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Abstract—The tradeoff between visnalizing or hiding the high-
est levels of the memory hierarchy impacts both performance
and scalability. We discuss these tradeoffs by comparing a set
of architectures from three major architecture families: stack,
register, and memory-to-memory. The stack architecture is used
as reference. We show that scalable architectures require at
least 32 words of local memory and therefore are not appli-
cable for low-density technologies. We also show that software
support can bridge the performance gap between scalable and
nonscalable architectures. A register architecture with 32 words
of local storage allocated interprocedurally outperforms scalable
architectures with equal sized local memories and even some
with larger sized local memories. When in addition to quality
compile-time support, a small cache (e.g., > 64 words) is added
to an unscalable architecture the performance advantage (cycles)
of unscalable architectures becomes significant. For example, a
32-register architecture with a 512 byte cache executes 20%
less cycles when compared with a 8-set multiple overlapping set
organization.

Index Terms— Caches, computer architecture, register alloca-
tion, register set, register windows, stack buffers.

I. INTRODUCTION

ISIBILITY and scalability are two opposite architecture

features; the first aims at exhibition of low-level features
for the sole reason of exploiting them, while the second aims at
hiding these features to allow greater freedom in implementing
the architecture.

The architecture feature targeted in this paper is local
memory. A fixed single register set is a feature visible in
register architectures that cannot be scaled with technology
or cost/performance requirements, and that relies completely
on exploitation during compile time. Stack buffers or stack
caches [1]-[3], which offer potentially optimal use in buffered
memory-to-memory architectures, are a feature invisible in
the architecture. They are therefore scalable with technol-
ogy and cost/performance requirements, and independent of
compile-time software. Multiple overlapping register sets [4]
are somewhere in between single register sets and stack-
buffer organizations with respect to scalability and visibility;
generally the size of the set and the overlap are architec-
turally defined, while the number of sets is an (architecturally
invisible) implementation parameter.

The three architecture families studied are stack, register
(either single or multiple sets), and buffered memory-to-
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memory. Fig. 1 illustrates their differences with respect to
the instructions required to calculate a simple expression.
Stack includes only an evaluation stack of sufficient size
to buffer temporary results during evaluation of expressions.
register includes a register set (srs or mrs) which can be
used to buffer variables besides operating as an evaluation
stack. Buffered memory-to-memory does not include an
architecturally visible buffer, but employs a three-ported stack
buffer (stack) architecturally transparent to main memory.

To illustrate the differences between these architecture mod-
els, Table I shows the expansion of an expression in four
different instruction sequences. The first column shows stack,
the second column shows register with the registers only
holding temporaries, the third shows register, but now with
variables assigned to registers, and the fourth shows buffered
memory-to-memory. Note that the differences are solely
related to local memory and operand access; for the rest,
all architectures are assumed to have identical instruction
vocabularies.

A. Performance Measures

To compare the local memory characteristics of different
architectures the most obvious measure is the data traffic.
The data traffic is the remaining traffic to the main memory
system after (optional) buffering. Traffic measurements are all
presented as data-traffic ratio, or data traffic relative to the
traffic of stack (tTarch = Tarch/Tstack)-

Data-traffic ratio, however, does not suffice as a perfor-
mance measure when a closer correlation with real perfor-
mance (1/time) is necessary. A closer correlation is necessary,
when comparing architecture-and-buffer combinations that are
structurally different; for example when comparing a stack
buffer with a combination of a register set and a data cache. A
measure which does correlate with real performance is the cy-
cle ratio (cr) [5]. The cycle ratio reflects the number of cycles
spent fetching and storing data for a particular architecture-
buffer combination (Cy,.cr) relative to these cycles for stack
(Cstack)- The cycle ratio assumes that the highest-level in the
memory hierarchy (e.g. register set, evaluation stack) allows
two reads and one write concurrently, while all lower levels
are accessed sequentially. The cycle ratio is always presented
as (Crarch = Oarch/cstack)'

B. Methodology and Workload

One essential requirement when comparing architecture
features is to eliminate the effect of extraneous features. This
kind of fair-basis comparison is greatly simplified by means
of the Computer Architect’s Workbench [6], [7], a set of
tools designed with the sole purpose of doing architecture
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TABLE I a small cache. Section VII combines and compares the data
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research. These tools currently consist of compiler front ends
for different languages, register allocators, and simulators for
different architectures and memory hierarchies. The tools are
currently being extended to include timing information and to
improve ease of use.

The workload for this study consists of a set of five
Pascal programs: ccal, an interactive calculator; comp, a file-
compare program; macro, a macro expander; pasm, a P-code
assembler; and pcomp, a recursive-descent Pascal compiler.
These five benchmarks do a significant amount of input
and output, but this I/O activity is not taken into account
in the simulations. In other words, the I/O primitives are
assumed not to interfere with the data buffering characteristics.
The measurements presented include both the unweighted
average and the individual results of some of the benchmarks.
See Table II for the total number of calls, references, and
instructions of the five benchmarks.

C. Paper Overview

The remainder of the paper consists of seven sections.
Section II presents the stack architecture which will be used
as reference for the other architecture families. Section III
and IV present data on architectures with single fixed register
sets and architectures with multiple overlapping register sets,
respectively. Section V presents data on memory-to-memory
architectures equipped with stack buffers. Section VI presents
data on architectures with small register sets but equipped with

on the three different families, followed by conclusions on the
visibility-scalability question in Section VIII.

II. STACK ARCHITECTURE

The stack architecture is the base architecture model to
which most measurements are related. While an unbuffered
memory-to-memory architecture (with two- or three-address
formats) could have been chosen as a base, stack was pre-
ferred since it eliminates references to temporaries within an
expression. As shown later, such references account for almost
50% of data references and can be readily eliminated with just
a few registers or an evaluation stack.

Local memory in stack consists solely of an evaluation
stack which holds temporary results. Stack also includes three
registers to hold state variables; one pointing to the base of
the activation record of the currently executing procedure, one
to the base of the activation record with global variables, and
one to the top of the heap. Memory is referenced solely by
means of push and pop instructions.

