
 
 

Delft University of Technology

Multi-omic analyses in immune cell development with lessons learned from T cell
development

Cordes, Martijn; Pike-Overzet, Karin; Van Den Akker, Erik B.; Staal, Frank J.T.; Canté-Barrett, Kirsten

DOI
10.3389/fcell.2023.1163529
Publication date
2023
Document Version
Final published version
Published in
Frontiers in Cell and Developmental Biology

Citation (APA)
Cordes, M., Pike-Overzet, K., Van Den Akker, E. B., Staal, F. J. T., & Canté-Barrett, K. (2023). Multi-omic
analyses in immune cell development with lessons learned from T cell development. Frontiers in Cell and
Developmental Biology, 11, Article 1163529. https://doi.org/10.3389/fcell.2023.1163529

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.3389/fcell.2023.1163529
https://doi.org/10.3389/fcell.2023.1163529


Multi-omic analyses in immune
cell development with lessons
learned from T cell development

Martijn Cordes1,2, Karin Pike-Overzet1, Erik B. Van Den Akker1,2,3,4,
Frank J. T. Staal1,4,5* and Kirsten Canté-Barrett1,4

1Department of Immunology, Leiden University Medical Center, Leiden, Netherlands, 2Department of
Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands, 3Pattern Recognition
and Bioinformatics, Delft University of Technology, Delft, Netherlands, 4Novo Nordisk Foundation Center
for Stem Cell Medicine (reNEW), Leiden University Medical Center, Leiden, Netherlands, 5Department of
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Traditionally, flow cytometry has been the preferred method to characterize
immune cells at the single-cell level. Flow cytometry is used in immunology
mostly to measure the expression of identifying markers on the cell surface,
but—with good antibodies—can also be used to assess the expression of
intracellular proteins. The advent of single-cell RNA-sequencing has paved the
road to study immune development at an unprecedented resolution. Single-cell
RNA-sequencing studies have not only allowed us to efficiently chart themake-up
of heterogeneous tissues, including their most rare cell populations, it also
increasingly contributes to our understanding how different omics modalities
interplay at a single cell resolution. Particularly for investigating the immune
system, this means that these single-cell techniques can be integrated to
combine and correlate RNA and protein data at the single-cell level. While
RNA data usually reveals a large heterogeneity of a given population identified
solely by a combination of surface protein markers, the integration of different
omics modalities at a single cell resolution is expected to greatly contribute to our
understanding of the immune system.
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1 Introduction

Ever since the advent of early flow cytometry experiments in the 1980s, the field of
immunology has been conducting research at the single cell resolution, intrinsically
acknowledging the existence of heterogeneity present within populations of cells.
Concomitantly, this field has been particularly welcoming for data-driven advances that
form the basis of many novel discoveries in present day science.

The human immune system consists of many different cell types in different states
depending on their stage of development, environmental stimulation, and interaction
between non-immune cells (Tajer et al., 2019). Inside the cells, signal transduction
cascades lead to activated transcription factors that initiate differentiation into a definite
cell type by the activation of complex gene regulatory networks. Single-cell RNA sequencing
of various tissues or cell populations has revealed the diversity and tremendously increased
the resolution of cell types or states by capturing the transcriptomes of individual cells
without the need of massive amounts of starting material. This has resulted in
immunological studies resolving cellular heterogeneity (Villani et al., 2017; Zheng et al.,
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2017) and describing novel differences between differentiating cell
populations. However, RNA expression does not always translate to
the protein level and low RNA expression of transcription factors
may give a distorted view of gene regulation within cells (Zhou et al.,
2019).

In immunology, multi-color flow cytometry traditionally has
been used to identify known and define new subpopulations of
immune cells at the single cell level, based on combinatorial
expression of mostly cell-surface markers at the protein level. In
this way, flow cytometry constitutes a quantitative proteomics
approach at the single cell level. At the molecular level, large
amounts of multi-omics data in immunology and other fields of
research have been generated in the form of bulk genomic,
transcriptomic, proteomic an metabolomic datasets. While
insightful, bulk data such as RNA-sequencing provides average
expressions across a defined population therefore missing cell-
specific developmental processes across lineage determining
trajectories (Hu et al., 2018). To fully understand the human
immune system, every aspect of the immune cells should be
studied at multiple levels and time points. To detect all the
differences between immune cells and to identify new
populations it is important to link the gene expression to the
protein (surface marker) expression of the cells.

