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SUMMARY

This dissertation investigates the use of deep-learning methods for user-guided content
creation, manipulation, and exploration. It illustrates the potential of neural techniques
to support working with large data collections and we illustrate our solutions through
several applications. Regarding content generation, we propose an algorithm to produce
material representations from a single image. We illustrate content manipulation with
an approach to perform perceptually plausible interpolation and examine exploration in
the context of interactive retrieval. For the latter, we show that features spaces are of high
relevance to organize data and show the generality of this concept by proposing novel
exploration methods for image and music collections.

In Chapter 2 we discuss the challenges in estimating Spatially-Varying Bidirectional
Reflectance Distribution Functions (SVBRDFs) from a single image. It proposes a learned
gradient descent method that combines neural network predictions with test-time op-
timization for robust SVBRDF estimation. This chapter presents experimental results
demonstrating the effectiveness of the proposed method on both synthetic and real
images.

In Chapter 3 we explore the problem of generating smooth and perceptually uniform
interpolations between images, and propose a method that maps linear latent space
changes to perceptually consistent steps between consecutive images. Examples and
evaluations of the generated interpolated images are provided, showcasing their visual
consistency and quality.

While image retrieval is a well-researched field, many algorithms focus on the image
content in terms of objects and actions rather than abstract semantic features. In Chap-
ter 4 We illustrate that feature-based approaches can be used to pursue more abstract
image content. Specifically, we address the difficulty of exploring large collections of
texture images, which focus on patterns and structures. We utilize high-level semantic
features and dimensionality reduction techniques for efficient texture navigation and
retrieval. The chapter describes the system’s user interface and tools designed to enhance
the exploration experience, and presents a user evaluation demonstrating the system’s
effectiveness.

In Chapter 5 we illustrate that visual navigation linked to neural features can also
be highly beneficial for non-visual data types, as we focus on the visualization and re-
trieval of music using glyph-based designs. It proposes a system that extracts deep latent
features from music tracks and maps them to visual glyphs for intuitive search and explo-
ration. The chapter evaluates the system through a user study, highlighting its benefits in
enhancing music discovery and user engagement.

To conclude, we summarize the key contributions and findings of the thesis, discuss the
research implications, and outline potential future directions, providing a comprehensive
closure to the work.

IX






SAMENVATTING

Deze dissertatie onderzoekt het gebruik van deep-learning-methoden voor gebruikersge-
stuurde contentcreatie, manipulatie en verkenning. Het illustreert het potentieel van neu-
rale technieken om het werken met grote datacollecties te ondersteunen en we illustreren
onze oplossingen aan de hand van verschillende toepassingen. Wat betreft contentgene-
ratie, stellen we een algoritme voor om materiaalrepresentaties te produceren op basis
van een enkele afbeelding. We illustreren contentmanipulatie met een benadering om
perceptueel plausibele interpolatie uit te voeren en onderzoeken verkenning in de con-
text van interactieve retrieval. Voor dit laatste tonen we aan dat featurespaces van groot
belang zijn voor het organiseren van data en tonen we de generaliteit van dit concept
door nieuwe verkenningsmethoden voor beeld- en muziekcollecties voor te stellen.

In Hoofdstuk 2 bespreken we de uitdagingen bij het schatten van Spatially-Varying
Bidirectional Reflectance Distribution Functions (SVBRDFs) uit een enkele afbeelding.
Het stelt een geleerde gradient descent-methode voor die voorspellingen van een neuraal
netwerk combineert met test-tijd optimalisatie voor robuuste SVBRDF-schatting. Dit
hoofdstuk presenteert experimentele resultaten die de effectiviteit van de voorgestelde
methode aantonen op zowel synthetische als echte afbeeldingen.

In Hoofdstuk 3 verkennen we het probleem van het genereren van vloeiende en per-
ceptueel uniforme interpolaties tussen afbeeldingen, en stellen we een methode voor die
lineaire veranderingen in de latente ruimte omzet naar perceptueel consistente stappen
tussen opeenvolgende afbeeldingen. Voorbeelden en evaluaties van de gegenereerde
geinterpoleerde afbeeldingen worden gepresenteerd, waarbij hun visuele consistentie en
kwaliteit worden aangetoond.

Hoewel het ophalen van afbeeldingen een goed onderzocht gebied is, richten veel
algoritmen zich op de inhoud van de afbeelding in termen van objecten en acties in
plaats van op abstracte semantische kenmerken. In Hoofdstuk 4 illustreren we dat
op kenmerken gebaseerde benaderingen kunnen worden gebruikt om meer abstracte
beeldinhoud na te streven. We richten ons specifiek op de uitdaging van het verkennen
van grote collecties textuurafbeeldingen, die zich concentreren op patronen en structuren.
We maken gebruik van semantische kenmerken op hoog niveau en technieken voor
dimensionaliteitsreductie voor efficiénte textuurnavigatie en -ophaling. Het hoofdstuk
beschrijft de gebruikersinterface van het systeem en de hulpmiddelen die zijn ontworpen
om de verkenningservaring te verbeteren, en presenteert een gebruikersbeoordeling die
de effectiviteit van het systeem aantoont.

In Hoofdstuk 5 tonen we aan dat visuele navigatie gekoppeld aan neurale features
ook zeer nuttig kan zijn voor niet-visuele datatypen, aangezien we ons richten op de
visualisatie en het ophalen van muziek met behulp van op glyphs gebaseerde ontwerpen.
Het stelt een systeem voor dat diepe latente kenmerken uit muziekstukken extraheert
en deze omzet naar visuele glyphs voor intuitieve zoek- en verkenning. Het hoofdstuk

XI
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evalueert het systeem door middel van een gebruikersstudie en benadrukt de voordelen
ervan bij het verbeteren van muziekontdekking en gebruikersbetrokkenheid.

Ter afsluiting vatten we de belangrijkste bijdragen en bevindingen van de thesis samen,
bespreken we de implicaties van het onderzoek en schetsen we mogelijke toekomstige
richtingen, waarmee we een uitgebreide afsluiting van het werk bieden.



INTRODUCTION

The rapid advancement in computer graphics has introduced a wide range of techniques
and tools for creating, manipulating, and exploring digital content. The Al revolution in
computer vision and natural language processing was largely enabled by deep learning,
particularly deep neural networks that led to sophisticated data-driven approaches [1].
This thesis explores the use of deep-learning as a user-oriented technique in the context
of Computer Graphics, focusing on the reconstruction, generation, and exploration
of digital content using deep neural features.Specifically, Most of our contributions in
this dissertation are targeting material representations, which play an important role in
Computer Graphics to be able to generate realistic imagery from a virtual scene. Still, our
findings are more general and describe concepts that are applicable in a broader context.
We illustrate this latter point with our work on music exploration.

Materials are indeed a crucial component in the realm of digital content creation.
One such representation is the Spatially-Varying Bidirectional Reflectance Distribution
Function (SVBRDF), which describes how light interacts with pixel-level elements of a
material surface. The accuracy and efficiency of material reconstruction and retrieval
directly influence the appearance of objects in 3D modeling, rendering, and visualization,
as well as in photography, cinematography, and game development, all of which are
essential for creating immersive experiences. Traditional methods of measuring SVBRDF
typically involve capturing multiple images under various lighting conditions or using
complex setups with specialized equipment, as shown on the left in Fig. 1.1. This process
is often time-consuming and requires precise calibration to ensure accurate results [2, 3].
For exploring and retrieving material images, metadata-based approaches are commonly
used, where images are categorized and stored based on manually added characteristics.
In our work, we will show solutions to ease creating, manipulating, and exploring material
definitions.

Recent advancements in the estimation of SVBRDF have been driven by the integration
of deep learning techniques and hybrid approaches, largely enhancing the accuracy; effi-
ciency, and accessibility of material property estimation. Convolutional Neural Networks
(CNNs) and Generative Adversarial Networks (GANs) have been particularly impactful,
enabling the estimation of complex, spatially varying material properties from minimal
input data, such as a single image (Fig. 1.1, right) or a limited set of images [4-8]. These
models have been trained on large datasets to learn intricate material characteristics,
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enabling a detailed and physically plausible SVBRDF estimation.

Nevertheless, while generating SVBRDFs from a single image has become an option
with deep learning and we show that novel insights in the optimization procedure can
improve the outcome of this estimation process (Chapter 2), assisting users in finding
the image that they need is challenging. Textures can be hard to describe and, as a result,
difficult to retrieve using labels in natural language. When searching for the example
images or the desired texture, efficient navigation and retrieval systems become essential.
Many algorithms focus on the image content in terms of objects and actions. We illustrate
that feature-based approaches, particularly the high-level semantic neural features, can
be used to explore more abstract image content. This is especially relevant in large
collections of texture images where patterns and structures dominate. Interestingly, the
principles applied to image navigation and retrieval can be extended to other types of
digital content, such as music files, demonstrating the versatility and broad applicability
of deep neural features across various data domains. This is an aspect that we will
investigate (Chapter 4) and also illustrate the breadth of this idea by showing this concept
being applied to music exploration (Chapter 5).

Further, if an image is not available, one might want to describe a material as a mix
between different inputs. Here, interpolation methods enable us to use example images
to generate the desired result that meets specific criteria. We show that seamless blending
of images, which ensures smooth transitions and realistic effects, for example, a specified
perceptually uniform sequence (examples in Fig. 1.2) can be achieved using the deep
neuron interpolation with the generative models (Chapter 3), making the interpolation
process much easier to control.

Camera E

LCD
screen

Roughness

Traditional capture Lightweight capture

Figure 1.1: Traditional SVBRDF capture using complex setups (left, adapted from [2])
and streamlined SVBRDF capture using a single mobile phone photo (right,
adapted from [5].

1.1. DEEP NEURAL FEATURES IN DIGITAL CONTENT

The fulfillment of our vision depends on recent advancements in deep neural networks,
which is why we revisit a few of the key aspects in this section, which have revolutionized
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the analysis and manipulation of digital content.

Neural networks can automatically learn and identify intricate patterns and structures
within the data, enabling more specific and efficient tasks. The representational power
of neurons in learned deep networks provides opportunities to guide the exploration
of large datasets across various media, such as images or music files. By explicitly ma-
nipulating neurons as latent vectors in generative models, it is even possible to alter the
appearance of images in a controlled manner. We explore their potential in our tasks on
reconstruction, generation, and exploration.

THE EXPRESSIVE CAPACITY OF VGG NETWORKS

Among various prominent works in Al from the last decade, convolutional neural net-
works (CNNs), particularly VGG16 and VGG19 [9], have significantly advanced the field
of computer vision through its deep architecture and effective feature representation.
VGG16 and VGG19 are renowned for their architecture with 16 and 19 layers, respectively,
which allows them to capture intricate patterns in image data [9, 10]. Coupled with small
3 x 3 convolution filters, VGG networks perform tasks like image classification and object
detection effectively, while maintaining computational efficiency [11]. The hierarchical
feature extraction capability of VGG networks, from simple edges in early layers to com-
plex texture information and object parts in deeper layers, is crucial for understanding
and interpreting visual data [10-12]. It leads to highly discriminative and robust features.
These learned features from pre-trained VGG models can be adapted to new problems
with relatively little additional training [13, 14], which is employed in our exploration of
large texture image datasets.

Figure 1.2: Perceptually consistent transitions between consecutive images in the inter-
polation sequence generated with GAN.

DIMENSIONALITY REDUCTION

Towards a practical and intuitive exploration and retrieval, the representative deep neural
features are typically mapped to a lower-dimensional space. Dimensionality reduc-
tion techniques, such as t-SNE (t-distributed Stochastic Neighbor Embedding) [15] and
UMAP [16], are commonly used to project high-dimensional neural features into a low-
dimensional space, preserving the similarity structure of the data.

The integration of dimensionality reduction techniques with deep neural networks
allows for more interpretable mapping of the features, helping users navigate large data
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collections by visually clustering the data, a principle that we also rely on in our explo-
ration solutions, for example in the music visualization and retrieval in Chapter 5, as
illustrated in Fig. 1.3.

LATENT VECTORS IN GENERATIVE MODELS

The representational capacity of neurons is powerful not only in discriminative tasks, but
also in generative tasks. Generative models, especially Generative Adversarial Networks
(GANSs), use latent vectors as a core component to generate new data samples [17-20].
The latent vector is a compact representation of a data point in a high-dimensional space
learned by the model from the given training database. In the context of GANs, the
generator network takes the latent vector as input and transforms it into a synthetic data
sample, such as an image [21].

Latent vectors capture the underlying factors of variation in the training data, enabling
the generation of diverse and realistic samples. By interpolating between latent vectors, it
is possible to create smooth transitions between different generated samples, which is
useful for tasks such as image interpolation [21], as shown in Fig. 1.2. The latent space
of a GAN is typically structured such that similar vectors produce similar outputs [17],
which inspired us to make it a powerful tool to generate controlled variations of texture
images as the interpolations from existing examples.

1.2. OUR CONTRIBUTIONS

Digital reconstruction, generation, and exploration in computer graphics can traditionally
demand highly professional equipment or significant manual effort. Meanwhile, deep
neural networks offer powerful representative neural features that can describe digital
content with minimal information. In this dissertation, we aim to utilize advanced
deep learning techniques, including CNNs, RNNs, and GANSs, to achieve more intuitive,
efficient, and creative processes with the digital content using minimal manual input.
Recent advancements, such as the deep learning-powered estimation of SVBRDFs and
image interpolation, demonstrate improvements over traditional methods. However,
these advancements are still limited due to the lack of proper target-specific optimization.
Digital content visualization and exploration have traditionally relied on older methods
and suffer from insufficient perceptual representations and unintuitive interaction. Below,
we detail the challenges within these fields and outline the innovations introduced in
each chapter of this thesis.

In the context of single-image SVBRDF estimation, current methods often rely on feed-
forward neural networks that predict reflectance parameters based purely on data-driven
priors, neglecting the output quality with respect to the input image. Methods utilizing
differentiable rendering for optimization are prone to poor local minima, especially when
the input images differ significantly from the training data. Moreover, optimization in
lower-dimensional latent spaces can hinder the accurate reconstruction of SVBRDFs for
images outside the training distribution. In Chapter 2, we introduce a learned gradient
descent approach that combines the rapid prediction capabilities of feed-forward neural
networks with the precision of test-time optimization. By leveraging a recurrent neural
network, our method dynamically updates reflectance parameters based on the gradient
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Figure 1.3: Informed by dimensionality reduced deep neural features, the glyph-based
designs enhance the user interface for identifying and exploring music through
visual cues.

of the reconstruction likelihood, achieving a maximum a posteriori (MAP) estimate. This
hybrid approach overcomes the limitations of both purely data-driven and optimization-
based methods, providing robust SVBRDF estimation even for challenging real-world
images.

For material image interpolation, traditional interpolation methods often fail to main-
tain perceptual uniformity when the interpolation parameters are adjusted linearly. Linear
interpolation in the latent space of GANs may not ensure smooth transitions in the output
sequence, leading to inconsistencies. Our research in Chapter 3 addresses this challenge
by focusing on perceptually consistent interpolation of material appearance. We propose
a method that maps linear changes in the latent space of GAN to consistent percep-
tual steps, ensuring a constant Structural Similarity Index (SSIM) between consecutive
rendered material images. An optimization framework adjusts interpolation weights to
maintain uniform SSIM across the interpolation sequence. Experiments on various mate-
rial datasets show that our SSIM-optimized interpolation significantly improves transition
smoothness and visual consistency compared to direct linear interpolation. Quantitative
evaluations confirm a lower variance in SSIM, ensuring both visually appealing results
and perceptual uniformity.

In the area of fexture exploration, existing retrieval systems rely heavily on manual
annotations, which are time-consuming and often lack of standardization. Traditional
methods do not provide intuitive navigation tools, making it difficult for users to explore
large, unlabeled texture collections effectively. In Chapter 4, we propose an automated ex-
ploration system that organizes textures based on high-level semantic features extracted
from a pre-trained convolutional neural network. Our use of prioritized t-SNE for dimen-
sionality reduction, along with enhanced navigation tools such as scalable clustering and
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flip zooming, noticeably improves the efficiency and intuitiveness of texture exploration
and retrieval.

For music visualization and retrieval, current music discovery platforms offer limited
visual representations, making it challenging for users to assess music characteristics
without listening. The absence of effective visual search tools can hinder user interaction
and exploration of large and unfamiliar music libraries. In Chapter 5, we propose a glyph-
based visualization system that translates deep latent features of music into intuitive
visual icons, enhancing the user-directed search process. By combining deep learning-
based feature extraction with dimensionality reduction, our system offers a novel interface
that improves user engagement and efficiency in music exploration.

Through this research, we show that working with deep-learning features can reduce
the need for costly equipment and extensive manual labor. Our innovations promise to
offer solutions that improve the accuracy and efficiency in the digital material property
reconstruction, and simplify and enhance the workflows involved in the generation, and
exploration of data content.



SINGLE-IMAGE SVBRDF
ESTIMATION WITH LEARNED
GRADIENT DESCENT

Recovering spatially-varying materials from a single photograph of a surface is inherently
ill-posed, making the direct application of a gradient descent on the reflectance parameters
prone to poor minima. Recent methods leverage deep learning either by directly regressing
reflectance parameters using feed-forward neural networks or by learning a latent space of
SVBRDFs using encoder-decoder or generative adversarial networks followed by a gradient-
based optimization in latent space. The former is fast but does not account for thelikelihood
of the prediction, i.e., how well the resulting reflectance explains the input image. The
latter provides a strong prior on the space of spatially-varying materials, but this prior
can hinder the reconstruction of images that are too different from the training data. Our
method combines the strengths of both approaches. We optimize reflectance parameters
to best reconstruct the input image using a recurrent neural network, which iteratively
predicts how to update the reflectance parameters given the gradient of the reconstruction
likelihood. By combining a learned prior with a likelihood measure, our approach provides
amaximum a posteriori estimate of the SVBRDE Our evaluation shows that this learned
gradient-descent method achieves state-of-the-art performance for SVBRDF estimation on
synthetic and real images.
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2.1. INTRODUCTION

Real-world objects have a rich visual appearance due to spatially-varying material proper-
ties, which can be represented by Spatially-Varying Bidirectional Reflectance Distribution
Functions (SVBRDFs). This paper presents a lightweight method to capture the appear-
ance of real surfaces with only a single photo.

Since few measurements are insufficient to ensure a unique interpretation of the many
reflectance parameters, recent research leveraged deep learning to automatically build
priors based on the distribution of plausible SVBRDFs. A first family of methods trains
feed-forward neural networks to predict spatially-varying reflectance parameters from
as little as a single flash picture of a flat surface [4-7, 22-24]. While fast, such neural
networks mostly rely on data-driven priors to make their prediction. During use, they
never evaluate the actual quality of their output with respect to the input image.

A second family of methods achieves higher accuracy by using differentiable rendering
for online optimization, where the estimated SVBRDF is rendered under the same viewing
and lighting conditions as for capture, Gradient descent is used to minimize the difference
between the rendering and the input image. Yet, relying solely on differentiable rendering
to optimize reflectance parameters is prone to bad minima, which is why several groups
of authors proposed to perform the optimization in a lower-dimensional latent space
learned from a dataset of representative SVBRDFs [25, 26]. Nevertheless, gradient descent
typically requires many iterations to converge and latent-space regularization can limit
the quality of the estimation when the input differs too much from the images used to
build the latent space.

Recent work proposed to combine these two strategies by training a neural network on
alarge dataset of SVBRDFs, and then fine-tuning the network weights at test time such
that its prediction best reproduces the input image [27, 28]. A key challenge with this new
strategy is to prevent the fine-tuning phase to forget the priors learned during the training
phase.

Our algorithm combines the speed of neural network prediction with the accuracy of
test-time optimization. It is inspired by learned gradient descent [29, 30], which replaces
the analytic gradient update rule of standard optimization by a recurrent neural network.
This network is trained to predict the best updates given the current state of the estimation
and the gradient of the cost function to be minimized. Importantly, the neural network
weights are not updated at test-time, avoiding the risk of forgetting its priors. In our
context, the cost function captures the likelihood of the SVBRDF to reproduce the input
image when rendered under the same light and view, while the neural network learns a
prior over the distribution of SVBRDFs. By combining likelihood and prior information,
our method effectively solves for a maximum a posteriori estimate of the SVBRDE While
trained on a synthetic dataset of SVBRDFs, our method generalizes well to real data,
outperforming both feed-forward and optimization-based prior work, as demonstrated
on a large set of photographs.

2.2. BACKGROUND AND RELATED WORK

We focus our discussion on recent deep learning methods for lightweight SVBRDF capture,
and refer to surveys for a comprehensive overview of the vast domain of appearance
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acquisition [31-33]. We first introduce general concepts on which our approach relies,
before diving into recent methods, which combine deep-learning and gradient-based
optimization to recover SVBRDF parameters from one or a few flash images of a planar
surface.

Appearance capture as an inverse problem. Formally, the image I of a surface depends
on its reflectance properties R, as well as the viewing conditions V and lighting conditions
L under which the surface is captured:

I=fRLV)+n, (2.1)

where f is the image formation model and n is measurement noise.
Appearance capture aims at inverting the image formation to recover R from observa-
tions I, typically under known viewing and lighting conditions:

R= argmin Zreconstruct (L fRL, V)) ) (2.2)
R

where Zreconstruct iS @ cost function measuring the difference between the observations
and renderings of the estimated reflectance. Assuming that Zreconstruct is differentiable,
gradient descent can be employed for the minimization:

0L econstruct (I» fRL V))
OR R=R,

Riri=Re—7v: ) (2.3)

where vy, is the step size at iteration t.

To make this inverse problem well-posed, early work relied on dedicated gantries to cap-
ture many images of the target surface under different light and view configurations [34—
37]. Despite progress in hardware setups and optimization algorithms [2, 38, 39], precise
acquisition of spatially-varying materials remains a costly and time-consuming process.
Moreover, gradient-based optimization often requires a large number of iterations and is
subject to bad local minima, especially using few measurements.

Lightweight capture methods trade accuracy for simplicity to enable SVBRDF capture
with as few as a single photograph of a surface - typically planar. Such methods compen-
sate for the measurement scarcity by making various assumptions on the materials to
be acquired, such as the existence of a low-dimensional basis of BRDFs [40-43], or the
presence of repetitive or stochastic patterns [44, 45].

Feed-forward SVBRDF prediction. Recent work shifted from hand-crafted assumptions
towards priors learned from large datasets of (synthetic) SVBRDFs. A first family of
methods cast SVBRDF acquisition as a regression task, for which they train a feed-forward
neural network g, to directly predict reflectance properties from an input image [4-7,
22, 24]. Denoting RT}a large set of SVBRDFs and their renderings, training the neural
network with supervised learning amounts to solving for parameters w, minimizing a loss
function Zefiectance, Which compares the predicted SVBRDFs with the ground truth:

@ =argmin ) Lreflectance (8w (I), R). (2.4)
©  RD
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Further developments of such methods include the use of a rendering loss function
Lrendering (f (8w (1), {L, V1), f (R, {L,V})) to evaluate whether the predicted SVBRDF has
the same appearance as the ground truth under varying viewing and lighting conditions
[6], or an adversarial loss Zaqy (8 (I), {R}) to evaluate whether the predicted SVBRDF
resembles the ones in the dataset [24], or Laav (f (g (I),L,V),{I}) to evaluate whether
the re-rendered image resembles synthetic and real images [7, 23, 46].

Latent-space optimization. While feed-forward neural networks are fast to evaluate,
the SVBRDF parameters they produce are entirely defined by the SVBRDF dataset {R}
they are trained on, not by how well these parameters reproduce the input image I at test
time. In other words, feed-forward networks only provide an approximate solution to
the inverse problem formulated in Eq. 2.2, and the severity of this approximation tends
to increase for input images that deviate from the distribution of the training images
{I}. This discrepancy has motivated the development of test-time optimization methods
that use gradient descent (Eq. 2.3) to refine neural-network predictions to better fit the
input images. Since SVBRDF recovery from few input images is ill-posed, several papers
propose to regularize the problem by performing gradient descent in a low-dimensional
SVBRDF latent space, instead of the original high-dimensional parameter space of R [25,
26]:

0Lreconstruct (Ir f (du/ (z) ;L»V))
0z ’

z=27;

Zi1=Zt— Yt (2.5)

where a network dy, decodes the latent code z into an SVBRDE Learning the latent
space from a large dataset of SVBRDFs {R} ensures that the optimization produces plau-
sible solutions. However, the optimization might struggle to find a latent code, which
reproduces the input image well if it differs too much from the training data. Further, the
many iterations required by gradient-based optimizations induce a significant overhead
compared to direct prediction.

