

Delft University of Technology

Tensor power flow formulations for multidimensional analyses in distribution systems

Duque, Edgar Mauricio Salazar; Giraldo, Juan S.; Vergara, Pedro P.; Nguyen, Phuong H.; Slootweg, Han (J
G.).
DOI
10.1016/j.ijepes.2024.110275
Licence
CC BY
Publication date
2024
Document Version
Final published version
Published in
International Journal of Electrical Power and Energy Systems

Citation (APA)
Duque, E. M. S., Giraldo, J. S., Vergara, P. P., Nguyen, P. H., & Slootweg, H. (2024). Tensor power flow
formulations for multidimensional analyses in distribution systems. International Journal of Electrical Power
and Energy Systems, 162, Article 110275. https://doi.org/10.1016/j.ijepes.2024.110275

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.ijepes.2024.110275
https://doi.org/10.1016/j.ijepes.2024.110275

Electrical Power and Energy Systems 162 (2024) 110275

A
0

Contents lists available at ScienceDirect

International Journal of Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Tensor power flow formulations for multidimensional analyses in
distribution systems
Edgar Mauricio Salazar Duque a, Juan S. Giraldo b, Pedro P. Vergara c,∗, Phuong H. Nguyen a,
Han (J.G.) Slootweg a

a Electrical Energy Systems Group, Eindhoven University of Technology, Eindhoven, 5612 AE, The Netherlands
b Energy Transition Studies, Netherlands Organization for Scientific Research (TNO), Amsterdam, 1043 NT, The Netherlands
c Department of Electrical Sustainable Energy, Delft University of Technology, Delft, 2628 CD, The Netherlands

A R T I C L E I N F O

Keywords:
Power flow
Fixed-point iteration
Tensor
Mixed computer resources
GPU

A B S T R A C T

In this paper, we present two multidimensional power flow formulations based on a fixed-point iteration (FPI)
algorithm to efficiently solve hundreds of thousands of Power flows (PFs) in distribution systems. The presented
algorithms are the base for a new TensorPowerFlow (TPF) tool and shine for their simplicity, benefiting
from multicore Central processing unit (CPU) and Graphics processing unit (GPU) parallelization. We also
focus on the mathematical convergence properties of the algorithm, showing that its unique solution is at
the practical operational point. The proof is validated using numerical simulations showing the robustness of
the FPI algorithm compared to the classical Newton–Raphson (NR) approach. In the case study, a benchmark
with different PF solution methods is performed, showing that for applications requiring a yearly simulation
at 1-minute resolution, the computation time is decreased by a factor of 164, compared to the NR in its sparse
formulation. Finally, a set of applications is described, highlighting the potential of the proposed formulations
over a wide range of analyses in distribution systems.
1. Introduction

The power flow study is crucial for different technical analyses
of electrical distribution systems. For example, power flows (PFs) are
widely used in Time series simulation (TSS), where long-term analysis
depends on high granularity in time, e.g., integration of distributed
energy resources, Volt/Var control, and hosting capacity [1]. Another
widespread use of multiple power flows is the Probabilistic power
flow (PPF), in which exogenous uncertainties are modeled using sce-
narios, evaluated using power flows, and its impact evaluated using
stochastic analysis [2]. Many other applications require multiple power
flow executions, such as metaheuristic-based optimization, contingency
analysis, and machine learning in power systems [3].

Notably, the common factor between the aforementioned applica-
tions is the execution of multiple (thousands or even millions) power
flows to provide insightful results. These applications are multidimen-
sional regardless of the technique used to reduce the number of times-
tamps, scenarios, or training size [1–3]. The multidimensionality moti-
vates efficient power flow formulations and new techniques, providing
fast and accurate results. Multidimensional problems have been tackled
in the past, such as in [2] for the PPF problem using the embedded holo-
morphic power flow, or in [4] where tensors are used to formulate the

∗ Corresponding author.
E-mail address: P.P.VergaraBarrios@tudelft.nl (P.P. Vergara).

three-phase power flow. As expressed by the authors in [4], using the
tensor formulation reduced the memory requirement and improved the
calculation times compared to the traditional implementation. How-
ever, the authors reported that computational times underperformed
the ones with the BFS. On the other hand, authors in [2] found
their algorithm to be more computationally exhaustive than the com-
pared alternatives. These conclusions motivated the implementation
of a computationally efficient tensor formulation for multidimensional
problems.

Advances in computer hardware, such as the increase in the number
of cores in CPUs and the evolution of GPU designs, transitioning from
simple graphics processors to highly parallel multiprocessors of many
cores [5], opened a new paradigm of programming and rethinking
PF algorithms. New lines of research look at reducing computational
time by combining CPU and GPU resources to improve the speed of
convergence of Newton–Raphson algorithms [6–9], which is seen as a
preferred method to improve due to its quadratic convergence. How-
ever, the formulation of these approaches is designed specifically to
solve one power flow in the least amount of time. Unfortunately, these
algorithms are heavily focused on GPU-based architectures, making
https://doi.org/10.1016/j.ijepes.2024.110275
Received 11 April 2024; Received in revised form 23 July 2024; Accepted 26 Septe
vailable online 19 October 2024
142-0615/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
mber 2024

rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/ijepes
https://www.elsevier.com/locate/ijepes
mailto:P.P.VergaraBarrios@tudelft.nl
https://doi.org/10.1016/j.ijepes.2024.110275
https://doi.org/10.1016/j.ijepes.2024.110275
http://creativecommons.org/licenses/by/4.0/

E.M.S. Duque et al.

c
a
c
s
i
a

2

a
a

w
o
w
t
c
d

o
d
s
i
t
p

𝒗

w

𝑨

𝒄

𝑭

w
o
a

s
r
i

𝑗
p
w
𝑘
o
c

e

3
t

a
𝜃
p

International Journal of Electrical Power and Energy Systems 162 (2024) 110275
their implementation a tedious process and requiring specific GPU
programming knowledge. However, applying general mathematical for-
mulations of power flow to multidimensional problems using new
hardware capabilities is relatively new.

Fixed-point iteration (FPI) algorithms have been proposed to solve
the PF problem, showing accurate results and numerical stability.
As described in [10,11], FPI methods can guarantee convergence to
the power flow solution via the Banach fixed-point theorem. In this
paper, we advocate using an FPI algorithm to solve multidimensional
PF formulations. This fixed point algorithm has shown robust perfor-
mance [11]; it has a simple formulation for the case of distribution
system analyses,1 it is suitable and scalable for multidimensional appli-
ations in the form of a tensor, and can also benefit from multicore CPU
nd GPU parallelization. In this work, we also focus on the mathemati-
al convergence properties of the algorithm, showing its unique point of
olution at the practical operational point (if the solution exists), which
s the high-voltage, low-current solution. The contributions of the paper
re as follows:

• Present a practical tool for multidimensional power flow anal-
ysis in distribution systems, named TensorPowerFlow (TPF)2 in
its dense and sparse versions, which are based on a FPI algo-
rithm. The TPF opens new possibilities for using mixed computing
resources (CPUs or GPUs) to increase performance.

• Give a geometric and physical interpretation of the existence of
the power flow solution using an FPI iterative algorithm, showing
the robustness and numerical stability of the FPI algorithm.

. Single dimension fixed point power flow

We take a network with one substation, 𝑏 = |𝛺d| demand nodes,
nd 𝜙 = |𝛺𝜙| phases. Nodal voltages and currents are related by the
dmittance matrix 𝒀 ∈ C(𝑏+1)𝜙×(𝑏+1)𝜙 as follows:
[

𝒊𝑠
−𝒊𝑑

]

=
[

𝒀 𝑠𝑠 𝒀 𝑠𝑑
𝒀 𝑑𝑠 𝒀 𝑑𝑑

] [

𝒗𝑠
𝒗𝑑

]

(1)

here vectors 𝒊𝑠 ∈ C𝜙×1 and 𝒊𝑑 ∈ C𝑏𝜙×1 represent complex injections
f nodal current at the substation and at the demand nodes 𝑑 ∈ 𝛺d,
hile 𝒗𝑠 ∈ C𝜙×1 and 𝒗 ∶= 𝒗𝑑 ∈ C𝑏𝜙×1 are complex components of

he respective nodal voltages. It must be noted that (1) is general and
an represent single-phase, polyphase, radial, meshed networks and
istributed generation of constant power.