In recent years multi-omic strategies have been developed for
single-cell sequencing allowing to simultaneously profile the
genome, transcriptome, and epigenome of the same cell (Villani
et al., 2017; Zheng et al., 2017; Zhou et al., 2019). For T and B cells,
T cell receptor and immunoglobulin information can also be
obtained adding even more information to an already impressive
amount of data that can be obtained from a single cell (De Simone
et al., 2018). In this review we describe how scRNA-seq was used to
identify rare thymus seeding cells within an already rare population
of developing thymocytes (Cordes et al., 2022). We outline which
considerations were taken designing the experiment, how to acquire
the right cells from the right donors, which sequence protocol was
used and how the analysis pointed us to the right populations.
Importantly, we show that scRNA-seq data can guide
multiparameter flow cytometry and cell sorting experiments
leading to functional assays that validate results from scRNA-seq,
which is a step that is not always taken in most of the current
hypothesis-driven scRNA-seq studies.

2 Introduction to T cell development

The thymus is a primary lymphoid organ that provides a unique
microenvironment for the development of T cells from
hematopoietic stem or progenitor cells that originate from the
bone marrow (Anderson and Jenkinson, 2001; Famili et al.,
2017). Cells that seed the thymus go through different
developmental stages that can be characterized by expression of
different markers on the cell surface. The most immature
thymocytes lack CD4 and CD8 expression (double-negative,
DN). Following the DN stage, cells differentiate into CD4+CD8+

double-positive (DP) cells, after which they bifurcate to single-
positive (SP) CD4+CD8−CD3+ or CD8+CD4−CD3+ stages that
characterize mature T cells. Thymocytes proliferate and
differentiate while they undergo T cell receptor (TCR) gene

rearrangements and positive and negative selection, and these
processes ultimately result in a diverse, yet tolerant TCR
repertoire. In humans, the thymus is fully developed before birth
in terms of the presence of all major thymocyte subpopulations,
including the mature T cells. (see Figure 1) (Lobach and Haynes,
1987). To study thymocytes in an early state of their developmental
trajectory it is important to select donors with sufficient DN cells.
The rate of T cell production by the thymus is greatest during
childhood, when the peripheral TCR repertoire is further established
as a result of antigenic pressure. Several studies show that children
until approximately 8 years of age have the highest percentage of DN
cells (approximately 10% of total thymocytes) (Weerkamp et al.,
2005). After puberty, thymocyte numbers drastically decrease,
although the thymus remains functional for a lifetime (Bertho
et al., 1997; Marusić et al., 1998; Jamieson et al., 1999; Poulin
et al., 1999; Weerkamp et al., 2005).

Thymus microenvironmental signals including intercellular
contact and cytokine signaling induce T cell development by
activating specific transcriptional programs (Weerkamp et al.,
2006b). The detection of these programs by measuring RNA
expression in single cells enhances the understanding of T cell
development when combined in a multi-parametric approach
with surface marker protein expression. The sensitivity of
detecting RNA expression in very rare cells is increased when
rare populations are sorted or enriched prior to sequencing.

3 Considerations in study design

There are a number of important considerations to take into
account when starting a multi-omics experiment. These include
purification of cells under study, how to isolate such cells, what kind
of sequencing protocol to use, how many cells to measure and how
to analyze the wealth of data typically obtained from such
experiments.