Network fine-tuning. Several authors proposed to fine-tune a feed-forward network
8, at test time such that its prediction better reproduces the input [27, 28, 47], which
amounts to performing gradient descent on the neural-network parameters rather than
on the reflectance parameters or latent code:

@ = argmin Zreconstruct (I; f (ga) M,L, V)) . (2.6)
w

This strategy enables adjusting the prediction to the input, while still benefiting from
the priors learned by the network during pre-training on a large dataset. Fischer and
Ritschel [27] build on the concept of meta-learning to optimize the initialization of the
network parameters and the gradient descent step sizes such that fine tuning converges
quickly to good solutions. However, test-time fine-tuning runs the risk of forgetting the
learned priors since it updates the weights by minimizing only the reconstruction error. A
critical difference of our approach is to perform test-time optimization on the SVBRDF
maps themselves, not on network weights, which ensures that the learned priors encoded
by our recurrent neural network are preserved.
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Similarly to meta-learning, Zhou and Kalantari [28] propose to include fine-tuning
steps during pre-training of the network, an algorithm they call look-ahead training. Yet,
their approach also includes a secondary network that is trained to predict reflectance
maps, which serves as a data-driven prior during test-time fine-tuning. Nevertheless, this
prior is combined with the reconstruction error as a linear combination (Eq.7 in their
paper) and is only used for the first iteration of the optimization (Section 4.4 in their
paper). In contrast, we provide the gradient of Zeconstruct t0 @ recurrent network that
learns to best combine this test-time information with its priors to iteratively improve the
prediction.

Importantly, while [27] and [28] rely on hand-tuned step sizes for the gradient descent
optimization, our method predicts the magnitude of the steps and yields results of similar
quality in much fewer steps, making it 10x faster than [28] (Table 2.2).

2.3. APPEARANCE CAPTURE WITH LEARNED GRADIENT
DESCENT
2.3.1. PROBLEM FORMULATION

Our approach combines the respective strengths of optimization-based and regression-
based methods. We cast appearance capture as the minimization problem of Eq. 2.2,
using a single flash image I as observation of the planar surface to acquire. Yet, we replace
the brittle and costly analytic gradient descent of Eq. 2.3 by a learned gradient descent [29,
30], where we train a recurrent neural network hy to predict how to progressively update
an estimate R; of the SVBRDF:

0% reconstruct (I» f R,L, V))
oR

Riv1=Ri—hy JRe |- 2.7

R:Rz

This formulation corresponds to a maximum a posteriori estimation, where the cost
function Zeconstruct i proportional to the likelihood of the solution with respect to the
input, while the neural network hg captures a prior on the distribution of SVBRDFs.
Intuitively, the likelihood term encourages fidelity to the input, while the prior helps
resolving ambiguities and prevents overfitting. This formulation has several advantages
over existing work:

 In the absence of a prior, standard gradient descent (Eq. 2.3) corresponds to maxi-
mum likelihood estimation, which is ill-posed when only a single input image is
available. While network fine-tuning makes the problem better posed by initializing
the optimization with a data-driven prediction, it runs the risk of forgetting the
prior learned by the network if too many optimization steps are performed. In con-
trast, by combining the neural-network prior with test-time gradients of Zreconstruct
our approach converges to a good solution in only a few steps. In addition, our
approach does not require specifying a step size y;, as the magnitude of the update
is implicitly predicted by hy.

* In the absence of a test-time likelihood term, feed-forward networks rely mostly on
priors learned from the training data distribution (Eq. 2.4) to predict SVBRDFs in
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a single step. In contrast, our network performs the simpler task of progressively
improving a running estimate of the SVBRDF given gradient information about its
likelihood. In practice, this online optimization scheme allows us to produce much
more accurate results than feed-forward methods.

* While latent-space optimization methods benefit from data-driven priors, these
priors are learned in a pre-process via auto-encoders [25] or generative-adversarial
networks [26] trained on synthetic SVBRDFs. In contrast, our neural network learns
priors by being trained specifically to perform maximum a posteriori estimation.
As such, it accounts for the availability of the test-time likelihood. Importantly, our
optimization happens in the original reflectance parameter space and is, thus, not
limited to a pre-defined latent space.
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Figure 2.1: Overview of our approach. The input image I is first fed to an existing feed-
forward neural network g, to predict an initialization Ry of the SVBRDF maps
(a). This prediction is then iteratively refined by our recurrent neural network
hg (b). At each iteration, the current estimate R, is compared to the input using
a differentiable renderer. The gradient of this reconstruction loss, %,
is fed to hy along with R;. The recurrent network predicts an update AR, of the
SVBRDE which is added to R; to form the estimate R;,; for the next iteration.
Our algorithm performs T = 6 such iterations in practice. We train g, and hg
jointly to minimize the difference between renderings of the final prediction
R7 and renderings of the ground truth material maps under various view and
light conditions. Note that the gradient and update images were scaled for
visualization purpose.

2.3.2. IMPLEMENTATION

Our method belongs to the family of learned gradient-descent algorithms [29, 30] that
rely on recurrent neural networks to implement update rules that automatically leverage
the inherent structure of the optimization problem at hand. While learned gradient
descent has been successfully used to solve inverse imaging problems, such as novel-view
synthesis [48] and MRI reconstruction [49, 50], we make specific adaptations to apply this
approach to single-image SVBRDF capture (see Fig. 2.1).
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The core of our approach is a lightweight recurrent neural network /g that takes as
input the current estimate of the SVBRDF R; along with the gradient of the cost function
Zreconstruct With respect to Ry, which we obtain via automatic differentiation. The network
outputs an update AR;, which is summed with R; to produce Ry 1. In our implementation,
we formulate Leconstruct @s the image difference between the input I and a rendering of
R; under a view and light setup that corresponds to a flash picture taken perpendicularly
to the surface at a fixed distance. We use the L, norm to compute this difference, which
corresponds to the log-likelihood under a Gaussian distribution assumption.

We initialize the SVBRDF estimate Ry by processing the input image I with the feed-
forward network g, of Deschaintre et al. [6]. While we experimented with the pre-trained
weights provided by the authors, we achieved better results by re-training this initial-
ization network jointly with our recurrent updating network. We hypothesize that joint
training enables the initialization network to account for the subsequent optimization per-
formed by the recurrent network, similarly to the meta-learning and look-ahead strategies
recently proposed by [27] and [28] in the context of test-time network fine tuning.

Internally, hy is composed of three convolutional layers interleaved with Gated Recur-
rent Units (GRUs) [51]. The first two convolutional layers are activated with leaky ReLU
functions and output feature maps of 64 channels, while the third convolutional layer is
activated with a hyperbolic tangent to produce values between -1 and 1, which represent
the update of the 9 SVBRDF channels, where 3 channels correspond to the diffuse albedo,
3 channels to the specular albedo, 2 channels to the normal, and 1 channel to the specular
roughness. We used convolutional kernels of size 5 x 5 for the first layer and 3 x 3 for the
second and third layer, resulting in 405,376 parameters in total for kg, much less than
the 159,741,922 parameters of the initialization network g,,. We voluntarily built on the
classical UNet of Deschaintre et al. and on a lightweight recurrent network to demonstrate
that the boost in performance achieved by our approach is due to methodological rather
than architectural novelty.

An important hyper-parameter of our method is the number of iterations (or updates)
T performed by the recurrent network. While several iterations are necessary to improve
the prediction, performing too many iterations can be expensive in terms of GPU memory
and time. Specifically, the GPU memory consumption of the recurrent network increases
linearly with the number of time steps. Every iteration adds a forward pass through the
CNN layers and the computation of the gradient of the reconstruction error. Therefore,
the training/testing time of the recurrent network also increases linearly with the number
of time steps. We empirically found that T = 6 iterations offer a good trade-of, as detailed
in Section 2.4.1.

2.3.3. DATA AND TRAINING

Similarly to prior work [6, 7, 24-26, 28], we adopt a Cook-Torrance SVBRDF model [52] with
the GGX distribution [53], which is parameterized by four material maps, corresponding
to the diffuse/specular albedo, specular roughness, and surface normal. We visualize all
inputs and results in gamma space, except normals and roughness, which we keep in
linear space.

We train the initialization network g, and our recurrent update network hy jointly
on the dataset of [6], which contains 99,533 synthetic SVBRDFs {R}. We render the
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images {I} of these SVBRDFs under view V and light L that emulate a camera positioned
perpendicularly and at a fixed distance to the planar surface, with a co-located flash of
fixed intensity. We adjusted these parameters by hand to best reproduce the appearance
of the renderings provided by [6]. We assume that the test-time input images are captured
under similar view and light conditions, and thus use the same parameters to compute
the gradient of Zeconstruct fed to hg. We train our method to minimize the rendering loss
proposed by [6], which compares renderings of the material maps R predicted at the
last iteration of our recurrent network with renderings of the ground-truth maps R, under
9 random lighting and viewing conditions {L, V}. Following [6], we use the L1 norm and
compare the logarithmic values of the renderings:

Lrendering R, R) = ) |log f R7,L, V) —log f (R,L, V). 2.8)
{L,V}

We used the Adam optimizer with a learning rate set to 0.00002, betas set to (0.9, 0.999),
and the weight decay set to 0. We trained our method until convergence (80 epochs with
a batch size of 4), which took three weeks on an NVIDIA A40 GPU. Once trained, our
method infers SVBRDF maps from an image in around 0.1 seconds on the same NVIDIA
A40 GPU.

2.4. ABLATION STUDIES

We conducted several ablation studies to assess the impact of the number of iterations
performed by our recurrent network, as well as the benefit of providing gradient informa-
tion to this network at test time. Similarly to [28], we performed all studies on a set of 61
synthetic SVBRDE 22 being provided by [54] and 39 by [26]. Importantly, none of these
SVBRDFs were used to generate the training data. We created synthetic flash inputs for
this test set by rendering each SVBRDF under the same light and view conditions as the
ones used for training our method.

We evaluate the quality of the prediction by comparing re-renderings of the SVBRDFs to
ground truth in terms of root mean squared error (RMSE) and learned perceptual image
patch similarity (LPIPS) [55], averaged over 20 random light and view configurations that
differ from the colocated flash configuration used to render the input.

2.4.1. NUMBER OF ITERATIONS

We first evaluate the performance of our recurrent network related to the number of
iterations T. We trained different models with T =2 to T = 10. Fig. 2.2 (top left) plots the
RMSE and LPIPS achieved by these models on the test set. This experiment reveals that
while the RMSE saturates after 6 iterations, LPIPS increases slightly when more iterations
are performed, even though it remains lower than the LPIPS achieved by previous methods
(see Table 2.2). We thus fix the total number of iterations to 6, which offers a good trade-off
between accuracy and complexity of the model. Fig. 2.2 (top right) plots the evolution of
the RMSE and LPIPS of the test set over the iterations of the model trained for 6 iterations,
showing that quality improves as the optimization progresses. In practice, the magnitude
of improvement varies between materials. Fig. 2.3 shows two typical SVBRDFs where the
initial prediction is either too shiny, or not enough, and gets corrected by subsequent
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iterations. Finally, Fig. 2.2 (bottom) plots the evolution of the same metric when we let
the model trained on 6 iterations run for more iterations. While the error remains stable
for up to 24 iterations, it does not decrease significantly, and it eventually increases if too
many iterations are performed.
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Figure 2.2: Impact of the number of iterations performed by the recurrent network. Upper
left: comparison between models trained with an increasing total number of
iterations. Upper right: evolution of the accuracy achieved by a model trained
for a total of 6 iterations. Lower middle: evolution of the accuracy in further
inference steps with the same model trained for a total of 6 iterations.

1% iter. 6" iter. GT 1% iter. 6'" iter.

Figure 2.3: Starting with the initial prediction (left), the recurrent network refines the result
(middle), bringing it closer to GT (right). In these examples, the refinement
mostly affects the intensity, spread and sharpness of the highlights to make
the material more (left side) or less (right side) shiny.

2.4.2, TEST-TIME GRADIENT INFORMATION

Our architecture improves upon the one proposed by [6] by complementing it with a
recurrent network, and by providing test-time gradient information to that recurrent
network. We now evaluate the impact of these two additional components. To do so, we
compare the pre-trained model g, by [6] to two versions of our architecture.

The first version augments g, with the recurrent network hy, but only feeds this network
with the intermediate prediction R; at each iteration. The second and complete version
feeds the recurrent network with R; and the gradient %.
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Table 2.1 summarizes the experiment’s outcome. Complementing the architecture
of [6] with a recurrent network already yields a significant increase in accuracy, which
we attribute to the additional capacity that each iteration provides. Providing test-time
gradient information to this recurrent network improves accuracy further, reducing RMSE
by 31% and LPIPS by 52% over the baseline g,.

RMSE LPIPS

without hy 0.083 0.223
without gradient | 0.069 0.119
Ours 0.057 0.107

Table 2.1: Ablation study to compare our complete method to the baseline architecture
by [6], which does not include the recurrent network hg, and to a version that
includes the recurrent network but no test-time gradient. RMSE and LPIPS of
re-renderings are averaged over 20 random light/view configurations.

2.5. RESULTS

We compare our approach to recent methods for lightweight SVBRDF capture, either
based on feed-forward networks [6, 7, 24] or on test-time optimization [25, 26, 28]. We
used the code and pre-trained weights provided by the authors of each method, except
for [24] for which we sent our testing data to the authors, who kindly agreed to run their
method and send back their results. We ran all methods on a single input image, even
for methods that can process multiple images. We provide additional results, including
animations under moving lights, as supplemental materials.

2.5.1. COMPARISON ON SYNTHETIC IMAGES

We first focus on the synthetic test set (see Section 2.4). For all methods, we report the
RMSE on the individual SVBRDF maps, as well as the RMSE and LPIPS errors on re-
renderings averaged over 20 random light and view configurations. We use the same 20
configurations to compare all methods on a given SVBRDE We generate these configura-
tions by sampling the light and view positions uniformly over a quad of the same size as
the surface patch, parallel to and above the surface. This ensures that the images always
contain a highlight.

Table 2.2 summarizes the results achieved by each method'. When looking at individual
maps, our method achieves the best result for diffuse albedo and normals, the second best

IThe numbers we report were computed by running all methods on our test set, which is composed of 61
synthetic materials provided by [54] and [26]. The difference between these numbers and the ones reported
by Zhou and Kalantari [28] might be due to the fact that their test set (which is not available) only contains
52 of our 61 materials, and that the viewing and lighting conditions we used to render the dataset might
differ from the ones used by [28] (which are unknown to us). Also, we observed that the synthetic inputs
and roughness maps provided in [28] are visually different from ours, which suggests that they treated the
roughness maps from [26] as linear while we treated them as gamma-corrected to agree with the ones from
[54]. Nevertheless, the RMSE and LPIPS values reported in Table 1 of [28] remain suboptimal to ours on
re-renderings.
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Figure 2.4: Visual comparison against other methods on synthetic images. The order of
the SVBRDF maps is Diffuse, Specular, Roughness, and Normal maps. Note
how our method recovers more faithful normal maps, as well as roughness
and specular information away from the highlight. For visualization purposes,
all images except Roughness and Normal maps are shown in gamma space.

result for specular albedo (outperformed by [7]), and the third best result for roughness
(outperformed by [24] and [7]). Importantly, our method achieves the best results on
re-renderings, both in terms of RMSE and LPIPS. Note also that our method is an order
of magnitude slower than feedforward approaches [6, 7, 24], but an order faster than
fine-tuning [28] and two to three orders faster than latent-space optimization [25, 26].

Fig. 2.4 provides a visual comparison on two representative SVBRDFs. Overall, our
approach based on learned gradient descent recovers finer details in the normal maps,
including away from the highlight, and better reproduces the colors and contrast of the
input.

2.5.2. COMPARISON ON REAL IMAGES

We further examined a test set of 109 real scenes gathered by [28], composed of 33 scenes
by [26] and 76 by [28]. Each scene has been captured under 9 calibrated view/light
conditions, allowing us to use the central condition as input and the 8 other images
as ground truth to compare re-renderings of the predicted SVBRDFs. To compute the
test-time gradient for our method, we set the light intensity to be the same as during
training and we assume that the camera, as well as the co-located light, are oriented
perpendicularly the surface, even if this only approximately holds in practice.

Since the data and metrics are the same as the ones used by [28] for their evaluation,



2.6. LIMITATIONS, EXTENSIONS AND FUTURE WORK 19

we report their numbers in Table 2.3, along with our results, all of which were obtained by
providing a single image as input to the different methods. Our method achieves the best
results in terms of both RMSE and LPIPS, demonstrating its ability to generalize to real
images despite being trained on synthetic data.

Guo20 Zhou22
Method | RMSE LPIPS | RMSE LPIPS
Des18 0.140 0.391 0.102 0.316
Gaol9 0.158 0.361 | 0.110 0.290
Guo20 0.153 0.316 0.113 0.256
Guo21 0.161 0.391 0.103 0.303
Zhou2l | 0.154 0.314 | 0.132 0.266
Zhou22 0.133 0.286 0.093 0.216
Ours 0.122 0.276 | 0.084 0.211

Table 2.3: Quantitative comparison on real images, where one image serves as input and
8 other images are compared against re-renderings of the predicted SVBRDE

Fig. 2.5 provides a visual comparison to the most recent method by [28] on six images
including wood, ceramic, stone, canvas, and plaster. Our method is especially good at
recovering details in the normal map, and at propagating roughness information away
from the highlight. Comparisons on more images can be found in the supplementary
materials.

We provide as supplemental materials a comparison with others on 93 flash pho-
tographs from [6], [24], [28], as well as images we captured ourselves with a hand-held
consumer-level camera. For a fair comparison, all optimization-based methods were
executed with their default light and view parameters as input. The initialization for
[25] was obtained by running [6]. Fig. 2.6 illustrates some of these results. We show a
re-rendering of the SVBRDF under the same lighting conditions as the input, as well as a
re-rendering under novel lighting. Compared to others, our approach better reproduces
the input (details in the normal map, color and contrast, extent of the highlight) and
generalizes well to novel light with little residual of the highlight in the individual maps.

2.6. LIMITATIONS, EXTENSIONS AND FUTURE WORK

While we observed that learned gradient descent helps inpainting saturated pixels, Fig. 2.5
(top row), the quality of the prediction degrades for large highlights, where a lot of infor-
mation is lacking (Fig. 2.7, top). Similarly, while test-time optimization helps the method
generalize beyond its training set, it is challenged by input images that are too far from the
expected capture conditions. The bottom part of Fig. 2.7 illustrates such as case, where
the input image is captured under a light source that is far from the expected collocated
flash, yielding worse results than when collocated lighting is used. An exciting direction
to address these limitations is to extend our optimization framework beyond single-image
capture. Specifically, Eq. 2.7 can be easily extended to compute Zreconstruct OVer multiple
input images {I}. As a first step in this direction, we adapted our method to take 5 images
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Figure 2.5: Visual comparison with [28] on real images with ground truth relighting. Note
the fine geometric details in the normal maps and the propagation of spatially-
varying roughness, which result in better reproduction of the ground truth
appearance under novel lighting.
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Figure 2.6: Comparison with other methods on four real images. Our SVBRDFs reproduce
well the input images when re-rendered under the same lighting conditions,
and produce plausible novel relighting thanks to detailed normal maps and
propagation of diffuse albedo and roughness within and away from the high-
light respectively.
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Figure 2.7: Limitations. Top: Our method struggles to inpaint saturated pixels over large
highlights; a limitation shared by existing single-image methods. Bottom: Our
method assumes a collocated flash light, thus, prediction quality degrades
when the material is captured under a side light (bottom).

as input, taken under varying lighting and viewing conditions. Implementing this exten-
sion only requires modifying the initialisation network g, and the refinement network
hg to process 5 images and 5 sets of gradient maps, respectively. While this extension
increases the number of input channels of the network from 2 x9 to (N +1) x9 for N
inputs, we kept the subsequent dimensions fixed (64, 64 and 9 channels). We trained
this extended architecture with the same synthetic data as in Section 2.3.3, except that
we rendered each SVBRDF under 5 configurations of light and view positions, which we
selected at random among 9 pre-defined configurations. We used the same test set of
SVBRDFs as in Section 2.4 to compare this extension (Ours-multi) to our single-image
model (Ours-single) and to the state-of-the-art multi-image optimization Material GAN
[26] (Guo20-multi).

Fig. 2.8 shows that our multi-image model outperforms [26] as well as our single-image
model. In particular, having access to multiple images with different highlights helps
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Figure 2.8: Visual comparison between Material GAN [26], our single-image model and
our multi-image model on synthetic images.
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recover material maps free of highlight residuals. Table 2.4 quantifies this improvement
in terms of RMSE and LPIPS. Note that our multi-image model is only twice slower than
the single-image model, while it is 600x faster than the latent-space optimization of
Material GAN.

While these preliminary results are promising, handling real-world multi-image data
would require training our method with more diverse light and view configurations.
Moreover, robustness to approximate light and view calibration might be achieved by
treating the per-image light and view parameters (L,V) as additional unknowns to be
optimized along with the material maps R.

RMSE LPIPS Speed)
Method mean std mean std peed/sec
Guo20-multi | 0.068 | 0.030 | 0.148 | 0.071 261.50
Ours-single 0.057 | 0.032 | 0.107 | 0.070 0.20
Ours-multi 0.042 | 0.029 | 0.074 | 0.082 0.40

Table 2.4: Quantitative comparison of our multi-image extension (Ours-multi) against
Material GAN [26] and our single-image model (Ours-single) on synthetic im-
ages.

2.7. CONCLUSION

Gradient descent is at the core of many inverse rendering algorithms, yet typically re-
quires many steps and complementary regularization terms to converge to high-quality
minima. We showed how learned gradient descent is well adapted to appearance capture,
where the inherent structure of the problem can be leveraged by a neural network to
perform gradient descent in a few high-quality steps. Intuitively, our recurrent neural
network learns a prior about material appearance, while the forward rendering model
gives a likelihood of reproducing the input. Feeding the network with the gradient of
this rendering model effectively enables our method to solve for a maximum a posteriori
estimate of the inverse problem of single-image SVBRDF capture. We also showed that the
same formulation can be easily extended to a multi-image capture scenario. We strongly
believe that a similar approach could benefit related inverse problems for which strong
priors can be learned, such as facial and body capture, where feed-forward networks [56,
57] could be augmented with test-time optimization.
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PERCEPTUALLY CONSISTENT
INTERPOLATION USING
MATERIALGAN

Interpolation in the latent space of pre-trained generative image models often results in
perceptually nonlinear changes. This paper addresses this challenge in the context of
material synthesis, specifically focusing on SVBRDF interpolation. We propose a method to
achieve perceptually uniform interpolation by mapping linear changes in the latent space
to perceptually consistent steps, ensuring that the SSIM remains close to constant between
consecutive rendered images in the interpolation sequence. To this end, we introduce
an optimization framework that adjusts interpolation weights such that a sequence is
obtained with a uniform SSIM. Our approach is validated through experiments on a variety
of material datasets and sequences. The results demonstrate effectiveness and robustness
in producing interpolation sequences with consistent perceptual quality between given
material image pairs.
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3.1. INTRODUCTION

Generative models have made significant strides in the synthesis and manipulation of
real images, enabling highly sophisticated and controlled editing capabilities. Recent
developments in Generative Adversarial Networks (GANSs) [17, 21, 58] and their variants
[19, 59] can ensure detailed and realistic results. Guo et al. [26] developed Material GAN,
a GAN-based model tailored to reconstruct spatially varying bidirectional reflectance
distribution functions (SVBRDFs) from a small set of material appearance measurements
through the use of a latent space. It generates high-quality material maps and performs
well in interpolation.

However, like other GAN-based models, linear interpolation in the latent space of these
models often leads to nonlinear perceptual changes, resulting in visual inconsistencies
and disproportionate changes. This nonlinearity disrupts the smoothness and consis-
tency desired when interpolating. Not only is this important for animations, also when
imagining an interface for material design, interpolation sliders would otherwise not show
a consistent behavior. These examples highlight the need for methods that can ensure
uniform perceptual transitions. Moreover, in case of material synthesis, it is actually the
rendered appearance, which is of relevance. Ensuring perceptually-uniform changes is
an ongoing challenge [55, 60].

The concept of perceptual path length regularization introduced in StyleGAN2 [19]
aims to smooth the latent-space traversal by penalizing large perceptual changes. How-
ever, this approach does not specifically achieve uniform perceptual similarity between
consecutive interpolations. Lindow et al. [61] explored perceptually-driven techniques
for interpolation, but their methods are not directly applicable to the latent space of
generative models.