In this paper, we call a single-dimensional power flow to the solution
f (1) for a single vector of nominal complex power 𝒔 ∈ C𝑏𝜙×1 at the
emand nodes, which is a snapshot of consumption in the grid. The
ingle-dimensional power flow formulation, namely the FPI algorithm,
s the basis of the tensorized version, and it is based on the notation of
he equivalent version of the successive approximation method (SAM)
resented in [11] as:

(𝑛+1) = 𝑭𝒗∗(𝑛)
◦(−1) +𝒘 (2)

ith

= 𝐝𝐢𝐚𝐠
(

𝛼𝑃 ⊙𝒔∗
)

; 𝑩 = 𝐝𝐢𝐚𝐠
(

𝛼𝑍 ⊙ 𝒔∗
)

+ 𝒀 𝑑𝑑 ;

= 𝒀 𝑑𝑠𝒗𝑠 + 𝛼𝐼 ⊙ 𝒔∗;

= −𝑩−1𝑨; 𝒘 = −𝑩−1𝒄 (3)

here ⊙ is the Hadamard product, 𝒗∗(𝑛)
◦(−1) the element-wise reciprocal

f the conjugated vector containing the nodal voltages at iteration 𝑛,
nd 𝛼𝑍 , 𝛼𝐼 , and 𝛼𝑃 represent the coefficients of the ZIP load model

1 It must be noted that voltage-controlled buses (PV-buses) are not con-
idered in the current formulation since generators with automatic voltage
egulation are not common in distribution systems [12]. The interested reader
s referred to [13] if PV-buses need to be included.

2 Public repository of the TensorPowerFlow tool is available here [14].
 𝑖

2
per demand node and phase. It is worth mentioning that 𝑨 ∈ C𝑏𝜙×𝑏𝜙,
𝑩 ∈ C𝑏𝜙×𝑏𝜙, and 𝒄 ∈ C𝑏𝜙×1 are constant matrices and vector within the
iterative process for a particular operating point. Thus, 𝑭 ∈ C𝑏𝜙×𝑏𝜙

and 𝒘 ∈ C𝑏𝜙×1 can be calculated once and used at each iteration.
The algorithm in (2) can be rearranged as an iterative mapping

using 𝒗∗◦−1(𝑛) = 𝒗(𝑛) ⊘ ‖𝒗(𝑛)‖2◦, where ⊘ is the Hadamard division and
‖ ⋅ ‖◦ is the element-wise euclidean norm, as

𝒗(𝑛+1) = −𝑩−1 𝐝𝐢𝐚𝐠(𝛼𝑝 ⊙ 𝒔∗ ⊘ ‖𝒗(𝑛)‖2◦)𝒗(𝑛) +𝒘

= 𝑇 (𝒗(𝑛)) (4)

Here, the Banach fixed-point theorem is used to prove that (4) is a
contraction mapping in order to have a solution. This is the case where
𝑇 (⋅) satisfies

‖𝒗(𝑛+1) − 𝒗(𝑛)‖1 ≤ 𝑘‖𝑇 (𝒗(𝑛+1)) − 𝑇 (𝒗(𝑛))‖1, (5)

where the norm-1 distance is used in our case (‖ ⋅ ‖1), that is, for
vectors ‖𝒙‖1 =

∑

𝑖 |𝑥𝑖|, where | ⋅ | is the absolute value, and for matrices
‖𝐴‖1 = max𝑗 (

∑

𝑖 |𝑎𝑖𝑗 |), which is the column norm. When 𝑘 < 1, the
contraction mapping 𝑇 (⋅) has a unique point of convergence. This can
be shown as
‖𝒗(𝑛+1) − 𝒗(𝑛)‖1 = ‖𝑩−1 𝐝𝐢𝐚𝐠(𝛼𝑝 ⊙ 𝒔∗ ⊘ ‖𝒗(𝑛+1) ∥2◦)𝒗(𝑛+1)

− 𝑩−1 𝐝𝐢𝐚𝐠(𝛼𝑝 ⊙ 𝒔∗ ⊘ ‖𝒗(𝑛)‖2◦)𝒗(𝑛) ∥1
(6)

Assuming that 𝒔 is a feasible load consumption (details of this
feasibility are given in Section 3), the iterative algorithm reaches closer
voltage values at each iteration, i.e., 𝒗(𝑛+1) ↦ 𝒗(𝑛). Which means that
after a number of iterations, the voltage at the solution is 𝒗(∞). The con-
jugate load power in each bus-phases can be expressed by its equivalent
impedance using the solution voltage 𝒛𝑙, i.e., 𝒔∗ ⊘ ‖𝒗(∞)‖

2
⊙ = 1⊘ 𝒛𝑙,

where 1 is a vector of ones of dimension 𝑏𝜙. Then (6) can be reduced
using Hölder’s inequality as

‖𝒗(𝑛+1) − 𝒗(∞)‖1 = ‖𝑩−1 𝐝𝐢𝐚𝐠(𝛼𝑝 ⊘ 𝒛𝑙)(𝒗(𝑛+1) − 𝒗(∞))‖1
≤ ‖𝑩−1 𝐝𝐢𝐚𝐠(𝛼𝑝 ⊘ 𝒛𝑙)‖1‖(𝒗(𝑛+1) − 𝒗(∞))‖1
≤ 𝑘‖(𝒗(𝑛+1) − 𝒗(∞))‖1

(7)

From (7), for purely constant power 𝛼𝑝 = 1, and noticing that 𝑩−1

is the grid impedance matrix 𝒁B; then, the contraction scalar for the
converged problem is

𝑘 = ‖𝒁B𝐝𝐢𝐚𝐠(1⊘ 𝒛𝑙)‖1
= |𝑧̂𝑗𝑗 |∕|𝑧̂𝑙,𝑗 | (8)

where the hat notation represents the solution values of the biggest
ratio between impedances. The only possible solution of (8) in order to
be a contraction mapping, i.e., 𝑘 < 1, is when |𝑧𝑗𝑗 | < |𝑧𝑙,𝑗 |. The diagonal
entries of 𝒁B, i.e., |𝑧𝑗𝑗 |, are the Thevenin impedance equivalent of bus

[15], meaning that the only solution for (8) is for the operational
oint of the network with high impedance (high voltage, low current),
hich is the feasible operational state of the network. Noteworthy,
= 0 necessarily implies that 𝛼𝑝 = 0, indicating that the solution is

btained after one iteration if loads are modeled as a combination of
onstant current and constant impedances.

The physical interpretation of (8) can be shown by analysis of an
quivalent two-bus system, discussed in detail in the next section.