3.1 Enrichment of rare thymocyte
populations

In general, purification of cells of interest allows for asking more
defined questions. However, in doing so one cannot explore a
complete map of all the cells that seem to play a role during
development, and one may lose the proportionality of
subpopulations. On the other hand, data from small subsets can
be uncovered. There is another benefit, it might partially compensate
for the differential cell death during data acquisition,—some cell
types/states are more prone to die compared to others –, so by
enriching these cells, some of their signal might still be recovered. In
our example this is illustrated by a large difference in cell
composition between the different developmental stages of T cell
development. Within the thymus most of the thymocytes (around
80%) are DP cells, and only 10% of the cells are DN or SP cells
(Weerkamp et al., 2005). So, if the biological effect of interest is
limited to only a subpopulation of cells–such as DN cells–cell sorting
is an important step to capture enough of the cells of interest. The
most widely used high-throughput method used for enrichment of
rare cell populations is flow-activated cell sorting (Radbruch and
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Recktenwald, 1995; Will and Steidl, 2010). Magnetic beads can be
used for enrichment and manual isolation of specific tissue types or
to remove unwanted cells such as dead cells, red blood cells, or non-
immune cells such as epithelial cells and fibroblasts.

3.2 Cell caputuring for library generation

With droplet encapsulation-based methods using microfluidics,
thousands of cells can be captured and barcoded in high-
throughput. Single cells can be captured in a microwell or
encased in water-in-oil droplets. Within the microwell or droplet
barcoded cDNA is generated (Klein et al., 2015; Macosko et al.,
2015). Commonly used solutions are Fluidigm C1, Biorad/Illumina
ddSeq, Clontech ICell8, and BD Rhapsody for microwell
encapsulation and inDrop, DropSeq, and 10X Chromium from
10X Genomics for droplet-based encapsulation. While microwell
based methods are more versatile, precise and less labor-intensive,
droplet systems like the 10X Chromium system are more used
because they have enabled the capturing and barcoding of thousands
of individual cells and thus have higher outputs (Gao et al., 2019).
What must be taken into account is that 10X Single Cell Sequencing
requires at least 500.000 cells in suspension to generate libraries.

This can be a challenge when working with, for example, double-
positive thymocytes of which most cells are apoptotic (Surh and
Sprent, 1994).

3.3 Sequencing protocol

Multi-omic strategies are becoming popular in single-cell
sequencing, as they increasingly allow for simultaneous
analysis of multiple molecular modalities within individual
cells. Omics assays that currently can be conducted at a single
cell resolution include measurements on genomic,
transcriptomic, or proteomic level. Increasingly, these methods
can also be conducted on sequentially obtained tissue coupes,
which thus yield information on the relative spatial positioning of
the assayed cells. Collectively, these approaches have the promise
to overcome limitations of integrating separate unimodal
datasets and provides more comprehensive molecular
information within individual cells (Ma et al., 2020).
Particularly popular are multi-modal applications of single-cell
RNA sequencing, which can be used to profile combinations of
gene expression, splice isoforms, B- or T-cell receptor repertoire,
as well as surface proteins.

FIGURE 1
Overview of T cell development in the human thymus. Cross section of an adult thymic lobule representing themigration route of T-cell precursors
during development. Immigrant precursors move to the thymus through blood vessels and enter near the corticomedullary junction; the TSPs
subsequentlymigrate, and differentiate to DN, DP and finally to SP stages through the discretemicroenvironments of the thymus. A directional reversal of
migration back across the cortex towards the medulla occurs for the later stages of thymocyte development. The cell percentages represent the
proportions of cell types compared to the total cell composition in the human thymus. DN: Double negative; DP: Double positive; ISP: Immature single
positive; SP: Single positive; TSP: Thymic seeding progenitor.
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Generally, there are two groups of single cell sequencing
methods, plate-based and microfluidic-based techniques. Plate-
based methods capture cells on multi-well plates or microfuge
tubes. Microfluidic technology, on the other hand, captures cells
in microfluidic droplets, is cost-effective, and allows for parallel
quantification of gene expression profiles. Microfluidic methods can
be continuous-flow (e.g., Fluidigm’s C1 system) or droplet-based
(e.g., InDrop, Drop-seq, and 10X Genomics). Droplet-based
platforms are easily automated and customizable for different
experimental needs. Full-length scRNA-seq methods like
SMART-seq2 and Cell-seq use well-based techniques but have
limitations such as fewer cells per assay compared to droplet-
based methods. Because every protocol can highlight different
biological aspects of the cell, the choice of protocol should be
carefully considered based on the research question. Full-length
sequencing covers complete mRNA transcripts and increases the
number of mappable reads enabling greater detection of low
abundance transcripts, allelic gene expression analysis, and
isoform discovery, (Ziegenhain et al., 2017), but requires more
sequencing depth. In contrast, short-read methods create length
reads of approximately 70–100 bases which can be sequenced from
the 3′ or 5′ end of the transcript. Short-read based methods provide
a powerful and cost-effective tool for the analysis of complex
biological systems. Because of the high throughput, high accuracy
and flexibility these protocols are the most widely used technology
for genome and transcriptome sequencing. With both long and
short read protocols unique molecular identifiers (UMI) are widely
used because of the flexibility of multiplexing but also to reduce the
effects of artifacts introduced by PCR amplification. The cDNA
generation from both 3′ and 5′ based protocols begins with the
capture of poly-A mRNA molecules and make use of a poly-dT
primer for reverse transcription and a template-switching oligo
(TSO) for reverse-transcription of 5′ transcripts. Of note, while
capturing polyadenylated mRNA transcripts avoids capturing
truncated mRNA transcripts, genomic DNA and rRNA it is
subject to potential artifacts such as priming of intronic polyA-
rich regions and incomplete cDNA production (Balázs et al., 2019).

