
 

 

 

DESIGN AND OPTIMIZATION OF FILAMENT WOUND 

COMPOSITE PRESSURE VESSELS 

 

Proefschrift 

 

ter verkrijging van de graad van doctor 

aan de Technische Universiteit Delft, 

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben, 

voorzitter van het College voor Promoties, 

in het openbaar te verdedigen op woensdag 22 februari 2012 om 12.30 uur 

 

 

 

 

 

door 

 

Lei ZU 

Master of Science in Engineering Mechanics 

Xi'an University of Technology, Xi'an, China 

geboren te Anqing, China 

 
 
 
 
 



 

Dit proefschrift is goedgekeurd door de promotor: 

Prof. ir. A. Beukers 

 

Copromotor: 

Dr. ir. S. Koussios 

 

Samenstelling promotiecommissie: 

 

Rector Magnificus, voorzitter instellingen allemaal volledig uitschrijven 

Prof. ir. A. Beukers, Technische Universiteit Delft, promotor 

Dr. ir. S. Koussios, Technische Universiteit Delft, copromotor 

Prof. dr. S.C. Mantell, University of Minnesota 

Prof. dr. X. He, Harbin Institute of Technology 

Prof. dr. ir. R. Akkerman, Universiteit Twente 

Prof. dr. ir. M.J.L. van Tooren, Technische Universiteit Delft 

Prof. dr. ir. R. Marissen, Technische Universiteit Delft 
 

 

 

ISBN: 978-90-8891-382-2 

 

Copyright © 2012: L. Zu 

 

All rights reserved. No part of the material protected by this copyright notice may be 

reproduced or utilised in any form or by any means, electronic or mechanical, including 

photocopying, recording or by any information storage and retrieval system, without the prior 

written permission of the author. 

 

Cover design: D. Xiao 

 

Printed in the Netherlands by Uitgeverij BOXPress, Oisterwijk 



 

 i 

 

 

Summary 

 
One of the most important issues for the design of filament-wound pressure vessels reflects 

on the determination of the most efficient meridian profiles and related fiber architectures, 

leading to optimal structural performance. To better understand the design and optimization of 

filament-wound pressure vessels, in this dissertation we present an overview and 

comprehensive treatment for toroidal and domed pressure vessels. Since the geodesic winding 

has severe boundary conditions that confine the layup optimization, the non-geodesic 

trajectories are here extensively applied to enlarge the design space. 

Designing optimal laminate layup is not the only issue; the fibers must be stable on the 

mandrel and be exactly placed along trajectories as predetermined by structural design. To 

obtain a stable fiber trajectory, the stability-ensuring conditions are formulated in terms of 

both fiber slippage and bridging tendencies; these conditions provide the basic criteria for the 

subsequent design of various pressure vessels. The mathematical description of the geodesics 

and non-geodesics on a generic shell of revolution is briefly presented. 

A generalized optimality criterion that is adapted to various optimal design problems for 

pressure vessels is elaborated. This condition originates from the idea that the optimal 

pressure vessels are governed by the condition of equal shell strains, or equivalently, zero 

shear stress at lamina level. The specific equations and the feasible intervals of the optimality 

condition are also given for several types of laminations. 

The basic equations of the netting analysis and their applications to the design of circular 

toroidal pressure vessels are here outlined. The influence of the fiber layup and the geometry 

of the toroid on the stability of netting-dictated fiber trajectories are evaluated. 

A new possibility to improve the vessel performance can be offered by the application of 

adapted cross-sectional shapes instead of the conventional shapes. The isotensoid design, 

which leads to equal fiber tension throughout the whole structure, is conducted to determine 

the netting-based optimal cross-sectional shapes. The governing equations for determining 
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geodesic and non-geodesic isotensoids are respectively derived and their feasible intervals are 

also determined. In addition, a simplified method for designing isotensoid pressure vessels 

with unequal polar opening is also outlined, with the aid of non-geodesic trajectories. 

