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SUMMARY

Gas-solid flows are widely preferred in industries due to high gas-solids contact,
resulting in excellent heat and mass transfer properties. For this reason, fluidiza-
tion remains as one of the key industrial processes in chemical, energy, metal-
lurgy, and pharmaceutical industries. Computer simulations are widely used to
understand and improve such fluidization processes. However, due to current
limitations in computational power, a multiscale modelling approach is used to
simulate such fluidization processes. At the most fundamental level, direct nu-
merical simulations (DNS) are used to develop hydrodynamic force correlations
for larger scale simulations. Conventionally, DNS are performed for flows around
assemblies of spheres. However, there exists no clear approach among the sci-
entific community to quantify the results for real particles, which are often non-
spherical. This is due to the difficulty in identifying the dependent parameters,
which adequately represent the non-spherical multiparticle system.

This work, funded by the European Research Council, focuses on creating a
recipe for parametrizing flow around assemblies of non-spherical particles. A
multi-relaxation time lattice Boltzmann method (MRT-LBM) is used to simulate
the flow. This work focuses on 3 different developments. First, different bound-
ary conditions available in the literature for LBM are tested to identify the best
for the flow problem. With the use of interpolated bounce back schemes to ac-
curately represent the particle geometry, there is a mass leak/gain issue which is
a concern for flows with periodic boundaries. To address this issue, new types
of mass correction schemes are explored and suggestions are made for different
flow conditions.

The second part of the thesis focuses on developing more widely applicable
scaling laws for drag and lift of various isolated non-spherical particles. This is
important because there are several shapes and sizes of non-spherical particles.
Therefore, having simple scaling laws can save simulation time and cost. In the
process, we observe that the sine-squared scaling of drag predicted for creeping
flows is valid even in the inertial regime (high Re), especially for elongated parti-
cles. Likewise, the sine-cosine scaling of lift predicted for creeping flows is found
to be a good approximation in the inertial regime, for elongated particles. The
reason for such scaling in the inertial regime is found not due to the flow linear-
ity, as is the case for creeping flow, but due to an interesting pattern of pressure
distribution on particles at high Re . The pressure distribution contributing to the
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xii SUMMARY

drag and lift shows a dependency on the particle surface normal orientation with
the incoming flow. Subsequently, drag, lift and torque correlations are proposed
for various isolated non-spherical particles from creeping to high Reynolds num-
ber flows with Re ≤ 2000.

In the third part, a recipe to describe hydrodynamic forces on assemblies of
axisymmetric, non-spherical particles is proposed. With the described parame-
ters, drag, lift and torque correlations are proposed accordingly. At the moment,
there exists no systematic study to identify the dependent parameters for flow
around assemblies of non-spherical particles. Apart from the Reynolds num-
ber Re and solids volume fraction ǫs , we propose four additional parameters to
characterize the flow through non-spherical particle assemblies. Two parame-
ters consider the mutual orientations of particles and two parameters represent
the flow direction. Interestingly, we observe that the average results are inde-
pendent of the above described four additional parameters. For a given Re and
ǫs , we observe that the only dependent parameter representing the particle con-
figuration itself is the incident angle φ of the individual particles with respect
to the incoming flow. More importantly, we observe that our earlier finding of
sine-squared scaling of drag for isolated particles holds even for a multiparticle
system in both the viscous and inertial regimes. Similarly, we observe that the lift
in a multiparticle system follows sine-cosine scaling, as was observed for isolated
particles. Such findings are very helpful since the pressure drop of a packed bed
or porous media can be computed with just the knowledge of orientation dis-
tribution of particles and their drag at φ = 0◦ and φ = 90◦ for a given Re and ǫs .
With the identified dependent parameters, correlations for average drag, lift and
torque are proposed for a multiparticle system.



SAMENVATTING

Gas-vast stromingen genieten de voorkeur in de industrie vanwege hun hoge
mate van gas-vast contact, wat resulteert in uitstekende warmte- en stofover-
drachtseigenschappen. Om deze reden is fluïdisatie nog steeds één van de voor-
naamste industriële processen in de chemische, energie, metallurgische en far-
maceutische industrie. Computersimulaties worden breed toegepast om derge-
lijke fluïdisatieprocessen te begrijpen en te verbeteren. Echter, door de huidige
grenzen aan de rekenkracht, is een meerschaalsaanpak vereist. Op het meest
fundamentele niveau worden Direct Numerical Simulations (DNS) uitgevoerd
om hydrodynamische krachtcorrelaties te ontwikkelen voor simulaties op gro-
tere schaal. Conventioneel, wordt DNS uitgevoerd voor stroming rond een ver-
zameling bollen. Er bestaat echter geen duidelijke consensus in de wetenschap-
pelijke gemeenschap over hoe de resultaten samen te vatten voor echte deeltjes,
welke vaak niet rond zijn. Dit komt door de moeilijkheid om de afhankelijke vari-
abelen te vinden, welke een systeem van meerdere niet-ronde deeltjes adequaat
beschrijven.

Dit werk, gefinancierd door de European Research Council, richt zich op het
maken van een recept voor het parametriseren van de stroming rond verzame-
lingen niet-ronde deeltjes. Een multi-relaxatie tijd rooster Boltzmann methode
(MRT-LBM) wordt gebruikt om de stroming te simuleren. Dit werk richt zich
op 3 verschillende ontwikkelingen. Ten eerste worden verschillende randvoor-
waarden, welke in de literatuur beschikbaar zijn, getest om de beste voor het
stromingsprobleem te vinden. Met het gebruik van geïnterpoleerde terugstuiter
schema’s om de geometrie nauwkeurig te beschrijven, is er een probleem met
massa lekkage/toename, wat een probleem kan zijn voor stromingen met pe-
riodieke randvoorwaarden. Om dit probleem aan te pakken, worden verschil-
lende nieuwe types massacorrectieschema’s onderzocht, en worden voorstellen
gemaakt voor verschillende stromingscondities.

Het tweede deel van dit proefschrift legt zich toe op de ontwikkeling van
meer breed toepasbare schalingswetten voor wrijving en hefkrachten voor ver-
schillende geïsoleerde niet-ronde deeltjes. Dit is belangrijk omdat er verschil-
lende vormen en groottes niet-ronde deeltjes bestaan. Daarom kunnen sim-
pele schalingswetten veel simulatietijd en kosten besparen. Tijdens dit proces,
hebben we geobserveerd dat de sinus-kwadraat schaling voor wrijving, voor-
speld voor viskeuze stroming, ook geldig is in het inertiale regime (hoge Re),
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vooral voor langgerekte deeltjes. Op eenzelfde manier, is de sinus-cosinus scha-
ling voor hefkracht, voorspeld voor viskeuze stroming, ook een goede benade-
ring in het inertiale regime voor langgerekte deeltjes. De reden voor een derge-
lijke schaling in het inertiale regime is niet vanwege stromingslineariteit, zoals
voor viskeuze stroming, maar vanwege een interessant patroon van drukverde-
ling op de deeltjes bij hoge Re . De drukverdeling welke bijdraagt aan de wrijving
en hefkracht laat een afhankelijkheid zien van de hoek tussen de plaatselijke
oppervlaktenormaal en de inkomende stroming. Hierna zijn correlaties voor-
gesteld voor wrijving, hefkracht, en draaimoment op verschillende geïsoleerde
niet-ronde deeltjes van de viskeuze limiet tot hoge Reynolds nummer stromin-
gen met Re ≤ 2000.

In het derde deel wordt een recept voor het beschrijven van hydrodynami-
sche krachten op verzamelingen axisymmetrische niet-ronde deeltjes voorge-
steld. Met de beschreven parameters, worden correlaties voor de wrijving, hef-
kracht en draaimoment voorgesteld. Op dit moment bestaat er nog geen sys-
tematische studie om de afhankelijke parameters te identificeren voor stroming
rond verzamelingen niet-ronde deeltjes. Naast het Reynolds nummer Re en de
vaste volumefractie ǫs , stellen we vier additionele parameters voor om de stro-
ming door niet-ronde deeltjesverzamelingen te karakteriseren. Twee parameters
nemen de relatieve oriëntaties van de deeltjes voor hun rekening, en twee para-
meters representeren de richting van de stroming. We vinden een belangwek-
kend resultaat dat de gemiddelde resultaten onafhankelijk zijn van de hierboven
beschreven vier additionele parameters. Voor een gegeven Re en ǫs , observeren
we dat de enige parameter die de deeltjesconfiguratie beschrijft de invalshoek φ

van de individuele deeltjes met betrekking tot de inkomende stroming is. Belang-
rijker nog, vinden we dat onze eerder gevonden sinus-kwadraat schaling voor
wrijving op een geïsoleerd deeltje ook voor een meer-deeltjes systeem stand-
houdt in zowel de viskeuze als het inertiale regime. Eveneens observeren we dat
de hefkracht in een meer-deeltjes systeem de sinus-cosinus schaling volgt, zo-
als voor geïsoleerde deeltjes. Dergelijke bevindingen zijn nuttig omdat de druk-
val over een gepakt bed of poreuze media berekend kan worden met slechts de
kennis van de oriëntatie-distributie van de deeltjes en hun wrijving bij φ = 0◦

en φ = 90◦ voor een gegeven Re en ǫs . Met de geïdentificeerde parameters, zijn
correlaties voorgesteld voor gemiddelde wrijving, hefkrant en draaimoment op
deeltjes in meer-deeltjes systemen.
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2 1. INTRODUCTION

Figure 1.1: Pellets of different sizes made from various plant and agricultural
residues. Source: volvit.eu

1.1. BACKGROUND AND MOTIVATION

Particulate flows occur in many natural and man-made processes. Common
examples of particulate flows in nature are sediment transport in water bod-
ies, transport of volcanic ash, and red blood cells in plasma, etc. Examples of
man-made industrial processes are fluidization of powdered coal, fluidization of
milled biomass, and fibrous pulp in paper making, etc. Among the industrial
processes, fluidization is highly preferred due to several advantages compared
to their alternative such as packed bed systems. The prime advantages are high
heat and mass transfer, uniform and controllable temperatures mainly due to
good gas-solid contact (Kunii & Levenspiel, 2013). Therefore, there is a growing
need to understand the physical nature of such phenomena, which can improve
the design of fluidized systems.

Traditionally, the design of fluidized systems is done using empirical knowl-
edge, often scaled up based on lab-scale experiments. The main disadvantage
of such a procedure is that the scaling laws do not apply straight-forward in
gas-solid flows, often resulting in sub-optimal system performance. Computer
simulations can be of great help in understanding and improving fluidization
processes. Simulation strategies have successfully been developed over the past
decades for gas-solid flows in which particles are approximated as spheres. How-
ever, particles in practical systems are often non-spherical in nature. Unfortu-
nately there is no clear methodology available at the moment to simulate gas-
solid flows of non-spherical particles. The work described in this thesis is part
of a larger project funded by the European Research Council (ERC) aimed at un-
derstanding and improving the fluidization of non-spherical particles. The end
application is to successfully simulate a system of biomass-like non-spherical
particles.

The organic wastes from plants and agricultural wastes are commonly re-
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(a) (b) (c)

Figure 1.2: Multiscale modelling of non-spherical particles: (a) Direct numerical
simulations, (b) Euler-Lagrangian simulations (also called CFD-DEM), and (c)
coarse grained simulations.

ferred to as biomass. Biomass is a promising feedstock for the production of re-
newable energy, materials and chemicals. The preparation of biomass is done in
several steps: harvesting, transportation, drying, and (often) subsequent com-
paction to pellets as shown in figure 1.1. Such biomass particles can be fed to
fluidized bed gasifiers to be converted to syngas, a mixture of hydrogen, carbon
monoxide and carbon dioxide. In the next section, the strategy for simulating the
fluidization of such non-spherical particles is explained.

1.2. MULTISCALE MODELLING OF NON-SPHERICAL PARTICLE

FLOWS

Though there is increasing attention towards simulations, a fully resolved sim-
ulation of a fluidized bed is not possible at the moment. This is due to limita-
tions in current computational power, which mandates the need for a multi-scale
modelling approach. Multiscale modelling, as the name suggests, involves con-
necting flow physics at different scales. An illustration is given in figure 1.2. Three
scales are involved in the multiscale modelling of particulate flows namely:

• Direct numerical simulations,

• Euler-Lagrangian simulations, and

• Coarse grained simulations.

At the most fundamental level, fully resolved simulations are performed with
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a fluid mesh much smaller than the particle size. Such resolved flow simulations
are known as direct numerical simulations (DNS), since the Navier-Stokes equa-
tions describing flow physics are directly solved without the use of closures. Due
to their high computational cost, DNS are used to simulate systems of up to a
few thousand particles. The results from DNS such as the drag, lift and torque
closures are consecutively utilized in larger scale simulations.

On the intermediate scale, Euler-Lagrangian simulations (ELS) utilize the re-
sults of DNS to simulate larger scale systems. ELS are also known as CFD-DEM
simulations. Here, computational fluid dynamics (CFD) for the (averaged) fluid
field is coupled with discrete element method (DEM) for particles to describe
particulate-flow phenomena. Prime difference between a conventional CFD and
DNS is that CFD usually does not resolve all turbulent length scales. Rather, only
the averaged flow properties are solved and the local flow fluctuations are mod-
elled using various turbulence models. This simplification enables CFD-DEM
to have a fluid mesh size larger than the particles. Often, the CFD mesh size is
of the order of two or more particle lengths. Due to the relatively cheaper com-
putational expenses, CFD-DEM simulations are often used to replicate lab-scale
fluidization problems and are capable of handling a few million particles. The
main bottleneck for CFD-DEM arises from the DEM part to detect and resolve
the particle collisions. With GPUs, the simulation speeds of DEM can be sig-
nificantly increased and can lead to significant improvement of the simulation
capacities of CFD-DEM (Gan et al., 2016).

On the coarsest scale, there are different approaches available. Popular
methods are the multiphase particle-in-cell (MP-PIC) method and the two fluid
model (TFM). MP-PIC also involves tracking of particles, but does not treat
detailed collisions as in CFD-DEM, but models the effect of collisions of collec-
tions of particles (or parcels). This coarse-graining approach saves significant
compute power and makes MP-PIC favourable for industrial scale flows. TFM,
as the name suggests, considers the fluid and particles as inter-penetrating
continua. Here, kinetic theory of granular flow (KTGF) is used to describe the
particle-particle interactions. The continuum representation of the particle
phase, accounting for particle-particle collision, vastly reduces the computa-
tional costs and is also preferred for industrial flow simulations. Unfortunately,
a large amount of assumptions/simplifications in the particle-particle interac-
tions often leads to poor accuracy of MP-PIC and TFM solutions.

1.3. SCOPE AND OUTLINE OF THE THESIS

The scope of this work is to use DNS to create closures for drag, lift and torque
on non-spherical particle assemblies, to be later used in CFD-DEM simulations.
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We employ the lattice Boltzmann method (LBM) to perform DNS of flow around
different non-spherical particles.

Chapter 2 explains the details of the LBM scheme used. Different interpo-
lated bounceback conditions are also tested in this section. Further, the mass
leakage issue occurring with interpolated bounceback schemes is addressed
through a series of mass correction schemes. Finally, recommendations for
choosing a proper boundary condition scheme are given for stable and accurate
simulations.

Chapter 3 discusses the results of flow around various non-spherical par-
ticles. Interestingly, phenomena such as sine-squared scaling of drag and sine-
cosine scaling of lift are observed for various non-spherical particles, even at high
Reynolds numbers. The reason behind such scaling behaviour are explained in
detail.

Chapter 4 utilizes the scaling laws explained in chapter 3, which are then
used to create drag, lift and torque correlations for different non-spherical par-
ticles. Physical limits are considered while performing the correlations, which
means the correlations can be used satisfactorily beyond the simulated regimes.

Chapter 5 introduces a recipe for parametrizing results of flow around as-
semblies of non-spherical particles. With the identified dependent parameters,
drag, lift and torque closures for multiparticle systems are proposed accordingly.

Chapter 6 provides a summary of the present study and outlook for future
studies.





2
NUMERICAL METHOD

The lattice Boltzmann method (LBM) is used to simulate flow around different

non-spherical particles. The details of the single and multi-relaxation time LBM

schemes are presented in this chapter. Various curved no-slip boundary condi-

tions available in literature improve the accuracy of lattice Boltzmann simula-

tions compared to the traditional stair-case approximation of curved geometries.

A performance evaluation of such boundary conditions for different flow problems

is presented. Usually, the required unknown distribution functions emerging from

the solid nodes are computed based on the known distribution functions using in-

terpolation or extrapolation schemes. On using such curved boundary schemes,

there will be mass loss or gain at each time step during the simulations, especially

apparent at high Reynolds numbers, which is called mass-leakage. Such an is-

sue becomes severe in periodic flows, where the mass leakage accumulation would

affect the forces exerted on the solid objects over time. In this chapter, we exam-

ine mass-leakage for the most well-known curved boundary treatments for high

Reynolds number flows. Apart from the existing schemes, we also test different

forced mass conservation schemes and a constant density scheme. The capability

of each scheme is evaluated and finally, recommendations for choosing a proper

boundary condition scheme are given for stable and accurate simulations.

Part of this chapter has been published as:
Sanjeevi S. K. P., Zarghami A. & Padding J. T. (2018). “Choice of no-slip curved boundary condition
for lattice Boltzmann simulations of high Reynolds number flows”. Phys. Rev. E 97, 043305.

7
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Figure 2.1: D3Q19 lattice configuration with directions α.

2.1. INTRODUCTION

In the last two decades, there has been growing interest in using the lattice Boltz-
mann method (LBM) as a promising alternative technique for simulating various
fluid flow problems (Aidun & Clausen, 2010; Sukop & Thorne, 2006; Zarghami
et al., 2015, 2014). Unlike the conventional computational fluid dynamics (CFD)
methods, the LBM does not solve the incompressible Navier-Stokes equations
directly, but instead the fluid flow is described in terms of a discrete kinetic equa-
tion based on the particle distribution functions (Succi, 2001). The standard LBM
consists of two steps, namely collision and streaming. The collision step de-
scribes the local changes of particle density due to collisions at each grid node.
In the streaming step, distribution functions are streamed from lattice nodes to
their neighbours. Macroscopic quantities, such as density or velocity, are recov-
ered as statistical moments of the particle distribution functions.

The rest of this chapter is organized as follows. We briefly introduce the LBM
scheme in section 2.2. The mass leakage phenomenon is explained in section
2.3 and the investigated no-slip curved boundary conditions are described in
section 2.4. Results and discussion are presented in section 2.5 followed by our
recommendations and conclusions in sections 2.6 and 2.7 respectively.
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2.2. LATTICE BOLTZMANN METHOD

2.2.1. SINGLE RELAXATION TIME LBM

The single relaxation time lattice Boltzmann method (SRT-LBM) is given as
(Succi, 2001)

fα(r +eα∆t , t +∆t )− fα(r , t )=−1

τ
[ fα(r , t )− f

eq
α (r , t )]+Sα , (2.1)

where fα is the particle distribution function signifying the probability to find a
particle at location r with discrete velocity eα. eα is along different specified di-
rections α = 1,2...,19 as shown in figure 2.1. f

eq
α is the equilibrium distribution,

∆t is the time interval, τ = 1/ω is the relaxation time, ω is the relaxation factor
and Sα represents a general body force, if available, in the direction α. The equi-
librium density distribution function is given as

f
eq
α = wαρ

(

1+
(eα ·u)

c2
s

+
(eα ·u)2

2c4
s

−
(u ·u)

2c2
s

)

, (2.2)

where ρ = ∑

α fα and ρuα = ∑

α fαeα are the local density and momentum, re-
spectively. The LBM simulations are performed in lattice units and the lattice
speed is c = ∆x/∆t with ∆x = 1 and ∆t = 1. The lattice speed of sound is cs =
c/
p

3. The viscosity and the pressure are calculated respectively as: ν= c2
s (τ−0.5)

and p = ρc2
s , respectively. It is clear that positivity of viscosity requires that τ >

0.5. The standard LBM timestep is performed in two steps, the collision and the
streaming steps respectively, as:

f̃α(r , t ) = fα(r , t )−
1

τ
[ fα(r , t )− f

eq
α (r , t )]+Sα, (2.3)

fα(r +eα∆t , t +∆t ) = f̃α(r , t ), (2.4)

where f̃α is the post-collision state of the distribution function but before the
streaming. The effect of gravity as a body force (Luo, 1993) is applied as : Sα =
−3wαρ(g ·eα), where g is the gravitational vector.

At high Re , the SRT-LBM scheme suffers instability issues. Therefore, we use
multi-relaxation time LBM scheme in all our 3D simulations for better stability.

2.2.2. MULTI-RELAXATION TIME LBM

The multi-relaxation time lattice Boltzmann method (MRT-LBM) proposed by
d’Humières et al. (2002) separates the relaxation times for different kinetic modes
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and thereby improves stability. Here, we use
∣

∣ f
〉

to denote a column vector con-
taining fα. The MRT-LBM scheme for a D3Q19 scheme (see figure 2.1) with the
corresponding evolution of particle distribution function

∣

∣ f
〉

is computed as

∣

∣ f (r +eα∆t , t +∆t )
〉

=
∣

∣ f (r , t )
〉

−M
−1
Ŝ(|m(r , t )〉− |m(eq)(r , t )〉) (2.5)

where

M =





















































1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
−11 −11 −11 −11 −11 −11 8 8 8 8 8 8 8 8 8 8 8 8 −30
−4 −4 −4 −4 −4 −4 1 1 1 1 1 1 1 1 1 1 1 1 12

1 −1 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0
−4 4 0 0 0 0 1 1 1 1 −1 −1 −1 −1 0 0 0 0 0

0 0 1 −1 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0
0 0 −4 4 0 0 1 −1 0 0 1 −1 0 0 1 1 −1 −1 0
0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0
0 0 0 0 −4 4 0 0 1 −1 0 0 1 −1 1 −1 1 −1 0
2 2 −1 −1 −1 −1 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0

−4 −4 2 2 2 2 1 1 1 1 1 1 1 1 −2 −2 −2 −2 0
0 0 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0
0 0 −2 −2 2 2 1 1 −1 −1 1 1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 −1 1 0
0 0 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 −1 −1 −1 −1 1 1 0 0 0 0 0
0 0 0 0 0 0 −1 1 0 0 −1 1 0 0 1 1 −1 −1 0
0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 −1 1 −1 1 0





















































(2.6)
is a 19×19 transformation matrix used to transform

∣

∣ f
〉

from velocity space to
moment space |m〉 with |m〉 =M ·

∣

∣ f
〉

. The relaxation matrix Ŝ =M ·S ·M−1 is a
19×19 diagonal matrix. For the D3Q19 model, the 19 moments are

|m〉 = (ρ,e,ǫ, jx , qx , jy , qy , jz , qz ,3pxx ,3πxx , pw w ,πw w , px y , py z , pzx ,mx ,my ,mz )T ,
(2.7)

where density ρ =
∑

α fα and momentum j = ( jx , jy , jz ) = ρu =
∑

α fαeα are the
conserved moments. The non-conserved moments are as follows: e is the part
of kinetic energy independent of density, ǫ is the part of kinetic energy squared
independent of both the density and kinetic energy (ǫ= e2), and qi is the energy
flux independent of mass flux (d’Humières et al., 2002). Here, subscript i denotes
x, y , or z-coordinates. pxx , px y , py z , pxz and pw w are the symmetric traceless vis-
cous stress tensor with pw w = py y −pzz and pxx +py y +pzz = 0. mx ,my and mz

are the third order moments. πxx and πw w are fourth order moments. The equi-
libria of non-conserved moments are given as functions of ρ and j (d’Humières
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et al., 2002) as

e (eq) =−11ρ+ 19

ρ0
j · j =−11ρ+ 19

ρ0
( j 2

x + j 2
y + j 2

z ), (2.8)

ǫ(eq) = wǫρ+
wǫ j

ρ0
j · j , (2.9)

q
(eq)
x =−

2

3
jx , q

(eq)
y =−

2

3
jy , q

(eq)
z =−

2

3
jz , (2.10)

p
(eq)
xx =

1

3ρ0
(2 j 2

x − ( j 2
y + j 2

z )), p
(eq)
w w =

1

ρ0
( j 2

y − j 2
z ), (2.11)

p
(eq)
x y = 1

ρ0
jx jy , p

(eq)
y z = 1

ρ0
jy jz , p

(eq)
xz = 1

ρ0
jx jz , (2.12)

π
(eq)
xx = wxx p

(eq)
xx , π

(eq)
w w = wxx p

(eq)
w w , (2.13)

m
(eq)
x = m

(eq)
y =m

(eq)
z = 0, (2.14)

where ρ0 is the average density in the system. In our simulations, ρ0 = 1,
wǫ = 3, wǫ j = −11/2, and wxx = −1/2. The factor 1/ρ0 used in the above
equilibrium expressions is to reduce compressibility effects (He & Luo, 1997;
d’Humières et al., 2002). The diagonal collision matrix Ŝ (d’Humières et al.,
2002; Huang et al., 2012) is

Ŝ = diag(0, s1, s2,0, s4,0, s4,0, s4, s9, s10, s9, s10, s13, s13, s13, s16, s16, s16), (2.15)

with s1 = 1.19, s2 = s10 = 1.4, s4 = 1.2, s9 = s13 = 1/τ and s16 = 1.98. The kinematic
viscosity of the fluid is related to the relaxation time τ by ν = c2

s (τ−1/2)∆t , and
pressure p is related to density by p =ρc2

s .

