙 ← 0 to 𝑐𝑜𝑙𝑠 do

10: 𝑠𝑢𝑚 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 𝑐𝑜𝑙] + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒[𝑟𝑒𝑣𝑅𝑜𝑤, 𝑐𝑜𝑙]
11: 𝑚𝑎𝑥𝑉𝑎𝑙 ←max(𝑚𝑎𝑥𝑉𝑎𝑙, 𝑠𝑢𝑚)
12: end for
13: 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 + 𝑚𝑎𝑥𝑉𝑎𝑙
14: end for
15: return 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒

Algorithm 4 substitution
Require: Index 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥, character 𝑏𝑎𝑠𝑒, reads 𝑟𝑒𝑎𝑑𝑠; Forward and reverse score matrices

𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠
Ensure: Final score
1: Initialize 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 0
2: 𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤 ← 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥 − 1
3: 𝑟𝑒𝑣𝑅𝑜𝑤 ← 𝑙𝑒𝑡𝑡𝑒𝑟𝐼𝑛𝑑𝑒𝑥
4: 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑏𝑎𝑠𝑒,′−′)
5: for 𝑟𝑒𝑎𝑑𝐼𝑑 ← 0 to |𝑟𝑒𝑎𝑑𝑠| do
6: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
7: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
8: 𝑐𝑜𝑙𝑠 ← |𝑟𝑒𝑎𝑑𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]|
9: 𝑚𝑎𝑥𝑉𝑎𝑙 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 0] + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒[𝑟𝑒𝑣𝑅𝑜𝑤, 0] + 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝

10: for 𝑐𝑜𝑙 ← 0 to 𝑐𝑜𝑙𝑠 − 1 do
11: 𝑟𝑒𝑎𝑑𝐵𝑎𝑠𝑒 ← 𝑟𝑒𝑎𝑑𝑠[𝑟𝑒𝑎𝑑𝐼𝑑][𝑐𝑜𝑙]
12: 𝑚𝑎𝑡𝑐ℎ ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 𝑐𝑜𝑙] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑏𝑎𝑠𝑒, 𝑟𝑒𝑎𝑑𝐵𝑎𝑠𝑒)
13: 𝑖𝑛𝑠 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 𝑐𝑜𝑙 + 1] + 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝
14: 𝑚𝑎𝑥𝑉𝑎𝑙 ←max(𝑚𝑎𝑥𝑉𝑎𝑙,max(𝑚𝑎𝑡𝑐ℎ, 𝑖𝑛𝑠) + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒[𝑟𝑒𝑣𝑅𝑜𝑤, 𝑐𝑜𝑙 + 1])
15: end for
16: 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 + 𝑚𝑎𝑥𝑉𝑎𝑙
17: end for
18: return 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒

45

Algorithm 5 insertion
Require: Position 𝑝𝑜𝑠, character 𝑏𝑎𝑠𝑒, reads 𝑟𝑒𝑎𝑑𝑠; Forward and reverse score matrices

𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠, 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠
Ensure: Final score
1: Initialize 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 0
2: 𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤 ← 𝑝𝑜𝑠 − 1
3: 𝑟𝑒𝑣𝑅𝑜𝑤 ← 𝑝𝑜𝑠 − 1
4: 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝 ← 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑏𝑎𝑠𝑒,′−′)
5: for 𝑟𝑒𝑎𝑑𝐼𝑑 ← 0 to |𝑟𝑒𝑎𝑑𝑠| do
6: 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
7: 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒 ← 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]
8: 𝑐𝑜𝑙𝑠 ← |𝑟𝑒𝑎𝑑𝑠[𝑟𝑒𝑎𝑑𝐼𝑑]|
9: 𝑚𝑎𝑥𝑉𝑎𝑙 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 0] + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒[𝑟𝑒𝑣𝑅𝑜𝑤, 0] + 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝

10: for 𝑐𝑜𝑙 ← 0 to 𝑐𝑜𝑙𝑠 − 1 do
11: 𝑟𝑒𝑎𝑑𝐵𝑎𝑠𝑒 ← 𝑟𝑒𝑎𝑑𝑠[𝑟𝑒𝑎𝑑𝐼𝑑][𝑐𝑜𝑙]
12: 𝑚𝑎𝑡𝑐ℎ ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 𝑐𝑜𝑙] + 𝑔𝑒𝑡𝑆𝑐𝑜𝑟𝑒(𝑏𝑎𝑠𝑒, 𝑟𝑒𝑎𝑑𝐵𝑎𝑠𝑒)
13: 𝑖𝑛𝑠 ← 𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑆𝑐𝑜𝑟𝑒[𝑓𝑟𝑜𝑛𝑡𝑅𝑜𝑤, 𝑐𝑜𝑙 + 1] + 𝑏𝑎𝑠𝑒𝑆𝑐𝑜𝑟𝑒𝑊𝑖𝑡ℎ𝐺𝑎𝑝
14: 𝑚𝑎𝑥𝑉𝑎𝑙 ←max(𝑚𝑎𝑥𝑉𝑎𝑙,max(𝑚𝑎𝑡𝑐ℎ, 𝑖𝑛𝑠) + 𝑟𝑒𝑣𝑒𝑟𝑠𝑒𝑆𝑐𝑜𝑟𝑒[𝑟𝑒𝑣𝑅𝑜𝑤, 𝑐𝑜𝑙 + 1])
15: end for
16: 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 ← 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒 + 𝑚𝑎𝑥𝑉𝑎𝑙
17: end for
18: return 𝑓𝑖𝑛𝑎𝑙𝑆𝑐𝑜𝑟𝑒

Bibliography
[1] Tanveer Ahmad et al. “Optimizing performance of GATK workflows using Apache Arrow In-

Memory data framework”. In: BMC genomics 21 (2020), pp. 1–14.
[2] Nauman Ahmed et al. “Heterogeneous hardware/software acceleration of the BWA-MEM DNA

alignment algorithm”. In: 2015 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD). IEEE. 2015, pp. 240–246.