The optimal design, based on orthotropic plate theory, is divided into two basic approaches: 

numerical and semi-analytical methods. A numerical optimization method is specially 

designed for determining the optimal meridian profiles of bellow-shaped pressure vessels. An 

integral design method is proposed for circular toroidal pressure vessels, with emphasis on the 

determination of the optimal non-geodesic trajectories and winding patterns. Based on the 

previously-obtained (generalized) optimality condition, semi-analytical design methods are 

presented for the determination of the optimal meridian profiles for continuum-based domes 

and toroids, respectively. The optimal cross sectional shapes lead to significantly improved 

vessel performance. 

An extensive study of the manufacturing of filament wound toroidal pressure vessels is 

conducted. We here emphasize the importance of suitable winding patterns for obtaining an 

optimal pressure vessel, and we accordingly derived the "Diophantine"-alike pattern equations 

that produced such patterns. The main objective of the method presented here is to match the 

structure-dictated number of wound circuits to the solution of the pattern equations for 

determining the proper winding velocities of the mandrel and the feed eye. In addition, 

depending on the aimed lathe machine configuration, the underlying geometric model of the 

new-fashioned toroidal winder is outlined and the kinematic solutions for coupling the motion 

of the mandrel and the feed eye are also given. Simulations of geodesic and non-geodesic 

trajectories are performed for winding toroidal pressure vessels. 

Last but not least, since ultra-high pressure vessels require thick-walled designs, this 

dissertation is also extended to three-dimensional problems where the through-thickness stress 

gradient is taken into account. A three-dimensional (3D) elasticity analysis on multi-layered 

thick-walled pressure vessels is here addressed. In order to better understand the design 

approaches of thick-walled composite cylinders and find ways to improve their structural 

performance, a review is devoted to 3D elasticity approaches for obtaining the exact solutions 

of the stresses and strains induced by internal pressure, and the effects of hygrothermal 

loading and twisting. The 3D effective elastic constants and most frequently used failure 

criteria for cylindrically anisotropic materials are also presented. 
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Samenvatting 

 
Eén van de belangrijkste aspecten van het ontwerp van gewikkelde drukvaten is de 

bepaling van de meest efficiënte meridiaanprofielen en gerelateerde vezelarchitecturen die 

leiden tot de optimale constructieve prestatie. Voor een beter begrip van het ontwerp en de 

optimalisatie van gewikkelde drukvaten presenteert deze dissertatie een uitvoerige 

behandeling van toroïde- en koepelvormige drukvaten. Vanwege het feit dat geodetische 

banen strikte grenswaardes met zich meebrengen die de optimalisatie van de laminaatopbouw 

sterk beperken, worden niet-geodetische banen veelvuldig toegepast om de ontwerpruimte te 

vergroten. 

Het ontwerp van de optimale laminaatopbouw is niet het enige aspect dat in ogenschouw 

moet worden genomen. Het vezelmateriaal moet tevens stabiel op de mal gepositioneerd zijn 

en bovendien exact geplaatst zijn langs de uit het constructieve ontwerp afgeleide banen. Om 

een stabiele vezelbaan te verkrijgen, worden condities geformuleerd waardoor de stabiliteit 

gegarandeerd is als functie van zowel vezelslip als overbruggingsneigingen; deze condities 

leveren de basiscriteria voor het daaropvolgende ontwerp van diverse drukvaten. Een korte 

mathematische beschrijving van geodeten en niet-geodeten op een algemeen roterende schaal 

wordt kort gepresenteerd. 

Een veralgemeniseerd optimalisatie criterium wordt uitgewerkt en toegepast op diverse 

ontwerp problemen. Dit criterium komt voort uit het idee dat optimale drukvaten worden 

gedefinieerd door de conditie van gelijke schaalrekken of - hieraan gelijkstaand - de 

afwezigheid van schuifspanningen op laminaatniveau. De specifieke vergelijkingen en de 

uitvoerbare intervallen van het optimalisatie criterium worden ook behandeld voor 

verschillende typen laminaten. 

