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The ability to distribute high-quality entanglement between remote parties is a necessary primitive for many
quantum communication applications. A large range of schemes for realizing the long-distance delivery of
remote entanglement has been proposed, for both bipartite and multipartite entanglement. For assessing the
viability of these schemes, knowledge of the time at which entanglement is delivered is crucial. Specifically,
if the communication task requires multiple remote-entangled quantum states and these states are generated at
different times by the scheme, the earlier states will need to wait and thus their quality will decrease while
being stored in an (imperfect) memory. For the remote-entanglement delivery schemes which are closest to
experimental reach, this time assessment is challenging, as they consist of nondeterministic components such
as probabilistic entanglement swaps. For many such protocols even the average time at which entanglement
can be distributed is not known exactly, in particular when they consist of feedback loops and forced restarts.
In this work, we provide improved analytical bounds on the average and on the quantiles of the completion
time of entanglement distribution protocols in the case that all network components have success probabilities
lower bounded by a constant. A canonical example of such a protocol is a nested quantum repeater scheme
which consists of heralded entanglement generation and entanglement swaps. For this scheme specifically,
our results imply that a common approximation to the mean entanglement distribution time, the 3-over-2
formula, is in essence an upper bound to the real time. Our results rely on a novel connection with reliability
theory.

DOI: 10.1103/PhysRevA.105.012608

I. INTRODUCTION

The quantum internet is a vision of a worldwide network
of nodes with the capability to transmit and process quantum
information [1,2]. Such a network enables tasks that are im-
possible classically, among which are unconditionally secure
communication [3,4], secure delegated computing [5], and
extending the baseline of telescopes [6]. A primitive for such
tasks is entanglement between remote nodes. For establishing
entanglement over distances beyond the fundamental distance
limit [7], several schemes have been proposed, all making use
of intermediate nodes [8]. These proposals include chains of
quantum repeaters [8–10] and generalizations to two dimen-
sions for serving multiple users [11–17].

Knowledge of the time that quantum repeater schemes
take to deliver entanglement is highly relevant, for several
reasons. Most evidently, the entanglement should be delivered
sufficiently fast for the application. Secure communication
over video, for example, requires transmission rates of at
least hundreds of kbits per second [18]. Furthermore, for the
repeater proposals which make use of quantum memories and
do not rely on error correcting codes, i.e., the ones that are
closest to experimental reach, the delivery time influences the
quality of the produced entanglement. The reason for this is
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that in these schemes, an entangled pair that is generated often
needs to wait for another pair before the scheme can continue,
and decoheres in memory while waiting. In addition, some
memory types suffer from effects which are effectively time
dependent—for instance, noise on carbon spins in nitrogen-
vacancy centers which is induced each time ones attempts
to generate remote entanglement [19]. Another example is
the decrease of the probability of extracting the state from
an atomic-ensemble-based quantum memory [20]. Thus, the
quality of the produced entanglement is a function of the
time its generation takes. This implies that knowledge of the
delivery time is crucial for assessing the viability of schemes
for long-distance entanglement distribution using near-term
hardware.

Analysis of the delivery time is generally challenging
for the entanglement-distribution schemes that are closest
to experimental reach because they consist of probabilistic
components. The time such a scheme takes to deliver the
entanglement, the completion time, is not a single num-
ber but instead a random variable. For many schemes,
the completion time is complex to express due to feed-
back loops and restarts. Although numerically progress has
recently been made in determining the completion time
for increasingly larger networks [15,21–25], numerical ap-
proaches provide only limited intuition and moreover are
demanding in computation time when performing large-
scale optimization over many network designs and hardware
parameters. For this reason, analytical results are more
convenient.
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Unfortunately, due to the complexity of the problem, even
the average completion time is known exactly only in limited
cases: for quantum repeater chains consisting of at most four
repeater nodes [22,26] and a star network with a single node
in the center and an arbitrary number of leaf nodes [11]. For
larger networks, analytical results only include approxima-
tions or loose bounds on the mean entanglement delivery time
[27]. The approximations are based on the assumption that
the success probabilities of some of the network components
are very small [28–31] or close to 1 [27,32,33]. Neither ap-
proximation is ideal, since some success probabilities can be
boosted by techniques such as multiplexing, while others are
bounded well below 1 for some setups [34]. Indeed, numerics
have shown for some of the approximations that they become
increasingly bad as the size of the network grows [22,23].
Another scenario in which the completion time probability
distribution is brought back to a known form includes the
discarding of entanglement [35,36]. See [37] for a review
of the completion time analysis for entanglement distribution
schemes.

A canonical use case is a symmetric nested repeater
scheme [9,38] where at each nesting level two entangled pairs
of qubits, spanning an equal number of nodes, are connected.
Consequently, the entanglement span doubles at each nesting
level. For this scheme, it was empirically known [39] that
for small success probabilities of connecting the pairs, the
average time to in-parallel create both required initial pairs
at each nesting level is roughly 3/2 times the average time
for a single pair. This results in an approximation to the aver-
age completion time of the repeater scheme which is known
as the 3-over-2 formula and has been frequently used since
[8,10,28,32,39–52]. Analytically finding the exact factor, for
an arbitrary number of nesting levels and for any value of the
success probabilities, has been an open problem for more than
ten years [28].

In this work, we provide analytical bounds on the comple-
tion time which not only improve significantly upon existing
bounds, but also show how good some of the previous ap-
proximations are because the bounds become exact in the
small-probability limit. To be precise, we give analytical
bounds on the mean and quantiles of the completion time ran-
dom variable for entanglement-distributing protocols which
are constructed of probabilistic components whose success
probability can be bounded by a constant from below. This
includes feedback loops in which failure of one component
requires restart of other components, as long as no two
components wait for the same other component to finish.
Regarding the symmetric nested repeater protocol, our bounds
imply that the 3-over-2 approximation is, in essence, an
upper bound to the mean completion time, rigorously render-
ing analyses based on this approximation pessimistic. Other
protocols we can treat include nested repeater chains with
distillation and multipartite-entanglement generation schemes
[11,15,53], among others.

This work is organized as follows. First, in Sec. II we de-
scribe the class of protocols our bounds apply to and introduce
concepts from reliability theory we will use in the bounds’
derivation. Section III contains our main results: analytical
bounds on the mean completion time of such protocols and the
tail of its probability distribution. Next, we obtain improved

bounds with respect to existing work by applying these results
to two use cases: a nested quantum repeater chain (Sec. IV)
and a quantum switch in a star network (Sec. V). We finish
with a discussion in Sec. VI.

II. PRELIMINARIES

A. Protocols

The protocols considered in this work aim to generate
bipartite or multipartite entanglement between remote parties.
We will refer to bipartite entanglement as a “link”. We con-
sider protocols that are constructed from two building blocks:
GENERATE and RESTART-UNTIL-SUCCESS. Below, we explain
the two building blocks individually, followed by describing
how to build protocols from them.

1. The GENERATE building block

First, by GENERATE we refer to heralded generation of
fresh entanglement, i.e., entanglement between remote nodes
that is not produced from existing remote entanglement. For
simplicity, we will assume that the entanglement is bipartite
and we will refer to such entanglement as an “elementary
link”. In our model, entanglement generation is performed in
discrete attempts of fixed duration, each of which succeeds
with a given constant probability pgen [8]. The success is
heralded; i.e., the nodes are aware which attempts fail and
which succeed. The duration of a single attempt equals L/c,
where L is the distance between the nodes and c is the speed
of light in the transmission medium. We use L/c as the unit of
time. As a consequence, the completion time of entanglement
generation, denoted as Tgen, is a discrete random variable
following the geometric distribution:

Pr(Tgen = t ) =
{

pgen(1 − pgen)t−1, if t � 1 is an integer,

0, otherwise.
(1)

We will denote the mean of this distribution by μgen = 1/pgen.
We will also consider the exponential distribution, which

is the continuous analog of the geometric distribution and is
defined as follows: if X follows the exponential distribution
with parameter λ > 0, then

Pr(X > x) = e−λx (2)

for any real number x � 0. For small pgen, the completion time
of entanglement generation is sometimes approximated by
an exponential random variable T approx

gen with the same mean,
which is achieved by setting λ = 1/μgen.

2. The RESTART-UNTIL-SUCCESS building block

We introduce the next building block,
RESTART-UNTIL-SUCCESS, by example. For this, we
first describe two operations on existing entanglement:
entanglement swapping and entanglement distillation.

By an entanglement swap [54] at node M, we refer to the
operation which converts two links, one between nodes A and
M and one between M and B, into a single long-distance
link between A and B. We model the entanglement swap as a
probabilistic operation; in the case in which the entanglement
swap fails, both input links are lost. By SWAP-UNTIL-SUCCESS,
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we refer to the process which performs the following loop: it
repeatedly takes two links A-M and M-B as input, followed by
performing an entanglement swap on them, while the process
only terminates if the entanglement swap was successful. That
is, if the swap failed, then the protocol requires the input links
to be regenerated. This process repeats until the entanglement
swap succeeds. We explicitly do not specify how the input
links were produced. These could each be for example deliv-
ered by the GENERATE block, but they could for instance also
be the result of a successful entanglement swap themselves.

We assume that the swap success probability 0 < pswap�1
is a constant that is independent of the states upon which the
swap acts. This assumption is valid when the input states to
the entanglement swap are Bell diagonal, i.e., probabilistic
mixtures of the four Bell states

|�±〉 = |00〉 ± |11〉√
2

, |�±〉 = |01〉 ± |10〉√
2

.