To also capture information about the TCRs, the barcoded 5′
cDNA libraries can be used to enrich for the full V(D) J sequence by
targeted PCR using reverse primers designed on the constant regions
of alpha and beta chains (Matuła et al., 2020) or gamma and delta
chains (Cordes et al., 2022). While 3′end sequencing approaches are
standard practice for gene expression quantification, a recent
comparison study between 3′ and 5′ 10X generated data shows
that the 5′ assays captures more exonic UMIs and gene expression of
genes with longer transcript lengths (Hsu et al., 2022). While V(D) J
sequencing gives valuable information about the rearrangement
processes of developing T cells, no actual protein data is
investigated. To get more phenotypic insight, CITE-seq and
REAP-seq offers an antibody-based phenotype analysis (Peterson
et al., 2017; Stoeckius et al., 2017). With this method, antibodies
against surface proteins of interest are coupled to a barcode, UMI
and additional sequences that together are called antibody derived
tags (ADTs). An additional library is then generated from these
ADTs that can be sequenced independently but are often pooled
with their respective cDNA library. With the development of the
TotalSeq-C protocol (Biolegend) these three methods can all be
combined in one go.

3.4 Cell numbers and sequencing depth

Two intertwined questions that should not be underestimated
are the number of cells to sequence and the sequencing depth that is
required per cell. Finding the right balance between these two factors
is dependent on the scientific questions, but also on the sample
availability and the experimental design. Generally, the number of
cells to sequence is determined by the complexity of the sample
(Svensson et al., 2017). In a sample with different amounts of cell
types, 1 cell type dominates the population and rare cell types are
only present in low fractions. The right experimental design can be a
very important step to increase or decrease the heterogeneity of the
sample. While enrichment of certain rare thymocyte subpopulations
can increase heterogeneity between thymocytes (Dik et al., 2005),
the removal of non-T cells (Weerkamp et al., 2006a) from the
sample can remove unwanted heterogeneity and shift the focus to
the detection of new rare thymic subpopulations (Cordes et al.,
2022).

Comparisons between sensitivity and accuracy showed that full-
length sequencing to detect transcripts with low gene expression
requires 1 million reads per cell, while alternative splicing analysis
may even require 30–60M reads per cell (Svensson et al., 2017;
Ziegenhain et al., 2017). However, to perform unbiased cell-type
identification within a mixed cell type population from 3′- or 5′-end
libraries, a depth between 10.000 and 100.000 reads per cell can be
sufficient (Pollen et al., 2014; Haque et al., 2017). For targeted
approaches such as the V(D) J sequencing protocol of 10X
Genomics, the recommended sequencing depth of 5000 reads per
cell for 150bp reads will provide sequencing saturation of B- or T cell
receptors.