2.2.3. FORCE AND TORQUE EVALUATION

The momentum contribution along a single fluid-solid link exerted on the par-
ticle by the fluid is computed using the momentum exchange method (Bouzidi
et al., 2001; Mei et al., 2002; Lallemand & Luo, 2003) as

pα(rb, t )= eα( fα(rb, t )+ fα(r f , t )), (2.16)

where rb is the boundary solid node with rb = r f + eα∆t . Correspondingly, the
force and torque are computed as

F =
∑

all rb

∑

α6=19
pα(rb , t ) (2.17)

T =
∑

all rb

∑

α6=19
(rw −rc )×pα(rb , t ). (2.18)

Here, rw is the position of the particle wall and rc is the center of gravity of the
particle.
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2.3. MASS LEAKAGE IN INTERPOLATED BOUNCE-BACK SCHEMES

Since the LBM is performed on equidistant Cartesian grids, boundary condition
schemes were first introduced for straight walls. The bounce-back (BB) scheme
is the most common, simplest and exactly mass conserving scheme for the solid
wall boundary condition and provides a particularly straightforward approach
for modelling no-slip conditions on solid walls. In this scheme, when a particle
distribution streams to a wall node, it reflects back to the fluid node along its
incoming link (Succi, 2001; Wolf-Gladrow, 2004). The on-site BB and the mid-
grid BB are two types of BB schemes (Ziegler, 1993). In the on-site BB scheme,
the physical boundary nodes lay exactly at the lattice nodes. In the mid-grid BB
scheme, the solid boundary is located exactly mid-plane between the bound-
ary fluid node and the off-lattice node inside the solid. The on-site BB scheme
is first-order accurate, whereas the mid-grid BB scheme provides second-order
accuracy in both space and time (Succi, 2001). Alternative wall boundary condi-
tions with second-order accuracy were proposed by various researchers (Ziegler,
1993; Noble et al., 1995; Inamuro et al., 1995; Skordos, 1993). For all of these
boundary condition treatments, the solid wall should be aligned with the com-
putational grid (Latt et al., 2008; Chen et al., 1996).

The above-mentioned schemes have been quite successful in improving nu-
merical accuracy for flows with flat-wall boundaries aligned with the computa-
tional grid. However, they fail to accurately simulate curved boundaries (or flat-
wall boundaries inclined with respect to the computational grid). For simulating
flow with curved boundaries, we need to determine the distribution functions at
the nodes nearest the curved boundaries based on the known boundary condi-
tions. The use of BB schemes with curved boundaries leads to stair-case shaped
boundaries (Ladd, 1994a; Ladd & Verberg, 2001). It should be noted that with a
stair-shaped approximation, not only the fidelity of real geometry is lost, it may
also introduce undesired errors (such as a non-zero wall velocity) in a simulation
that could contaminate the results (Kandhai et al., 1999).

In the literature, various boundary treatments have been developed that pro-
vide a more accurate treatment of curved boundaries to determine the distri-
bution functions on the boundary nodes. The first method for treating curved
boundaries with the LBM was proposed by Filippova and Hanel based on in-
ter/extrapolation of the distribution functions (Filippova & Hänel, 1997). It re-
lies on ghost cells inside solid walls and applies a linear interpolation of particle
distributions to enforce the boundary condition at the exact boundary location.
This scheme has second order accuracy. However, it suffers from poor numeri-
cal stability, particularly when the near-wall fluid node is very close to the solid
boundary. The stability issue of this scheme was improved by Mei et al. (1999)
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by placing the boundary node used for velocity interpolation to the closest fluid
nodes, if the actual wall boundary is too close to a solid node. The stability of this
method was further improved by various researchers (Guo et al., 2002; Tiwari &
Vanka, 2012).

Bouzidi et al. (2001) proposed a method with second-order accuracy that
does not require the extrapolations from the ghost nodes in solid wall. The pro-
posed scheme combines the bounce-back concept with linear/quadratic inter-
polation of the distribution functions from the internal fluid nodes. The accu-
racy of this method has been improved by Ginzburg & d’Humières (2003) and
extended to moving boundaries by Lallemand & Luo (2003). Yu et al. (2003b)
proposed a unified version of the Bouzidi scheme by using a two-step sequen-
tial interpolations to avoid the discontinuity in the boundary treatment. Yin
& Zhang (2012) modified the Ladd scheme with the boundary velocity at the
midgrid computed using inter/extrapolation between the boundary node and
fluid node. In addition to the above-mentioned boundary methods, several other
approaches have been developed for simulating curved boundaries in the LBM
(Feng & Michaelides, 2004; Suzuki & Inamuro, 2011; Ginzburg et al., 2008). The
different boundary conditions of LBM are compared on different lattice configu-
rations by Nash et al. (2014).

Usually when using the inter/extrapolation-based curved boundary schemes
in the LBM simulations, the mass of the system is not conserved exactly. In
other words, there will be mass loss/gain at each time step during the simulation,
which is called mass-leakage in the literature. Lallemand & Luo (2003) showed
that the use of interpolation breaks mass conservation near curved boundaries.
They found that the inaccuracy in evaluating momentum transfer can lead to a
net mass flux at the boundary. There are also flux based finite-volume bound-
ary schemes that are designed to conserve mass (Chen et al., 1998; Rohde et al.,
2002). However, these require estimates of the cut-cell volume of the bound-
ary cells, which add further complexity. From an implementation point-of-view,
link based interpolation methods are much simpler. Various mass conserving
boundary treatments have been proposed to avoid the mass-leakage issue and
improve the numerical stability of the simulations (Kao & Yang, 2008; Bao et al.,
2008; Le Coupanec & Verschaeve, 2011). However, such proposed mass conserv-
ing boundary conditions either still exhibit minor leakage (Kao & Yang, 2008), are
not analysed rigorously for mass leakage through various testcases (Chen et al.,
1998; Bao et al., 2008), or are applicable only for specific problems such as tan-
gential boundaries (Le Coupanec & Verschaeve, 2011). In general, such a mass
leakage does not affect simulation results for inflow-outflow boundaries (San-
jeevi & Padding, 2017). However, the mass leakage accumulates over time for
a periodic flow, driven by gravity. Such a flow problem is widely used in differ-
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ent areas such as flows around stationary arrays of particles and flows through
porous media. For low Re flows, such a leakage is minor and can be ignored in
general. However at high Re , the change in system mass is large and cannot be
ignored. The issue becomes even severe in the case of unsteady periodic flows,
where a large number of time steps is required to reach statistical equilibrium.
This subsequently results in drift in system mass and therefore, constantly in-
creasing or decreasing forces.

In the following sections, we discuss the existing curved boundary conditions
and analyse their performance. Our objective is to keep the grid Re high (rela-
tively coarser grid and lower viscosity), since the mass leakage effects are directly
a consequence and proportional to the grid Re than the flow Re itself. By this, we
imply the importance of achieving good solution accuracy using a coarse grid
against finer grid simulations as they are computationally more expensive.

Up to this point, there has not yet been a systematic comparison of the per-
formance of curved boundary schemes with focus on mass leakage. We test the
accuracy of most popular curved boundary condition schemes and schemes that
showed potential for solving the mass leakage issue. It is the aim of this section
to provide such a comparison for cases with significant mass-leakage issue, with
focus on high Re flows. Further, in this section, we introduce forced conservation
schemes that enforce strict mass conservation and test their performance.

2.4. TREATMENTS FOR CURVED-WALL BOUNDARY

Because a no-slip boundary with a wall can be modelled for each velocity direc-
tion separately, it is sufficient to consider a single lattice direction with a (curved)
wall boundary surface at rw , as shown in figure 2.2. The curved-wall boundary
may be located at an arbitrary position between the solid and fluid nodes (i.e. rb

and r f ). The fraction of an intersected link in the fluid region is expressed using
a parameter q as

q =
|rw −r f |
|rb −r f |

. (2.19)

Various treatments for curved-wall boundary condition have been proposed in
the literature to improve the accuracy of the LBM simulations. The work of Fil-
ippova & Hänel (1997) and Mei et al. (1999) were the first attempts to represent
curved boundaries of a solid body. However, they are not stable for all relax-
ation times (Yu et al., 2003a; Kao & Yang, 2008) and therefore are not consid-
ered in this work. Since the boundary schemes are formulated based on 1D
approximation of the lattice direction, 2D testcases are sufficient to investigate
their performance. Historically also, all or most of the proposed curved bound-
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Figure 2.2: One-dimensional representation of a regular lattice and a curved-wall
boundary.

ary condition literatures contain 2D testcases. Their extensions to 3D are always
straight-forward and consistent. For this reason, we perform only 2D flow test-
cases in the upcoming sections of this chapter. We use D2Q9 boundary condition
to test the different boundary conditions. The lattice weights wα and the dis-
crete velocities eα of a D2Q9-lattice model are given by: wα=0 = 4/9, eα = (0,0),
wα=1∼4 = 1/9, eα = (cosθα, sinθα) with θα = (α−1)π/2 and wα=5∼8 = 1/36, eα =p

2(cosθα, sinθα) with θα = (α−5)π/2+π/4. In this section, we briefly introduce
the schemes that are analysed in this work.

2.4.1. THE MIDGRID BOUNCE-BACK SCHEME

The most widely used boundary condition for the LBM is the midgrid bounce-
back scheme (MGBB). For a midgrid bounce back scheme, the solid boundary
is assumed exactly half-way between the fluid node and the solid node (i.e. q =
1/2). The midgrid bounce back scheme (see figure 2.2) is of second order and is
given by:

fᾱ(r f , t +∆t )= f̃α(r f , t ). (2.20)

2.4.2. THE BOUZIDI SCHEMES

In this scheme, an interpolation is applied to calculate the unknown distribution
function based on the position of the wall boundary. When linear interpolation
is applied, the Bouzidi model (L-Bouzidi) is written as follows:

For q < 0.5:

fᾱ(r f , t +∆t )= (1−2q) f̃α(r f f , t )+2q f̃α(r f , t ), (2.21)

and for q ≥ 0.5:

fᾱ(r f , t +∆t )=
(

1−
1

2q

)

f̃ᾱ(r f , t )+
1

2q
f̃α(r f , t ). (2.22)
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Alternatively, when quadratic interpolation is applied, the scheme (Q-Bouzidi)
has the following form for q < 0.5:

fᾱ(r f , t+∆t )= q(1+2q) f̃α(r f , t )+(1−4q2) f̃α(r f f , t )−q(1−2q) f̃α(r f f f , t )), (2.23)

and for q ≥ 0.5:

fᾱ(r f , t +∆t )=
1

q(2q +1)
f̃i (r f , t )+

2q −1

q
f̃ᾱ(r f , t )−

2q −1

2q +1
f̃ᾱ(r f f , t ). (2.24)

It can observed that in the Bouzidi schemes, the unknown values of distribution
functions are solved at the fluid nodes using an interpolation technique.

2.4.3. THE UNIFIED SCHEMES

The Bouzidi scheme requires separate treatments for q < 0.5 and q ≥ 0.5 that
may cause an abrupt change in calculated distribution function when q changes
from less than 0.5 to more than 0.5 (as in moving boundaries). To overcome this
issue, a unified version of the Bouzidi scheme was proposed by Yu et al. (2003b).
The linear interpolation of Yu scheme (L-Uni) is written as:

fᾱ(r f , t +∆t )= 1

1+q
[q f̃α(r f , t )+ (1−q) f̃α(r f f , t )+q f̃ᾱ(r f , t )]. (2.25)

If quadratic interpolation is applied (Kao & Yang, 2008), the model (Q-Uni) has
the form:

fᾱ(r f , t +∆t )= 1

(1+q)(2+q)
[q(1+q) f̃α(r f , t )+2(1−q2) f̃α(r f f , t )−

q(1−q) f̃α(r f f f , t )+2q(2+q) f̃ᾱ(r f , t )−q(1+q) f̃ᾱ(r f f , t )].
(2.26)

It can be seen that the Yu scheme does not require conditional branching (by q <
or > 0.5). However, compared to the Bouzidi scheme, the Yu scheme involves
more operations and distribution function evaluations.

2.4.4. THE INTERPOLATION-FREE SCHEMES

Previous investigations (Lallemand & Luo, 2003) indicated that interpolation-
based schemes for treatment of curved boundaries destroy mass conservation at
the boundaries. To overcome the drawback of these interpolation-based curved
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boundary treatments, an interpolation-free technique was proposed by Kao &
Yang (2008). The interpolation free schemes are based on the concept of local
grid refinement similar to Filippova & Hänel (1998), albeit without the actual grid
refinement. The viscosities are modified depending on the q values, to mimic a
finer local grid. In the proposed on-site interpolation-free (OSIF) scheme, the
fluid distribution function is computed in the post-collision step and is then
streamed to the surface of the solid node rb. For all 0 < q ≤ 1:

f̃α(r f , t )= f
eq
α (r f , t )+ [ f̃α(r f , t )− f

eq
α (r f , t )]

qωc(1−ω f )

ω f (1−ωc )
, (2.27)

whereωc =ω, ω f = 2q/(q−1+2τ) and the superscripts c and f denote the coarse
and fine grid quantities. The composite interpolation-free (CPIF) model, as the
name suggests, is a hybrid approach encompassing midgrid and onsite bounce
back schemes. The viscosity is modified, accordingly resembling a midgrid
bounceback for q ≤ 0.5 and an onsite bounceback for q > 0.5. For q ≤ 0.5, the
fine-grid relaxation factor is ω f = 4q/(2q −1+2τ) and

f̃ᾱ(rb , t )= f
eq
α (r f , t )+ [ f̃α(r f , t )− f

eq
α (r f , t )]

2qωc(1−ω f )

ω f (1−ωc )
. (2.28)

For q > 0.5, ω f = 2q/(q −1+2τ) and

f̃α(r f , t )= f
eq
α (r f , t )+ [ f̃α(r f , t )− f

eq
α (r f , t )]

qωc(1−ω f )

ω f (1−ωc )
. (2.29)

2.4.5. THE YIN-ZHANG SCHEME

Yin & Zhang (2012) proposed a modified version (Yin-Zhang) of the midgrid
BB scheme with moving boundaries (Ladd, 1994a) based on the velocity at the
midgrid position instead of the boundary velocity. The midgrid velocity is ob-
tained by inter-/extrapolating the velocities from the boundary and the fluid
node. For this purpose, the midpoint velocity of a boundary lattice link is cal-
culated as follows. With ∆= 1−q , and for ∆≤ 0.5,

um =
0.5u(rb , t )+ (0.5−∆)u(r f , t )

1−∆
(2.30)

and for ∆> 0.5,

um =
1.5u(rb , t )− (∆−0.5)u(r f f , t )

2−∆
. (2.31)
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This midpoint velocity is utilized to calculate the bounced back distribution
functions as:

fᾱ(r f , t +∆t )= f̃α(r f , t )−
2wαρ(r f , t )

c2
s

um ·eα. (2.32)

It is worth mentioning that from a coding perspective, when using the curved
boundary schemes, it is more efficient to compute the unknown distribution
functions after the streaming step (Lallemand & Luo, 2003). Streaming simply
corresponds to shift of indices of the spatial nodes. This means that: f̃ᾱ(rb , t ) =
fᾱ(r f , t+∆t ) or f̃α(r f f , t ) = fi (r f , t+∆t ) and so on. Therefore, the curved bound-
ary schemes can also be re-written based on the distributions after the stream-
ing. Regarding implementation, all the schemes are straight-forward to imple-
ment. However, the CPIF scheme is slightly complicated due to its combined
mid-grid and onsite bounceback approach. Regarding computational perfor-
mance, we observed near similar behaviour of all boundary schemes for different
testcases and therefore, the schemes are not compared for execution speed.

2.5. RESULTS AND DISCUSSION

In this section, the no-slip curved boundary treatments of section 2.4 are ap-
plied to different flow testcases. Here the midgrid bounce-back, linear Bouzidi,
quadratic Bouzidi, linear unified, quadratic unified, on-site interpolation free,
composite interpolation free and the Yin-Zhang schemes are labelled as: MGBB,
L-Bouzidi, Q-Bouzidi, L-Uni, Q-Uni, OSIF, CPIF and Yin-Zhang, respectively.
Also, we introduce forced mass conservation cases and a constant density
scheme, and investigate their performance.

2.5.1. FLOW AROUND SQUARE CYLINDER INSIDE A CHANNEL

In this testcase, we simulate the flow around a square cylinder confined between
two parallel walls. The flow is periodic and is driven by gravity. The main advan-
tage of this testcase is that all the simulation boundaries are grid aligned. This en-
ables accurate simulation of the flow field using mid-grid bounce-back scheme
and subsequently compare different boundary conditions for arbitrary position
of the obstacle. The simulated test case is shown in figure 2.3 and is made of
200× 51 nodes. The top and bottom walls of the channel are positioned half-
way between their respective solid-fluid nodes. Effectively, the channel width is
of 49 lattice units. The square obstacle is of size 15× 15 lattice units. Different
boundary conditions are tested with obstacle at different positions with the cen-
ters (Cx ) starting from 50 to 51 along x-axis in 0.25 increments. All four sides of
the obstacle are half-way between the solid-fluid node for the initial and final Cx
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Figure 2.3: Simulation setup for flow around a square obstacle, driven by gravity.

positions, i.e. Cx = 50 and 51. The top and bottom sides of the obstacle are al-
ways halfway between solid-fluid nodes for all Cx . In other words, the q values
for top and bottom sides of the square are always equal to 0.5 whereas q values
change for front and rear sides of the square for different Cx .

Two different Re are simulated by appropriately changing the gravity - one
with steady flow at Re = 150 and another with unsteady flow at Re = 330. Here,
Re =Um H/ν with Um being the average x-velocity component (Ux ) measured at
the outflow of the domain and H is the domain height. It should be noted that
the viscosity is maintained low such that the Re is high in order to deliberately
amplify the mass-leakage effects. The relaxation time is maintained at τ = 0.52
for both cases. At the same time, the maximum lattice velocity is kept below 0.15
to avoid compressibility effects.

The metrics we use to analyse the results are the change in system mass
(m′) at the end of simulations, the normalized flow rate (Q ′), and the normal-
ized drag (F ′

D ). The change in system mass is given by m′ = mBC/minitial with
mass m being the sum of densities of all fluid nodes, m = ∑

i =fluidρi . The sub-
script BC denote the final condition and “initial” denote the initial condition of
the tested boundary scheme. The simulations are run for 130000 and 150000
timesteps for Re = 150 and 330 respectively. The normalized flow rate is given by
Q ′ =QBC/QMGBB with Q =

∫H
0 Ux dy at the outlet of the channel. The normalized

force is given by F ′ = FBC/FMGBB. Here, the subscripts BC and MGBB denote the
tested boundary condition and the mid-grid bounceback respectively. The m′,
Q ′ and F ′

D for different schemes are shown in figures 2.4, 2.5 and 2.6 respectively.
It can be observed that the mass-leakage is dependent on the Re on comparing
figures 2.4(a) and (b) and increases for increasing Re .

The MGBB scheme is perfectly mass conserving and therefore serves as ref-
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(a) Re = 150 (steady flow) and (b) Re = 330 (unsteady flow). It should be noted
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Figure 2.5: Normalized flow rate (Q ′) for different obstacle positions (Cx ), for (a)
Re = 150 (steady flow) and (b) Re = 330 (unsteady flow).
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Figure 2.6: Normalized drag (F ′
D ) for different obstacle positions (Cx ), for (a) Re =

150 (steady flow) and (b) Re = 330 (unsteady flow).

erence in figures 2.4, 2.5, and 2.6. The linear Bouzidi scheme recovers perfectly
mass conserving MGBB scheme, if the walls are exactly half-way. The walls are
exactly half-way (i.e. q = 0.5) on all sides for square obstacle at Cx = 50 and 51. In
figure 2.4(b), this is confirmed. The same perfect conservation at Cx = 50 and 51
was also observed for quadratic Bouzidi scheme. However, the quadratic scheme
requires a much finer grid and higher viscosity (or lower grid Re) for arbitrary
wall positions and is therefore not stable for Cx other than Cx = 50 and 51.

It has to be noted that the linear unified scheme (L-Uni) does not recover
MGBB, even for q = 0.5 as in Bouzidi scheme. The same can be verified in figure
2.4(b) that there is a minor mass leakage even at Cx = 50 and 51. This is more
apparent from the deviation of the normalized flow rate (Q ′) in figure 2.5(b). The
quadratic unified scheme (Kao & Yang, 2008) failed for all the test cases. However,
the scheme performed stable on a finer grid with higher viscosity to simulate
same flow Re .

Also, the Yin-Zhang boundary condition with velocity inter/extrapolation
was unstable for all positions except for C x = 50 and 51, where it recovers the
mid-grid bounceback condition. The low viscosity, needed to reach high Re at
reasonable grid size, exposed the instability of different boundary conditions,
especially the quadratic schemes and also the Yin-Zhang boundary condition,
which were found only stable for higher relaxation times (for τ= 0.6) and a finer
grid. This implies that for high Re flows, the application of such boundaries is
limited. More precisely, to simulate a specific flow Re , such schemes require a
finer grid with higher τ (or low grid Re) than the other stable schemes.

It could be observed that the OSIF and the CPIF schemes perform better than
all other schemes. Overall, CPIF performs best due to its composite design to
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recover both mid-grid and onsite bounceback schemes. However, it should be
noted that for other intermediate positions, such as Cx = 50.25 and Cx = 50.75,
there is still a mass-leakage for CPIF. The highest mass-leakage of around 15% is
observed at Cx = 50.75 for Re = 330 (see figure 2.4(b)). At Cx = 50.5, q becomes
zero for the right wall of the square. Therefore, we use Cx = 50.49 for OSIF and
CPIF as their working range is for 0 < q ≤ 1. For the same reason, there is a minor
leakage observed for CPIF for both Re at Cx = 50.5.

The mass-leakage phenomenon would be acceptable provided that the flow
field and force experienced by the object are not affected strongly. In reality, both
the flow field and the force experienced by the object could be correlated with the
mass-leakage. Further, if the simulations are run for a longer duration, the mass-
leakage increasingly affects the simulation results. The linear Bouzidi scheme,
which leaks upto 50% by the end of simulation at Cx = 50.5 (see figure 2.4(b)),
shows a corresponding Q ′ of 4% (see figure 2.5(b)). Similarly, the corresponding
F ′

D deviates up to 40%, as can be observed from figure 2.6(b). Even the best per-
forming CPIF scheme shows upto a deviation of 1% for Q ′ and 10% deviation for
F ′

D . Therefore, it can be concluded that none of the available schemes is perfectly
mass conserving.

2.5.2. FORCED MASS CONSERVATION SCHEMES AND CONSTANT DENSITY

SCHEME

To solve the mass-leakage, one can enforce mass conservation by explicitly
adding or removing mass from the system. There are several ways to explicitly
conserve the mass and at the same time conserve local momentum. The follow-
ing first four cases conserve both mass and momentum. The last proposed case
is slightly different and does not enforce mass conservation. Due to its simplicity,
we test these corrections on the popularly used linear Bouzidi scheme. However,
it should be observed that these concepts are general and can be applied on any
curved boundary scheme.

Case 1: Adding the local change in mass per timestep (δρ), only to the rest dis-
tribution of the particular fluid node: f0 = f0 +δρ.

Case 2: Adding the local change in mass per timestep, to the distributions of
the particular fluid node, multiplied by the corresponding weights: fα =
fα+wαδρ.

Case 3: Computing the global change in mass per timestep and evenly adding
it to the rest distribution of all fluid nodes: f0 = f0 +

∑

δρ/N f , where N f

is the total number of fluid nodes, and
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Figure 2.7: Change in system mass (m′) for different obstacle positions (Cx ), for
(a) Re = 150 (steady flow) and (b) Re = 330 (unsteady flow).

Case 4: Computing the global change in mass per timestep and adding it to
the distributions proportional to the weights: fα = fα+wα

∑

δρ/N f . It
should be noted that for cases 2 and 4, the density corrections are ap-
plied after the force measurements. Otherwise, the modified distribu-
tions would corrupt the actual force experienced by the particle. This
implies that an additional variable needs to be introduced to save the
leakage amount for individual fluid nodes. Therefore from an imple-
mentation point-of-view, cases 1 and 3 are simpler to implement.

Case 5: Additionally, we discuss a special case, denoted as case 5, based on the
constant density approach (He & Luo, 1997), where the feq is given by

f
eq
α = wα

(

ρ+ρ0

[

(eα ·u)

c2
s

+ (eα ·u)2

2c4
s

− (u ·u)

2c2
s

])

. (2.33)

Here, ρ0 is the constant density (equal to the initial density) and the
momentum defined as ρ0u =

∑

α fαeα. Further, the forcing term also
involves a constant density term: Sα = −3wαρ0(g · eα) in equation 2.1.
It should be noted that ρ0 is used here instead of ρ earlier. Therefore,
the fluid is driven with constant force instead of constant gravity other-
wise. As can be seen, this scheme is different from the other four cases,
because it does not enforce mass conservation. This means that the sys-
tem mass m, defined as

∑

ρ, is actually changing with time. However, as
the essential parts of the scheme are based on the constant density ρ0

instead of the actual density ρ = ∑

α fα, the flow field and the forces ex-
perienced by the particle are not influenced by the mass-leakage.
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Figure 2.8: Normalized flow rate (Q ′) for different obstacle positions (Cx ), for (a)
Re = 150 (steady flow) and (b) Re = 330 (unsteady flow).
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All the four strict mass conservation schemes are originally conceived by us.
However, we later found some literatures have applied such corrections, albeit
only in a specific form, only case 1, i.e., adding the local mass leakage to the rest
node (Yin et al., 2012). Only in this study, we study different combinations of
mass correction and their effects on flow field in a detailed manner and thereby
making useful suggestions to the LBM community.