Our work is based on the pre-trained model Material GAN, and we proposes a method to
achieve uniform perceptual interpolation steps of material appearance between two sets
of given material maps. We optimize the interpolation weights in the latent space to reach
a constant perceptual similarity in the interpolation sequence. We define perceptual
similarity through an image metric. Yet, we do not focus on developing a new image
metric. Instead, we utilize the Structural Similarity Index (SSIM) [62] to demonstrate the
effectiveness of our technique.

3.2. METHODOLOGY

3.2.1. PROBLEM FORMULATION

Utilizing the advanced features of Material GAN, we can obtain high-quality SVBRDF
material maps R and their corresponding latent vectors z from a small number of mobile
flash photographs for a specific material surface. Here, latent vectors z refer to latent
vectors w™ in space W™ and noise vectors in space N of the Material GAN [26].

Given two sets of material maps, R4 and Rp, our goal is to interpolate between them
to generate a sequence of n + 1 sets of material maps, such that the SSIM between every
two consecutive images rendered under the same lighting and viewing condition remains
constant. This objective ensures perceptually-uniform transitions across the sequence,
providing smooth and consistent visual output.
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3.2.2. LATENT SPACE INTERPOLATION

Assuming we have the latent codes z4 and zp corresponding to the material maps R4 and
Rp, respectively, the linear interpolation in the latent space can be expressed as:

Zi =(1—(li)ZA+(X,'ZB 3.1)

where a; is the interpolation weight for the i-th intermediate material map, with ap =0
and a, = 1. The output interpolation sequence begins with the material maps of R4 and
concludes with those of Rp.

To ensure perceptually-uniform steps as measured by the SSIM of the rendered images,
we propose an optimization framework that adjusts the interpolation weights «;.

3.2.3. REGULARIZATION ON INTERPOLATION WEIGHTS

To ensure the optimized weights a; remain within the range [0, 1] and are monotonically
increasing, we exclude the adjustments of @y = 0 and &, = 1 and introduce a penalty term
22 in the loss function, which helps enforce the desired properties of the interpolation
weights and is defined as:

n
Y ReLU(a;—1)

n
2 :=A| ) ReLU(-a;) +
i=0 i=0

\ (3.2)
+Y ReLU(ai-1 — a;)
i=1

where A is a regularization parameter, and ReLU is the Rectified Linear Unit function
that ensures non-negative penalties for violations of the constraints.

3.2.4. OPTIMIZATION FRAMEWORK

To achieve perceptually-uniform steps, we define an objective function that for consecu-
tive images I; and I;;; computes the SSIM value, denoted as SSIM([;, I;+1). The image
I; is rendered with material maps f(R;) generated by the generative model G(z;). Our
goal is to keep this SSIM value constant across all consecutive image pairs. Formally, we
minimize the variance of the SSIM values UéSIM across all consecutive image pairs:

1 n—1
O35 = o > (SSIM(;, Ii+1) —HSSIM)Z, (3.3)

i=0
where pgspy is the mean of the SSIM values, defined as:
n-1

1
Z SSIM(Z}, I;41) (3.4)

HSSIM = —
nl 0

Including the penalty term, the overall objective function £ becomes:

L=0igqu+? (3.5)

We employ gradient descent to optimize the interpolation weights ;. The steps are as
follows:
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i. Initialize a; for i =0,..., n with linearly spaced values between 0 and 1.
ii. Compute the latent codes z; for each «;.

iii. Generate the intermediate images f(G(z;)) using the rendering model under a (or
a set of) given lighting and viewing condition.

iv. Calculate the SSIM values between consecutive images.

v. Adjust a; to minimize the variance in SSIM values and the penalty term using
gradient descent.

3.2.5. GRADIENT DESCENT OPTIMIZATION
The gradient descent optimization adjusts the weights a; iteratively. At each iteration ¢,
the weights are updated as follows:

0%
oD = g0

i v s (3.6)

where 7 is the learning rate and & is the objective function defined earlier. The partial
derivative %—f represents the derivative of the loss function with respect to the interpola-

tion weights.

3.3. RESULTS

We implemented our method using the pretrained Material GAN model [26]. The SSIM
calculations were performed using a differentiable SSIM implementation available on
GitHub [63]. The optimization process was carried out using the Adam optimizer, which
adapts the learning rate 7 for each weight, improving convergence. We set the regulariza-
tion parameter of the penalty term to A = 500. On average, our optimization process takes
about 2 minutes to complete 100 iterations with an interpolation number of eight on an
NVIDIA GeForce GTX 1080Ti GPU. While the results often converge after approximately
50 iterations, we use 100 iterations in all cases for consistency and simplicity.

Comparison We used a variety of material maps to test the robustness and effectiveness
of our method, which can be found in the supplemental material. Here, we compare our
SSIM-optimized interpolation with direct linear interpolation in the latent space W* and
in the noise space N. We closely analyzed the numerical quality and visual consistency of
the images rendered from interpolated material maps produced by both methods across
arange of interpolation numbers. We experimented with interpolation numbers of 2/ for
i € [0,6] and observed that the SSIM between consecutive rendered images in each of the
interpolation sequences remains identical with our optimized method.

Fig. 3.1 presents two examples with different numbers of interpolations: one, two, and
four. It is evident that our SSIM-optimized interpolation method significantly improves
the smoothness of transitions between consecutive material appearances compared
to the direct linear interpolation used as the initialization. Direct linear interpolation
often results in perceptually non-uniform changes, causing noticeable inconsistencies
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Figure 3.1: Numerical and visual comparisons of the interpolation sequences of rendered
images with different interpolation numbers. For each example, we interpolate
between two given sets of material images with interpolation numbers of one,
two, and four.
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in the material appearance. In contrast, our SSIM-optimized interpolation maintains a
constant SSIM value between consecutive images, regardless of the interpolation number,
ensuring perceptual uniformity and coherence. This improvement is particularly evident
in sequences with a higher number of steps, where the direct interpolation method
struggles to maintain visual consistency.

Quantitative evaluations also support our observations, with our SSIM-optimized
interpolation achieving lower SSIM variance on average across all interpolated sequences.
This indicates that our method not only produces visually appealing results but also
quantitatively ensures SSIM uniformity and, thus, one can expect perceptual uniformity.

Discussion As indicated, our optimization could use a set of viewing and lighting con-
ditions, yet, we currently optimize the SSIM of consecutive images rendered under the
lighting and viewing condition for which Material GAN was trained. Yet, the uniform
interpolation already generalizes relatively well to novel lighting and viewing conditions
in the absence of strong highlights.

Fig. 3.2 shows the bottom material example from Fig. 3.1 re-rendered under two novel
lighting and viewing conditions. The interpolation images re-rendered under the first
novel condition maintain a similar SSIM value to the one used for optimization. However,
for the re-rendering under the second novel condition, which produces strong highlight
regions, the variance of the SSIM increases slightly. To achieve a uniform SSIM interpola-
tion sequence in these special cases, the optimization could trivially integrate additional
conditions, as shown in Fig. 3.3.
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Figure 3.2: Interpolation sequences of images re-rendered under two novel lighting and
viewing conditions with different interpolation numbers of one, two, four.
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Figure 3.3: Optimization can be performed again for special lighting and viewing cases to
achieve uniform interpolation.

3.4. CONCLUSION

We presented an optimization method for achieving a perceptually-uniform interpolation
sequence in the latent space of generative models for SVBRDF material maps. By opti-
mizing interpolation weights to maintain a constant SSIM between consecutive images
rendered under given lighting and viewing conditions, our approach ensures smoother
and more consistent visual transitions compared to direct linear interpolation. The
convincing results make it a superior choice for applications requiring smooth material
transitions. Future work will explore extending this method to other perceptual metrics
and applications, such as video generation or image morphing, to enhance consistency
in interpolated sequences.
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Figure 3.4: Uniform perceptual interpolation sequence across a variety of material maps
with an interpolation number of ten, demonstrating the robustness and ef-
fectiveness of our method. This comparison highlights how our approach
consistently maintains perceptual uniformity and smooth transitions between
different material maps, regardless of the variations in their properties.
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Figure 3.5: This figure presents an additional interpolation sequence, similar to Fig. 3.4,
but achieved through direct interpolation within the latent space of Material-
GAN. We can observe noticeable visual similarity jumps between consecutive
frames in the sequence.






TEXTURE BROWSER:
FEATURE-BASED TEXTURE
EXPLORATION

Texture is a key characteristic in the definition of the physical appearance of an object and
a crucial element in the creation process of 3D artists. However, retrieving a texture that
matches an intended look from an image collection is difficult. Contrary to most photo
collections, for which object recognition has proven quite useful, syntactic descriptions of
texture characteristics is not straightforward, and even creating appropriate metadata is
a very difficult task. In this paper, we propose a system to help explore large unlabeled
collections of texture images. The key insight is that spatially grouping textures sharing
similar features can simplify navigation. Our system uses a pre-trained convolutional
neural network to extract high-level semantic image features, which are then mapped
to a 2-dimensional location using an adaptation of t-SNE, a dimensionality-reduction
technique. We describe an interface to visualize and explore the resulting distribution and
provide a series of enhanced navigation tools, our prioritized t-SNE, scalable clustering, and
multi-resolution embedding, to further facilitate exploration and retrieval tasks. Finally,
we also present the results of a user evaluation that demonstrates the effectiveness of our
solution.
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4.1. INTRODUCTION

Texture is a fundamental visual characteristic that reflects the surface detail of an object,
usually stored in an image. It plays an important role in object recognition in computer
vision [64], rendering in computer graphics [65], and artistic or industrial design [66]. Most
importantly, texture is recognized easily by an observer [67]. Nowadays, huge texture
image collections exist, both natural and computer-generated but retrieving an ideal
texture can be very difficult.

Traditional texture browsing methods tend to utilize metadata, such as keywords,
captions, or descriptions, to manually cluster samples into groups. In this context, a
vocabulary of 47 texture terms was created to describe a large collection of natural textures
(68, 69]. This vocabulary tries to relate commonly-used texture words in English to the
visual properties of textures, describing a wide variety of texture patterns. Such metadata-
driven retrieval systems have several drawbacks. First, it requires considerable effort and
time to manually annotate samples to build a database. Second, it is extremely difficult for
alayman to describe the content of different types of textures in words. Finally, differences
in language systems and bias on an individual’s interpretation make it hard to reach a
universal standard for properly and precisely describing a texture.

Alternatively, a texture can be procedurally generated, for example by modeling the
process to form a texture from texel samples [70], or labels [71]. This process requires
expertise and it is difficult to ensure a good exploration. Recently, a semi-procedural
approach [72] has been presented, working with an exemplar and a label map to then
create new variations. The chosen input is crucial to the process and a label map is not
always available. Even in dedicated solutions for material generation, such as Substance
[73], browsing for input textures remains a common task, which we address.

In this paper, we propose an efficient visual navigation tool that can organize an unla-
beled texture collection in a semantically meaningful way. This enables users to efficiently
navigate to a target texture. Potentially, this can also ease the task of labeling large collec-
tions of textures with semantic terms if wanted.

In our framework, we utilize the activations of the penultimate dense layer of a pre-
trained image recognition network, VGG186, to represent the input images [9].

This high-dimensional activation vector represents multi-scale, and thus semantically-
meaningful, features of the input and has been shown to link to texture information [74].
To visualize the distribution of textures based on these feature vectors, we use t-SNE to
embed them into two dimensions. For easier navigation, we propose a modification of the
original t-SNE algorithm, which we call prioritized t-SNE, which can modify the resulting
2D embedding to facilitate exploration of a chosen image neighborhood.

We also propose several navigation methods including flip zooming, scalable mean-
shift clustering, user interactive selection, and an image-based retrieval algorithm to
accelerate texture retrieval, as shown in a user evaluation. As texture structure is usually
independent of its color palette, recoloring [75] is a very convenient way to achieve
diverse and plausible alternatives of the selected target and is integrated as well for the
completeness of our system.

Compared to traditional state-of-the-art image retrieval systems, our framework targets
texture images and offers a simple, user-friendly, and efficient interface for retrieval, navi-
gation, and re-coloring. More importantly, it does not require any manual pre-processing
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or labeling. This is a key point, as labeling abstract textures is a hard problem, requir-
ing the use of specific language that is not easily interpreted by end-users. Our system
organizes and displays textures in a way that greatly expedites retrieval and exploration
tasks.

The main contribution of our work is an intuitive retrieval and exploration system for
large unlabeled collections of texture images that spatially groups textures sharing similar
features. Our system integrates several targeted tools, and while it builds upon some
known techniques (often to leverage familiarity, e.g., selection tools and 2D interaction),
it also introduces novel solutions to control the embedding.

The rest of the article is organized as follows. We first review the related work (Sec-
tion 4.2), before elaborating on our approach (Section 4.3), including the embedding and
navigation solutions, as well as the proposed interface (Section 4.4). We then evaluate our
work and compare to existing methods (Section 4.5) before we conclude (Section 4.6).

4.2, RELATED WORK

An abundance of work focuses on image retrieval but most is not geared specifically
towards textures. Metadata-based image retrieval systems have been successfully applied
in most web-based image search engines [76]. Nevertheless, these methods can still
produce a lot of unwanted search results.

Color-based retrieval methods compute color histograms to guide the search task [77,
78] but are not focused on the actual content of the texture. Nevertheless, in our context,
the structure of the images plays a much larger role and color can even be adapted in a
post-process. Content-based image retrieval (CBIR) [79] relies on combinations of colors,
textures, local geometry, or any other information that represents and can be extracted
from images. In this situation, it is common to rely on example images when searching,
which are not always available and these systems do not lend themselves well to a fine-
grained search. Different metrics can be used to compare color and texture features [80]
and many measures have been proposed in the past [62, 81-87]. Kokare et al. [88] explore
the impact of different similarity measures in distance-based automated retrieval tasks.

Text-based queries are very common but not easily applicable to texture search. This
also holds true when involving a hybrid image retrieval system that relies on keywords
and images [89] or an interactive browsing solution [90], due to the large amount of
manual effort in creating the text or image descriptions, and also due to the difference in
each individual’s interpretation. We compare to such an approach in our user study [68].
Sketch-based image retrieval methods utilize sketching to query target images [91]. While
very powerful when focusing on important lines, e.g., when navigating sketch collections,
not all properties of textures can be well captured. It is nonetheless a useful element in
case that pronounced features are available and is also employed in our system.

With the tremendous success of convolutional neural networks (CNNs) on the ImageNet
data set, image classification has received great attention [92], [93], [9]. These systems
learn complex features that outperform hand-crafted ones. Hand-crafted features (e.g.,
SIFT [94] and Gaussian mixture models [95]) were not used since available pre-trained
network features have proven more versatile in recent years [96, 97]. Their use for the
task of object search within an image collection has been explored with promising results
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[98-100], but not oriented towards texture retrieval. Danon et al. [101] proposed an
unsupervised learning method towards a metric of similarity, leveraging the fact that the
similarity of two patches can be learned from the prevalence of their spatial proximity in
natural images, which does not hold for textures with spatially homogeneous structures.

Good examples in image retrieval with deep networks exist [96, 102-105] but require spe-
cific inputs, i.e., query images or keywords, and they do not target navigation/exploration.
When a database of labeled images is available, networks can be trained for other ap-
plications as well, such as recognition [106], segmentation [107], or procedural texture
generation [108]. Solutions to better address perceptual texture properties exist [109,
110] as well but these systems are based on similarity matrices generated by capturing
subjective human judgments. This is time-consuming, costly, and would have to be
applied for each newly inserted item. This limits their generalization to large collections
or different databases. Our solution is inspired by these approaches, as we leverage the
powerful semantic feature extraction capabilities of deep neural networks in combination
with modern visual data analysis.

Visual exploration of embedded datasets using t-SNE is used extensively in the medical
field, for example for mass cytometry data exploration [111]. Moreover, exploration
methods based on hierarchical stochastic neighbor embedding [112] have been proposed
[113, 114]. Nevertheless, in these cases, the focus is the exploration of relations between
data points, which does not translate well to texture database exploration and retrieval
tasks. The levels of the HSNE hierarchy are a subset of the dataset, and thus using such
representation would hide information from the user. Our prioritized t-SNE approach
follows a similar goal, has a simpler definition that does not require any preprocessing,
continuously adjusts the relevance of each embedded point, and does not remove any
images from view.

In the context of interactive exploration and browsing of image collection, previous
work [90, 109, 110] proposed several visualization concepts, such as cylinder displays.
However, these approaches are mostly intended for gaining an overview. Coarse semantic
information-based methods are proposed to enhance the visualization and exploration.
Yang et al. [115] and Mizuno et al. [116] propose to use multidimensional scaling (MDS)
[117] when computing the similarity between images for visualization, but either key-
words are involved in the annotation and search process [115] or the resulting embedding
is less efficient than t-SNE [116]. MDS was further applied with weights to emphasize
items of interest [118], while in Projection Explorer for Images [119, 120] (PEx-Image) it
was used for image embedding. Worring et al. [121, 122] use pivot tables to visualize and
explore the multimedia images over user-supplied metadata. To utilize the higher-level
semantic features of the image, Xie et al. [123] propose to train an image captioning model
based on existing semantic keywords. Previous work dealing with metadata agnostic
CBIR systems includes the work of Rodden et al. [124], who propose a grid visualization of
images based on an MDS arrangement with color histograms of image sections as features.
Tian et al. [125] propose a series of tools to create a virtual reality system for CBIR, based
on a weighted MDS distribution over manually crafted color and texture features, as well
as available text metadata. Gomi et al. [126] introduce a hierarchical CBIR system, with a
hierarchical arrangement of images based on aggregated color values of image regions,
and also available keywords associated with each image. Finally, Schaefer et al. [127]
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present an overview of different image collection browsing methods, mostly designed
for the case of photography collections, highlighting their own sphere and honeycomb
arrangement methods based on an MDS embedding over median color information. As
absolute color is not a suitable feature for texture browsing, these methods are not well
suited for our application context.

4.3. OUR APPROACH

Our work aims at facilitating navigation to a desired texture within a large database with-
out any metadata. To this end, we position the textures in a 2D layout, following an
embedding of their high-dimensional feature vectors, and propose interaction mecha-
nisms to explore the dataset. The workflow is illustrated in Fig. 4.1. To support navigation,
we provide solutions to influence the embedding at multiple scales. Features can be
emphasized by allowing them to span a larger portion of space or irrelevant regions can
be shrunk in real time. Additionally, a user can make use of clustering and image-based
search (using existing images or sketches) to narrow down the search for texture struc-
tures. Finally, the colors of the target can be adapted to meet the wishes of the user. In the
following, we describe the details of our solution.
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Figure 4.1: Workflow of our manifold embedding: each image in a texture collection is
run through the VGG16 network to obtain a feature vector extracted from the
penultimate layer of the network. These features are then embedded in 2D
space using the t-SNE algorithm.

4.3.1. EMBEDDING

As discussed in Section 4.2, CNNs have proven to be a very powerful tool for extracting
features from images. Typically, the latent vector that results from the penultimate layer
of a network encodes relevant features that are important for classification. While it might
sound attractive to build a specialized CNN for an image collection, it is a very expensive
and time-consuming task, and suitable labels for training are typically not available.
Motivated by previous work in the area [9, 64, 74], we use (pre-trained) VGG16, which is
a deep convolutional image classification network that was trained with ImageNet [128],
a large image database. Evidence has been presented that deep convolutional image-
classification networks trained on ImageNet rely on identifying texture rather than shape
[64] and are therefore well suited for our tasks. The specialization of its descriptors for
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texture recognition is also leveraged in style-transfer approaches [129]. The first layers of
such networks encode filters for simple patterns, and later layers recognize progressively
more complex textures [74]. Nevertheless, the last layers are strongly linked to the actual
categories recognized by the network and are therefore less useful for our application.
Therefore, we selected the descriptors of the penultimate fully connected layer given their
generality and efficacy. As an alternative, we also tested the use of layers from AlexNet [92]
but found them to be less effective in differentiating texture. We believe this is because
its shallower architecture and large receptive fields force early layers to specialize more
strongly on the recognition categories. In contrast, VGG16 is deeper and has smaller
receptive fields, which recognize small abstract patterns at early layers which combine in
later layers to recognize more complex patterns [74].

We scale all input images to a resolution of 256 x 256 to provide as an input to the
network. The second fully connected layer, which is the optimal layer for retrieval [130],
outputs a latent vector of 4096 dimensions, which we associate with each image.

The high dimensionality of the feature vector makes it impossible to directly visualize
an organization of the images in such space. For visualization and interaction purposes
on a 2D screen, a two-dimensional positioning is most suitable. We use t-SNE [15], a
dimensionality-reduction method, to embed the latent vectors. Fig. 4.2, shows examples
of the resulting embedding for the Describable Textures Dataset (DTD) [68] and the
UIUC Texture Database [131]. t-SNE has the advantage of being non-linear and preserves
neighborhood relations, which is particularly desirable for exploration purposes. Within
a collection, some textures may manifest as transformations of others, such as rotation,
scaling, or coloring. While it would be possible, we do not enforce transform invariance,
and thus they are not necessarily mapped to similar locations by the t-SNE algorithm.
This is by choice, since these aspects can play into a semantic meaning (e.g., tiger stripes
are typically vertical).

Figure 4.2: The 2D embedding distribution of the DTD collection (left) and the UTUC col-
lection (right). The colored sections zoom in some clusters in the distribution.

Although non-convex and non-deterministic, the embedding of t-SNE is efficient, fairly
stable, and has proven useful in many applications. The tunable perplexity parameter
was set to 30 heuristically for all our examples, based on the recommended range (5-50).
Moreover, the t-SNE algorithm is run for a maximum of 2000 iterations. Both the compu-
tational and the memory complexity of t-SNE are O(n?) but optimized implementations
exist [132, 133].
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4.3.2. PRIORITIZED T-SNE

The original t-SNE formulation attempts to create an embedding that maintains similar
neighborhoods as in the high-dimensional space. It does so by minimizing the Kullback-
Leibler divergence between the joint probabilities of the distances of the low-dimensional
embedding and the high-dimensional vectors [15]. Instead, we would like to offer the
possibility for a user to emphasize certain groups of textures (or features) that should then
make use of more space in the embedding in a continuous manner to avoid generating
artificial clusters. Similarly, textures that are of less relevance should use less space. To
achieve this, we propose the prioritized t-SNE embedding. We assume that each of
potentially multiple user-selected samples (textures) S has a weight W € [0,10]. The
embedding region around this sample will be enlarged if W = 1 and shrunk if 0 < W < 1.
For a single selected sample S, we define weights w; for all other samples as:

7d,v*max(W,%)

wi=1-(1-We (4.1)

where d; is the distance between sample i and the selected sample S. When several
samples are selected, the weights produced for each of the samples (Eq. 4.1) are multiplied.
Once the weights are determined, we compute the joint probabilities g;; of map point y;
and map point y; in the low-dimensional space by
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The embedding then uses standard t-SNE with these modified joint probabilities. To
accelerate convergence, we initialize g; ; with the originally computed t-SNE counterpart.
Fig. 4.3 shows an example using two selected samples.

4.3.3. MULTI-SCALE REPLICATION

Some textures manifest different visual features at different scales, as shown in Fig. 4.4.
The t-SNE algorithm clusters such images based on an overall dominating feature, while
a user might have been interested in a feature at a different scale. For example, imagine
a piece of cloth with a very fine structure that forms a larger-scale pattern. On the one
hand, it could be grouped with cloth textures. On the other hand, its large-scale pattern
might be more suitable to be represented by other textures. Especially large-scale (i.e.,
low-frequency) features can have an important impact, since a user will initially see an
overview of the collection, where the images are small, and mostly large-scale features
are visible. In this sense, we would like an image to be embedded adjacent to images
sharing its small-scale visual features, but also adjacent to images sharing its large-scale
features. To resolve this conflict, we create additional embedding positions for each
image that correspond to image versions where small-scale features are removed, and
we replicate the images at those positions when necessary. Specifically, for each image
we generate two blurred versions via convolution with a Gaussian kernel, approximating
human feature perception, with a standard deviation of 5 and 9 pixels (~ 2% and ~ 3.5%
of the input resolution). These kernel sizes were empirically chosen, since smaller kernels
had little impact, and larger ones quickly resulted in converging feature vectors for all
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Figure 4.3: Original embedding (left) and modified embedding using prioritized t-SNE
(right). The texture circled in red was given a higher priority with W = 8 in
Eq. 4.1, resulting in larger distances between images for all similar images,
which are also enlarged to improve visibility. Conversely, the image circled
in blue was given a low priority with W = 0.2 in Eq. 4.1, contracting similar
images together.

images. Using several scales enables a successive removal of small-scale features (see
Fig. 4.4).