The stack run-time model consists of two stacks: one for the
procedure activation records and one for the heap. A procedure
activation record consists of local variables, parameters, and
the run-time-management variables (return program counter,
dynamic link, and static link).

An unbuffered three-address memory-to-memory architec-
ture would make all (100%) references indicated in Fig. 2(a).
In the stack architecture, the evaluation stack captures about
47% of these. The remaining 53% of references form a
baseline data traffic (stack data traffic), as any architecture
of interest will provide sufficient registers to capture this
expression-evaluation traffic. Of the baseline references, 73%
originates in the source program as references explicitly spec-
ified by the programmer, 3% are created by the compiler to
support certain Pascal constructs, 17% manage the run-time
stack, and 7% transfer multi (32-bit) word references over a
single word bus [see Fig. 2(b)].

Within our model, a two element stack captures 85%
of the evaluation stack references, but three elements are
required statistically to capture all evaluation stack references.
Table 111 shows the traffic ratio as a function of the number of
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TABLE I
NUMBER OF PROCEDURE CALLS, REFERENCES, AND INSTRUCTIONS FOR THE FIVE BENCHMARKS (stack ARCHITECTURE)
ccal comp macro pasm pcomp total
calls 16 676 10 508 9666 15 172 55 868 107 890
references 582 389 4 300 546 412 530 2 575 369 3 076 829 10 947 663
instructions 1133 765 9 281 305 633 056 4548 038 5 683 284 21 279 448
39%
program
_ baseline traffic
gl ———»
14% implicit
a
Fig. 2 Reference taxonomy.
TABLE 11l Inter builds the callgraph and symboltable of the whole
TRAFFIC FOR stack AS A FUNCTION OF THE program and allocates registers for the entire lifetime of
NUMBER OF EVALUATION STACK ELEMENTS . _—y
the program in a depth-first call order. Within a procedure,
# ccal comp | macro | pasm | pcomp avg inter employs a simple reference-counting strategy. Since
0 1.86 227 176 1.81 171 1.88 mutually exclusive procedures can share private registers,
2 112 1.37 1.06 113 1.07 1.15 the total number of registers required is mot proportional
23 1 1 1 1 ! 1 to the number of procedures but on the average to the

stack entries relative to the stack architecture with sufficient
evaluation stack entries. The first row shows the relative traffic
for an architecture without an evaluation stack.

By mapping the evaluation stack elements of stack in
explicitly addressed registers together with the three state
registers (local base, global base, and heap pointer), a Six-
register architecture can be created which is identical to stack
with respect to data traffic and instruction count (see also
Table I). Additional registers, however, may be used to hold
variables and to capture references directed to these variables.
The following two sections present the effects on the data
traffic when using these additional registers.

III. SINGLE-REGISTER-SET ARCHITECTURES

Single register sets (srs’s) are an integral part of the in-
struction set architecture (ISA). Because registers are part
of the ISA, the compiler or register allocator has to exploit
them. Thus, the way the compiler uses the registers affects
performance significantly. Single-register-set organizations are
depicted by srs(size,allocator,run-time) in the following dis-
cussion. The first parameter, size, is an architecture parameter
and indicates the number of registers in the set. The choice of
allocators (second parameter) for this paper is limited to the
global register allocator of the Stanford U-code system uopt (8]
and an interprocedural allocator, inter [5]. The third parameter
indicates the allocation of the run-time-management variables.

A. Register Allocation

Uopt operates on a procedural scope, uses a priority based
coloring algorithm [9], [10] and a caller save strategy for
saving/restoring rtegisters across procedure calls.

log of this number. Recursive procedures are only allocated
globally; their registers are saved to memory on subsequent
calls (in the recursive path). Interprocedural register allocation
by traversing the call graph depth first has been described
before by Wall [11] for link-time allocation, Steenkiste [12]
for Lisp, and Chow [13] for the MIPS compiler.

B. Run-time Model

register (either srs or mrs) maintains the same run-time
model as stack. Every variable is still allocated to a slot in
an activation record, but the variable may be allocated to and
used from a register. The layout of the activation records is
the same as in stack except when run-time variables are taken
into account during allocation.

Because Uopt operates on U-code which has an implied
run-time system, Uopt never takes run-time variables into
account. Allocation of run-time variables when using uopt
simply implies the use of a register-based display (when
sufficient registers are available) instead of a memory-based
static link. These two options are indicated as mem-sl and
reg-disp in the following figures.

Since most run-time-management variables (program count-
er and dynamic link) are private to a particular procedure,
inter is able to allocate these variables to registers. When a
caller contains just register-mapped variables, infer removes
the dynamic link of the callee. Inter removes all static links
in nonrecursive procedures and substitutes the appropriate
register identifiers or memory addresses for nonlocal variables.
Nonlocal access into recursive procedures occurs still through
a memory-based static link.!

1 Gtatic linkage is only necessary from one procedure to another one in the
same recursive complex.
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TABLE IV
REFERENCE FREQUENCY AS A FUNCTION OF VARIABLE TYPE
segment ccal comp | macro pasm | pcomp avg.
local 0.44 0.68 0.44 0.39 0.29 0.45
global 0.10 0.02 0.16 0.17 0.16 0.12
run-time 0.20 0.07 0.18 0.32 0.12 0.18
subtotal 0.74 0.77 0.78 0.87 0.57 0.75
Test 0.26 0.23 0.22 0.13 0.43 0.25

C. Allocation Effectiveness

Typically the register allocator targets simple stack variables
(local and global), and, if possible, also run-time-management
variables for allocation. Table IV shows the maximum achiev-
able gain of three allocation targets. If only simple local
variables are allocated on the average a traffic ratio reduction
of 0.45 is possible. Global variables may yield an additional
0.12 and run-time variables another 0.18. Eliminating all
references to the run-time stack results in an average traffic
ratio of 0.25, leaving only references to structured and heap
variables uncaptured.