Each of the above mentioned cases is unique and will have its own impli-
cation to the flow field. Next, we apply these cases to the previous testcase and
observe their performance. The performances are compared with the linear
Bouzidi scheme without correction and also with the best performing CPIF
scheme. The m′ for different cases are given in figure 2.7. Due to their perfectly
conserving nature, there is no deviation in system mass m′ for cases 1-4, as can
be seen from both figures 2.7(a) and (b). Case 5 shows slightly higher mass-
leakage than the original linear Bouzidi scheme as it is not a mass conservation
enforcing scheme.

The Q ′ for the different cases are given in figure 2.8. In terms of flow fields, we
observe that both case 1 and 2 have similar performance, both performing better
than the CPIF scheme for the steady flow, as can be seen in figure 2.8(a). For un-
steady flows, again a similar performance from cases 1 and 2 with a comparable
performance of CPIF, but slightly poorer only at Cx = 50.5. This is because the
Bouzidi scheme does not recover onsite bounceback, which occurs for Cx = 50.5
for the front and rear sides of the obstacle. The cases 3-5 perform almost similar
with slightly higher deviations shown by case 5. Importantly, it should be noted
that all cases perform better than the original Bouzidi scheme. Therefore, we
recommend the use of any explicit mass conserving scheme, specifically cases 1
and 2, which offer superior performance among the investigated cases.

For F ′
D , it can be observed that all cases perform identical and show far su-

perior performance over the CPIF scheme itself, as seen in figures 2.9(a) and (b).
Similarly from Q ′, we conclude that the explicit mass conservation as in cases 1-4
and constant density approach of case 5 provide better accuracy than the exist-
ing schemes without explicit mass conservation. Even though case 5 shows sig-
nificant mass-leakage, the case performs better in terms of computing the true
velocity field as observed from Q ′ and also in terms of force experienced by the
obstacle as in F ′

D compared to conventional linear Bouzidi scheme.

Next, we analyse the flow field in detail for steady flow occurring at Re = 150.
The horizontal velocity component (Ux ) is measured along the centerline of the
domain. Here, we consider the worst performing condition of the linear Bouzidi
scheme, which occurs at Cx = 50.5. Then, we apply the proposed methods and
compare their performance. The Ux for the different cases are plotted in figure
2.10. The results are compared with the true solution obtained from the midgrid
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Figure 2.11: The normalized system mass (m′) of different schemes for the in-
clined channel flow over time.

bounceback (MGBB) scheme. To maintain consistency, the MGBB results are
shifted by 0.5 along the x-direction. From the results, it can be observed that
there is a large deviation of the linear Bouzidi solution from the MGBB solution.
However on applying the methods proposed, it is observed that the resulting flow
field is closer to the true solution (of the MGBB). As mentioned earlier, cases 1
and 2 perform identical and are closest to the solution obtained from MGBB,
which is evident from the zoomed figures 2.10(b), (c) and (d ). Likewise, cases 3,
4 and 5 perform identical and are slightly away from the MGBB solution, but still
better than the linear Bouzidi solution without any correction.

The characteristic of the current testcase is that the walls are flat and are per-
fectly aligned to the grid. This implies, for a particular wall, the interpolation dis-
tances qα are the same for all wall-intersecting directions. Further, the testcase
replicates flow conditions with strong pressure gradients, and therefore strong
density gradients, in the stagnation flow in front of the square object.

2.5.3. FLOW THROUGH AN INCLINED CHANNEL

In this section, we simulate a pure shear flow through a periodic channel driven
by gravity. To include effects of different interpolation distances qα, we simulate
the flow in an inclined channel. With this simulation, we investigate the effects
of mass-leakage on pure shear flows. The channel width is 7 lattice units and the
channel has an inclination of 3/5. The simulation parameters are τ = 0.52 and
g = 10−4. The change in system mass after 20000 timesteps for different schemes
is plotted in figure 2.11 and the resulting flow profile for different schemes is plot-
ted in figure 2.12. The flow velocities are normalized against the maximum ve-
locity obtained from the theory.
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shown in (a).

Regarding the performance of different schemes, the quadratic schemes per-
form better than linear schemes, even though τ is low. The results are not shown
here for brevity and interested reader can refer to figure 2 of Bouzidi et al. (2001).
Therefore, it can be inferred that the quadratic schemes are stable, even with low
τ, for flows with no density gradient, as in the pure shear flow in this testcase.
However, due to poor stability in flows with density gradients, as seen from pre-
vious testcase, these schemes are not considered for further comparison.

The different schemes achieve steady velocity profiles even after the steady
leaking of the mass. Among the schemes shown, the linear Bouzidi scheme
showed best performance. The performances of both the OSIF and CPIF
schemes are poor and are comparable to that of the staircase approximation
of the midgrid scheme. The reason why the interpolation free schemes perform
poor could be due to different qα values for a boundary fluid node for different
directions. In the previous testcase, the qα values are identical for all intersecting
velocity directions for a particular side. The interpolation free schemes are based
on varying the viscosity depending on the qα. Therefore having different qα for
different velocity directions within a fluid node implies using different viscosities
for a single fluid node. These simultaneous effects can affect the performance of
the schemes.

Among the 5 cases proposed, cases 1 and 2 performed slightly poor than
other correction cases. The reason why such cases perform poorly is due to the
fact the mass corrections are applied locally at the boundary. The complete or
significant part of the correction goes to the rest distribution f0 and therefore
could slightly increase the pressure locally, resulting in slight pressure fluctua-
tions on the boundary. The cases 3, 4 and 5 perform identical and only slightly
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Figure 2.13: The staggered cylinder configuration: The domain is periodic and
the flow is driven by gravity.

poorer than the linear Bouzidi scheme. This is contrary to the previous testcase,
where all the cases performed better than the default linear Bouzidi scheme.
However, it should be noted that many practical LBM simulations involve both
shear and pressure effects. Therefore, we next select a testcase which involves
both shear and stagnation pressure effects.

2.5.4. FLOW AROUND STAGGERED CIRCULAR CYLINDERS

In order to emulate a general particulate system or a porous medium, we simu-
late here periodic flow around staggered circular cylinders. Inline cylinders are
avoided as it would result in flow channelling at higher Re and thereby purely
dominated by shear effects alone. The staggered configuration considered here
provides a good mix of stagnation and shear effects. The flow setup is shown in
figure 2.13. The solids-volume fraction ǫs is 0.3 and the cylinder diameter D is
chosen appropriately, depending on the domain size.

Since there is no analytic solution available for such a flow problem, a highly
accurate solution is obtained with D = 131.1 in a 300×300 domain with the mid-
grid bounce back scheme. The simulation has been performed for Re = 40 with
Re =U0D/ν. The flow is steady for this flow configuration. Here, U0 = (1−ǫs )Uav

is the superficial fluid velocity with Uav the average velocity in the fluid domain.
Since the flow is driven by gravity and the velocity field evolves accordingly, a
feedback loop is used to control the gravity to achieve the desired U0 precisely.
The resulting velocity field is shown in figure 2.14. The drag coefficient is com-
puted as CD = FD /(1/2ρDU 2

0 ) where FD is the drag acting on a single cylinder. A
value of CD = 5.93 is obtained for the highly refined grid.

Next, we simulate a domain of size 30×30 with the different boundary condi-
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Figure 2.14: The accurate velocity field for Re = 40 obtained using the midgrid
bounceback scheme with very high grid resolution.

t

m
′

×10
4

0 0.5 1 1.5 2

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Figure 2.15: The normalized system mass (m′) of different schemes for the peri-
odic flow around staggered cylinders.



2.6. RECOMMENDATIONS FOR PRACTICAL USE 31

F
′ D

L-
B
ou

zi
di

O
SI
F

C
P
IF

C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

C
as
e
5

M
G
B
B

0.95

1

1.05

1.1

1.15

1.2

Figure 2.16: The normalized drag (F ′
D ) of different schemes for the periodic flow

around staggered cylinders. It should be noted that F ′
D of L-Bouzidi scheme,

though appears closest to 1, is time dependent. This implies a longer simulation
would result in F ′

D further away from 1. Only the results of cases 1-5 and MGBB
are time independent.

tions, for the same Re , for 20000 timesteps. Based on the accurate CD computed
before, the true drag (FD,t r ue ) for the new resolution is computed. We measure
the FD for the different boundary schemes from the simulations and compare
with the FD,t r ue as F ′

D = FD /FD,t r ue . The evolution of mass-leakage is plotted
in figure 2.15. The normalized drag F ′

D is plotted in figure 2.16. It should be
noted that the first three schemes in figure 2.16, the Bouzidi and interpolation
free schemes, have drag dependent on the average density of the system. This
implies that they are dependent on the simulation duration and exhibit different
drag for a longer simulation. In other words, though the linear Bouzidi scheme
exhibits F ′

D closest to 1, it should be noted that a longer simulation would imply
a different F ′

D with larger deviation due to mass-leakage. For the cases 1 to 5,
the force observed is independent of time, including case 5 which exhibits mass-
leakage. Further, it can be observed that the proposed correction cases perform
better than the midgrid bounceback, which experiences higher drag on the par-
ticle due to the staircase approximation of the geometry. Overall, the cases 3 and
4 performed slightly better (F ′

D = 1.028), than all other cases (F ′
D = 1.029).

2.6. RECOMMENDATIONS FOR PRACTICAL USE

Among the 5 correction schemes proposed, we observed that cases 1 and 2 (en-
forcing local mass conservation) performed relatively better for flows with large
stagnation effects. However, we also found that their performance is slightly
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poorer in case of pure shear flows. This could be attributed to the fact that they
are local correction schemes, which introduce local pressure differences on the
boundaries. On the other hand, global correction schemes such as cases 3 and 4
perform relatively better in case of pure shear flows and also for flow around stag-
gered cylinders. Therefore, global correction schemes (cases 3 and 4) are recom-
mended if mass conservation is a desired property for the system. Furthermore,
case 3 is easier to implement than 4. Mass corrections need to be performed af-
ter the force measurement for case 4 as the non-rest distributions are modified
for case 4. Therefore, we can conclude that case 3, globally correcting the mass
by distributing the correction over all fluid node rest distributions, would be the
best choice among the different correction schemes proposed.

2.7. CONCLUSION

We tested different curved no-slip boundary conditions for LBM available in the
literature with a focus on mass-leakage at high Re . Several testcases were pro-
posed, such as periodic flow around a square cylinder, periodic inclined channel
flow, and periodic flow around staggered cylinders. The performance of different
schemes were tested based on the mass-leakage, flow velocity and the resulting
force exerted by the fluid flow. The results were also compared to analytical so-
lutions, where available.

Generally for flows exhibiting strong pressure gradients, we observed that
quadratic schemes are unstable at low viscosities. However for pure shear flows,
they are relatively stable and achieve better performance compared to linear
schemes. Overall, the linear schemes performed better in terms of stability. We
also observed that the variable viscosity interpolation-free schemes such as the
OSIF and CPIF were stable for different flows. However, their performance was
poor in terms of accuracy for curved boundaries or boundaries with different qα

as in inclined channel flow. The Yin-Zhang scheme has been found to be unsta-
ble for flows with high pressure gradients and is therefore not recommended on
the basis of stability. For stable cases, the Yin-Zhang scheme did not yield better
performance than the linear Bouzidi scheme.

Apart from different existing boundary conditions, we have also tested 4 dif-
ferent cases where mass conservation was explicitly enforced and one constant
density case, applied on the linear Bouzidi scheme. For flows with large stag-
nation effects, we observed that enforcing local mass conservation performed
slightly better than global correction schemes. However for pure shear flows, the
global correction schemes performed much better than local schemes. In a gen-
eral flow problem with combined shear and stagnation effects, we observe that
global correction schemes perform better than local correction schemes. Over-
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all, we recommend case 3 type correction (global correction of the fluid node rest
distributions) considering the ease of implementation.





3
SCALING LAWS FOR DRAG AND LIFT

OF NON-SPHERICAL PARTICLES

The flow around different prolate (needle-like) and oblate (disc-like) spheroids is

studied using a multi-relaxation-time lattice Boltzmann method. We compute

the mean drag coefficient CD,φ at different incident angles φ for a wide range of

Reynolds numbers (Re). We show that the sine-squared drag law CD,φ =CD,φ=0◦ +
(CD,φ=90◦ −CD,φ=0◦)sin2φ holds up to large Reynolds numbers Re = 2000. Fur-

ther, we explore the physical origin behind the sine-squared law, and reveal that

surprisingly, this does not occur due to linearity of flow fields. Instead, it occurs

due to an interesting pattern of pressure distribution contributing to the drag at

higher Re for different incident angles. The present results demonstrate that it

is possible to perform just two simulations at φ = 0◦ and φ = 90◦ for a given Re

and obtain particle shape specific CD at arbitrary incident angles. However, the

model has limited applicability to flatter oblate spheroids, which do not exhibit

the sine-squared interpolation, even for Re = 100, due to stronger wake-induced

drag. Regarding lift coefficients, we find that the equivalent theoretical equation

can provide a decent approximation, even at high Re, for prolate spheroids.

The contents of this chapter have been published as:
Sanjeevi S. K. P. & Padding J. T. (2017). “On the orientational dependence of drag experienced by
spheroids”. J. Fluid Mech. 820, R1.
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3.1. INTRODUCTION

Industrial applications and real life cases often involve suspensions of non-
spherical particles, of either regular or irregular shapes. Prolate (needle-like)
spheroids can be used to describe milled biomass particles, fibrous suspensions,
and submarine hulls. On the other hand, oblate (disc-like) particles can be ap-
proximated to represent red blood cells. El Khoury et al. (2010, 2012) performed
direct numerical simulations (DNS) with the flow perpendicular to the spheroid’s
symmetry axis and investigated the wakes behind a prolate spheroid of ratio 6:1.
Hölzer & Sommerfeld (2009) and Zastawny et al. (2012) investigated different
non-spherical particles at different flow incident angles at different Re , albeit
limiting mainly to the steady flow regime. Very recently, Ouchene et al. (2016)
proposed force correlations for prolate spheroids upto aspect ratio of 32, again
limited to steady flows with Re ≤ 240. They report an interesting finding that the
drag coefficient CD of the prolate spheroids follows a sine-squared interpolation
between its extreme CD values for Re ≤ 240 for the reported aspect ratios. In this
chapter, we investigate this phenomenon more deeply and to higher Re .

Some authors define the Reynolds number Red based on the minimum
thickness of the particle dmi n . For this work, the Reynolds number is defined
as Re = |u∞|deq /ν, where u∞ is the uniform inlet velocity, ν is the kinematic
viscosity of the fluid, and deq is the diameter of the volume-equivalent sphere
given by deq = (6Vp /π)1/3 with Vp being the particle volume. The drag coeffi-
cient is defined as CD = |FD |/( 1

2ρ|u∞|2 π
4 d 2

eq ). Here, FD is the drag force acting on
the particle and ρ is the fluid density. Similarly, we define the lift coefficient as
CL = |FL |/( 1

2ρ|u∞|2 π
4 d 2

eq ) with FL being the measured lift force. For any particle
in the Stokes regime (Happel & Brenner, 1983), based on linearity of the Stokes
equations, the drag coefficient at different incident angles φ interpolates as

CD,φ =CD,φ=0◦ + (CD,φ=90◦ −CD,φ=0◦)sin2φ. (3.1)

Here, the subscript φ implies the value at that particular incident angle φ. The
proof of equation 3.1 is given in appendix A. It should be noted that CD mea-
sured at different φ in equation 3.1 pertain to the same Re definition with Re =
|u∞|deq /ν.

To motivate the reader, the drag on different spheroids is tested upto Re =
2000 and the mean CD are plotted in figure 3.1. Surprisingly, the investigated par-
ticles follow sine-squared interpolation very well for both steady and unsteady
regimes, even for Re as high as 2000. This interesting phenomenon appears to
be similar to the Stokes regime prediction (equation 3.1) as mentioned by Ouch-
ene et al. (2016). We investigated the phenomenon in detail and found a plausi-
ble reason and also the limitations of the sine-squared behaviour. Our findings
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Figure 3.1: Top: The normalized drag coefficient
CD,φ−CD,φ=0◦

CD,φ=90◦−CD,φ=0◦
plotted against

incident angle φ. The solid line indicates sin2φ. Data include (a) prolate
spheroid (+) and (b) oblate spheroid (×), both of aspect ratio 5/2, both for Re=0.1,
10, 100, 1000 and 2000, (c) prolate spheroid of aspect ratio 4 (△) for Re=2000. Av-
eraged CD values are used for cases with vortex shedding occurring at high Re .
Bottom: Difference between normalized drag coefficient and sin2φ.

at high Re , in combination with observations of Ouchene et al. (2016) for pro-
late spheroids upto aspect ratio 32, extends the validity of the drag law to both
high aspect ratio prolate spheroids and high Re . This implies that in many situa-
tions, the mean drag coefficient at any incident angle CD,φ for a given Re can be
obtained by just knowing two values: CD,φ=0◦ and CD,φ=90◦ .

3.2. SIMULATION SETUP

The fluid flow is simulated using a D3Q19, multi-relaxation time (MRT) lattice
Boltzmann method as discussed in chapter 2. Uniform velocity in the z-direction
is prescribed at the inlet boundary based on Hecht & Harting (2010). The side
walls are prescribed with free-slip boundaries rather than periodic boundary
conditions, which could cause the flow to deflect either up or down based on
inclination of the non-spherical particle (Hölzer & Sommerfeld, 2009). The
downstream (outlet) is specified with axial-stress-free boundary condition with
∂uz /∂z = 0 (Aidun et al., 1998). We use the linearly interpolated bounce back
scheme (Bouzidi et al., 2001; Lallemand & Luo, 2003) to accurately consider the
curved geometry of the particle. The improvement in solution accuracy is neg-
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Figure 3.2: For a sphere, the normalized CD as a function of diameter d in lattice
cells for different Re , showing convergence of the method. The normalization is
done with respect to the highest resolution CD .

ligible between linear and quadratic interpolation schemes, provided sufficient
resolution is used (Pan et al. (2006); Kruggel-Emden et al. (2016)). Detailed infor-
mation about the simulation domain and their sizes are elaborated in sections
4.2.2 and 4.2.3 respectively.

3.2.1. INFLUENCE OF GRID RESOLUTION

The influence of the grid resolution is tested with the flow around an isolated
sphere. The normalized CD is plotted in figure 3.2. Three different regimes
are tested (i) Stokes flow, (ii) intermediate Reynolds number at Re = 100 with a
steady wake, and (iii) high Reynolds number Re = 1000 exhibiting a complex, un-
steady wake and therefore the mean drag coefficient is shown. The influence of
the resolution is stronger with increasing Re as seen in figure 3.2. For Re = 1000,
the observed CD at resolution deq = 40 is 0.456 and is in good agreement with
literature results: CD = 0.464 from Vakarelski et al. (2016) and CD = 0.48 from
Ploumhans et al. (2002). This resolution information is considered in main-
taining the minimum thickness dmi n of our non-spherical particles at different
Re . Due to the non-sphericity, the other dimension is always larger than the
minimum thickness and therefore a good particle resolution is ensured.

3.3. TEST OF LINEARITY FOR PRESSURE AND VELOCITY FIELDS

The drag law for Stokes flow (equation 3.1) for non-spherical particles is based
on the linearity of the Stokes equations in the creeping flow limit. As figure 3.1
shows, we observe that the mean CD follows the same sine-squared behaviour
even in regimes with a complex unsteady wake at Re as high as 2000. It has
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n

Figure 3.3: The local coordinate system (ξ,η) of the ellipsoidal section. s is the
normalized distance along the circumference. n is the inward facing, local unit
normal vector. The simulations are performed in a rectangular domain with par-
ticle rotated for different incident angles. For clarity and consistency, the results
are analysed in the local coordinate system of the section (ξ,η).

to be noted that all the investigated geometries are axi-symmetric, smooth and
rounded. Though non-linear effects dominate at higher Re , we first investigate
if the inherent smooth nature of the geometries results in cancellation of non-
linearity effects in the region close to the particle surface. In other words, we test
whether the velocity and pressure fields for an arbitrary particle at incident angle
φ obey the following conditions sufficiently close to the surface:

uφ = uφ=0◦ cosφ+uφ=90◦ sinφ, (3.2)

pφ−p∞ = (pφ=0◦ −p∞)cosφ+ (pφ=90◦ −p∞)sinφ. (3.3)

Here, uφ is the velocity field and pφ is the pressure field around the particle,
based on the incoming flow u∞ oriented at angle φ, as shown in figure 3.3. The
proof of equations 3.2 and 3.3 are given in appendix B. If equations 3.2 and 3.3
are true, the corresponding drag components, i.e. the viscous drag CDν,φ and the
pressure drag CDp,φ, also follow the sine-squared law.

Throughout this chapter, from the three-dimensional simulations, the flow
fields are analysed along the meridional plane. The meridional plane contains
the axis of symmetry of the particle at different incident angles and the inflow
velocity vector u∞. Of the different particles tested, we consider the prolate
spheroid of aspect ratio 5/2 for the linearity study. A special case of φ = 30◦ is
tested along the meridional plane. The velocity and pressure fields from the the-
oretical linear combination in equations 3.2 and 3.3 are compared with the actual
flow field from the simulations. Two cases, one for the Stokes flow at Re = 0.1 and
another exhibiting steady flow, yet sufficiently large Re compared to the Stokes
regime, Re = 100, are considered. The velocity fields based on the theory and
the actual flow are given in figure 3.4. For Stokes flow, the linear superposition of
velocity fields result in attached flow around the particle. There is a good match
between the theoretical and actual fields with deviations upto 2%. At Re = 100,
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Re .

the flow field exhibits attached flow for φ = 0◦ due to streamlining and a strong
recirculation for φ = 90◦. In figure 3.4(d ), the linear combination of them for
φ = 30◦ still appears attached, whereas the actual flow field as shown in figure
3.4(e) exhibits recirculation in the wake of the particle. There is a strong mis-
match between the fields, as shown in figure 3.4( f ) with deviations upto 60%.

At the same time, it is interesting to note that the viscous drag force result-
ing from the velocity field becomes increasingly independent of incident angle φ

at higher Re . Figure 3.5 shows the viscous and pressure drag components (and
similarly figure 3.6 for lift components) at Re=0.1, 10 and 100 for the prolate
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Figure 3.5: (▽) Viscous and (�) pressure components of the drag coefficient for a
prolate spheroid of aspect ratio 5/2 at (a) Re = 0.1, (b) Re = 10, and (c) Re = 100.
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prolate spheroid of aspect ratio 5/2 at (a) Re = 0.1, (b) Re = 10, and (c) Re = 100.
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Figure 3.7: Distribution of Cp against normalized distance s along the circum-
ference of the meridional section for (a) Re = 0.1 and (b) Re = 100; (c) surface
normal projections û ·n for different incident angles φ. Note the linearity the-
ory (at φ= 30◦) matches perfectly with simulations (at φ= 30◦) for Re = 0.1 and
shows strong mismatch for Re = 100. For the different φ shown, note the match-
ing trends of Cp at Re = 0.1 with û ·n.

spheroid of aspect ratio 5/2. Indeed, it is observed that the viscous effects be-
come weakly dependent on incident angle φ at Re = 10. Eventually at Re = 100,
the viscous drag becomes independent of φ compared to change in the pres-
sure drag, with CDν,φ ≈ CDν,φ=0◦ ≈ CDν,φ=90◦ . This implies that the dependence
of the drag on the particle’s incident angle φ, at higher Re , is purely coupled to
the φ-dependence of the pressure drag. Therefore, we next focus on the pressure
coefficient on the surface of the meridional plane section.

The pressure coefficient is defined as Cp = (p −p∞)/(1/2ρ|u∞|2) with pres-
sure p measured on the surface and p∞ the pressure at the far field. Cp is plotted
as a function of the distance s along the circumference of the meridional section,
normalized with the section circumference, as shown in figure 3.3. The Cp dis-
tributions on the section along the spheroid’s meridional plane are plotted for
Re = 0.1 and Re = 100 in figures 3.7(a) and (b), respectively. Referring to figure
3.3, the u∞ at φ = 0◦ is along the +ξ axis and the Cp peaks are observed near
s = 0.5 in figures 3.7(a) and (b), which is at the leading edge of the spheroid for
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that incident angle. At Re = 0.1, we observe an exact match between Cp using the
linearity theory (equation 3.3) and the actual simulation for φ= 30◦. At Re = 100,
the actual Cp distribution for φ = 30◦ is different compared to the distribution
based on linearity theory as seen in figure 3.7(b). Therefore, it can be concluded
that it is not due to linearity that the drag law shows sine-squared behaviour at
higher Re .