. Geometric interpretation of the existence of a power flow solu-
ion

Consider a grid formed by two nodes: node 0 as a source node,
cting as the slack bus with known voltage 𝑣0 and reference angle
0 = 0, and node 1 with load 𝑠𝑙, operating as a load bus. Then, the
ower of the load is given by 𝑠𝑙 = 𝑣𝑙𝑖∗𝑙 , defining 𝑣𝑙 = (𝑧𝑙∕(𝑧𝑠 + 𝑧𝑙))𝑣0,

𝑙 = (𝑣0∕(𝑧𝑠 + 𝑧𝑙)), where the source load is 𝑧𝑠 = 𝑟𝑠 + 𝒋𝑥𝑠, and the

E.M.S. Duque et al.

f
o
t

e
d

𝑠

w
a

International Journal of Electrical Power and Energy Systems 162 (2024) 110275
Fig. 1. Geometry of the solutions of the power flow problem for a two-bus system with parameters 𝑧𝑠 = 1.0+𝒋0.5 and ‖𝑣𝑜‖ = 1.0. (a) and (b) are the contour graphs for the circular
ormulation (10) and (11), for 𝑝𝑙 and 𝑞𝑙 , respectively; black circles highlight a feasible combination of active and reactive power. (c) The red circles highlight an infeasible value
f the load power (no crossing between the circles), while the feasible values have two points of solution that form a line that passes through the origin. (d) All the solutions for
he critical load power, which has only one point of contact between the circles, form a circle with radius ‖𝑧𝑠‖.
F

quivalent load impedance is 𝑧𝑙 = 𝑟𝑙 + 𝒋𝑥𝑙. The power on the load
efined in terms of the source voltage and impedances is

𝑙 = 𝑝𝑙 + 𝒋𝑞𝑙 =
(𝑟𝑙
𝑎2 + 𝑏2

+ 𝒋
𝑥𝑙

𝑎2 + 𝑏2
)

‖𝑣0‖
2, (9)

here 𝑎 = (𝑟𝑠 + 𝑟𝑙) and 𝑏 = (𝑥𝑠 + 𝑥𝑙). Rearranging the expressions for 𝑝𝑙
nd 𝑞𝑙 into circle equations as (10) and (11) respectively, we have that

(𝑟𝑙 − 𝑐1,𝑝)2 + (𝑥𝑙 − 𝑐2,𝑝)2 = 𝑟2𝑝 (10)

(𝑟𝑙 − 𝑐1,𝑞)2 + (𝑥𝑙 − 𝑐2,𝑞)2 = 𝑟2𝑞 (11)

with,

𝑐1,𝑝 =
‖𝑣0‖2

2𝑝𝑙
− 𝑟𝑠; 𝑐1,𝑞 = −𝑟𝑠; 𝑐2,𝑝 = −𝑥𝑠;

𝑐2,𝑞 =
‖𝑣0‖2

2𝑞𝑙
− 𝑥𝑠; 𝑟𝑝 =

‖𝑣0‖
2𝑝𝑙

√

‖𝑣𝑜‖2 − 4𝑟𝑠𝑝𝑙;

𝑟𝑞 =
‖𝑣0‖
2𝑞𝑙

√

‖𝑣𝑜‖2 − 4𝑥𝑠𝑞𝑙 .

The contour plots of (10) and (11) are shown in Fig. 1(a,b), high-
lighting as an example the circles for the power values 𝑝𝑙 = 0.18 [p.u]
and 𝑞𝑙 = 0.11 [p.u]. The intersections of the circles are the two possible
impedance solutions for 𝑧𝑙, i.e., 𝑧𝑙,1 and 𝑧𝑙,2, where the values for 𝑝𝑙 and
𝑞𝑙 can exist simultaneously. For example, Fig. 2(c) shows two cases: the
first is where the power flow has a solution and the circles intersect
(black line) at two points, and the second is where the red circle does
not have an intersection, meaning an infeasible combination of power
values. The intersection points of the circles form a line that passes
through the origin in all cases. This can be shown using the intercept
in the line equation 𝑦 = 𝑚𝑟𝑙 + 𝛽, shown as a blue line in Fig. 1(c). The
intercept is defined in terms of the parameters of the two circles as

𝛽 =

𝛾0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑐21,𝑝 + 𝑐22,𝑝 + 𝑟2𝑞) −

𝛾1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑐21,𝑞 + 𝑐22,𝑞 + 𝑟2𝑝)

2(𝑐2,𝑝 − 𝑐2,𝑞)
(12)

where, after the corresponding algebraic manipulations, it can be seen
that the numerator of (12) is zero, i.e., 𝛾0 = 𝛾1.

The maximum loading scenario occurs when the two circles are
tangent to each other (Fig. 1(d)). The tangent line of the point of
contact between the circles is perpendicular to their radii and passes
through their origins according to (12). Therefore, the altitude (ℎ) of
the scalene triangle formed by the centers of the circles and the origin,
that is, points ⟨(𝑐1,𝑝, 𝑐2,𝑝), (𝑐1,𝑞 , 𝑐2,𝑞), (0, 0)⟩, can be calculated using the
triangle inequalities as

ℎ2 = (𝑐1,𝑝)2 + (𝑐2,𝑝)2 − 𝑟2𝑝 = 𝑟2𝑠 + 𝑥2𝑠 = ‖𝑧𝑠‖
2. (13)

This means that all unique points of contact between the two circles
lie in another circle defined by ‖𝑧𝑠‖, which is the magenta circle shown
in Fig. 1(c,d). This also means that the critical points where the power
3
Fig. 2. Example of feasibility regions depicted by (15) and (16). (a) Each point of the
maximum power transfer circle ‖𝑧𝑠‖ in the impedance plane (𝑟𝑠 , 𝑥𝑠) parameterizes the
parabola in (15) that defines the feasible load power values. (b) The vertexes of the
d parabolas are rotating around the circle defined by (16) in the load power plane
(𝑝𝑙 , 𝑞𝑙). Only points of the first quadrant are shown, highlighting three example points
(𝑧𝑠,1, 𝑧𝑠,2, 𝑧𝑠,3) with their respective parabolas. Feasibility region for the case of 𝑧𝑠,2 is
emphasized with red and yellow. The green region is the union of all possible feasible
regions for all parabolas.

flow is feasible and with only one impedance solution 𝑧𝑙, 𝑧𝑙,1 = 𝑧𝑙,2,
are when ‖𝑧𝑠‖ = ‖𝑧𝑙‖, which is the point of maximum power transfer.
rom this, it is clear and important to notice that there are two possible

solutions for the two-bus system that are not critical; one lives inside
and the other outside of the circle defined by ‖𝑧𝑠‖, meaning that
‖𝑧𝑙,1‖ < ‖𝑧𝑠‖ and ‖𝑧𝑙,2‖ > ‖𝑧𝑠‖.

A region of convergence in the complex power plane (𝑝𝑙 , 𝑞𝑙) can be
defined for the power in the load 𝑠𝑙 using the critical point of contact
of the two circles in the impedance plane (𝑟𝑙 , 𝑥𝑙). When the circles have
one point of contact, then the distance between the centers of the circles
equals the sum of its radii, that is,

𝑟𝑝 + 𝑟𝑞 =
√

(𝑐1,𝑝 − 𝑐1,𝑞)2 + (𝑐2,𝑝 − 𝑐2,𝑞)2 (14)

Rearranging this expression, we have the following quadratic equa-
tion, named 𝑓𝛼(𝑝𝑙 , 𝑞𝑙)|(𝑟𝑠 ,𝑥𝑠), for 𝑝𝑙 and 𝑞𝑙

𝐺𝑞2𝑙 +𝐻𝑝𝑙𝑞𝑙 + 𝐼𝑝2𝑙 + 𝐽𝑞𝑙 +𝐾𝑝𝑙 + 𝐿 = 0 (15)

where,

𝐺 = 𝑟2𝑠 𝐻 = −2𝑟𝑠𝑥𝑠 𝐼 = ‖𝑣0‖
2𝑥𝑠

𝐽 = 𝑥2𝑠 𝐾 = ‖𝑣0‖
2𝑟𝑠 𝐿 = −‖𝑣0‖2∕4

The conic section defined by (15) is a parabola due to its discrim-
inant 𝛥 = 𝐻2 − 4𝐺𝐼 = 0. The parabola is parameterized by the source
impedance 𝑧 , i.e., 𝑟 and 𝑥 . An example of this parabola where 𝑧 has
𝑠 𝑠 𝑠 𝑠