De basisvergelijkingen van de ‘netting analysis’ en de toepassing hiervan op het ontwerp 

van circelvormige toroïde drukvaten worden besproken. De invloed van de lay-up en de 

geometrie van de toroïde op de stabiliteit van de netting-gedomineerde vezelbanen worden 
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geëvalueerd.  

Er wordt een nieuwe mogelijkheid gepresenteerd ter verbetering van de prestatie van het 

drukvat welke berust op de toepassing van aangepaste doorsnedes in plaats van conventionele 

doorsnedes. Het isotensoïde ontwerp welke leidt tot gelijke vezelspanning door de gehele 

structuur, wordt uitgevoerd ter bepaling van de netting-gebaseerde optimale doorsnedes. De 

vergelijkingen voor de bepaling van geodetische en niet-geodetische isotensoïdes worden 

afgeleid en tevens worden hun uitvoerbare intervallen bepaald. Aanvullend wordt een 

vereenvoudigde methode uiteengezet voor het ontwerp van isotensoïde drukvaten met 

ongelijke poolopeningen door gebruikmaking van niet-geodetische banen. 

Het optimale ontwerp gebaseerd op de orthotrope plaat theorie wordt verdeeld in een 

tweetal basis methodes: numerieke en semi-analytische methodes. Een numerieke 

optimalisatie methode wordt speciaal opgesteld om de optimale meridiaanprofielen van 

balgvormige drukvaten te bepalen. Een integrale ontwerpmethode voor circelvormige toroïde 

drukvaten wordt voorgesteld, met de nadruk op de bepaling van de optimale niet-geodetische 

banen en wikkelpatronen. Gebaseerd op de eerder verkregen (gegeneraliseerde) optimalisatie 

conditie worden semi-analytische ontwerpmethodes gepresenteerd ter bepaling van de 

optimale meridiaanprofielen voor op continuüm gebaseerde koepelvormen en toroïdes. De 

optimale doorsnedes leiden tot significant verbeterde drukvaten. 

Er wordt een omvangrijke studie uitgevoerd naar de productie van gewikkelde toroïde 

drukvaten. De nadruk ligt hier op de belangrijkheid van bruikbare wikkelpatronen om 

optimale drukvaten te verkrijgen en dienovereenkomstig leiden we de Diophantische 

patroonvergelijkingen af die dergelijke wikkelpatronen tot gevolg hebben. Het belangrijkste 

doel van die hier gepresenteerde methode is om het door de structuur gedomineerde aantal 

gewikkelde circuits passend te maken met de oplossing voor de patroonvergelijkingen ter 

bepaling van de juiste wikkelsnelheden van de mal en het wikkeloog. Dienovereenkomstig, 

afhankelijk van de beoogde machine configuratie, wordt een uiteenzeeting gegeven van het 

onderliggende geometrische model van de nieuw ontworpen toroïde wikkelmachine en tevens 

worden de kinematische oplossingen voor de gekoppelde beweging van mal en wikkeloog 

gepresenteerd. Simulaties van geodetische en niet-geodetische banen worden uitgevoerd voor 

het wikkelen van toroïde drukvaten. 

Tenslotte, omdat zeer hoge drukvaten dikwandige ontwerpen vereisen, is deze dissertatie 

verder uitgebreid met driedimensionale problemen waarbij de spanningsgradiënt door de dikte 

ook een rol speelt. Een driedimensionale elastisiteitsanalyse op meervoudig gelaagde 

dikwandige drukvaten wordt hier behandeld. Om de ontwerpbenaderingen van dikwandige 
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composieten cilinders better te begrijpen en manieren te vinden om hun constructieve 

eigenschappen te verbeteren wordt een bespreking gewijd aan driedimensionale 

elasticiteitsbenaderingswijzen om de exacte oplossingen van de spanningen en rekken 

geïnduceerd door de interne druk te verkrijgen. Tevens worden de effecten van hygrothermale 

belasting en verdraaiing bestudeerd. Daarnaast worden de driedimensionale effectieve 

elastische constanten en de meest toegepaste faalcriteria voor cilindrische anisotrope 

materialen gepresenteerd. 
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Chapter 1 