Such a scenario arises, for example, when all imperfections
are modeled as the random application of single-qubit Pauli
gates [55], because these permute the four Bell states. In
particular, each Bell state can be mapped to a single target Bell
state, say |�+〉, by applying a single-qubit Pauli operator to
each of the qubits that remain at node A and B. Since only the
qubits at node M are involved in the operation that performs
the entanglement swap, the success probability of an entan-
glement swap for any of the 16 combinations of input states
is identical to the success probability in the case in which
both input states were |�+〉. We thus see that the success
probability in the case of Bell-diagonal states is a constant,
independently of which scheme is used for performing the
entanglement swap.

We model fusion, the generalization of the entanglement
swap which converts more than 2 input links to a multipartite
entangled state, in similar fashion to the entanglement swap.

Entanglement distillation is the probabilistic conversion of
two low-quality links shared between two nodes to a single
high-quality link between the same two nodes [56,57]. The
success probability of distillation depends on the states of
the two links, and is lower bounded by 1

2 for the schemes
considered here. Similarly to the case of entanglement swap-
ping, the two input links are lost if the distillation step
fails. By DISTILL-UNTIL-SUCCESS we denote the analog of
SWAP-UNTIL-SUCCESS where the probabilistic operation is en-
tanglement distillation.

We assume that the durations of the entanglement swap,
fusion, and distillation operations are negligible.

In general, we use the term RESTART-UNTIL-SUCCESS

for an operation which takes entanglement as input, per-
forms a probabilistic operation onto it, and demands the
regeneration of the input entanglement in the case of
failure. Its success probability can be a function of prop-
erties of the input entanglement, such as its quality or
its delivery time, but it may also be a constant. Thus,
SWAP-UNTIL-SUCCESS and DISTILL-UNTIL-SUCCESS are instan-
tiations of RESTART-UNTIL-SUCCESS where the probabilistic
operation is entanglement swapping and entanglement dis-
tillation, respectively. For clarity, we emphasize that for any
RESTART-UNTIL-SUCCESS operation, all input entanglement
needs to be present before the operation can be performed.

3. Building protocols from the two building blocks

The protocols we consider in this work are com-
posed from heralded entanglement generation and
RESTART-UNTIL-SUCCESS as subprotocols, with the restriction
that the distinct RESTART-UNTIL-SUCCESS protocols do
not compete for the same resources. That is, no pair of
subprotocols waits for the same link before proceeding.
This corresponds to the protocols where the dependency
graph of the inputs and outputs of the subprotocols is a tree.
Consequently, the order in which the various probabilistic
operations (such as entanglement swaps) are performed is
fixed. Figure 1 visualizes this tree structure by showing
examples of such protocols (see figure caption for further
explanation).

As a concrete example, consider the DISTILL-
UNTIL-SUCCESS protocol on two nodes in Fig. 1(b). The
protocol starts with Alice and Bob generating two links in
parallel using heralded entanglement generation (GENERATE).
When both links are ready, they perform entanglement
distillation, which is a probabilistic operation. If distillation
fails, the two input links are lost. Consequently, Alice and
Bob perform heralded entanglement generation again, after
which they attempt entanglement distillation once more.
This procedure is repeated until the distillation operation
succeeds. This example protocol is a specific instance of
a RESTART-UNTIL-SUCCESS protocol because the protocol
(i.e., the sequence GENERATE twice in parallel, followed by
distillation) is restarted when entanglement distillation fails.
Moreover, it can be used as a subprotocol when, for example,
the link it outputs is used as a (partial) input to another
operation, such as an entanglement swap [see Fig. 1(c) for an
example].

Due to the probabilistic nature of GENERATE and of the
restarts, the completion time of a RESTART-UNTIL-SUCCESS

protocol is a random variable. Since we defined Tgen, the com-
pletion time of GENERATE, as a discrete random variable, so
is the completion time of any RESTART-UNTIL-SUCCESS proto-
col in which elementary links are produced using GENERATE.
However, at the start of Sec. III, we will consider a contin-
uous random variable as an alternative to Tgen. In that case,
the completion time of RESTART-UNTIL-SUCCESS will also be
continuous.

B. Probability theory and the NBU property

In this work, we will make extensive use of a class of
probability distributions called new-better-than-used (NBU),
which have been studied in the context of reliability theory
and life distributions [58]. In order to mathematically de-
fine new-better-than-used, we first revisit some notions from
probability theory. All random variables in this work that are
continuous have the positive reals as domain, i.e., a continu-
ous random variable X with Pr(X < 0) = 0. The cumulative
distribution function (CDF) of random variable X is x �→
Pr(X � x), and the co-CDF is x �→ Pr(X > x). This co-CDF
is also referred to as the survival function or the reliability,
since it states the probability that X will survive at least up
to time x. The residual life distribution of X is given by the
conditional probability Pr(X > x + y|X > y) and describes
the time that X will survive at least up to another interval x
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FIG. 1. The results in this work bound the completion time of any entanglement-distribution protocol which can be visualized as a tree.
(a) In such a tree, each vertex is labeled by the operation (P) that should be performed as soon as the operations on the vertex’s children
(CA and CB) have finished. In case the operation fails, both children start regenerating entanglement, possibly by recursively having their
children regenerate entanglement. This procedure is repeated until the operation P succeeds. (b) The different states of the tree in (a), and
the corresponding transition probabilities (unlabeled transition probabilities left implicit since a node’s transition probabilities sum to 1). Here
pA/pB/p are the success probabilities of the operations CA/CB/P, which in general need not be constant but may for example depend on the
quantum states the operation acts upon, such as in entanglement distillation. We emphasize that P will only be attempted once CA and CB

have finished, and that moreover if P fails, then the process is restarted. (c) Example protocol on two nodes, Alice and Bob, which consists of
performing heralded entanglement generation (GENERATE) twice in parallel, followed by entanglement distillation (DISTILL) on the two freshly
generated links. In the case of failure of the distillation attempt, both links are lost, in which case the protocol restarts. This procedure is
repeated until the distillation attempt succeeds. (d) Example protocol on three nodes. Alice and Bob perform the protocol from (b), and in
parallel Bob and Carol perform heralded entanglement generation. As soon as both have finished, Bob performs an entanglement swap (SWAP).
This procedure is repeated until the swap succeeds.

given that it has already survived time y. We now say that a
real-valued random variable X is new-better-than-used (NBU)
or that it has the NBU property if its residual life distribution
is upper bounded by the original reliability, i.e.,

∀x, y � 0 : Pr(X > x + y|X > y) � Pr(X > x). (3)

Intuitively, new-better-than-used random variables describe
ageing over time. As an example, consider the lifetime of a
car: the probability that an old car (one that is already y years
old) will survive another x years is smaller than the probability
that a brand new car will reach the age of x years.

For clarity, we separately state the definition of NBU,
where we use an expression equivalent to Eq. (3) for conve-
nience of our proofs later on.

Definition 1. A real-valued random variable X with Pr(X <

0) = 0 is called new-better-than-used (NBU) if

∀x, y � 0 : Pr(X > x + y) � Pr(X > x) Pr(X > y).

It is called new-worse-than-used (NWU) if the reverse in-
equality holds. �

We give two examples of NBU distributions.
Example 1. A delta-peak distribution Pr(X = x0) = 1 for

some fixed x0 � 0 is NBU, since

Pr(X > x) Pr(X > y) =
{

1, if x < x0 and y < x0,

0, otherwise,

while

Pr(X > x + y) =
{

1, if x + y < x0,

0, otherwise.

Since x + y < x0 implies x < x0 and y < x0 for any x, y � 0,
we see that Pr(X > x + y) � Pr(X > x) Pr(X > y) and thus
X is NBU. �

Example 2. The exponential distribution, defined in Eq. (2),
satisfies Pr(X > x + y) = Pr(X > x) Pr(X > y) for all x, y �
0 and is therefore both NBU and NWU. �

Lastly, we will use the notion of stochastic dominance.
Definition 2. Let X and Y be two random variables with

common domain D, a subset of the real numbers. We say that
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X stochastically dominates Y and write X �st Y if

Pr(X > z) � Pr(Y > z)

for all z ∈ D. �
In particular, we will use the following lemma, which states

that stochastic dominance of one random variable over the
other implies an ordering of their means.

Lemma 1. Let X and Y be two random variables with
domain [0,∞). If X �st Y , then E [X ] � E [Y ].

Proof. The lemma directly follows from the definition of
stochastic dominance, together with the fact that the mean of
X can be written as an integral over the co-CDF,

E [X ] =
∫ ∞

0
Pr(X > x)dx,

and similarly for Y . �

III. MAIN RESULTS

In this section, we give our main results in Propositions 1
and 2: bounds on the completion time distribution for proto-
cols composed of elementary-link generation (GENERATE) and
RESTART-UNTIL-SUCCESS operations. The proofs to the main
results can be found in Appendix A.

Our results bound continuous completion times, whereas
the completion time of elementary-link generation is the dis-
crete random variable Tgen (see Sec. II). Therefore, before
stating our main results we first remark that Tgen is stochas-
tically dominated by a continuous NBU random variable we
denote as T upper

gen .