In assessing register-allocation effectiveness, we wish to
exclude those registers that are unavailable to the allocator.
In presenting our results we assume that six registers are
required for dedicated purposes and are unavailable to the
allocator. A possible layout for these six registers is: local-base
pointer, global-base pointer, heap pointer, two evaluation-stack
clements, and a register containing immediates (e.g., zero).
Reserving these registers allows us to present results based
on the expected overall size of the register set. Thus, if the
instruction set specifies 16 registers, ten are available for
allocation.

By using global allocation a significant reduction in traffic
can be obtained. Fig. 3 illustrates this reduction; an eight-
register architecture (implying just two registers for the allo-
cator) has an average traffic ratio of 0.70. Doubling the register
set to 16 yields an average ratio of 0.65, and leaves sufficient
registers to implement lexical (or static) scoping by means of
a register based display to reduce the traffic ratio to 0.55.

Using inter instead of uopt shows a more significant traffic
reduction, and the advantage of using larger register sets.
When the allocator ignores run-time variables, the average
traffic ratio runs from 0.61 for a 16-register set to 0.51 for
32 registers and 0.48 for 128 or more registers. Including
optimizing the use of run-time-management variables and
allocating return program counters and dynamic links were
possible and necessary yields an average ratio of 0.49 for 16
registers, 0.4 for 32 registers, and 0.33 for 128 registers. Note
that inter has a complete overview of the register requirements
of the whole program it is less constrained by the 6-register
overhead. Inter generally can find an available register for state
or evaluation stack registers when actually needed instead of
permanently allocating one.

Interprocedural register allocation requires few registers to
perform very well. Elimination of most of the simple local
references, however, requires 32 registers on the average,
and buffering of run-time variables requires an additional 32
registers. Interprocedural register allocation, however, is not
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Fig. 3. Traffic ratio for register architectures allocated by means of uopt and
inter.

universally applicable because it requires a compile-time state
where the register demand for the entire program is known.
For separately compiled modules this would be in the linking
phase; incrementally compiled Lisp, Prolog or Small Talk
systems require a dynamic allocation scheme.

Because interprocedural allocation is inexpensive with re-
spect to compile time (O(calls)), even application on a small
scale (e.g., within a single module) should be considered.

IV. MULTIPLE REGISTER SET ARCHITECTURES

Multiple register set (mrs) architectures reduce the reg-
ister save and restore penalties inherent to single register
set architectures by providing each new procedure with a
private register set [4], [14]. The set change is accomplished
automatically on call and return. The save and restore penalty
is now replaced by a (smaller) over- and underflow penalty,
incurred when insufficient sets are available to accommodate
the whole call chain of the executing program.

By means of an aliasing detection-and-resolution mecha-
nism [14] in hardware it is possible to access variables which
are not in a register of the set used by the current procedure,
but do reside in a register not yet overflowed to memory.
Such a mechanism requires the procedure activation records to
have memory equivalents when they are mapped into registers.
Whenever a memory address points into a register mapped
section of the stack of activation records, the data from the
register need to be used. Because Pascal programs access
nonlocal variables? and the hardware is relatively simple,
the following discussion and figures always assumes the
inclusion of such a hardware mechanism in the presented mrs
organizations.

In mrs organizations architecture visibility is limited to
1) the registers in a single set, 2) the knowledge that new
registers will be provided upon procedure entry or after an
explicit set request, and 3) the memory transparency provided
by an aliasing mechanism. Consequently, the complexity of

2For the five benchmarks, on the average 5% of all references to the
run-time stack were made through the var parameter and nonlocal access
mechanism. Note though that this percentage is strongly language and
application dependent.
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register allocation can be reduced to a primitive form of global
allocation, and the architecture becomes scalable. More chip
or board area dedicated to the mrs will hold more sets, and
may therefore reduce traffic and may increase performance.

In the following figures, mrs organizations will be de-
picted by mrs(overlap, locals,allocation,sets), where overlap
indicates the set overlap in registers, locals the number of
nonoverlapping registers, allocation whether explicit register
allocation is performed (no, global, or inter), and sets
optionally indicates the number of sets in the buffer (Fig. 4).
For example, in mrs(8,8) sixteen registers are added per
window, but the processor addresses 24 registers (8 input
parameters, 8 locals, 8 output parameters) and perhaps 8 global
registers in each environment.

A. Allocation Strategies for mrs Organizations

Mrs architectures generate two kinds of references which
are related to the operation of the mrs. The first concerns
references caused by nonoptimal set organizations. Allocation
on a procedure basis (global allocation) can reduce these refer-
ences. The second concerns the under- and overflow references
caused by an insufficient number of sets in the buffer. These
references may be reduced by using interprocedural allocation,
which causes multiple procedure contexts to reside in the
same set. The following three paragraphs discuss the different
allocation strategies.

No allocation: Besides references caused by mrs under-
and overflows, some references potentially captured by the
mrs are directed to memory because every set has a limited
size, forcing variables to reside in memory instead of registers.
Overlapping register sets have an additional constraint, which
limits the number of parameters passed without making use
of a run-time stack in memory. As shown in Halbert [15],
an overlap size of 8 and a local size of 8 registers, or 24
visible registers in every window, holds nearly all parameters
and local variables of a set of C programs. An mrs with this
organization may hold the variables of a program so comfort-
ably that the instance of procedures requiring more registers
than are available is infrequent; those variables can be mapped
into registers according to the programmer’s declaration order.
Fig. 5 shows traffic ratios of two organizations, mrs(4,4,no,00),
and mrs(8,8,n0,00), allocated according to the declaration
order in the source program.> Processors based on RISC mrs
[4] have been introduced by Sun Microsystems under the
SPARC label. In our terminology these are mrs(8,8). The total
number of sets is an implementation parameter, but usually
128 registers are implemented. SPARC implementations do
not include the alias detection hardware referred to earlier
and hence, for our benchmarks, would have performance
somewhat less than the mrs(8,8) presented here.