After obtaining three sets of latent vectors (original texture collection and the two
blurred versions), we embed these with t-SNE in parallel.

In this case, we initially get an embedding with three times the image samples of the
original collection. Nevertheless, the 2D embedding of the different versions for most
images (~ 95%) remains very similar. This means that the original latent vector for these
images is dominated by the large-scale image features. To avoid unnecessary clutter, we
only replicate images when their distance in the 2D embeddings exceeds a given threshold
distance (25% of the embedding diagonal), as the texture then clearly exhibits distinct
multi-scale features. If not, only the original texture is kept, as it already well reflects its
large-scale features on its own.

4.3.4. CLUSTERING

While the presented embedding can successfully group similar textures, it fails to give a
good overview due to too much information being displayed at once, especially with a
large database. In consequence, we propose a clustering mechanism to ease navigation
and to allow the user to identify categories in the embedding to then focus on clusters
reflecting the desired properties, e.g., stripe patterns. To produce clusters, we apply
Mean-Shift clustering [134] on the embedded feature space. This clustering algorithm has
the advantage that it is guided by a single parameter, the scale at which the elements are
grouped. Further, as the mean-shift can be computed relatively quickly by discretizing the
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Figure 4.4: Features at different scales (original and 5, 9 pixel blur). Low scale detail is
successively removed.

space [135, 136], the scale can be chosen interactively. Given clusters of similar textures,
we can enhance them with a representative image (landmark); the image nearest to the
centroid of each cluster. Fig. 4.5 shows three examples of clustering visualization using
landmarks for 6, 10 and 20 clusters. The center landmark image is surrounded by eight
more images, which are representatives for the farthest texture in the corresponding di-
rection (horizontal, vertical, or diagonal) of the embedding that still belongs to the cluster,
as seen from the centroid. Hereby, the observer gets an idea of the texture appearance at
the boundaries of the cluster.

4.4, INTERFACE

The interface of our retrieval system is shown in Fig. 4.6. It consists of our two major com-
ponents: the semantic embedding window and the priority texture selection tool. Further,
we see an image-based search tool with an optional sketching board, and a recoloring
tool. The latter is not a novel technical contribution, but is present for completeness. For
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Figure 4.5: Overview using mean shift on the 2D embedding distribution resulting in 6
(left), 10 (middle) and 20 (right) clusters. Landmarks summarize the cluster
information by showing representative cluster images, and background color
indicates cluster extent.

our tests, we use the textures in the DTD collection. It is a database with 1518 images,
grouped via 47 words (terms/categories) inspired from human perception.

Figure 4.6: Image-retrieval Interface. The images in their semantically embedded posi-
tions (left). Controls for weighing selected images for our prioritized t-SNE
(middle) and a sketch interace (right).

The semantic embedding window (Fig. 4.6 and Fig. 4.7) presents the collection of
images to the user, positioned according to the computed embedding. This provides a
holistic view of the image set and shows the global semantic transition among textures
of different styles. The user can freely navigate through the overall display and change
its zoom levels with the mouse. The texture that is pointed at with the mouse cursor is
displayed in a large tooltip for a better detail visualization. In this window, the user can
additionally enable the display of clusters to help obtain an overview of the features in
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Figure 4.7: A selection can be shown as interactive flip-zoom interface (left) or a tiled
interface (right).

different parts of the embedding (Fig. 4.7, left). The user can select the number of clusters
and their landmarks and representative images of the clusters are shown (Section 4.3.4).
Furthermore, the user can select a cluster or a rectangular region to restrict the view to
only the chosen subset of images. For this restricted view, the user can then opt for a
flip-zooming visualization style, or a tiled visualization, to prevent image overlap; this
is shown on the right side of Fig. 4.7. Lastly, as we support recoloring, images can be
displayed in grayscale to avoid user bias based on color. Nevertheless, loss of contrast
during this conversion can hide important texture details, which is why both options exist.
Note that a detail-preserving decolorization scheme (e.g., [137, 138]) could be applied as
future work.

The priority texture selection tool allows a user to select one or more images, and assign
a priority to them, which is then used to update the embedding using our prioritized
t-SNE (Section 4.3.2). This updated embedding will show images related to high-priority
selections at a larger scale and images related to low-priority ones at a smaller scale, as
shown in Fig. 4.3.

The image-based search tool is added for completeness of the system and allows a
user to search based on a user-provided image, provided via a file or as a sketch. The
simple sketch tool supports controllable pen color and width. We rely on VGG16 to extract
the corresponding latent vector of the user image, and find the closest texture image in
feature space. Fig. 4.8 shows an example of user sketches and the corresponding result
in the DTD collection. Once a texture has been identified in this way, it is possible for
the user to highlight it in the semantic embedding window as an additional landmark
(Section 4.3.4) or to change its weight to influence the embedding.

The recoloring tool (Fig. 4.9) allows a user, as a final step, to change the color of a
selected texture with the subsequent option to save it to a new file for use outside of our
application.

The recoloring algorithm is optimized based on [75] to simplify user interaction. We
cluster the colors in the original image using a k-means algorithm, where we let the user
select the number of clusters. The color of each cluster center is shown to the user, who
can use a color picker to change them. Once a new cluster color is selected, we transfer
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Figure 4.8: Examples of drawn sketches (top) used for retrieving a similar texture in the
database (bottom).
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the same color offset to all cluster pixels.

Figure 4.9: The image recoloring tool showing the original image (left) and a different
choice of coloring using red tones (right).

4.5. EVALUATION

We conducted a user evaluation to validate the effectiveness and advantages of our
method. We wish to perform two evaluations: comparison with alternative methods,
and features evaluation. In the first part of our study, we compared against displaying
images on a grid (using thumbnails), which is the standard file-system solution. It is the
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visualization that users typically have the most experience in using. It also requires no
metadata (which also holds as is the case for our system). Additionally, we compare to
text-based solutions [68]. We also evaluate the four features compared to only using our
basic overview mode, multi-scale replication, clustering, prioritized-tSNE, and image-
based search. The first two features aim at general use cases and evaluation of them
requires no special settings of the target. Therefore, they were integrated into the first
part of the study, acting as additional comparisons. For the latter two features, they aim
to improve the retrieval in cases where the number of images is very large, and thus were
evaluated separately in the second part of the study.

In the evaluation, a Windows 10 system with an Intel i7-8700 CPU, 16GB RAM, and an
NVIDIA GeForce GTX 1080Ti GPU with 11GB of VRAM was used. The GUI was displayed
at aresolution of 1920 x 1200. The system was implemented in C++ with machine-learning
components running in Python.

In total, 16 users participated in the evaluation. They had no prior experience with
our interface but were Computer-Science students. Additional details regarding the
evaluation are given in the supplementary material.

4.5.1. COMPARISON WITH ALTERNATIVE METHODS

Grid view For the first task, the users were asked to retrieve four given textures from the
same collection (DTD, containing 1518 texture images), using two different systems. One
was a grid view, which consisted of a standard Windows 10 file explorer dialog with large
thumbnails, where images were randomly ordered. The second was our interface, where
we asked the users to search the textures starting from the overview panel and were free
to use all the features our tool provides. Fig. 4.10 shows the images for this task.

As an introduction to our system, the users were shown a ~1 minute video that illus-
trated how our interface works (available as supplementary material). The users were not
given time to familiarize themselves with the tool. Instead, their first search task was their
first interaction with our tool.

Results (Fig. 4.11) show that the average time to retrieve the target textures with the grid
view (427 seconds) is substantially reduced by using our interface (133 seconds); a more
than three-fold improvement even when applied by an inexperienced user.

It is also noteworthy that all participants completed the task faster with our system than
with the grid view. Ten users performed faster on each individual search query using our
system. The rest performed faster on three out of four search queries using our system
but even when just looking at the participants of this second group, the average time for
completing the task using the grid view (496 seconds) was still significantly slower than
using our system (159 seconds). Furthermore, one of the users failed to retrieve the final
target texture via the grid view after searching for more than 17 minutes (only the time
until they desisted was accounted in our averages), while this user succeeded via our
method in less than three minutes.

With statistical hypothesis testing, retrieval time with our interface is shorter than with
the grid view a p-value lower than 0.00001, indicating high statistical significance, and
shorter by 4 minutes with a p-value of 0.0024, also statistically significant.
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Figure 4.10: Retrieval-task Textures for method comparison. One texture was replicated
due to our multi-scale method.
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Figure 4.11: Retrieval time in seconds (left) and user score (right) for the standard grid
view and our texture retrieval system with and without the clustering overlay.

Multi-scale Within this task, we also evaluated the usefulness of our multi-scale replica-
tion (Section 4.3.3). One of the textures that we chose as a target for the search (leftmost
Fig. 4.10) was replicated via our scheme because of its multi-scale appearance. In 12 of
the 16 cases, the users found the texture via the embedding position corresponding to
one of the low-scale (blurred) versions, averaging 27 seconds. The rest obtained the target
in its original scale embedding location, averaging 38 seconds. This coincides with our
hypothesis that different users first notice features of different scales, and our multi-scale
replication takes advantage of this phenomenon to facilitate retrieval in either case.

Clustering We asked the participants to repeat the retrieval while enforcing the use of
the cluster view of the embedding, to assess the usefulness of the feature. In this case, we
randomly rotated the embedding, to prevent users from relying on location knowledge
from the previous retrievals. Users were then asked to assess their interaction satisfaction
on a Likert scale of 5 for the grid view interface, and our interface with and without using
the cluster view. Users rated our interface on average with a 4.25, and the grid view
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satisfaction with an average of 2.0. (Fig. 4.11, right). In general, user preference for the
overview exploration was mixed, as from the 16 participants, 9 preferred the non-clustered
view, 4 preferred the clustered view, and 3 gave them the same score.

Fig. 4.12 gives further insight into the times required to complete the retrieval task with
and without requiring the cluster view.
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Figure 4.12: Individual retrieval time in seconds for the four textures of the initial retrieval
(left) and when asked to repeat the task using the cluster view (right).

In that figure, it can be noted that Textures 2 and 4 required slightly longer search
times. For Texture 2, this can be attributed to the fact that it does not exhibit immediately
recognizable large-scale features. Indeed, our embedding system groups the texture
together with lace-patterned textures, which can only be easily identified when zooming-
in. In the case of Texture 4, we believe the dark colors and low contrast of the image may
make it less identifiable from a zoomed-out view.

Those users that preferred the non-clustered view commented that the presented clus-
ters did not always meet their expectations, since they grouped textures in an unexpected
way. Our clustering implementation is based on the low dimensional 2D position of the
textures, but could be improved by taking the high-level feature vector into account as
future work to improve the quality of the resulting cluster display.

Text-based retrieval To test keyword use for texture selection, we provided users two out
of the 47 labels from DTD: porous and interlaced. We asked users to retrieve one texture
representative of each word, with no time limit. Fig. 4.13 shows the retrieved textures, with
ared highlight for those that have the search keyword as a description label in the DTD
database. For the first keyword, porous, only half of the participants found a texture that
carried the corresponding label in DTD, but all textures exhibit porous features. For the
second keyword, interlaced, only one of the retrieved textures was labeled as such in the
database. Nevertheless, as seen in Fig. 4.13, all textures feature interlaced patterns. This
highlights the difficulty of texture retrieval via labels, as user interpretation of a keyword
can vary greatly. In contrast, a texture retrieval system navigated in a semantic way, such
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Figure 4.13: Images retrieved by users using the concept porous (top) and interlaced
(bottom). Only the images marked in red have the corresponding label in
the DTD database, showcasing the difference in label interpretation among
different users.

as our presented system, provides a more intuitive and general way of approaching such
tasks.

4.5.2. PRIORITIZED T-SNE AND IMAGE-BASED SEARCH TOOL EVALUATION

In this part of the study, we shift our focus to evaluating the importance of the prioritized-
tSNE and image-based search functionality. Since these two features aim at aiding retrieval
in large and crowded databases, the texture database used here contains 5824 texture
images (see Fig. 4.14).

The 16 users were randomly divided into two groups, each with 8 users. For group A,
users were asked complete a retrieval task with only the overview panel of our interface,
and without using the prioritized-tSNE, image-based search, multi-scale replication, or
clustering functionality. For group B, users were required to start their search with a
specified feature, either prioritized-tSNE or image-based search, for different retrieval
targets. After zooming into an area by using one of these features, they continued with that
same navigation as group A until finding the target image. The textures for these retrieval
tasks are shown in Fig. 4.15, where the two leftmost ones were used for the prioritized-
tSNE evaluation and the two rightmost ones for the image-based search evaluation. In the
latter case, the participants were given a small set of images they could use to start their
search. The recorded retrieval time for each texture is shown in Fig. 4.16.

Prioritized-tSNE In the prioritized-tSNE test, the average time of group A (overview
mode only) was 354 seconds, whereas group B (prioritized-tSNE) took in average 178
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Figure 4.14: Embedding of the database of the feature-evaluation study (5824 textures,
insets show grouping of similar images).
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Figure 4.15: Retrieval-task textures for feature comparison.

seconds, roughly half the time. The results shown in Fig. 4.16, tasks 1 and 2, indicate that
when using our prioritized-tSNE the retrieval times were substantially faster for all users
except user #13. This user reported being misled by a similar texture (an image of cracked
glass), and spent some time exploring the wrong region.

From the feedback in the questionnaire, some users from group A suggested that a tool

that can spread the overlapped crowd out would be helpful, which is one of the goals of
our prioritized-tSNE feature.

Image-based search In the image-based search test, group A (overview mode only)
averaged 650 seconds, and group B (image search) averaged 147 seconds, a roughly 4x
improvement. In group A, two users (#2 and #4) gave up retrieval after 5 minutes and 3
minutes, respectively. According to their feedback, user #2 switched the retrieval among
several possible regions but was finally not able to locate the target. User #4 gave up due
to overlapping textures and made a similar suggestion as reported before, that a tool to
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spread the crowded regions would be useful. In group B, almost all the users succeeded
in finishing the task using less time than those in group A, except user #10 for whom the
retrieval was stopped at 5 minutes and the reason was similar to that of user #4. This can
be probably solved if the users had access to the prioritized t-SNE tool. Overall, thanks to
the fast identification of the target region when starting with the image-based search tool,
the retrieval time is substantially shorter.
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Figure 4.16: Individual retrieval time in seconds for the four textures using only the
overview mode (left) and with additionally the specified features (right). Tex-
ture 1 and texture 2 are the retrieval targets for prioritized-tSNE evaluation,
texture 3 and texture 4 are the retrieval targets for the image-based search
evaluation.

4.6. CONCLUSION

In this paper, we presented a system that facilitates the task of exploration and retrieval
in large unlabeled texture collections. We organize images based on semantic features
and additionally provide several tools to improve the exploration of image groups that
share similar features. One of these tools, our proposed prioritized t-SNE algorithm, can
enhance the visualization of areas of interest for a user and might even find applications
beyond the scenario of this work. The results of our user study show that our proposed
system is a considerable upgrade to traditional filesystem and grid-based interfaces when
exploring texture images.
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MUSICON: GLYPH-BASED DESIGN
FOR MUSIC VISUALIZATION AND
RETRIEVAL

This paper introduces a novel glyph-based design for music representation that leverages
deep latent features to improve user-directed search for music discovery. We propose a
system that combines a pre-trained neural network model for high-level music feature
extraction with dimensionality-reduction methods for effective visual mapping of the
intrinsic characteristics that help distinguishing a song. We provide a search-by-icon user
interface (UI) that integrates glyph based on the neural features in combination with other
novel navigation methods to achieve intuitive search and exploration. A detailed user
study validates our approach, demonstrating its efficacy in enabling swift song clustering,
identification, and retrieval. Our findings reveal that our visual representation not only
speeds up the music searching process but also fosters increased user interaction with digital
music libraries, representing a valuable contribution to the domain of music exploration
and retrieval.
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5.1. INTRODUCTION

As music streaming platforms evolve, their role has expanded from merely providing
access to vast music collections to becoming pivotal in music discovery [139, 140]. Users
typically engage with new music through two main avenues: algorithmic recommenda-
tions and user-guided search and exploration. The latter, in particular, plays a critical
role in diversifying users’ music experiences, a factor increasingly recognized for its corre-
lation with long-term user engagement [141]. Despite advancements in algorithms for
navigating music collections, the integration of innovative visual cues into user interfaces
remains limited. Conventional icons, such as album art, provide minimal insight into a
song’s characteristics, forcing users to rely solely on auditory exploration to determine
their preference. This highlights a gap in user experience, as visual representations could
potentially expedite the discovery process by indicating auditory similarities, even though
music is primarily an aural medium [140, 142].

Platforms like Spotify provide their users the function to personalize the playlist, yet
these innovations fall short in conveying the musical essence of unseen tracks from un-
familiar artists. The inherent challenge lies in the inability to avoid a time-consuming
listening process. Our work posits that using visualization can provide information that
can be efficiently parsed to compare characteristics, such as mode, tempo, or mood.
Hereby, we can notably enhance user-guided search and exploration. Our solution re-
duces the time users spend finding music that aligns with their taste or current mood,
especially when navigating with an open or exploratory mindset [140, 143]. This hypothe-
sis is supported by evidence suggesting that visual identifiers can expedite navigation in
user interfaces [144]. Yet, our goal is not necessarily to derive a global visual encoding of
music, but rather a visualization method to enable comparisons to facilitate exploration.
Users do not have to learn the meaning of individual representations in order to effec-
tively use them, and even in rather homogeneous song collections, our visualization can
provide a clear visual differentiation.

Our contributions are twofold. First, we propose an approach to extract latent charac-
teristics of music utilizing state-of-the-art deep learning models. Second, we introduce a
new visualization solution that employs custom-designed icons that embed these fea-
tures in visual cues, facilitating music exploration, including interaction methods to
compare, search, and categorize. It improves music visualization by combining advanced
representation learning with user-centered glyph design principles.

The article is organized as follows: Section 5.2 reviews related work. Section 5.3 presents
our approach, covering feature extraction, dimensionality reduction, and glyph genera-
tion. Section 5.4 integrates the icon into our Ul prototype. Section 5.5 evaluates our work
through a user study, followed by a conclusion in Section 5.6.

5.2. RELATED WORK

This section explores foundational work and recent advancements in music features,
latent representation learning, and glyph-based music visualization, framing the context
for our contributions to music discovery through visual representation.

Understanding music features spans from low-level signal descriptors to high-level
semantic attributes. Traditional music information retrieval (MIR) approaches focused on
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‘hand-crafted’ features, emphasizing explicit knowledge-based feature engineering [145].
The advent of deep learning shifted the attention towards automatic feature extraction,
demonstrating strong performance in capturing complex musical characteristics without
extensive domain knowledge [146]. Notable benchmarks such as the Million Song Dataset
(MSD) and Spotify Web APT highlight their utility in research, bridging content and context-
based music information [147, 148]. However, concerns regarding the reproducibility;,
explainability and open research when using proprietary data (like features from Spotify)
have motivated us to focus on alternative, open-source features for music representation.

Latent variable models have revolutionized the representation of music by learning
abstract features that encapsulate the inherent characteristics of musical pieces. These
models, especially Convolutional Neural Networks (CNNs), Variational Autoencoders
(VAEs), and Transformers, have facilitated a broad range of MIR tasks, including genre
classification, music recommendation, and emotion recognition [149-151]. The transition
towards end-to-end learning models marks a significant shift from traditional feature
engineering, enabling more nuanced and comprehensive understanding of music data.
Our work leverages these advancements to derive latent representations that serve as a
foundation for music visualization.

Visualization plays a pivotal role in music discovery, enabling users to navigate and
explore music collections intuitively. Early efforts by Kolhoff et al. [152] introduced music
icons, utilizing parameterized glyphs to represent music features visually. Subsequent
research has expanded on this concept, exploring various visual mappings and interactive
interfaces for music exploration [144, 153]. Yet, challenges remain in designing visual
representations that effectively convey the complex nature of music features while sup-
porting user-friendly exploration. We build upon this foundation and propose a novel
glyph-based framework, using deep learning-derived features, coupled to specialized
visualization and interaction techniques to enhance music discovery.

5.3. OUR APPROACH

Our research is positioned at the intersection of MIR and visualization, where we propose
a novel strategy to enhance user-guided music discovery in a large database through
visual representation. To achieve this goal, we introduce an innovative glyph design by
leveraging advanced latent features from the MIR model to provide immediate, intuitive
insights into the music’s characteristics. We also propose interaction mechanisms to not
only facilitate a more efficient and engaging music discovery experience but also address
the needs of users exploring music collections, looking for new sounds that match their
reference ideas. Fig. 5.1 shows an overview of our solution.

In this section, we will first discuss the feature extraction. Then, we will map this
high-dimensional representation to a lower dimensional space to reduce the degrees of
freedom of the information on a star-glyph representation, whose design choices are
explained in the following. In the next section, we will then present our interface that
builds upon this song representation.
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Figure 5.2:

UMAP embeddings of features extracted for genre classification on: MagnaTa-
gATune (left), GTZAN (middle), and custom dataset (right).

5.3.1. FEATURE EXTRACTION

We reviewed state-of-the-art research in music representation learning, focusing on pa-
pers that provide full code and trained weights due to the challenges of training. We
reviewed 23 papers, of which ten presented pre-trained models suitable for downstream
tasks. However, recommendation models were either multi-modal [154, 155] or lacked
code and weights [156, 157]. Out of all options, we did identify the CLMR [158] model
as particularly suitable for our task, as we also show via an analysis below. The CLMR
model is an adaptation of the very effective SimCLR model [159], which was developed
for contrastive learning of visual representations. Contrastive learning is an unsuper-
vised representation learning technique with the objective to maintain similarities and
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dissimilarities between data points in the representation space. CLMR shows excellent
performance, is well documented, and lightweight to run. The network has learned a
representation of 512 dimensions over an input sample of about 2.6 seconds. The model
was trained for the downstream task of classification on the MagnaTagATune dataset [160].
We use the model and weights as provided by the authors. Representations over longer
segments are averaged.

We verify the effectiveness of the CLMR representations by examining feature clusters
to genre classification on multiple datasets and comparing feature embeddings to the
Spotify features.

Evaluation of CLMR model To ensure the suitability of the model, we assessed its
features for genre classification across three datasets: MagnaTagATune, GTZAN [161],
and a small custom dataset. The custom data is composed of several albums that are
considered iconic for various genres, details are given in Table 5.1. Each dataset provided
genre labels. By extracting features and employing the UMAP algorithm [16] for 2D spatial
embedding, color-coding by genre revealed that genre-based clusters closely matched the
feature-based clusters. Fig. 5.2 plots the 2D embeddings of these three datasets, which
suggests the captured features reflect high-level conceptual similarities across genres.

Genre Artist Album name

classic Bach A Musical Genius
classic Vivalidi The Four Seasons
rap Eminem The Eminem Show
rap Nas Ilmatic

rock/metal | Nirvana Nevermind
rock/metal | Slipknot Iowa

techno Paul Kalkbrenner | Berlin Calling
techno Vitalic Rave Age

country Waylon Jennings | Dreaming My Dreams
country Willie Nelson Red Headed Stranger

Table 5.1: Composition of the custom test dataset with two iconic albums for each genre.

Comparison to Spotify features To explore how the selected representations compared
with Spotify’s own feature metrics, we created a dataset of 10K data points which are
selected from the over 1.2 million entries in the Spotify Dataset reported by Figueroa et al.
[162]. For each data point, we obtained a 30-second MP3 sample through the Spotify API.

From these data points, we used the CLMR model to extract their neural features whose
dimensionality was further reduced to 2D for visualization using the UMAP algorithm.
Colors were assigned based on Spotify feature values such as acousticness, energy, va-
lence, loudness, danceability and instrumentalness, to facilitate intuitive interpretation
of the distribution. The corresponding feature results are shown in Fig. 5.3. The results
show a clear correlation between the CLMR-derived features and Spotify’s features. This
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demonstrates that the selected model effectively captures musical qualities that align
with industry-recognized attributes.

5.3.2. FEATURE DIMENSIONALITY REDUCTION

The CLMR model provides a representative neural vector of 512 elements. We perform a
comparative evaluation of various dimensionality-reduction methods to find a suitable
approach to reduce the number of features. Several works [163-165] demonstrate that
employing fewer but more representative dimensions than the original high dimensional
vector in star glyphs greatly improves not only the computational efficiency but also their
effectiveness across a spectrum of tasks. Aiming to retain the comprehensive nature of
the data, we reduce the dimensionality to eight, which might seem arbitrary but is well
motivated when opting for a star-shaped glyph, which will be discussed in Section 5.3.3.

