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Abstract
A novel approach is devised for the quantification of systematic uncertainty due to peak locking
in particle image velocimetry (PIV), which also leads to correction of the peak-locking errors.
The approach, applicable to statistical flow properties such as time-averaged velocity and
Reynolds stresses, relies on image recordings with multiple time separations∆t and a
least-squares regression of the measured quantities. In presence of peak locking, the measured
particle image displacement is a non-linear function of∆t due to the presence of measurement
errors which vary non-linearly with the sub-pixel particle image displacement. Additionally, the
measured displacement fluctuations are a combination of the actual flow fluctuations and the
measurement error. When the image recordings are acquired with multiple∆t’s, a least-squares
regression among the statistical results yields a correction where systematic errors due to peak
locking are significantly diminished. The methodology is assessed for planar PIV measurements
of the flow over a NACA0012 airfoil at 10 degrees angle of attack. Reference measurements
with much larger∆t than the ∆t’s of the actual measurements, such that relative peak-locking
errors are negligible for the former, are used to assess the validity of the proposed approach.

Keywords: particle image velocimetry, uncertainty quantification, peak-locking errors, multi-∆t,
least-squares regression

(Some figures may appear in colour only in the online journal)

1. Introduction

Peak-locking (also referred to as pixel-locking) is recognized
as one of the major error sources in particle image velocimetry
(PIV) measurements. Such an error source, mainly ascribed
to particle image diameters small with respect to the sensor’s
pixel size, causes a bias of the measured particle image
displacement towards the closest integer value (Westerweel

Original content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

1997, Adrian and Westerweel 2011, Michaelis et al 2016,
Raffel et al 2018). It is particularly relevant in high-speed
PIV measurements with CMOS cameras, whose large pixel
size (of the order of 10–20 µm) yields particle image dia-
meters often smaller than one pixel. It is to be noted that the
measurements with particle image diameters greater than one
pixel are also affected by the peak-locking errors, although
the peak-locking errors are less prominent than the random
errors in this case (Westerweel 1997). Thus, the recent devel-
opment of high-speed cameras has been influencing the study
on peak-locking errors and their correction in PIV. Moreover,
the peak-locking errors significantly affect the turbulence stat-
istics extracted from the PIV measurements. When the flow
velocity fluctuations encompass at least one pixel unit, the
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mean velocity is usually unaffected by the peak-locking errors
in the instantaneous velocities. In such cases, the peak-locking
errors appear instead in the fluctuations of velocity leading to
inaccurate estimation of higher-order turbulence statistics, e.g.
Reynolds stresses (Christensen 2004). Hence, the quantifica-
tion and correction of the peak-locking errors in the PIVmeas-
urements is crucial for the evaluation of accurate turbulence
statistics.

Several approaches have been proposed for quantification
and correction of the peak-locking errors. A priori estima-
tions and correction of the peak-locking errors based on the-
oretical models were presented by Angele and Muhammad-
Klingmann (2005) and Cholemari (2007). Both the models
have showed the effect of peak locking on the turbulence
statistics following the work of Christensen (2004). The
peak-locking errors have been corrected by assuming Gaus-
sian distribution for the displacement and velocity prob-
ability density functions in the former model (Angele and
Muhammad-Klingmann 2005), whereas the correction has
been achieved by assuming sinusoidal variation of the peak-
locking error with respect to the sub-pixel displacement in
the latter model (Cholemari 2007). A number of works on
the peak-locking correction at the processing (i.e. velocity
estimation) and post-processing stages have been devised in
the literature. Roth and Katz (2001) have applied a equal-
ization to the sub-pixel particle image displacements for the
correction. However, Hearst and Ganapathisubramani (2015)
have demonstrated that pixel locking is non-uniform across an
image. Therefore, identifying and adjusting for pixel locking
with histograms computed based on the entire vector fields,
as done by Roth and Katz (2001), may have been erroneous
and the equalization process should be applied on a vector-
by-vector basis (Hearst and Ganapathisubramani 2015). How-
ever, their approach is effective only in the absence of other
error sourceswhichmight affect the histogram of themeasured
displacements and velocities. The peak-locking errors arising
at the processing stage can be reduced by using state-of-
the-art processing algorithms (Scarano 2002, Roesgen 2003,
Chen and Katz 2005, Liao and Cowen 2005). However, the
peak-locking errors due to small particle image diameters
are difficult to quantify or correct for. The concept of defo-
cusing to increase the particle image diameter has become
a common practice: a slight defocusing has been shown
effective in reducing the peak-locking errors as reported by
Overmars et al (2010). However, the optimal amount of defo-
cusing is not possible to estimate and the excessive defocus-
ing increases random errors in the detection of the particle
images (Kislaya and Sciacchitano 2018). Furthermore, defo-
cusing cannot be applied in tomographicmeasurements, where
the same amount of defocusing cannot be imposed to the
particles of the entire measurement volume. Michaelis et al
(2016) proposed the use of optical diffusers to enlarge the
particle image diameters by increasing the point spread func-
tion of the imaging system. A reduction of both system-
atic and random error components of the measured velocity
by a factor of 3 was reported by Kislaya and Sciacchitano
(2018). However, the effectiveness of the diffusers is limited

for the CMOS cameras with large pixel size. Using the dif-
fusers, a spread of about 10 µm for the incoming light can
be achieved in the image plane (Michaelis et al 2016). Nev-
ertheless, several CMOS cameras feature pixel sizes exceed-
ing 10 µm. For those cameras, as discussed by Kislaya and
Sciacchitano (2018), peak-locking errors remain present even
when using two optical diffusers as proposed by Michaelis
et al (2016); furthermore, the uncertainty associated with the
peak locking errors remains unknown, as it cannot be easily
evaluated via standard uncertainty quantification approaches
(Sciacchitano et al 2015).

The discussion above shows that the problem of peak-
locking errors due to small particle image diameters, espe-
cially in the case of CMOS cameras for high-speed PIV
measurements, is still unsolved. In such a situation, a con-
tinuous development in the approaches based on multiple
∆t image acquisition (Nogueira et al 2009, 2011, Legrand
et al 2012, 2018) has shown a high potential in peak-locking
error quantification and correction,∆t being a time separation
between two frames in PIV. Using a set of different ∆t’s for
the same flow measurement allows for segregating the errors
that scale with ∆t (e.g. peak-locking errors) from those that
do not (Nogueira et al 2011). The recent work of Legrand
et al (2018) has offered a 1-D analytical modeling of the peak-
locking errors and has allowed for measurement correction.
However, the method is iterative and computationally expens-
ive to estimate the calibration coefficients mentioned in the
algorithm. Also, selection of two∆t’s is not trivial in presence
of turbulence in the flow and the∆t values should be adjusted
for different levels of turbulence. In the present work, a simple
approach based on a least-squares regression of the measured
time-averaged displacements and Reynolds stresses frommul-
tiple ∆t acquisitions is proposed to correct the peak-locking
errors and quantify the uncertainty. The proposed method-
ology and its validation are explained in sections 2 and 3,
respectively. The approach is then assessed for planar PIV
measurements of the flow over a NACA0012 airfoil in a wind
tunnel; the experimental setup and the results of such assess-
ment are presented in sections 4 and 5, respectively.