Global allocation: Instead of allocation according to dec-
laration order, the compiler can also perform more intel-
ligent register allocation to increase the buffer utilization.
The allocation strategy can be very simple, for example by

3Note that these ratios are fairly arbitrary, because the programmer can
declare the variables in any order, yielding traffic ratios somewhere between
best and worst case possible.
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mapping variables into registers according to their expected
usage and for the lifetime of the procedure. It can also
be more complex, for example by analyzing the dataflow
and using coloring algorithms for the actual allocation 9],
[10]. Fig. 5 shows the traffic ratio of mrs(4,4,global,co)
and mrs(8,8,global,oo) with registers allocated according to
the simple allocation scheme. Allocation makes a significant
difference for the organizations with small sets (mrs(4,4,n0)
versus mrs(4,4,global)); a quantification of the improvement
is not very useful because it depends on the (arbitrary)
performance of the mrs’s without allocation.

Interprocedural allocation: Interprocedural allocation as
applied on single register sets in Section III can also be
applied to mrs organizations. As a result, a procedure call will
not necessarily cause the sets to change. The interprocedural
allocator will place as many procedure contexts in the same
set as possible. There are several possible strategies to place
multiple contexts in a single set. The simplest strategy adds
a context to a set if and only if the whole context fits. If
only a partial fit is possible a new set must be used. This
strategy causes a reduction in under and overflow traffic and
has identical hit ratios as global allocation only. For example
the column mrs(8,8,global) in Fig. 5 is also the column
mrs(8,8,inter). The advantage of this strategy is that it is
independent of the number of sets available. A more complex
strategy would consider leaving variables in memory to obtain
a better fit or even changing the register file in the middle of
a procedure instead of on procedure boundaries. Particularly
the former strategy requires knowledge on the number of sets
available. For this paper we only show the effects of applying
the simple strategy to allocation for mrs(8,8).

Fig. 6 shows the effect of interprocedural allocation on
the under- and overflow traffic of mrs(8,8,inter). Although
global and interprocedural allocation are independent, we
assume that the use of interprocedural allocation implies the
use of some form of global allocation (reference counting
for inter). Inclusion of mrs(8,8,n0) in Fig. 6 illustrates this
independence of global and interprocedural allocation (for our
interprocedural strategy).
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Fig. 6. Effect of interprocedural allocation on under- and overflow traffic
(relative to baseline traffic).

B. Register Utility Versus Set Size

Three main issues determine the set organization within a
mrs architecture: the effect of the organization on the traffic
ratio, the register access time, and the effect on the number of
available global registers.

Traffic ratio: To find the right division Fig. 7 plots the
traffic ratio for five organizations with different set sizes
(overlap + local) as a function of the overlap in registers.
For the five benchmarks, using a set size of more than eight
registers yields only a marginal improvement in traffic ratio.
Note that locals may be allocated in the incoming parameter
slots; this makes the performance only partially dependent on
the overlap size. It appears that the Pascal programs in question
require only a very limited overlap (one to three registers).

Intuitively increasing the number of overlap registers for a
given set size should always reduce traffic ratio. The graph
for a set size of 4 however shows an increase for an overlap
larger than two and a set size of eight shows a constant ratio for
overlaps larger than one. The allocator is the cause of the first
effect by preferring parameters over locals for overlap registers
without consideration for the performance effects. As a result a
parameter may be allocated an overlap register, while a more
frequently used local is denied a local register. The second
effect implies that many parameters can be treated as locals*
with unnoticeable performance effects (< 0.01).

Access time: The register-access time as a function of or-
ganization is mainly dependent on the ease of determining
the register to be an incoming parameter, outgoing parameter,

4Which means passing through memory before loading into a local register.

':'%x 067 mrs(x,y,global, %)
£ s
04 ’\\\E\ .
0.3 % -
0.2 T T T 1
0 1 2 3 4
number of overlap registers (x)
Fig. 7. Set size and overlap versus traffic ratio.
TABLE V
OVERLAP, LOCAL SIZE, AND GLOBAL
REGISTERS FOR DIFFERENT mrs ORGANIZATIONS
Organization overlap locals globals
4-bit? 5-bit? 6-bit*
mrs(8,0) 8 0 0 16 48
mrs(4,4) 4 4 20 52
mrs(16,0) 16 0 n/a 0 32
mrs(8,8) 8 8 n/a 8 40

apumber of bits in register specifier (id bits)

local register, or global register. The most advantageous or-
ganization with respect to access time is mrs(8,8) or mrs(4,4)
because decoding is only a matter of checking the upper one
or two bits of the register specifier.

Global registers: The amount of overlap also influences
the number of global registers when all register-specifier
bits are used (Table V). The number of global registers is
Nglobal = 2idbits _ 2 x Naverlap — Niocat- Fig. 7 shows
that the performance depends mainly on the total of overlap
and local registers. When utilization of the global registers is
feasible, the overlap should be as small as possible under the
traffic ratio and register access time constraints. A particular
use of the global registers in an mrs is holding the overhead
registers described for srs organizations. Note however that
mrs organizations require fewer overhead registers because
most of them are mapped in the local registers.

C. MRS Architecture Performance and Comparison

Efficient buffering using multiple register sets requires a
simple hardware organization together with at least global
register allocation. The basic idea is to implement a hardware
scheme with a small set size and set overlap, and cover
these hardware limitations with global register allocation. Such
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Fig. 8. Traffic ratio for multiple register-set architectures.

a scheme neither requires variable set overlap, nor variable
set size, nor large low-utility sets. Optimally the complexity
reduction in the organization allows the implementation of
more sets.

Extending the basic MRS idea does not involve more hard-
ware, but improved register allocation. Combining global with
interprocedural allocation yields MRS organizations which are
relatively independent of total set size and set overlap.

Fig. 8 presents the traffic ratio of mrs(4,4,global),
mrs(8,8,global), and mrs(8,8,inter) as a function of the number
of registers in the multiple sets. All organizations require
at least four sets (mrs(8,8,global4), mrs(8,8,global,4), or
mrs(8,8,inter,4)) to perform acceptably (tr < 0.5). When
sufficient sets are available, mrs(4,4,global,00) generates on
the average 15% more traffic than mrs(8,8,global,co) or
mrs(8,8,inter,00). Note that mrs organizations are only plotted
for two or more sets. Building a single set mrs, although
feasible, does not make much sense.