3.4. REASON FOR SINE-SQUARED DRAG LAW AT HIGHER Re

Again we consider the meridional section of the prolate spheroid of aspect ratio
5/2 for this study. We hypothesize that the Cp distribution takes the form

Cp =−m + (1+m)(û ·n)k . (3.4)

Here, m and k are constants, û = u∞/|u∞| is the orientation of the far-field flow
direction, and n is the inward facing local unit normal vector, as in figure 3.3.
The above form −m + (1+m)(û ·n)k is inspired from the inviscid flow around a
sphere, where Cp = 1−c sin2θ with c = 9/4 and the θ measured from the stagna-
tion point. For a sphere, û ·n = cosθ and rearranging terms with m = c −1, the
Cp distribution for a sphere becomes Cp = −m + (1+m)(û ·n)2. A more general
form is considered in our case with an arbitrary exponent k .

The term −m acts as a negative offset and the term (1+m) acts as a scal-
ing factor, such that Cp = 1 at the stagnation point (û ·n = 1), as would be ex-
pected from Bernoulli’s law at the point where u = 0. For increasing Re , the high
pressure region localizes more around the stagnation point and this can be con-
firmed by comparing the Cp distribution for φ = 0◦ at Re=0.1 and 100 in figure
3.7(a) and (b), respectively. Also for Re >> 1, figures 3.8(a) and (b) show that
the dominant part of the pressure drag originates from the particle’s front side
(û ·n > 0, see figure 3.7(c)) and therefore we focus on this region. For Re >> 1,
we choose k = 2. The value k = 2 is inspired by inviscid irrotational flow theory
as discussed above, although the flow is not exactly inviscid. The distributions of
Cp for Re = 100, Re = 2000 (time averaged), and (û ·n)2

H (û ·n) are given in fig-
ures 3.8(a), (b) and (c) respectively. Here, H is the Heaviside step function given
by

H (x)=
{

1 if x > 0,

0 otherwise.
(3.5)

The term H (û ·n) is introduced above to consider only the front side of the par-
ticle projected to the inflow.
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Figure 3.8: Distributions of Cp at (a) Re = 100, (b) Re = 2000 (time averaged), and
(c) second power surface normal projections (û ·n)2
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φ.
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Figure 3.9: Distributions of Cp,dr ag at (a) Re = 100, (b) Re = 2000 (time aver-
aged), and (c) third power surface normal projections (û ·n)3
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Figure 3.10: Quantitative comparison of the Cp (a,b) and Cp,dr ag =Cp û ·n (c ,d )
from the proposed theory (equation 3.4, thin lines) with the actual measure-
ments at Re = 2000 (thick lines). We used m = 0 (a,c) and m = 0.3 (b,d ), respec-
tively. Note that the influence of the value of m is weaker for Cp,dr ag compared
to Cp .
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It can be observed that the maximum values of Cp for different φ are nearly
the same and close to 1, as expected at the stagnation point in inviscid flow. Also,
the overall trend of the Cp curves in figures 3.8(a) and (b), and the (û ·n)2

H (û ·n)
in figure 3.8(c) are almost similar, including the trends of curvature. Actually for
the pressure drag, we specifically need to look at the surface projection of Cp

along the flow direction, i.e. Cp,dr ag = Cp û ·n. The similarity between Cp,dr ag

and (û ·n)3 for different angles can be observed in figures 3.9(a), (b) and (c). The
trends agree well for different incident angles. Further, the Cp and Cp,dr ag distri-
butions for Re = 100 and Re = 2000 indicate that they are self-similar and inde-
pendent of Re , at least for the front side of the particle (û ·n > 0). Note that the
influence of the offset m is less significant for Cp,dr ag than it is for Cp . Also, the
precise value of m may be position and incident angle dependent, but its vari-
ation is negligible compared to the overall variation in the pressure drag. This
is shown explicitly in figure 3.10, where the measured Cp distributions are com-
pared with our proposed Cp form computed as: Cp =−m+(1+m)(û ·n)2

H (û ·n)
and the Cp,dr ag accordingly. The term H (û ·n) is introduced here to consider Cp

distribution only the front side of the particle projected to the inflow. It can be
observed that the value m influences Cp considerably (see figure 3.10). However,
its influence on Cp,dr ag is much weaker and therefore, we proceed with m = 0 in
upcoming steps.

Cp,dr ag corresponds to the local contribution of pressure to the sectional
pressure drag. Therefore, we require integrals to compute the total pressure drag
due to this section. We define the integral of k t h power of projection û ·n for the
front side of the section as

bk =
∫1

0
(û ·n)k

H (û ·n)d s. (3.6)

An interesting property is that the integral of the second power of projection,
b2, exactly obeys sine-squared behaviour for different φ. This can be written as
b2,φ = b2,φ=0◦ + (b2,φ=90◦ −b2,φ=0◦)sin2φ and is shown in figure 3.11(a). This law
holds for the family of ellipsoidal sections and is independent of aspect ratio.
This can also be confirmed from the fact that the Cp distribution is proportional
to û ·n in Stokes flow (see figures 3.7(a) and (c)) and therefore Cp,dr ag =Cp û ·n

is proportional to (û ·n)2.
As per our earlier observation, at higher Re , the Cp,dr ag distribution is pro-

portional to (û·n)3. However, the integral b3,φ does not exactly hold sine-squared
behaviour, as shown in figure 3.11(a). It trends slightly below the sine-squared
curve. The equivalent of b3,φ is the sectional pressure drag from the upstream
side of the section, which we compare in the upcoming steps. We define sec-
tional pressure drag integrated over the circumference of an ellipsoidal section
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Figure 3.11: For a prolate spheroid of aspect ratio 5/2: (a) the normalized b2,φ

(◦), b3,φ (▽), sectional pressure drag cd ,φ at Re = 2000 (∗), and sin2φ (solid line);
(b) components of sectional pressure drag cd ,φ at Re = 2000 decomposed into
upstream drag cdu,φ (+) and wake side drag cdw,φ (×), together with their cor-
responding sine-squared interpolating curves. Note that the trends of b3,φ and
cdu,φ are similar, both under their respective sine-squared curves.

as

cd =
∫1

0
Cp,dr ag d s. (3.7)

We then decompose cd into upstream side (cdu ) and wake side (cdw ), respec-
tively, as

cdu =
∫1

0
Cp,dr ag H (û ·n)d s, and cdw =

∫1

0
Cp,dr ag H (−−−û ·n)d s.

The above integrals for different incident angles φ, i.e. cdu,φ and cdw,φ, for Re =
2000 are plotted in figure 3.11(b) and their corresponding sine-squared inter-
polation curves based on the end values. As seen from figures 3.11(a) and (b),
the upstream drag cdu,φ trend is very similar to b3,φ and both are slightly below
their respective sine-squared curves. At the same time, the wake induced drag
component cdw,φ values are slightly above their respective sine-squared curve
at the intermediate angles, i.e. 0◦ < φ < 90◦. Therefore, the wake drag ade-
quately compensates the upstream drag proportionately at the intermediate an-
gles and thereby making the total section drag appear to scale in a sine-squared
manner. The normalized, sectional pressure drag cd ,φ for different angles for
Re = 2000 itself follows near sine-squared pattern as shown in figure 3.11(a).
The spheroid by itself is made of different such ellipsoidal sections, each obey-
ing sine-squared behaviour of different scales and altogether giving the total drag
sine-squared behaviour. We have tested the reasoning in this section for different
aspect ratio prolate spheroids, and found similar dependencies of Cp,dr ag with
(û ·n)3

H (û ·n) for different φ.
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Figure 3.12: (a) CD against φ at Re = 100 for oblate spheroid of aspect ratio 4
(▽) and the corresponding sine-squared interpolating curve (solid line), (b) the
tested data points (+) and the plausible valid region for sine-squared scaling (un-
shaded). The valid region is based on our results and the data of Ouchene et al.

(2016) for prolate spheroids upto aspect ratios 32 and Re = 240 (◦). The ratio a/b

is the ratio of lengths parallel and orthogonal to the axis of rotation.

3.4.1. LIMITATIONS AND COMMENTS

In the introduction, we showed results of prolate spheroids of different aspect ra-
tios and an oblate spheroid of ratio 5/2. However, increasing the aspect ratio for
an oblate spheroid results in an increasing digression from the sine-squared drag
law, even at moderate Re . The CD results of oblate spheroid of aspect ratio 4 at
Re = 100 are presented in figure 3.12(a). Clearly, a non-monotonic dependence
of CD on the incidence angle φ is observed. The observed maximum deviation
is around 10% at φ = 60◦ against the sine-squared curve. The reason why the
drag law fails for flatter discs can be explained from our earlier observation that
the wake has a higher drag contribution at intermediate angles 0◦ <φ< 90◦ (see
cdw in figure 3.11(b)), when compared with the sine-squared curve. The flat-disc
like geometry experiences a stronger wake, amplifying the effect strongly. If we
assume a 10% deviation to be the limit of applicability, the oblate spheroid of
aspect ratio 4 is at the bounding limit for the drag law. On the other hand, pro-
late spheroids of larger aspect ratio, as shown in the introduction, still obey the
sine-squared behaviour even at Re = 2000, due to the weaker wake side drag. A
sketch of the plausible valid region of the sine-squared behaviour is shown in
figure 3.12(b). We have also tested a capsule-like spherocylinder of aspect ratio
4 and it also exhibits sine-squared drag scaling at high Re , due to closer resem-
blance to prolate spheroid. The CD results are published as correlations depen-
dent of Re and φ in the following chapter. Since the prolate spheroid of aspect
ratio 4 is simulated only for Re = 2000, the corresponding results are given here,
with CD,φ=0◦ = 0.147 and CD,φ=90◦ = 1.105.
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The Re = 2000 limit for the tested particles is rather limited by the LBM solver
and not by the flow physics itself. We believe that the drag law might hold to
even higher Re . However, flow fields are indeed complex for high Re and the ex-
tent to which the drag law is valid needs further investigation. For example, Jiang
et al. (2015) simulated flow around a 6:1 prolate spheroid at φ= 45◦ at Re = 3000
based on minor diameter. They reported a side force, almost 75% in magnitude
of the drag force, perpendicular to the meridional plane. This indicates the flow
is highly asymmetric about the meridional plane. However, they do not inves-
tigate the incident angle dependence of the drag force. To which extent their
reported flow asymmetries might influence the sine-squared drag behaviour is
not yet known and therefore needs further investigation.

3.5. LIFT FORCES

Besides drag, any non-spherical particle at an inclination with respect to a uni-
form flow will experience lift. Here, we provide a concise section with interesting
observations and comments regarding the lift forces.

For a particle in the Stokes regime, based on linearity theory, the CL at an
incident angle φ is

CL,φ = (CD,φ=90◦ −CD,φ=0◦)sinφcosφ. (3.8)

The proof of equation 3.8 is given in appendix A.
From our experience of the different non-spherical particles tested, equation

3.8 is still a decent approximation in the complete absence of CL data for prolate
spheroids, even at high Re , as seen in figure 3.13(a). The average of the absolute
deviations between CL,φ from the simulations and the equation 3.8 is less than
15% for the tested prolate spheroids at different Re . For oblate spheroids, with
increasing aspect ratios, the deviations increase more, as seen in figure 3.13(b).
For the oblate spheroid of aspect ratio 4 at Re = 100, the simulated CL is much
larger, by around 60%, than the theory for the reasons already observed in figure
3.11(b). Similar to the drag, the wake induced force is also contributing strongly
to the lift and thereby making the observed CL much larger than the theory at
intermediate incident angles.

There are different reasons the incident angle dependence of the lift coeffi-
cient CL cannot be accurately quantified in a predictable fashion like that of CD .
The lift coefficient’s order of magnitude depends on the difference of CD at two
extreme incident angles, i.e. (CD,φ=90◦ −CD,φ=0◦) and goes to zero at the extreme
ends of incident angles, i.e. at φ = 0◦,90◦. However for CD at different incident
angles φ, apart from the CD difference term, there is an additional term giving a
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Figure 3.13: The normalized lift coefficient
CL,φ

CD,φ=90◦−CD,φ=0◦
plotted against inci-

dent angle φ. The solid line indicates sinφcosφ. (a) prolate spheroid of aspect
ratio 5/2 for Re=0.1, 10, 100, 1000 and 2000 (+); prolate spheroid of aspect ratio
4 at Re=2000 (△), and (b) oblate spheroid of aspect ratio 5/2 for Re=0.1, 10, 100,
1000 and 2000 (×); oblate spheroid of aspect ratio 4 at Re = 100 (▽). Note that
the oblate spheroids are experiencing stronger deviations compared to prolate
spheroids.

constant offset, i.e. CD at φ= 0◦. In other words, the magnitudes of CD are much
larger compared to that of CL for a given Re and φ. This implies that the varia-
tion of CL,φ is much more sensitive than that of CD,φ. Therefore, any variation in
pressure distribution at higher Re would be more amplified for CL than for CD .
The CL results are also reported as correlations dependent of Re andφ in the next
chapter.

3.6. CONCLUSION

The flow around prolate and oblate spheroids of different aspect ratios was stud-
ied. We explored the sine-squared drag law in detail with a prolate spheroid of
aspect ratio 5/2. We found that the reason for the drag law at high Re is not due
to linearity theory, which results in an identical drag law in the Stokes regime. At
high Re , the viscous drag becomes almost independent of incident angle φ and
the pressure drag is the only factor influenced by incident angleφ. At high Re , the
pressure distribution contributing to the drag shows a dependency of the surface
normal’s orientation with the incoming flow in a consistent pattern as discussed.
Prolate spheroids of higher aspect ratios follow the sine-squared pattern even
at Re = 2000. Oblate spheroids of aspect ratio 4 or larger do not exhibit sine-
squared pattern due to strong wake induced drag. Regarding lift coefficients, we
find that the theoretical CL equation can provide a decent approximation, even
at high Re , for prolate spheroids.
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Both the drag law, valid at high Re for the prolate spheroids and low as-
pect ratio oblate spheroids, and the lift law for the prolate spheroids, hold
good potential for different applications. For example, they are very useful
for Euler-Lagrangian flow simulations of non-spherical particles. Any particle
shape-specific CD and CL for a given Re at different φ, even at high Re , can be
obtained by performing just two simulations: CD at φ= 0◦ and φ= 90◦.
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HYDRODYNAMIC FORCES AND

TORQUE ON ISOLATED

NON-SPHERICAL PARTICLES

Accurate direct numerical simulations are performed to determine the drag, lift

and torque coefficients of non-spherical particles. The motivation for this work is

the need for accurate drag, lift and torque correlations for high Re regimes, which

are encountered in Euler-Lagrangian simulations of fluidization and pneumatic

conveying of larger non-spherical particles. The simulations are performed in the

Reynolds number range 0.1 ≤ Re ≤ 2000 for different incident angles φ. Different

tests are performed to analyse the influence of grid resolution and confinement ef-

fects for different Re. The measured drag, lift and torque coefficients are utilized to

derive accurate correlations for specific non-spherical particle shapes. The func-

tional forms for the correlations are chosen to agree with the expected physics at

Stokes flow as well as the observed leveling off of the drag coefficient at high Re

flows. Therefore the fits can be extended to regimes outside the Re regimes simu-

lated. We observe sine-squared scaling of the drag coefficient for the particles tested

even at Re = 2000 and sine-cosine scaling for lift coefficient for the elongated par-

ticles. The current work would greatly improve the accuracy of Euler-Lagrangian

simulations of larger non-spherical particles considering the existing literature is

mainly limited to steady flow regimes and lower Re.

The contents of this chapter have been published as:
Sanjeevi S. K. P., Kuipers J. A. M. & Padding J. T. (2018). “Drag, lift and torque correlations for
non-spherical particles from Stokes limit to high Reynolds numbers”. Int. J. Multiph. Flow 106,
325-337.
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4.1. INTRODUCTION

Particulate suspensions are involved in different natural and man-made pro-
cesses. Examples are red blood cells in plasma, fluidization of pulverized coal
and milled biomass, and fibrous pulps in the paper manufacturing industry, etc.
Traditionally, particulate suspension studies simplify the particles as spheres
(Ladd, 1994a,b; Ladd & Verberg, 2001; Beetstra et al., 2007), thereby eliminating
orientation and shape effects. In general, simplifying non-spherical particles
with an equivalent sphere can provide an approximate drag prediction, but the
effects of lift and torque and also their dependence with orientation are often
ignored. The spherical particle approximation for applications like fluidized
beds with non-spherical particles could significantly influence the minimum
fluidization velocity, power consumption and also affect the overall bed dy-
namics (Hilton et al., 2010). Therefore, quantification of the effects of particle
orientation on drag, lift and torque is important.

In the Stokes limit, theoretical investigations are available for different non-
spherical particles. Oberbeck (1876) derived the drag for translation of a spheroid
parallel to its principal axis. Jeffery (1922) studied the motion of an ellipsoid in
shear flow. He suggested that the ellipsoidal particle translates in a way cor-
responding to least dissipation of energy, and that the final state depends on
the initial state of the particle. Several empirical drag correlations have been
proposed in the past for isolated non-spherical particles as a function of the
Reynolds number Re . Leith (1987) extended Stokes’ law for a sphere to arbi-
trary non-spherical objects by decomposing the pressure and viscous compo-
nents and accordingly using the object’s projected area and surface area, respec-
tively, to represent the total drag.

Haider & Levenspiel (1989) proposed a drag correlation for arbitrary particles
as a function of sphericity, but not considering the orientation. Ganser (1993)
compiled experimental data of several non-spherical shapes and proposed a
drag correlation as a function of two shape factors, namely Stokes’ and Newton’s
shape factors. Recently, Hölzer & Sommerfeld (2008) proposed a drag correlation
based on a large set of numerical and experimental data, involving two different
projected areas to account for particle orientation. Hölzer & Sommerfeld (2009)
and Zastawny et al. (2012) investigated different non-spherical particles at dif-
ferent flow incident angles φ and Re , albeit limiting mainly to the steady flow
regime. Richter & Nikrityuk (2012, 2013) simulated heat transfer and drag of an
ellipsoid and a cube. Very recently, Ouchene et al. (2016) proposed force and
torque correlations for prolate spheroids, applicable to a range of aspect ratios
up to 32. Their work was limited to steady flows with Re ≤ 240.

Zastawny et al. (2012) provide correlations for drag, lift and torque based on
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immersed boundary direct numerical simulations (DNS). Their particle’s equiv-
alent volume sphere diameters (deq ) range between 8 to 12 grid cells for Re from
0.1 upto 300. However, their work does not provide a detailed study on the influ-
ence of grid resolution as function of Re . Even their highest resolution of deq = 12
implies that the critical minimum thickness would be of the order of a few cells
for high aspect ratio disk and a fibre of aspect ratio 5. In our current work, de-
tailed studies on grid resolution and wall confinement effects are performed for
different Re . We also observe that the Zastawny et al. (2012) results are not accu-
rate at Stokes flow, but improve at larger Re . Similar deviations in the results of
Zastawny et al. (2012) have also been observed by Ouchene et al. (2015, 2016).

Some authors define the Reynolds number Red based on the minimum
thickness of the particle dmi n . For this work, the Reynolds number is defined as

Re = |u∞|deq /ν, (4.1)

where u∞ is the uniform inlet velocity, deq is the diameter of the volume-
equivalent sphere, and ν is the kinematic viscosity of the fluid. The drag, lift and
torque coefficients respectively are defined as

CD = |FD |/(
1

2
ρ f |u∞|2

π

4
d 2

eq ), (4.2)

CL = |FL|/(
1

2
ρ f |u∞|2

π

4
d 2

eq ), and (4.3)

CT = |T |/(
1

2
ρ f |u∞|2 π

8
d 3

eq ). (4.4)

Here, FD ,FL and T are drag, lift, and pitching torque acting on the particle, and
ρ f is the fluid density.

The motivation for this work is the need for highly accurate CD ,CL , and CT

correlations for high Re regimes, which are encountered in Euler-Lagrangian
simulations of fluidization and pneumatic conveying of larger non-spherical
particles. We performed such simulations of spherocylindrical (biomass-like,
type Geldart D) particles of aspect ratio 4, using the Hölzer & Sommerfeld (2008)
drag correlation with Di Felice (1994) voidage correction. The resulting dis-
tribution of particle Re encountered during the simulation is plotted in figure
4.1. It can be observed that the median of the distribution is around Re ≈ 1200
and the maximum is around Re ≈ 2000. For this Re range, we perform fully
resolved simulations of the fluid flow around the particles using the lattice Boltz-
mann method (LBM) and suitably parametrize the simulation data to obtain the
CD ,CL , and CT correlations.

The work of Rubinstein et al. (2017) (in their figure 2) shows that fixed par-
ticle simulations are sufficient to compute forces in moving particulate systems,
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Figure 4.1: Time-averaged distribution of particle Re from Euler-Lagrangian flu-
idization simulations of spherocylindrical particles of aspect ratio 4 (inset).

provided the Stokes number (St ) is sufficiently high, around St ≥ 10. The Stokes
number is the measure of timescales of the particle against the fluid. The relation
between St and Re is given by St = (ρp /(18ρ f ))Re , where ρp is the particle den-
sity. The above relationship is of order St = 50Re for gas-solid systems (assuming
a typical value of ρp /ρ f of 103) and therefore generally results in very large Stokes
numbers. Therefore, in gas-solid fluidization and other typical engineering ap-
plications such as pneumatic conveying, riser flows, etc., a quasi-steady particle
orientation assumption can be applied for Euler-Lagrangian simulations.

The simulated non-spherical particles are shown in figure 4.2. LBM simula-
tions for high Re flows have been performed in the past. Eitel-Amor et al. (2013)
performed detailed simulations of flow past a sphere in the laminar regime of
100 ≤ Re ≤ 300 and sub-critical turbulent flow regime 3700 ≤ Re ≤ 10000 us-
ing a single-relaxation scheme (SRT) with hierarchical grid refinement. In this
work, we use a multi-relaxation time (MRT) LBM scheme, which adds stability
required for the high Re simulations. Kruggel-Emden et al. (2016) provide a good
overview of coupled fluid flow and heat transfer simulations for particulate flows
using LBM.

For Stokes flow (Happel & Brenner, 1983), CD and CL at different incident
angle φ are given by

CD,φ =CD,φ=0◦ + (CD,φ=90◦ −CD,φ=0◦)sin2φ, (4.5)

CL,φ = (CD,φ=90◦ −CD,φ=0◦)sinφcosφ. (4.6)

Interestingly, for all the investigated particles, CD scales as a sine-squared func-
tion as in equation 4.5, even for Reynolds numbers as high as 2000. Further, CL

also scales as sinφcosφ as in equation 4.6, for the elongated particles even at
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Ellipsoid 1 Ellipsoid 2 Fibre

Figure 4.2: Different non-spherical particles simulated in this work: (a) Ellipsoid
1 - a prolate spheroid of aspect ratio 5/2, (b) Ellipsoid 2 - an oblate spheroid of
aspect ratio 5/2, and (c) Fibre - a spherocylinder of aspect ratio 4.

Re = 2000. Equations 4.5 and 4.6 arise from the linearity of the Navier-Stokes
equations in the Stokes regime. We have investigated these scaling phenomena
in detail for high Re (Sanjeevi & Padding, 2017). However, we found that the real
cause is due to the dependency of pressure on the local surface normal’s orien-
tation with the incoming flow and not due to the flow linearity as in Stokes flow.

To the best of our knowledge, the present work is the only work that in de-
tail investigates different non-spherical particles upto high Reynolds numbers
of Re = 2000 for different incident angles 0◦ ≤ φ ≤ 90◦. There have been simi-
lar works providing CD ,CL , and CT correlations as a function of Re and φ (Za-
stawny et al., 2012; Richter & Nikrityuk, 2013; Ouchene et al., 2016), but our work
considers approximately an order of magnitude larger Re than these studies. By
extending the measurements to larger flow velocities, our correlations take into
account the leveling off of the drag coefficient observed at higher Re . Note that
our work does not aim to give a generic correlation for all particle shapes and/or
aspect ratios. Rather, by defining separate correlation functions for each specific
particle shape and aspect ratio, we are able to derive more accurate correlation
functions for the chosen particle shapes.

This work will be helpful for the community dealing with Euler-Lagrangian
simulations of non-spherical particles, for practical industrial applications such
as biomass fluidization, pneumatic conveying and riser flows of non-spherical
particles.

4.2. NUMERICAL METHOD

The numerical method applied is the MRT-LBM scheme already discussed in
chapter 2. Here, we explain the interpolated bounce back scheme used and the
computational details of particle geometry-lattice direction intersection.
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Figure 4.3: The linearly interpolated bounce-back scheme simplified in one-
dimension.