2. Proposed methodology

The peak-locking uncertainty in PIV measurements is pro-
posed to be quantified and reduced using regression analysis
from acquisitions with multiple ∆t’s. The approach, applic-
able for stationary processes (whose statistics do not change
in time), is devised for the uncertainty in the time-averaged
displacements (and velocities) as well as Reynolds stresses.

2.1. Mean displacement and velocity

Consider a stationary process, where the local actual time-
averaged flow velocity utrue is constant in time. When PIV
measurements are conducted with inter-frame time separation
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Figure 1. Graphical representation of measured displacements for
multiple∆t acquisitions and the displacements from least-squares
regression of the measured displacements.

∆t, the actual time-averaged particle image displacement in
pixel units, not affected by any measurement error, is:

∆xtrue = ūtrue ·∆t ·
M
s

(1)

where, M is the magnification factor relating the image plane
to the object plane and s is pixel size of the camera sensor.

From equation (1) it is evident that the actual particle image
displacement increases linearly with the inter-frame time sep-
aration. In presence of the peak-locking errors, the measured
particle image displacement is the sum of the true displace-
ment and the measurement error:

∆x= ūtrue ·∆t ·
M
s
+ ε∆x =∆xtrue + ε∆x. (2)

The peak-locking errors are often modeled as a sinus-
oidal (or close-to-sinusoidal, Cholemari 2007) function of the
sub-pixel particle image displacements, hence they vary non-
linearly with ∆xtrue. Therefore, the measured particle image
displacement becomes a non-linear function of ∆t, as illus-
trated in figure 1. In the proposed approach, the measure-
ments are repeated with multiple ∆t’s, provided that the ∆t’s
are selected such as to sample a sufficient portion of the
peak-locking period (i.e. the variation of the time-averaged
displacements is at least one pixel). Performing a linear regres-
sion of the measured displacements ∆x(∆t) allows to aver-
age out the systematic errors ε∆x, thus yielding a regression
displacement ∆xregr(∆t) which is a better estimate of ∆xtrue
(see figure 1).

2.1.1. Quantification of peak-locking uncertainty. Follow-
ing Coleman and Steele (2009), the uncertainty of the

time-averaged displacement is divided into systematic uncer-
tainty and random uncertainty:

U∆x (∆t) =
√
U2

b,∆x
+U2

r,∆x
(∆t) (3)

where, Ub,∆x and Ur,∆x (∆t) are the systematic and random

uncertainties in the time-averaged displacement ∆x, respect-
ively. In this work, we assume that the systematic uncertainty
Ub,∆x is mainly ascribed to peak locking and not to the other
bias error sources, such as modulation effects due to limited
spatial resolution (Nogueira et al 2005) or bias errors due
to velocity gradients (Keane and Adrian 1990, Cowen and
Monismith 1997). The random uncertainty Ur,∆x (∆t) can be
attributed to several sources, including the actual flow fluctu-
ations, noise in the recordings and out-of-plane particlemotion
(Raffel et al 2018, Sciacchitano 2019).

Considering the regression displacement as the best estim-
ate of the true displacement, the systematic uncertainty can be
estimated based on the difference between the measured and
regression displacements:

Ub,∆x = tC.I.,ν

√√√√ 1
n− 1

n∑
i=1

[
∆x(∆ti)−∆xregr (∆ti)

]2
(4)

where, tC.I.,ν is the t-statistic describing the desired confidence
interval and n is the number of ∆t acquisitions. In presence
of severe peak locking, this systematic uncertainty constitutes
a major part of the total uncertainty in the mean displace-
ment, as can be seen in figure 1, where the measured time-
averaged displacements are underestimated or overestimated
producing large systematic error and leading to large system-
atic uncertainty.

The random uncertainty in the time-averaged displacement
is due to the finite number of measurement samples (Coleman
and Steele 2009) and is given by:

Ur,∆x (∆t) =
tC.I.,ν√
N

√√√√ 1
N− 1

N∑
i=1

[
∆xi (∆t)−∆x(∆t)

]2
(5)

where N is the number of instantaneous measured displace-
ments (∆x) at each ∆t acquisition. It is to be noted that the
regression analysis does not affect the random uncertainty and
random error in the measurements. The random uncertainty
(and random error) in the time-averaged displacement at each
∆t acquisition can be reduced by acquiring large enough num-
ber of samples at that ∆t acquisition.

Moreover, when time-resolved PIV measurements are
conducted, the instantaneous measured displacements are cor-
related. As a consequence, an additional term appears in the
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calculation of the total uncertainty, namely the correlated sys-
tematic uncertainty Ub,corr(∆x) (Coleman and Steele 2009):

U2
b,corr(∆x) (∆t) = 2

N−1∑
i=1

N∑
j=i+1

(
∂∆x
∂∆xi

)(
∂∆x
∂∆xj

)
σ2

εb(∆xi),εb(∆xj)

=
2
N2

N−1∑
i=1

N∑
j=i+1

σ2
εb(∆xi),εb(∆xj).

(6)
The value thus calculated in equation (6) should be added

to the two terms under radical in equation (3) to calculate the
total uncertainty in the time-averaged displacement.

The equation (6) can further be simplified considering
that the covariance between the bias errors in the successive
instantaneous displacements can be expressed as the product
of the correlation coefficient (ρ) between them and the indi-
vidual standard deviations (σ) assuming normal distribution
for the bias errors (εb).

U2
b,corr(∆x) (∆t)

=
2
N2

N−1∑
i=1

N∑
j=i+1

ρεb(∆xi),εb(∆xj) ·σεb(∆xi) ·σεb(∆xj).
(7)

The estimation of the correlated systematic uncertainty
Ub,corr(∆x) is non-trivial as the bias errors in the instantan-

eous displacements are unknown and difficult to determine.
Moreover, most of the measurements are followed by stat-
istical analysis requiring uncorrelated samples in which case
Ub,corr(∆x) is negligible (or zero for completely uncorrelated

samples). In this work, for sake of simplicity, only this case
of uncorrelated samples is considered and the correlated sys-
tematic uncertainty is not included in the calculation of the
total uncertainty. Finally, the total uncertainty in the meas-
ured time-averaged velocity u at each ∆t acquisition can be
estimated using Taylor’s approach from the uncertainty in the
time-averaged displacement (calculated using equation (3)) at
that particular ∆t acquisition:

Uū (∆t) =
U∆x (∆t)

∆t
· s
M
. (8)