E.M.S. Duque et al. International Journal of Electrical Power and Energy Systems 162 (2024) 110275
Fig. 3. Convergence analysis of NR and FPI algorithms. (a) and (c) corresponds to the regions of convergence for different initial values of voltages 𝑣0 for NR and FPI algorithms,
respectively. The green region corresponds to the high voltage (high impedance) and the red region to the low voltage (low impedance) solutions. (b) and (d) correspond to the
number of iterations required for convergence for the NR and FPI algorithms.
only a resistive value is shown in blue in Fig. 2, represented by 𝑧𝑠,3. The
parabola curve represents all (𝑝𝑙 , 𝑞𝑙) pair of values for which the two-bus
system is at the maximum power transfer point, which means that it has
only one equivalent load impedance solution. The region defined inside
the parabola represents the power values that have a valid (feasible)
solution, meaning that 𝑧𝑙,1 and 𝑧𝑙,2 exist, and the ones outside are
values for which the solution of the system does not converge, i.e., it
is infeasible. From Fig. 2, it can be seen that the feasible/infeasible
regions change with the parameterized values of the parabola. If we
compute all sets of parabolas  = {𝑓𝛼(𝑝𝑙 , 𝑞𝑙)|(𝑟𝑠 ,𝑥𝑠) | 𝑟

2
𝑠 + 𝑥2𝑠 = ‖𝑧𝑠‖2}, and

calculate the union of all feasible power flow regions defined by , we
have the circle delimiting such a region by ‖𝑠𝑙‖ ≤ ‖𝑣0‖2

4‖𝑧𝑠‖
. This circle is

the collection of all the vertices of the rotating parabolas. This means
that the condition to have a feasible solution for the power flow is

‖𝑣0‖
2 ≥ 4‖𝑠𝑙‖‖𝑧𝑠‖. (16)

This condition that is in the norm-form, is used to prove the exis-
tence of the power flow solution in [16–18], and here it is shown as a
geometrical derivation and interpretation. It should be noted that this
region (16) is a conservative estimate, since the actual regions depend
on specific parameterization of 𝑟𝑠 and 𝑥𝑠 [18], as shown in Fig. 2(b)
for the 𝑧𝑠,2 example. In other words, it can be stated that a solution is
feasible within the green circle; however, if it is outside the circle, it
does not necessarily mean it is infeasible.

Therefore, if the power consumption satisfies at least the condi-
tion (16) [17], and the power flow converges using the iterative fixed
point algorithm in (2), and following the condition in (8), then, this
implies that the unique point of convergence is the high-impedance
solution.

The two-bus system is solved using the NR and FPI algorithms,
with different starting points 𝒗0 to numerically confirm the unique
convergence point of (2). The first row of subplots in Fig. 3 corresponds
to the NR and the second, to FPI solutions. The green and red colors
in Fig. 3(a,c) represent the attraction regions for high-voltage (high-
impedance) and low-voltage solutions, respectively. The number of
iterations for each algorithm is shown as colored contour plots in
Fig. 3(b,d) for the NR and FPI algorithms, respectively. The results
confirm the robustness of the FPI algorithm, which converges to the
operational point regardless of the initial voltage estimate, unlike NR.
Notice that for a simple two-bus system, the risk of falling into a
nonoperational point (but mathematically valid) still exists with the NR
algorithm, and it is dependent on the 𝒗0 starting point. Additionally,
the FPI algorithm has a consistent number of iterations in the complex
4
domain for 𝑣𝑙, which is related to the rate of convergence determined
by the contraction scalar 𝑘. The interested reader is referred to [11] for
further numerical comparisons.

The NR algorithm in polar coordinates needs fewer iterations than
the FPI approach [11,19]. Moreover, NR benefits from system spar-
sity, making it ideal for sequential computers. Still, its per-iteration
computation cost is significantly higher due to the need for Jacobian
inverse calculations. When dealing with hundreds to millions of power
flows, the cumulative cost of NR iterations adds up, leading to longer
processing times. Thanks to advancements in computer hardware, es-
pecially faster matrix multiplications, the FPI algorithm is an excellent
choice for extensive power flow simulations on modern computers for
distribution networks. Its reliance on successive matrix multiplications
and its simple formulation makes it easy to program. Moreover, it can
naturally extend to a tensor setting.

4. Multidimensional fixed point power flow

4.1. Tensor power flow - dense formulation

Consider a study that requires the analysis of an extensive number
of cases of load consumption. A tensor of the power can be built as
𝑺 ∈ C…×𝑝×𝑟×𝑡×𝑏𝜙, where 𝑝, 𝑟, and 𝑡 could mean a number of experiments,
scenarios, and time steps, with the possibility of extending the tensor
to more dimensions. The FPI algorithm in (2) in its tensor form is
described as

𝑽 (𝑛+1) = 𝑽 ∗
(𝑛)

◦(−1) + (17)

where dimensions of the tensors are  ∈ C…×𝑝×𝑟×𝑡×𝑏𝜙×𝑏𝜙,
𝑽 (𝑛+1), 𝑽 ∗

(𝑛)
◦(−1), ∈ C…×𝑝×𝑟×𝑏𝜙×𝑡. An example of the structure of the

tensors is shown in Fig. 4(a). Recall that the submatrices 𝑭 in (3),
which form the tensor  , are composed by a matrix multiplication
that involves 𝒁𝐵 , meaning that  is dense. It should be noted that
if topology does not change and the load models is constant load
(𝜶P = 1), building a tensor  only requires the repetition of the
constant matrix 𝒁𝐵 . Furthermore, with fixed voltage in the distribution
transformer, the tensor  is also constant and is the duplication of the
vector 𝒘 for all the cases under study. For the sake of compactness,
the repetitions of the matrix/vector, and for generalization for any
number of dimensions, we define the dimensional tensor elements, 𝜏,
as 𝜏 = ⋯ × 𝑝 × 𝑟 × 𝑡, in order to reshape the tensors in (17) to simplify
programming and enhance mathematical notation clarity.

E.M.S. Duque et al.

1
1
1

d
𝑺
v
p
I
c
t
t
l
L
f
m
r


T
i

4

s



w
o

w
s
a
r
s

⏟

w
o
a
F
s

t
a

t
s

International Journal of Electrical Power and Energy Systems 162 (2024) 110275
Algorithm 1 : Tensor power flow - Dense
1: 𝑏𝜙 = number of bus-phases, 𝜏 = dimensional tensor elements (number of

power flows).
2: Input parameters: 𝑺̇ ∈ C𝑏𝜙×𝜏 , 𝒁𝐵 ∈ C𝑏𝜙×𝑏𝜙, 𝑾 ∈ C𝑏𝜙×1, tolerance, iterations.
3: Output parameters: 𝑽̇ 𝑛 ∈ C𝑏𝜙×𝜏 , 𝑛.
4: 𝑽̇ 0 = 1 + 𝒋0, 𝑽̇ 0 ∈ C𝑏𝜙×𝜏 ; 𝑛 = 0; tol = ∞
5: while tol ≥ tolerance 𝐚𝐧𝐝 𝑛 < iterations do
6: for 𝑖 = 1 to 𝜏 do
7: 𝑽̇ (𝑛+1)[𝑖] = 𝒁𝐵(𝑺̇[𝑖]⊙ 𝑽̇

◦(−1)
(𝑛) [𝑖])∗ +𝑾

8: ⊳ Iterate over the dimension 𝜏 of 𝑺̇, and 𝑽̇ (𝑛).
9: end for
0: tol = max(‖𝒔(𝑛+1) − 𝒔(𝑛)‖2); 𝑛 = 𝑛 + 1
1: end while
2: return (𝑽̇ (𝑛), 𝑛)

The reshaped form of the power and voltage tensors in their two-
imensional matrix form is shown in Fig. 4(b). Their dimensions are
̇∗, 𝑽̇ (𝑛+1), 𝑽̇

∗
(𝑛) ∈ C𝑏𝜙×𝜏 , where the dot notation stands for the reshaped

ersion of the tensors. The power matrix 𝑺̇∗ is the concatenation of the
ower vectors 𝒔∗ for all the cases under study along the secondary axis.
t should be mentioned that reshaping the tensor does not invalidate the
onvergence of the FPI algorithm, as the update of the voltage values is
he same as (2). The advantage of the tensor form is that matrix opera-
ions can be accelerated via parallelization on the CPU using standard
ow-level basic linear algebra subprograms (BLAS), e.g. OpenBLAS,
APACK, IntelMKL, or exploiting the use of the multicore architectures
rom GPUs, which are specifically optimized for the parallel processing
atrix multiplications. Algorithm 1 shows the implementation of the

e-shaped version of (17).3
Although the dense formulation is simple to implement, the tensor
could take a considerable amount of memory because it is dense.

herefore, for cases of networks with large 𝑏𝜙 the sparse formulation
s proposed.