4.2.1. INTERPOLATED BOUNCEBACK SCHEME

The conventional no-slip boundary in LBM is based on the simple bounce-
back scheme, which approximates the geometry in stair-case form. The effects
of such an approximation are more pronounced at high Reynolds number,
where the boundary layers are thinner, resulting in poor accuracy. In our sim-
ulations, we use a linearly interpolated bounce back scheme (Bouzidi et al.,
2001) to accurately consider the curved geometry of the particle. A simplified
one-dimensional interpolated bounce-back scheme is shown in figure 4.3. The
parameter qα is the fractional distance along the direction α of the fluid node
to the actual wall and is given by qα = |rw − ri |/|rb − ri |. Depending on whether
qα < 1/2 or qα ≥ 1/2, two different cases are to be considered:

fᾱ(ri , t )= 2qα f̂α(ri , t )+ (1−2qα) f̂α(r j , t ), qα < 1/2, (4.7)

fᾱ(ri , t )=
1

2qα
f̂α(ri , t )+

(2qα−1)

2qα
f̂ᾱ(ri , t ), qα ≥ 1/2. (4.8)

Here the subscript ᾱ denotes the opposite direction of α. The notations f̂α and
fα denote the post-collision distribution functions before and after advection.
From an implementation point of view, storing the distribution before and after
advection ( f̂α and fα) results in additional memory burden. Therefore, Lalle-
mand & Luo (2003) suggested to make use of the fact that advection is simply a
spatial shifting of distributions, and that therefore the indices can be accordingly
modified as

fᾱ(ri , t )= 2qα fα(ri +eα∆t , t )+ (1−2qα) fα(ri , t ), qα < 1/2, (4.9)

fᾱ(ri , t )=
1

2qα
fα(ri +eα∆t , t )+

(2qα−1)

2qα
fᾱ(ri −eα∆t , t ), qα ≥ 1/2. (4.10)

The linear interpolation scheme was chosen for the no-slip boundary, as the par-
allel code requires only one layer of ghost cells as opposed to two layers in case of
a quadratic scheme, resulting in additional communication overhead. Further,
the improvement in solution accuracy is negligible between linear and quadratic
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Outflow
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Freeslip boundary

Figure 4.4: Simulation domain, the forces and torque acting on the particle and
the boundary conditions.

interpolation schemes, provided sufficient resolution is used (Kruggel-Emden
et al. (2016); Pan et al. (2006)). For the shapes considered - prolate & oblate el-
lipsoids and spherocylinder - the distance from fluid node to the wall boundary
along the velocity directions are computed using ray-geometry intersection al-
gorithms (Akenine-Möller et al., 2008). As ellipsoids can be described by a single
equation, the ray-ellipsoid intersection is solved as a single problem. The ray-
spherocylinder intersection is decomposed into three ray-intersection problems
- (i) ray-cylinder and (ii) two ray-sphere intersection problems for the top and
bottom hemispheres.

4.2.2. BOUNDARY CONDITIONS AND FORCE EVALUATION

The schematic geometry of the domain is described in figure 4.4. A uniform ve-
locity is prescribed at the inlet based on Hecht & Harting (2010), which extends
the Zou and He boundary condition (Zou & He, 1997) to a D3Q19 lattice. The
side walls are prescribed as free-slip boundary rather than as periodic bound-
ary condition, which could cause the flow to deflect either up or down based
on inclination of the non-spherical particle (Hölzer & Sommerfeld, 2009). The
downstream (outlet) is specified by an axial-stress-free boundary condition with
∂uz /∂z = 0 (Aidun et al., 1998). All the simulations are initialized with uniform
inlet velocity in the domain. The momentum contribution along a single fluid-
solid link exerted on the particle by the fluid is computed using the momentum
exchange method (Bouzidi et al., 2001; Mei et al., 2002; Lallemand & Luo, 2003)
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Figure 4.5: Normalized drag coefficient CD of a sphere as function of particle
resolution in diameter d (in lattice cells) for different Re .

as

pα(rb, t )= eα( fα(rb, t )+ fα(ri , t )). (4.11)

Correspondingly, the force and torque are computed as

F =
∑

all rb

∑

α6=19
pα(rb , t ) (4.12)

T =
∑

all rb

∑

α6=19
(rw −rc )×pα(rb , t ). (4.13)

Here rc is the center of gravity of the particle.

4.2.3. GRID RESOLUTION AND DOMAIN INDEPENDENCE STUDY

Before proceeding to the simulations of non-spherical particles, the influence of
grid resolution and domain size at different Re are assessed. The influence of
grid resolution is tested with flow around an isolated sphere. The normalized CD

for different Re is plotted in figure 4.5. The normalization is done using the high-
est resolution CD and not against any popularly available CD correlations for a
sphere. This is because at high Re , the CD value becomes smaller and the avail-
able correlations themselves have minor deviations compared to the true CD .
This would be amplified strongly for small CD values and therefore are not the
best choice. Three different regimes are tested: (i) Stokes flow, (ii) intermediate
Reynolds number at Re = 100 with a steady wake, and (iii) high Reynolds num-
ber Re = 1000 exhibiting complex, unsteady wake behind the sphere (in which
case the mean CD is reported). The influence of grid resolution is stronger with
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Figure 4.6: CD at different Re for flow around sphere.
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Figure 4.7: Influence of the clearance for (a) Re = 0.1 and (b) Re = 100. (◦)
sphere, ellipsoid 1 at (×) φ = 0◦ and (�) φ = 90◦, ellipsoid 2 at (♦) φ = 0◦ and
(▽) φ= 90◦.

increasing Re , as seen in figure 4.5. For Re = 1000, we observe CD = 0.456 at reso-
lution deq = 40, which is in good agreement with the literature result, CD = 0.464
from Vakarelski et al. (2016). The absolute CD values for flow around sphere at
different Re from our simulations are given in figure 4.6 along with the Clift cor-
relation as listed in Brown & Lawler (2003). It can be observed that there is good
match from our results compared with the Clift correlation and also the experi-
mental results at different Re .

The influence of the presence of side walls (confinement effect) is tested as a
function of hc /deq , where hc is the clearance between the particle and the side
walls (see figure 4.4), which is kept the same for the four lateral walls for a partic-
ular Re . Tests are performed for a sphere, ellipsoid 1 and ellipsoid 2 for Re = 0.1
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dmi n

Re Ellipsoid 1 Ellipsoid 2 Fibre hc /deq lu/deq ld /deq

0.1 ≤ Re < 10 16 16 16 10 10 10
10 ≤ Re ≤ 100 20 20 20 7 7.5 7.5

300 30 20 20 5 5 10
1000,2000 40 30 30 4.5 5 10

Table 4.1: Details of the particle resolution in lattice cells and domain sizes at
different Re . dmi n is the minimum thickness of the particle.

and Re = 100. It can be observed from figure 4.7 that all the different geometries
have consistent confinement effects for different Re , provided the clearance hc is
used to characterize confinement rather than particle center to wall distance. As
observed, between Re = 0.1 and Re = 100, the wall effects tend to become weaker
for increasing Re and therefore confinement tests for Re > 100 are not presented
here. For simulations with Re > 100, random confinement tests are performed
and also literature data (Zastawny et al., 2012) are used for selecting appropriate
hc . It has been observed that hc ≥ 4.5 is sufficient to produce confinement in-
dependent results, as the viscous effects get weaker for increasing Re . Therefore,
we maintained at least hc = 4.5 for Re > 100.

Different simulations have different particle resolutions, upstream length lu ,
downstream length ld , and clearance hc , depending on the Re . An extensive
study regarding the upstream and downstream lengths is avoided to simplify the
parameter space. Again, we have examined different literature containing flows
around particles regarding the domain lengths (Zastawny et al., 2012; Hölzer &
Sommerfeld, 2009). With this information, we have selected the upstream and
downstream lengths. From our experience, only the downstream length is found
to be significantly influencing results, specifically at high Re . Therefore, we have
kept downstream length sufficiently long with ld /deq = 10 for Re ≥ 300 to avoid
any influence of outflow boundary on the particle wake.

The influence of particle resolution (see figure 4.5) and the effects of domain
size (see figure 4.7) at different Re are considered carefully on choosing the par-
ticle sizes. The chosen particle resolutions and the simulation domain sizes are
listed in table 4.1. It has to be noted that the listed resolutions are the least thick-
ness (dmi n) of the particle. The other dimensions are always larger than dmi n

and therefore a good particle resolution is ensured. Since the grid independence
study is performed prior to the actual simulations, the particle resolution is cho-
sen such that the deviations are less than 3% of the true value.
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Figure 4.8: Velocity contours for flow around different particles at Re = 300 and
φ= 30◦: (a) ellipsoid 1, (b) ellipsoid 2, and (c) fibre.

4.3. FLOW AROUND VARIOUS NON-SPHERICAL PARTICLES

Detailed LBM simulations of the flow around 3 different non-spherical particles
are performed. The simulated range of Reynolds number is 0.1 ≤ Re ≤ 2000 at
incident angles 0◦ ≤ φ ≤ 90◦. As an example, the flow around different particles
at Re = 300 and φ = 30◦ is shown in figure 4.8. Apart from producing accurate
results through the simulations, fitting the observed data to a custom function,
which has the least relative deviation is itself a challenge. As we will discuss, the
functional form of the correlation should have relevant physical backing to pro-
duce the best fit and also to be applicable to extended Re ranges. We considered
the physics carefully while proposing the functional forms. The magnitude of the
relative deviation between the correlation and simulation data is globally mini-
mized using a Python optimization function. We used Powell’s method (Powell,
1964), which was found to be best among the available optimization methods for
our data.
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4.3.1. DRAG

We simulated different non-spherical particles at different incident angles φ and
Re . The resulting CD at different φ for various Re are plotted in figure 4.9. It can
be noted that the exponent of the sin

(

φ
)

term in the fits of CD in Zastawny et al.

(2012) are very close to 2 (see table 2 in Zastawny et al. (2012)). The same has
been observed by Ouchene et al. (2016) for different prolate spheroids of aspect
ratios upto 32. It might be tempting to relate this finding to a similar correla-
tion expected in the Stokes flow for non-spherical particles. We have investi-
gated this sine-squared behaviour for different non-spherical particles, both in
the Stokes limit and at Re as high as 2000 (Sanjeevi & Padding, 2017). Surpris-
ingly, the tested non-spherical particles exhibited sine-squared dependence of
the mean CD , even for complex unsteady flows at Re = 2000. We found that the
linearity assumption, the reason for the sine-squared behaviour in the Stokes
regime, does not hold at high Re , as may have been expected due to the flow
non-linearities occurring at high Re . Rather, we find that the pressure distribu-
tion along the particle surface for different φ scales in a particular pattern. The
pattern is dependent on the angle between the particle’s surface-normal and the
direction of the incident flow. This leads to the observed near sine-squared phe-
nomenon. The phenomenon is found to be primarily holding for different elon-
gated particles such as prolate spheroids, spherocylinders as well as low aspect
ratio oblate spheroids. Flatter, high aspect ratio oblate spheroids do not exhibit
the sine-squared dependence for reasons discussed in Sanjeevi & Padding (2017).

Initially, we considered the use of correlations similar to the popularly avail-
able Zastawny et al. (2012) form, since their form is quite flexible to capture the
dependencies of CD on Re and φ. Since the Re range is much larger in our
case, with 0.1 ≤ Re ≤ 2000 compared to 0.1 ≤ Re ≤ 300 studied by Zastawny
et al. (2012), our proposed correlations require further modifications. For rea-
sons mentioned already, our proposed form takes an exponent 2 for the sine-
term. We correlate the measured CD at different Re and φ for the different tested
non-spherical particles in the following form:

CD,φ =CD,φ=0◦ + (CD,φ=90◦ −CD,φ=0◦)sin2φ (4.14)

with

CD,φ=0◦,90◦ =
( a1

Re
+ a2

Rea3

)

e−a4Re +a5(1−e−a4Re ) (4.15)

The coefficients for the CD correlation at 0◦ and 90◦ incident angle are listed
in table 4.2. The table values close to 0 should not be ignored as they have a
strong influence at high Re . Physically, the CD should exhibit 1/Re scaling at
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Figure 4.9: CD vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre (▽▽▽).
The corresponding solid lines in respective colors indicate the fit. At Re = 0.1
for ellipsoid 1, the dashed line corresponds to theory (Happel & Brenner, 1983),
dashed-dot line for Zastawny et al. (2012) and dotted lines for Ouchene et al.

(2016).
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Figure 4.10: CD against Re for different non-spherical particles with Re in (a)
linear scale and (b) log-scale. The corresponding CD correlations fit at φ = 0◦

(solid lines) and φ= 90◦ (dotted lines) are also shown.

Ellipsoid 1 Ellipsoid 2 Fibre
φ= 0◦ φ= 90◦ φ= 0◦ φ= 90◦ φ= 0◦ φ= 90◦

a1 23.10 27.93 24.66 30.18 24.48 31.89
a2 3.397 4.286 4.059 4.396 3.965 5.519
a3 0.364 0.234 0.349 0.156 0.41 0.229
a4 0.0008 0.0018 0.0007 0.0073 0.0005 0.0032
a5 0.169 0.815 0.278 1.469 0.15 1.089

Table 4.2: Coefficients for the CD correlation.
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Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 1.48 1.66 2.18
Max.(%) 5.23 4.52 13.38

Table 4.3: Relative deviation between CD results and the correlation.

Stokes flow, irrespective of the particle shape. In our form, the term a1/Re repli-
cates this behaviour. For intermediate Re , the term a2/Rea3 is dominant. Ad-
ditionally, it is known that for a sphere, the CD decays to a near constant value
at large Re > 103 (see figure 4.6). Similar behaviour is observed for the different
tested non-spherical particles and the term a5 captures the near constant CD

at high Re (see figure 4.10). Appropriately, the factors e−a4Re and 1− e−a4Re act
as a smooth switch between these moderate and high Re regimes. Figure 4.10
shows the CD values at φ = 0◦ and φ = 90◦ for different Re . With the proposed
functional form for the correlation, the decay rate of CD with respect to Re is
captured well and therefore, we suggest that the CD correlation can be extended
to much lower Re in the Stokes regime and also to a few thousand Re magnitude
greater than our simulations. To demonstrate this, figure 4.10(b) is shown with
the fit from equation 4.15 upto Re = 5000 and it can observed that the trends
are captured well for Re greater than the simulated limit of Re = 2000. Further,
we show that the proposed CD correlations are very accurate with respect to the
measured coefficients and the same can be observed from figure 4.9. The mean
and the maximum of the deviations between the CD correlations and the actual
results are listed in table 4.3. It can be observed that the mean of the absolute
deviations are around 2% or less.

For creeping flows, it is known that the viscous forces dominate and the vis-
cous forces themselves are dependent on the surface area of the particle. Con-
versely, for high Re , the pressure forces dominate and the pressure forces them-
selves are predominantly dependent on the projected surface area against the
oncoming flow. This can also be observed in our simulations on comparison of
CD at Re = 0.1 and Re = 2000 in figure 4.9. For Re = 0.1, it is seen that the CD of
the fibre at different φ is at least equal or greater than that of disc-like ellipsoid
2. However at Re = 2000, we observe that the disc-like ellipsoid 2 has CD values
larger than that of the fibre.

STEADY AND UNSTEADY REGIMES

The triggering of unsteady behaviour from a steady flow regime for a non-
spherical particle depends not only on the Re but also on the incident an-
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Figure 4.11: Time dependent behaviour of CD at different incident angles φ at
Re = 300 for (a) ellipsoid 1, (b) ellipsoid 2 and (c) fibre.

gle φ. For a 6:1 prolate spheroid, Jiang et al. (2014) investigated the flow
at a specific inclination of φ = 45◦ at approximately Re = 91,363, and 1817
(Red = 50,200, and 1000 respectively). They report that even at Re = 1817, the
flow exhibits predominantly steady and symmetric behaviour with the measured
force coefficients exhibiting steady behaviour, with a mention that the flow field
is on the verge of exhibiting vortex shedding behaviour for higher Re . These
results are contrasting with the work of El Khoury et al. (2012) where the same
prolate spheroid of ratio 6:1 is investigated at 91 ≤ Re ≤ 545 (50 ≤ Red ≤ 300 re-
spectively), but at cross-flow with φ= 90◦. They observe that unsteady behaviour
is triggered at Reynolds numbers as low as Re ≈ 182 (Red = 100). Therefore, we
can say that the incident angle φ plays a major role in triggering unsteadiness.
The simulations are run for a sufficiently large time t∗ = |u∞|t /deq , specifically
for Re expected to exhibit unsteady regimes.

At Re ≤ 100, all three tested particles show steady flow behaviour for all φ.
However at Re = 300, the particles show unsteady behaviour for certain angles.
Figure 4.11 shows the time-dependent drag of different non-spherical particles
at Re = 300. It can be observed that the ellipsoid 1 and the fibre, both slender
objects, exhibit steady behaviour for φ≤ 45◦ and unsteady behaviour for higher
φ. However, the disc-like ellipsoid 2 exhibits steady behaviour only for low in-
cident angles, i.e. φ ≤ 10◦ and unsteady behaviour at higher incident angles. At
higher Re = 1000, both the ellipsoid 1 and the fibre exhibit steady behaviour un-
til φ≤ 10◦ and ellipsoid 2 exhibits unsteady behaviour for all φ. At Re = 2000, all
particles exhibit unsteady behaviour for all incident angles φ, except for the fibre
at φ= 0◦.
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Figure 4.12: CL vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre
(▽▽▽). The corresponding solid lines in respective colors indicate the fit. At Re = 0.1
for ellipsoid 1, the dashed line corresponds to theory (Happel & Brenner, 1983),
dashed-dot line for Zastawny et al. (2012) and dotted lines for Ouchene et al.

(2016).
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4.3.2. LIFT

The lift coefficients CL of the different tested particles and the corresponding
correlation fits are plotted in figure 4.12. The proposed CL fit takes the following
form

CL,φ =
(

b1

Re
+

b2

Reb3
+

b4

Reb5

)

sinφ(1+b6Reb7 ) cosφ(1+b8Reb9 ) (4.16)

with the coefficients listed in table 4.4. The proposed CL correlation form has
both sine and cosine terms approaching exponent 1 for low Re , because this is
the exact physical limit for Stokes flow (Happel & Brenner, 1983). As equation 4.6
is valid for Stokes flow, the corresponding 1/Re term of the CL fit is dependent
on the CD , i.e. b1 ≈ a1(φ= 90◦)−a1(φ= 0◦).

The mean and the maximum of the deviations between the CL results and the
fit are listed in table 4.5. The proposed correlation fits the observed results with
good agreement with around 3-4% mean deviation. It is difficult in general to
achieve a better fit due to the fact that the order of magnitudes of CL are smaller
than CD and any small deviation is amplified. There is also a trend reversal in the
skewness of the CL vs φ curve for increasing Re . At Stokes flow, the CL at different
φ is symmetric. With increasing Re , up to the steady limits i.e. around Re =
300, the distribution skews to a particular direction and upon onset of unsteady
behaviour, the skewness changes direction. This is observed for ellipsoid 1 and
ellipsoid 2. Ellipsoid 1 results skew to the right upto Re = 300 and to the left for
higher Re and vice versa for ellipsoid 2.

In general, the maximum CL generated at a given Re is a function of the par-
ticle aspect ratio itself and also of the projected area of the particle at φ= 45◦. For
the same reason, even though both ellipsoids 1 and 2 are of same aspect ratio, the
disc-like ellipsoid 2 always experiences more lift than the needle-like ellipsoid 1.
Interestingly the fibre, which has aspect ratio 4, experiences the highest lift both
in the Stokes regime and at Re = 2000 among the 3 tested particles. However at
intermediate Re = 100, the disc-like ellipsoid 2 experiences maximum lift until
the Re corresponding to onset of the unsteady flow. This is due to the fact that at
intermediate Re , the disc-like ellipsoid 2 experiences stronger wake (compared
to an elongated ellipsoid) at intermediate angles and this increases CL directly.
By stronger wake, we imply that the wake size is large and proportional to the
projected area of the particle against the flow. Another interesting observation is
that the maximum CL of the fibre monotonously reduces with increasing Re like
other non-spherical particles. However after a critical Re , the trend reverses and
the maximum CL starts to increase again compared to other particles (see figure
4.12).
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Ellipsoid 1 Ellipsoid 2 Fibre

b1 4.484 5.28 6.83
b2 1.326 8.96 0.071
b3 0.122 0.234 −0.352
b4 0 −8.095 2.592
b5 0 0.325 0.298
b6 0.016 −0.004 0.065
b7 0.286 0.352 0.262
b8 −0.010 −0.002 0.003
b9 0.332 0.273 0.491

Table 4.4: Coefficients for the CL correlation. The near zero coefficients should
not be ignored as they would influence CL at high Re .

Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 3.73 3.50 3.60
Max.(%) 18.54 20.86 15.74

Table 4.5: Relative deviation between CL results and the correlation. It should
be noted that the maximum relative deviations are observed at incident angles φ
with CL close to zero, i.e. φ near 0◦ and 90◦.
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Figure 4.13: The normalized lift coefficient CL,φ/(CD,φ=90◦ −CD,φ=0◦) for the fibre
plotted against φ for different Re from 0.1 up to 2000. The solid line indicates
sinφcosφ. It should be noted that the used CD and CL values are from the simu-
lations and not from the correlations.

Even though equation 4.6 is only valid in the Stokes regime, we find that the
same equation can be used as a reasonable approximation at higher Re , specif-

ically for smooth, elongated particles. Examples of smooth, elongated particles
include prolate spheroids, spherocylindrical capsules, etc. Sufficient care has to
be exercised on applying equation 4.6 to shapes such as simple cylinders due to
their sharp edges, as sharp edges might affect flow pattern and evolution of the
instabilities significantly. However for high aspect ratio elongated cylinders, the
influence of these sharp edges would be relatively weak compared to the frontal
projected area of the particle for different φ. Equation 4.6 has been tested by us
for different slender particles such as the prolate spheroids of different aspect ra-
tios upto Re = 2000 (Sanjeevi & Padding, 2017). The mean of deviations between
the simulations and equation 4.6 is under 15%. In this work, we also show that
equation 4.6 can also be used for spherocylinders (fibres) as a decent approxima-
tion. Figure 4.13 shows the distribution of normalized CL for the fibre at different
Re upto 2000.

At the same time, it is interesting to note that a similar observation does not
hold for disc-like oblate spheroids. Ellipsoid 2 in this work tested for Re ≤ 2000
does not exhibit this behaviour. Another, flatter oblate spheroid of aspect ra-
tio 4 has been tested by us at Re = 100 (Sanjeevi & Padding, 2017). The same
oblate spheroid also does not exhibit the reasonable approximation of equation
4.6. The disc-like spheroids in general experience stronger wake compared to
needle-like spheroids at Re beyond the Stokes regime. The stronger wake trans-
lates to larger lift at intermediate incident angles φ and thereby making the devi-
ation larger for oblate spheroids (Sanjeevi & Padding, 2017). However in the ab-
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Figure 4.14: CT vs φ at different Re for ellipsoid 1 (���), ellipsoid 2 (◦), and fibre
(▽▽▽). It has to be noted that torque vanishes in Stokes flow and therefore ignored
for the correlation.

sence of complete CL data, equation 4.6 could still be used for oblate spheroids
as an approximation.

4.3.3. TORQUE

Any non-spherical particle inclined with respect to a homogeneous flow also ex-
periences a pitching torque. The torque coefficient CT from the simulations and
the correlation fits are plotted in figure 4.14. For Stokes flow, the pitching torque
is known to vanish. Therefore, the Stokes regime CT results are ignored while
making the fit. The proposed CT correlation fitted for the range 1 ≤ Re ≤ 2000
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Ellipsoid 1 Ellipsoid 2 Fibre

c1 2.660 3.643 5.079
c2 0.190 0.178 0.342
c3 0 −1.252 0.197
c4 0 0.319 −0.161
c5 −8.73 ×10−4 −0.018 0
c6 0.798 0.387 0
c7 −3.70 ×10−5 0.004 0
c8 0.963 0.349 0

Table 4.6: Coefficients for the CT correlation. The near zero coefficients should
not be ignored as they would influence CT at high Re .

Ellipsoid 1 Ellipsoid 2 Fibre

Mean(%) 3.40 3.43 4.12
Max.(%) 27.30 15.13 17.18

Table 4.7: Relative deviation between CT results and the correlation. The maxi-
mum relative deviations are observed at incident angles φ with CT close to zero,
i.e., near 0◦ and 90◦.

takes the following form

CT,φ =
( c1

Rec2
+ c3

Rec4

)

sinφ(1+c5Rec6 ) cosφ(1+c7Rec8 ) (4.17)

with coefficients listed in table 4.6. Similar to CL , the CT values exhibit near sym-
metric behaviour and vanish to zero at the extreme incident angles φ and there-
fore, the fitted correlation is very sensitive to minor deviations. The mean and
maximum deviations of the correlation for the different tested particles are listed
in table 4.7. Even though good agreements are observed in figure 4.14, the over-
all mean relative deviation is around 3.5%. This mainly stems from larger relative
deviations for the near-zero CT values observed close to φ= 0◦ and φ= 90◦.

4.4. COMPARISON WITH LITERATURE CORRELATIONS

In this section, we compare our simulation results with different correlations
available in the literature. Hölzer & Sommerfeld (2008) provide only a CD cor-
relation, but it is applicable to arbitrary non-spherical particles. We use it at
φ = 0◦,90◦ and interpolate for intermediate incident angles φ using equation
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Figure 4.15: Comparison of CD results with literature correlations.