Lemma 2. The completion time Tgen of elementary-link
generation is stochastically dominated (Definition 2) by the
continuous random variable T upper

gen = 1 + Texp, where Texp is
exponentially distributed with parameter −1

ln(1−pgen ) . That is,

Pr(Tgen > t ) � Pr(T upper
gen > t )

=
{

1, if 0 � t � 1,

exp [(t − 1)/ ln(1 − pgen)], if t � 1.

The mean of Tgen is upper bounded by the mean of T upper
gen

which is given by

μupper
gen = 1 − 1

ln(1 − pgen )
= 1

pgen
+ 1

2
+ O(pgen), (4)

where O(pgen) contains terms that scale with pgen or powers
of it. The means of Tgen and T upper

gen differ only slightly, both in
difference and in ratio:

0 � μupper
gen − μgen � 1

2
and 1 � μ

upper
gen

μgen
� 1 + pgen

2
(5)

for any pgen ∈ [0, 1]. Moreover, T upper
gen is NBU. �

As consequence of Lemma 2, we may assume that the
duration of elementary-link generation is described by T upper

gen

if we are looking for upper bounds on a protocol’s completion
time. Indeed, an upper bound on the co-CDF or the mean of
the resulting completion time will automatically also become
an upper bound on the real completion time (see Definition 2
and Lemma 1).

Now let us state our bounds on continuous completion
times. For legibility, we first state a special case of our main

result: the scenario where a SWAP-UNTIL-SUCCESS operation
with constant success probability is performed on two quan-
tum states. We assume that the time it takes until a state is
produced is a random variable, and that this random variable
is the same for both input states; that is, their completion times
are independent and identically distributed.

Completion time of swapping: Two states and i.i.d.
Proposition 1. Consider the time Toutput of a

SWAP-UNTIL-SUCCESS protocol with constant success
probability p, acting on two quantum states, produced
with identically distributed independent completion times
Tinput. If Tinput is a continuous random variable and it is NBU
(Definition 1), then

(a) Toutput is NBU;
(b) the mean of Toutput is upper bounded as

E [Toutput] �
3E [Tinput]

2p
;

(c) for all t , the probability that Toutput takes longer than t
time steps decays exponentially fast:

Pr(Toutput > t ) � exp

(
p − 2pt

3E [Tinput]

)

while it is lower bounded as

Pr(Toutput > t ) � exp

( −2pt

3E [Tinput]

1

(1 − p)

)
;

(d) in the limit p → 0, the normalized completion time
Toutput/E [Toutput] approaches the exponential distribution with
mean 1, and thus (2pE [Toutput])/(3E [Tinput]) → 1. �

The bounds from Proposition 1 are visually depicted in
Fig. 2.

Although Proposition 1 regards a SWAP-UNTIL-SUCCESS

protocol, it also finds application to DISTILL-UNTIL-SUCCESS,
which has nonconstant success probability:

Remark 1. Consider Proposition 1 where
SWAP-UNTIL-SUCCESS is replaced by DISTILL-UNTIL-SUCCESS.
Note the following:

(a) Propositions 1(a)–1(c) still hold in the case in which
the quantum states produced with completion times Tinput do
not decohere over time, because then the distillation success
probability p is a constant, independent of the production
times of the input states.

The success probability of distillation is general lower
bounded by 1/2, resulting in

(b) E [Toutput] � 3E [Tinput].
Since the upper bound in Proposition 1(c) is monotonically

decreasing in p in the regime t � 3E [Tinput]/2, we may re-
place p by its lower bound 1/2 to obtain the following:

(c) for t � 3E [Tinput]/2, we have

Pr(Toutput > t ) � exp

(
1

2
− t

3E [Tinput]

)
.

�
Proposition 1 is a special case of a more general ver-

sion of Proposition 2 for RESTART-UNTIL-SUCCESS protocols
that act on two or more quantum states whose completion
times are independent, but not necessarily identically
distributed.
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(2) (3)

T2T1

(1)

Tti
m
e

FIG. 2. Visual overview of this work’s bounds on the completion
time of entanglement distribution protocols. (Top) The first result is
a bound on the mean completion time of two parallel entanglement
distribution processes. To be precise, we consider an entanglement
distribution process (1), whose completion time is a random variable
T and has mean E [T ] (2). If T is NBU (Definition 1), we show
that completing two such independent and identically distributed
processes in parallel has a mean time which is bounded from above
by 3

2 E [T ] (3). (Bottom) Our second result is a two-sided bound on
the probability distribution of the completion time of such processes.
These bounds decay exponentially fast.

General case: Completion time of RESTART-UNTIL-
SUCCESS protocol

Proposition 2. Consider the time Toutput of a
RESTART-UNTIL-SUCCESS protocol with constant success
probability p, acting on n � 2 quantum states, produced
with independent completion times T1, . . . , Tn, which
need not be identically distributed. Suppose that each of
Toutput and T1, . . . , Tn is a continuous random variable.
Denote m = E [max(T1, . . . , Tn)]. If all T1, . . . , Tn are NBU
(Definition 1), then

(a) Toutput is NBU;
(b) the mean of Toutput equals E [Toutput] = m/p;
(c) for all t , the probability that Toutput takes longer than t

time steps is exponentially bounded from above as

Pr(Toutput > t ) � exp
(

p − pt

m

)
,

while it is bounded from below by

Pr(Toutput > t ) � exp

(−pt

m

1

(1 − p)

)
;

(d) in the limit p → 0, the normalized completion time
Toutput/E [Toutput] approaches the exponential distribution with
mean 1, and thus E [Toutput]p/m → 1.

(e) For general n, we have

max
1� j�n

E [Tj] � m �
n∑

j=1

E [Tj].

(f) If n = 2, then we also have

m � 3

4
(E [T1] + E [T2])

+
∫ ∞

0
[Pr(T1 > t ) − Pr(T2 > t )]2dt .

FIG. 3. Schematic of a nested repeater protocol on five nodes
(n = 2 nesting levels) The figure depicts the protocol for delivering
entanglement between remote parties Alice and Bob through three
repeater nodes. At the start of the protocol, all nodes attempt to
generate an elementary link with each of their neighbors in parallel.
An entanglement swap is performed once the two leftmost links are
ready, and similarly for the two rightmost links. Once both swaps
have succeeded (failure requires regeneration of the involved links),
the middle node performs an entanglement swap, which yields en-
tanglement between Alice and Bob.

(g) In the case where all Tj are identically distributed with
mean E [T ], then a tighter bound than (e) exists:

1 � m

E [T ]
� n − 1 + 1

n
.

�
We finish this section by generalizing Remark 1.
Remark 2. Consider a RESTART-UNTIL-SUCCESS protocol

whose success probability is lower bounded by a constant c.
Then the upper bounds in Propositions 2(e)–2(g) still hold,
while Propositions 2(b) and 2(c) can respectively be replaced
by E [Toutput] � m/c and Pr(Toutput > t ) � exp(c − ct

m ) for t �
m. �

In the next sections, we give two use cases for the bounds
derived in this section: a quantum repeater chain scheme and
a quantum switch protocol.

IV. FIRST APPLICATION: NESTED QUANTUM
REPEATER CHAIN

In this section, we apply our bounds on the completion
time of entanglement distribution protocols to an extensively
studied nested repeater chain protocol [9,38]. We explain the
protocol for the case where the number of segments is 2n for
some integer n � 0 (i.e., the chain consists of 2n + 1 nodes).
See also Fig. 3. If n = 0, then the network consists of two end
nodes only (no repeaters), which use heralded entanglement
generation (see Sec. II) to generate a single elementary link.
If n > 0, then the chain has a middle node (since the number
of segments is even). In parallel, a 2n−1-hop-spanning link is
produced on the left side of the middle node, as well as a link
on its right side. As soon as both links have been prepared, the
middle node performs an entanglement swap to convert the
two links into a single 2n-hop-spanning link. This scheme can
also be extended with one or multiple rounds of entanglement
distillation at each nesting level, in a nested fashion [9].

The exact completion time distribution of the nested re-
peater scheme has so far not been analytically found beyond
the single-repeater case. The problem was first fully explained
by Sangouard et al. [28], although it was already partially
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described in earlier work [39–41]. Sangouard et al. remarked
that while the completion time of elementary-link generation
at the bottom level follows a well-known distribution (the
geometric distribution; Sec. II), this is no longer the case for
higher levels.

To circumvent this issue, many have resorted to approx-
imating the probability distribution at each level with an
exponential distribution, combined with the small-probability
assumptions pswap 	 1 and pgen 	 1. This approximation
leads to an expression for the mean entanglement delivery
time as follows. At each nesting level, the protocol can only
continue if both input states to the entanglement swap have
been produced. Mathematically, this is expressed as the max-
imum of the delivery time of the two links. The mean of
the maximum of two independent and identically distributed
(i.i.d.) exponential random variables with mean μ is 3

2μ.
Next, if the swap success probability is pswap, then on average
1/pswap attempts are needed until success. Thus, for each
nesting level, the mean entanglement delivery time should be
multiplied by a factor 3/(2pswap), resulting in an expression
for the mean delivery time known as the 3-over-2 approxima-
tion: (

3

2pswap

)n 1

pgen
. (6)

The 3-over-2 approximation was first used by Jiang et al.
[39], who mentioned that the factor 3/2 agreed well with
simulations in the small-probability regime. Since then, the
approximation has been frequently used [8,10,28,32,40–52].