3.5 Data analysis

During library construction, cDNAmolecules from each cell are
labeled with cellular barcodes and UMIs depending on the protocol
used. A unique set of barcodes is used for every library and allow for
the libraries to be pooled—or multiplexed—together in one
sequence run. When a library is compiled of cells from different
donor or conditions, Cell Hashing methods with barcoded
antibodies can be used to add sample-specific sequence tags to
correctly assign the cells after cell encapsulation, library preparation,
and sequencing. Another option is in silico genotyping after
sequencing by using single-nucleotide polymorphisms (SNPs)
from the extracted data and using the overlapping SNPs between
cells to determine the identity of the individual donors (Huang et al.,
2019). For optimal results, aforementioned approaches are often
combined.

3.5.1 Quality control and normalization
Forthcoming reads obtained in single-cell sequencing

experiments need to be assigned to their cells through a process
known as “demultiplexing”. In this process, reads are grouped based
on their cellular barcode followed by alignment to a reference
genome. This results in a count matrix with a dimension of
number of barcodes multiplied by the number of genes. Before
further analyzing the gene expression data, quality control of the
data has to be performed to be sure that only biologically relevant
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cells are used for downstream processing (Luecken and Theis, 2019).
Most filtering strategies are based on three data covariates, 1—the
count depth per cell, which is calculated by counting the number of
transcripts with the same barcode; 2—the number of genes
expressed per cell; 3—the fraction of mitochondrial genes
expressed per cell (Ilicic et al., 2016; Griffiths et al., 2018). Cells
that only show expression of a few genes and a high fraction of
mitochondrial gene expression are most likely apoptotic cells in
which only the mitochondrial mRNA is conserved after the
cytoplasmic mRNA has leaked through the membrane (Galluzzi
et al., 2012). On the other hand, cells with an unusually high-count
depth per cell combined with an unusual high number of genes
expressed per cell can be an indication that these are doublets,
meaning that there have been 2 cells with the same barcode captured
in one oil droplet.

When cells from different donors were pooled prior to
sequencing, in silico generated genotype information can also be
used to identify if barcodes are shared across genotypes (Huang
et al., 2019).

The three mentioned quality covariates can be visualized to
determine which cells are to be removed. By plotting the metric-
distributions outliers can be identified by using appropriate
thresholds. These thresholds are user-defined and should be
carefully considered to prevent misinterpretation which can lead
to removing biologically relevant data by non-experienced users.
Choosing the right parameters for filtering should be first and
foremost be driven by the investigated biological system set for
every individual dataset before combining into final analysis. The
importance of using different quality control (QC) thresholds was
described in a recent study by Subramanian et al. which showed that
QC metrics vary by cell type within a tissue and using fixed QC
threshold for mitochondrial genes can lead to loss of cell subsets
within a dataset (Subramanian et al., 2022). Another option is to
visualize by generating a Uniform Manifold Approximation and
Projection (UMAP) or t-distributed Stochastic Neighbor
Embedding (t-SNE) before filtering and perform clustering
analysis to investigate clusters; as in most cases, poor-quality cells
can be removed because they cluster separately from good-quality
cells (Stegle et al., 2015). Several technical factors such as gene
length, GC-content, sequencing depth, and dropouts can introduce
bias into raw read counts during sequencing, leading to inaccurate
representation of biological gene expression. This noise from
technical differences between sequencing platforms could obscure
underlying biological differences between samples, making
interpretation from unnormalized data unreliable. While UMI-
based protocols minimize amplification biases, normalization at
cell and gene levels is necessary to correct for technical biases
and sampling effects. Log normalization is commonly used in
UMI-based data analysis (Stuart et al., 2019), while non-UMI
data employs normalization methods such as CPM, RPKM,
TPM, and FPKM (Vallejos et al., 2017). However, advanced
normalization strategies are required due to scRNA-seq data’s
intricacies, such as data sparsity and high heterogeneity.