Introduction and Objectives 

 

1.1 Introduction to Filament Winding 

1.1.1 Brief history 

Filament winding is one of the oldest composite processing methods. It was probably the 

first method to be automated, and remains today one of the most cost-effective methods for 

mass production [1]. The unique characteristics of this process caused great revolutions for 

many years. The concept of filament winding process had been introduced in early 40's and 

the first attempt was made to develop filament-winding equipment [2]. The equipment that 

was designed in 1950's was very basic; it performed the simplest tasks using only two axes of 

motion (spindle rotation and horizontal carriage). The machine design consisted of a beam, a 

few legs and cam rollers for support [3]. The simplistic design was sufficient to create the first 

filament wound parts: rocket motor cases. The pace of composite development was 

accelerated during World War II. The push for aerospace dominance that began in the 1950's 

and really picked up speed in the 1960's was a new impetus for composite development. 

Young R. of the W. M. Kellogg Company began using filament winding for making small 

rocket motors [4]. This technology was purchased by Hercules and was the basis for the 

large-scale rocket motor business which was at the heart of the space race. Filament wound 

composite pressure vessels evolved from a demonstration project at Hercules Powder Corp. in 

1948. These first filament wound parts, solid rocket motor nozzles for the X248 missile, were 

the follow-up of the experimental and pioneering WWII work of Theodore Von Karman [5]. 

In 1955, North American Aviation (Rocketdyne) engaged Hercules in another demonstration 

project, wrapping the MATADOR motorcase with fiberglass. By 1962 the need for highly 
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accurate filament winding machines became apparent to Ashton L., an engineer at Hercules, 

who founded Engineering Technology to produce these machines. By 1963, the first filament 

wound motor case (a strap-on booster for the TITAN missile) was in production [6].  

Meanwhile, from the mid 1950's to the early 1960's, research was underway at Air Force, 

Navy, Military and private laboratories funded by weapons research. Material development 

and testing was carried out in conjunction with the design and construction of filament wound 

pressure vessels, rocket motor cases, nozzles and launch tubes [7]. These developments were 

carried out by the major industrial subcontractors. Among them were Walter Kidde & Co., 

Brunswick Corp., Aerojet General Corp., Rocketdyne, Thiokol, Owens-Corning and many 

others [8]. Techniques still considered advanced today, such as computer controlled 

pre-impregnated winding were being employed as early as 1961 [9].  

The actual arrangement of the filament-winding apparatus can take a number of different 

forms, a lathe-like configuration being common (Fig. 1.1) [10, 11]. Eventually through 

technical innovations, engineers were able to design servo-controlled photo-optic machines 

with hydraulic systems. During this time the filament winding machine became increasingly 

sophisticated in design; the addition of a third axis of motion (radial or cross-feed carriage), 

profile rails and ball shafts in combination with improved gearboxes resulted in smoother, 

more accurate filament winding [12]. By mid-70’s, the advancement of servo technology 

entered the realm of the machine design [13]. High-speed computers allowed for rapid data 

processing, resulting in smoother motion and greater fiber placement accuracy (Fig. 1.2) 

[14,15]. Perhaps the crowning jewel of this period (1978) was the development of the first 

fully filament wound aircraft fuselage, the Beech Starship, by Ashton [16]. The plane was 

successfully flown, but was not commercialized using the filament wound technology. Before 

80’s economical considerations were items of less importance; the most common application 

was the production of rocket engine cases. The 1980s and 90s saw increased use of computer 

technology. Computers and motion control cards became essential pieces of hardware that 

were included in almost every machine [17]. Machine speed control was greatly improved; 

computer control systems could track position and velocity with increased accuracy. 