.2. Tensor power flow - Sparse formulation

The tensor algorithm in (17) can be reformulated to exploit the
parsity of 𝒀 𝑑𝑑 and 𝒀 𝑑𝑠. The sparse formulation is defined as

𝑽 (𝑛+1) = 𝑽 ∗
(𝑛)

◦(−1) +. (18)

here  ∈ C…×𝑝×𝑟×𝑡×𝑏𝜙×𝑏𝜙 is the tensor containing the resulting tensor
peration of  = −◦(−1), where ,  ∈ C…×𝑝×𝑟×𝑡×𝑏𝜙×𝑏𝜙 and
∈ C…×𝑝×𝑟×𝑏𝜙×𝑡 a tensor containing the resulting tensors  = ◦(−1),

here  ∈ C…×𝑝×𝑟×𝑏𝜙×𝑡. An example of (18) is shown in Fig. 4(c). The
parse formulation does not include the inverse of 𝒀 𝑑𝑑 in any form,
nd similarly to the dense formulation, the expression in (18) can be
e-shaped in a two-dimensional matrix form to construct a sparse linear
ystem of the type 𝐴𝑥 = 𝑏 as

̇
⏟⏟
𝐴

𝑽̇ (𝑛+1)
⏟⏟⏟

𝑥

= 𝑽̇ ∗ ◦(−1)
(𝑛) + ̇

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
𝑏

, (19)

here the reshaped sparse matrix ̇ is the diagonal concatenation
f the submatrices of . Vectors ̇ (𝑛+1), ̇ (𝑛), and ̇ are vertically
rranged. A visual example of the form of this reshape is shown in
ig. 4(d). The system in (19) can be solved iteratively by a sparse direct
olver.

The sparse direct solvers have basically three steps: (i) analysis of
he matrix ̇ to reduce fill-in (via Cholesky, LU, or QR decomposition)
nd symbolic factorization, (ii) numerical factorization, and (iii) solving

3 Note that variable tol is evaluated after the first iteration to guarantee
he convergence of the algorithm even if another mathematically feasible
olution is chosen as starting point.
5
Fig. 4. Example of the tensor power flow formulations for a simulation with a four-
dimensional power tensor 𝑺 ∈ C𝑝×𝑟×𝑡×𝑏𝜙, for 𝑝 = 𝑟 = 2 and 𝑡 = 𝑏𝜙 = 3. (a) Visualization of
the tensor dense formulation of (17). (b) In the case of constant power, the reshaped
tensors use resources efficiently as the operations highlighted in red are performed
concurrently. (c) Visualization of the tensor sparse formulation in (18), where tensors
 and  are sparse. (d) Reshaped sparse formulation (19), which is solved iteratively
using a direct sparse solver.

the system [20]. It is critical to note that the main advantage of (19)
is that the sparse matrix ̇ is constant for purely constant power load
model and does not change during iterations. Therefore, steps (i) and
(ii) are performed only once, in the first iteration, which significantly
reduces the computing time for subsequent steps. The implementation
of (19) is shown in Algorithm 2. It is worth recalling that in the NR
algorithm, the sparse Jacobian matrix needs to be updated, requiring
the first two steps in every iteration to calculate its inverse, increasing
the computational time. Notice that rearranging the formulation from
(17) to (18) does not invalidate the convergence of the algorithm, as
the sequence of the voltage values, that is, {𝑽 (𝑛)}∞𝑛=0, is still the same.

5. Simulation results

In this section, we discuss the comparison of Algorithms 1 and 2,
labeled Tensor (Dense) and Tensor (Sparse), respectively, against cur-
rent methods, such as SAM [11], NR with its sparse formulation in polar
coordinates (NR (Sparse)) [21] and as implemented in the PandaPower
package [22]; and the backward-forward sweep method (BFS) [23].
A more comprehensive comparison using different PF algorithms can
be found in [11]. Additionally, the tensor-dense formulation is pro-
grammed to use a GPU to quantify computational speed improvements;
this implementation is named Tensor (GPU). The implementation of
Algorithms 1 and 2 is publicly available to the community as a Python

E.M.S. Duque et al.

1
1

f

International Journal of Electrical Power and Energy Systems 162 (2024) 110275
Algorithm 2 : Tensor power flow - Sparse
1: Input parameters:
2: 𝑺̇ ∈ C𝑏𝜙×𝜏 , 𝒀𝒅𝒅 ∈ C𝑏𝜙×𝑏𝜙, 𝒀𝒅𝒔 ∈ C𝑏𝜙×1, 𝒗𝑠 ∈ C, tolerance, iterations. ⊳ 𝒀𝒅𝒅

and 𝒀𝒅𝒔 are sparse.
3: Output parameters: 𝑽̇ (𝑛) ∈ C𝑏𝜙×𝜏 , 𝑛.
4: ̇ = −diag(𝑺̇

∗(−1)
[0])𝒀𝒅𝒅 ⊳ [0] first entry over dimension 𝜏.

5: ̇ = −diag(𝑺̇
∗(−1)
[0])𝒀𝒅𝒔𝒗𝑠

6: for 𝑖 = 1 to 𝜏 do
7: 𝒎 = −diag(𝑺̇

∗(−1)
[𝑖])𝒀𝒅𝒅

8: 𝒉 = −diag(𝑺̇
∗(−1)
[𝑖])𝒀𝒅𝒔

9: ̇ =

(

̇ 0
0 𝒎

)

⊳ Concat. sparse matrix diagonally

10: ̇ =
(

̇
𝒉

)

⊳ Concatenate sparse vectors

11: end for
12: 𝑽̇ 0 = 1 + 𝒋0, 𝑽̇ 0 ∈ C(𝑏𝜙⋅𝜏)×1; 𝑛 = 0; tol = ∞
13: while tol ≥ tolerance 𝐚𝐧𝐝 𝑛 < iterations do
14: 𝑽̇ (𝑛+1) = solve(̇, 𝑽̇

∗◦(−1)
(𝑛) + ̇) ⊳ Sparse system (19)

15: tol = max(‖𝒔(𝑛+1) − 𝒔(𝑛)‖2); 𝑛 = 𝑛 + 1
6: end while
7: 𝑽 𝑛 = reshape(𝑽̇ 𝑛, (𝑏𝜙 × 𝜏))

18: return (𝑽 (𝑛), 𝑛)

package named TensorPowerFlow.4 The experiments were conducted
on a conventional laptop with an Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80 GHz, with 8 Logical Processor(s), and a NVIDIA Quadro M1200
with 4 GB (GDDR5) of memory.

5.1. Computational performance

The goal of the experiments is to test the computation performance
of the different methods for two aspects: (i) grid size and (ii) di-
mensionality. For the first aspect, different networks with bus-phases
𝑏𝜙 ranging from 9 to 5k are generated using a 𝑘-ary tree generative
model, with random 𝑘-child between 1 and 5, in order to simulate the
radial structure of the distribution system [24]. For the second aspect,
the dimensional tensor elements 𝜏 range from 10 to 525k, which is
equivalent to the number of PFs to be computed, and the power values
are generated using a multivariate elliptical copula [25] to simulate
realistic scenarios of consumption profiles. For consistency, the same
power scenarios and networks are used for all methods. Additionally,
for methods that use sparse solvers, the Intel oneMKL - PARDISO is used
in all of them for a fair comparison.