2.1.2. Correction of peak-locking errors. The peak-locking
errors in the time-averaged PIV measurements can be correc-
ted for by removing the bias errors estimated via regression
analysis. Thus, the measured displacements and velocities (∆x
and u) are replaced with the displacements and velocity from
regression (∆xregr and uregr), respectively. The total standard
uncertainty in the corrected displacement at each ∆t acquisi-
tion is then given by the uncertainty of the regression model
(Coleman and Steele 2009):

U∆xregr (∆t) = Ub,∆x

√√√√1
n
+

(
∆t−∆t

)2
σ∆t,∆t

(9)

where,Ub,∆x is the systematic peak-locking uncertainty in the
measured mean displacement (calculated using equation (4)),

n is the number of ∆t’s and σ∆t,∆t is the covariance in the
∆t’s:

σ∆t,∆t =
n∑
i=1

∆t2i −

(
n∑
i=1

∆ti

)2

n
. (10)

The uncertainty in the corrected velocity is then derived
from the uncertainty in the corrected displacement using
Taylor’s approach. It is to be noted that the uncertainty in the
velocity is calculated at the mean of the∆t’s, that is where the
regression error is the minimum (Montgomery et al 2011).

Uuregr =
U∆xregr

(
∆t

)
∆t

· s
M

=
1√
n

[
Ub,∆x

∆t

]
· s
M
. (11)

2.2. Reynolds stress

When the flow is turbulent and the velocity fluctuations
encompass at least one pixel, the mean velocity is usu-
ally unaffected by the peak-locking errors in the instantan-
eous velocities. In such cases, the peak-locking errors appear
instead in the velocity fluctuations leading to inaccurate estim-
ation of higher-order turbulent statistic, e.g. Reynolds stress
(Christensen 2004).

The measured displacement fluctuations (∆x′) are a com-
bination of the actual flow fluctuations (∆x′true), the random
error of the displacement measurement (ε∆x) and the bias
error fluctuations in the measured displacements (b′∆x), as
also explained byWilson and Smith (2013a), Sciacchitano and
Wieneke (2016) and Scharnowski et al (2019):

∆x ′ =∆x ′true + ε∆x+ b ′
∆x. (12)

The equation (12) can bewritten in terms of total fluctuating
measurement error (δ∆x = ε∆x + b ′

∆x) as:

∆x ′ =∆x ′true + δ∆x (13)

and in terms of velocity fluctuations as:

u ′ = u ′
true +

δ∆x

∆t
· s
M
. (14)

The equation (14) can also be written in terms of the total
fluctuating error in physical units

(
δ∆X =

δ∆x
∆t ·

s
M

)
as:

u ′ = u ′
true + δ∆X (15)

where, δ∆X is the total fluctuating error in the measured dis-
placement in physical units (e.g. m or cm).

The measured variance of the velocity, or Reynolds stress,
is then given by:

Ruu = Ruu,true +
σ2
δ,∆X

∆t2
+

2cov(u ′
true, δ∆X)

∆t
(16)

where, Ruu (or σu
2) and Ruu,true (or σu,true

2) are the measured
and ‘true’ Reynolds stresses, respectively.
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(a)                                                                               (b)

Figure 2. Measured Reynolds stresses, true Reynolds stress (Ruu,true), error variance term (σ2
δ,∆X/∆t2 ) and covariance term

[2cov(u ′
true,δ∆X)⁄∆t], as mentioned in the equation (16) for the synthetic data—(a) in case (i) of potential flow region and (b) case

(ii) of turbulent region.

The relative importance of the different terms in the right-
hand-side of equation (16) is evaluated by means of Monte
Carlo simulations. Two flow cases are considered, namely:

(a) mean velocity of 10 m s−1 (same as the free stream velo-
city) and low flow fluctuations with turbulence intensity of
4%;

(b) mean velocity of 2.5 m s−1 and high flow fluctuations with
turbulence intensity of 31%.

The two flow cases are representative of measurements in
a potential-like flow region and turbulent region, respectively.
The turbulence intensity is calculated as the ratio of RMS velo-
city fluctuations to the free stream velocity. The maximum
absolute values of the peak-locking bias error and themeasure-
ment random error are 0.25 pixel and 0.05 pixel, respectively
and are kept the same for the two cases for ease of comparison.
It is to be noted that the peak-locking bias error is modeled as
a sinusoidal function of the sub-pixel displacement following
Cholemari (2007). Also, the camera pixel size (s) of 20 µm
and magnification factor (M) of 0.4 are considered while gen-
erating the synthetic data for ∆t’s = 10, 11, …, 30 µs; those
values are representative of a typical high-speed PIV exper-
iment conducted with CMOS camera sensors. The measured
Reynolds stresses for these∆t’s along with the true Reynolds
stress, error variance over∆t2 and the covariance (between the
velocity fluctuations and fluctuating error) over∆t are plotted
in figures 2(a) and (b) for the above mentioned synthetic data
examples.

When the flow fluctuations are low compared to the peak-
locking bias error, as in the case (i) of potential flow, the effect
of peak-locking errors is visible in terms of the non-linear
(sine-like function) variation in the measured Reynolds stress

with respect to∆t or the sub-pixel displacement. This is due to
the variation in the variance of total fluctuating error (σ2

δ,∆X)
and the covariance of the true flow fluctuations and fluctuat-
ing errors in the measurements [cov(u ′

true,δ∆X)] with differ-
ent ∆t’s. It is to be noted that the covariance can be positive
or negative based on the amount of flow fluctuations and the
magnitude of peak-locking errors which in turn depends on
the measured sub-pixel displacement at a particular∆t acquis-
ition. In particular, when the average fractional displacement
is close to zero, as it occurs for∆t’s= 10, 11, 14, 15 and 16µs,
positive flow fluctuations will yield negative peak-locking
errors (and vice-versa), thus resulting in negative values of
the covariance terms at those ∆t acquisitions (figure 2(a)).
Instead, when the average fractional displacement is close to
0.5 pixels, positive (respectively negative) flow fluctuations
will yield positive (negative) peak locking errors, thus result-
ing in positive values of the covariance terms (see for instance
the results for ∆t’s = 12 and 13 µs in figure 2(a)). It is to
be noted that this behavior of the covariance [cov(u′true,δ∆X)]
with respect to∆t in the case (i) of potential flow is due to the
flow fluctuations being smaller than the magnitudes of peak-
locking errors. When the flow fluctuations are higher than
the magnitudes of peak-locking errors, the behavior of cov-
ariance is not trivial as can be seen in the case (ii) of turbu-
lent region in figure 2(b). However, the covariance terms in
the case (ii) also depend on the flow fluctuations, amount of
peak locking and the measured sub-pixel displacements as in
the case (i). Therefore, similar overall trends can be seen for
the measured Reynolds stresses, error variances (σ2

δ,∆X) and
covariances [cov(u′true,δ∆X)] in both the synthetic data cases
of potential flow region and turbulent region in figures 2(a)
and (b), respectively. However, the non-linear variation with
respect to∆t is smother in the case (ii) compared to that in the
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case (i). It is due to the flow fluctuations being higher than the
magnitude of peak-locking error in this case. Thus, in presence
of peak locking, the Reynolds stresses may be overestimated
or underestimated depending on the inherent flow fluctuations
and the magnitude of peak-locking errors. In absence of peak
locking, the Reynolds stresses are usually overestimated due to
the random errors in the measurement as illustrated by Wilson
and Smith (2013a) and also demonstrated by Scharnowski et al
(2019) who estimated the turbulence levels of the flow facility
using a multi-∆t approach.