3.5.2 Integration and regression
Integrating data and regression are two different methods of

controlling for biological or technical covariates in single-cell RNA
sequencing data to remove unwanted variation that arises from

combining different datasets, protocols, and sequencing methods.
Correcting for such variation helps reveal important biological
signals and processes. However, data correction for biological
effects may not always be in the best interest, and correction for
one effect may mask another. Thus, it is advised first to evaluate the
study’s objective and context before deciding on data correction
measures (Luecken and Theis, 2019).

Data integration is a method of combiningmultiple datasets into
a single integrated dataset, so that the unwanted variation is
effectively removed from each dataset. The idea behind this
method is to correct for any technical or biological factors that
might impact gene expression, so that the true gene expression
signals can be analyzed.With the rise of scRNAseq datasets methods
for integration also have been developed widely as described in this
benchmarking study by (Luecken et al., 2022). Regression of
biological signals, on the other hand, is a method of removing
the influence of a specific set of biological variables on the expression
of a set of genes. This is typically done using regression models, such
as linear regression against a cell cycle score, which is a way to
remove the effects of the cell cycle. By regression the relationship
between the gene expression data and the biological variables is
estimated. The idea behind this method is to control for the effects of
the biological variables so that they do not impact the analysis of the
gene expression data.

In some cases, highly expressed genes encoding for specific
biological processes may bias the results of an unsupervised
clustering. For example, a study by Sundell et al. found that
including B−/T-cell receptor genes resulted in clusters primarily
defined by variations in V-gene segment expression. Excluding these
genes before clustering led to biologically more meaningful subsets
such as memory B and memory T cells. (Sundell et al., 2022).
Similarly, genes related to metabolic changes like mitochondrial,
ribosomal and histone genes might obscure the detection of
biologically relevant subsets (Subramanian et al., 2022). In
general, the choice between integrating data to remove biological
effects or using regression to remove biological signals depends on
the specific goals of the analysis and the nature of the data. In most
cases multiple variations of the above should be tested to determine
the right analysis protocol for each individual dataset.

3.5.3 Dimensionality reduction
The scRNA-seq data, after filtering out poor samples, can be

interpreted through a vast array of bioinformatic and computational
techniques, as extensively reviewed in Poirion et al. (2016). Despite
the high-dimensional nature of scRNA-seq expression metrics, not
all data dimensions are necessary for meaningful classification of
cellular expression profiles, which can be effectively explained
through a reduced number of dimensions focusing on relevant
biological signals. Many methods aim to simplify these multi-
dimensional data, represented by each dimension being the
expression of a single gene, into a smaller number of dimensions
for easier visualization and interpretation. Dimensionality reduction
(DR) techniques, such as Principal Component Analysis (PCA)
(Wold et al., 1987), t-distributed Stochastic Neighbor Embedding
(t-SNE) (Van der Maaten and Hinton, 2008), Uniform Manifold
Approximation and Projection (UMAP) (McInnes et al., 2018), Self-
Organizing Maps (SOM) (Kohonen, 2012), and Model embedded
dimension reduction, allow for improved data visualization and
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resolve the issue of data sparsity. An effective low-dimensional
representation should summarize the data in a few optimal
dimensions while preserving the underlying structure of the
dataset and describing its variability. These DR techniques,
particularly PCA, have proven to be valuable tools for examining
heterogeneity in scRNA-seq data, with further advancements
incorporating various machine learning algorithms (Petegrosso
et al., 2020). PCA on its own is not optimal for data visualization
as it does not take into account the sparsity of the data and can lead
to a misleading representation of the data structure. t-SNE, on the
other hand, is better suited for this purpose due to its graph-based
non-linear approach and is often used in conjunction with PCA. It
uses a probabilistic distance model to establish relationships
between high dimensional data points, which are then optimized
and reconstructed in lower dimensions using gradient descent.
While t-SNE is effective for visualizing non-linear datasets and
preserving local structures, it may overlook the global structure
and potentially lead to misinterpretation of differences between cell
populations. To address these limitations, the UMAP technique has
emerged as a more favorable DR method. UMAP is similar to t-SNE

but also preserves the global structure, making it a more
comprehensive tool for investigation lineage differentiation.