If technological independence is important, or, in other
words, if performance should be acceptable over a wide
range of buffer sizes, then either small sets (< 8 registers)
with additional global5 allocation are essential. If, in addition,
maximization of the global register set size is important then
the overlap should be kept small (2-3 registers).

V. BUFFERED MEMORY-TO-MEMORY ARCHITECTURES

The third architecture family, memory-to-memory, does
not includes a memory hierarchy on the architecture level,
like stack (the evaluation stack) or register (the register
set). Architecturally the memory system is completely flat.
Similar to register however, memory-to-memory is able to
explicitly address two source and one destination operand
every instruction, and therefore memory-to-memory is able
to exploit local memory as defined in Section L.

A. Buffer and Run-time Organization

A buffer for memory-to-memory is a local (noncache)
memory that is not part of the instruction-set architecture.
Because we are mainly interested in easily captured references,
buffering is limited to the run-time stack. Because the run-
time stack is the target of the local memory this kind of

5 Interprocedural allocation has limited effects when the set size is small.
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buffer is called a stack buffer (also called a stack cache [1]
or contour buffer [3]). A stack buffer is comparable with an
mrs by automatically providing new registers upon procedure
entrance. Organizationally, the main difference with mrs is that
the stack buffer provides variable overlap and variable local
size. The stack buffer covers the top of the run-time stack and
moves back and forth with the movements of this stack.

We distinguish three different organizations (Fig. 9) to

buffer the run-time stack:

1) stack(single), the buffered stack containing the global
structure, global simples, local structures, and local
simple variables.

2) stack(single,global), the buffered stack containing global
simples, local structures, and local simple variables.

3) stack(split), a dual-stack organization where the buffer
stack holds just the global simple and local simple vari-
ables, and a second nonbuffered stack which contains
the global structure and the local structure variables.

These three organizations represent tradeoffs between com-
plexity of stack management versus performance; stack(split)
is the most complex organization, but offers the best perfor-
mance.

The Bell-labs CRISP processor [2] is an implementation of

a typical memory-to-memory architecture with a stack buffer
of 32-words (stack(single,global,32)). Note, however, that the
distinctions between split, single, and global are determined
by software rather than hardware. Thus, the CRISP could use
any strategy with suitable software support.

B. Run-time Organization Versus Performance

The choice of run-time organization is not arbitrary
(Fig. 10). Including the global data in the buffer stack(single)
causes anomalously bad performance for ccal, macro, pasm,
and pcomp. The intrinsic characteristic of stack buffers to
provide a variable amount of storage (up to the full buffer)
causes this anomaly. A procedure can claim more buffer space
than effectively needed. For example, claiming a large part of
the buffer, flushing part to memory, and subsequently returning
without using the buffer sufficiently causes traffic ratios to
occur higher than average (sometimes much higher than
one). The anomaly is intrinsic, however, to the variable-sized
procedure windows in stack buffers for memory-to-memory
architectures. Even stack(single,global) exhibits this behavior
for pasm, and for small buffers (< 32 registers) in macro and
pcomp.

There are two basic methods to reduce the anomalous effect
and to increase performance in general. The first method
concerns a more efficient use of the buffer space by minimizing
the space required for all procedures. Minimization can be
done effectively by means of a uopt-like allocator® (see Section
11I-A). In this paper we will not explore this possibility to
avoid a bias in the comparison of Section VII, because both
mrs(inter) and srs(inter) also do not exploit such a global
allocation strategy. The second method concerns reduction of
the under- and overflow traffic.

6The allocator must exploit a strategy which minimizes the required space

by assigning data live-ranges to registers instead of variable-ranges (the
life-time of a procedure).
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Fig. 10. Traffic ratio for stack organizations.

In contrast with mrs and srs organizations, an interproce-
dural allocation strategy has no advantage for stack because
the buffer space utilization on a procedural basis is already
optimal and comparable with srs and mrs. Instead of by
software the most obvious way to reduce under- and overflow
traffic is to keep track of both validity and modification
status of every buffer element. Attaching a valid bit to every
buffer entry avoids unnecessary loads because variables are
loaded when requested instead of being prefetched upon
underflow. Attaching a dirty bit, reflecting modification of
the buffer entry, avoids unnecessary stores because upon
overflow only the entries modified require a store. As can be
expected such a scheme only affects performance for smaller
buffers (8-16 words) and significantly reduces the possibility
of anomalous behavior for all buffers. Subsequent buffer
comparisons assume such a mechanism (or software causing
a similar effect); the notation for a stack buffer including this
mechanism is stack(split,dvb). See [5] for a more detailed
discussion on the use of dirty and valid bits.

V1. REGISTER-SET AND CACHE COMBINATION

Instead of implementing scalability in the first-level of
the buffer hierarchy it might be more efficient to fix the
first-level and implement scalability in the second level by
means of a cache [17]. Introducing a cache as part of the

>

0.2 I ——

g
srs-cache comblnation
0.0 T T T T T 1
4 8 16 32 64 128 256
cache size in 32-bit words
Fig. 11. Traffic ratio as function of cache size and number of registers.

memory hierarchy instead of a scaling the first-level buffer
complicates the comparison of buffering alternatives. The chip
area required for a cache and a register file of the same size
are different. In this paper we will not take this difference
into account [18]. A cache does a good job reducing traffic,
but, unfortunately, reduced traffic does not necessarily imply a
better performance. In this paper we will take this into account
by using the cycle ratio in addition to traffic ratio (see Section
I-A).

The cache used in this combination is a fully associative
cache with a line size of two 32-bit words. The cache replaces
lines according to their recent use (least recently used) and
employs a writeback scheme, meaning, that lines modified
during their existence in the cache are only written back upon
replacement of the line. To reduce the traffic overhead caused
by fetching two words (the whole line) when only a single
word (the request) is required, the cache employs a subblock-
placement strategy implying a single read for every miss, but
possibly incurring two misses to obtain the contents of a whole
line [19], [20]. Subblock placement causes subblock allocation
on a word-write miss, but no fetch.