In addition to the 3-over-2 approximation, Sangouard et al.
[28] noted that the repeater scheme’s mean completion time
can be bounded using the following remark: the mean of the
maximum of two nonnegative i.i.d. random variables with
mean μ is lower bounded by μ and upper bounded by 2μ.
These bounds correspond to the scenario where one waits only
for a single link to be ready, or for both links to be prepared
sequentially, respectively. Consequently,(

1

pswap

)n 1

pgen
� E [T ] �

(
2

pswap

)n 1

pgen
. (7)

Now we use Markov’s inequality, Pr(T � t ) � E [T ]/t , which
can be rephrased

Pr(T > t ) � E [T ]

t + 1
, (8)

since T only takes integral values. Substituting E [T ] by its
upper bound from Eq. (7) leads to

Pr(T > t ) �
(

2

pswap

)n 1

pgen

1

(t + 1)
. (9)

Both the mean bound from Eq. (7) and the tail bound from
Eq. (9) are quite loose bounds; see Fig. 4 and 5. Only recently,
it was shown analytically by Kuzmin and Vasilyev that the
factor 3/2 from Eq. (6) is exact in the limit of vanishing
swap success probability, and moreover that the delivery time
probability distribution after an entanglement swap in this
limit is indeed an exponential distribution [29].

Our bounds from Sec. III allow us to go beyond these
results. In particular, we show the following. First, we analyt-
ically show that the 3-over-2 approximation is, in essence, an

upper bound to the mean completion time. This implies that
the 3-over-2 approximation is pessimistic, confirming numeri-
cal simulations [22,32]. Next, we derive two-sided bounds on
the tail of the probability distribution of the repeater chain’s
completion time. Both the mean bound and the tail bounds
coincide in the limit of vanishing success probabilities. We
give the bounds below and plot them in Fig. 4 (mean bounds)
and Fig. 5 (tail bounds).

Proposition 3. Consider the completion time Tn of an
equally spaced, symmetric nested repeater scheme (no dis-
tillation) on 2n segments, such as the example in Fig. 3 for
n = 2. If n > 0, then the following hold:

(a) The mean completion time is upper bounded as

E [Tn] �
(

3

2pswap

)n

μ0.

Here, μ0 is the mean of any real-valued NBU random vari-
able which stochastically dominates the completion time
Tgen of elementary-link generation. In the case in which the
elementary-link generation is modeled as discrete attempts
which succeed with probability pgen, then we choose T upper

gen

for this random variable (see Lemma 2), resulting in

μ0 = E
[
T upper

gen

] = 1 − 1

ln(1 − pgen)
.

If instead the completion time of elementary-link generation
is described by the exponentially distributed random vari-
able T approx

gen (see Sec. II A), which is NBU itself, then μ0 =
E [T approx

gen ] = 1/pgen. By Lemma 2, the two models’ means
only differ slightly: 0 � E [T upper

gen ] − E [T approx
gen ] � 1

2 and 1 �
E [T upper

gen ]/E [T approx
gen ] � 1 + pgen/2.

(b) The mean completion time is lower bounded as

E [Tn] � 1

pswap

(
3 − 2pswap

pswap(2 − pswap)

)n−1

ν0.

Here, ν0 is the mean time until the latest of two parallel
elementary-link generation processes has finished. In the case
in which elementary-link generation is modeled as discrete
attempts which succeed with probability pgen, then

ν0 = 3 − 2pgen

pgen(2 − pgen)
,

while if its completion time is modeled by an exponential
distribution, then ν0 = 3/(2pgen ).

(c) The co-CDF of Tn differs from the co-CDF of an
exponential distribution by at most a factor exp(pswap) from
above,

Pr(Tn > t ) � exp(pswap) exp

(
− pswapt

mupper

)
,

while it is lower bounded as

Pr(Tn > t ) � exp

(−pswapt

mlower

1

(1 − pswap)

)
.

Here, we have denoted

mupper = 3

2

(
3

2pswap

)n−1

μ0
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FIG. 4. The ratio of different upper and lower bounds on the
mean completion time of a nested repeater protocol, as compared
to the numerically calculated mean with the deterministic algorithm
from [23] (17-node repeater chain; pgen = 0.5; entanglement gener-
ation is performed in discrete attempts). The horizontal axis shows
the success probability pswap of entanglement swapping. The figure
shows bounds known before this work [Eq. (7)] and the tighter
bounds from this work in Propositions 3(a) and 3(b).

and

mlower =
(

3 − 2pswap

pswap(2 − pswap)

)n−1

ν0,

where μ0 and ν0 are given in Propositions 3(a) and 3(b).
(d) In the limit where both pswap → 0 and pgen → 0, the

normalized random variable Tn/E [Tn] follows the exponential
distribution with mean 1, and moreover

lim
pswap→0,pgen→0

E [Tn]/Ln = 1

with

Ln =
(

3

2pswap

)n 1

pgen
.

(e) If the completion time of elementary-link generation
is described by the exponentially distributed T approx

gen , then Tn

is NBU, while if it is modeled as discrete attempts, then Tn

is stochastically dominated (Definition 2) by an NBU random
variable which satisfies the bounds in items (a)–(c). �

Most statements in Proposition 3 directly follow by apply-
ing Proposition 1 in Sec. III iteratively over the number of
nesting levels. In particular, a useful feature following from
Proposition 1(a) is that at each nesting level, the completion
time possesses the NBU property (Definition 1). Conse-
quently, the mean upper bound in Proposition 1(c), which is
only applicable to NBU random variables, can be used at each
nesting level. Only the lower bound in (b) and the expression
for mlower in (c) do not follow from Proposition 1. These can
be found by noting that the maximum of two sums dominates

FIG. 5. Probability distribution of the completion time T of a
symmetric nested repeater protocol. T is given in units of L0/c,
which is the time of a single attempt at elementary-link generation
between neighboring nodes at distance L0 (see also Sec. II A). The
figure shows the numerically computed distributions using the deter-
ministic algorithm from [23], a polynomially decaying bound known
before this work which is derived from Markov’s inequality and a
bound on the mean completion time [Eq. (9)], and two improvements
on Eq. (9) we achieve in this work: first, a simple improvement by
using Markov’s inequality and the improved bound on the mean
completion time [Proposition 3(a)], followed by the exponentially
decaying two-sided tail bounds from Proposition 3(c). The plot
shows results for a repeater chain with 17 nodes (pgen = 0.1) where
entanglement generation is performed in discrete attempts. The swap
success probability is pswap = 0.5 (top), and pswap = 0.2 (bottom).

a single sum whose length is the maximum of the original two
sum lengths. We give the full proof in Appendix B.
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By using the notion of stochastic dominance (Definition
2), Proposition 3 can straightforwardly be extended to the
asymmetric case, i.e., where the success probabilities for
entanglement generation and swapping vary throughout the
chain. This is the case, for example, when the segments are
not evenly distributed. We obtain bounds for an asymmetric
repeater chain protocol by noting that its completion time
T asym

n is stochastically dominated as

T max
n �st T asym

n �st T min
n , (10)

where T max
n (T min

n ) is the completion time of the symmetric
repeater protocol where all success probabilities are replaced
by their maximum (minimum). We thus arrive at the following
corollary [formal proof of Eq. (10) in Appendix C].

Corollary 1 (asymmetric nested repeater). Consider the
variant to the repeater chain protocol from Proposition 3
where the success probabilities for generation and swapping
are different throughout the chain. Denote by pmin

gen (pmax
gen ) and

pmin
swap (pmax

swap) their minimum (maximum), respectively. Then,
after replacing pgen and pswap by pmin

gen and pmin
swap (pmax

gen and
pmax

swap), respectively, the upper bounds (lower bounds) to E [Tn]
from Proposition 3 still hold, and so do the upper bounds
(lower bounds) to Pr(Tn > t ). �

We finish this section by noting a stronger two-sided bound
on the completion time T of an equally spaced repeater chain
than Propositions 3(a) and 3(b) in the case of deterministic
swapping (pswap = 1). The number of segments can be any
integer N � 2. Since we assume that the entanglement swaps
take no time (Sec. II A), the mean completion time for this
scenario is [27,31]

E [T ] = E
[

max
(
T (1)

gen , T (2)
gen , . . . , T (N )

gen

)]
, (11)

where T (k)
gen is an independent and identically distributed copy

of Tgen and describes the completion time of entanglement
generation over the kth segment. Equation (11) has been
shown to equal [22,27,32,33]

E
[

max
(
T (1)

gen , . . . , T (N )
gen

)] =
N∑

k=1

(
N

k

)
(−1)k+1

1 − (1 − pgen)k
. (12)

Unfortunately, since Eq. (12) contains a sum whose length
is N , it is not obvious how E [T ] scales with N or pgen. To get
an idea of the scaling, we could use the fact that for pgen 	 1,
the completion time of entanglement generation (the geomet-
ric distribution, which is discrete) is well approximated by
an exponential distribution (which is continuous). Formally,
by replacing Tgen → T approx

gen , the following approximation to
E [T ] in Eq. (12) has been derived [22,30]:

E [T ] ≈ 1

pgen
HN , (13)

where

HN :=
N∑

k=1

1

k
= γ + ln(N ) + O

(
1

N

)
(14)

is the N th harmonic number and γ ≈ 0.5772 is the Euler-
Mascheroni constant. If pgen 	 1, the approximation works
well and shows how E [T ] scales in N and pgen. For pgen close
to 1, however, it does not: for example, for pgen = 1 we have

E [T ] = 1 but Eq. (13) still shows E [T ] to scale linearly with
HN .