We focus on identifying a method to effectively preserve data clustering and explored
five algorithms for their ability to maintain data point similarities with its original high-
dimensional representation: PCA [166], t-SNE [15] and UMAPand two other more recent
algorithms developed based on t-SNE and UMARP respectively: TriMap [167] and PaACMAP
[168].

To evaluate the preserved similarity of the reduced 8-dimensional space from the
original 512-dimensional space, we calculated cosine similarity matrices for both spaces.
We present the detailed statistics of the cosine similarities with the five assessed methods
in Table 5.2.

Among the algorithms, t-SNE performed below our expectations, possibly the pro-
jection to an eight-dimensional space was off its optimal usage scenario. UMAP and
PCA showed substantially better performance than TriMap and PaCMAP. Due to its non-
linearity UMAP, outperforms PCA in maintaining data point similarities, while having
acceptable computation cost, which made it our choice. Optimizing UMAP’s hyperpa-
rameters (nearest neighbors=15, minimum distance=0.2 for normalized embeddings)
further improved the results.

Method | Mean | Median | Std Min Max | Time/s
PCA 0.952 | 0.975 0.065 | 0.013 0.991 | 3
t-SNE 0.179 | 0.185 0.084 | -0.161 | 0.373 | 4523
UMAP 0.962 | 0.963 0.009 | 0.889 | 0.983 | 49
PaCMAP | 0.129 | 0.163 0.127 | -0.257 | 0.335 | 28
TriMap 0.127 | 0.173 0.138 | -0.273 | 0.352 | 38

Table 5.2: Statistics of the kept similarity for feature vectors reduced from 512 to eight
dimensions for five different algorithms.

5.3.3. GLYPH DESIGN

Glyphs, often composed of various geometric elements and visual channels, are capable
of encoding multiple data dimensions simultaneously [169]. This characteristic makes
them particularly suitable for high-dimensional data visualization [170] and tabular data
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Figure 5.3: Examples of 2D UMAP embeddings of extracted CLMR-derived neural features
colorized with different Spotify features: acousticness (left in the 1%t row),
energy (right in the 1% row), valence (left in the 2" row), loudness (right in the
2“; row), danceability (left in the 3" row), and instrumentalness (right in the
3™ row).
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representation [171]. Despite their utility, the design space for glyphs remains vast and
largely unexplored [172]. Owing to its simplicity, versatility, and effectiveness in encoding
multivariate observations and facilitating visual data comparison, we rely on the star
glyph [163, 173, 174]. To enhance expressiveness and ease of comparisons, we opted for a
contour plotinstead of a whisker plot, as suggested by [175]. Hereby, shape is incorporated
as a significant feature. Our design considered various elements, dimension ordering,
categorization via colors, and shape emphasis by curvature, where some redundant
encoding further eases shape distinction. Here, we detail our design decisions.

Dimension ordering The arrangement of variables on the axes of star glyphs signifi-
cantly influences their shapes. The same data-point can be displayed as very different
shapes when it is mapped in different orders according to Klippel et al. [176]. Finding the
best order for variables is complex and depends on the analysis goal, but they observed
that showing major differences on the main axes helps users identify shapes more quickly.
Consequently, we sort the dimensions according to variance of the data.

Fig. 5.4 shows the effect on our final glyphs before and after sorting the dimensions for
seven heavy metal songs. They look very alike before and quite distinct after reordering.

em 81 Slipknot - The Shape

(a) Dimension unordered

(b) Dimension ordered on variance

Figure 5.4: Comparison of unsorted (upper) and sorted (bottom) the axes of our glyph
on variance. It is very hard to detect differences among the icons without axis
sorted. In the bottom raw, after sorting the axis, we can detect small differences
between the icons.

Dual colour As color can be a good indicator for distinguishing categorical data [169],
we use color prominently for the most distinctive dimensions, hereby making the implicit
classification explicit. We adopted the automatic color mapping of Kolhoff et al. [152],
which assigns six features to two RGB colors. Originally, we considered the first six dimen-
sions, but for reasons explained below (‘Curvature’), we chose the first three dimensions
and dimensions five through seven to be mapped to RGB components. This is shown in
Fig. 5.6 (left). We designed a distinct inner and outer glyph shape to receive these two
colors, by superposing the glyph at different scales. The scale is chosen to ensure that
both areas are balanced. The color mapping results can be seen in Fig. 5.6 (right).
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Curvature As curvature is considered a pre-attentive visual stimulus [172], we leverage
it to expand the variety of shapes and increase the expressiveness of our proposed glyph.
While Klippel et al. [176] noted that distinctive shape features can speed up classification,
they also cautioned that strong changes of shape may lead to a wrong impression of
dissimilarity. For this reason, we chose to map dimensions four and eight, which were not
yet redundantly encoded by color.

Specifically, the 4th dimension dictates the curvature’s direction and strength. The 8th
dimension, with the least variance, determines the positioning of control points relative
to the line segment endpoints. An illustration of the influence of these two parameters on
a curve can be seen in Fig. 5.5 (left).

A limitation of this mapping is that when the 4th dimension is close to zero, the impact
of the 8th dimension is less noticeable. Given that the eighth dimension has the lowest
variance, we consider this an acceptable shortcoming. An illustration of this singularity
can be seen in Fig. 5.5 (right), where the effect of the curvature settings can be viewed on
an 8D star shape.

To ensure clarity and prevent overly complex shapes, we employed an intersection
detection method to adjust curvature strength and avoid intersecting lines, ensuring a
coherent and interpretable glyph design. We confined curvature direction and strength
to a range of [-0.3, 0.3] and control point distances to [0.3, 0.6]. This configuration range
avoids shapes that appear to have more line segments than intended.

indent: -0.3 indent: -0.3 indent: -0.3 indent: -0.2 indent: -0.2 indent: -0.2
control_dist: 0.3 control_dist: 0.5 control_dist: 0.6 control_dist: 0.3 control_dist: 0.5  control_dist: 0.6

indent: 0.0 indent: 0.0 indent: 0.0 indent: 0.0 indent: 0.0 indent: 0.0
control_dist: 0.3  control_dist: 0.5  control_dist: 0.6 control_dist: 0.3 control_dist: 0.5  control_dist: 0.6

indent: 0.3 indent: 0.3 indent: 0.3 indent: 0.2 indent: 0.2 indent: 0.2
control_dist: 0.3  control_dist: 0.5  control_dist: 0.6  control_dist: 0.3  control_dist: 0.5 control_dist: 0.6

Figure 5.5: Influence of curve parameters: The x-axis varies the control distance, while
the y-axis adjusts the direction and strength. The left image demonstrates the
impact of parameter adjustments on curve construction, and the right image
illustrates how curve parameters affect an 8-dimensional star shape.
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Redundant Encoding As indicated, our glyph design contains redundant coding [177]
by design. As the ideal mapping of data to star glyphs remains an open problem, encoding
the important variables multiple times can significantly enhance glyph expressiveness
and distinctiveness, bolstering visual search effectiveness. In our case, it also makes the
design suitable for individuals with color vision deficiency.

Our scheme employs a dual encoding for each variable. It is always represented as a
component of the glyph’s shape, but also as a glyph’s color or curvature. To judge the
effectiveness of the resulting glyphs, we illustrate several representations in Fig. 5.6 (left)
and show how each parameter influences the glyph in Fig. 5.6 (right). The design is
carefully evaluated in Section 5.5.

5.4. INTERFACE

We introduce a new search interface that incorporates our glyph definition and interaction
features to support the user. It has been built as a web application, accessible at http:
//musicons.io/. Involving a test database of 10K song snippets that were randomly
selected from the Spotify Dataset provided by Figueroa [162], which contains more than
1.2M song samples. The principles of our glyph-based design are inherently flexible and
can be adapted to mobile platforms. Nevertheless, we first chose a desktop interface
for our Musicon system to better control its evaluation. Typically, the use of a desktop
system ensured a larger display area and precise input capabilities for a detailed glyph-
based visualization and interaction. It also facilitated the user study, as measuring user
engagement and satisfaction was eased, as we could assume that people are familiar
with the hardware. Designing touch-friendly controls and effectively managing visual
complexity on a small screen of a mobile device remains promising future work.
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Blue test indicates redundant mapping
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Figure 5.6: The proposed variable mapping order along the axis of the star glyph (left)
and the influence of each parameter with redundant encoding (Initially all 0.5,
then we vary one parameter at a time (right).
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5.4.1. CUSTOMIZED ICON

For an initial expression, we randomly selected 48 icons from the results. As can be seen
in Fig. 5.7, the icons reveal the intended expressiveness and display a wide variety of
shapes and colors.

Figure 5.7: Customized icons: 48 randomly selected icons from the results.

5.4.2. SEARCH-BY-ICON

The search-by-icon tool allows users to start with the icon of a preferred song and then
explore other songs in the proximity, akin to a reverse search mechanism. This con-
cept draws inspiration from Knees et al. [178], who explored audio search through the
visualization of sound mental images.

The interface for search-by-icon can be seen in Fig. 5.8. It features eight adjustable
sliders, corresponding to the glyph dimensions. The representation is updated in real
time, as is the list of the most similar songs, which enables users to explore the music
space interactively.

We use the cosine similarity to the user-generated icon and a comparison between
the input and 10K vectors of songs in the database only takes milliseconds. It is done
whenever sliders are adjusted. The ten most similar songs are then presented to the user.

5.4.3. PLAYLIST SORTING

Kolhoff et al. [152] introduced two sorting methods, 1D and 2D, by applying PCA on icon
parameters. We explored various approaches within our dataset and found that UMAP
embeddings surpassed PCA in performance.
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Songs whose icons are most similar
to the icon you have made:

{Click the songs to listen them?)

Title Artist

googoo cluster Coffin Warchouse

Drift Inte Might Theta Wave Orchestra

Gilded Sarah Davachi

Out of Body Experience Theta Wave Orchestra

M11 - Incident Ryuichi Sakamoto

Dakota Suite

Figure 5.8: The interface for search-by-icon. The icon parameters are indicated with
a dotted line and the icon is updated in real-time when the parameters are
changed with the sliders (left). While the users drags the slider, the most similar
songs are immediately updated and allow to be listened(right).

Specifically, we initiated our process by converting the dataset into an 8-dimensional
(8D) UMAP embedding, subsequently transforming the resulting data into a 1-dimensional
(1D) UMAP embedding. Although a 2-dimensional (2D) layout was considered, it intro-
duced distortions when attempting to achieve the compactness of a 1D layout. Fur-
thermore, the 1D layout better aligns with the format of song lists familiar to users of
streaming applications, thus leading us towards a 1D embedding. Utilizing the 8D em-
bedding initially maintains greater coherence with the space utilized for our glyphs, as
demonstrated in Fig. 5.9, and reduces computational workload relative to the original
512 dimensions. While sorting within diverse playlists produces variable sequences,
our method consistently positions similar icons in close proximity. This arrangement
enhances user navigation and experience, outperforming standard PCA arrangements.

5.4.4. ENHANCING ICON CONTRAST

A global embedding will enhance inter-genre distinctions, while reducing intra-class
variations. To amplify local contrast of icons when exploring, for example, homogeneous
playlists of similar songs, we employed a min-max scaling to re-normalize the icon
features’ range of the selected subset to [0, 1]. Furthermore, users are offered the option
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Figure 5.9: Comparative visualization of three sorting methods. From upper to bottom:

icons sorted on 1D UMAP embedding of original 512D features, icons sorted

on 1D UMAP embedding of the 8D UMAP embedding of the 512D features,

and icons sorted on 1D PCA of the 8D UMAP embedding of the 512D features.
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to tune the percentage of contrast linearly between the original and fully normalized
embeddings. This maintains a link to the global representation and allows for applying a
gradual contrast. Fig. 5.10 illustrates the effectiveness of this feature in a subset of jazz
music, by gradually increasing the local contrast from 0% to 100%. As an example, the
song zero and the song four in this list exhibit very high similarity in audio data - both
share instruments, mood, and a prominent solo with the same instrument. At overview
scale, the icons appear almost identical, as expected. By tuning up the contrast, the
resolution of the icon parameters is locally amplified and the difference becomes more
apparent.
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Figure 5.10: Local-contrast icons for a playlist of jazz music with contracts of 0%, 25%,

50%, 75%, and 100%.

5.5. EVALUATION

Given the subjective nature of visualizing and perceiving music, our hypothesis and
experimental design are evaluated through an exploratory user study. We aim to conduct
two types of evaluations: a comparison with alternative methods and an assessment of
the proposed features.

We wanted to compare our work with Kolhoff et al. [152], who introduced content-
based music icons. Unfortunately, after contacting the authors, we learned that the music
resources and implementation are no longer available. Hence, we can only informally
compare the two solutions. Our work benefits from deep features, a more detailed
mapping of information on the glyph shape, as well as an improved robustness and
inclusivity for color vision deficiency (CVD) by redundant encoding. Furthermore, we
introduce a reverse search, which broadens the utility of music icons.
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We target the evaluation of our proposed features: from the effectiveness of the icon to
a larger system-evaluation. We used the 10K dataset due to its availability, although the
system can be expected to handle larger song databases with minor optimizations in the
implementation.

We targeted a participant demographic of ‘non-expert but generally computer-literate’
adults [179]. To reduce response bias, participation was anonymous. Using an a-priori
sample size calculator with an expected medium effect size (d = 0.5), we determined that
a minimum of 27 participants would achieve a statistical power of 0.8 and a significance
level of 0.05, assuming analysis via paired samples t-test for certain tasks. We garnered 38
responses in the evaluation, with a roughly equal number of men and women and an age
distribution ranging from 20-29 to over 70 years. To conduct the study, we developed a
web interface that provided each participant with task instructions, managed the flow and
timing, randomized the order of tasks, and collected the data. The study was conducted
remotely to minimize the response bias caused by our presence. Additional details
regarding the evaluation are given in the supplementary material.

5.5.1. CUSTOMIZED ICON

Visual clustering. Thisis a classic ‘free-grouping’ or ‘free-sorting’ task, widely used in the
field of psychology [180]. This test assesses the effectiveness of the icons in representing
feature similarity and the extent of user consensus on this aspect. Participants formed
clusters from 60 icons based solely on visual cues, without song titles or additional
metadata information. They were allowed to use any number of clusters and set aside
non-fitting icons.

To ensure that there is a diversity in the selection yet still the possibility to make clusters,
we sampled 10 data points from six of the clusters created by applying a k-means clus-
tering algorithm on the original 512 dimensional embedding (k = 10). Each participant
worked with the same set of icons but their presentation was in a random order.

To assess user consensus on clustering, we computed a co-occurrence matrix of participant-
generated clusters and a cosine similarity matrix of the feature vectors, both shown in
Fig. 5.11. Initial observations suggest a strong user agreement on the clusters, with
the co-occurrence matrix displaying notable resemblance to the similarity matrix. To
quantitatively evaluate this relationship, we calculated the pairwise Pearson correla-
tion coefficient, resulting in a value of 0.6. This indicates a moderate linear correlation,
suggesting a reasonable level of agreement among users in their clustering decisions.

Outlier Detection. This test, extending from the visual clustering test, utilizes participant-
generated clusters to evaluate the glyphs’ effectiveness in representing music similarity
and facilitating outlier detection. For each participant, we randomly selected four songs
from one cluster and one song from a different cluster, presenting these five songs in a
random order. Participants were then asked to identify the song that sounded distinct
from the others. This process was repeated three times for each participant.

The descriptive statistics of the results is shown in Table 5.3. Given that random guessing
would yield an expected recognition rate of 0.2, our observed mean recognition rate of
0.7451 represents a considerable enhancement. With a p-value lower than 0.00001 and
an effect size of 2.375 (Cohen’s d), this improvement is statistically substantial.
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Figure 5.11: Co-occurrence matrix of the clusters made by participants (left) and a cosine
similarity matrix of the feature vectors (right).

Mean | Median | Mode | Std Variance
0.745 | 0.667 0.667 0.230 | 0.053

Table 5.3: Descriptive statistics of the recognition rates obtained for outlier detection.

Generalization, Contrast and CVD Robustness. This test is set up as a matching-to-
sample task in the same manner as [163]. It aimed to assess three aspects: the alignment of
the ‘most similar’ icon with the data point of highest cosine similarity, indicating the icon’s
effectiveness in representing high-dimensional data; the impact of a contrast-enhanced
icon version on task completion time and accuracy in identifying the most similar icon;
and the icon design’s robustness against CVD, evaluated through task time and accuracy
using a CVD simulation.

Participants were shown nine similar icons, including one target icon, and asked to
identify the icon that is most similar to the target. This test was conducted across three
rendering modes: the default design, a contrast-enhanced version with 100% contrast,
and a color-blind mode simulating deuteranomaly the most common type of CVD. Each
participant completed the task nine times, three times per rendering mode. The descrip-
tive statistics of recognition rates obtained for these three modes is shown in Table 5.4.

Mode Mean | Median | Mode | Std Variance
Default 0.706 | 0.750 1.000 | 0.277 | 0.077
Contrast | 0.785 1.000 1.000 | 0.271 | 0.074
CVD 0.741 | 0.667 0.667 | 0.231 | 0.053

Table 5.4: Descriptive statistics of recognition rates obtained for matching-to-sample with
the ‘default’, ‘contrast, and CVD mode of the icon.
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With a random selection, the expected recognition rate is merely 0.125. Our study, how-
ever, demonstrates a marked enhancement with mean recognition rates more than 0.706
for all three modes. This substantial increase suggests that participants are better at iden-
tifying the icon that most accurately corresponds to a position within an 8-dimensional
space. To validate these findings, we employed as ‘default’ mode a one-sample, one-tailed
t-test, which indicated an essentially zero p-value and a pronounced effect size of 2.100
(Cohen’s d). These results robustly confirm the effectiveness of our approach.

We observed that ‘contrast’ mode outperforms ‘default’ mode with a higher mean
recognition rate and a faster selection process, while, for the CVD mode, we discovered
no obvious differences between the ‘default’ and CVD modes. A one-way ANOVA test
conducted across all three rendering modes yielded a p-value of 0.450, indicating that
rendering mode has no noticeable impact on performance in the matching-to-sample
task. This outcome suggests that each icon rendering mode performs comparably well,
affirming the robustness of our icon to CVD. The effectiveness of our redundant encoding
strategy in enhancing recognition and matching accuracy is thus supported by these
results.

5.5.2. SEARCH BY ICON

The test aimed to assess the efficacy of our ‘search-by-icon’ method for users. Participants
were shown a target song with its custom icon and the search-by-icon interface shown
in Fig. 5.8. They were tasked with using the interface to imitate the target icon and then
retrieve the three songs most similar to the target one. Following the test, participants
completed the System Usability Scale [179] to evaluate their experience with the interface.

Imitated icon and retrieved songs Cosine similarities between user-generated and
target icon vectors, presented in Fig. 5.12 (left), with a high mean (0.989) and median
(0.993), indicates that with vectors exhibiting a cosine similarity above 0.975 to the target,
most users accurately replicated icons. Furthermore, the average cosine similarities
between the target icon vector and the top three selected songs, detailed in Fig. 5.12 (right),
reinforce the precision of these imitations, highlighting the effectiveness of participant
selections in aligning closely with the target icons.

System Usability Scale (SUS) The SUS comprises of ten statements, each evaluated
using the Likert Scale, which ranges from one for ‘strongly disagree’ to five for ‘strongly
agree’. The details of this dataset can be found in the supplementary material.

Based on the feedback, we computed the SUS scores, as illustrated in Fig. 5.13 (left), with
the corresponding performance interpretations presented in Fig. 5.13 (right). We counted
13 ‘bad’ results, 7 ‘mediocre’, 11 ‘good’ and 6 ‘excellent’. We recognize that flattening the
user experience into such a score is a gross simplification. Nonetheless, we observe that a
majority, specifically 25 out of 38 participants, demonstrates a willingness to embrace our
model.
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Figure 5.12: Cosine similarities between user-generated and target icon vectors (left),
illustrating how closely users can imitate an icon. The average cosine similar-
ities between the target icon vector and the top three selected songs (right),
evaluating how effectively users can retrieve similar music using this tool.
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Figure 5.13: SUS Scores (left) and its corresponding interpretation (right). A score above
80.3 is interpreted as ‘excellent’, scores between 68 and 80.3 as ‘good’, scores
between 50 and 68 ‘mediocre’, and anything below 50 ‘bad’.

5.5.3. SEARCH BY PLAYLIST

This test aimed to assess the icon’s effectiveness and sorting properties within a playlist
context, comparing it against album art, which is typically used in streaming services.
Participants were asked to select their top three songs from playlists featuring both album
art and our custom design, with each format presented twice. We assessed the similarity
between the top three selections and the target vector, time-on-task, plays per task, and
additional insights from open-ended questions.

Retrieved songs Average cosine similarities between the target icon vector and the top
three selected songs are presented in Fig. 5.14, with descriptive statistics in Table 5.5. Both
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methods cover similar ranges of cosine similarities, but our method facilitates slightly
higher similarity retrieval (one-tailed paired-samples t-test: p = 0.03, Cohen’s d: 0.469),
aligning with the icon’s intended similarity representation.
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Figure 5.14: Average cosine similarities between the target icon vector and the top three
selected songs, comparing between album art (left) and our custom icon
(right).

Icon Mean | Median | Std Var Min Max
Album 0.955 0.967 0.033 | 0.001 | 0.858 | 0.991
Custom | 0.938 | 0.945 0.036 | 0.001 | 0.851 | 0.993

Table 5.5: Descriptive statistics of the data as displayed in Fig. 5.14.

Time-on-task The time-on-task per participant for both album art and custom icon
methods are detailed in Fig. 5.15, with descriptive statistics provided in Table 5.6. A
notable reduction in average completion time, exceeding one minute, was observed. A
left-tailed paired t-test confirmed these findings with p = 0.00201 and an effect size of
0.473 (Cohen’s d).

Icon Mean | Median | Std Min | Max
Album 6:25 4:49 3:45 | 1:08 | 14:12
Custom | 4:44 3:54 3:11 | 0:39 | 12:14

Table 5.6: Descriptive statistics of the data as displayed in Fig. 5.15, formatted as mm:ss.

Songs played per task Fig. 5.16 and Table 5.7 display the number of songs played per
task per participant for both album art and the custom icon, showing similar ranges but
a notably lower mean and median for the custom icon. A paired t-test confirms this
difference, with p = 0.00001 and an effect size 0f 0.931 (Cohen’s d).
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Figure 5.15: Completion times of time-on-task with album art (left) and our custom icon
(right).
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Figure 5.16: The number of songs played per task per participant for both album art (left)
and the custom icon (right).

Icon Mean | Median | Std | Var Min | Max
Album 103.9 | 1135 55.9 | 3121.1 | 10 222
Custom | 57.7 40.0 42.4 | 1796.8 | 7 192

Table 5.7: Descriptive statistics of the data as displayed in Fig. 5.16.

Open Questions Upon study completion, participants responded to three open-ended
questions regarding their playlist task experience. The detailed questions and correspond-
ing analysis can be found in the supplementary material.

Our tool’s effectiveness was confirmed through strong quantitative results, notably
speeding up task completion by over a minute compared to album art presentations and
reducing the number of songs participants needed to listen to by almost 50%. When
using our icon, selections tended to have similar or slightly higher cosine similarity to
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the target song, suggesting the icons’ visual cues enhanced both the speed and quality of
decision-making.

While many participants valued our icon for its capacity to indicate similarity, some
expressed a preference for album art due to its contextual and cultural insights. Ac-
knowledging album art’s value in certain situations, we argue that our icon meaningfully
enhances user experience by addressing the variability of songs within an album. Further,
our evaluation focused on the effectiveness of our contributions. In a practical system,
we would envision the use of our icon in conjunction with potential metadata (including
album art) if available.

An exciting direction for future work would be exploration for semantic latent represen-
tations and descriptive dimension mappings. Unfortunately, this is not straightforward,
as it is unlikely that all aspects could be well captured in this way, e.g., what dimension
would mean "adding a piano" or "adding strings"? Nevertheless, some meta informa-
tion could be used to augment our solution. In a practical system, we would certainly
argue for keeping genre information available for the user in selections and search. We
refrained from doing so, to show the effectiveness of the automatically derived features
and our visualization solution, which is already able to capture a considerable amount of
information.