In a highly heterogeneous dataset, it is important to carefully
consider the variance added to generate a t-SNE or UMAP. While
generating an elbow plot or using the permutation-test-based
jackstraw method (Chung and Storey, 2015; Macosko et al.,
2015) maybe helpful in identifying the statistical significance of
individual principal components (PCs), this will not automatically
determine which PCs provide relevant variance. Includingmore PCs
will highlight more of the biological signal while the same signal can
noise the true signal. Lowering the number of PCs will shift the focus
to the major variance factors while interesting, underrepresented
factors that are pushed into lower PCs will be discarded from further
downstream analysis. In the end, the scientific question should be
leading, also in data visualization.

3.5.4 Where biology gets in the way
In our recently published scRNAseq dataset (Cordes et al., 2022)

from six individual healthy thymus samples, integration, regression,
and gene removal were used to correct for biological process not

FIGURE 2
An example of a multi-omics approach to understand human T cell development (Cordes et al., 2022). Discovery: Purification of thymocyte subsets
isolated from 6 healthy donors to generate a multi-omic (gene expression and γδ/αβ TCR) scRNAseq dataset resulting in the identification of different
thymus seeding progenitor populations and detection of multiple lineage differentiation trajectories (including alternative lineages). Validation: by
functional assays, lineage tracing and multi-color flow cytometry.
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fitting into the research scope which was learning more about the
differentiation of early thymocytes.

The thymus is an example of a biological system containing a
very heterogeneous population of differentiating cells, requiring
different analytical approaches then the standard protocols. In
the thymus >90% of the cells die during the different selection
steps of thymocyte development (Surh and Sprent, 1994). One
would expect more mitochondrial expression in such a dataset.
Generally speaking, cells are removed from the dataset when the
proportion of mitochondrial gene expression is above 5%–10%
within a cell (Brennecke et al., 2013). Two studies on similar cell
types, thymic progenitor populations (Lavaert et al., 2020) and our
own study (Cordes et al., 2022), using the same techniques showed

different results. Lavaert et al., identified two potential thymic
seeding progenitor populations within a scRNA-seq dataset
where cells >10% mitochondrial expression were removed, while
we identified a third progenitor population using a higher threshold
(>30%) which has the ability to develop into T cells much faster
which would have been missed when the threshold was set to 10%.
The cells with a higher mitochondrial gene expression also expressed
anti-apoptotic and proliferation genes, indicating that they were
not dead.

For the integration of our different samples the method
Canonical Correlation Analysis (CCA) (Butler et al., 2018) was
applied, which successfully removed individual-specific clustering.
Because the samples were a mix of male and female donors, sex

FIGURE 3
Schematic overview of the main steps and considerations used to perform studies on rare cells.
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related interference was still found in our data with genes like the
X-linked gene XIST within the top differentially expressed genes
between clusters. Removal of XIST from the count matrix also
overcame this gender-related issue. Mitochondrial, ribosomal and
histone genes were also removed to prevent clustering based on
metabolic activity of the cells. While cell cycle regression prevented
clusters of cells in the same proliferation phase, a clear separation
could be seen between cycling cells and cells with high activity of
processes related to the rearrangement of TCR genes. This shows
that major biological events within a biological system, like
proliferation and cell death during T cell development will be
detectable within such a dataset regardless of correction (Lavaert
et al., 2020; Le et al., 2020; Park et al., 2020; Cordes et al., 2022).

Also when performing dimensionality reduction different
settings highlighted different biological processes of the human
thymus; the UMAP from Figure 1 in Cordes et al., 2022 displays
the overall lineage differentiation of T-cells in a UMAP generated
using 10 PCs while the same dataset was used also for cell type
identification using a UMAP generated by > 35 PCs in Figures 3 and
S4 in Cordes et al., 2022.

3.6 Integration with existing databases
to verify and annotate subsets

Immune development intrinsically takes place in several organs.
Hence, to be able to appreciate the full developmental trajectory of
particular immune subsets, from–from cradle to in situ effector -, we
generally need to integrate single-cell studies created from different
immune tissues. This helps contextualizing cell populations found in
one tissue and links it to populations in other tissues. While the gene
expression profiles of each population are often indicative,
integration with existing annotated data can also provide
important insight, not only in the nature of the subsets but also
in their developmental or cation status. In our study on T cell
development, integration with existing data helped infer
developmental pathways and illustrate alternative, non-T cell
lineage pathways (see Figure 2).