The performance of the methods to the increase of 𝑏𝜙 is shown
for one single PF in Fig. 5(a), and for 500 PFs Fig. 5(b). The fastest
methods for one single PF are SAM and Tensor (Dense), with an
execution time of ≈0.1 [ms] for the smallest network. However, both
methods reduce their performance as the grid size increases. Notice that
around 900 bus-phases the Tensor (Sparse) formulation outperforms
the SAM; around 2k bus-phases it is outperformed by Tensor (Sparse),
and continues with the trend as the size continues to increase. In the
case of 500 PF (Fig. 5(b)), the Tensor (Dense) continues as the top
performer for smaller grids (<500 bus-phases), seconded by the Tensor
(Sparse) where after a grid size of 2k is better than the Tensor (Dense).
Noteworthy, the SAM lags behind from the start because it requires
more matrix multiplications in its original formulation. An interest-
ing behavior is seen for the Tensor (GPU) implementation, which is
significantly slower for a small number of power flows (Fig. 5(a));
however, when the number of matrix operations is large, either due
to an increase of 𝜏 or 𝑏𝜙, the Tensor (GPU) outperforms the others, as
seen in Fig. 5(b)(c). This behavior can be explained due to the overhead
time required to transfer the data from the host computer to the GPU.

4 Public repository of the TensorPowerFlow tool is available here [14].
6
Fig. 5. Comparison of the performance of the algorithms. Computational wall-times
(𝑡𝑐) increase the bus-phases size, 𝑏𝜙, for (a) 1 power flow, and (b) 500 power flows.
(c) Test for increased dimensional tensor elements 𝜏, for a grid size of 500 bus-phases
(𝑏𝜙). (d) Computational complexity fit with asymptotic complexity model 𝑡𝑐 = 𝑐 ⋅ 𝑛𝑘

(solid lines are 𝑐, dotted 𝑘). Tensor dense, sparse, and GPU are the proposed algorithms
in this paper.

Finally, the empirical computational complexity of the algorithms
has been estimated for a set of 𝑏𝜙 values by running 17k PFs each
time, using a power-law-fitting model [26]. The power-law-fitting gives
a concise, quantitative way to compare the computational cost of each
algorithm as the number of PF increases (𝜏) for each 𝑏𝜙. That is,
inding the value for 𝑘 and 𝑐 for 𝑡𝑐 = 𝑐 𝑛𝑘 as 𝑛 increases. The results

are shown in Fig. 5(d). For example, for 𝑏𝜙 = 3000 the pairs {𝑘, 𝑐} are:
SAM {1.03, 0.17}; BFS {0.99, 0.43}; NR (Sparse) {1.18, 7.79 × 10−3};
Tensor (Dense) {1.02, 3.21 × 10−3}; Tensor (Sparse) {1.02, 2.53 × 10−3};
and Tensor (GPU) {1.10, 0.25 × 10−3}. Notice that all tested methods
show a close to linear complexity (𝑘 ≈ 1) for each 𝑏𝜙, and the value of 𝑐
establishes the difference between them. This close to linear complexity
means that for a given network (fixed topology), the computational
time increases approximately linearly with 𝜏, which can be graphically
inferred from Fig. 4(b) for the proposed algorithms and can be extended
analogously to the SAM, BFS, and NR (Sparse). On the other hand, the
value of 𝑐 is proportional to the complexity of a single PF for a given
grid, e.g., the number of operations required. Results confirm that the
SAM and BFS scale poorly as the grid size increases, as already seen
in Fig. 5(b). A better performance can be seen for NR (Sparse), which
is close to the three proposed tensor formulations. However, notice
that 𝑐 in the NR (Sparse) is at least twice as high as in the Tensor
(Dense), three times higher than in the Tensor (Sparse) and thirty times
higher than in Tensor (GPU). These results indicate that as the grid
size increases, the preferred formulation is Tensor (GPU), followed by
Tensor (Sparse) and Tensor (Dense).

5.2. Application in yearly time series simulation

A comparative test is performed for a yearly TSS study for grid
sizes ranging from 100 to 5000 bus-phases (𝑏𝜙), for time resolution
of 1, 15, 30, and 60 min. The results are shown in Table 1, where the
maximum waiting time for the results is set to 9 h. In general, all the
FPI methods are preferred and best suited for large amounts of PFs
instead of conventional NR and BFS techniques. Among the iterative
methods, the proposed Tensor (Dense) algorithm stood out as the fastest

E.M.S. Duque et al. International Journal of Electrical Power and Energy Systems 162 (2024) 110275
Table 1
Computing wall-times for solving one year of power flows at different time resolutions (table values in minutes).

Algorithm Grid size (𝑏𝜙) @1 h (8760 pf) @30 min (17 520 pf) @15 min (35 040 pf) @1 min (52 5600 pf)

BFS 100 1.98 3.96 7.91 118.71
NR (Sparse) 100 1.03 2.06 4.12 61.85
Tensor (Sparse) 100 0.17 0.34 0.68 10.14
SAM 100 0.02 0.04 0.09 1.29
Tensor (GPU) 100 0.02 0.04 0.09 1.30
Tensor (Dense) 100 0.01 0.01 0.02 0.37

BFS 5000 186.49 372.99 745.97 –
NR (Sparse) 5000 8.77 17.54 35.08 526.23
Tensor (Sparse) 5000 2.43 4.86 9.71 145.71
SAM 5000 108.09 216.18 432.36 –
Tensor (GPU) 5000 0.92 1.84 3.69 55.34
Tensor (Dense) 5000 2.60 5.19 10.38 155.71
for the smaller grid size case. It completed the 1-minute resolution
case (approximately 525k PFs calculations) in only 22 s. To put this
in perspective, compared to the NR (Sparse) method – which took
more than one hour to accomplish the same task – the Tensor (Dense)
displayed a remarkable speedup factor of 164.

In the case of larger grids (5k bus-phases), the proposed methods
are still more efficient than NR (Sparse), and the Tensor (Sparse) is
the second best for all time resolutions. However, the Tensor (GPU)
is the fastest, showing the speedup of using GPU, which is capable
of massively parallelizing the matrix multiplications in a multi-thread
setting. It is worth mentioning that a GPU-based sparse solver could
also be utilized to enhance the Tensor (Sparse) formulation, e.g., us-
ing STRUMPACK or MAGMA [27], though this area requires further
exploration.

6. Remarks and potential applications

The obtained results indicate that as the grid size increases, the
preferred formulation is Tensor (GPU), followed by Tensor (Sparse)
and Tensor (Dense). It is important to note that performance-tuning
strategies, such as reducing data transmission by data reuse, optimizing
task allocation, and optimizing memory access, could improve the
performance of multithreading tasks, which might further improve the
use of GPUs in the proposed algorithms. Also, since the Tensor (Dense)
relies on calculating the impedance matrix, the formulation loses per-
formance if the system’s topology changes over the dimensional tensor
elements, e.g., reconfiguration and tap-changes. Despite this, speedup
factors up to 164 times compared to the NR (Sparse) formulation were
evidenced for grids of 5k bus-phases and more than 500k PFs with the
proposed algorithms, highlighting its potential application on a wide
range of analyses in distribution systems. Here we highlight some of
them:

Probabilistic analyses
Exogenous uncertainties can be discretized and mapped using sce-

narios to be later evaluated using a power flow formulation. This is
already a computationally demanding task for a single period, as the
number of scenarios is typically on the order of tens of thousands.
Complexity increases when considering more than one period, such as
to account for temporal correlations over a day or a whole year. An
example of these problems is the multi-period probabilistic power flow.
The SAM algorithm was used in [28] to run more than 7 million PFs
(dimensional tensor elements 𝜏) in a network of 𝑏𝜙 = 34 to evaluate
the risk of technical violations resulting from high photovoltaic pen-
etration in distribution networks. The assessment required the use of
a high-performance computing unit for over a week. Given the grid
size and the number of dimensional tensor elements involved, this
scenario would be a perfect application for the Tensor (Dense) or the
Tensor (GPU) formulations. Other examples may include assessing the
impacts of electric vehicles and electrification of heating systems, de-
mand response and congestion management, and resilience assessment,

among others.