5.6. CONCLUSION

In this paper, we introduced a novel icon-based visualization approach for enhancing mu-
sic discovery in streaming services by mapping latent characteristics of music to a novel
glyph design. Our evaluation demonstrated that our method meaningfully improves user
engagement and efficiency in music exploration, highlighting the potential of incorporat-
ing such visual cues into streaming platforms. The positive outcomes suggest a promising
direction for further research in music visualization and user-interface design to refine
and personalize the music-discovery process. Future development in this intersection
of music information retrieval and visual interaction could potentially transform user
experiences in digital music environments.







CONCLUSION

This thesis investigates the integration of advanced deep learning techniques within
the field of computer graphics, with a particular emphasis on digital reconstruction,
generation, and exploration. The primary focus is on addressing the workflow involved
in the reconstruction of material properties, including the upstream processes of data
exploration and generation.

Traditionally, the processes from finding the desired image until reconstructing materi-
als have been heavily dependent on manual effort. Obtaining material properties typically
requires expensive professional lighting equipment, as well as meticulous acquisition
and calibration procedures. Even with the aid of summarization systems, a significant
amount of time is required to search through large unlabeled databases for the desired
image, a challenge that parallels in the search for specific music files. It can become even
more challenging when the exact data needed is not readily available within the database.

The rapid advancements in Al offer promising solutions to these challenges, by achiev-
ing complex data tasks without the need for explicit feature engineering. Instead, systems
exploit the structure of the underlying high-dimensional data manifold. Such methods
are highly effective at uncovering and leveraging latent, yet semantically-rich features
of data, and are particularly effective in automating digital tasks such as segmentation,
detection, and generation. Yet, pure automation might not be the answer to all user
needs.

People have different tastes, goals and might even change direction during the genera-
tion of their own content - an artist typically makes many attempts before converging.
It is therefore important to keep the human in the loop. We want to be able to explore
data sets in the directions we want, but need support in finding our way. Similarly, we
want to generate the illustration we want, but will guide the creation with (simplified)
examples we like. The key to enabling such a sense-making of the space of possibilities are
features that describe the content with less information, to make it navigable, describable
and possible to create with a limited input. In this work, we showed that it is possible to
address this challenge.

We began by addressing the challenge of encoding hard-to-describe texture appear-
ances, which are inherently difficult to describe and manipulate using traditional methods.
Through the use of learned deep neural features, we structured the data space in a way
that captures the intricate nuances of material appearances. In the single-image SVBRDF
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capture, we demonstrated that with a learned gradient descent approach we can recon-
struct detailed material properties from a single, simplified input, effectively bridging the
gap between sparse data and richly detailed outputs. When dealing with large texture
databases, we further integrated a suite of interactive tools based on the data distribution
in the space of learned neural features for efficient exploration and retrieval.

Building on this foundation, we explored interpolation methods that allow us to gen-
erate content by example. By optimizing the interpolation paths in the latent space of
generative models, we were able to produce visually smooth and perceptually uniform
transitions between material images. This capability is particularly significant because
it enables the generation of new, detailed material maps from just a few example in-
puts, highlighting the power of deep learning to generate high-quality results even when
starting with minimal data.

The concept of generating detailed results from simplified inputs was further extended
to the domain of music discovery. Here, we showed that a simple input, such as a glyph
representing the latent characteristics of a song, could be used to deliver a detailed and
engaging music discovery experience. This approach not only enhances user interaction
but also demonstrates how deep neural features can be mapped to intuitive visual cues,
making complex data more accessible and meaningful to users.

Throughout this thesis, we show that deep neural features enable us to extract and
utilize the underlying structure of complex data, allowing for detailed and meaningful
outputs even from simplified inputs. While our efforts build upon previous research, we
present new advancements that overcome previous limitations, which have been detailed
in the chapters.

Beyond the processes researched in this dissertation, there are many possibilities to
explore future direcctions. Texture has been an important element for the appearance of
material. We have so far created multiple methods to assist humans to explore texture
databases. Even though existing databases are huge, they are still a limited representation
of the world. Facilitating the generation of natural material appearance missing from
such datasets would significantly contribute to the diversity of textures.

The texture generation by examples nicely provides humans with convenience and
flexibility in their exploration. Similarly, music generation and editing could benefit from
features.

Although neural features are powerful in assisting humans with digital tasks, they might
still find their limitation in tasks, when accuracy and precision are prioritised. For material
properties (i.e. the SVBRDF) synthesis, current Al-based estimation from a single image
largely simplifies the traditional capturing procedure, yet its reconstruction accuracy
falls short in comparison. While it is possible to expand the diversity of the training
database to potentially improve performance, we do not see successful attempts on it
yet, possibly due to the high but still limited potential of data-based fitting methods. An
analytical physical model could nicely complement estimating subtle details that are
hard to accurately capture with learned neural features. Therefore, it seems an interesting
direction to incorporate more realistic physical models in the property estimation process
of the deep networks, so that the capture of the sample image can be more flexible in
lighting and viewing setups.

Overall, in this dissertation, which focused on reconstruction, generation and explo-
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ration of digital content, we show that with the assistance of deep neural-features, intuitive
and user-friendly solutions can be produced that support creativity and exploration with
minimal manual input. Although it is not possible to prove that this concept is general,
we showed that it does apply to many contexts, from image collections to textures, mate-
rial properties, and even music. With this insight, we hope to have shown a glimpse of
the many possibilities that we believe are yet to come to support the human with all its
limitations in navigating this seemingly unlimited space of possibilities.







(1]

BIBLIOGRAPHY

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

M. Aittala, T. Weyrich, and J. Lehtinen. “Practical SVBRDF capture in the frequency
domain”. In: ACM Transactions on Graphics (TOG) 32.4 (2013), pp. 110-1.

H. Wang, W. Zhang, and A. Dong. “Measurement and modeling of Bidirectional
Reflectance Distribution Function (BRDF) on material surface”. In: Measurement
46.9 (2013), pp. 3654-3661.

X. Li, Y. Dong, P. Peers, and X. Tong. “Modeling surface appearance from a sin-
gle photograph using self-augmented convolutional neural networks”. In: ACM
Transactions on Graphics (TOG) 36.4 (2017), pp. 1-11.

Z.1i, K. Sunkavalli, and M. Chandraker. “Materials for masses: SVBRDF acquisition
with a single mobile phone image”. In: Proceedings of the European conference on
computer vision (ECCV). 2018, pp. 72-87.

V. Deschaintre, M. Aittala, E Durand, G. Drettakis, and A. Bousseau. “Single-image
svbrdf capture with a rendering-aware deep network”. In: ACM Transactions on
Graphics (TOG) 37.4 (2018), pp. 1-15.

X. Zhou and N. K. Kalantari. “Adversarial Single-Image SVBRDF Estimation with
Hybrid Training”. In: Computer Graphics Forum 40.2 (2021), pp. 315-325.

X. Luo, L. Scandolo, A. Bousseau, and E. Eisemann. “Single-Image SVBRDF Esti-
mation with Learned Gradient Descent”. In: Computer Graphics Forum. Vol. 43. 2.
Wiley Online Library. 2024, e15018.

K. Simonyan and A. Zisserman. “Very deep convolutional networks for large-scale
image recognition”. In: arXiv preprint arXiv:1409.1556 (2014).

Viso.ai. VGG - Very Deep Convolutional Networks. https://viso.ai/deep-
learning/vgg-very-deep-convolutional-networks/. Accessed: 2024-06-
10.

A.Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into deep learning. Cambridge
University Press, 2023.

V. Jade. Texture vs. Shape: The Bias in CNNs. https://towardsdatascience.
com/texture - vs - shape - the-bias- in- cnns - 5ee423edf8db. Accessed:
2021-08-26.

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. “How transferable are features in
deep neural networks?” In: Advances in neural information processing systems 27
(2014).

79



80

BIBLIOGRAPHY

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

X. Luo, L. Scandolo, and E. Eisemann. “Texture Browser: Feature-based Texture
Exploration”. In: Computer Graphics Forum. Vol. 40. 3. Wiley Online Library. 2021,
pp. 99-109.

L. Van der Maaten and G. Hinton. “Visualizing data using t-SNE.” In: Journal of
machine learning research 9.11 (2008).

L. Mclnnes, J. Healy, and J. Melville. “Umap: Uniform manifold approximation and
projection for dimension reduction”. In: arXiv preprint arXiv:1802.03426 (2018).

A. Radford, L. Metz, and S. Chintala. “Unsupervised representation learning
with deep convolutional generative adversarial networks”. In: arXiv preprint
arXiv:1511.06434 (2015).

T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of gans for im-
proved quality, stability, and variation”. In: arXiv preprint arXiv:1710.10196 (2017).

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. “Analyzing
and improving the image quality of stylegan”. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 2020, pp. 8110-8119.

T. Chakraborty, U. R. KS, S. M. Naik, M. Panja, and M. Bayapureddy. “Ten years of
generative adversarial nets (GANs): a survey of the state-of-the-art”. In: Machine
Learning: Science and Technology 5.1 (2024), p. 011001.

T. Karras, S. Laine, and T. Aila. “A style-based generator architecture for generative
adversarial networks”. In: Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2019, pp. 4401-4410.

W. Ye, X. Li, Y. Dong, P. Peers, and X. Tong. “Single image surface appearance mod-
eling with self-augmented cnns and inexact supervision”. In: Computer Graphics
Forum 37.7 (2018), pp. 201-211.

G. Vecchio, S. Palazzo, and C. Spampinato. “SurfaceNet: Adversarial SVBRDF
Estimation from a Single Image”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 12840-12848.

J. Guo, S. Lai, C. Tao, Y. Cai, L. Wang, Y. Guo, and L.-Q. Yan. “Highlight-aware
two-stream network for single-image SVBRDF acquisition”. In: ACM Transactions
on Graphics (TOG) 40.4 (2021), pp. 1-14.

D. Gao, X. Lj, Y. Dong, P. Peers, K. Xu, and X. Tong. “Deep inverse rendering for
high-resolution SVBRDF estimation from an arbitrary number of images”. In: ACM
Transactions on Graphics (TOG) 38.4 (2019), pp. 134-1.

Y. Guo, C. Smith, M. HaSan, K. Sunkavalli, and S. Zhao. “Material GAN: Reflectance
Capture Using a Generative SVBRDF Model”. In: ACM Transactions on Graphics
(TOG) 39.6 (2020).

M. Fischer and T. Ritschel. “Metappearance: Meta-learning for visual appearance
reproduction”. In: ACM Transactions on Graphics (TOG) 41.6 (2022), pp. 1-13.

X. Zhou and N. K. Kalantari. “Look-Ahead Training with Learned Reflectance Loss
for Single-Image SVBRDF Estimation”. In: ACM Transactions on Graphics (TOG)
41.6 (2022), pp. 1-12.



BIBLIOGRAPHY 81

(29]

(41]

[42]

[43]

M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, B.
Shillingford, and N. De Freitas. “Learning to learn by gradient descent by gradient
descent”. In: Advances in neural information processing systems 29 (2016).

P. Putzky and M. Welling. “Recurrent inference machines for solving inverse prob-
lems”. In: arXiv preprint arXiv:1706.04008 (2017).

T. Weyrich, J. Lawrence, H. P. Lensch, S. Rusinkiewicz, T. Zickler, et al. “Principles
of appearance acquisition and representation”. In: Foundations and Trends® in
Computer Graphics and Vision 4.2 (2009), pp. 75-191.

D. Guarnera, G. C. Guarnera, A. Ghosh, C. Denk, and M. Glencross. “BRDF rep-
resentation and acquisition”. In: Computer Graphics Forum 35.2 (2016), pp. 625—
650.

Y. Dong. “Deep appearance modeling: A survey”. In: Visual Informatics 3.2 (2019),
pp. 59-68.

S. R. Marschner, S. H. Westin, E. P. Lafortune, K. E. Torrance, and D. P. Greenberg.
“Image-based BRDF measurement including human skin”. In: Rendering Tech-
niques’ 99: Proceedings of the Eurographics Workshop in Granada, Spain, June
21-23, 1999. Springer. 1999, pp. 131-144.

W. Matusik. “A data-driven reflectance model”. PhD thesis. Massachusetts Insti-
tute of Technology, 2003.

H. P. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel. “Image-based
reconstruction of spatial appearance and geometric detail”. In: ACM Transactions
on Graphics (TOG) 22.2 (2003), pp. 234-257.

M. Weinmann, J. Gall, and R. Klein. “Material classification based on training
data synthesized using a BTF database”. In: Computer Vision-ECCV 2014: 13th
European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part
IIT 13. Springer. 2014, pp. 156-171.

K. Kang, Z. Chen, J. Wang, K. Zhou, and H. Wu. “Efficient reflectance capture using
an autoencoder.” In: ACM Transactions on Graphics (TOG) 37.4 (2018), pp. 127-1.

L.-P. Asselin, D. Laurendeau, and J.-E Lalonde. “Deep SVBRDF estimation on
real materials”. In: 2020 International Conference on 3D Vision (3DV). IEEE. 2020,
pp. 1157-1166.

Y. Dong, J. Wang, X. Tong, J. Snyder, Y. Lan, M. Ben-Ezra, and B. Guo. “Manifold
bootstrapping for SVBRDF capture”. In: ACM Transactions on Graphics (TOG) 29.4
(2010), pp. 1-10.

P. Ren, J. Wang, J. Snyder, X. Tong, and B. Guo. “Pocket reflectometry”. In: ACM
Transactions on Graphics (TOG) 30.4 (2011), pp. 1-10.

Z. Hui, K. Sunkavalli, J.-Y. Lee, S. Hadap, J. Wang, and A. C. Sankaranarayanan.
“Reflectance capture using univariate sampling of brdfs”. In: Proceedings of the
IEEE International Conference on Computer Vision. 2017, pp. 5362-5370.

Z. Zhou, G. Chen, Y. Dong, D. Wipf, Y. Yu, J. Snyder, and X. Tong. “Sparse-as-
possible SVBRDF acquisition”. In: ACM Transactions on Graphics (TOG) 35.6
(2016), pp. 1-12.




82

BIBLIOGRAPHY

(44]

(45]

(46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

[55]

[56]

(57]

(58]

M. Aittala, T. Weyrich, J. Lehtinen, et al. “Two-shot SVBRDF capture for stationary
materials.” In: ACM Transactions on Graphics (TOG) 34.4 (2015), pp. 110-1.

C.-P. Wang, N. Snavely, and S. Marschner. “Estimating dual-scale properties of
glossy surfaces from step-edge lighting”. In: Proceedings of the 2011 SIGGRAPH
Asia Conference. 2011, pp. 1-12.

Y. Zhao, B. Wang, Y. Xu, Z. Zeng, L. Wang, and N. Holzschuch. “Joint SVBRDF
Recovery and Synthesis From a Single Image using an Unsupervised Generative
Adversarial Network.” In: EGSR (DL). 2020, pp. 53-66.

V. Deschaintre, G. Drettakis, and A. Bousseau. “Guided fine-tuning for large-scale
material transfer”. In: Computer Graphics Forum. Vol. 39. 4. Wiley Online Library.
2020, pp. 91-105.

J. Flynn, M. Broxton, P. Debevec, M. DuVall, G. Fyffe, R. Overbeck, N. Snavely, and R.
Tucker. “Deepview: View synthesis with learned gradient descent”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019,
pp. 2367-2376.

K. Lonning, P. Putzky, J.-J. Sonke, L. Reneman, M. W. Caan, and M. Welling. “Recur-
rent inference machines for reconstructing heterogeneous MRI data”. In: Medical
image analysis 53 (2019), pp. 64-78.

P. Putzky and M. Welling. “Invert to learn to invert”. In: Advances in neural infor-
mation processing systems 32 (2019).

K. Cho. “Learning phrase representations using RNN encoder-decoder for statisti-
cal machine translation”. In: arXiv preprint arXiv:1406.1078 (2014).

R. L. Cook and K. E. Torrance. “A reflectance model for computer graphics”. In:
ACM Transactions on Graphics (TOG) 1.1 (1982), pp. 7-24.

B. Walter, S. R. Marschner, H. Li, and K. E. Torrance. “Microfacet models for refrac-
tion through rough surfaces”. In: Proceedings of the 18th Eurographics conference
on Rendering Techniques. 2007, pp. 195-206.

V. Deschaintre, M. Aittala, E Durand, G. Drettakis, and A. Bousseau. “Flexible
svbrdf capture with a multi-image deep network”. In: Computer Graphics Forum
38.4 (2019), pp. 1-13.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. “The unreasonable
effectiveness of deep features as a perceptual metric”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018, pp. 586-595.

K. Yoshihiro. “Relighting humans: occlusion-aware inverse rendering for full-body
human images”. In: ACM Transactions on Graphics (TOG) 37 (2018), pp. 270-1.

S. Saito, T. Simon, J. Saragih, and H. Joo. “Pifuhd: Multi-level pixel-aligned im-
plicit function for high-resolution 3d human digitization”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 2020, pp. 84-93.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio. “Generative adversarial nets”. In: Advances in neural
information processing systems 27 (2014).



BIBLIOGRAPHY 83

(62]

[72]

A. Brock, J. Donahue, and K. Simonyan. “Large scale GAN training for high fidelity
natural image synthesis”. In: arXiv preprint arXiv:1809.11096 (2018).

T. White. “Sampling generative networks”. In: arXiv preprint arXiv:1609.04468
(2016).

N. Lindow, D. Baum, and H.-C. Hege. “Perceptually linear parameter variations”.
In: Computer Graphics Forum. Vol. 31. 2pt3. Wiley Online Library. 2012, pp. 535-
544.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. “Image quality assess-
ment: from error visibility to structural similarity”. In: IEEE transactions on image
processing 13.4 (2004), pp. 600-612.

E Wang. pytorch-msssim. https ://github. com/VainF /pytorch-msssim.
Accessed: 2024-04-30.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, E A. Wichmann, and W. Bren-
del. “ImageNet-trained CNNs are biased towards texture; increasing shape bias
improves accuracy and robustness”. In: arXiv preprint arXiv:1811.12231 (2018).

P S. Heckbert. “Survey of texture mapping”. In: IEEE computer graphics and appli-
cations 6.11 (1986), pp. 56-67.

E. Lupton and J. C. Phillips. Graphic design: the new basics (revised and expanded).
Chronicle Books, 2015.

J. J. Gibson. The perception of the visual world. Houghton Mifflin, 1950.

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi. “Describing textures
in the wild”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2014, pp. 3606-3613.

N. Bhushan, A. R. Rao, and G. L. Lohse. “The texture lexicon: Understanding the
categorization of visual texture terms and their relationship to texture images”. In:
Cognitive Science 21.2 (1997), pp. 219-246.

L.-Y. Wei and M. Levoy. “Fast texture synthesis using tree-structured vector quan-
tization”. In: Proceedings of the 27th annual conference on Computer graphics and
interactive techniques. 2000, pp. 479-488.

J. Dong, L. Wang, J. Liu, Y. Gao, L. Qi, and X. Sun. “A procedural texture generation
framework based on semantic descriptions”. In: Knowledge-Based Systems 163
(2019), pp. 898-906.

P. Guehl, R. Allegre, J.-M. Dischler, B. Benes, and E. Galin. “Semi-Procedural Tex-
tures Using Point Process Texture Basis Functions”. In: Computer Graphics Forum.
Vol. 39. 4. Wiley Online Library. 2020, pp. 159-171.

Adobe. Substance Painter. https://www.substance3d. com/. Accessed: 2020-
04-30.

C. Olah, A. Mordvintsev, and L. Schubert. “Feature visualization”. In: Distill 2.11
(2017), e7.

H. Chang, O. Fried, Y. Liu, S. DiVerdi, and A. Finkelstein. “Palette-based photo
recoloring.” In: ACM Transactions on Graphics (TOG) 34.4 (2015), pp. 139-1.




84

BIBLIOGRAPHY

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

K. H. Tan. “Text-based image retrieval using image captioning”. In: Journal of
Visual Communication and Image Representation (2019).

K. Seetharaman, S. Selvaraj, et al. “Statistical tests of hypothesis based color image
retrieval”. In: Journal of Data Analysis and Information Processing 4.02 (2016),
p- 90.

C. Carson, S. Belongie, H. Greenspan, and J. Malik. “Region-based image querying”.
In: 1997 Proceedings IEEE Workshop on Content-Based Access of Image and Video
Libraries. IEEE. 1997, pp. 42-49.

L. Piras and G. Giacinto. “Information fusion in content based image retrieval: A
comprehensive overview”. In: Information Fusion 37 (2017), pp. 50-60.

J. Yue, Z. Li, L. Liu, and Z. Fu. “Content-based image retrieval using color and
texture fused features”. In: Mathematical and Computer Modelling 54.3-4 (2011),
pp. 1121-1127.

B. Julesz. “Visual pattern discrimination”. In: IRE transactions on Information
Theory 8.2 (1962), pp. 84-92.

J. L. Yellott. “Implications of triple correlation uniqueness for texture statistics and
the Julesz conjecture”. In: JOSA A 10.5 (1993), pp. 777-793.

B. S. Manjunath and W.-Y. Ma. “Texture features for browsing and retrieval of
image data”. In: IEEE Transactions on pattern analysis and machine intelligence
18.8 (1996), pp. 837-842.

J. Portilla and E. P. Simoncelli. “A parametric texture model based on joint statistics
of complex wavelet coefficients”. In: International journal of computer vision 40.1
(2000), pp. 49-70.

X. Dong and M. J. Chantler. “Texture similarity estimation using contours”. In:
25th British Machine Vision Conference 2014. BMVA Press. 2014, pp. 1-11.

J. Zujovic, T. N. Pappas, and D. L. Neuhoff. “Structural texture similarity metrics
for image analysis and retrieval”. In: IEEE Transactions on Image Processing 22.7
(2013), pp. 2545-2558.

X. Zhao, M. G. Reyes, T. N. Pappas, and D. L. Neuhoff. “Structural texture similarity
metrics for retrieval applications”. In: 2008 15th IEEE International Conference on
Image Processing. IEEE. 2008, pp. 1196-1199.

M. Kokare, B. Chatterji, and P. Biswas. “Comparison of similarity metrics for texture
image retrieval”. In: TENCON 2003. Conference on convergent technologies for Asia-
Pacific region. Vol. 2. IEEE. 2003, pp. 571-575.

B. Dinakaran, J. Annapurna, and C. A. Kumar. “Interactive image retrieval using
text and image content”. In: Cybern Inf Tech 10 (2010), pp. 20-30.

M. Porta. “Browsing large collections of images through unconventional visual-
ization techniques”. In: Proceedings of the working conference on Advanced visual
interfaces. 2006, pp. 440-444.



BIBLIOGRAPHY 85

(91]

(92]

(97]

[100]

[101]

[102]

[103]

[104]

L. Liy, E Shen, Y. Shen, X. Liu, and L. Shao. “Deep sketch hashing: Fast free-hand
sketch-based image retrieval”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017, pp. 2862-2871.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing
systems. 2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. “Going deeper with convolutions”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2015, pp. 1-9.

D. G. Lowe. “Distinctive image features from scale-invariant keypoints”. In: Inter-
national journal of computer vision 60.2 (2004), pp. 91-110.

H. Permuter, J. Francos, and I. H. Jermyn. “Gaussian mixture models of texture
and colour for image database retrieval”. In: 2003 IEEE International Conference
on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03). Vol. 3.
IEEE. 2003, pp. III-569.

L. Zheng, Y. Yang, and Q. Tian. “SIFT meets CNN: A decade survey of instance
retrieval”. In: IEEE transactions on pattern analysis and machine intelligence 40.5
(2017), pp. 1224-1244.

L. Liu, J. Chen, P. Fieguth, G. Zhao, R. Chellappa, and M. Pietikdinen. “From
BoW to CNN: Two decades of texture representation for texture classification”. In:
International Journal of Computer Vision 127.1 (2019), pp. 74-109.

A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky. “Neural codes for image
retrieval”. In: European conference on computer vision. Springer. 2014, pp. 584—
599.

L. Xie, R. Hong, B. Zhang, and Q. Tian. “Image classification and retrieval are
one”. In: Proceedings of the 5th ACM on International Conference on Multimedia
Retrieval. 2015, pp. 3-10.

N. Garcia and G. Vogiatzis. “Learning non-metric visual similarity for image re-
trieval”. In: Image and Vision Computing 82 (2019), pp. 18-25.

D. Danon, H. Averbuch-Elor, O. Fried, and D. Cohen-Or. “Unsupervised natural
image patch learning”. In: Computational Visual Media 5.3 (2019), pp. 229-237.