Additional axes of motions were also incorporated into machine design, allowing for four, 

five and even six axes of controlled motion (Fig. 1.3) [18]. Several kinematic models have 

been developed in the 1990s [15, 19, 20]. At the same time, a number of companies began to 

experiment with the development of pattern generation software [21-23]. By creating pattern 

generation software, more complex configurations, such as tapered shafts [24, 25], T-shaped 

parts [26, 27] and non-axisymmetric parts [28-30] could be successfully wound. 
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Fig. 1.1: A lathe-like filament winding machine [11] 

 

 
Fig. 1.2: Schematic of a computer-controlled winder having two degrees of freedom [15] 

 

 
Fig. 1.3: 6-Axis filament winding machine (Courtesy of McClean Anderson, Inc.) [18] 
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1.1.2 Processing technology 

In 1964, the authors, Rosato D.V and Grove C.S. in their book titled, Filament winding: Its 

Development, Manufacture, Applications and Design defined it as a technique which 

"…produces high-strength and lightweight products; consists basically of two ingredients; 

namely, a filament or tape type reinforcement and a matrix or resin" [31]. In a filament 

winding process, a band of continuous resin impregnated rovings or monofilaments is 

wrapped around a rotating mandrel and then cured either at room temperature or in an oven to 

produce the final product. The technique offers high speed and is a precise method for placing 

many composite layers. The mandrel can be cylindrical, round or any shape that does not have 

re-entrant curvature. Among the applications of filament winding are cylindrical and spherical 

pressure vessels (Fig. 1.4), pipe lines, oxygen & other gas cylinders, rocket motor casings, 

helicopter blades, large underground storage tanks (for gasoline, oil, salts, acids, alkalies, 

water etc.). The process is not limited to axis-symmetric structures: prismatic shapes and more 

complex parts such as T-joints, and elbows may be wound on machines equipped with the 

appropriate number of degrees of freedom. Modern winding machines are numerically 

controlled with higher degrees of freedom for laying the exact number of layers of 

reinforcement. Mechanical strength of the filament wound parts not only depends on 

composition of component material but also on process parameters like winding angle, fiber 

tension, resin chemistry and curing cycle. 

Filament winding has become a very popular construction technique in a wide variety of 

industries for creating composite structures with high stiffness-to-weight ratios. Since this 

fabrication technique allows production of strong, lightweight parts, it has proved particularly 

useful for components of aerospace, hydrospace and military applications and structures of 

commercial and industrial usefulness. Both the reinforcement and the matrix can be tailor- 

made to satisfy almost any property demand. This aids in widening the applicability of 

filament winding to the production of almost any commercial items wherein the strength to 

weight ratio is important. Apart from the strength-to-weight advantages and low cost of 

manufacturing, filament wound composite parts have better corrosion and electrical resistance 

properties.  

Filament winding is an effective method to manufacture composite cylinders. In this 

process, composite layers are continuously wound on a rotating mandrel. This technique 

offers a high speed and precise method for placing many composite layers. There are two 

different winding methods: (1) wet winding, in which the fibers are passed through a resin 
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bath and wound onto a rotating mandrel; (2) prepreg winding, in which the pre-impregnated 

fiber tows are placed on the rotating mandrel. Among these winding methods, wet winding is 

more commonly used. Compared to prepreg, wet winding has several advantages: low 

material cost, short winding time, and the resin formulation can easily be varied to meet 

specific requirements. 

           
                     (a)                                 (b) 

Fig. 1.4: Filament wound cylindrical (a) and spherical (b) pressure vessel 

 

The process of filament winding is primarily used for hollow, generally circular or oval 

sectioned products. Fibers can either be used dry or they can be pulled through a resin bath 

before being wound onto the mandrel. The winding pattern is controlled by the rotational 

speed of the mandrel and the movement of the fiber feed mechanism. Filament winding 

usually refers to the conventional filament winding process. However, some industrial 

companies use a so-called “Fast Filament Winder” for producing pressure vessels [32]. 

Basically the processes are the same (the fibers are wound around a mandrel following a 

certain pattern), but the way the machines work and the way the mandrel moves differs. After 

winding, the filament wound mandrel is subjected to curing and post curing operations during 

which the mandrel is continuously rotated to maintain uniformity of resin content around the 

circumference. After curing, the product is removed from the mandrel, either by hydraulic or 

mechanical extractor. 