7
Machine learning
Machine learning (ML) algorithms rely on a large number of data

samples during training, e.g., supervised, unsupervised learning and
reinforcement learning (RL). The proposed PF algorithms could be inte-
grated into RL environments that require solving a large number of PF
formulations to train RL agents aiming to learn optimal control policies.
An example of such an application can be found in [3], where an RL
was used for community battery operations, requiring thousands of PFs
to evaluate the reward of each action. A similar work is done in [29]
to enforce voltage magnitude limits due to high PV penetration using
decentralized RL agents. In these cases, the dimensional tensor elements
would be the number of RL agents, the number of time periods, and the
number of actions. The proposed PF formulations can also be used to
train surrogate PF models, for instance, those based on deep learning-
based models. This includes models such as graph neural networks
(GNNs) that exploit the natural graph structure of the power system to
accelerate PF [30] and state estimation calculations [31]. Other appli-
cations might include network resiliency and assessment by integrating
probabilistic risk models with ML-based decision systems [32].

Optimization
Optimization problems considering the network rely on efficient

power flow formulations. Specifically, when using metaheuristic algo-
rithms, hundreds of thousands of PFs are needed, whether they are
linked to particles, agents, offspring, swarms, leaders, states, or any
other description of solution candidates that requires evaluating the
objective function iteratively [33]. For example, the SAM algorithm
was used in [34] to evaluate the objective function based on candidate
solutions using the advanced arithmetic optimizer algorithm to obtain
optimal tap positions of voltage regulators and charging patterns for
energy storage devices. Using one of the proposed tensor formulations
by reshaping each agent, iteration, and candidate as dimensional tensor
elements would decrease the computational time compared to the used
PF algorithm, allowing for a more exhaustive exploration phase and
potentially improving the quality of the solution within the same execu-
tion time. Other potential metaheuristics applications include planning
under uncertainty (e.g., stochastic/chance-constrained optimal power
flow) and bi-level problems (e.g., market clearing, min–max problems).

7. Conclusions

This paper presented practical PF formulations for analyses of dis-
tribution systems in a multidimensional scope. The formulations are
based on a FPI algorithm, and two algorithms are presented in their
tensor forms for dense and sparse versions. The convergence proof
of the algorithms and the existence of a solution are presented with
its geometrical and physical interpretation. The mathematical analysis
shows that the FPI algorithm converges to the high impedance value
in the case of the existence of a solution, and it can be extended to
the multidimensional formulation. The performance of the proposed

algorithms compared to conventional methods such as NR and BFS was

E.M.S. Duque et al.

a

(
s
f
a
a
l
i
d

𝜶
f

m
r
n
c
t
n
T
F

R

International Journal of Electrical Power and Energy Systems 162 (2024) 110275
evaluated in two aspects: the size of the grid (number of bus-phases, 𝑏𝜙)
nd dimensionality (number of PFs, 𝜏).

For smaller grids, Tensor (Dense) outperforms the other methods
<1k 𝑏𝜙), while Tensor (Sparse) became the most efficient as the grid
ize increased. The algorithms were tested in a practical TSS application
or different grid sizes and time resolutions, and some extra potential
pplications were described. Tensor (Dense) emerged as the fastest
lgorithm, providing a significant speedup over traditional methods
ike NR (Sparse), especially for smaller grid sizes. The study also
ntroduced a GPU implementation, Tensor (GPU), which suffers from
ata transfer overhead for smaller grids and low 𝜏 but excelled when

the number of matrix operations was substantial, as seen when the grid
size and dimensionality increased. The results indicate that as the grid
size increases and a large number of PFs are required, the preferred
formulation is Tensor (GPU), followed by Tensor (Sparse) and Tensor
(Dense).

CRediT authorship contribution statement

Edgar Mauricio Salazar Duque: Writing – original draft, Visual-
ization, Validation, Software, Methodology, Investigation, Formal anal-
ysis, Data curation, Conceptualization. Juan S. Giraldo: Writing –
review & editing. Pedro P. Vergara: Writing – review & editing.
Phuong H. Nguyen: Writing – review & editing, Supervision. Han
(J.G.) Slootweg: Writing – review & editing, Supervision, Funding
acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data availability details are provided in Ref. [14].

Appendix

In the case of a non-constant power load model, where 𝜶P ≠ 1 and
Z+𝜶I+𝜶P = 1, Algorithm 2 would require modifications, which come

rom accounting the full ZIP load model from (3).
The necessary changes are for lines 4–5 and 7–8:

4: ̇ = −diag(𝜶P[𝟎] ⊙ 𝑺̇∗(−1)
[0])𝒀𝒅𝒅

−diag((𝜶P[𝟎] ⊙ 𝜶Z[0])⊘ 𝑺̇◦(2)
[0])

5: ̇ = −diag(𝜶P[𝟎] ⊙ 𝑺̇∗(−1)
[0])𝒀𝒅𝒔𝒗𝑠

+diag(𝜶P[0] ⊙ 𝜶I[0])
(...)

7: 𝒎 = −diag(𝜶P[𝒊] ⊙ 𝑺̇∗(−1)
[𝑖])𝒀𝒅𝒅

−diag((𝜶P[𝒊] ⊙ 𝜶Z[𝑖])⊘ 𝑺̇◦(2)
[𝑖])

8: 𝒉 = −diag(𝜶P[𝒊] ⊙ 𝑺̇∗(−1)
[𝑖]

)𝒀𝒅𝒔𝒗𝑠
+diag(𝜶P[𝑖] ⊙ 𝜶I[𝑖])

The sparse algorithm requires additional operations to prepare the
atrix ̇ and vector ̇ as per formulation (19). However, this prepa-

ation is performed only once (lines 1–11). Consequently, there is
o significant increase in the computational time, as the power flow
onvergence process (lines 13–16) is expected to dominate the compu-
ational time. It should also be noted that the sizes of ̇ and ̇ do
ot increase in size when the complete ZIP load model is incorporated.
herefore, the computational complexity for the Tensor (Sparse) in
ig. 5 remains unchanged.
8
eferences

[1] Qureshi Muhammad Umer, Grijalva Santiago, Reno Matthew J,
Deboever Jeremiah, Zhang Xiaochen, Broderick Robert J. A fast scalable
quasi-static time series analysis method for PV impact studies using linear
sensitivity model. IEEE Trans Sustain Energy 2019;10(1):301–10.

[2] Liu Chengxi, Sun Kai, Wang Bin, Ju Wenyun. Probabilistic power flow analysis
using multidimensional holomorphic embedding and generalized cumulants. IEEE
Trans Power Syst 2018;33(6):7132–42.

[3] Duque Edgar Mauricio Salazar, Giraldo Juan S, Vergara Pedro P, Nguyen Phuong,
van der Molen Anne, Slootweg Han. Community energy storage operation
via reinforcement learning with eligibility traces. Electr Power Syst Res
2022;212:108515.

[4] Garcés Alejandro, Mora Juan José, Useche Mario-Alejandro. Putting tensors back
in power systems analysis. In: 2019 int. conf. on smart energy systems and
technologies. SEST, 2019, p. 1–5.

[5] Nickolls John, Dally William J. The GPU computing era. IEEE Micro
2010;30(2):56–69.

[6] Zhou Gan, Bo Rui, Chien Lungsheng, Zhang Xu, Shi Fei, Xu Chunlei, Feng Yanjun.
GPU-based batch LU-factorization solver for concurrent analysis of massive power
flows. IEEE Trans Power Syst 2017;32(6):4975–7.

[7] Li Xue, Li Fangxing, Yuan Haoyu, Cui Hantao, Hu Qinran. GPU-based fast
decoupled power flow with preconditioned iterative solver and inexact Newton
method. IEEE Trans Power Syst 2017;32(4):2695–703.

[8] Zhou Gan, Bo Rui, Chien Lungsheng, Zhang Xu, Yang Shengchun, Su Dawei.
GPU-accelerated algorithm for online probabilistic power flow. IEEE Trans Power
Syst 2018;33(1):1132–5.

[9] Zhou Gan, Feng Yanjun, Bo Rui, Chien Lungsheng, Zhang Xu, Lang Yansheng,
Jia Yupei, Chen Zhengping. GPU-accelerated batch-ACPF solution for N-1 static
security analysis. IEEE Trans Smart Grid 2017;8(3):1406–16.