Fig. 11 shows the traffic of the register-cache combi-
nation for three different set-allocator pairs. The effect of
the architecture (number of registers and register-allocator)
on data-cache performance is similar to the effect of the
architecture on instruction-cache performance as described by
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Fig. 12. Data traffic relative to stack as a function of architecture-buffer
combinations.

Mitchell [21]. Small caches pronounce the difference between
the architectures, while for large caches the differences become
small. The traffic ratio for all three register-allocator pairs is
approximately 10% for a 256-word cache. This traffic ratio is
significantly better than the ratios of the buffers presented in
the previous three sections. As we will show in the following
section, however, comparing register-oriented buffers with
cache buffers requires a different measure than traffic ratio.

VII. ARCHITECTURE COMPARISON

This section compares the data of the different architectures.
The comparisons relate to four specific questions:

1) How do all architectures compare to the reference archi-
tecture (without any data buffering)?

2) Is compile-time software able to achieve the same data
traffic ratios as run-time hardware?

3) What are the minimal requirements with respect to buffer
size for scalable memory organizations? And what is
the performance price of unscalable memories when
technology allows implementation of larger buffers?

4) What is the answer to the last question when the
unscalable memories are combined with a small data
cache?

Finally we assess the applicability of these results to applica-
tion with a strong vector-reference component.

A. Traffic Relative to stack

Fig. 12 summarizes the average traffic ratio for four ar-
chitectures with different buffer sizes. The table shows the
significant advantage of srs(inter) for small memories (<
16 registers). Buffers of 32 registers show close-to-equal
performance for srs(inter), stack(split,dvb) and mrs(4,4,yes).
Despite the interprocedural allocation mrs(8,8) cannot quite
keep up with the other buffers for small sizes (< 32 registers).
The anomalous behavior of stack(split) is masked by the dirty-
valid bit organization (dvb). This behavior only shows when
comparing stack(split,dvb) and mrs(4,4) for 32 and 64 registers
where stack should outperform mrs but does not. Because the
over- and underflow overhead of mrs(8,8,yes) is still high
for 64 register buffers, it takes 128 registers to make all
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Fig. 13. Data traffic of mrs and stack relative to srs(inter) with identical
buffer sizes.

large-buffer organizations perform equally well. Buffers larger
than 128 registers finally reach their expected’ ordering: first
stack(split,dvb), followed by mrs(8,8,yes), mrs(4,4,yes) and
srs(inter). Of the 25% to 30% of the traffic that remains most
is due to heap and structure traffic.

B. Compile-time Software Versus Run-time Hardware

Fig. 13 shows the comparison between data traffic re-
duction by compile-time software only (srs(inter)), a mix
of compile-time software (register allocation) and run-time
hardware (mrs), and run-time hardware only (stack buffer)
organizations. Under the workload used for this study, a single
register set with interprocedural register allocation (srs(inter))
outperforms both mrs organizations for buffers until a size 64
registers, and stack(split,dvb) between 16 and 64 registers. As
shown before, all buffer organizations containing 128 registers
perform equally.

The ability to determine the potential usage of a data item
causes the advantage of srs(inter) for small buffers. With
small buffers the mrs and buffered stack architectures suffer
from over- and underflow penalties because of their inefficient
register use; mrs because registers are saved even if they
are unused, and buffered stack because space is allocated for
infrequently used variables.

When the over- and underflow penalty is reduced, the intrin-
sic advantages of mrs and buffered stack appear. These archi-
tectures capture references in recursive procedures and through
pointers, while srs organizations force those to memory.
Because the performance of buffered memory-to-memory
architectures is not limited by window or set size, larger
buffers show the advantage of stack(split) over mrs(8,8,yes).
Larger buffers also show the advantage of mrs(8,8,yes) over
mrs(4,4,yes).

C. Scalable Versus Fixed Local Memory

Fig. 12 shows the limitation of mrs and stack architectures
to perform when only limited buffer space is available. Both
mrs(4,4,yes) and stack(split) require at least 32 registers, and

7Based on the possible reference coverage as presented in the previous
sections.
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Fig. 14. Data traffic of mrs and stack architectures relative to srs(16,inter,reg-
rtv) and srs(32,inter,reg-rtv)).

mrs(8,8,yes) requires at least 128 registers. Scalable architec-
tures are probably not the architecture of choice when a range
of implementation technologies is required which include low
density ones (e.g., GaAs, ECL).

Fig. 14 shows the comparison between two unscalable ar-
chitectures (srs(16,inter,reg-rtv) and srs(32,inter,reg-rtv)) and
larger scalable architectures (mrs and stack). As expectable
both unscalable organizations perform closely for 32-register
buffers. With respect to srs(16,inter), the scalable organiza-
tions have an advantage of approximately 20% for 64 registers
30% for 128 registers and 35% for 256 registers. With respect
to srs(32,inter), these figures are approximately 10% for 64,
20% for 128, and 25% for 256 registers.

Note that a 20% to 30% traffic reduction for 224 registers
is an expensive improvement, especially when taking into
account the potential increase in cycle time and the much
smaller effect on the number of execution cycles. When
memory access time is long relative to the cycle time of a
processor, traffic ratio is a reasonable performance indicator.
Many current processors, however, rely on single-cycle cache
accesses, implying a less pronounced performance effect of
the traffic differences presented above. For example when
after sufficient buffering only one in five instructions accesses
memory, a first order approximation translates a 20% traffic
change in only a 5% instruction change. A 5% instruction
change, again, yields a smaller performance change because
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Fig. 15. Traffic comparison of srs-cache with mrs and srs.

the total number of cycles executed is higher than the total
number of instructions.

D. Scalable Local Memory Versus a srs-Cache Combination

When comparing traffic only it is not surprising to find the
srs-cache combination to outperform mrs organizations. 256
words of cache in addition to srs(32,inter,reg-rtv) tesults in a
traffic ratio close to 10% (see Fig. 15).

Traffic is not the right measure to compare two level
memory hierarchies (buffer, main memory) with three level
hierarchies (buffer, cache, memory). The following figures will
demonstrate this by showing both traffic and cycle ratio as
defined in Section I-A The cycle ratio models the number of
cycles spent in the memory hierarchy relative to these cycles
for the stack architecture.