 

1.1.3 Materials 

The mechanical properties of fibers dominantly contribute to the overall mechanical 

properties of the fiber/resin composite. The contribution of the fibers depends on four main 

factors [33]: (1) the basic mechanical properties of the fiber; (2) the surface interaction of 

fiber and resin (interface), (3) the amount of fibers in the composite (fiber volume fraction); 
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(4) the orientation of the fibers in the composite; (5) the surface interaction of fiber and resin 

(depending on the degree of bonding between the two). This interfacial bonding is heavily 

influenced by the kind of surface treatment given to the fiber surface (sizing). Also, sizing 

minimizes the damage caused by handling. The choice in sizing depends on the desired 

performance of the composite, the kind of fiber and the way the fibers are going to be 

processed. The amount of fibers in a composite determines the strength and stiffness. As a 

general rule, the strength and stiffness of a laminate will increase proportional to the amount 

of fibers. However, above 60-70% fiber volume fraction, the tensile stiffness still increases, 

while the laminate strength reaches a peak and than slowly decreases. In this situation there is 

too little resin present to sufficiently hold the fibers together. The orientation of the fibers in a 

composite largely contributes to the overall strength. Reinforcing fibers are designed to be 

loaded along their length, which means that the properties of the composite are highly 

direction-specific. By placing the fibers in the loading directions, the amount of material put 

in directions where there is little or no load can be minimized. 

The most commonly used fiber materials are carbon fiber, glass fiber and aramid fiber [34]. 

Compared to other fibers, carbon fibers show many advantages in providing excellent 

mechanical properties, e.g. low density, high tensile modulus and strength, good creep and 

fatigue resistance, low friction and thermal expansion, good electrical and thermal 

conductivity, and reduced moisture absorption. They are used as ultra-high strength structural 

components and reinforcements in aerospace structures and high-pressure compressed air 

tanks, for example aircraft fuselages and wings, satellite platforms and wind turbine blades.  

Aramid fibers, which have been commercially available since the 1960s, have also found a 

wide field of applications. Their thermal properties facilitated their use as a substitute for 

asbestos. Aramid fibers, which show good vibration damping, high energy absorption, and 

favorable ballistic properties, are used for bullet and fragment or impact resistance 

applications.  

Glass fibers can be divided into several groups according to their chemical composition: 

A-glass, C-glass, S-glass, E-glass, etc. Only E-glass is widely used in aerospace applications. 

Glass fibers are produced from molten glass which is either produced directly or by melting 

glass marbles. The molten glass is poured into a tank and held at a constant temperature to 

retain a constant viscosity. The flowing glass forms filaments with diameters that can range 

from 1-25 µm. Glass fibers provide the designer with high shear modulus, low Poisson's ratio, 

good electrical and thermal resistance, low thermal expansion and low production cost. 

Resin matrix comprises an important part of any composite. It is basically the glue that 
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keeps the fibers together. A resin must have good mechanical properties, good adhesive and 

toughness properties, and good environmental properties. For the mechanical properties this 

means that an ideal resin must be initially stiff but may not suffer brittle failure. In order to 

achieve the full mechanical properties of the fiber, the resin must deform at least the same 

extend as the fiber. Good adhesion between resin and reinforcement fibers ensures that the 

loads will be transferred efficiently to prevent cracking and debonding. The resistance to 

crack propagation is a measure for the material’s toughness. It is important to match the 

toughness with the ultimate elongation of the fiber. The environment in which the composite 

is used can be harsh. The resin must have good resistance to the surrounding environment, 

especially water and other aggressive substances. Furthermore, the resin must be able to 

withstand constant stress cycling.  

There are two different matrix systems: Thermosets [35] and Thermoplastics [36-38]. 

Thermosets are produced from a chemical reaction, where the resin is mixed with a hardener 

or catalyst to undergo an irreversible chemical reaction which results in a hard, infusible 

matrix. Various types of thermosets are currently used in the composites industry, among 

which the most common are: polyester, vinylester and epoxy.  