O. Mohamed, O. Mohammed, A. Brahim, et al. “Content-based image retrieval
using convolutional neural networks”. In: First International Conference on Real
Time Intelligent Systems. Springer. 2017, pp. 463-476.

A. Gordo, J. Almazan, J. Revaud, and D. Larlus. “End-to-end learning of deep visual
representations for image retrieval”. In: International Journal of Computer Vision
124.2 (2017), pp. 237-254.

J. Yue-Hei Ng, E Yang, and L. S. Davis. “Exploiting local features from deep net-
works for image retrieval”. In: Proceedings of the IEEE conference on computer
vision and pattern recognition workshops. 2015, pp. 53-61.




86

BIBLIOGRAPHY

[105]

(106]

[107]

[108]

(109]

(110]

[111]

[112]

(113]

[114]

(115]

[116]

(117]

(118]

H. Noh, A. Araujo, J. Sim, T. Weyand, and B. Han. “Large-scale image retrieval with
attentive deep local features”. In: Proceedings of the IEEE international conference
on computer vision. 2017, pp. 3456-3465.

J. Xue, H. Zhang, and K. Dana. “Deep texture manifold for ground terrain recog-
nition”. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2018, pp. 558-567.

O. Fried, S. Avidan, and D. Cohen-Or. “Patch2vec: Globally consistent image patch
representation”. In: Computer Graphics Forum. Vol. 36. 7. Wiley Online Library.
2017, pp. 183-194.

Y. Hu, J. Dorsey, and H. Rushmeier. “A novel framework for inverse procedural
texture modeling”. In: ACM Transactions on Graphics (TOG) 38.6 (2019), pp. 1-14.

E Halley et al. “Perceptually relevant browsing environments for large texture
databases”. PhD thesis. Heriot-Watt University, 2012.

S. Padilla, E Halley, D. A. Robb, and M. J. Chantler. “Intuitive Large Image Database
Browsing using Perceptual Similarity Enriched by Crowds”. In: International Con-
ference on Computer Analysis of Images and Patterns. Springer. 2013, pp. 169-
176.

N. Li, V. van Unen, T. Hollt, A. Thompson, J. van Bergen, N. Pezzotti, E. Eisemann,
A.Vilanova, S. M. Chuva de Sousa Lopes, B. P. Lelieveldt, et al. “Mass cytometry
reveals innate lymphoid cell differentiation pathways in the human fetal intestine”.
In: Journal of Experimental Medicine 215.5 (2018), pp. 1383-1396.

N. Pezzotti, T. Hollt, B. Lelieveldt, E. Eisemann, and A. Vilanova. “Hierarchical
stochastic neighbor embedding”. In: Computer Graphics Forum. Vol. 35. 3. Wiley
Online Library. 2016, pp. 21-30.

T. Hollt, N. Pezzotti, V. van Unen, E Koning, B. P. Lelieveldt, and A. Vilanova.
“CyteGuide: Visual guidance for hierarchical single-cell analysis”. In: IEEE Trans-
actions on Visualization and Computer Graphics 24.1 (2017), pp. 739-748.

T. Hollt, A. Vilanova, N. Pezzotti, B. P. Lelieveldt, and H. Hauser. “Focus+ context
exploration of hierarchical embeddings”. In: Computer Graphics Forum. Vol. 38. 3.
Wiley Online Library. 2019, pp. 569-579.

J. Yang, J. Fan, D. Hubball, Y. Gao, H. Luo, W. Ribarsky, and M. Ward. “Semantic im-
age browser: Bridging information visualization with automated intelligent image
analysis”. In: 2006 IEEE Symposium On Visual Analytics Science And Technology.
IEEE. 2006, pp. 191-198.

K. Mizuno, H. Y. Wu, and S. Takahashi. “Manipulating bilevel feature space for
category-aware image exploration”. In: 2014 IEEE Pacific Visualization Symposium.
IEEE. 2014, pp. 217-224.

M. A. Cox and T. E Cox. “Multidimensional scaling”. In: Handbook of data visual-
ization. Springer, 2008, pp. 315-347.

M. Dowling, J. Wenskovitch, J. Fry, L. House, and C. North. “SIRIUS: Dual, Sym-
metric, Interactive Dimension Reductions”. In: IEEE transactions on visualization
and computer graphics 25.1 (2018), pp. 172-182.



BIBLIOGRAPHY 87

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

E V. Paulovich, M. C. E Oliveira, and R. Minghim. “The projection explorer: A
flexible tool for projection-based multidimensional visualization”. In: XX Brazilian
Symposium on Computer Graphics and Image Processing (SIBGRAPI 2007). IEEE.
2007, pp. 27-36.

D. M. Eler, M. Y. Nakazaki, E V. Paulovich, D. P. Santos, G. E Andery, M. C. E Oliveira,
J. B. Neto, and R. Minghim. “Visual analysis of image collections”. In: The Visual
Computer 25.10 (2009), pp. 923-937.

M. Worring and D. C. Koelma. “Insight in image collections by multimedia pivot
tables”. In: Proceedings of the 5th ACM on International Conference on Multimedia
Retrieval. 2015, pp. 291-298.

M. Worring, D. Koelma, and J. Zahélka. “Multimedia pivot tables for multimedia
analytics on image collections”. In: IEEE Transactions on Multimedia 18.11 (2016),
pp. 2217-2227.

X. Xie, X. Cai, J. Zhou, N. Cao, and Y. Wu. “A semantic-based method for visualizing
large image collections”. In: IEEE transactions on visualization and computer
graphics 25.7 (2018), pp. 2362-2377.

K. Rodden, W. Basalaj, D. Sinclair, and K. Wood. “Evaluating a visualisation of im-
age similarity as a tool for image browsing”. In: Proceedings 1999 IEEE Symposium
on Information Visualization (InfoVis’ 99). IEEE. 1999, pp. 36-43.

G. Y. Tian and D. Taylor. “Colour image retrieval using virtual reality”. In: 2000
IEEE Conference on Information Visualization. An International Conference on
Computer Visualization and Graphics. IEEE. 2000, pp. 221-225.

A. Gomi, R. Miyazaki, T. Itoh, and J. Li. “CAT: A hierarchical image browser using a
rectangle packing technique”. In: 2008 12th International Conference Information
Visualisation. IEEE. 2008, pp. 82-87.

G. Schaefer. “Approaches for interactive browsing of large image datasets”. In:
2016 IEEE 10th International Conference on Application of Information and Com-
munication Technologies (AICT). IEEE. 2016, pp. 1-4.

L. Fei-Fei. “Imagenet: crowdsourcing, benchmarking & other cool things”. In:
CMU VASC Seminar. Vol. 16. 2010, pp. 18-25.

L. A. Gatys, A. S. Ecker, and M. Bethge. “Image style transfer using convolutional
neural networks”. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pp. 2414-2423.

Z.Yang, J. Yue, Z. Li, and L. Zhu. “Vegetable image retrieval with fine-tuning VGG
model and image hash”. In: IFAC-PapersOnLine 51.17 (2018), pp. 280-285.

N. Kazak. “Performance analysis of spiral neighbourhood topology based local
binary patterns in texture recognition”. In: International Journal of Applied Math-
ematics Electronics and Computers Special Issue-1 (2016), pp. 338-341.

D. M. Chan, R. Rao, E Huang, and J. E Canny. “t-SNE-CUDA: GPU-Accelerated t-
SNE and its Applications to Modern Data”. In: 2018 30th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD). IEEE.
2018, pp. 330-338.




88

BIBLIOGRAPHY

[133]

(134]

[135]

[136]

(137]

[138]

[139]

[140]

[141]

[142]

[143]
(144]

(145]

(146]

N. Pezzotti, J. Thijssen, A. Mordvintsev, T. Hollt, B. Van Lew, B. P. Lelieveldt, E.
Eisemann, and A. Vilanova. “GPGPU linear complexity t-SNE optimization”. In:
IEEE transactions on visualization and computer graphics 26.1 (2019), pp. 1172—
1181.

K. Fukunaga and L. Hostetler. “The estimation of the gradient of a density function,
with applications in pattern recognition”. In: IEEE Transactions on information
theory 21.1 (1975), pp. 32-40.

H. Bezerra, E. Eisemann, X. Décoret, and J. Thollot. “3d dynamic grouping for
guided stylization”. In: Proceedings of the 6th international symposium on Non-
photorealistic animation and rendering. 2008, pp. 89-95.

T. Hollt, N. Pezzotti, V. van Unen, E Koning, E. Eisemann, B. Lelieveldt, and A.
Vilanova. “Cytosplore: interactive immune cell phenotyping for large single-cell
datasets”. In: Computer Graphics Forum. Vol. 35. 3. Wiley Online Library. 2016,
pp. 171-180.

C. O. Ancuti, C. Ancuti, and P. Bekaert. “Enhancing by saliency-guided decoloriza-
tion”. In: CVPR 2011. 1EEE. 2011, pp. 257-264.

C. Ancuti and C. O. Ancuti. “Laplacian-guided image decolorization”. In: 2016
IEEE International Conference on Image Processing (ICIP). IEEE. 2016, pp. 4107-
4111.

A.T. Chodos. “What does music mean to Spotify? An essay on musical significance
in the era of digital curation”. In: INSAM Journal of Contemporary Music, Art and
Technology 2 (2019), pp. 36-64.

C. Hosey, L. Vujovi¢, B. St. Thomas, J. Garcia-Gathright, and J. Thom. “Just give me
what I want: How people use and evaluate music search”. In: Proceedings of the
2019 chi conference on human factors in computing systems. 2019, pp. 1-12.

A. Anderson, L. Maystre, I. Anderson, R. Mehrotra, and M. Lalmas. “Algorithmic
effects on the diversity of consumption on spotify”. In: Proceedings of the web
conference 2020. 2020, pp. 2155-2165.

M. Schedl, H. Zamani, C.-W. Chen, Y. Deldjoo, and M. Elahi. “Current challenges
and visions in music recommender systems research”. In: International Journal of
Multimedia Information Retrieval 7 (2018), pp. 95-116.

J. M. Wolfe. “Visual search”. In: Current biology 20.8 (2010), R346-R349.

J. P Lewis, R. Rosenholtz, N. Fong, and U. Neumann. “VisuallDs: automatic dis-
tinctive icons for desktop interfaces”. In: ACM Transactions on Graphics (TOG)
23.3 (2004), pp. 416-423.

M. Sched]l, E. Gémez, J. Urbano, et al. “Music information retrieval: Recent devel-
opments and applications”. In: Foundations and Trends® in Information Retrieval
8.2-3 (2014), pp. 127-261.

M. Miiller, R. Bittner, J. Nam, M. Krause, and Y. Ozer. “Deep learning and knowl-
edge integration for music audio analysis (Dagstuhl Seminar 22082)”. In: Dagstuhl
Reports (2022).



BIBLIOGRAPHY 89

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

T. Bertin-Mahieux, D. P. Ellis, B. Whitman, and P. Lamere. The Million Song Dataset.
http://millionsongdataset.com/. Accessed: 2020-06-13.

P. Skidén. API improvements and Update. https://developer.spotify.com/
community/news/2016/03/29/api-improvements-update/. Accessed: 2020-
06-15.

P. Hamel and D. Eck. “Learning features from music audio with deep belief net-
works.” In: ISMIR. Vol. 10. Citeseer. 2010, pp. 339-344.

D. P Kingma and M. Welling. “Auto-encoding variational bayes”. In: arXiv preprint
arXiv:1312.6114 (2013).

A.Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin. “Attention is all you need”. In: Advances in neural information
processing systems 30 (2017).

P. Kolhoff, J. Preul3, and J. Loviscach. “Content-based icons for music files”. In:
Computers & Graphics 32.5 (2008), pp. 550-560.

V. Setlur, C. Albrecht-Buehler, A. A. Gooch, S. Rossoff, and B. Gooch. “Semanticons:
Visual metaphors as file icons”. In: Computer Graphics Forum. Vol. 24. 3. Blackwell
Publishing, Inc Oxford, UK and Boston, USA. 2005, pp. 647-656.

S. O. Martin. “Knowledge Extraction and Representation Learning for Music Rec-
ommendation and Classification”. PhD thesis. Ph. D. thesis, Universitat Pompeu
Fabra.[Cited on page 139.], 2017.

K. Chen, B. Liang, X. Ma, and M. Gu. “Learning audio embeddings with user
listening data for content-based music recommendation”. In: ICASSP 2021-2021
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE. 2021, pp. 3015-3019.

A. Saravanou, E Tomasi, R. Mehrotra, and M. Lalmas. “Multi-Task Learning of
Graph-based Inductive Representations of Music Content.” In: ISMIR. 2021, pp. 602—
609.

A.Van den Oord, S. Dieleman, and B. Schrauwen. “Deep content-based music rec-
ommendation”. In: Advances in neural information processing systems 26 (2013).

J. Spijkervet and J. A. Burgoyne. “Contrastive learning of musical representations”.
In: arXiv preprint arXiv:2103.09410 (2021).

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. “A simple framework for con-
trastive learning of visual representations”. In: International conference on ma-
chine learning. PMLR. 2020, pp. 1597-1607.

E. Law, K. West, M. I. Mandel, M. Bay, and J. S. Downie. “Evaluation of algorithms
using games: The case of music tagging”. In: ISMIR. Citeseer. 2009, pp. 387-392.

G. Tzanetakis and P. Cook. “Musical genre classification of audio signals”. In: IEEE
Transactions on speech and audio processing 10.5 (2002), pp. 293-302.

R. Figueroa. Spotify 1.2M+ Songs. https : / /wuw . kaggle . com / datasets /
rodolfofigueroa/spotify-12m-songs/data. Accessed: 2023-12-15.



90

BIBLIOGRAPHY

[163]

[164]

[165]

[166]

[167]

(168]

(169]
(170]

(171]

(172]

(173]

(174]

(175]
[176]

(177]

J. Fuchs, P. Isenberg, A. Bezerianos, E Fischer, and E. Bertini. “The influence of con-
tour on similarity perception of star glyphs”. In: IEEE transactions on visualization
and computer graphics 20.12 (2014), pp. 2251-2260.

B. Dy, N. Ibrahim, A. Poorthuis, and S. Joyce. “Improving Visualization Design for
Effective Multi-Objective Decision Making”. In: IEEE Transactions on Visualization
and Computer Graphics 28.10 (2021), pp. 3405-3416.

Y. Hou, H. Zhu, H.-N. Liang, and L. Yu. “A study of the effect of star glyph param-
eters on value estimation and comparison”. In: Journal of Visualization (2022),
pp. 1-15.

K. Pearson. “LIIL. On lines and planes of closest fit to systems of points in space”.
In: The London, Edinburgh, and Dublin philosophical magazine and journal of
science 2.11 (1901), pp. 559-572.

E. Amid and M. K. Warmuth. “TriMap: Large-scale dimensionality reduction using
triplets”. In: arXiv preprint arXiv:1910.00204 (2019).

Y. Wang, H. Huang, C. Rudin, and Y. Shaposhnik. “Understanding how dimension
reduction tools work: an empirical approach to deciphering t-SNE, UMAP, TriMAP,
and PaCMAP for data visualization”. In: The Journal of Machine Learning Research
22.1(2021), pp. 9129-9201.

T. Munzner. Visualization analysis and design. CRC press, 2014.

D. Kammer, M. Keck, T. Griinder, A. Maasch, T. Thom, M. Kleinsteuber, and R. Groh.
“Glyphboard: Visual exploration of high-dimensional data combining glyphs with
dimensionality reduction”. In: IEEE transactions on visualization and computer
graphics 26.4 (2020), pp. 1661-1671.

M. Brehmer, R. Kosara, and C. Hull. “Generative design inspiration for glyphs
with diatoms”. In: IEEE Transactions on Visualization and Computer Graphics 28.1
(2021), pp. 389-399.

R. Borgo, J. Kehrer, D. H. Chung, E. Maguire, R. S. Laramee, H. Hauser, M. Ward,
and M. Chen. “Glyph-based Visualization: Foundations, Design Guidelines, Tech-
niques and Applications.” In: Eurographics (state of the art reports). 2013, pp. 39—
63.

M. Friendly. “Statistical graphics for multivariate data”. In: SAS SUGI 16 (1991),
pp. 1157-1162.

M. Keck and L. Engeln. “Sparkle glyphs: A glyph design for the analysis of temporal
multivariate audio features”. In: Proceedings of the 2022 International Conference
on Advanced Visual Interfaces. 2022, pp. 1-3.

S. E. Palmer. Vision science: Photons to phenomenology. MIT press, 1999.

A. Klippel, E Hardisty, and C. Weaver. “Star plots: How shape characteristics influ-
ence classification tasks”. In: Cartography and Geographic Information Science
36.2 (2009), pp. 149-163.

J. Fuchs. “Glyph design for temporal and multi-dimensional data: Design consid-
erations and evaluation”. In: Information Visualization (2015).



BIBLIOGRAPHY 91

[178] P Knees and K. Andersen. “Searching for audio by sketching mental images of
sound: A brave new idea for audio retrieval in creative music production”. In:
Proceedings of the 2016 ACM on International Conference on Multimedia Retrieval.
2016, pp. 95-102.

[179] D.W. Cunningham and C. Wallraven. Experimental design: From user studies to
psychophysics. CRC Press, 2011.

[180] S.J.Blanchard and I. Banerji. “Evidence-based recommendations for designing
free-sorting experiments”. In: Behavior research methods 48 (2016), pp. 1318-1336.







SUPPLEMENTARY MATERIAL OF
CHAPTER 4

A.1. INTRODUCTION

We conducted a user evaluation to validate the effectiveness and advantages of our
method. We wish to perform two evaluations: comparison with alternative methods,
and features evaluation. In a first part of our study, we compared against displaying
images on a grid (using thumbnails), which is the standard file-system solution. It is the
visualization that users typically have the most experience in using. It also requires no
metadata (which also holds as is the case for our system). Additionally, we compare to
text-based solutions. We also evaluate the four features compared to only using our basic
overview mode, multi-scale replication, clustering, prioritized-tSNE, and image-based
search. The first two features aim at general use cases and evaluation of them requires
no special settings of the target. Therefore, they were integrated in the first part of the
study, acting as additional comparisons. For the latter two features, they aim to improving
the retrieval in cases where the number of images is very large, and thus were evaluated
separately in the second part of the study.

A.2. COMPARISON WITH ALTERNATIVE METHODS
A.2.1. TASKS

1. Given a reference texture, users are asked to find it in two ways from the same
database: standard grid view, and our texture browser system. The four textures
for retrieval are shown in Fig. A.1. With our system, users will retrieve the images
twice, once starting from the overview without clustering enabled, and later we
enforced the cluster view. In this task, we record the times taken for the task for the
different procedures. Note that the positions of images in our system changed for
each participant, and for each task, since the embedding was rotated by a random
angle.

2. Given an abstract descriptive word from the DTD database, users are asked to
search for an appropriate texture, which matches this description. In this task, we
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record the label that the retrieved texture had in the DTD database and compare it
to the goal word.

A.2.2. PROCEDURE

1. Provide access to the texture browser software, as well as access to a folder with
randomly indexed images for each of the retrieval tasks.

2. Provide a tutorial video of our TextureBrowser tool to familiarize the participants
with the GUI and all functionalities of the tool.

3. Let participants carry out the tasks described above, record time, the used functions
for each task, and their feedback. Let participants fill in a questionnaire.

Figure A.1: Images used for the retrieval task of methods comparison.

A.2.3. RESULTS AND DISCUSSION

In total, 16 users participated in our user evaluation. It was their first exposure to our
interface and were asked to finish the two tasks listed in the evaluation method above.
For each task, retrieval time was recorded and an evaluation questionnaire was filled.

For Task 1, the retrieval times were recorded for the different systems. Table A.1 and
Table A.2 show the detailed timing results, as well as the user satisfaction scores reported
by the users in Table A.3. The metrics for satisfaction of user interaction is a 5 level
Likert scale, where higher means better (specifically, 1: very unsatisfied; 2: unsatisfied; 3:
moderate; 4: satisfied; 5: very satisfied).

According to Table A.2, the time to retrieve the target textures via the grid interface is
substantially reduced via the usage of our tool, either with non-clustered mode or with
cluster view mode, with at least a factor of 2, except for user #13 where the reduction is
mild. One case worth noticing is that user #15 gave up the retrieval of the last target texture
via the grid view after a total search time that exceeded 23 minutes, while succeeding with
our solution in less than three minutes (with no cluster view).

On average, the users rated our method higher than the grid view on interaction score.
Among all users, only user #9 scored the grid view higher than our system, and only for the
cluster view mode, despite having a shorter retrieval time in our system with the cluster
view. Overall, the users preferred their interaction without the cluster view (avg. score
4.25) slightly over the cluster view (avg. score 3.84).
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User Grid Ours Ours
(clustering)

1 06:43  03:26 01:58

2 09:22  05:05 02:34
3 07:33  02:22 01:35
4 02:08 01:04 01:10
5 03:42  02:04 01:45
6 09:54  01:38 02:44

7 04:11 02:01 01:29
8 05:46  01:13 01:50

9 05:56  01:08 01:36
10 05:19  02:37 03:27
11 07:09 01:45 03:50
12 04:07 01:14 02:04
13 04:16  03:36 02:46
14 03:44  01:29 01:56
15 =>23:09 02:23 03:48
16 10:50  02:19 02:14
Average 07:07 02:13 02:18

Table A.2: Total user timings for task 1

User Grid Ours Ours
(clustering)
1 3 4 4.5
2 2 4 4
3 1 3 5
4 2 5 4
5 2 4 3
6 1 4 3
7 2 5 4
8 1 5 3
9 4 5 3
10 2 4 3
11 3 5 4
12 2 4 4
13 3 3 4
14 2 5 4
15 1 4 4
16 1 4 5
Average 2 4.25 3.84

Table A.3: User interaction scores
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User DTD Word DTD Word
Porous Interlaced
1 Porous Zigzagged
2 Honeycombed Grid
3 Scaly Woven
4 Porous Crosshatched
5 Porous Braided
6 Porous Braided
7 Fibrous Braided
8 Bubbly Braided
9 Pitted Woven
10 Porous Woven
11 Flecked Woven
12 Pitted Braided
13 Porous Braided
14 Porous Knitted
15 Porous Interlaced
16 E o E o Dotted ‘ ‘ Banded

Table A.4: Images selected by users in task 2

From open feedback the users provided on the questionnaire, the main reason of
preference for the unclustered exploration is that it feels more intuitive for them. This
is reasonable since the cluster view requires more involved control (i.e., defining an
appropriate number of clusters). Furthermore, some users noted that the resulting
clusters did not group textures according to their expectation, and choosing the wrong
cluster to explore would not allow them to find the target texture. Nevertheless, some users
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noted that the cluster view is better suited for retrieval of textures with very well defined
features, such that the corresponding cluster is well defined and easier to find, especially
when the overall number of textures is large. With a more sophisticated clustering method,
this situation can be alleviated. Finally, some users also mentioned that they believe that
training would improve their performance.

MULTI-SCALE

We also evaluated the effectiveness of our multiscale replication. The first target texture
among the given four was present twice in the embedding, via the embed position of the
feature vector for the original version and one of the blurred versions. Out of 16 partici-
pants, 12 obtained the target based on the position corresponding to the blurred version,
in an average 27 seconds, while the rest obtained the target in its original embedding
position, in an average 38 seconds. This validates our hypothesis that different users first
search for textures in groups according to features of different scales, and our multiscale
replication allows them to find the texture in either case. On average, users were inclined
to retrieve this image via the features of its blurred version, and the retrieval time in that
case is shorter. We believe that this is because the large-scale features are easier to identify
starting from an unzoomed view, as is the case in our tool.

TEXT-BASED RETRIEVAL

In Task 2, each user retrieved two textures via our interface according to their under-
standing of the two descriptive words they were given. These words are taken from the
Describable Textures Dataset (DTD), which contains 1519 images, and groups them ac-
cording to 47 words (terms/categories) inspired from human perception. The retrieved
textures for each participant are shown in Table A.4. The words provided to the users were
porous and interlaced.

From the results shown in Table A.4, we can see that the interpretation of a specific
adjective differs from person to person. For the first word, porous, half of the users
obtained a texture whose describing word from DTD is identical to the given word. For
the other half, the retrieved images have a common feature of small holes, which could
roughly match the expectation of the word porous.

For the second word, interlaced, only one user (#15) retrieved a texture that is labeled
with that word in DTD. Most of the users retrieved textures that can be described with the
words woven and braided. These words can clearly describe texture features that are very
similar, and we believe most non-expert users of such a word-based classification system
would struggle to differentiate among them, as shown by our results.