When calculating the cycle ratio we have to take the
memory speed into account. Fig. 16 shows this ratio for a
2-cycle and a 4-cycle memory access. Assume very large
memory access times will make the cycle ratio figures ap-
proach those of the traffic ratio. A 2-cycle memory closes the
gap between mrs and srs-cache organizations. These memories
also introduce a gap between srs(8,uopt,mem-sl) and the other
organizations because the inferior first-level performance. It is
interesting to see that it is very difficult to compensate first-
level deficiencies by means of a cache. A cache in combination
with srs(32,inter,reg-rtv), however has sufficient first-level
performance to outperform all other buffers with only a small
cache (> 16 words).

Slower memories (Fig. 16, 4-cycle memory) advance
both cache combinations because the second-level buffer
(cache) profits particularly from slow access times. Now
srs(inter)/cache outperforms the register-only hierarchies for
caches of 8-words and larger. Srs(uopt)/cache requires 64-
words of cache to compete with the register-only hierarchies.

E. Applicability of Results to Other Application Areas

The programs used for this study are representative of a
typical general-purpose workstation workload. All applications
have a symbolic-processing character, the dominant datatype
is scalar integer, and the data locality depends mainly on the
problem and not on the size of the input set. The programming
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Fig. 16. Cycle-ratio comparison of srs-cache with mrs and srs.

language used is largely irrelevant; the results presented also
hold, for symbolic applications written in Lisp and Prolog [5].

Scientific and engineering programs, however, do have
different characteristics. Compared with the general-purpose
programs used in this paper differences are: 1) shallower
call chains, 2) no recursion, 3) data references dominated
by vector instead of scalar reference patterns. The first two
issues indicate that buffering scalar data is potentially easier
because the influence of procedure calls on performance is
smaller. Most likely, interprocedural-allocation and mrs or
stack schemes provide functionality not really required. The
third item implies the reduced importance of the CPU and its
buffering strategy. Buffering structured (vector) data requires
large vector registers and/or pipelined caches and memories.
Overall the locality will be less than found in the general-
purpose programs, the locality of scalar references however
will be higher, and the locality of vector references will depend
strongly on the size of the input data.

Fig. 17 shows a comparison between a workstation (general
purpose) and a scientific® workload for both srs and mrs. The
figure clearly shows the assumptions correct: srs(16,uopt,mem-
sl) captures close to all scalar references for the scientific
load, but runs into the call-return barrier for the workstation
load; mrs(8,8,4(64)) crosses this barrier for the workstation
load, but adds very little for the scientific load. A smarter
compiler, most likeley, will reduce the amount of scalar traffic

8256-point complex fft, kalman, and a (twice unrolled) loopll of the
livermore loops.
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and emphasize the conclusion that a simple srs offers the
best cost/performance for a scientific workload. The issue of
caching the remaining vector references is a research topic
on itself. A small cache capturing both scalar and vector
references, will only harm the performance because of the
different reference patterns and strongly reduced locality of
vector code. A small cache just covering scalars is unlikely to
contribute significantly to the performance.

VIII. CONCLUSIONS

The design of processor architectures is a continuous trade-
off between functionalities and their potential performance
effects. The importance of the right architecture tradeoffs
increases with increasing restrictions imposed by the tech-
nology of choice. VLSI technologies impose implementation
restrictions on, for example, the area, the I/O bandwidth and
the power consumption. This paper discusses tradeoffs in
processor architecture, but restricts the scope of these tradeoffs
to the effect of architecture and local memory on data-memory
traffic.

We have investigated data-traffic characteristics of three ar-
chitecture families: stack, register, and memory-to-memory
architectures. The architecture parameters under consideration
solely concern local memories and, when applicable, the
compile-time software exploiting these memories. The local-
memory organizations investigated are an evaluation stack for
Stack, a single register set (srs) and multiple overlapping reg-
ister sets (mrs) for register, and a stack buffer or stack cache
for memory-to-memory. An additional data point concerns a
combination of a small register set with a small cache (srs-
cache). The comparison of the different architectures yields
three main conclusions.

First, with respect to software-hardware tradeoffs: Compile-
time software (register allocation) outperforms run-time hard-
ware organizations quite easily for small buffers (< 32 reg-
isters), performs approximately equal for buffers up to 128
registers, and performs only slightly below (< 10%) these
organizations for larger buffers. In addition, some mrs orga-
nizations require compile-time assistance to compete with srs
organizations, and stack buffered stack organizations require
compile time assistance or additional hardware complexity
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(dirty and valid bits) to avoid anomalous behavior -and to
perform competitively.

Second, with respect to scalability tradeoffs: Unscalable
architectures (srs) incur only a slight disadvantage when
compared to scalable architectures with significantly larger
buffers. Compile-time exploitation of 32 registers yields an
approximate traffic disadvantage of 10% over scalable or-
ganizations with 64 registers and only 25% over scalable
organizations with 8 times the registers (256). For a 16-register
architecture these figures are 30% and 40%, respectively.
When translated into cycles, it is unlikely that the cycle advan-
tage of buffer scalability is worth the increase in chip/board
area, the potential increase in buffer access time, or the
potential increase in processor-cycle time.

Third, when instead of a large number of registers a small
register set is combined with a cache then the resulting
combination performs significantly better (in cycles) than
the large register-oriented buffers. Even for relatively fast
memories (2 cycle access time), it is preferable to exploit a
32-register set allocated interprocedurally and combined with
a small cache (e.g. 64 words). Larger caches and slower
memory access times increase the advantages of srs-cache
organizations.

When substituting vector programs for the scalar programs
used, the results point even stronger to the use of srs instead
of more complex mrs or stack organizations.

REFERENCES

[1] D. R. Ditzel and H. R. McLellan, “Register allocation for free: The
C Machine stack cache,” in Proc., Symp. Architectural Support for
Programming Languages and Oper. Syst., Mar. 1982, pp. 48-56.