[10] Montoya Oscar Danilo, Gil-González Walter. On the numerical analysis based on
successive approximations for power flow problems in AC distribution systems.
Electr Power Syst Res 2020;187:106454.

[11] Giraldo Juan S, Montoya Oscar Danilo, Vergara Pedro P, Milano Federico. A
fixed-point current injection power flow for electric distribution systems using
Laurent series. Electr Power Syst Res 2022;211:108326.

[12] Petinrin JO, Shaabanb Mohamed. Impact of renewable generation on voltage
control in distribution systems. Renew Sustain Energy Rev 2016;65:770–83.

[13] Garcia Paulo AN, Pereira Jose Luiz R, Carneiro Sandoval, Da Costa Vander M,
Martins Nelson. Three-phase power flow calculations using the current injection
method. IEEE Trans Power Syst 2000;15(2):508–14.

[14] Duque EM Salazar. Tensorpowerflow. 2024, https://github.com/
MauricioSalazare/tensorpowerflow.

[15] Grainger John J, Stevenson William D. Power system analysis. McGraw-Hill series
in electrical and computer engineering power and energy, New York, NY St. Louis
San Francisco: McGraw-Hill, Inc; 1994, p. 289.

[16] Sur Ujjal, Sarkar Gautam. Existence of explicit and unique necessary condi-
tions for power flow insolvability in power distribution systems. IEEE Syst J
2019;13(1):702–9.

[17] Bolognani Saverio, Zampieri Sandro. On the existence and linear approximation
of the power flow solution in power distribution networks. IEEE Trans Power
Syst 2016;31(1):163–72.

[18] Yu Suhyoun, Nguyen Hung D, Turitsyn Konstantin S. Simple certificate of
solvability of power flow equations for distribution systems. In: 2015 IEEE power
& energy society general meeting. Denver, CO, USA: IEEE; 2015, p. 1–5.

[19] Ahmadi Afshin, Smith Melissa C, Collins Edward R, Dargahi Vahid, Jin Shuang-
shuang. Fast Newton-Raphson power flow analysis based on sparse techniques
and parallel processing. IEEE Trans Power Syst 2022;37(3):1695–705.

[20] Davis Timothy A. Direct methods for sparse linear systems. Fundamentals of
algorithms, Philadelphia: SIAM; 2006.

[21] Sereeter Baljinnyam, Vuik Cornelis, Witteveen Cees. On a comparison of
Newton–Raphson solvers for power flow problems. J Comput Appl Math
2019;360:157–69.

[22] Thurner Leon, Scheidler Alexander, Schafer Florian, Menke Jan-Hendrik, Dolli-
chon Julian, Meier Friederike, Meinecke Steffen, Braun Martin. Pandapower—An
open-source python tool for convenient modeling, analysis, and optimization of
electric power systems. IEEE Trans Power Syst 2018;33(6):6510–21.

[23] Bompard E, Carpaneto E, Chicco G, Napoli R. Convergence of the back-
ward/forward sweep method for the load-flow analysis of radial distribution
systems. Int J Electr Power Energy Syst 2000;22(7):521–30.

[24] Storer James A. An introduction to data structures and algorithms. Boston, MA:
Birkhäuser Boston; 2002, p. 225.

[25] Duque Edgar Mauricio Salazar, Vergara Pedro P, Nguyen Phuong H, Van
Der Molen Anne, Slootweg JG. Conditional multivariate elliptical copulas to
model residential load profiles from smart meter data. IEEE Trans Smart Grid
2021;12(5):4280–94.

[26] Goldsmith Simon F, Aiken Alex S, Wilkerson Daniel S. Measuring empirical
computational complexity. In: Proceedings of the the 6th joint meeting of the
European software engineering conference and the ACM SIGSOFT symposium on
the foundations of software engineering. 2007, p. 395–404.

http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb1
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb2
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb2
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb2
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb2
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb2
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb3
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb4
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb4
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb4
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb4
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb4
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb5
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb5
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb5
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb6
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb6
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb6
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb6
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb6
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb7
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb7
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb7
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb7
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb7
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb8
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb8
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb8
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb8
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb8
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb9
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb9
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb9
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb9
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb9
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb10
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb10
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb10
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb10
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb10
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb11
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb11
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb11
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb11
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb11
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb12
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb12
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb12
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb13
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb13
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb13
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb13
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb13
https://github.com/MauricioSalazare/tensorpowerflow
https://github.com/MauricioSalazare/tensorpowerflow
https://github.com/MauricioSalazare/tensorpowerflow
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb15
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb15
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb15
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb15
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb15
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb16
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb16
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb16
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb16
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb16
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb17
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb17
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb17
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb17
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb17
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb18
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb18
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb18
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb18
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb18
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb19
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb19
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb19
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb19
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb19
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb20
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb20
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb20
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb21
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb21
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb21
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb21
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb21
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb22
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb23
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb23
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb23
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb23
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb23
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb24
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb24
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb24
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb25
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb26

E.M.S. Duque et al. International Journal of Electrical Power and Energy Systems 162 (2024) 110275
[27] Ghysels Pieter, Synk Ryan. High performance sparse multifrontal solvers on
modern GPUs. Parallel Comput 2022;110:102897.

[28] Duque Edgar Mauricio Salazar, Giraldo Juan S, Vergara Pedro P,
Nguyen Phuong H, Molen Anne van der, Slootweg JG. Risk-Aware Operating
Regions for PV-rich distribution networks considering irradiance variability.
IEEE Trans Sustain Energy 2023;14(4):2092–108.

[29] Vergara Pedro P, Salazar Mauricio, Giraldo Juan S, Palensky Peter. Optimal
dispatch of PV inverters in unbalanced distribution systems using Reinforcement
Learning. Int J Electr Power Energy Syst 2022;136:107628.

[30] Lin Nan, Orfanoudakis Stavros, Cardenas Nathan Ordonez, Giraldo Juan S, Ver-
gara Pedro P. PowerFlowNet: Power flow approximation using message passing
Graph Neural Networks. Int J Electr Power Energy Syst 2024;160:110112.
9
[31] Habib Benjamin, Isufi Elvin, Breda Ward van, Jongepier Arjen, Cremer Jochen L.
Deep statistical solver for distribution system state estimation. IEEE Trans Power
Syst 2024;39(2):4039–50.

[32] Konstantelos Ioannis, Sun Mingyang, Tindemans Simon H, Issad Samir, Panci-
atici Patrick, Strbac Goran. Using vine copulas to generate representative system
states for machine learning. IEEE Trans Power Syst 2019;34(1):225–35.

[33] Ahmadi Bahman, Giraldo Juan S, Hoogsteen Gerwin. Dynamic hunting leadership
optimization: algorithm and applications. J Comput Sci 2023;69:102010.

[34] Ahmadi Bahman, Giraldo Juan S, Hoogsteen Gerwin, Gerards Marco ET,
Hurink Johann L. A multi-objective decentralized optimization for voltage
regulators and energy storage devices in active distribution systems. Int J Electr
Power Energy Syst 2023;153:109330.

http://refhub.elsevier.com/S0142-0615(24)00497-6/sb27
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb27
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb27
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb28
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb29
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb29
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb29
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb29
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb29
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb30
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb30
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb30
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb30
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb30
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb31
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb31
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb31
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb31
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb31
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb32
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb32
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb32
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb32
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb32
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb33
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb33
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb33
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34
http://refhub.elsevier.com/S0142-0615(24)00497-6/sb34

	Tensor power flow formulations for multidimensional analyses in distribution systems
	Introduction
	Single Dimension Fixed Point Power Flow
	Geometric interpretation of the existence of a power flow solution
	Multidimensional Fixed Point Power Flow
	Tensor Power Flow - Dense Formulation
	Tensor Power Flow - Sparse Formulation

	Simulation results
	Computational Performance
	Application in Yearly Time Series Simulation

	Remarks and Potential Applications
	Probabilistic analyses
	Machine learning
	Optimization

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References