A.3. PRIORITIZED T-SNE AND IMAGE-BASED SEARCH TOOL
EVALUATION

The prioritized-tSNE and image-based search features were evaluated in a second part of
the study. We divided the participants into two groups (group A and group B) to evaluate
each feature independently, group A without using any feature and group B using the
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specified features. Since these two features aim at solving retrieval in a large and crowded
database, the texture database used here contains 5824 textures.

A.3.1. TASKS

1. Prioritized-tSNE: Given a reference texture, users are asked to find the identical
texture via our interface. For group A, users can browse around freely with only the
overview panel of our interface, but without using any of the advanced features
(prioritized-tSNE, image-based search, or clustering). For group B, users first try
to select a texture similar to the target texture from the overview panel as an input
to the prioritized-tSNE tool, and assign it with a large weight to spread out the
crowd where the target texture may belong. After that, they are suggested to browse
around the highlighted vicinity for further retrieval. The textures for retrieval are
shown as the two in the left in Fig. A.2.

2. Image-based search: Given a reference texture, users are asked to find the identical
texture using our interface. For group A, users can again browse around freely with
only the overview panel of our interface, but without using any of the advanced
features. For group B, users first use our image-based tool to locate a similar texture
in the database, after which they can freely browse until they locate the reference
image. We provide two textures similar to the reference texture as as input to the
image-based retrieval, and users are also allowed to draw sketches as well. The
reference textures for retrieval are shown as the two in the right in Fig. A.2.

Figure A.2: Images used for the retrieval tasks of features evaluation.

A.3.2. PROCEDURE
1. Provide access to our texture browser software.

2. Provide a tutorial video for Group A on how to use the overview mode of the inter-
face, including zooming in and out, translating, selecting images, and tiling in a
grid. Additionally, create a tutorial video for Group B that covers using the overview
mode, the prioritized-tSNE, and the image-based search tools.

3. Let participants carry out the tasks described above, record time, and their feedback
(optional). Let participants fill in a questionnaire.
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A.3.3. RESULTS AND DISCUSSION

In total 16 users were randomly devided into two groups, each with 8 users. The recorded
retrieval time for each texture is shown in Table A.5 and Table A.6.

PRIORITIZED T-SNE
According to Table A.5, in the prioritized-tSNE evaluation, the average time of group
A (using only the overview mode) is more than two times that of group B (using the
prioritized-tSNE tool). This suggests that by using our prioritized-tSNE tool, the retrieval
can be substantially faster. There is an outlier, user #13, who was misled by a similar
texture, an image of cracked glass, and spent a long time in the wrong region according to
the feedback. This suggests that when using our prioritized-tSNE tool, it is important for
the user to have an impression of the overall distribution first, such that an appropriate
image can be selected as input.

From the free feedback in the questionnaire, some users from the group A suggested
that a tool that can spread the overlapped crowd out would be helpful. This also reflects
the usefulness of the prioritized-tSNE tool.

Group User Texture 1 Texture2 Total

A 1 04:02 06:54 10:56
A 2 02:38 01:36 04:14
A 3 01:15 02:46 04:01
A 4 04:04 00:43 04:47
A 5 01:15 02:05 03:20
A 6 01:10 03:30 04:40
A 7 03:52 04:30 08:22
A 8 04:56 01:57 06:53
A Average 02:54 03:00 05:54
B 9 01:06 00:53 01:59
B 10 00:52 00:54 01:46
B 11 00:43 01:01 01:44
B 12 00:31 00:52 01:23
B 13 10:34 00:32 11:06
B 14 01:09 00:40 01:49
B 15 01:12 01:07 02:19
B 16 01:03 00:42 01:45
B Average 02:08 00:50 02:58

Table A.5: Retrieval times for individual textures in feature “prioritized-tSNE” evaluation

IMAGE-BASED SEARCH

In the evaluation of the image-based search tool, as shown in Table A.6, the average time
to finish the task of group A (using only the overview mode) is at least 4 times that of
group B (using the image-based search tool). In group A, two users (#2 and #4) gave up
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the task after 5 minutes and 3 minutes, respectively. From their feedback, we learned
that user #2 switched the retrieval among several possible regions but was still not able to
locate the target. User #4 gave up retrieval due to overlapping textures and suggested that
a tool to spread the crowded region out would be useful. In group B, almost all the users
succeeded in finishing the task using less time than those in group A, except for user #10
for whom the retrieval was stopped at 5 minutes and the reason was similar to that of user
#4. This can probably be solved by the use of our prioritized-tSNE tool. Overall, thanks to
the fast identification of the target region in the large database when using the tested tool,
the retrieval time was substantially shorter.

Group User Texture 3 Texture4  Total

A 1 13:08 16:00 29:08
A 2 =05:00 =05:00  =10:00
A 3 07:06 05:28 12:34
A 4 =>03:00 01:23 =>04:23
A 5 04:14 03:58 08:12
A 6 10:00 01:30 11:30
A 7 00:47 02:42 03:29
A 8 04:57 02:32 07:29
A Average 06:01 04:49 10:50
B 9 00:20 01:33 01:53
B 10 =>05:00 00:30 =05:30
B 11 01:02 00:58 02:00
B 12 00:43 02:07 02:50
B 13 01:05 02:03 03:08
B 14 00:40 00:30 01:10
B 15 00:43 00:25 01:08
B 16 01:21 00:43 02:04
B Average 01:21 01:06 02:27

Table A.6: Retrieval times for individual textures in feature “sketching” evaluation
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B.1. INTRODUCTION

Given the subjective nature of visualizing and perceiving music, our hypothesis and ex-
perimental design are evaluated through user tests. The major focus of the evaluation lies
in our proposed features: from the effectiveness of the icon to a larger system-evaluation.

The interface was implemented in a web app to facilitate remote user testing. It allows
for real-time search in a database of 10K songs.

We targeted a participant demographic of “non-expert but generally computer-literate”
adults and emphasized diversity in gender and age across ranges from 20-29 to over 70
years. To reduce response bias, participation was anonymous. Using an a-priori sample
size calculator with an expected medium effect size (d = 0.5), we determined that a
minimum of 27 participants would achieve a statistical power of 0.8 and a significance
level of 0.05, assuming analysis via paired samples t-test for certain tasks. Consequently,
we garnered 38 responses in the evaluation. The distributions for their respective age,
gender and experience with the Spotify streaming service can be seen in Fig. B.1.

Age groups of participants Gender distribution of participants - Experience with Spotify

0 0
20-29 30-39 40-49 50-59 60-69 >70 Others Female Male Over 6 months None

Figure B.1: Demographic information on the participants of the user study.

The user study consists of five tests and each of them is based on the following tasks:

1. Test one: Visual clustering (free-grouping task).

103
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2. Test two: Outlier detection (five-alternative forced-choice task).

3. Test three: Generalisation, Contrast and CVD Robustness (matching-to-sample
task).

4. Test four: Search-by-icon (real-world task).

5. Test five: Search-in-playlist (real-world task)

B.2. TEST ONE: VISUAL CLUSTERING

B.2.1. TASK

The goal of this test was to evaluate how well the icons capture the similarity of their
features and how much users agree on this. Participants were asked to visually form
clusters from a set of 60 icons, without knowing song titles or other information. Partic-
ipants could use any number of clusters and were allowed to leave a set of spare icons
that did not fit to anything else. An example screenshot for this test is shown in Fig. B.2.
To ensure that there is a diversity in the selection yet still the possibility to make clusters,
we sampled 10 data points from six of the clusters grouped by applying the k-means
clustering algorithm (k = 10). Each participant worked with the same set of icons but
their presentation was in a random order.

Sort the images into groups
(you can make as many groups as you like)

Task done

Q
o
c
°
w

Sort us Group 4 Group 5

@

O

ooovuew

Q
O
o
9
o
o
o
o
o
2]

Figure B.2: An example screenshot for test one.

B.2.2. RESULTS AND DISCUSSION

To see how users agree on the clustering, we calculated a co-occurrence matrix of the
clusters made by participants and a cosine similarity matrix of the feature vectors. The
resulting matrices can be seen in Fig. B.3.

Our analysis indicates a consensus among users regarding the clusters. Initial examina-
tion reveals a striking resemblance between the co-occurrence matrix and the similarity
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Co-occurrence matrix

1.0
30

0.9
20

0.8
10 0.7
0

Figure B.3: Co-occurrence matrix of the clusters made by participants (left) and a cosine
similarity matrix of the feature vectors (right).

matrix. To quantify this relationship, we computed the pairwise Pearson correlation coef-
ficient, which resulted in a value of 0.6. This value denotes a ‘moderate’ linear correlation,
suggesting a significant degree of agreement among users in their clustering decisions.

B.3. TEST TWO: OUTLIER DETECTION
B.3.1. TAsk

This test builds upon test one, by using the cluster data the participants provided them-
selves. It is in essence a five-alternative forced-choice task and is to see how well the icons
represent similar music and if the clustering allows users to spot outlier songs easily.

For each participant, we randomly selected four songs from a single cluster, along with
one song from a different cluster, and then presented these five songs in a randomized
sequence. Participants were then asked to identify the song that sounded distinct from
the rest. An example screenshot for this test is shown in Fig. B.4. We repeated this three
times for each participant.

B.3.2. RESULTS AND DISCUSSION

The outlier recognition rates achieved by the participants can be seen in Figure B.5 and
the descriptive statistics of the results can be found in Table B.1.

The expected recognition rate when of random guessing would be 0.2. It seems rather
likely that our results with a mean recognition rate of 0.745 is a considerable improvement.
We observe that p = 0.000000000000002 (one sample one-tailed t-test), finding an effect
size of 2.375 (Cohen’s d).
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Select the song that is most different from the others.

3
(selected)

Cenfirm Choice for nr 3

Figure B.4: An example screenshot for test two.

Qutlier recognition rates

0.333 0.667 1.0

Figure B.5: Recognition rates obtained for outlier detection in test two.

Mean | Median | Mode | Std Variance
0.745 0.667 0.667 0.230 | 0.053

Table B.1: Descriptive statistics of the recognition rates obtained for outlier detection.

B.4. TEST THREE: GENERALISATION, CONTRAST AND CVD
ROBUSTNESS

B.4.1. TAsK

The goal of this test was threefold:

1. Evaluate if the most similar icon aligns with the data point having the highest cosine
similarity. In other words: if the icon is generally meaningful for representing high-
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dimensional data.

2. Evaluate if the contrast enhanced version of the icon improves performance in
terms of time-on-task and accuracy for finding the most similar icon.

3. Evaluate the robustness of the icon design against colour blindness by testing the
time-on-task and accuracy with a color vision deficiency-simulated version of the
icon.

We presented the user with nine icons that are all rather similar. One of the icons was
the target icon. We asked participants to select the icon most similar to the target icon.
An example screenshot can be seen in Fig. B.6.

We performed this test for three different ‘rendering modes’:

e ‘default), as the icon was designed and explained in Section 3.

* ‘contrast’, with 100% increase of contrast between the nine icons, as explained in
Section 4.4.

* ‘CVD’, with CVD simulated on the colour rendering, more specifically deutera-
nomaly - the most common form of colour blindness.

Select the icon that is most similar to the center target icon.

Figure B.6: An example screenshot for Test 3.

We repeated the task nine times for each participant: three times for each rendering
mode.

B.4.2. RESULTS AND DISCUSSION

Overall, we find that the icon performs well in the matching-to-sample task. A one-way
ANOVA test conducted across all three rendering modes yielded a p-value of 0.450, indi-
cating that rendering mode has no significant impact on performance in the matching-to-
sample task. This outcome suggests that each icon rendering mode performs comparably
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well, affirming the robustness of our icon to color blindness. The effectiveness of our
redundant encoding strategy in enhancing recognition and matching accuracy is thus
supported by these results.

COMPARISON BETWEEN ‘DEFAULT’ AND ‘CONTRAST’ ICONS.

Fig. B.7 and Table B.2 present a comparison of recognition rates between the high contrast
and ‘default’ rendering of the icon. Similarly, Fig. B.8 and Table B.3 display a comparison
of time-on-task between the high contrast and ‘default’ rendering of the icon.

Recognition rate 'default' icon Recognition rate 'high contrast' icon

25 25

00 02 04 06 08 10 00 02 04 06 08 10

Figure B.7: Comparison of recognition rates obtained for matching-to-sample with the
‘default’ and ‘contrast’ version of the icon.

Mode Mean | Median | Mode | Std Variance
Default 0.706 | 0.750 1.000 | 0.277 | 0.077
Contrast | 0.785 1.000 1.000 0.271 | 0.074

Table B.2: Descriptive statistics of the data as displayed in Fig. B.7.

We had expected the high contrast version to yield higher recognition rates than the
default version. Inspecting the plots and the statistical descriptions, this seems to be the
case: From Table B.2, we notice that for high-contrast rendering, the mean recognition
rate is higher than for the ‘default’ version of icon and indeed we see the distribution in
Fig. B.7 shift a bit to the right. However, for a statistical analysis, we find a medium-sized
effect size of 0.283 (Cohen’s d), meaning that there is no sufficient statistical significance
(p =0.103 for a one-tailed paired-samples t-test).

In terms of time-on-task, we had expected the high contrast icon to allow for faster
selection than the default icon and that seems to be indeed the case. As with the recogni-
tion rates, we find a medium-sized effect of 0.202 (Cohen’s d) but fail to establish strong
significance: p=0.084 (one-tailed paired-samples t-test).
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Time-on-task in seconds 'default’ icon Time-on-task in seconds 'contrast’ icon

151

10

0 10 20 30 0 10 20 30

Figure B.8: Comparison of the time-on-task for matching-to-sample with the ‘default’ and
‘contrast’ version of the icon.

Mode Mean | Median | Mode | Std
Default 10.862 | 9.742 5.446 29.658
Contrast | 9.754 7.812 5.385 | 28.999

Table B.3: Descriptive statistics of the data as displayed in Fig. B.8.

CVD ROBUSTNESS

We are interested in a comparison of a CVD simulated mode icon with the ‘default’ icon,
to see if the redundant encoding in our icon indeed makes the icon more robust to CVD.
Therefore we compare the recognition rates we found in the sample matching for the
‘default’ and CVD rendering modes. In Fig. B.9, we can compare the distribution of the
recognition rates participants achieved for the high contrast version of the icon with the
default rendering of the icon, Table B.4 provides the descriptive statistics for the data.

Up front, we hypothesised that the CVD version would under-perform slightly in com-
parison with the default version of the icon. There seems to be a change in the distribution,
where the median value does shift from 0.750 to 0.667 (Table B.4. We find that the mean
recognition is a bit higher but this might be statistical noise, as we cannot confirm any
statistical significance between these distributions: a two-tailed paired-samples t-test
yields a p value of 0.715.

Mode Mean | Median | Mode | Std Variance
Default | 0.706 | 0.750 1.000 | 0.277 | 0.077
CVD 0.741 0.667 0.667 0.231 | 0.053

Table B.4: Descriptive statistics of the data as displayed in Fig. B.7.
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Recognition rate 'default' icon Recognition rate 'CVD' icon

25

20

151

10

00 02 04 06 08 10 00 02 04 06 08 10

Figure B.9: Comparison of recognition rates obtained for matching-to-sample with the
‘default’ and ‘CVD’ version of the icon.

B.5. TEST FOUR: SEARCH-BY-ICON
B.5.1. TAsSK

The test aimed to assess the efficacy of our ‘search-by-icon’ method for users. Participants
were shown a target song with its custom icon and the search-by-icon interface shown in
Fig. B.10. They were tasked with using the interface to imitate the target icon and then
retrieve the three songs most similar to the target one.

Find the music most similar to the target song.

Songs whose icons are most
similar to the icon you have
made:

(Click the songs to listen them!)

Title Artist

Mejor Me Banda MS de Sergio
Alejo Lizérraga

Oht Darling  Corcovado Frequency
Drag these sliders to adjust the icon so that it
matches the target as close as possible.

Voglio Solo Te  Giorgia

A 05

— ——

B: 05

_

C05

-_ ————

D:05

_ —————— Confirm these are the best results
E05

_—

F:05

_— -

G 05

— ——

H: 05

—_—

Figure B.10: An example screenshot for Test 4.
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B.5.2. RESULTS AND DISCUSSION

We evaluate this novel method by evaluating the different sub-tasks we distinguished:
how close the user can imitate an icon, how well the user can retrieve ‘similar’ music with
this tool, and the willingness of users to adopt this tool with the System Usability Scale.

IMITATED ICON AND RETRIEVED SONGS

Cosine similarities between user-generated and target icon vectors, presented in Fig. B.11
(left), with a high mean (0.989) and median (0.993), indicates that with vectors exhibiting
a cosine similarity above 0.975 to the target, most users accurately replicated icons.
Furthermore, the average cosine similarities between the target icon vector and the
top three selected songs, detailed in Fig. B.11 (right), reinforce the precision of these
imitations, highlighting the effectiveness of participant selections in aligning closely with
the target icons. The descriptive statistics of the results can be seen in Table B.5.

SYSTEM USABILITY SCALE (SUS)
The SUS consists of the ten questions:
1. Ithink I would like to use this product frequently.
2. Ifound it unnecessarily complicated.
3. Ifound the product easy to use.
4. Tthink I need technical support to use the product.
5. Ifound the different functions of the product well integrated with each other.
6. Ifelt there were too many contradictions in the product.
7. I can imagine that most people can quickly get to grips with the product.
8. Ifound the product cumbersome to use.
9. Ifelt confident while using the product.
10. Thad to learn a lot about the product before I could use it properly.

Each of these statements was ranked with the Likert Scale anchored with one for ‘fully
disagree’ and five for ‘fully agree’. The answers that were given in response to each of the
questions in the SUS can be seen in Fig. B.12.

Task Mean | Median | Std Variance
Imitation | 0.989 0.993 0.017 | 0.00003
Retrieval | 0.991 | 0.995 0.017 | 0.00003

Table B.5: Descriptive statistics of the data from imitated icon task and retrieved songs
task as displayed in Fig. B.11.
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Cosine similarity target and custom icon Avg cossim target and retrieved songs
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Figure B.11: Cosine similarities between user-generated and target icon vectors (left) and
the average cosine similarities between the target icon vector and the top
three selected songs (right).

Based on the feedback, we computed the SUS scores, as illustrated in Fig. B.13(left),
with the corresponding performance interpretations presented in Fig. B.13 (right). We
recognize that condensing the user experience into a singular score significantly simplifies
the nuanced nature of their feedback. Nonetheless, we observe that a majority, specifically
25 out of 38 participants, demonstrates a willingness to embrace our model, despite
the fact that it currently does not integrate the standard features derived from meta
data, which we would not want to avoid in a final system but excluded to examine the
effectiveness of our core contribution.

B.6. TEST FIVE: SEARCH-IN-PLAYLIST
B.6.1. TAsK

This test aimed to assess the icon’s effectiveness and sorting properties within a playlist
context, comparing it against the prevalent use of album art in streaming services. Par-
ticipants were asked to select their top three songs from playlists featuring both album
art and our custom design, with each format presented twice. An example screenshot
is shown in Fig. B.14. To prevent order effect, the target song was selected randomly
from the selection of possible target songs, the playlist order was randomised for each
participant, as was the order in which they were presented with custom icon and album
articons.

B.6.2. RESULTS AND DISCUSSION

We assessed the similarity between the top three selections and the target vector, time-
on-task, plays per task, and additional insights from open-ended questions.

RETRIEVED SONGS
Average cosine similarities between the target icon vector and the top three selected
songs are presented in Fig. B.15, with descriptive statistics in Table B.6. Both methods
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Figure B.12: Answers given to questions the SUS.



114 B. SUPPLEMENTARY MATERIAL OF CHAPTER 5

Scores on the System Usability Scale Interpreted SUS Scores
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Figure B.13: SUS Scores (left) and its corresponding interpretation (right).

Select the 3 songs from the playlist that are most similar to the target song.

You can select songs from this
Target - 1 9
9 ° playlist:
song
—_— Title

Song for Edward

The songs you have selected as top 3 most
similar songs:
Rosemary Lane (feat. Billy

UL McComiskey & Andy O'Brien)

Simple Dark

MC Swing Kiss

Suite No. 6 in D Major, BWV 1012

Prelude

Shiawaca

Song for
Edward

Paul Horn

Sort playlist

Artist

Paul Horn

Dan Milner
Seminole County
DJ Elephant Power
Johann Sebastian

Bach

Dion Timmar

Figure B.14: An example screenshot for Test 5.

cover similar ranges of cosine similarities, but the icon method facilitates slightly higher
similarity retrieval (one-tailed paired-samples t-test: p = 0.03, Cohen’s d: 0.469), aligning

with the icon’s intended similarity representation.
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Figure B.15: Average cosine similarities between the target icon vector and the top three
selected songs, comparing between album art (left) and our custom icon
(right).

Icon Mean | Median | Std Var Min Max
Album 0.955 | 0.967 0.033 | 0.001 | 0.858 | 0.991
Custom | 0.938 | 0.945 0.036 | 0.001 | 0.851 | 0.993

Table B.6: Descriptive statistics of the data as displayed in Fig. B.15.

TIME-ON-TASK

The time-on-task per participant for both album art and custom icon methods are detailed
in Fig. B.16, with descriptive statistics provided in Table B.7. A significant reduction in
average completion time, exceeding one minute, was observed. A left-tailed paired t-test
confirmed these findings with p = 0.00201 and an effect size of 0.473 (Cohen’s d).

Time-on-task for album art (in minutes) Time-on-task for icon (in minutes)

0,
012345678 9101112131415

012345678 9101112131415

Figure B.16: Completion times of time-on-task with album art (left) and our custom icon
(right).
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Icon Mean | Median | Std | Min | Max
Album 6:25 4:49 3:45 | 1:08 | 14:12
Custom | 4:44 3:54 3:11 | 0:39 | 12:14

Table B.7: Descriptive statistics of the data as displayed in Fig. B.16, formatted as mm:ss.

SONGS PLAYED PER TASK

Fig. B.17 and Table B.8 display the number of songs played per task per participant for
both album art and the custom icon, showing similar ranges but a notably lower mean
and median for the custom icon. A paired t-test confirms this difference, with p = 0.00001
and an effect size of 0.931 (Cohen’s d).

# songs played with album art # songs played with icon

12 12
10 10
81 81

50 100 150 200

50 100 150 200

Figure B.17: The number of songs played per task per participant for both album art (left)
and the custom icon (right).

Icon Mean | Median | Std | Var Min | Max
Album 103.9 113.5 55.9 | 3121.1 | 10 222
Custom | 57.7 40.0 42.4 | 1796.8 | 7 192

Table B.8: Descriptive statistics of the data as displayed in Fig. B.17.

OPEN QUESTIONS

Upon study completion, participants responded to three open-ended questions regarding
their playlist task experience. We summarise and highlight the responses here.

Q1: HOw DID YOU EXPERIENCE USING THE CUSTOM ICON DIFFER FROM THE REGULAR
SETTING?

To this first, question 23 participants mentioned a positive experience. 14 mentioned
explicitly that they experienced that it made their task of music selection easier. Three
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participants mentioned that they considered the album art icon more fit for the task, of
which two explicitly mentioned that they found the album art to give more information
about the song than the custom icon.

Q2: WAS THERE ANYTHING SURPRISING OR UNEXPECTED?

To this second question, five participants mentioned that they were surprised how well
the icon had supported their task. In contrast five participants mentioned they had
encountered, what they considered outliers, which made them doubtful in how well the
icon reflected the music content in some cases.

Q3: WHAT COULD BE DONE TO IMPROVE THE ICON?

To the third and final question we got some very concrete feedback from participants: four
participants mentioned that they would like the icon to be more expressive, in terms of
shape and colour. In particular, three mentioned the colours as a bit bland. In addition, 12
participants expressed a longing for a better understanding of the parameters of the icons:
something more semantic or a more elaborate explanation, several of them mentioned a
desire for genres mapped to axis or colours.

Overall, our tool’s effectiveness was confirmed through strong quantitative results, no-
tably speeding up task completion by over a minute compared to album art presentations
and reducing the number of songs participants needed to listen to by almost 50%. When
using our icon, selections tended to have similar or slightly higher cosine similarity to
the target song, suggesting the icons’ visual cues enhanced both the speed and quality
of decision-making. While many participants valued our icon for its capacity to indicate
similarity, three expressed a preference for album art due to its contextual and cultural
insights. Acknowledging album art’s value in certain situations, we argue that our icon
significantly enhances user experience by addressing the variability of songs within an
album.
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