It is clear from equation (16) that the Reynolds stresses
measured at a particular spatial location are different when the
PIV measurements are carried out with different inter-frame
time separations (∆t’s). Moreover, the error variance (σ2

δ,∆X)
and the covariance [cov(u′true,δ∆X)] are functions of ∆t and
in turn functions of sub-pixel displacement ∆xsub. Following
Cholemari (2007), the fluctuating bias error due to peak lock-
ing is modeled as a sinusoidal function of measured sub-pixel
displacement:

δ∆X,i =
[
ε∆x,i+ b

′

∆x,i

] s
M

= [ε∆x,i+Asin (2π∆xsub,i)]
s
M
(17)

where, i represents the instantaneous measured values and A
is a constant.

Assuming that ε∆x,i and b’∆x,i are uncorrelated, the vari-
ance of the total errors in the displacement measurement at
each∆t acquisition is then given by:

σ2
δ,∆X =

( s
M

)2
var(ε∆x,i)+

(
A · s
M

)2

var [sin(2π∆xsub,i)] .

(18)
Moreover, the synthetic data analysis shows that the cov-

ariance between the true velocity fluctuations and the fluctuat-
ing error varies non-linearly with∆t or the sub-pixel displace-
ment. Therefore, the covariance at each ∆t can be approxim-
ated as a cosine function of the mean measured sub-pixel dis-
placement∆xsub at that ∆t acquisition (figure 2):

cov(u ′
true, δ∆X) =−Bcos

(
2π∆xsub

)
. (19)

Substituting the equations (18) and (19) in the equation
(16), the Reynolds stress is expressed as:

Ruu = Ruu,true +

(
s
M

)2
var(ε∆x,i)+

(
A·s
M

)2
var [sin(2π∆xsub,i)]

∆t2

+
−2B cos

(
2π∆xsub

)
∆t

. (20)

It is to be noted that the variance of the random errors
var(ε∆x,i) in the equation (20) is constant for different ∆t
acquisitions. Moreover, s, M, A and B are constants. There-
fore, the equation (20) can also be written as:

Ruu = Ruu,true +
β1 +β2var [sin(2π∆xsub,i)]

∆t2

+
β3 cos

(
2π∆xsub

)
∆t

. (21)

Thus, it is proposed to perform a least-squares non-linear
regression of the form of equation (21) to estimate the ‘true’
Reynolds stress from the measured Reynolds stresses at dif-
ferent ∆t’s. The coefficients β1 and β2 are positive as they
represent the variance and square of a constant, respectively.

For the ease of processing, the non-linear regression model
in the equation (21) can be transformed to a linear regression
model (Montgomery et al 2011) as:

Ruu = Ruu,true +β1p1 +β2p2 +β3p3 (22)

where,

p1 =
1

∆t2
(23)

p2 =
var [sin(2π∆xsub,i)]

∆t2
(24)

p3 =
cos

(
2π∆xsub

)
∆t

. (25)

In principle, the accuracy of the measured Reynolds
stresses is the maximum when a large ∆t is selected
(∆t→∞). However, this condition cannot be met in practice
due to limitations caused by the out-of-plane particle motion
and by the increasing truncation errors (Raffel et al 2018).
Hence, the ‘true’ Reynolds stress is estimated by conducting
measurements with different ∆t’s, and then fitting a curve of
the type mentioned in equation (22) by least-squares regres-
sion, where Ruu,true represents the best estimate of the ‘true’
Reynolds stress.

The results of regression for the synthetic data can be seen
in figures 3(a) and (b) for the potential flow region and turbu-
lent region, respectively.

It is clear that the total Reynolds stress from regression is
comparable to the measured Reynolds stress at each∆t in both
the cases. Also, depending on the ∆t, the measured Reynolds
stress can differ significantly from the true Reynolds stress,
as much as by 0.5 m2 s−2 in the potential flow region and
by 1 m2 s−2 in the turbulent region. When the true Reynolds
stress is estimated from the regression analysis, this difference
is reduced to 0.07 m2 s−2 and 0.05 m2 s−2, respectively. The
quantification of the uncertainty of the estimated ‘true’ Reyn-
olds stress is discussed in the following section 2.2.1.

2.2.1. Quantification of peak-locking uncertainty. The
estimate of the ‘true’ Reynolds stress obtained from regres-
sion R̂uu,true represents a correction to the measured Reyn-
olds stress, where the systematic error due to peak locking is
removed, and can be used to quantify the systematic uncer-
tainty in the measured Reynolds stress Ruu at a given ∆t:

Ub,Ruu = tC.I.,ν

√√√√ 1
n− 4

n∑
i=1

[
Ruu (∆ti)− R̂uu,true

]2
(26)
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(b)
(a)                                                                               

Figure 3. Measured Reynolds stresses, true Reynolds stress, estimates of ‘true’ Reynolds stress and the total Reynolds stress from the
regression for the synthetic data—(a) in case (i) of potential flow region and (b) in case (ii) of turbulent region.

where, tC.I.,ν is the t-statistic describing the desired confidence
interval and n is the number of∆t acquisitions.

Moreover, the random uncertainty in the measured Reyn-
olds stress (Ruu) is given by (Sciacchitano andWieneke 2016):

Ur,Ruu (∆t) = tC.I.,ν

√
2

N− 1
Ruu (∆t) (27)

where, N is the number of samples acquired at that∆t.
The random errors of the measured instantaneous velocity

vectors are known to yield overestimated Reynolds stress val-
ues (Wilson and Smith 2013b), consistently with the second
term of the right-hand-side of equation (16). However, in pres-
ence of peak locking, the Reynolds stresses may be overestim-
ated or underestimated depending on the covariance between
the actual velocity fluctuations and the measurement error
fluctuations. As a consequence, the uncertainty distribution of
the Reynolds stresses is asymmetric:

URuu,1 (∆t) =
√
U2

b,Ruu
+U2

r,Ruu
(∆t) (28)

URuu,2 (∆t) =
√
U2

r,Ruu
(∆t) = Ur,Ruu (∆t) (29)

where,URuu,1 andURuu,2 are the total uncertainties in themeas-
ured Reynolds stresses, either of them representing the upper
or lower uncertainty bounds depending on the shape of error
distribution (Wilson and Smith 2013a). Moreover, the shape
of error distribution is influenced by the flow fluctuations,
affected by the peak-locking errors, and it is different in the
flow regions with low fluctuations than those with high fluctu-
ations compared to the magnitude of the peak-locking errors.