[3] Mark J Chaisson and Glenn Tesler. “Mapping single molecule sequencing reads using basic local
alignment with successive refinement (BLASR): application and theory”. In: BMC bioinformatics
13 (2012), pp. 1–18.

[4] David Deamer, Mark Akeson, and Daniel Branton. “Three decades of nanopore sequencing”. In:
Nature biotechnology 34.5 (2016), pp. 518–524.

[5] John Eid et al. “Real-time DNA sequencing from single polymerase molecules”. In: Science
323.5910 (2009), pp. 133–138.

[6] Elena Espinosa et al. “Advancements in long-read genome sequencing technologies and algo-
rithms”. In: Genomics (2024), p. 110842.

[7] Borja Freire, Susana Ladra, and José R Paramá. “Memory-efficient assembly using Flye”. In:
IEEE/ACM Transactions on Computational Biology and Bioinformatics 19.6 (2021), pp. 3564–
3577.

[8] Ernst Joachim Houtgast et al. “Hardware acceleration of BWA-MEM genomic short read mapping
for longer read lengths”. In: Computational biology and chemistry 75 (2018), pp. 54–64.

[9] Saurabh Kalikar et al. “Accelerating minimap2 for long-read sequencing applications on modern
CPUs”. In: Nature Computational Science 2.2 (2022), pp. 78–83.

[10] Mikhail Kolmogorov et al. “Assembly of long, error-prone reads using repeat graphs”. In: Nature
biotechnology 37.5 (2019), pp. 540–546.

[11] Sergey Koren et al. “Canu: scalable and accurate long-read assembly via adaptive k-mer weight-
ing and repeat separation”. In: Genome research 27.5 (2017), pp. 722–736.

[12] Heng Li.Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013.
arXiv: 1303.3997 [q-bio.GN]. URL: https://arxiv.org/abs/1303.3997.

[13] Heng Li. “Minimap2: pairwise alignment for nucleotide sequences”. In:Bioinformatics 34.18 (2018),
pp. 3094–3100.

[14] Yu Lin et al. “Assembly of long error-prone reads using de Bruijn graphs”. In: Proceedings of the
National Academy of Sciences 113.52 (2016), E8396–E8405.

[15] Glennis A Logsdon, Mitchell R Vollger, and Evan E Eichler. “Long-read human genome sequenc-
ing and its applications”. In: Nature Reviews Genetics 21.10 (2020), pp. 597–614.

[16] QX Charles Mak et al. “Polishing de novo nanopore assemblies of bacteria and eukaryotes with
FMLRC2”. In: Molecular Biology and Evolution 40.3 (2023), msad048.

[17] Saul B Needleman and Christian D Wunsch. “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”. In: Journal of molecular biology 48.3
(1970), pp. 443–453.

[18] Shanshan Ren et al. “GPU accelerated sequence alignment with traceback for GATK Haplotype-
Caller”. In: BMC genomics 20 (2019), pp. 103–116.

[19] Jue Ruan and Heng Li. “Fast and accurate long-read assembly with wtdbg2”. In: Nature methods
17.2 (2020), pp. 155–158.

[20] Temple F Smith, Michael SWaterman, et al. “Identification of common molecular subsequences”.
In: Journal of molecular biology 147.1 (1981), pp. 195–197.

47

https://arxiv.org/abs/1303.3997
https://arxiv.org/abs/1303.3997

48 Bibliography

[21] Robert Vaser et al. “Fast and accurate de novo genome assembly from long uncorrected reads”.
In: Genome research 27.5 (2017), pp. 737–746.

[22] Md Vasimuddin et al. “Efficient architecture-aware acceleration of BWA-MEM for multicore sys-
tems”. In: 2019 IEEE international parallel and distributed processing symposium (IPDPS). IEEE.
2019, pp. 314–324.

[23] Justin M Zook et al. “Extensive sequencing of seven human genomes to characterize benchmark
reference materials”. In: Scientific data 3.1 (2016), pp. 1–26.

	Introduction
	Context
	Challenges, Problem Statement and Research Questions
	Contribution
	Thesis Layout

	Background
	DNA long-read sequencing
	Assembly Pipeline: From Basecalling to Polishing
	Assembly algorithm: Flye
	Sequence Alignment Algorithms
	Parallel Computing
	Amdahl’s Law

	Methods
	General Polisher
	Purpose and Implementation
	Initial Performance Enhancements
	SIMD Optimization

	Dinucleotide Fixer
	Purpose and Implementation
	Separate Alignment Class for Dinucleotide Fixer

	Bubble Processor
	Purpose and Implementation
	New Multi-threaded Architectures

	Experiments
	Experimental Setup
	Flye Profile
	Bateria Dataset
	Human Genome Dataset

	Performance Comparison
	Bacteria Dataset
	Human Genome Dataset

	Discussion
	Conclusions
	Conclusions
	Recommendations

	Appendix