3.7 Functional genomics

The combination of many flow cytometry parameters in one
sample allows to visualize many (sub) populations and may reveal
rare populations that are missed in conventional flow cytometry
using a limited number of parameters. While conventional flow
cytometry uses one detector to measure the emission maximum of
each fluorophore, spectral cytometry uses all the detectors that are
available to measure the entire emission spectrum. This allows the
use of many more markers compared to conventional flow
cytometry because the un-mixing of spectral signatures helps
resolve overlapping fluorescence spectra. However, in both
approaches the anatomical and spatial interactions of cells are
lost because the tissue is processed into a single cell suspension.
New techniques using spatial proteomics [for example, mass
cytometry imaging in tissue slices, or tissue cytometry by time of
flight (tissue CyTOF)] would supplement flow cytometry data with
the spatial localization of certain cell populations in a tissue,

especially when combined with spatial transcriptomics, ideally
integrated with scRNA-seq (Longo et al., 2021).

We have outlined how cell enrichment (for example, by flow-
activated cell sorting) of rare populations can guide the
interpretation of and even reveal scRNA-seq data leading to
conclusions that otherwise would have been missed. Just as
important is the follow-up by testing and validating the new-
found data in wet-lab experiments. For example, in our dataset
(Cordes et al., 2022) we found RNA expression of several candidate
surface markers that—in combination with other existing
markers—would ease the sorting of the newly identified rare
populations. In practice, however, RNA and protein expression
do not always correlate (Li et al., 2020). Thus, each candidate
needs to be tested for protein expression. Also, cell enrichment
using the new-found candidate markers to sort the new rare
populations and subsequent functional validation in an in vitro
assay is required to validate that the new markers have contributed
to the isolation of the novel rare (sub) populations. Therefore,
single-cell RNA-seq data can guide multiparameter flow
cytometry and cell sorting experiments and should lead to
functional assays that validate the in silico results.

4 Conclusion

In conclusion, the detection and analysis of rare subsets of cells
requires several critical steps to be considered (Figure 3). Rare cell
isolation is most efficient when unwanted cells such as dead cells, red
blood cells, but also unwanted cells that are abundantly present in
the sample, are removed upfront. Further enrichment of rare cells is
most commonly achieved using fluorescence-activated cell sorting.
The choice of sequencing method should be considered based on the
biological question, but also depends on the number of cells that can
be isolated from your tissue. Sequencing itself will generate the final
dataset and while a broad range of analysis tools are available to help
and investigate the data, the choice of sequencing protocol will be
vital for the end result. Data analysis will help uncover new
biological insights, but one should carefully consider the quality
control and analysis steps to ensure that the biology of interest will
not be masked by non-relevant biological effects. Integration of new
populations with existing datasets will help with cell type
identification while functional assays can tell more about
phenotypic properties and biological function of cells.

Single-cell RNA seq has enabled the identification of rare cells
with distinct gene expression, and thus increased our understanding
of the complex heterogeneity of cell types and their interaction in
what previously seemed homogeneous cell populations. Integration
of data from various sources and databases can lead to new
discoveries or provide evidence for connections between cells.
For instance, the integration of CD34+ BM data with similar data
from the thymus helped in the identification of the three types of
cells that seed the human thymus (Cordes et al., 2022). The strength
of RNA-Seq is immensely enhanced when integrated with other
techniques at the single cell level, including those that mark protein
expression on the cell’s surface, such as flow cytometric approaches.
This not only provides independent validation of results by another
omics platform, but also can provide leads for further functional
studies. Therefore, the integration of omics data from different
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immune subsets combined with integration of various high data
content platforms (e.g., scRNA-seq, ATAC-seq, multi parameter
flow cytometry or mass cytometry) allow an unprecedented deep
immune profiling that leads to new biological insights.
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