[2] A. D. Berenbaum, D. R. Ditzel, and H. R. Mclellan,” “Introduction to
the CRISP instruction set architecture,” in Proc. COMPCON 1987, Jan.
1987, pp. 86—90.

[3] D. Alpert, “Memory hierarchies for directly executed language micro-
processors,” Tech. Rep. 84-260, Comput. Syst. Lab., Stanford Univ.,
Stanford, CA 94305, June 1984.

[4] D. A. Patterson and C.H. Sequin, “RISC I: A reduced instruction set
VLSI computer,” in Proc. Eight Int. Symp. Comput. Architecture, IEEE
and ACM, May 1981.

{5] J. M. Mulder, “Tradeoffs in processor-architecture and data-buffer de-
sign,” Tech. Rep. 87-345, Comput. Syst. Lab., Stanford Univ., Stanford,
CA 94305, Dec. 1987.

[6] C.L.Mitchell and M. J. Flynn, “A workbench for computer architects,”
IEEE Design & Test, vol. 5, no. 1, pp. 19-29, Feb. 1988.

[7] B. Bray, K. Cuderman, M. Flynn, and A. Zimmerman, “The computer
Architect’s Workbench,” in Information Processing 89 (IFIP), G. X.
Ritter, Ed. Amsterdam, The Netherlands: Elsevier Science Publishers
B. V., (North-Holland), Sept. 1989.

[8] F.C. Chow, “A portable machine-independent global optimizer-Design
and measurements,” Tech. Rep. 83-254, Comput. Syst. Lab., Stanford
Univ., Stanford, CA 94305, Dec. 1983.

[9] G.J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, . E. Hopkins,
and P. W. Markstein, “Register allocation via coloring,” Comput.
Languages, vol. 6, pp. 47—-57, 1981.

[10] F. Chow and J. Hennessy, “Register allocation by priority-based col-
oring,” in Proc. SIGPLAN’86 Symp. Compiler Construction, Montreal,
Canada, ACM, June 1984, pp. 222-232.

[11] D. Wall, “Global register allocation at link time,” in Proc. SIGPLAN’86
Symp. Compiler Construction, ACM, June 1986, pp. 264-275.

[12] P. Steenkiste and J. Hennessy, “A simple interprocedural register
allocation algorithm and its effectiveness for lisp,” Trans. Programming
Languages and Syst., vol. 11, no. 1, pp. 1-32, Jan. 1989.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 41, NO. 10, OCTOBER 1992

[13] F. C. Chow, “Minimizing register-usage penalty at procedure calls,”
in Proc. SYSPLAN '88: Conf Programming Language Design and
Implementation, June 1988, pp. 85-94.

M. G. H. Katevenis, “ Reduced instruction set computer architectures

for VLSL,” Ph.D. dissertation, Comput. Sci. Division (EECS), Univ. of

California Berkeley, Oct. 1983.

D. C. Halbert and P. B. Kessler, “Windows of overlapping register

frames,” Tech. rep., Comput. Sci. Division, Univ. of California Berkeley,

CA 94720, 1980.

[16] J. M. Mulder, “Data buffering: Software versus hardware support,”
in Proc., Conf. Architecture Support for Programming Languages and
Oper. Syst., Apr. 1989, pp. 144-151.

{17] M. J. Flynn, C. L. Mitchel, and J. M. Mulder, “And now a case for
more complex instructions,” [EEE Comput. Mag., vol. 20, no. 9, pp.
71-83, Sept. 1987.

(18] J. M. Muider, N. T. Quach, and M. J. Flynn, “An area model for on-chip

memories,” J. Solid State Circuits, vol. 26, no. 2, pp- 98-106, Feb. 1991.

M. D. Hill and A. J. Smith, “Experimental evaluation of on-chip mi-

croprocessor cache memories,” in Proc. 11th Annu. Int. Symp. Comput.

Architecture, June 1984, pp. 158-166.

M. 1. Flynn and D. Alpert, “Performance trade-offs for microprocessor

cache memories,” IEEE Micro, vol. 8, no. 4, pp. 44-54, Aug. 1988.

C. Mitchell and M. Flynn, “The effects of processor architecture on

memory tratfic,” Trans. Comput. Syst., vol. 8, no. 3, pp. 230-250, Aug.

1990.

[14]

[19]

19

(20]
21]

Hans Mulder (S’82-M’87) received the M.S. de-
gree from Delft University of Technology and the
Ph.D. degree from Stanford University.

He is an Assistant Professor in the Electrical En-
gineering Department of Delft University of Tech-
nology. His main research interests are computer
architecture, compiler, and VLSI design for high-
speed computing, and computer-aided architecture
and system design. He is the principal investiga-
tor of the SCARCE project, which concerns the
design of application-specific processors for high-
speed embedded controliers.

Dr. Mulder is a member of the [EEE Computer Society and the Association
for Computing Machinery.

Michael J. Flynn (M’56—SM’79-F’80) was born
in New York City on May 20, 1934. He received the
B.S.E.E. degree from Manhattan College in 1955,
the M.S. degree from Syracuse University in 1960,
and the Ph.D. degree from Purdue University in
1961.

He joined IBM in 1955 and, for ten years, worked
in the areas of computer organization and design. He
was design manager of prototype versions of IBM
7090 and 7094/11, and later was design manager for
the System 360 Model 91 Central Processing Unit.
He was a faculty member of Northwestern University (1966-1970) and the
Johns Hopkins University (1970— 1974). In 1973~1974 he went on leave from
Johns Hopkins to serve as co-founder and Vice President of Palyn Associates,
Inc.—a computer design firm in San Jose, CA, where he is now a senior
consultant. In January 1975, he became Professor of Electrical Engineering at
Stanford University, and was Director of the Computer Systems Laboratory
from 1977 to 1983.

Dr. Flynn has served on the IEEE Computer Society’s Board of Governors
and as an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS. He has
also served as consultant and advisor to a number of private and government
organizations: he has been consultant to the Army Research Office-Durham, a
member of the Scientific and Management Advisory Committee (SAMAC) to
the Army Computer Systems Command, and is a member of the Universities
Space Research Association (USRA) Science Council at ICASE, Langely.