Therefore, in the case of overestimated Reynolds stresses
URuu,1 and URuu,2 represent the lower and upper uncertainty
bounds on the Reynolds stresses, respectively. Whereas, in
the case of underestimated Reynolds stresses the lower and
upper uncertainty bounds are given by URuu,2 and URuu,1,
respectively.

The uncertainty of the estimated ‘true’ Reynolds stress
from regression R̂uu,true can be expressed in terms of the uncer-
tainty of the total Reynolds stress from regression Ruu,regr

(Montgomery et al 2011):

U2
R̂uu,true

= U2
Ruu,regr

(P ′P)
−1 (30)

where, URuu,regr is the uncertainty of the regression model and
is calculated as:

URuu,regr = tC.I.,ν

√√√√ 1
n− 4

n∑
i=1

[Ruu (∆ti)−Ruu,regr (∆ti)]
2 (31)

and P is a n × 4 matrix of regression variables p1, p2, p3
(Montgomery et al 2011):

P=


1 p11 p21 p31
1 p12 p22 p32
...

...
...

...
1 p1n p2n p3n

 (32)

where, n is the number of ∆t acquisitions.

3. Validation of proposed methodology

It can be observed that the uncertainties in the measured mean
velocity and Reynolds stress decrease with the increasing ∆t

7
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Figure 4. Schematic experimental setup of the planar PIV measurements of the flow over a NACA0012 airfoil at 10 degrees angle of attack.

(or∆x) as the relative peak-locking errors for larger displace-
ments (at larger ∆t’s) are less than those for the smaller dis-
placements (at smaller ∆t’s), as also reported by Wilson and
Smith (2013b). It is to be noted that the considered range
of ∆t’s should be sufficiently small such that the effect of
other error sources such as velocity gradients and out-of-
plane particle motion can be considered negligible. This fact
is used for validation of the proposed uncertainty quantifica-
tion approach where reference measurements are carried out
with a much larger ∆t than the actual measurement ∆t’s.
The errors in the measured quantities can then be calculated
with respect to the reference quantities. Comparing the errors
with the uncertainties estimated using the proposed method-
ology (explained in sections 2.1.1 and 2.2.1), it is possible
to evaluate the effectiveness of the uncertainty quantification
approach.

Following Kislaya and Sciacchitano (2018), the reference
measurements can be conducted with a time separation ∆taux
which is much larger than the ∆t’s used in the actual meas-
urements. Due to the large displacement ∆xaux in the refer-
ence measurements, the relative peak-locking error in∆xaux is
negligible with respect to that in the measured displacements
at ∆t’s. The reference displacement ∆xref at each ∆t is thus
calculated from the auxiliary displacement∆xaux measured at
∆taux:

∆xref =∆xaux
∆t

∆taux
. (33)

The reference velocity ūref and Reynolds normal stress
Ruu,ref are equal to the auxiliary velocity ūaux and Reynolds
normal stress Ruu,aux respectively, from the auxiliary measure-
ments:

ūref = ūaux (34)

Ruu,ref = Ruu,aux =
1

N− 1

N∑
i=1

(uaux,i− ūaux)
2 (35)

where, N is the number of instantaneous measured displace-
ments (or velocities) in the reference measurements.

The errors in the measured quantities at each ∆t can then
be calculated with respect to the reference quantities:

ε∆x (∆t) = ∆x(∆t)−∆xref (∆t) (36)

εū (∆t) = ū(∆t)− ūref (37)

εRuu (∆t) = Ruu (∆t)−Ruu,ref. (38)

These errors in the measured displacements, velocities and
Reynolds stresses are used to estimate the reliability of the
uncertainty quantification approach by means of uncertainty
coverages. An uncertainty coverage is the percentage of meas-
urements for which the error magnitudes are contained within
the uncertainty limits (Timmins et al 2012):

|ε|⩽ U. (39)

When U represents the standard uncertainty, the uncer-
tainty coverage (CU) should be equal to the error standard
deviation coverage (CSD); the latter is calculated as the per-
centage of measurements for which the errors are within the
standard deviation of the errors distributions:

|ε|⩽ SDε. (40)

In case of Gaussian error distribution, the above is analog-
ous to comparing the one-sigma uncertainty coverage to 68%,
as done in Sciacchitano et al (2015), among others. However,
in the case of non-normal error distributions, it is necessary to
first calculate the standard deviation of the errors and the cor-
responding standard deviation coverage to compare it with the
uncertainty coverage. To assess the effectiveness of the uncer-
tainty quantification approach, a term called relative coverage
index (RCI) is proposed and is defined as the ratio between
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(a)                                                                        (b)         

Figure 5. (a) Time-averaged velocities and (b) RMS of velocity fluctuations in the reference measurements, normalized with respect to the
free stream velocity (regions I and II are the areas where the proposed approach is applied and demonstrated in section 5).

uncertainty coverage (CU) and error standard deviation cover-
age (CSD):

RCI=
CU

CSD
. (41)

Values of RCI close to one indicate accurate uncertainty
estimations. Values of RCI less than one indicate that the
uncertainty is underestimated, whereas values greater than
one show that it is overestimated. Note that this parameter
is applicable to any error distribution after estimation of the
errors standard deviation.

4. Experimental setup

Planar PIV measurements of the flow over a NACA0012 air-
foil at 10 degrees angle of attack were performed. Figure 4
illustrates a schematic of the experimental setup.

The experiment was conducted in the W-tunnel of Delft
University of Technology, which is an open-jet open-return
wind tunnel with an exit cross section of 0.4 × 0.4 m2 and
an area contraction ratio of 9. The maximum achievable free-
stream velocity is 30 m s−1 with 0.3% turbulence intensity
(Tummers 1999). In this experiment, the free stream velocity
was set to 10 m s−1. The flow was seeded by a SAFEX seed-
ing generator, which produces water-glycol droplets of 1 µm
mean diameter. The particles were illuminated by a Quan-
tronix Darwin-Duo laser (Nd:YLF, pulse energy of 25 mJ at
1 kHz, wavelength of 527 nm) and images were recorded
with a LaVision High Speed Star 6 CMOS camera (12 bits,
20 µm pixel size, 1024 × 1024 pixels maximum resolution).
The camera was equipped with a Nikon objective of 105 mm
focal length and the optical aperture was set to f # = 5.6. A
field of view of 45 mm × 45 mm was imaged with optical
magnification of 0.46, which resulted in a theoretical particle
image diameter of 0.5 pixel, following Raffel et al (2018). The
small size of the particle image diameter caused peak lock-
ing in the measured displacements, influencing the estimation

of mean velocity and Reynolds stresses. The image acquisi-
tion was conducted at a frequency of 200 Hz independently
for multiple ∆t’s from 10 µs to 24 µs in steps of 2 µs. The
data sets at each ∆t consisted of 500 double-frame images.
To validate the proposed multi-∆t approach, reference meas-
urements were conducted with optical aperture f # = 11 and
the time separation ∆t of 50 µs, which is larger than the ∆t’s
used in the actual measurements, following Kislaya and Sciac-
chitano (2018). It is to be noted that the effect of out-of-plane
motions and gradient bias errors is negligible in the measure-
ments with∆t of 50 µs, as the free-stream particle image dis-
placement is equal to 11.5 pixels. The processing was done
via the LaVision DaVis 10 software, using Gaussian interrog-
ation windows of 64× 64 pixels with 75% overlap for the ini-
tial passes and 16 × 16 pixels with 75% overlap for the final
passes.