A fairly tight bound which shows the scaling for all pgen

is obtained in work by Eisenberg [59]. To our knowledge no
one has so far noted it in the context of completion times of
quantum network protocols. We state it below.

Proposition 4 [59]. Suppose that entanglement swapping is
deterministic (pswap = 1). Let E [T ] denote the mean comple-
tion time of a repeater chain over N segments. Then E [T ] is
bounded as

aHN � E [T ] � 1 + aHN ,

where HN is the N th harmonic number given in Eq. (14) and

a = μupper
gen − 1 = −1

ln(1 − pgen)
= 1

pgen
− 1

2
+ O(pgen).

�

V. SECOND APPLICATION: A QUANTUM SWITCH

Here, we apply our results to a quantum switch. A quantum
switch serves k user nodes. Each user is connected to the
switch by an arm, which produces bipartite entanglement (a
link) between switch and user. As soon as each user has
produced a link with the switch, the switch performs a k-fuse
operation, i.e., a probabilistic operation converting k bipartite
links into a single k-partite entangled state on the user nodes.

Vardoyan et al. considered the scenario in which each user
produces entanglement continuously with the switch and the
switch fuses whenever it can [11]. They obtained analytical
expressions for the rate at which the switch produces mul-
tipartite entanglement in the steady-state regime. Here, we
consider the alternative protocol where the goal is to produce
only a single k-partite state. We go beyond the model of Var-
doyan et al. by replacing the arms, which connect the switch
to the user, by an arbitrary entanglement-distribution network
whose completion time is NBU. An example choice for such
a network is the symmetric repeater chain from Sec. IV, yield-
ing the network topology as depicted in Fig. 6. Our tools allow
us to achieve bounds on the completion time of the switch, as
described in the following proposition.

Proposition 5. Consider a k-armed quantum switch with
fusion success probability pfuse. Suppose that the completion
times of the different arms are independent and identically
distributed according to an NBU random variable Tarm. Denote
by Tswitch the time until the switch performs the first successful
k-fuse attempt. Then,

(a) Tswitch is NBU;
(b) the mean of Tswitch is bounded as

E [Tswitch] �
(

k − 1 + 1

k

)
E [Tarm]

pfuse
;

(c) Tswitch’s tail decays exponentially fast:

Pr(Tswitch > t ) � exp

(
pfuse − pfuset

(k − 1 + 1/k)E [Tarm]

)
.

�
Proposition 5(a) follows directly from Proposition 2(a)

(Sec. III). Proposition 5(b) is a consequence of the expression
for the mean completion time in Proposition 2(b) and the
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FIG. 6. A quantum switch with 3 users, each connected to the
switch by an identical repeater chain which produces links between
user and switch. The switch produces 3-partite entangled states,
shared between the users, by performing a probabilistic operation
on 3 links, one with each user node, as soon as these 3 links are
available.

upper bound in Proposition 2(g), while Proposition 5(c) is an
instantiation of the tail bound of Proposition 2(c) combined
with the mean upper bound of Proposition 5(b).

VI. DISCUSSION

The distribution of remote entanglement is a key element
of many quantum network applications. In this work, we
provided analytical bounds on both the mean and quantiles
of entanglement delivery times for a large class of protocols.
We applied these results to a nested quantum repeater chain
scheme and to a quantum switch, and obtained bounds which
are tighter than present in the literature.

In particular, we considered a frequently used approxima-
tion to the mean entanglement-delivery time in the nested
repeater chain scheme, known as the 3-over-2 formula. This
approximation is derived by assuming that the delivery time
follows an exponential distribution at each nesting level. It
was not known in general how good this approximation is.
Moreover, finding the exact mean delivery time has been an
open problem for more than ten years [28]. We made a large
step toward solving this question by showing that the co-CDF
of the delivery time, i.e., the probability that entanglement is
delivered after time t , is lower bounded by the co-CDF of an
exponential distribution, and upper bounded by the co-CDF
of an exponential distribution multiplied by a factor which is
independent of t . In the limit of small success probabilities of
the repeater’s components, the bounds coincide. Second, we
show that the 3-over-2 formula is, in essence, an upper bound
to the mean delivery time, rendering old analyses building
upon this approximation pessimistic.

Regarding future work, note that in many quantum internet
scenarios, already-produced entanglement waits for the gen-
eration of other entanglement and in the meantime suffers
from memory noise. We leave for future work converting

our bounds on the delivery time to bounds on the amount of
memory noise, and thus on the quality of the produced state.

In this work we only focused on the first remote entangle-
ment that is delivered. Some protocols, however, might deliver
entanglement while still holding residual entanglement, for
example at lower levels in the case of the nested repeater
chain. In such a case, it is not optimal to restart the protocol
for producing a second entangled pair of qubits, since that
would require discarding the residual entanglement. Hence,
another possibility for future work would be to extend our
results to protocols which produce multiple entangled pairs
without discarding existing entanglement in between.

Our bounds are partially based on a novel connection with
reliability theory. We expect that reliability-theoretic tools will
be useful in solving other open problems in quantum networks
too.
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APPENDIX A: PROOFS OF MAIN RESULTS

Here, we prove our main results from Sec. III. We provide
proofs in the following order. First, a proof of Lemma 2. Then,
we will prove Proposition 2. Since Proposition 1 is a special
case of Proposition 2, we do not prove it separately.

1. Proof of Lemma 2

Here, we prove the four parts of Lemma 2: (i) that Tgen,
the completion time of heralded entanglement generation with
probability pgen, is stochastically dominated by T upper

gen = 1 +
Texp, where Texp is exponentially distributed with parameter
−1/ ln(1 − pgen ). Next, (ii) that the mean of T upper

gen equals

1 − 1

ln(1 − pgen)
= 1

pgen
+ 1

2
+ O(pgen).

Then, (iii) that 0 � E [T upper
gen ] − E [Tgen] � 1

2 and (iv) that 0 �
E [T upper

gen ]/E [Tgen] � 1 + pgen/2. Fifth, (v) that T upper
gen is NBU.

Regarding (i), we use the definition of the geometric dis-
tribution in Eq. (1), from which it follows that the survival
function of Tgen is given by

Pr(Tgen > t ) = (1 − pgen)�t�

for all t � 1, where �t� denotes the floor of t : �t� = t if t
is an integer and it equals the largest integer strictly smaller
than t otherwise. For 0 � t < 1, we have Pr(Tgen > t ) = 1 =
Pr(T upper

gen > t ), so the definition of stochastic dominance (Def-
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inition 2) is trivially satisfied on the interval t ∈ [0, 1). We
therefore only need to consider t � 1. Using the notation from
Lemma 2, we now bound

Pr(Tgen > t ) = (1 − pgen)�t�

� (1 − pgen)t−1

= exp [(t − 1) ln(1 − pgen)]
∗= Pr(Texp > t − 1)

= Pr(1 + Texp > t ),

where in ∗, we have used the definition of the exponential
distribution from Eq. (2). For proving (ii), we recall that the
mean of an exponential distribution with co-CDF e−λt with
parameter λ > 0 is 1/λ; hence the mean of T upper

gen is

E
[
T upper

gen

] = E [1 + Texp]

= 1 + E [Texp]

= 1 − 1

ln(1 − pgen )

= 1

pgen
+ 1

2
+ O(pgen),

where in the last equation, we used the expansion of 1/ ln(1 +
x) for |x| < 1 by Kowalenko [60]. We show (iii) by computing
the derivative of E [T upper

gen ] − E [Tgen] as a function of pgen,
which equals

−1

(1 − pgen) ln2(1 − pgen )
+ 1

p2
gen

. (A1)

It is not hard to see that Eq. (A1) is upper bounded by 0 for
all pgen ∈ (0, 1): we start with the well-established inequality
[61]

ln(x) � x − 1√
x

for 0 < x � 1, which after the substitution x → 1 − pgen be-
comes

ln(1 − pgen) � −pgen√
1 − pgen

. (A2)

Since both sides of Eq. (A2) are negative and the squar-
ing function x �→ x2 is monotonically decreasing for x � 0,
squaring both sides requires the inequality sign to flip,

ln2(1 − pgen ) �
p2

gen

1 − pgen

and hence (1 − pgen ) ln2(1 − pgen) � p2
gen, implying that the

derivative in Eq. (A1) is upper bounded by 0 for all pgen ∈
(0, 1). Therefore, E [T upper

gen ] − E [Tgen] is monotonically de-
creasing in that regime and achieves its optima at pgen ↓ 0
and pgen ↑ 1, which are 1

2 and 0, respectively, yielding pre-
cisely the bound in (iii). For showing (iv), divide each side of
0 � E [T upper

gen ] − E [Tgen] � 1
2 by E [Tgen] to obtain

0 � E
[
T upper

gen
]

E [Tgen]
− 1 � 1

2E [Tgen]
= pgen

2
,

from which (iv) directly follows. For proving (v), that T upper
gen =

1 + Texp is an NBU random variable, we consider two cases
with respect to the definition of NBU (Definition 1):

(a) Both x < 1 and y < 1. Then

Pr(1 + Texp > x) = Pr(1 + Texp > y) = 1,

so the definition of NBU trivially holds by the fact that Pr(1 +
Texp > x + y) cannot exceed 1.