4.14 as all tested particles exhibit near sine-squared CD behaviour for all Re . Za-
stawny et al. (2012) and Ouchene et al. (2016) provide CD , CL and CT for specific
non-spherical particles limited to steady flows. The provided correlations have
different decay rates for different Re regimes. If such decay rates are captured
accurately, it is possible that their correlations can be extended to ranges beyond
their tested limits. It is shown in figure 4.1 that the fluidized particles experience
flows upto Re = 2000. In this section, we therefore test the correlations of both
Zastawny et al. (2012) and Ouchene et al. (2016) upto Re = 2000, even though
their tested Re regime is roughly an order of 10 less. Two cases are considered,
one at Re = 100 and another at Re = 2000 and the corresponding drag, lift and
torque coefficients are compared. At the moment of writing, we are not able
to reproduce the CD and CL correlation results available in Ouchene et al. (2016)
due to typographical errors in their published correlation. The corresponding ty-
pographical corrections have been communicated to us by Ouchene et al. (2016).

The CD comparisons for the different non-spherical particles are shown in
figure 4.15. For ellipsoid 1, we observe that our CD results are in good agreement
with Zastawny et al. (2012) for both Re = 100 and Re = 2000, even though their
correlation is valid only up to Re = 300. However, the results of Zastawny et al.

(2012) are not accurate for Stokes flow as can be observed from figure 4.9 for Re =
0.1 on comparison with theoretical solutions and other literature results. This
is primarily due to the fact that Zastawny et al. (2012) use a domain of 20deq ×
20deq ×10deq for Re < 1. Their lowest domain dimension 10deq is not sufficient
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Figure 4.16: Comparison of CL results of ellipsoid 1 with literature correlations.

for Stokes flow, where viscous effects are dominant and thereby requiring larger
domain size.

On the other hand, the more generic correlation of Ouchene et al. (2016) for
different prolate spheroids is comparatively less accurate. While their CD,φ=0◦ is
found to be sufficiently accurate, the CD,φ=90◦ is not accurate, thereby leading
to an inaccurate prediction overall with increasing Re . We find that the Hölzer
& Sommerfeld (2008) correlation works reasonably well for all the tested non-
spherical particles at Re = 100 but not well for Re = 2000. This is due to the fact
that their correlation is intended to be more generically applicable to all non-
spherical particles and for a wide range of Re . Further, the CD itself reduces with
increasing Re , with a rate that depends on the particle geometry. Therefore at
high Re , any deviation is amplified due to the smaller CD value.

The comparison of CL values for ellipsoid 1 are given in figure 4.16. For
Re = 100, we observe that our simulations results are in very good agreement
with Zastawny et al. (2012). The results of Ouchene et al. (2016) exhibit large de-
viations, with a maximum deviation of around 40%. For Re = 2000, the results of
Zastawny et al. (2012) are still reasonably accurate considering their tested limit
is Re = 300. However, the CL correlation of Ouchene et al. (2016) performs poorly
at Re = 2000. As discussed earlier for CD , if the coefficient decay rates are cap-
tured with proper physical bounds, the Re limits can be extended much further.
In a similar sense, the CL correlation of Ouchene et al. (2016) does not capture
the decay rates accurately and also their skewness term sin1.002Re

φcosφ makes
the CL skewness extreme for higher Re .

Generally, determining the particle correlations involves a two-step process:
(i) performing accurate simulations and (ii) fitting the simulation results in an
accurate form. The work of Ouchene et al. (2016) is performed using Ansys Flu-
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Figure 4.17: Comparison of CT results of ellipsoid 1 with literature correlations.

ent, which is one of the most reliable commercial solvers and therefore, simula-
tion accuracy is good. However, the choice of the fitting form is where most of
the precision is lost, since the work of Ouchene et al. (2016) covers a wide range
of aspect ratios, Re and incident angles. Even for a simple CD correlation for a
sphere, the accurate correlation forms (for example the Clift correlation) split the
correlation into multiple Re range. For the same reason, we observe that CD and
CL correlations of Ouchene et al. (2016) have poor accuracy (see figures 4.15 and
4.16) as they are done by a single fit. However, their CT is found to be more accu-
rate as it is split for two different aspect ratio ranges (see figure 4.17). Our work
does not have this issue as the fits are independent for the different particles in-
vestigated and hence simpler.

Regarding CT , the correlations of Zastawny et al. (2012) and Ouchene et al.

(2016) are compared for ellipsoid 1 with our results in figure 4.17. We observe
that both the literature results are in good agreement with our simulation results
for Re = 100. At Re = 2000, there is still a reasonable match on comparing the
maximum amplitudes of the CT , but slight variation in the skewness. Our CT

distribution is slightly skewed to the left and the literature results slightly to the
right. This is again due to the fact that the literature results are only performed
for predominantly steady flow regimes with Re ≤ 300.

4.5. CONCLUSION

The flow around different non-spherical particles has been simulated using the
MRT-LBM scheme for different incident angles φ. Interpolated bounce-back is
used to achieve high accuracy compared to the conventional staircase no-slip
boundaries in LBM, especially at high Re . The simulations have been performed
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from the Stokes limit to Re = 2000, while previous works were mainly limited to
steady flows up to Re = 300. Different tests have been performed to assess the
influence of grid resolution and also the size of the domain, thereby ensuring the
quality of the results. The influence of the particle’s geometry and also the in-
cident angle φ has a significant effect on the onset of unsteady flow behaviour.
We observed that the simulated particles exhibit sine-squared mean drag scaling
with φ, starting from the Stokes limit and even upto Re = 2000. Such an agree-
ment at high Re is not due to linearity of the flow fields as in Stokes flow, but
rather due to consistent pressure pattern depending on local surface normal of
the particle (Sanjeevi & Padding, 2017).

At the same time, we observed that the lift and torque coefficient display a
symmetric behaviour at Stokes flow and a slightly skewed trend for larger Re . The
onset of unsteady flow behaviour also influences the direction of the skewness
i.e. different skewing directions before and after the transient Re for unsteady
flow behaviour. Correlations for drag, lift and torque coefficients have been pro-
posed, taking in consideration of known theoretical limits at low Re and differ-
ent decay rates at high Re . This implies that our correlations can be extended to
regimes beyond our tested limits, to lower Re in the Stokes regime and Re > 2000
to a considerable extent, especially the correlations of CD and CL . We also pro-
pose that in the absence of complete CL data for intermediate incident angles φ,
the CL equation of the Stokes flow (equation 4.6) can be used as a reasonable ap-
proximation at high Re . Better agreement is observed for smooth, elongated par-
ticles such as prolate (needle-like) spheroids and spherocylindrical fibres com-
pared to oblate (disc-like) spheroids. The reason why disc-like spheroids show
poor agreement is due to increased lift at intermediate incident angles φ due to
stronger wake (Sanjeevi & Padding, 2017).

Good agreement between the measured data and the fits is observed, with
deviations of around 2% for CD and around 3.5% for CL and CT . The proposed
correlations will greatly help Euler-Lagrangian simulations, catering the practical
Re regimes observed in fluidized beds.
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TORQUE ON ASSEMBLIES OF

NON-SPHERICAL PARTICLES

This chapter provides a recipe for creating closures of average drag, lift and

torque for static assemblies of axisymmetric, non-spherical particles. Apart from

Reynolds number Re and solids volume fraction ǫs , we propose four additional

parameters to characterize the flow through non-spherical particle assemblies.

Two parameters consider the mutual orientations of particles (the orientation

tensor eigenvalues S1 and S2) and two angles represent the flow direction (polar

and azimuthal angles α and β). Interestingly, we observe that the hydrodynamic

forces on the particles are independent of the mutual particle orientations. Rather,

the most important parameter representing the particle configuration itself is the

incident angle φ of the individual particles with respect to the incoming flow.

Moreover, we observe that our earlier finding of sine-squared scaling of drag for

isolated particles (Sanjeevi & Padding, 2017) holds on average even for a mul-

tiparticle system in both the viscous and inertial regimes. Similarly, we observe

that the average lift for a multiparticle system follows sine-cosine scaling, as is

observed for isolated particles. Such findings are very helpful since the pressure

drop of a packed bed or porous media can be computed just with the knowledge

of orientation distribution of particles and their drag at φ = 0◦ and φ = 90◦ for a

given Re and ǫs . With the identified dependent parameters, we propose drag, lift

and torque closures for multiparticle systems.

The contents of this chapter have been submitted to AIChE J. :
Sanjeevi S. K. P. & Padding J. T. (2019) “Hydrodynamic forces on assemblies of non-spherical par-
ticles: orientation and voidage effects”. AIChE J. (submitted).
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5.1. INTRODUCTION

Accurate fluid-particle drag, lift and torque closures are required for precise
Euler-Lagrangian simulations of non-spherical particles. Historically, different
drag closures have been developed for assemblies of spherical particles (Beet-
stra et al., 2007; Tenneti et al., 2011; Tang et al., 2015). However, practical flows
often involve assemblies of non-spherical particles for which there exist no clo-
sures at the moment. Even for static, mono-disperse, non-spherical particle
assemblies, creating the required closures is complicated due to the different
possible mutual orientations of the particles. Furthermore, there is a lack of
knowledge identifying the relevant parameters that can parametrize the drag,
lift and torque, which adds to the complication. Most fluidization applications
involve gas-solid flows, in which case the large density ratios ensure large Stokes
numbers, i.e. the typical relaxation time of the solid particle velocity is large
relative to the response time of the gas (Sanjeevi et al., 2018a). It has been shown
that under such conditions, it is sufficient to assume the particle configurations
to be quasi-static (Rubinstein et al., 2017).

Conventionally, fluidization simulations of non-spherical particles are per-
formed by combining isolated particle drag correlations with correlations ex-
pressing the voidage effects as determined for sphere assemblies. There have
been several works in the past focussing on the drag experienced by isolated non-
spherical particles. Hölzer & Sommerfeld (2008) proposed a correlation for the
drag coefficient CD for non-spherical particles. The proposed correlation is a
function of particle sphericity and crosswise-sphericity, based on the projected
area, which indirectly represents the particle orientation. Their proposed cor-
relation is based on literature data of different non-spherical particles of vari-
ous shapes and aspect ratios. More recently, drag, lift and torque closures for
isolated non-spherical particles have been derived based on direct numerical
simulations. Zastawny et al. (2012) developed drag, lift and torque coefficients
for four different non-spherical particles as a function of Reynolds number Re

and incident angle φ with respect to the incoming flow. The investigated parti-
cles have aspect ratios ranging from 1.25 to 5 and Re ≤ 300. Similarly, Richter &
Nikrityuk (2013) proposed fits for drag, lift, torque coefficients for cubic and el-
lipsoidal particles. The above mentioned literature is primarily limited to steady
flow conditions. Recently, we developed drag, lift and torque closures for three
different non-spherical particles from the viscous Stokes regime upto the high Re

regime of Re = 2000, involving complex, unsteady flows (Sanjeevi et al., 2018a).
In an earlier work (Sanjeevi & Padding, 2017), we reported the interesting finding
that the drag coefficient CD at different incident angles φ follows a sine-squared
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scaling given by

CD,φ =CD,φ=0◦ + (CD,φ=90◦ −CD,φ=0◦)sin2φ. (5.1)

Likewise, we reported another interesting finding that the lift coefficient CL fol-
lows sine-cosine scaling at different φ as

CL,φ = (CD,φ=90◦ −CD,φ=0◦)sinφcosφ (5.2)

for various elongated particles. The above mentioned scaling laws must be math-
ematically true in the Stokes regime due to linearity of the flow fields. How-
ever, their validity in the inertial regimes is primarily due to an interesting pat-
tern of pressure distribution contributing to the drag and lift for different inci-
dent angles (Sanjeevi & Padding, 2017). In equations 5.1 and 5.2, the drag co-
efficients at incident angles of 0 and 90 degrees still depend on particle shape
and Reynolds number. The Reynolds number in the present work is defined as
Re = |us |deq /ν, where us is the superficial flow velocity, ν is the kinematic viscos-
ity of the fluid, and deq is the diameter of the volume-equivalent sphere given by
deq = (6Vp /π)1/3 with Vp the particle volume.

For multiparticle systems, various literature is available to include the
voidage effects, often developed through experiments and numerical simula-
tions. One of the most widely used expressions is that of Ergun (1952), which
has been developed based on a series of packed bed experiments of different
particle shapes. The only limitation of this work is that it is applicable primarily
in the dense limit. Richardson & Zaki (1954) performed various sedimentation
and fluidization experiments and proposed accordingly the effect of particle
volume fraction on the drag. Based on the previous literature on sedimentation
and packed bed experiments, Di Felice (1994) bridged the dilute and dense par-
ticulate regimes through a unified function, which also extends from low to high
Re . Though the above correlations provide a good approximation, the use of
such closures in Euler-Lagrangian simulations often do not represent accurate
physics. This is mainly due to the inability to construct moderate solids volume
fractions (ǫs ≈ 0.3) in experiments.

There is a growing interest to use numerical simulations to accurately de-
velop drag closures for different Reynolds numbers Re and solids volume frac-
tions ǫs , albeit primarily for spheres. Initially, lattice Boltzmann method (LBM)
has been the choice for simulating assemblies of spheres (Hill et al., 2001; van der
Hoef et al., 2005; Beetstra et al., 2007). Recently, Tenneti et al. (2011) used an im-
mersed boundary method (IBM) to develop drag closures for static assemblies of
spheres for 0.01 ≤ Re ≤ 300 and 0.1 ≤ ǫs ≤ 0.5. They observed a deviation of 30%
in the Re range from 100 to 300 with respect to the earlier work of Beetstra et al.
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(2007). This is possible because Beetstra et al. (2007) used LBM with the con-
ventional stair-case boundary condition to represent the sphere boundaries, for
which at high Re thinner boundary layers result in larger deviations. In this work,
we use a multi-relaxation time (MRT) LBM for high Re flows and an interpolated
bounceback scheme to much more accurately represent the particle geometry.
Recently, Tang et al. (2015) used an IBM based solver to create drag closures for
static assemblies of spheres upto Re ≤ 1000 and ǫs ≤ 0.6.

There are several disadvantages with combining an isolated non-spherical
particle drag with a voidage function based on spheres. First, the assumption
that the voidage effects are independent of particle shape is probably incorrect,
since there exist different closures even for assemblies of polydisperse spheres
(Beetstra et al., 2007; Holloway et al., 2010). Second, the voidage effects on lift
and torque in a multiparticle system are unknown and hence are often neglected
in Euler-Lagrangian simulations (Oschmann et al., 2014; Mahajan et al., 2018).
Thirdly, using the same factor for voidage effects for all incident angles φ may
hold in sufficiently dilute regimes but its validity in the dense limit is unknown.
At the moment, only He & Tafti (2018) have discussed the drag, lift and torque
for an assembly of non-spherical particles. However, they do not propose any
correlations which can be used in Euler-Lagrangian simulations. This could be
due to the difficulty in identifying the dependent parameters which represent the
orientation effects in non-spherical, multiparticle system adequately.

In this work, we propose and subsequently identify the important dependent
parameters for static, mono-disperse assemblies of axisymmetric non-spherical
particles. With the identified parameters, we create the drag, lift and torque clo-
sures accordingly. Our particle of interest is a capsule-like spherocylinder of
aspect ratio 4 (total length/shaft diameter). Compared to the two parameters
for sphere assemblies, i.e. Reynolds number Re and solids volume fraction ǫs ,
we propose four additional parameters for the assembly of axisymmetric non-
spherical particles. Two parameters describe the mutual orientations of the par-
ticles, namely two eigenvalues S1 and S2 of the orientation tensor, and two angle
parameters α and β represent the polar and azimuthal angles of the average flow
(in the coordinate frame determined by the principal directions of the order ten-
sor). The resulting six dimensional parameter space is adequately explored and
correlations are proposed accordingly. It should be noted that the fixed nature of
the particles in our simulations imply that the proposed correlations are applica-
ble for high Stokes number flows as typically experienced by Geldart D category
particles (Geldart, 1973).
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Re LD deq ν

0.1 ≤Re ≤ 10 288 28.36−48.5 1.3/3
10 < Re ≤ 100 576 56.72−97.0 0.1 to 0.08/3

300 576 56.72−97.0 0.04/3
600 576 56.72−97.0 0.015/3

1000 768 75.63−129.3 0.01/3

Table 5.1: Details of the simulation parameters used in our simulations in LB
units. LD denotes the side length of the cubic domain. The range of deq specified
is respectively for 0.1 ≤ ǫs ≤ 0.5.

5.2. SIMULATION SETUP

The numerical method is adequately explained and validated in our previous
works (Sanjeevi & Padding, 2017; Sanjeevi et al., 2018a). The flow is driven by
a body force g and the simulated cubic domain is periodic in all three direc-
tions. The use of the interpolated bounce back scheme within a periodic domain
results in a slow mass leakage/gain in the system. Accordingly, the mass is cor-
rected using a case 3 type correction described in Sanjeevi et al. (2018b). The
results for the multiparticle system are validated in section 5.2.5.

The ratio of deq /dmi n equals 1.765 for the considered spherocylinder of as-
pect ratio 4, where dmi n implies diameter of the cylinder. The simulation param-
eters used in our LBM simulations are summarized in table 5.1. Specifically, it
can observed that a good particle resolution (deq ) is maintained for different Re .
Further with increasing ǫs , the deq is increased accordingly to resolve increased
velocity gradients at high ǫs . All LBM simulations have cubic domain, each with
200 particles unless otherwise specified. At least two independent simulations
are performed for each Re and ǫs and the details of independent number of sim-
ulations are discussed later (see figure 5.13).

5.2.1. FLOW CONTROL

In order to perform a simulation for a specific Re , it is required to control the
superficial flow velocity us by applying a body force g . The relationship between
the superficial velocity and the average interstitial flow velocity uavg is given by
us = (1− ǫs )uavg . Due to the non-spherical nature of the particles, the sum of
lift forces is often non-zero, and the resultant direction of us can be different
from the direction of g . This necessitates the need to control both direction and
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Figure 5.1: Different particle configurations and their orientation tensors: (a)
Random, (b) planar random, and (c) unidirectional (nematic) configuration.

magnitude of the body force. Initially, the fluid is at rest with both us and g zero.
The flow is slowly ramped up by increasing g until the desired us is achieved. For
each timestep, the updated gravity gnew is computed as

gnew = gprev +
(us,re f −us,prev )

K 2
p

∆t , (5.3)

where gprev is the gravity from the previous timestep, us,re f is the desired refer-
ence superficial velocity, and us,prev is the superficial velocity from the previous
timestep. Kp is a time constant which controls the system response rate. The
stopping criterion for the simulations is when the system us reaches 99.9% of
the reference setpoint.

5.2.2. ORIENTATION TENSORS

In this section, we briefly explain the characterization of mutual orientations in
an assembly of axisymmetric non-spherical particles with orientation tensors.
We subsequently explain the use of a Maier-Saupe potential to achieve the de-
sired particle configurations through Monte-Carlo simulations.

To describe the orientation of a single axisymmetric particle, the azimuthal
and polar angles are sufficient. For a multiparticle configuration, it is important
to parametrize the mutual orientations of the particles, with the least number of
parameters. For this, we propose to use the orientation tensor S which is defined
as the average of the dyadic products of the particle orientation vectors. In other
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words,

S =
〈

p pT
〉

. (5.4)

Here, p is the unit orientation vector of a particle along the axis of symmetry. The
3 eigenvalues (which we order as S1,S2,S3 from small to large) characterize the
type of mutual alignment, as shown in figure 5.1. The corresponding 3 eigenvec-
tors define the principal directions of mutual particle alignment.

Because the trace of S is 1, only 2 eigenvalues are sufficient to specify the
amount of randomness, planar random (bi-axial), or unidirectional (nematic) or-
der. It should be noted that the tensor S is insensitive to an orientation p or −p of
particles. In other words, the tensor captures essentially the mutual alignment of
particles irrespective of particles oriented in positive or negative direction. Fig-
ure 5.1(a) shows a completely random configuration with S1 = S2 = S3 = 1/3.
Figure 5.1(b) shows a planar random configuration with particles primarily con-
fined to planes (in this example with random orientations in planes normal to
the x-direction) resulting in S1 = 0,S2 = S3 = 1/2, and similarly a unidirectional
(nematic, in this example in the z-direction) configuration in figure 5.1(c) with
S1 = S2 = 0,S3 = 1. In practical conditions, particles can exhibit more complex
configurations in between these extremes but can be adequately described by
2 eigenvalues S1 and S2. Regarding the unidirectional case, we consider only
nematic configurations but not smectic because ordering of both positions and
orientations is rare in fluidization conditions.

The above metrics can be used to describe the particle configuration. How-
ever, due to the nonsphericity of the particles, the flow orientation with respect
to the principal directions of the particle orientations is also important. This
results in two parameters, namely the polar angle (α) and azimuthal angle (β)
of the average flow velocity vector with respect to the space spanned by the 3
eigenvectors of the orientation tensor. In summary, the parameter space to be
explored for our flow problem has 6 parameters, namely Reynolds number Re ,
solids volume fraction ǫs , two particle configuration parameters S1, S2 and two
angles α and β describing the mean flow orientation with respect to the config-
uration.

5.2.3. GENERATION OF BIASED PARTICLE CONFIGURATIONS

The generation of non-overlapping configurations of the particles in a peri-
odic domain is required as an input for the flow simulations. Further, it is
also required to generate configurations of particles with a prescribed orienta-
tion tensor, which adds further complexity. In this section, we briefly describe
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(a) (b) (c)

Figure 5.2: Different configurations of non-spherical particles generated us-
ing the Monte-Carlo simulations: (a) Random configuration without the use of
Maier-Saupe potential, (b) planar random, and (c) unidirectional configuration
generated using the Maier-Saupe potential. For better clarity, the shown exam-
ples have only 50 particles. The actual simulations involve 200 particles.

the Monte-Carlo simulation algorithm for generating configuration of non-
overlapping particles and the use of a Maier-Saupe potential (Maier & Saupe,
1959) to bias the system to produce the required orientation tensor.

As the particles are spherocylindrical in shape, a simple way to detect overlap
is to find the minimum distance between two line segments. We define the line
segment as the line connecting the centres of the two spheres at the extremes
of the spherocylinder. If the distance between two line segments is less than
the particle diameter (i.e. sum of the radii of two interacting particles), then the
spherocylinders overlap. A fast algorithm is used to measure the shortest dis-
tance between the line segments (Vega & Lago, 1994).

Using the above overlap detection algorithm, the particles are randomly
translated in small steps compared to the particle size and rotated by a small
angle around a randomly chosen axis. This procedure results in a random con-
figuration after many iterations. If a prescribed orientation tensor is required,
besides the requirement of no overlap, the following Maier-Saupe potential is
applied to accept or reject a new orientation of a particle. We define a director
n along which the system is biased towards or against. Inside each Monte-Carlo
simulation step, a new particle orientation pnew can be accepted or rejected
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Figure 5.3: Histogram of particles with different incident angles φ with respect
to the flow vector (indicated by an arrow) for (a) random and (b) planar random
configuration. The shown example has 1000 particles. It should be noted that the
φ distribution for a random configuration will always scale as sinφ (solid black
curve) irrespective of the flow direction.

from the current orientation pcur r based on following criteria:

pnew =















pnew , if dE < 0

pnew , if dE ≥ 0 and U ([0,1]) < exp(−dE)

pcur r , otherwise

(5.5)

where dE = A((pnew ·n)2 − (pcur r ·n)2). (5.6)

Here, dE is the increase in Maier-Saupe potential and U ([0,1]) is a random num-
ber uniformly distributed between 0 and 1. The mutual particle orientations
emerge from the balance between the random rotations, which tend to disorder
the particle orientations, and the Maier-Saupe potential, which tend to order the
particle orientations. The magnitude of A determines the intensity of the con-
figuration towards the director. A planar random configuration is achieved with
the plane perpendicular to the director n, if A is positive. A unidirectional con-
figuration along the direction of n is achieved, if A is negative. Higher absolute
A values result in better perfection towards the desired configuration. With the
mentioned strategy, any configuration in-between the ideal cases shown in fig-
ure 5.1 can be achieved. Some sample configurations generated using the above
mentioned algorithm are shown in figure 5.2. For simplicity, the eigenvectors of
the orientation tensor S are considered as aligned with the Cartesian coordinate
system in figure 5.2. The shown configurations are respectively equivalent to fig-
ure 5.1. For better clarity, the shown configuration has only 50 particles and the
solids volume fraction ǫs is 0.1. The actual flow simulations have 200 particles
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ê1 (us and FD direction)

ê2

ê3 (FL direction)

p

φ

TP

Plane contains ê1, ê3, and p

Figure 5.4: The local coordinate system of a particle. us and FD act along ê1, FL

along ê3 and TP about the ê2 axis.

and are performed for various ǫs .
A common intuition may be that a random configuration would result in par-

ticles with evenly distributed values of the incident angle φ. However for a ran-
dom configuration, the available number of particles at different φ are not uni-
form, as shown in figure 5.3(a). This is due to the higher probability to find parti-
cles at an angleφnear 90◦ because the Jacobian for a spherical coordinate system
scales as sinφ. Therefore, the disadvantage for a random configuration is that
there are actually few data points at φ = 0◦ to create angle-dependent closures.
On the contrary, the planar configuration with the planes parallel to the flow di-
rection results in even particle distributions, as shown in figure 5.3(b). This infor-
mation is considered while we generate configurations for the flow simulations.