The estimated time-averaged velocities (u) and RMS of the
velocity fluctuations (u′rms) in the reference measurements,
normalized with respect to the free stream velocity (u∞), are
shown in figures 5(a) and (b), respectively. It is clear that the
flow has varying degrees of fluctuations, e.g. low fluctuations
in the potential flow region (0 < u′rms/u∞ < 0.05) and relatively
high fluctuations in the turbulent region (0.2 < u′rms/u∞ < 0.6).
As a consequence, the measured flow field is considered suit-
able to assess the effectiveness and limitations of the proposed
approach in a range of flow conditions encountered in typical
PIV measurements. A detailed analysis of the peak-locking
errors correction and uncertainty quantification is conducted
in regions I and II of figure 5(b), corresponding to the poten-
tial flow region and a turbulent region, respectively.

5. Results

The approach proposed in section 2.1 is applied to correct
the peak-locking errors in the measured mean displacements
and velocities, where the uncertainties in the corrected dis-
placements and velocity obtained from regression are also
provided. The analogous approach discussed in section 2.2 is
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(a)                                                                               (b)

Figure 6. Reference displacements, measured displacements and regression displacements with one standard deviation uncertainty bounds
at (a) a point [(x/c, y/c) = (0.23, 0.17)] in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent region II, the
two regions being marked by rectangles in figure 5(b).

then applied to correct the measured Reynolds stresses and
quantify the uncertainty. The results are shown for the two
selected regions in the flow as marked in figure 5(b).

5.1. Mean displacement and velocity

From the displacement plots of figure 6, it is evident that,
while the reference displacement increases linearly with ∆t,
the measured mean displacement does not, consistently with
the discussion of section 2.1. It is clear from figures 6(a) and
(b) that the regression displacement is much closer to the
reference displacement, indicating a significant reduction in
the peak-locking errors. The reduction in the peak-locking
errors can further be seen in figures 7(a) and (b), where the
errors in the measured mean displacement and the regres-
sion displacements at each ∆t, calculated with respect to the
corresponding reference displacements, are shown. The max-
imum errors in the measured displacements are observed to
be around ±0.15 pixels in both the regions I of potential flow
(figure 7(a)) and II of high turbulence (figure 7(b)). Whereas,
the errors in the regression displacements are very close to zero
in both the regions, being below 0.05 pixels. The peak-locking
errors in the measured displacements are reduced up to 86%
in the potential flow region I and up to 73% in the turbulent
region II, when correcting the measured displacements by lin-
ear regression.

The uncertainty bounds are also shown for both the uncor-
rected (measured) and corrected displacements (from regres-
sion) in figure 6. In the potential flow region, as shown in
figure 6(a), the uncertainties in the measured displacements
are around 0.07 pixels at different ∆t’s, whereas those on
the regression displacements are around 0.03–0.05 pixels.

Similarly, in the turbulent region, shown in figure 6(b),
the uncertainties in the measured displacements are around
0.09 pixels at different ∆t’s, and those on the regression dis-
placements are around 0.03–0.05 pixels.

Figures 8(a) and (b) show the distributions of the errors in
the measured displacements and the regression displacements
with respect to the reference displacements in the regions I
and II, respectively. In the potential flow region (figure 8(a)),
the pdfs of error distributions for different∆t acquisitions are
narrow and separated from each other and from the pdf of
regression error distribution. Whereas, in the turbulent region
(figure 8(b)), they are wide and close to each other and close
to the regression one. The reason behind the pdfs being nar-
row in the potential flow region and wide in the turbulent
region is the inherent fluctuations in the flow which are low
in the potential flow region I and relatively high in the turbu-
lent region II. Moreover, in the potential flow region, where
the fluctuations are low, the peak-locking errors are signific-
ant and vary drastically (largely overestimated or underestim-
ated) with varying∆t. As a consequence, the error pdfs exhibit
different mean values, from −0.13 pixels at ∆t = 12 µs to
+0.16 pixels at ∆t = 10 µs. Although the errors at most
∆t’s exhibit an approximately normal distribution, at some
∆t’s the distribution is skewed positively (e.g. ∆t = 12 µs)
or negatively (e.g. ∆t = 20 µs). Conversely, the error dis-
tribution stemming from the linear regression has a Gaussian
shape, with 0.02 pixels mean and 0.001 pixels standard devi-
ation. In contrast, in the turbulent region, the large velocity
fluctuations induce particle image displacement variations lar-
ger than the peak-locking errors; as a consequence, the errors
pdfs exhibit lower variations with varying ∆t. Nevertheless,
the mean errors vary between −0.11 pixels and +0.08 pixels
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(a) (b)

Figure 7. Errors in measured displacements and regression displacements with respect to the reference displacements at (a) a point
[(x/c, y/c) = (0.23, 0.17)] in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent region II, the two regions
being marked by rectangles in figure 5(b).

depending on the selected ∆t. The application of the linear
regression reduces the mean bias error to −0.04 pixels. It
should be remarked that, as it is clear from figures 8(a) and
(b), the pdfs of displacement error distribution in different ∆t
acquisitions lie on either side of the pdf of regression dis-
placement error distribution. This is due to the fact that the
measured mean displacements are overestimated or underes-
timated depending on the sub-pixel displacement which in turn
depends on ∆t.

Analogous results in terms of time-averaged velocity are
illustrated in figure 9. The errors in the measured velocities
calculated with respect to the reference velocity are reduced
up to 86% in the potential flow region I and up to 73% in
the turbulent region II, after correcting the measured velo-
cities by the regression analysis. In the potential flow region
(figure 9(a)), the uncertainty in the corrected velocity estim-
ated from the regression analysis is 0.07 m s−1, which is much
smaller than the uncertainties in the measured mean velocities
(0.13–0.31 m s−1) at different∆t’s. Similarly, in the turbulent
region (figure 9(b)), the uncertainties of 0.17–0.36 m s−1 in
the measured mean velocities are reduced to the uncertainty
of 0.07 m s−1 in the corrected velocity obtained from regres-
sion. Thus, the overall reductions of the velocity uncertainties
between 50% and 80% are achieved in both regions I and II.