(b) At least one of x or y is 1 or larger. Assume without
loss of generality that y � 1. Then note that Pr(1 + Texp >

x + y) equals

Pr[Texp > x + (y − 1)]

� Pr(Texp > x) Pr(Texp > y − 1)

= Pr(Texp > x) Pr(1 + Texp > y),

where the inequality holds by the fact that Texp is itself
NBU (see Example 2). The proof finishes by noting that 1 +
Texp stochastically dominates Texp, i.e., Pr(1 + Texp > y) �
Pr(Texp > y).

2. Proof of Proposition 2

Now, we prove Proposition 2, which automatically proves
its special case Proposition 1. For our proof, we first give a
formal definition of Toutput, following Brand et al. [23]. The
RESTART-UNTIL-SUCCESS acts on n quantum states, which first
need to have been delivered. Thus, we define a fresh random
variable to refer to the time until the last of n quantum states
has been delivered:

M := max(T1, . . . , Tn).

The restarts of the RESTART-UNTIL-SUCCESS protocol, accord-
ing to a constant success probability p, result in the fact that
Toutput can be written as a geometric sum of copies of M:

Toutput =
K∑

k=1

M (k), (A3)

where M (k) is an i.i.d. copy of M and K is a geometrically
distributed random variable with parameter p:

Pr(K = k) = p(1 − p)k−1. (A4)

Equation (A3) reflects the fact that the RESTART-UNTIL-
SUCCESS protocol needs to perform K attempts at success,
each of which takes time given by a fresh instance of M (for a
more thorough explanation, see [23]).

Now we will prove each of the statements (a)–(f) from
Proposition 2. For statement (a), we need to show that Toutput

is NBU. This follows directly from the following two facts:
(i) NBU-ness is preserved under the maximum: if

T1, . . . , Tn are NBU random variables, then so is M;
(ii) NBU-ness is preserved under the geometric sum: if M

is an NBU random variables, then so is Toutput = ∑K
k=1 M (k).

We prove item (i) in Sec. A 3, while item (ii) was proven
by Brown; see Sec. 3.2 in [62].1

1Let us clarify here that the work by Brown proves that the NBU
property is preserved under the geometric sum if K is distributed
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Statement (b), E [Toutput] = m/p with m = E [M], is a sim-
ple generalization of [31, Eq. (2)]. We prove it by applying
a well-known fact of randomized sums called Wald’s lemma
[63] to Eq. (A3), which is applicable when the length of the
sum is independent of the summand. Applying Wald’s lemma
results in

E [Toutput] = E [M]E [K]

and hence E [Toutput] = m/p.
Statement (c) describes a two-sided bound on the co-CDF

of Toutput:

exp

(−pt

m

1

(1 − p)

)
� Pr(Toutput > t ) � exp

(
p − pt

m

)
.

These bounds follow from the following lemma from Brown
(see Eq. (3.2.4) in [62]):

Lemma 3 [62]. Let X be a real-valued random variable
with Pr(X < 0) = 0. Define the geometric compound sum of
i.i.d. copies of X as Y := ∑K

k=1 X (k), where K follows the
geometric distribution with success probability p [Eq. (A4)].
Moreover, define Y0 := ∑K0

k=1 X (k), where K0 = K − 1. Then

Pr(Y > t ) � exp(p) exp (−t/E [Y ])

while

Pr(Y > t ) � exp (−t/E [Y0]).

Now interpret Y → Toutput and X → M in Lemma 3. The
upper bound in statement (c) follows directly from Lemma 3
by the use of statement (b), which says that E [Toutput] = m/p,
while for the lower bound in statement (c) we use

E [Y0] = E [K0]E [X ]

= E [K0]E [M]

=
(

1

p
− 1

)
m

= (1 − p)
m

p
.

Next, (d) states that Toutput/E [Toutput] approaches the expo-
nential distribution with mean 1. For proving this statement,
we substitute t → tE [Toutput] = tm/p in statement (c). The
result is a bound on

Pr(Toutput > tE [Toutput]) = Pr(Toutput/E [Toutput] > t )

given by

exp

( −t

1 − p

)
� Pr(Toutput/E [Toutput] > t ) � exp (p − t ).

Letting p → 0, the bounds on both sides coincide, and thus

lim
p→0

Pr(Toutput/E [Toutput] > t ) = exp (−t ),

which is precisely the co-CDF of the exponential distribution
with parameter 1.

according to Eq. (A4). However, the same paper also proves that if
K is shifted by 1, i.e., Pr(K = k) = p(1 − p)k , then the geometric
sum is always NWU, irrespective of the summand random variable.
However, we will not use the latter case here.

For showing the upper bound in statement (e),

m �
n∑

j=1

E [Tj],

we use the fact that for all j = 1, . . . , n, it holds that Tj � 0.
The maximum of of nonnegative numbers is upper bounded
by its sum, and thus

m = E [max(T1, . . . , Tn)]

=
∑

t1,...,tn

Pr(T1 = t1, . . . , Tn = tn) max(t1, . . . , tn)

�
∑

t1,...,tn

Pr(T1 = t1, . . . , Tn = tn)(t1 + · · · + tn)

∗=
n∑

j=1

∑
t j

Pr(Tj = t j )t j = E

[
n∑

j=1

Tj

]
,

where for ∗ we made use of the fact that all Tj are inde-
pendent. The proof for the lower bound in statement (e),
max1� j�n E [Tj] � m, is similar and relies on the fact that
max(t1, . . . , tn) � t j for all 1 � j � n, where t1, . . . , tn are
nonnegative numbers. Now, we first prove (g) before proving
(f). Statement (g) states that if all Tj are identically distributed
with mean E [T ], then

1 � m

E [T ]
� n − 1 + 1

n
,

where we recall that m = E [max(T1, . . . , Tn)]. For proving
this statement, we need the following lemma from Hu and Lin
[64, Lemma 2.2].

Lemma 4 [64]. If X1, . . . , Xn are independent and identi-
cally distributed copies of an NBU random variable X on the
domain [0,∞), then E [min(X1, . . . , Xn)] � E [X ]/n.

Proof. The proof is based on two facts. First, note that

Pr[min(X1, . . . , Xn) > x] =
n∏

j=1

Pr(Xj > x) = Pr(X > x)n.

Second, note that if X is NBU, then by repeated application of
the definition of NBU (Definition 1), we find that

Pr

(
X >

n∑
j=1

x j

)
�

n∏
j=1

Pr(X > x j )

for any nonnegative numbers x j, 1 � j � n. When choosing
all x j identical, say, to some constant nonnegative number x,
this reduces to

Pr(X > nx) � Pr(X > x)n.
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Using these two facts, we can now prove the lemma:

E [min(X1, . . . , Xn)] =
∫ ∞

0
Pr(X > x)ndx

�
∫ ∞

0
Pr(X > nx)dx

=
∫ ∞

0
Pr(X/n > x)dx

= E [X/n] = E [X ]/n,

where we have used the fact that for any real-valued random
variable X with Pr(X < 0) = 0, the mean can be computed as

E [X ] =
∫ ∞

0
Pr(X > x)dx. (A5)

�
Statement (g) is proven by noting that for nonnegative

numbers t1, . . . , tn, it holds that t j � min(t1, . . . , tn) for all
j = 1, . . . , n, and therefore

t1 + . . . tn � max(t1, . . . , tn) + (n − 1) min(t1, . . . , tn).

Translating this to the Tj yields

E

[
n∑

j=1

Tj

]
� (n − 1)E [min(T1, . . . , Tn]

+E [max(T1, . . . , Tn)]. (A6)

The left-hand side of Eq. (A6) equals nE [T ] by the fact that
the Tj are i.i.d., while the right-hand side is lower bounded by
(n − 1)/nE [T ] + E [max(T1, . . . , Tn)] by Lemma 4. Reshuf-
fling yields

E [max(T1, . . . , Tn) � nE [T ] − n − 1

n
E [T ]

=
(

n − 1 + 1

n

)
E [T ],

which is what we set out to prove.
Finally, statement (f) says

m = E [max(T1, T2)] � 3

4
(E [T1] + E [T2])

+
∫ ∞

0
[Pr(T1 > t ) − Pr(T2 > t )]2dt (A7)

if T1 and T2 are NBU. We prove (f) by first observing that

2 Pr[min(T1, T2) > t] = 2 Pr(T1 > t ) Pr(T2 > t )
= Pr(T1 > t )2 + Pr(T2 > t )2

− [Pr(T1 > t ) − Pr(T2 > t )]2 (A8)

and therefore, using the fact that the mean can be written as
an integral over the co-CDF [see also Eq. (A5)], we have

2E [min(T1, T2)] =
∫ ∞

0
2 Pr[min(T1, T2) > t]dt

=
∫ ∞

0
Pr(T1 > t )2dt +

∫ ∞

0
Pr(T2 > t )2dt

−
∫ ∞

0
[Pr(T1 > t ) − Pr(T2 > t )]2dt .

(A9)

Now we use the fact that for an NBU random variable X , we
have Pr(X > t )2 � Pr(X > 2t ). Since T1 and T2 are NBU, we
find that∫ ∞

0
Pr(T1 > t )2dt �

∫ ∞

0
Pr(T1 > 2t )dt

=
∫ ∞

0
Pr(T1/2 > t )dt = 1

2
E [T1]

and similarly for T2. Substituting these inequalities into
Eq. (A9), we obtain

2E [min(T1, T2)] � 1

2
(E [T1] + E [T2])

−
∫ ∞

0
[Pr(T1 > t ) − Pr(T2 > t )]2dt .