5.2.4. FORCES AND TORQUES ACTING ON A PARTICLE

For an assembly of particles, different definitions are used to report the forces
(Beetstra et al., 2007; Tenneti et al., 2011; Tang et al., 2015). To ensure consistency,
it is important to know the form of the reported results. For a packed bed of
particles in a flow induced by a macroscopic pressure gradient ∇P , each particle
of volume Vp experiences a resulting force F due to the flow and a buoyancy
force Fb = −Vp∇P due to the pressure gradient. For such a case, the total fluid-
to-particle force F f →p acting on a particle is

F f →p = F +Fb . (5.7)

Given N particles with each of volume Vp and total volume of the system V , the
solids volume fraction is given by ǫs = NVp /V . Further, the relationship between
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Figure 5.5: Lateral force F2 distribution for different particles (×××) with averages
at regular φ intervals (♦) in a random configuration at Re = 100 and ǫs = 0.3.

F and F f →p is given by (Tang et al., 2015)

F = F f →p (1−ǫs ). (5.8)

In this work, we report the forces F due to the flow and not F f →p . The effects
of buoyancy on torques are unknown and hence the reported torques T are also
as they are determined from the simulations. We normalize the force and torque
with the Stokes drag and torque of a volume-equivalent sphere:

Fnor m = F

6πµReq |us |
, and (5.9)

Tnor m =
T

8πµR2
eq |us |

. (5.10)

Here, µ is the dynamic viscosity and Req is the radius of the volume equivalent
sphere. Let p be the normalized orientation vector of the considered particle.
The local coordinate system for each particle is defined as

ê1 = us

|us |
, (5.11)

ê2 = ê1 ×××p

|ê1 ×××p |
sign(ê1 ·p), and (5.12)

ê3 = ê1 ××× ê2. (5.13)

The above defined axes are accordingly illustrated in figure 5.4. The incident an-
gle φ a particle makes with respect to the incoming flow is given by φ= cos−1(|ê1 ·
p |). We also compute the average forces and torques for different φ intervals.
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Figure 5.6: Torques (a) T1, (b) T2, and (c) T3 distribution for different particles
(×××) with averages at regular φ intervals (♦) in a random configuration at Re = 100
and ǫs = 0.3. Due to flow symmetry, the average T1 and T3 acting on particles are
statistically zero. However, the pitching torque TP (or T2) scales proportional to
sinφcosφ (solid black line).

Due to the finite number of measurements in these intervals, there is an error on
the mean x̄ of any property x. We use the standard error on the mean σx̄ for the
errorbars, computed as

σx̄ =σ/
p

n. (5.14)

Here σ is the standard deviation of the corresponding variable x and n is the
number of data points within the given φ interval. The normalized drag FD and
lift FL can be computed from Fnor m as

FD = F1 = Fnor m · ê1, (5.15)

F2 = Fnor m · ê2, and (5.16)

FL = F3 = Fnor m · ê3. (5.17)

Since the reported forces are without buoyancy effects, the (1−ǫs ) term must be
considered accordingly for both drag and lift while performing Euler-Lagrangian
simulations. Due to the influence of neighbouring particles, the lateral force F2

for each individual particle may not be equal zero, as shown in figure 5.5 (Re =
100 and ǫs = 0.3). However, due to symmetry, the average F2 does equal zero.
Therefore, F2 is not considered in our further discussion. The torques about the
above defined axes are

T1 = Tnor m · ê1, (5.18)

TP = T2 = Tnor m · ê2, and (5.19)

T3 = Tnor m · ê3. (5.20)
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Figure 5.7: FD obtained for individual particles in a random configuration from
the LBM solver against FEM solver for Re = 100 and ǫs = 0.3. The dashed lines in
respective colours indicate the domain averages from the respective solvers.

Here TP is the pitching torque acting on a particle. We show the three different
torques for a flow through a random particle configuration at Re = 100 and ǫs =
0.3 in figure 5.6. It can be observed that T1 and T3, though having some non-zero
values, are statistically zero on average due to symmetry. The non-zero values
are primarily due to hydrodynamic interactions with other particles. Only the
average pitching torque TP (or T2) remains non-zero for different φ and varies
as sinφcosφ. Though individual particles experience non-zero T1 and T3, they
become zero at φ = 0◦ and φ = 90◦ respectively, where the axis of symmetry of
the particle coincides with the measured axis for torque. This implies that the
hydrodynamic interaction of particles does not induce a torque (or a spin) about
the axis of symmetry of the particle.

5.2.5. VALIDATION

Sufficient validation has been done for our LBM code in the past for flow around
isolated particles (Sanjeevi & Padding, 2017; Sanjeevi et al., 2018a). For a mul-
tiparticle configuration, we have chosen flow around a random assembly of 100
particles at Re = 100 and ǫs = 0.3 and measure the FD experienced by the individ-
ual particles. The LBM results are compared with results from COMSOL Multi-
physics, a body-fitted, unstructured mesh based FEM solver. The simulated LBM
domain is of size 3603. The volume equivalent sphere diameter is deq = 64.4 lat-
tice cells. The superficial velocity us is 0.0414 and the kinematic viscosity ν is
0.08/3 in lattice units. The FEM solver domain is made of 2.1 million elements.
The resulting drag forces are shown in figure 5.7. A good agreement between
LBM and FEM results can be observed. The average FD experienced by all parti-
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Figure 5.8: Configuration independence phenomenon at Re = 100 and ǫs = 0.3
for different configurations with different flow directions (arrow indicated). FD

distribution for different particles (×××) with averages at regular φ intervals (♦). (a)
Random configuration, planar random configuration with flow (b) parallel and
(c) perpendicular to the plane, unidirectional configuration with flow at (d ) 0◦,
(e) 45◦, and ( f ) 90◦ with respect to the principal configuration director. The solid
black line indicates the sine-squared scaling.

cles in LBM and FEM solvers are 26.6 and 26.4 respectively. Also a good match in
FD values for individual particles at different φ can be observed.

5.3. TESTS OF CONFIGURATION INDEPENDENCE

Given a six-dimensional parameter space, exploring each dimension with ap-
proximately 5 simulations, results in a massive 56 = 15625 simulations. Further-
more, closures must be created for drag, lift and torque as a function of this six-
dimensional space. Before proceeding with these simulations, we tried to iden-
tify if there are any independent parameters specifically related to the mutual
orientation of particles. In this section, we will show that the average hydrody-
namic force on a non-spherical particle is independent of the mutual orienta-
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tion of the particles themselves. This configuration independence removes the
configuration parameters S1, S2 and flow angle parameters α and β from the pa-
rameter space to be explored. We find that, when averaged over a number of
particles, the only dependence that the particles exhibit regarding orientation is
the particle’s incident angle φ as in flow around single particles. Effectively, we
will show that the average force depends only on the Reynolds number Re , solids
volume fraction ǫs and the incident angle φ of individual particles with respect
to the flow direction.

In the extremely dilute regimes, i.e. ǫs → 0, it is already shown that there ex-
ists a sine-squared scaling of drag for elongated non-spherical particles (Sanjeevi
& Padding, 2017; Sanjeevi et al., 2018a). In this section, we discuss the results of
flow around different configurations at an intermediate solids volume fraction of
ǫs = 0.3. Results of different configurations (in respective plot insets) at an inter-
mediate Re = 100 are shown in figure 5.8 such as fully random, planar random
with flows parallel and perpendicular to the planes and unidirectional configu-
rations with principal directors at different angles. Though there exists scatter
in the measured FD on individual particles, it can be observed that the average
FD for different φ intervals scales similar to sine-squared scaling as in our ear-
lier works of isolated particles. In other words, the average FD at any φ can be
computed as

FD,φ = FD,φ=0◦ + (FD,φ=90◦ −FD,φ=0◦)sin2φ. (5.21)

It is important to note that the same values for average FD,φ=0◦ and FD,φ=90◦

emerge for all configurations. Likewise, we also show that the scaling phe-
nomenon extends to both Stokes and high Re regimes in figure 5.9. With the
sine-squared scaling behaviour (or the configuration independence) identified
at ǫs = 0 and ǫs = 0.3, it can be inferred that the scaling is safely applicable in the
region 0 ≤ ǫs ≤ 0.3. We have verified the same at ǫs = 0.1 and the results are not
shown here for brevity. Though we observe the results are dependent on only
3 parameters, namely Re , ǫs and φ, the simulation needs to be set up for only
two parameters, namely Re and ǫs . With a sufficiently random configuration,
the system involves different particle orientations covering all φ. A caveat with
a random configuration is that there are always very few particles near φ = 0◦,
as shown in section 5.2.3. Therefore, biased random configurations with more
particles at φ = 0◦ are created and at least two simulations are performed for
better statistics.

We also observe the configuration independence phenomenon at ǫs = 0.4.
The criterion considered to declare configuration independence phenomena is
that the average drag results in a given φ range of different configurations are
within 10% deviation. In almost all cases, the deviations are within ± 5%. How-
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Figure 5.9: Configuration independence phenomenon at moderate solids frac-
tion ǫs = 0.3 for (a − c) Re = 0.1 (low Re) and (d − f ) Re = 1000 (high Re) for
different configurations and different flow directions (arrow indicated). FD dis-
tribution for different particles (×××) with averages at regular φ intervals (♦). (a,d )
Random configuration, (b,e) planar random configuration with flow parallel to
the plane, (c , f ) combined results of unidirectional configuration with flow 0◦

and 90◦ with respect to the principal configuration director. The solid black line
indicates the respective sine-squared scaling.
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Figure 5.10: Configuration independence phenomenon at dense solids fraction
ǫs = 0.5 for Re = 100 for different configurations and different flow directions (ar-
row indicated). FD distribution for different particles (×××) with averages at regular
φ intervals (♦).

ever in a dense case with ǫs = 0.5, several more factors such as the mutual ori-
entations, relative positions of particles, etc. influence the results. The FD distri-
bution for such dense configurations at Re = 100 and ǫs = 0.5 are given in figure
5.10. Although these results can be predominantly parametrized by Re , ǫs , andφ,
the influence of the additional parameters cannot be ignored. Therefore, specific
cases of ǫs = 0.5 are performed with more simulations for better statistics.

For a practical fluidization or other relevant gas-solid flow simulation, the
densest configuration is most likely to occur when the particles are at bottom or
at rest (e.g. before the start of fluidization). In such a dense condition, the parti-
cle configuration itself is dependent on the wall geometry. For a typical bed con-
figuration with a flat wall at the bottom, the particles also roughly align in planes
parallel to the bottom wall, i.e. a planar random configuration. Pournin et al.

(2005) observed the same for particles poured freely from the top. Similarly, we
also observe the same for a bed containing freely poured particles settled under
gravity (ǫs = 0.54), as shown in figure 5.11. The bed contains 30000 particles and
it can be observed that roughly 2/3 of all particles are in the range φ = 70−90◦

confirming our hypothesis. Given such criteria, the most relevant regime would
be to generate an accurate fit for average FD,φ=90◦ at high ǫs .

It should also be noted that with increasing aspect ratio of elongated par-
ticles, the maximum ǫs decreases for a packed bed (Williams & Philipse, 2003).
This is because the locking phenomenon is stronger with high aspect ratio parti-
cles. Unless the particles are packed with their orientations aligned, the decrease
in peak ǫs for high aspect ratio elongated particles is unavoidable. Also, practi-
cal applications as shown in figure 5.11 do not allow such long range ordering.
A decreasing peak ǫs implies that the configuration independence phenomenon
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Figure 5.11: Histogram of incident angle φ for a packed bed with 30000 particles.
The arrow indicates the flow direction.

will be very applicable. With the observed sine-squared drag scaling, the pres-
sure drop across a packed bed can be determined with the knowledge of the φ

distribution alone.

In the subsequent sections, we will show that in the dilute and intermediate
ǫs regimes, the influence of ǫs is nearly shape independent. This implies that
the drag on isolated non-spherical particles can be combined with sphere-based
multiparticle correlations for the voidage effect to mimic flow around assemblies
of non-spherical particles upto intermediate ǫs .

5.3.1. EXPLORED REGIMES

In this section, we briefly explain the regimes explored in the current work and
also explain the number of independent simulations performed per regime
tested. An example of the flow stream lines for a random configuration at
Re = 100 and ǫs = 0.3 is shown in figure 5.12. Until solids volume fractions of
ǫs = 0.35, the generation of randomly orientation configurations is possible, as
experienced by He & Tafti (2018) for prolate spheroids of aspect ratio 2.5. In our
case, we are able to achieve random configurations upto ǫs = 0.4. However for
denser configurations, it is difficult to generate a truly random configuration. For
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Figure 5.12: Flow streamlines for a random configuration at Re = 100 and ǫs =
0.3.
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Figure 5.13: Regime map containing the explored parameter space in the current
work (◦) and our previous work Sanjeevi & Padding (2017) (�). +,× indicate the
regimes with extra simulations and tested for configuration independence.
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dense configurations of ǫs = 0.5, the particles have a natural tendency to orient to
planar random or unidirectional orientation configurations. A truly random con-
figuration with a finite number of particles, at such solids volume fraction, is not
possible. This is due to a strong orientation bias imposed by neighbouring parti-
cles due to lack of inter-particle space. The explored flow regimes are indicated
in figure 5.13. Overall, at least two simulations are performed for the explored
regimes. However for specific cases of dilute and intermediate ǫs , we performed
5 simulations with 2 random, 1 planar random with flow aligned to the plane
and 2 unidirectional configurations with flow parallel and perpendicular to the
principal director. For solids fraction ǫs = 0.5, 3 planar random configurations
with flows aligned to the plane and 2 unidirectional configurations with flows
parallel and perpendicular to the principal director are performed. For cases
with more simulations, the results are accordingly weighted while making the
fits.

5.4. RESULTS

5.4.1. DRAG

With sine-squared scaling valid as shown in section 5.3, the average drag expe-
rienced by a particle in a multiparticle system can be explained by the equation
5.21 involving only the average drag experienced at φ = 0◦ and φ = 90◦. There-
fore, we propose to generate fits for average FD,φ=0◦ and FD,φ=90◦ as a function of
Re and ǫs as

FD (Re,ǫs) = Fd ,i sol · (1−ǫs )2 +Fǫs
+FRe,ǫs

. (5.22)

The corresponding terms are as follows:

Fd ,i sol (Re) =Cd ,i sol
Re

24
, (5.23)

Fǫs
(ǫs ) = a

p
ǫs (1−ǫs )2 + bǫs

(1−ǫs )2
, and (5.24)

FRe,ǫs
(Re,ǫs) = Recǫd

s

(

e(1−ǫs )+
f ǫ3

s

(1−ǫs )

)

+ gǫs (1−ǫs )2Re. (5.25)

Here, Cd ,i sol is the isolated particle drag at given Re as detailed in Sanjeevi
et al. (2018a) for the considered particle (fibre) for both φ= 0◦ and φ= 90◦. The
coefficients in equations 5.24 and 5.25 for both average FD,φ=0◦ and FD,φ=90◦ are
given in table 5.2. The average absolute deviation of the fits and simulation data
are 3.5% and 2% for FD,φ=0◦ and FD,φ=90◦ , respectively.
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FD

Coefficients φ= 0◦ φ= 90◦ FL,mag

a 2 3 0.85
b 11.3 17.2 5.4
c 0.69 0.79 0.97
d 0.77 3 0.75
e 0.42 11.12 -0.92
f 4.84 11.12 2.66
g 0 0.57 1.94

Table 5.2: Coefficients of the fits for average FD and FL
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Figure 5.14: The averaged drag forces (a) FD,φ=0◦ and (b) FD,φ=90◦ at different Re

and ǫs . The markers indicate simulation data and the solid lines are correspond-
ing fits.
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Figure 5.15: The fits for average (a) FD,φ=0◦ and (b) FD,φ=90◦ at different Re and ǫs

beyond the simulated regimes of 0.1 ≤ Re ≤ 1000. The markers indicate simula-
tion data and the solid lines denote corresponding fits.
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Figure 5.16: Ratio of average perpendicular to average parallel drag
FD,φ=90◦/FD,φ=0◦ from simulations for different Re and ǫs .

The simulated data and corresponding fits are shown in figure 5.14. The fits
follow the physical limits beyond the Re range simulated as shown in figure 5.15.
In the Stokes flow limit, it can be observed that both φ= 0◦ and φ= 90◦ normal-
ized drag becomes independent of Re . In the high Re limit, the normalized drag
approaches a linear dependency on Re .

The ratio of average perpendicular to average parallel drag FD,φ=90◦/FD,φ=0◦

at different Re and ǫs is shown in figure 5.16. For low Re (Re = 0.1), the ratio
remains constant at a value a little larger than 1 for all ǫs . The reason for this
is that at low Re , the particles experience stronger viscous effects. The viscous
drag reduces and pressure drag increases with increasing φ at low Re . The same
has been confirmed for isolated particles (Sanjeevi & Padding, 2017) and for a
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Figure 5.17: Voidage effect on average drag: FD (ǫs )/FD (ǫs = 0) for φ = 0◦ and
φ= 90◦ in the inertial regimes as a function of ǫs for spherocylinders (this work,
symbols), compared with voidage effect for spheres from literature. TGS denotes
Tenneti et al. (2011).
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Figure 5.18: Voidage effect on average drag: FD,φ=0◦(ǫs )/FD,φ=0◦(ǫs = 0) and
FD,φ=90◦(ǫs )/FD,φ=90◦(ǫs = 0) as a function of Re .
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multiparticle system (He & Tafti, 2018). The combined viscous and pressure drag
components result in a drag ratio close to 1 for the considered spherocylinders
at low Re . Due to inertial dominance at moderate and large Re (Re ≥ 100) we can
observe a near constant drag ratio for solids volume fractions upto ǫs = 0.3 and a
decrease in the ratio for ǫs > 0.3. Further, figure 5.16 gives an indication that for
very dense crowding, i.e. at ǫs > 0.5, there is a possibility that FD,φ=90◦/FD,φ=0◦

tends back to approximately 1. Up to moderate crowding, although the flow is
disturbed due to the presence of neighbouring particles, there is sufficient inter-
particle space for flow to achieve uniformity. However with increased particle
crowding, there appear pronounced fluctuations in flow velocities (see also sec-
tion 5.4.4), resulting in a reduced drag ratio at high ǫs . This is an important find-
ing because the traditional approach of Euler-Lagrangian simulations involve
combining isolated non-spherical particle drag with the voidage effects based
on sphere assemblies. This would result in a constant drag ratio for all ǫs . This
in turn could affect Euler-Lagrangian simulation results, especially in predicting
the minimum fluidization velocity as there exists a dense packing of particles.
This mandates the need for the current work.

Figure 5.17 shows a similar interesting observation: The scaling of the
voidage effect FD (ǫs )/FD (ǫs = 0) in the inertial regime (high Re limit) is shape and
orientation independent for ǫs ≤ 0.3. Here, we have normalized the average drag
with respective isolated particle drag for different Re and φ. It can be observed
that all the normalized points fall on a same trend until ǫs = 0.3. Similar normal-
ized FD for spheres from Tang et al. (2015) at Re = 100 and Re = 1000 also show
the same trend until ǫs = 0.3. Here, we use the isolated sphere drag correlation
of Schiller & Naumann (1935) for the normalization. The predictions of Tenneti
et al. (2011) for spheres do not follow the exact trend for the voidage effects as
observed from figure 5.17. It should be noted that Tenneti et al. (2011) explored
only until Re = 300 in their work and extrapolation to high Re may not apply.
Therefore, the above discussion indicates that spherical drag correlations for the
voidage effect, combined with isolated non-spherical particle drag correlations
can be applied to dilute suspension simulations of non-spherical particles in
the inertial regimes. For a given non-spherical particle, the effect of crowding
(ǫs ) on FD is different for different Re and φ. Figure 5.18 shows the voidage
effect (average FD normalized by the corresponding isolated particle drag) as a
function of Re . It can be seen at low Re , the increase in drag due to crowding is
comparable for both φ = 0◦ and φ = 90◦ at different ǫs . At high Re , the increase
in drag due to crowding with increasing ǫs is much stronger for φ= 0◦ compared
to φ = 90◦. This also explains further the reason for the observed reduction in
average perpendicular to average parallel drag ratios with increasing ǫs in figure
5.16.



5.4. RESULTS 101

φ[◦]

σ
F

D
/F

D

0 15 30 45 60 75 90

0.2

0.4

0.6

0.8

1

Figure 5.19: The standard deviations σFD
of the distribution of individual drag

values, normalized by the corresponding average FD in different intervals of inci-
dent angle φ. Open symbols correspond to dilute configurations and filled sym-
bols correspond to dense configurations.

In the previous sections, we discussed the FD averaged over all particles with
similar φ. However, the distribution of FD within a φ interval is itself also a func-
tion of both Re and ǫs . The standard deviations of the distribution of drag mea-
surements, normalized by the average FD in the corresponding φ interval, are
plotted in figure 5.19. It is important that the standard deviations are normalized
by the respective average FD , rather than against a single value, say FD,φ=90◦ , for
a given Re and ǫs . This is because with increasing Re , the ratio FD,φ=90◦/FD,φ=0◦

increases, as shown in figure 5.16 earlier. Therefore, using average FD,φ=90◦ for
normalization will make the standard deviations at φ= 0◦ appear insignificant at
large Re .

For dilute configurations (ǫs = 0.1), we clearly observe that increasing Re re-
sults in an increased σFD

/FD at all φ. It should be noted that the absolute mag-
nitudes of average FD at Re = 1000 are much larger than at Re = 0.1. Despite the
normalization by these larger values, we observe increased standard deviations
for higher Re . This is because at low Re , the viscous effects dominate, resulting
in long-range flow uniformity. Conversely, at high Re , the boundary layers are
thinner and flow wakes are stronger. This results in high non-uniformity in the
incoming flow on each particle, and thereby large fluctuations in the hydrody-
namic forces. For dense particle configurations (ǫs = 0.5), it can be observed that
σFD

/FD increases relative to dilute conditions, with a higher standard deviation
for higher Re . The reason for higher spread in FD is due to the fact the parti-
cles locally encounter highly non-uniform incoming flows when there is more
crowding.
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Figure 5.20: Comparison of average FD for (a) φ= 0◦ and (b) φ= 90◦ for ǫs = 0.3.
SKP denotes Sanjeevi et al. (2018a), HS denotes Hölzer & Sommerfeld (2008), and
TGS denotes Tenneti et al. (2011). The solid black line is equation 5.22.

COMPARISON WITH OTHER LITERATURE

Given the unavailability of multiparticle correlations for non-spherical particles,
we combine the available literature results on isolated non-spherical particles
with voidage effects based on spheres. For this, we normalize the multiparticle
drag of spheres with the isolated sphere Schiller & Naumann (1935) correlation
and multiply with the isolated non-spherical particle drag. The results are shown
in figures 5.20 and 5.21 for ǫs = 0.3 and ǫs = 0.5, respectively. The isolated parti-
cles drag law used are SKP (Sanjeevi et al., 2018a) and HS (Hölzer & Sommerfeld,
2008). They are accordingly combined with the multiparticle effects of TGS (Ten-
neti et al., 2011) and Tang et al. (2015) for spheres. In the moderately crowded
regime (ǫs = 0.3), our earlier suggestion of combining isolated non-spherical par-
ticle drag with multiparticle effects from spheres works well. For example, the
combination of SKP with Tang et al. (2015) follows nearly the same trend as that
of the current work (equation 5.22). This can be observed for both φ = 0◦ and
φ= 90◦. However for dense regimes (ǫs = 0.5), it can be observed that the combi-
nation of SKP with Tang et al. (2015) does not agree well with the present work for
φ = 0◦. At the same time, the combination with the HS (Hölzer & Sommerfeld,
2008) isolated drag law seem to be closer to the current work for ǫs = 0.5. Such an
agreement must be considered with care. The decent agreement occurs because
HS possesses high drag values for φ= 0◦ (for ǫs = 0), in combination with a weak
voidage effect for spheres. On the other hand, SKP with TGS or Tang et al. (2015)
show decent agreement with the present work for φ= 90◦.
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Figure 5.21: Comparison of average FD for (a) φ= 0◦ and (b) φ= 90◦ for ǫs = 0.5.
SKP denotes Sanjeevi et al. (2018a), HS denotes Hölzer & Sommerfeld (2008), and
TGS denotes Tenneti et al. (2011). The solid black line is equation 5.22.