A visual comparison of the reference, measured and regres-
sion velocities is conducted in figure 10. A particular zoomed
area in the flow field is selected to make the comparison vivid.
It is clear that, the mean measured velocities at different ∆t
acquisitions are either overestimated or underestimated with
respect to the velocities in the reference measurement depend-
ing on the sub-pixel displacement. For example, in the top
region of the selected area, the measured velocities are over-
estimated at ∆t = 10 µs and 24 µs, whereas, they are under-
estimated at ∆t = 12 µs, consistent with figure 9(a) for the
potential flow region. These measured velocities at different

∆t acquisitions are thus corrected by the regression analysis
as can be seen in the third row of figure 10. It is clear that the
corrected mean velocities from the regression are comparable
to the corresponding mean velocities from the reference meas-
urement.

The uncertainty coverages (CU) for the uncertainties in the
measured displacements and velocities are calculated follow-
ing equation (39). The uncertainties exhibit a coverage of 52%
and 62% considering the measurements at different∆t acquis-
itions in the potential flow region I and turbulent region II,
respectively. Whereas, the error standard deviation coverages
(CSD), calculated by the equation (40) are 61% and 70% in the
regions I and II, respectively. Thus, the RCIs for the uncer-
tainty quantification in the measured displacements and velo-
cities are 0.85 and 0.89 in the potential flow region I and tur-
bulent region II, respectively. This analysis proves the validity
of the proposed approach for uncertainty quantification as the
RCI’s are close to one and the uncertainties are slightly under-
estimated in both the regions.

5.2. Reynolds stress

The results of the proposed methodology for correcting the
Reynolds stresses are summarized in figures 11(a) and (b) in
the potential flow region and turbulent region, respectively. It
is clear from figure 11(a) that the effect of peak-locking errors
is significant and can be seen by non-linear variation of the
measured Reynolds stresses with respect to ∆t. Such result is
associated with the magnitude of flow fluctuations being lower
than the magnitude of peak-locking errors in this region I of
potential flow, consistent with the results of the Monte Carlo
simulations described in section 2.2. Conversely, in the turbu-
lent region II, the measured Reynolds stresses show smoother
variation with respect to the changing ∆t. In this region, the
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(a)                                                                               (b)

Figure 8. Error distributions for the measured displacements and regression displacements from multiple∆t acquisitions in (a) the
potential flow region I and (b) the turbulent region II, the two regions being marked by rectangles in figure 5(b).

(a)                                                                               (b)

Figure 9. Reference velocity, measured velocities and regression velocity with one standard deviation uncertainty bounds at (a) a point
[(x/c, y/c) = (0.23, 0.17)] in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent region II, the two regions
being marked by rectangles in figure 5(b).

effect of the peak-locking errors is hidden due to the inherent
flow fluctuations being higher.

The reference Reynolds stress in the potential flow region
is 0.08 m2 s−2 which is comparatively low due to the low
flow fluctuations in this region. However, the measured Reyn-
olds stresses overestimate the reference value by up to 700%.
The regression approach provides an estimate of the Reyn-
olds stress that agrees within 50% with the true value. Con-
versely, in the turbulent region, higher flow fluctuations are
encountered and the reference Reynolds stress is 2.0 m2 s−2.

The measured Reynolds stresses in this region are overes-
timated by 4% to 95%. When the regression approach is
employed, the estimated Reynolds stress is slightly overestim-
ated by 19% with respect to the reference value.

The errors in the measured Reynolds stresses are calculated
with respect to the reference one using the equation (38) and
the pdfs of the error distributions are shown in figures 12(a)
and (b) for the potential flow region I and the turbulent region
II, respectively. It is clear that the pdfs are narrow in the region
I and wider in the region II due to the inherent low flow
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Figure 10. Measured time-averaged velocities in the reference measurement, in multiple ∆t acquisitions and after correcting by the
regression analysis.

fluctuations in the region I and high flow fluctuations in the
region II, as also observed for the displacement error distri-
butions. The errors in the regression Reynolds stress are com-
paratively lower than that in the measured Reynolds stresses at
different ∆t’s. Most of the errors in the potential flow region
are positive, whereas those in the turbulent region are either
positive or negative. Moreover, most of the pdfs for the meas-
ured Reynolds stresses lie on the positive side of the regres-
sion pdf in region I; in region II, instead, the pdfs of the
measured Reynolds stresses lie on both positive and negative
sides of the regression pdf. This fact is accounted for in the
calculation of the total uncertainty in the Reynolds stresses
at each ∆t using equations (28) and (29). For the Reynolds
stresses overestimated with respect to the regression estimate,

URuu,1 represents the lower uncertainty bound and URuu,2 is
the upper uncertainty bound. Whereas, in case of the under-
estimated Reynolds stresses, URuu,1 and URuu,2 are the upper
and lower uncertainty bounds, respectively, as can be seen
in figures 11(a) and (b). In the potential flow region I, the
largest uncertainty bound in the measured Reynolds stresses
is 0.35 m2 s−2, whereas the uncertainty in the corrected Reyn-
olds stress (i.e. the estimate of the ‘true’ Reynolds stress from
regression) is 0.09 m2 s−2. At the point in the turbulent region
II, the bigger uncertainty bound in the measured Reynolds
stresses is around 0.95 m2 s−2, whereas the uncertainty in the
corrected Reynolds stress is 0.61 m2 s−2. The uncertainties in
the measured Reynolds stresses are reduced by around 75% in
the potential flow region, and by around 35% in the turbulent
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(a)                                                                               (b)

Figure 11. Reference, measured and regression Reynolds stresses with the estimates of ‘true’ Reynolds stress (R̂uu,true) at (a) a point
[(x/c, y/c) = (0.23, 0.17)] in the potential flow region I and (b) a point [(x/c, y/c) = (0.23, 0.07)] in the turbulent region II, the two regions
being marked by rectangles in figure 5(b). Red error bars and green shaded regions represent one standard deviation uncertainty in the
measured and estimated ‘true’ Reynolds stress, respectively.

(a)                                                                               (b)

Figure 12. Error distributions for the measured Reynolds stresses and the regression estimate of ‘true’ Reynolds stress from multiple ∆t
acquisitions in (a) the potential flow region I and (b) the turbulent region II, the two regions being marked by rectangles in figure 5(b).

region, after correction with the estimates of the ‘true’ Reyn-
olds stresses from regression.