Now invoke E [max(T1, T2)] = E [T1] + E [T2] −
E [min(T1, T2)] to arrive at

E [max(T1, T2)] � E [T1] + E [T2] − 1

2
(E [T1]/2 + E [T2]/2

−
∫ ∞

0
[Pr(T1 > t ) − Pr(T2 > t )]2dt )

= 3

4
(E [T1] + E [T2]) + 1

2

∫ ∞

0
[Pr(T1 > t )

− Pr(T2 > t )]2dt,

which is precisely statement (f).

3. Proof that the NBU property is preserved
under the maximum

Here, we prove that the NBU property is preserved under
the maximum of independent random variables.

Lemma 5. Suppose X1, . . . , Xn are independent random
variables (not necessarily identically distributed). If all Xj are
NBU random variables, then so is max(X1, . . . , Xn).

We first prove the special case for n = 2, from which the
statement for general n follows.

Lemma 6. Let A and B be independent nonnegative
real-valued random variables (not necessarily identically dis-
tributed). If both are NBU, then so is max(A, B).

Proof. Let us denote az := Pr(A > z) and bz := Pr(B > z)
for z � 0. Assume that A and B possess the NBU property
(Definition 1), so that

ax+y � axay and bx+y � bxby for all x, y � 0. (A10)

We also write mz := Pr[max(A, B) � z] and compute

mz = Pr[max(A, B) > z]

= 1 − Pr[max(A, B) � z]

= 1 − Pr(A � z) Pr(B � z)

= 1 − (1 − az )(1 − bz ) (A11)

= az + bz − azbz

= az + bz(1 − az ). (A12)

We will prove that max(A, B) is NBU, which in our notation
becomes mx+y � mxmy for all x, y � 0. To begin, we write
out the expressions for both sides, i.e., for mx+y and for mxmy.
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First, using Eq. (A11), we write out

mx+y = 1 − (1 − ax+y)(1 − bx+y). (A13)

Since mx+y from Eq. (A13) is monotonically increasing in
ax+y and moreover ax+y � axay [Eq. (A10)], we obtain

mx+y � 1 − (1 − axay)(1 − bx+y). (A14)

We use the same insight again, but now for bx+y: the right-
hand side of Eq. (A14) is monotonically increasing in bx+y,
which combined with the fact that bx+y � bxby [Eq. (A10)]
yields

mx+y � 1 − (1 − axay)(1 − bxby) = axay + bxby(1 − axay).
(A15)

Next, by Eq. (A12) we have

mxmy = [ax + bx(1 − ax )][ay + by(1 − ay)]

= axay + axby(1 − ay) + aybx(1 − ax )

+ bxby(1 − ax )(1 − ay). (A16)

In order to prove that mx+y � mxmy we consider three cases.
(i) Case bx = 0. In this case Eq. (A15) reduces to mx+y �

axay and Eq. (A16) becomes

mxmy = axay + axby(1 − ay). (A17)

Since ax, ay, bx, and by are all cumulative probabilities, they
take values in the interval [0, 1], and therefore the second term
of Eq. (A17) is nonnegative, which yields mxmy � axay �
mx+y.

(ii) Case by = 0. By the fact that both the right-hand side
of Eq. (A15) as well as the expression for mxmy [Eq. (A16)]
are invariant under exchanging bx and by, this case is proven
identically to the first case.

(iii) Case bx �= 0 and by �= 0. Using Eq. (A15) and
Eq. (A16), we expand

mx+y − mxmy

bxby
= axay

bxby
+ bxby

bxby
(1 − axay)

− axay

bxby
− axby

bxby
(1 − ay) − aybx

bxby
(1 − ax )

− bxby

bxby
(1 − ax )(1 − ay)

= 1 − axay − ax

bx
(1 − ay) − ay

by
(1 − ax )

− (1 − ax )(1 − ay).

Using the fact that bx, by � 1, we obtain

mx+y − mxmy

bxby
� 1 − axay − ax(1 − ay) − ay(1 − ax )

− (1 − ax )(1 − ay) = 0.

Since bx and by are positive numbers, it follows that mx+y −
mxmy � 0. This concludes our proof. �

Let us now show how Lemma 5 follows from Lemma 6.
Let X1, . . . , Xn be n NBU independent random variables, for
n � 2. We use induction on n. The case n = 2 is proven in
Lemma 6. Now suppose Lemma 5 holds for n = m for some
m � 2. We show that Lemma 6 also holds for n = m + 1.

For this, choose A = max(X1, . . . , Xm) and B = Xm+1. By as-
sumption, B is NBU, and so is A by the induction hypothesis.
Note that

max (X1, . . . , Xm, Xm+1) = max ( max (X1, . . . , Xm), Xm+1)

= max (A, B);

so it follows from Lemma 6 that max(X1, . . . , Xm+1) is also
NBU, which concludes the proof of Lemma 5.

APPENDIX B: PROOF OF THE LOWER BOUNDS
IN PROPOSITION 3

Here, we prove the two lower bounds in Proposition 3: first,
Proposition 3(b), followed by the lower bound on the quantiles
from Proposition 3(c).

Throughout the Appendix, we will use the notation
X (1), X (2), . . . to denote independent and identically dis-
tributed copies of a random variable X . Before proving the
bounds on the mean and tail of Tn, let us formally define it.
Regarding the base case n = 0, which describes elementary-
link generation between adjacent nodes, we use either of two
flavors: we either set T0 = Tgen, i.e., T0 follows the geometric
distribution with parameter pgen, or we set T0 = T approx

gen , i.e.,
T0 follows the exponential distribution with parameter pgen.
For each statement about Tn in this Appendix, either the
statement will hold for both flavors, or it will be clear from
the context which of the two flavors is used. Regardless of the
choice for n = 0, we define Tn for n > 0 as

Tn+1 =
K∑

k=1

M (k)
n , (B1)

where K is geometrically distributed with parameter pswap and
Mn is defined as

Mn = max
(
T (1)

n , T (2)
n

)
. (B2)

Equation (B1) was given in [23] and can be found by applying
Eq. (A3) to each nesting level of the repeater protocol, where
M = Mn in Eq. (A3) describes the time until the last of two
links, each spanning 2n repeater segments, has been delivered.

1. Proof of Proposition 3(b)

Here, we will prove the lower bound on the mean comple-
tion time Tn of the nested repeater protocol on n nesting levels.
Informally stated, the insight is that

max

(
K (1)∑
k=1

X (k),

K (2)∑
k=1

X (k)

)
�st

max(K (1),K (2) )∑
k=1

X (k) (informal);

i.e., considering sums with independent and identically dis-
tributed summands, the maximum of two sums stochastically
dominates the “longest” of the two. Since the definition of Mn

in Eq. (B2) contains the maximum of two such sums, we use
this idea to define a new random variable Rn as the “longest”
of the two sums; by the insight above, Rn is stochastically
dominated by Mn. Using Lemma 1, this stochastic domination
can be converted to E [Mn] � E [Rn], after which the bound on
the mean of Tn as described in Proposition 3(b) follows by
noting that E [Tn] = E [Mn]/pswap.
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We now give the formal proof, which we divide into three
steps. First, we define Rn and compute its mean. Next, we
show that Mn �st Rn for all n > 0, from which we infer a
lower bound on the mean of Tn as the third step.

For the first step, we define Rn:

R0 = max
(
T (1)

0 , T (2)
0

)
,

Rn+1 =
N∑

j=1

R( j)
n forn � 0.

Here, N = max(K (1), K (2) ), where K (1) and K (2) are both ge-
ometrically distributed with parameter pswap. We emphasize
that contrary to Tn, the random variable Rn does not corre-
spond to the completion time of a protocol.

The mean of Rn is computed using the following two lem-
mas.

Lemma 7. Let X (1) and X (2) be independent and identically
distributed random variables with mean 1/p for some 0 <

p � 1. If both X (1) and X (2) follow a geometric distribution,
then [31]

E [max(X (1), X (2) )] = 3 − 2p

p(2 − p)
,

while if they follow an exponential distribution, then

E [max(X (1), X (2) )] = 3

2p
.

Proof. We start with the case that X follows a geometric
distribution. Note that min(X (1), X (2) ) is geometrically dis-
tributed with parameter 1 − (1 − p)2:

Pr[min(X (1), X (2) ) > t] = Pr(X (1) > t ) Pr(X (2) > t )

= (1 − p)t (1 − p)t = (1 − p)2t

= {1 − [1 − (1 − p)2]}t

for t = 0, 1, 2, . . . . Combined with the fact that
E [max(X (1), X (2) )] = E [X (1) + X (2) − min(X (1), X (2) )] =
E [X (1)] + E [X (2)] − E [min(X (1), X (2) )], we obtain

E [max(X (1), X (2) )] = 1

p
+ 1

p
− 1

1 − (1 − p)2
= 3 − 2p

p(2 − p)
.