5.4.2. LIFT

The normalized lift Fl ,φ on a single elongated particle from Sanjeevi et al. (2018a)
is given by

Fl ,φ(Re,φ) = Fl ,i sol ·S f ,φ, with (5.26)

Fl ,i sol (Re) =
(

b1

Re
+

b2

Reb3
+

b4

Reb5

)

Re

24
, and (5.27)

S f ,φ(Re,φ) = sinφ(1+b6Reb7 ) cosφ(1+b8Reb9 ). (5.28)

Here, S f ,φ is the scaling function dependent on Re and φ. The coefficients bi are
accordingly listed in the mentioned literature. In particular, the coefficients b6 to
b9 describe the amount of skewness of the lift coefficient on a single elongated
particle around φ = 45◦. In the current work, we observe the same skewness
for the multiparticle system at different Re . Therefore, we assume the term S f ,φ

remains the same for the multiparticle system. The average lift FL for a multipar-
ticle system takes the following form:

FL,φ(Re,ǫs,φ) = FL,mag (Re,ǫs) ·S f ,φ(Re,φ). (5.29)

The functional form of FL,mag (Re,ǫs) remains similar to that of the drag and is
given by

FL,mag (Re,ǫs) = Fl ,i sol (Re) · (1−ǫs )2 +Fǫs
(ǫs )+FRe,ǫs

(Re,ǫs) (5.30)
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Figure 5.22: Distributions of lift forces FL (×××) with averages at regular φ intervals
(♦) for different Re and ǫs . The solid line denotes the FL,φ fit (equation 5.29).
Each plot includes data from two independent simulations with a total 400 data
points. It should be noted that the scales are different for each plot.
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Figure 5.23: Distribution of FL (×××) for Re = 100 and ǫs = 0.3 with averages (♦)
in regular φ intervals. The solid black line indicates the corresponding simple
fit based on equation 5.34. The fit includes data from two different simulations
totalling 400 data points.

with

Fǫs
(ǫs ) = a

p
ǫs (1−ǫs )2 + bǫs

(1−ǫs )2
, and (5.31)

FRe,ǫs
(Re,ǫs) = Recǫd

s

(

e(1−ǫs )+
f ǫ3

s

(1−ǫs )

)

+ gǫs (1−ǫs )2Re. (5.32)

The corresponding coefficients are given in table 5.2. The proposed average lift
correlation has around 5% average absolute deviation with respect to the aver-
aged lift from simulations. The comparison of the average FL from simulations
and the proposed correlation is shown in figure 5.22.

A SIMPLIFIED LIFT FUNCTION

In our earlier works (Sanjeevi & Padding, 2017; Sanjeevi et al., 2018a), we have
shown successfully that for elongated particles, the relation between lift and drag
in the Stokes flow regime can be successfully used for higher Re flows too. In
other words, FL at different φ can be computed as

FL,φ = (FD,φ=90◦ −FD,φ=0◦)sinφcosφ. (5.33)

In this section, we show that equation 5.33 is a reasonable approximation even
for a multiparticle system. This implies that the scaling law is valid not only just
for different Re but even for different ǫs . Given a measured average FL distribu-
tion from simulations at a given Re and ǫs , the data can be fitted in a simple form
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Figure 5.24: Comparison of FD,φ=90◦ −FD,φ=0◦ with FL,si mple at different Re and
ǫs . The difference FD,φ=90◦ −FD,φ=0◦ is based on averaged simulation data itself
and not on the corresponding averaged FD fits.

as

FL,φ = FL,si mple sinφcosφ. (5.34)

Here, FL,si mple is a fit parameter that best describes the simulation data. An ex-
ample for such a fit for Re = 100 and ǫs = 0.3 is given in figure 5.23. The com-
parison of the Stokes regime lift law (equation 5.33) and our hypothesis (equa-
tion 5.34) is shown in figure 5.24 and it can be observed that there is a good
agreement. The highest absolute deviation observed between the equations is
still less than 20% and average absolute deviation is around 12%. Therefore in
Euler-Lagrangian simulations, in the absence of explicit lift data, equation 5.33
can be applied to include the effects of lift with acceptable accuracy. This implies
that in the often-used approach of using Hölzer & Sommerfeld (2008) type drag
correlations, combined with sphere-based voidage effect correlations in Euler-
Lagrangian simulations, one can also include lift effects based on equation 5.33.
In the following section, we will show the importance of including lift, as it is
often of comparable magnitude to drag at high Re .

IMPORTANCE OF LIFT COMPARED TO DRAG

In Euler-Lagrangian simulations, the effect of lift forces is often neglected. This is
because there is not much literature on non-spherical particle lift correlations. In
this section, we analyse the magnitudes of lift compared to the drag on individ-
ual non-spherical particles at different Re and ǫs . Figure 5.25 shows the distribu-
tions of the magnitude of the lift force relative to the drag force on each particle
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Figure 5.25: Distribution of lift force on individual particles normalized by corre-
sponding drag force on each particle at different Re and ǫs .
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Coefficients TP,mag

a 0.82
b 1.44
c 1.07
d 5.48
e 0.223

Table 5.3: Coefficients of the fits for TP,mag

|FL |/FD . It can be observed that for Stokes flow (Re = 0.1), most particles experi-
ence lift which is about one order of magnitude smaller than the drag. However
for high Re (Re = 1000), the distribution is much more wider spread and there
are even some particles for which |FL|/FD = 1. This emphasizes the need for in-
cluding lift in Euler-Lagrangian simulations, especially while handling Geldart D
particles, where the encountered particle Re is high. With increasing ǫs , a dif-
ferent interesting observation can be made. In the low Re regime, increasing ǫs

results in an increased probability of particles experiencing high lift magnitudes
compared to the drag. On the contrary, at high Re (Re = 1000), increasing ǫs re-
sults in the |FL|/FD distribution skewing to the left. It should be noted that the
highest ǫs shown in figure 5.25 is ǫs = 0.4 as opposed to ǫs = 0.5, the highest ǫs

explored. This is because random configurations are not possible for ǫs = 0.5. To
ensure consistency, all results shown in figure 5.25 are based on random config-
urations.

5.4.3. TORQUE

For an isolated non-spherical particle, the torque correlation (Sanjeevi et al.,
2018a) is given by:

Tp,φ(Re,φ) = Tp,i sol (Re) ·Sφ(Re,φ), with (5.35)

Tp,i sol (Re) =
( c1

Rec2
+

c3

Rec4

) Re

32
, and (5.36)

Sφ(Re,φ) = sinφ(1+c5Rec6 ) cosφ(1+c7Rec8 ). (5.37)

The Re dependent skewness terms c5,c6,c7,c8 equal zero for an isolated
spherocylinder resulting in a symmetric distribution for φ around 45◦. Likewise,
we also observe a near symmetric distribution of average torque at different Re

and ǫs for the multiparticle configuration (see figure 5.26). Unlike drag and lift,
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Figure 5.26: Distributions of TP (×××) with averages at regular φ intervals (♦) for
different Re and ǫs . The solid black line denotes TP,φ fit (equation 5.38). Each
plot includes data from two independent simulations with each containing 400
data points. It should be noted that the scales are different for each plot.

for an isolated non-spherical particle, the pitching torque vanishes for all φ in
the Stokes flow regime. We observe the same for the multiparticle configuration.
Therefore, the proposed correlation for the average torque TP is applicable only
in the inertial regime (10 < Re ≤ 1000) and is given by

TP,φ(Re,ǫs,φ) = TP,mag (Re,ǫs) ·sinφcosφ, with (5.38)

TP,mag (Re,ǫs) = Tp,i sol (Re) · (1−ǫs )2 +TRe,ǫs
(Re,ǫs). (5.39)

The corresponding terms in the scaling are as follows:

TRe,ǫs
(Re,ǫs) = Reaǫb

s

(

c(1−ǫs )+
dǫ3

s

(1−ǫs )

)

+eǫs(1−ǫs )2Re. (5.40)

The average absolute deviation between equation 5.38 and corresponding
simulation data is 3%. It should be noted that TP,mag in equation 5.39 maps only
the magnitude of the torque for different Re and ǫs . The φ dependence is in-
cluded separately with the si ne and cosi ne terms. The comparison of TP,mag

and the corresponding simulation data are given in figure 5.27. Given a sym-
metric form for TP,φ, the TP,mag is equal to twice the magnitude of TP,φ=45◦ since
sinφcosφ = 1/2 at φ = 45◦. From figure 5.27, it can be observed that TP,mag

roughly follows the same power law dependence on Re for different ǫs because
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Figure 5.27: TP,mag at different Re and ǫs . The markers indicate simulation data
and the solid line denotes fit at corresponding ǫs .

the slopes are similar. This is in contrast to the drag trends in figure 5.15, where
the trend starts from zero slope at low Re to a constant slope at high Re . The rea-
son is that the torque vanishes at low Re for all ǫs . The distributions of torque TP

for different Re , ǫs and φ are given in figure 5.26.

5.4.4. FLOW HISTOGRAMS

In the previous sections, we discussed the influence of the flow on the hydrody-
namic forces and torques on the particles. The flow around particulate assem-
blies can also be viewed as flow through a porous medium. In this section, we
discuss the results of the influence of the particles on the flow distribution.

The probability distributions of the normalized axial flow velocities (uax /uavg )
at different Re and ǫs for random configurations are given in figure 5.28. Here,
the normalization is done against the average axial velocity uavg = us /(1− ǫs )
rather than the superficial velocity us to ensure a fair comparison for different
ǫs . Only the velocities of fluid cells are shown here and the zero velocities in the
solid cells are ignored. It can be observed that with increasing Re , the spread
of the velocity distribution becomes narrower. This can be simply attributed
to the increased inertial effects and thinner boundary layers for increasing Re .
Interestingly, the high Re flows also demonstrate some negative velocities corre-
sponding to wake effects. With increasing ǫs , the peaks of the distribution shift
towards the left and the distribution itself spreads wider. This implies that the
increased presence of particle surfaces at higher ǫs pulls the velocities of fluid
cells towards zero (hence the left skewness). At the same time, the fluid acceler-
ates in the bulk regions further removed from the particle surfaces resulting in
increased velocities (and hence a wider distribution) to maintain the desired us .
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Figure 5.28: Axial velocity distributions at different Re and ǫs for a random con-
figuration.
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Figure 5.29: Axial velocity distributions for different configurations at Re = 100
and ǫs = 0.3.
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It is also interesting to investigate the velocity distributions for different con-
figurations for a given Re and ǫs . The distributions of uax/uavg at Re = 100 and
ǫs = 0.3 for different configurations are plotted in figure 5.29. Given sufficient
randomness of particles, as in random and planar random configurations (see
figure 5.29 (a) and (b)), the velocity distributions are nearly identical. However,
velocity distributions can be different for different configurations, as can be ob-
served for the unidirectional configurations with flow parallel and perpendicular
to the principal director (see figure 5.29 (c) and (d )). Among the different config-
urations shown, the unidirectional configuration with flow parallel to principal
director has the least recirculation, as is evident from the least number of fluid
cells with negative velocities (uax /uavg < 0). At the same time, as expected, the
unidirectional configuration with flow perpendicular to principal director has
the highest amount of recirculation. Overall, we can infer that there is no de-
pendency between the configuration independence phenomenon, explained in
section 5.3, and the flow velocity distribution of different configurations. The
variation in forces at different incident angles φ is mainly arising from the pres-
sure forces. The same can also be confirmed from the multiparticle work of He
& Tafti (2018), which is also in line with our finding for isolated non-spherical
particles (Sanjeevi & Padding, 2017).

5.5. CONCLUSION

The flow around assemblies of axisymmetric, non-spherical particles has been
studied extensively using the multi-relaxation-time lattice Boltzmann method.
The performed simulations are from the Stokes flow regime to high Re (0.1 ≤
Re ≤ 1000) at different solids volume fraction ǫs (ǫs ≤ 0.5) and different mutual
orientations of particles.

In general, forces on random assemblies of spheres are only dependent on
Re and ǫs . Considering the non-spherical nature of the particles, we proposed
four additional parameters to describe the flow problem: two to parametrize the
mutual orientation of the non-spherical particles (S1 and S2) and two to repre-
sent the polar and azimuthal angles (α and β) of the averaged flow velocity with
respect to the configuration. For this, we have developed different static parti-
cle configurations using Monte-Carlo simulations. In the process, the configura-
tions are biased to the desired amount of nematic or bi-axial orientational order
with the use of a Maier-Saupe potential. The flow simulations indicate that the
average particle forces are configuration independent, at least for ǫs ≤ 0.4, im-
plying that the four additional parameters do not influence the results. The only
important parameter representing orientation dependence is the incident angle
φ of individual particles with respect to the average flow direction.
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The configuration independence greatly simplifies the parameter space to be
explored from 6 to 3 dimensions, namely Re , ǫs , and φ. Of the three, the simula-
tions are set up for only two parameters: Re and ǫs . Given a sufficiently random
particle configuration, different incident angles φ are covered automatically. An-
other interesting result from the current work is that our previous finding of sine-
squared scaling of drag for isolated non-spherical particles (Sanjeevi & Padding,
2017) applies also to multiparticle systems. In other words, given a Re and ǫs ,
the average drag on the subset of particles oriented at an incident angle φ with
respect to the superficial flow velocity can be described with the knowledge of av-
erage drag at φ= 0◦ and φ= 90◦ alone. This information can be used in a packed
bed to determine the pressure drop across the bed with the knowledge of φdistri-
bution alone. In a multiparticle configuration, also the average lift on a particle at
an incident angle φ can be computed with good accuracy using the average drag
at φ= 0◦ andφ= 90◦, as in our previous work on isolated non-spherical particles.
Having identified the dependent parameters, we proposed correlations for aver-
age drag, lift and torque for a multiparticle configuration. During the process, we
used correlations for isolated non-spherical particles and extended them to the
multiparticle systems.

We have also explored the validity of the conventional approach of combin-
ing known correlations for isolated non-spherical particle drag with correlations
for voidage effects based on sphere packings. We observe that in the dilute and
intermediate ǫs regimes (ǫs ≤ 0.3), the influence of ǫs is nearly shape indepen-
dent. This implies that the above conventional approach can safely be used to
mimic flow around assemblies of non-spherical particles upto intermediate ǫs .
However for denser regimes, there is a need for multiparticle simulations and
hence the need for this work. In the inertial regimes, the ratios of average drag at
φ = 90◦ and φ = 0◦ (FD,φ=90◦/FD,φ=0◦) are nearly constant until ǫ ≤ 0.3 and then
decrease with increasing ǫs . This further proves that the conventional approach
is not valid for dense regimes. In the process, we have analysed the flow velocity
distribution as function of Re and ǫs . Likewise, the influence of different particle
configurations on the flow velocities have also been analysed.

Overall, this work provides a recipe to parametrize the drag, lift and torque
experienced by non-spherical particles in multiparticle environment. To the best
of the authors’ knowledge, there exists no work which parametrizes the drag, lift
and torque for non-spherical particles in a multiparticle environment. Generally,
lift and torque are ignored in large scale Euler-Lagrangian simulations. The pro-
posed accurate drag, lift and torque correlations enable future Euler-Lagrangian
simulations to be performed with more realistic physics.
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6.1. CONCLUSION

In the current work, fully resolved flows around different non-spherical parti-
cles, both isolated and assemblies, were performed using the multi-relaxation
time lattice Boltzmann method. An interpolated bounce-back scheme was used
to achieve high accuracy compared to the conventional staircase no-slip bound-
aries in LBM. The first part of this thesis focussed on the resulting mass leak-
age/gain issue due to the use of an interpolated bounce back scheme. Differ-
ent boundary conditions were tested and accordingly different mass correction
schemes were proposed through a systematic study. Subsequently, necessary
recommendations were made regarding the mass correction schemes.

The second part of the work focussed on the flow around isolated axisymmet-
ric non-spherical particles from the Stokes limit to relatively high Reynolds num-
bers (Re). Previous works were mainly limited to steady flows up to Re = 300.
However in this work, we simulated even complex unsteady flows with Re upto
2000. Interesting scaling laws were observed during the process for the drag
and lift of different axisymmetric non-spherical particles. We observed that the
drag coefficient at any incident angle φ scaled as CD,φ = CD,φ=0◦ + (CD,φ=90◦ −
CD,φ=0◦)sin2φ. Similarly, we found that the lift coefficient at any incident angle
φ scaled as CL,φ = (CD,φ=90◦ −CD,φ=0◦)sinφcosφ. The reason for such scaling in
high Re flows was found to be not due to the flow linearity, as in the creeping
flows, but due to an interesting pattern of pressure distribution on particles. The
pressure distribution contributing to the drag and lift shows a dependency on the
surface normal’s orientation with the incoming flow in a consistent pattern. Sub-
sequently, drag, lift and torque correlations for different isolated non-spherical
particles were proposed as a function of Re and φ. Known theoretical limits at
low Re and different decay rates at high Re were considered while formulating
these correlations. This implies that our correlations can be extended to regimes
beyond our tested limits.

The later part of the work focussed on flow around assemblies of static,
mono-disperse elongated particles. The performed simulations were from the
Stokes flow regime to high Re with Re ≤ 1000 at different solids volume fraction
with 0 < ǫs ≤ 0.5 and different mutual orientations of particles. The flow sim-
ulations indicated that the average forces and torques experienced by particles
at a specific angle of inclination φ with the mean flow were configuration in-
dependent. This greatly simplified the parameter space to be explored to only
3 parameters namely Re , ǫs , and φ. Interestingly, the sine-squared scaling of
drag and sine-cosine scaling of lift for isolated non-spherical particles (Sanjeevi
& Padding, 2017) were found to apply to multiparticle systems also. In other
words, given a Re and ǫs , the average drag and lift at an arbitrary φ can be
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described with the knowledge of drag at φ= 0◦ and φ= 90◦ alone. With the iden-
tified the dependent parameters, the correlations for drag, lift and torque were
accordingly proposed for a multiparticle configuration as a function of Re , ǫs

and φ. During the process, we also have explored the validity of the conventional
approach of combining isolated non-spherical particle drag with the voidage
effects based on spheres.

Overall, this work provides interesting scaling laws and a recipe to parametrize
the average drag, lift and torque experienced by non-spherical particles in a mul-
tiparticle environment. To the best of our knowledge, there exists no work which
parametrizes the drag, lift and torque for non-spherical particles in a multi-
particle environment. Generally, lift and torque are ignored in large scale Euler-
Lagrangian simulations. The proposed accurate drag, lift and torque correlations
enable future Euler-Lagrangian (CFD-DEM) simulations to be performed with
more realistic physics.

6.2. OUTLOOK

6.2.1. FLOW HETEROGENEITIES

Even with the proposed accurate drag, lift and torque closures, there are few het-
erogeneities that prevent simulations in replicating experiments. One such im-
portant factor is the phenomenon of flow channelling that occurs in some flu-
idized beds before onset of fluidization. This often results in inaccurate predic-
tion of the minimum fluidization velocity in Euler-Lagrangian simulations. In
most cases, the simulations have a lower fluidization velocity due to inability to
include the flow channelling phenomenon. It is not difficult to predict the net
force exerted on particle assemblies with flow channels. However, the difficulty
lies in understanding the mechanism to predict the onset of flow channelling.
Without this knowledge, the flow channelling behaviour cannot be included in
the Euler-Lagrangian simulations. Therefore, sufficient attention must be given
to the understanding of onset of such channelling/heterogeneities.

6.2.2. MACHINE LEARNING

With recent advancements in machine learning, it can be used as a powerful
tool for better understanding of flow physics. Moore et al. (2019) propose a hy-
brid model which combines both physics based and data-driven model for flow
around static assemblies of spheres. With the proposed hybrid model, the de-
pendencies of neighbouring particles on the particle drag, lift and torque are pre-
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dicted with improved accuracy. In future, the hybrid model can be extended to
non-spherical particles where drag, lift and torque of individual particles are not
only dependent on the neighbour positions but also on their orientations. With
this information, future CFD-DEM simulations can incorporate the physics of
flow heterogeneities to a certain extent by knowing the position of particles in
each fluid cell.

6.2.3. SHAPES, ASPECT RATIOS AND POLYDISPERSITY

In the present work, we have extensively focussed on monodisperse assemblies
of non-spherical particles. However, practical applications involve particles with
a wide range of shapes and aspect ratios. Great efforts have been undertaken to
identify drag and lift scaling laws which can be widely applied to a wide range
of particle shapes and aspect ratios. However, there are always some limitations
where such scaling laws fail. Therefore in the future, sufficient attention should
be given in two directions. One is to develop more shape independent scaling
laws. Another is to test different shapes and create a database for different shapes
of particles where a universal scaling law may not apply. Another area of atten-
tion is to also include polydispersity of non-spherical particles while creating the
drag, lift and torque closures.

6.2.4. HEAT AND MASS TRANSFER WITH CHEMICAL REACTIONS

Apart from momentum transfer, practical fluidization problems, as in biomass
which motivated our research, also often involve heat and mass transfer with
chemical reactions. This implies the need for conjugate heat transfer studies to
investigate the heat transfer coefficients (HTC) for particle assemblies. This can
be used to create HTC and similarly mass transfer correlations, which are needed
for coarse grained simulations. Similarly, a multiscale approach needs to be de-
veloped to study the reaction kinetics at a microscale and utilize the results for
macro-scale simulations.



A
SCALING LAWS FOR DRAG AND LIFT

ON A SINGLE AXISYMMETRIC

PARTICLE IN STOKES FLOW

For a particle in Stokes regime, the force exerted by the fluid F f →p can be written
as,

F f →p =Ξ ·u (A.1)

where, Ξ is the resistance tensor, symmetric due to linearity of Navier-Stokes
equations for creeping flows (Happel & Brenner, 1983) and u is the incoming
flow.

Figure A.1: An axisymmetric, non-spherical particle subjected to velocity u with
orientation vector n̂.
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Given an axisymmetric particle, we define the orientation vector n̂ which
aligns with the axis of symmetry. Considering a particle with orientation vector

n̂, the resistance tensor Ξ is

Ξ= ξ∥(n̂ ⊗ n̂)+ξ⊥(1− n̂ ⊗ n̂) (A.2)

where ξ∥ and ξ⊥ are the particle resistances for flow parallel and perpendicular
to the axis of symmetry, respectively. Therefore

F f →p = ξ∥n̂(n̂.u)+ξ⊥(u − n̂(n̂.u)). (A.3)

Consider the non-spherical particle with orientation vector n̂ making an an-
gle φ (figure A.1) with respect to x-axis. Assuming the flow direction is parallel to
x-axis, let êx be the unit vector along x-axis and u = uêx . The total force experi-
enced by particle from equation A.3 can be written as,

F f →p = ξ∥n̂u cosφ+ξ⊥(uêx − n̂u cosφ) (A.4)

= ξ∥

[

cosφ
sinφ

]

u cosφ+ξ⊥

(

u

[

1
0

]

−
[

cosφ
sinφ

]

u cosφ

)

(A.5)

The drag force FD can be given as,

FD = F f →p · êx (A.6)

=
(

ξ∥ cos2φ+ξ⊥(1−cos2φ)
)

u (A.7)

=
(

ξ∥ cos2φ+ξ⊥ sin2φ
)

u (A.8)

=
(

ξ∥+
(

ξ⊥−ξ∥
)

sin2φ
)

u (A.9)

The lift force FL can be given by,

FL = F f →p · êy (A.10)

= ξ∥u sinφcosφ−ξ⊥u sinφcosφ (A.11)

=−
(

ξ⊥−ξ∥
)

u sinφcosφ (A.12)

The drag coefficient CD for a particle at an incident angle φ based on equa-
tion A.9 can be given as,

CD,φ =CD,φ=0◦ + (CD,φ=90◦ −CD,φ=0◦)sin2φ (A.13)

The lift coefficient CL for a particle at an incident angle φ based on equation
A.12 is,

CL,φ =−(CD,φ=90◦ −CD,φ=0◦)sinφcosφ (A.14)

We assumed φ increases in counter-clockwise direction. For φ increasing in
clockwise direction as in our simulation setup, equation A.14 becomes,

CL,φ = (CD,φ=90◦ −CD,φ=0◦)sinφcosφ. (A.15)



B
THEORY OF LINEARITY

Ignoring the non-linear inertial term u ·∇u arising at higher Re , the Stokes equa-
tions for creeping flow are

∇·u = 0, and (B.1)

µ∇2u =∇p. (B.2)

For simplicity, we consider the flow to be two dimensional. The velocity field
uφ and pressure field pφ for an incoming flow with an arbitrary angle φ with
respect to the particle can be written as a linear combination of the fields of φ=
0◦ and φ= 90◦ as

uφ = a ·uφ=0◦ +b ·uφ=90◦ +c , (B.3)

pφ = d ·pφ=0◦ +e ·pφ=90◦ + f , (B.4)

where, a,b,d ,e, f are constants and c is the offset vector field. For a fixed particle
as in our case, at the particle boundary, uφ=0◦ → 0, uφ=90◦ → 0, and uφ → 0. This

s

s=��� s=1
s=0

n

Figure B.1: Elliptical section with an incoming flow at an angle φ.
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implies c = 0. Further, linearity means that the velocity u and pressure p scale
proportionally such that equation B.2 is written as

µ∇2(a ·uφ=0◦ +b ·uφ=90◦) =∇(a ·pφ=0◦ +b ·pφ=90◦). (B.5)

Therefore, the pressure linearity is inferred as

pφ = a ·pφ=0◦ +b ·pφ=90◦ + g , (B.6)

with ∇g = 0. Therefore from equations B.4 and B.6, a = d , b = e and f = g .
At far field |r | →∞, uφ = u∞(cosφ, sinφ)T , uφ=0◦ = u∞(1,0)T , and uφ=90◦ =

u∞(0,1)T . Therefore, the coefficients of equation B.3 and B.4 are

a = d = cosφ, and (B.7)

b = e = sinφ. (B.8)

At farfield |r |→∞, pφ = pφ=0◦ = pφ=90◦ = p∞. From equation B.4,

p∞ = p∞cosφ+p∞ sinφ+ f , (B.9)

and therefore

f = p∞(1−cosφ−sinφ). (B.10)

Therefore because of flow linearity in the Stokes regime, the velocity field u and
pressure p satisfy

uφ = uφ=0◦ cosφ+uφ=90◦ sinφ, and (B.11)

pφ−p∞ = (pφ=0◦ −p∞)cosφ+ (pφ=90◦ −p∞)sinφ. (B.12)
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