The uncertainty coverages (CU) are determined by compar-
ing the calculated uncertainties with the errors (computed with
respect to the reference measurements) in the measured Reyn-
olds stresses as per the equation (39). The coverages for the
errors standard deviation are also calculated using the equation
(40). In the potential flow region I, the uncertainties exhibit a

coverage (CU) of 73% and the corresponding error standard
deviation coverage (CSD) is 61%. These values lead to the RCI
of 1.2 indicating that the uncertainties in the measured Reyn-
olds stresses are slightly overestimated in the potential flow
region. In the turbulent region II, the uncertainty coverage is
64% and the error standard deviation coverage is 72%, result-
ing in RCI = 0.89. Thus the Reynolds stress uncertainties are
slightly underestimated in the turbulent region.
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Figure 13. Measured Reynolds stresses in the reference measurement, in multiple∆t acquisitions and after correcting by the regression
analysis.

The results of the regression analysis are also summarized
in figure 13, where the reference Reynolds stresses and the cor-
rected Reynolds stresses are shown along with the measured
Reynolds stresses at different∆t acquisitions. It is to be noted
that the measured values only at three∆t’s are plotted for sake
of conciseness. Consistent with the findings of figure 11(b),
the measured Reynolds stresses in the bottom region of the
selected area are overestimated at ∆t’s = 12 and 24 µs. The
corrected Reynolds stresses by the regression analysis in this
bottom region are slightly underestimated with respect to the
reference values and are found to be comparable to the meas-
ured Reynolds stresses at∆t= 10 µs acquisition. Similarly, in
the potential flow region of this selected area in figure 13, the
corrected Reynolds stresses are comparable to the reference

ones, as also were seen in the figure 11(a). The results show
that the peak-locking errors can be reduced by the regression
analysis in the Reynolds stresses.

5.3. Selection of ∆t’s

The proposed approach is based on the simple concept of least-
squares regression of the measured quantities from multiple
∆t acquisitions. The selection of ∆t’s is an important step
in the methodology. The first requirement for the selection
of the ∆t’s is that a minimum number of four ∆t’s is con-
sidered. This requirement is a direct consequence of the four-
degree of freedom model (β0, β1, β2 and β3) employed for
the Reynolds stress. Additionally, it is deemed likely that the
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(a)                                                                               (b)

Figure 14. Measured and corrected (a) displacements and (b) Reynolds stresses at a point [(x/c, y/c) = (0.23, 0.17)] (case I: ∆t’s = 10, 12,
14, 16 µs and case II: ∆t’s = 10, 14, 18, 22 µs).

accuracy of the regression result degrades when the range of
the selected ∆t’s covers a particle image displacement below
one pixel, that is less than a period of the peak-locking error.
Hence, the second requirement for selecting the ∆t’s is that
the particle image displacement range, defined as the differ-
ence between the largest time-averaged displacement (occur-
ring in the acquisition with the largest ∆t) and the smallest
time-averaged displacement (for the smallest∆t), should be at
least one pixel. In this section, the effect of the number of∆t’s
selected for the regression analysis and the displacement range
is investigated. Based on the two requirements, two sets of four
values of ∆t’s each are selected arbitrarily in the NACA0012
experiment. It is to be noted that, with four ∆t acquisitions,
it is possible to perform the regression analysis for Reynolds
stresses and to correct the peak-locking errors by the estim-
ated ‘true’ Reynolds stress from the regression. However, it
is not feasible to compute the uncertainty in the estimate of
‘true’ Reynolds stress, as the regression curve passes exactly
through all the data points. The two sets of∆t’s are selected as
follows: set I consists of measurements at∆t’s equal to 10, 12,
14, 16 µs, whereas in set II the measurements are performed
at ∆t’s of 10, 14, 18, 22 µs.

The proposed approach of regression is applied for both
the cases of ∆t’s to correct the measured mean displace-
ments (and velocities) and Reynolds stresses. It can be seen
in figure 14(a) that the measured displacements cover more
than one pixel range in both cases of ∆t’s. Hence, the cor-
rected displacements in both the cases are comparable to the
reference displacements, and to each other. However, when
the measured displacements do not cover one pixel range, the
regression is not effective. This result is due to the majority

of the measured displacements lying on one side of the refer-
ence displacements, resulting in the regression displacements
to be on the same side and away from the reference one. Thus,
for the effective displacements regression, it is necessary to
have both the overestimated and underestimatedmeasured dis-
placements, which is possible when the range is greater than
or equal to one pixel.

When analyzing the Reynolds stresses results
(figure 14(b)), it is clear that the corrected Reynolds stress
in the case II is closer to the reference one than that in the case
I. This is because of the larger range of ∆t’s in the case II.
Thus the regression in the case II performs slightly better than
that in the case I. Nevertheless, the Reynolds stress estimated
with the four ∆t’s of set II is less accurate than the result
obtained from the full set of eight∆t’s, which has been shown
in figure 11(a). Hence, although four is the minimum num-
ber of time separations for the regression analysis, the use of
more ∆t’s can further increase the accuracy of the estimated
Reynolds stresses.

Furthermore, to quantify the uncertainty in the estimate of
‘true’ Reynolds stress from regression, more than four data
points or measured Reynolds stresses are required. There-
fore, in the present work, eight ∆t’s were selected with the
gap of 2 µs between the consecutive values while acquiring
the measurements, the results of which were presented in the
sections 5.1 and 5.2. As a guideline for future applications
of the proposed methodology, it is suggested that more than
four ∆t’s are selected, and that the particle image displace-
ment range covers at least one pixel in the regions of interest,
to ensure an effective evaluation and correction of the peak-
locking errors.
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6. Conclusions

A novel approach is proposed for the quantification of the
peak-locking systematic uncertainty in PIV, which in turn
also corrects the measured particle image displacement (and
velocity) and Reynolds stress for peak-locking errors. The
approach is based on the assumption that local flow stat-
istics are constant in time, according to which the particle
image displacement should vary linearly with the time sep-
aration (∆t) between two frames. However, in the presence
of peak locking, the measured particle image displacement
is a non-linear function of ∆t as the measurement error in
the displacement varies non-linearly with sub-pixel particle
image displacement. Similarly, in presence of peak locking
the Reynolds stress may vary significantly depending on the
selected ∆t. Hence, in the present approach, it is proposed
to acquire the measurements at various ∆t’s and perform a
least-squares regression of the measured quantities (displace-
ments andReynolds stresses). The displacement (and velocity)
and Reynolds stress from regression represent more accur-
ate estimates of the ‘true’ values and thus used to quantify
systematic errors and uncertainty due to peak locking in the
measured displacement (and velocity) and Reynolds stresses,
respectively. Guidelines for the selection of the ∆t’s are also
provided. The methodology is assessed for planar PIV meas-
urements of the flow over a NACA0012 airfoil at 10 degrees
angle of attack. The uncertainties in the measured velocity and
Reynolds stresses are reduced by 50%–80% and 35%–75%,
respectively, after correcting by the regression analysis. RCIs
close to one are obtained for the mean velocity uncertainty and
Reynolds stress uncertainty in both the potential and turbulent
regions of the flow, indicating the ability of themethodology to
quantify the uncertainty associated with peak-locking errors.
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