The case of the exponential distribution is analogous, with
min(X (1), X (2) ) following the exponential distribution with
parameter 2p. �

Lemma 8. The mean of Rn is

E [Rn] =
(

3 − 2pswap

pswap(2 − pswap)

)n

ν0, (B3)

where ν0 is defined as follows. If T0, which describes
elementary-link generation between adjacent nodes, follows
the geometric distribution with parameter pgen, then

ν0 = E [R0] = E [max(T (1)
0 , T (2)

0 )] = 3 − 2pgen

pgen(2 − pgen)
, (B4)

while if T0 follows the exponential distribution with parameter
pgen, then

ν0 = E [R0] = E
[

max
(
T (1)

0 , T (2)
0

)] = 3

2pgen
. (B5)

Proof. We use induction on n. The case n = 0 is treated
in Lemma 7 where we set p = pgen. For the induction case,
we note that N and Rn are independent; hence we may apply
Wald’s lemma [63] to obtain

E [Rn+1] = E

[
N∑

j=1

R( j)
n

]
= E [N]E [Rn].

Since N = max(K (1), K (2) ) and K is geometrically distributed
with parameter pswap, we again invoke Lemma 7 to obtain

E [N] = E [max(K (1), K (2) )] = 3 − 2pswap

pswap(2 − pswap)
.

This finishes the proof. �
As second step, we will show that Mn stochastically dom-

inates Rn, for which we need the following two auxiliary
lemmas and corollary.

Lemma 9. Let P and Q be independent real-valued random
variables, and P′ and Q′ i.i.d. copies of P and Q, respectively.
Then P �st Q implies max(P, P′) �st max(Q, Q′).

Proof. By definition of P �st Q, we have, for all real
numbers z, that Pr(P > z) � Pr(Q > z) and therefore Pr(P �
z) � Pr(Q � z). Consequently,

Pr[max(P, P′) > z] = 1 − Pr[max(P, P′) � z]

= 1 − Pr(P � z)2 � 1 − Pr(Q � z)2

= Pr[max(Q, Q′) > z]

for all real numbers z, so max(P, P′) �st max(Q, Q′). �
Lemma 10. Let P and Q be independent, real-valued ran-

dom variables with identical domain. Then max(P, Q) �st Q.
Proof. For any real number z, we have

Pr[max(P, Q) > z] = 1 − Pr[max(P, Q) � z]

= 1 − Pr(P � z) Pr(Q � z)
∗
� 1 − Pr(Q � z)

= Pr(Q > z),

where the inequality * holds because Pr(P < z) � 1. �
Corollary 2. Let A(1), A(2), A(3), and A(4) be independent

and identically distributed random variables with domain
{1, 2, 3, . . . }. Furthermore, let X,Y , and Z be independent and
identically distributed random variables with domain [0,∞).
Then

max

(
A(1)∑
a=1

X (a),

A(2)∑
b=1

Y (b)

)
�st

max (A(3),A(4) )∑
a=1

Z (a). (B6)

Proof. We note that random sums occur on both sides of
Eq. (B6), that is, sums whose number of terms is a random
variable. We expand both sides of the inequality from the
lemma as a weighted sum over instantiations of this random
variable. For the left-hand side, we obtain

Pr

[
max

(
A(1)∑
a=1

X (a),

A(2)∑
b=1

Y (b)

)
> y

]

=
∞∑

i=1

∞∑
j=1

Pr(A(1) = i) Pr(A(2) = j)Cy
i j
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for y � 0, where we have defined

Cy
i j := Pr

[
max

(
i∑

a=1

X (a),

j∑
b=1

Y (b)

)
> y

]
,

and for the right-hand side we get

Pr

⎛
⎝max (A(3),A(4) )∑

a=1

Z (a) > y

⎞
⎠

=
∞∑

i=1

∞∑
j=1

Pr(A(3) = i) Pr(A(4) = j)Dy
i j

with

Dy
i j := Pr

(
max(i, j)∑

a=1

Z (a) > y

)
.

Given fixed i and j, we define random variables P and Q as
follows:

(i) if max(i, j) = i > j, then define P = ∑ j
b=1 Y (b) and

Q = ∑i
a=1 X (a);

(ii) if max(i, j) = j, then define P = ∑i
a=1 X (a) and Q =∑ j

b=1 Y (b).
In both cases, application of Lemma 10 that max(P, Q) �st

Q yields Cy
i j � Pr(

∑max(i, j)
a=1 Y (a) > y). Since Y and Z are i.i.d.,

we obtain Cy
i j � Dy

i j for all y � 0 and for all i, j. This con-
cludes the proof.

Now we have the tools to show that Mn stochastically
dominates Rn, as described in the following lemma. �

Lemma 11. For all n � 0, we have

Mn �st Rn,

where Mn = max(T (1)
n , T (2)

n ) as defined in Eq. (B2).
Proof. We use induction on n. The base case n = 0 is an

equality by definition of R0. Now assume the statement from
the lemma holds for n = m. We will show it also holds for
n = m + 1. First, we expand the definition of Tm+1:

Tm+1 =
K∑

k=1

max
(
T (1)

m , T (2)
m

)
.

Now apply the induction hypothesis:

Tm+1 �st

K∑
k=1

R(k)
m .

Using Lemma 9 we obtain

max
(
T (1)

m+1, T
(2)

m+1

)
�st max

(
K (1)∑
j=1

R(i)
m ,

K (2)∑
j=1

R( j)
m

)
.

Applying Corollary 2 to the previous equation yields

max
(
T (1)

m+1, T
(2)

m+1

)
�st

max(K (1),K (2) )∑
k=1

R(k)
m .

The left-hand side of the previous equation equals Mm+1 by
definition, while its right-hand side is Rm+1, again by defini-
tion. This concludes the proof. �

The third step is to derive the lower bound on the mean
delivery time from Proposition 3. This follows directly from
Lemma 11, as expressed in the following corollary.

Corollary 3 (lower bound from Proposition 3). For n > 0,
it holds that

E [Tn] � 1

pswap

(
3 − 2pswap

pswap(2 − pswap)

)n−1

ν0,

where ν0 is given in Eq. (B4) or Eq. (B5), depending on
whether elementary-link generation is modeled following a
geometric or exponential distribution, respectively.

Proof. By Wald’s lemma [63] and the fact that K and Mn−1

are independent, it follows from the definition of Tn for n > 0
that E [Tn] = E [K]E [Mn−1] = 1

pswap
E [Mn−1]. A lower bound

on E [Mn] follows from Lemma 1 and Lemma 11, resulting in

E [Tn] = 1

pswap
E [Mn−1] � 1

pswap
E [Rn−1].

The proof finishes by substituting E [Rn−1] by the right-hand
side of Eq. (B3). �

2. Proof of lower bound in Proposition 3(b)

Here, we provide the expression for mlower in Proposition
3(c), which is a lower bound to the mean of the delivery time
after both input links are ready, but before the entanglement
swap. Formally, mlower is a lower bound to the mean of Mn−1

from Eq. (B2). Such a bound follows directly from Lemma 11
by the fact that X �st Y implies E [X ] � E [Y ] (see Lemma 1):

mlower = E [Rn−1]

and E [Rn−1] is given in Eq. (B3).

APPENDIX C: PROOF OF COROLLARY 1 FOR
ASYMMETRIC NESTED REPEATER CHAINS

Here, we sketch the proof of the following proposition [see
also Eq. (10)], from which Corollary 1 immediately follows.

Proposition 6. Denote by T asym
n the completion time of a

nested repeater chain with n levels (see Sec. IV) where the
success probabilities for entanglement generation and entan-
glement swapping are not constant throughout the chain. By
T max

n (T min
n ) denote the completion time of the symmetric

repeater protocol where all success probabilities are replaced
by their maximum (minimum), denoted as pmax

gen and pmax
swap

(pmin
gen and pmin

swap). Then

T max
n �st T asym

n �st T min
n ,

where �st denotes stochastic domination (Definition 2).
For proving Proposition 6, we need the following lemma.
Lemma 12 (stochastic domination preserved under maxima

and geometric sums). Let Aj, Bj (1 � j � n) be indepen-
dent random variables, taking values in the nonnegative real
numbers. Furthermore, let K and M be independent random
variables, geometrically distributed with parameters pK and
pM , respectively. Then the following hold:

(1) If pM � pK , then K �st M.
(2) If for all j, Aj �st Bj , then max(A1, A2, . . . , An) �st

max(B1, B2, . . . , Bn).
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(3) If K �st M and A1 �st B1, then
∑K

k=1 A(k)
1 �st∑M

m=1 B(m)
1 .

Proof. Statement (1) is proven as Pr(K > t ) = (1 −
pK )t � (1 − pM )t = Pr(M > t ) for any t ∈ {1, 2, . . . }. For
(2), we write

Pr[max(A1, A2, . . . , An) > t]

= 1 − Pr[max(A1, A2, . . . , An) � t]

= 1 − Pr(A1 � t ) · · · · · Pr(An � t )

� 1 − Pr(B1 � t ) · · · · · Pr(Bn � t )

= Pr[max(B1, B2, . . . , Bn) > t]

for any t � 0 where the inequality holds
because Aj �st Bj for all j. Statement (3)

was proven as Lemma 2(e) in Appendix B
of [23]. �

With Lemma 12, Proposition 6 is most easily proven by
induction over the number of nesting levels, following the
definition of Tn as given at the start of Appendix B. For
elementary links, note that the elementary-link delivery time
of T asym stochastically dominates T max and is stochastically
dominated by T min, by Lemma 12(i). For the induction step,
first both quantum states which are input to the entanglement
swap need to be prepared. By Lemma 12(ii), the time this
takes in the asymmetric case again stochastically dominates
T max and is stochastically dominated by T min. The induction
case is finished by noting that a similar ordering holds for
the completion time after the entanglement swap, by Lemma
12(iii).
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