Thermoplastics, like metals that are soften and eventually melted when heated, then 

become hardened again when cooled. This process of crossing the softening or melting point 

on the temperature scale can be repeated as often as desired without any appreciable effect on 

the material properties in either state. Typical thermoplastics include Acrylic, nylon, 

polypropylene, polyethylene, etc; these can be reinforced, although usually only with short, 

chopped fibers such as glass. 

By using various additives, liquid resin systems can be made suitable to provide specific 

mechanical/physical performance. Fillers constitute the greatest proportion of a formulation, 

second to the base resin. The most commonly used fillers are calcium carbonate, alumina 

silicate and alumina trihydrate. Calcium carbonate is primarily used as a volume extender to 

provide the lowest-cost resin formulation in areas in which performance is not critical. 

Alumina trihydrate is an additive that is used for its ability to suppress flame and smoke 

generation. Fillers can be incorporated into the resins in quantities up to 50% of the total resin 

formulation by weight. The usual volume limitation is based on the development of usable 

viscosity, which depends on the particle size and the characteristics of the resin. Special 

purpose additives include ultraviolet radiation screens for improved weatherability, antimony 

oxide for flame retardance, pigments for coloration and low-profile agents for surface 

smoothness and crack suppression characteristics. Mould release agents (metallic stearates, 
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silicon gel or organic phosphate esters etc.) are important for adequate release from the 

mandrel to provide smooth surfaces and low processing friction. 

 

1.1.4 Liner / Mandrel 

Invariably all pressure vessels or pipes made of composites have a liner. The function of 

the liner is to seal the liquid or gas inside the vessel or pipe. Normally the fibers provide the 

strength and stiffness for the structure. In cases where there are cracks in the matrix, these 

cracks may not cause rupture in the vessel or pipe, but the fluid inside may leak or weep out 

of the container. In case of flammable fluid, this can be dangerous, even though the fiber 

network is sufficient to contain the pressure. In order to seal the fluid, a flexible liner is 

usually applied. A liner can be a rubber bladder, a soft layer of thermoplastic such as PVC, or 

a thin layer of metal (steel, aluminum alloy, titanium alloy). When the liner is stiff enough, 

the liner may be used as a mandrel for overwinding the fiber and resin. In a situation where 

the liner is not stiff enough to withstand the compression due to the winding force, or in cases 

where it is essential to take the mandrel out, strategies for mandrels should be developed. 

There are many requirements for mandrels. The important considerations for mandrels are 

[39]: (1) the mandrel should be sufficiently stiff to withstand the compression imposed by the 

winding force; (2) the resin should not stick to the surface of the mandrel. Release agents need 

to be applied; (3) the mandrel should be extractable from the part after curing. Mandrels can 

be classified according the following categories: extractable mandrels, collapsible mandrels, 

breakable mandrels and dissolvable mandrels. 

 

1.1.5 Winding patterns 

The operation of filament winding is the reverse of the conventional machining process of 

milling on a lathe. In milling, one starts with a cylindrical surface and one removes the 

material from the surface one strip at a time. In filament winding, one deposits the material on 

the surface of the mandrel one strip at a time. The most basic form of filament winding is a 

two degrees-of-freedom operation. This consists of the rotation of the mandrel and the linear 

movement of the feed eye along the axis of the mandrel. Pressure vessels and pipes can be 

wound by using at least two-axis filament winding machines. The availability of the 

additional degrees of freedom can be useful in winding at the end of the part, such as heads of 

pressure vessels, or the winding of shapes more complex than straight cylinders such as those 
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with variations in the cross section (i.e. cones) or spheres. For example, for the case of a 

four-axis winding machine, the basic movements are mandrel rotation and feed-eye traverse. 

The third axis is a horizontal translation perpendicular to the mandrel axis and the fourth axis 

of motion is the rotation of the feed eye. The latter permits more accurate fiber placement at 

the ends of the mandrel. Winding machines with more degrees of freedom up to the level of 

7-axis robot cells are available. 

Depending on the coordination between the rotational motion and the axial motion, three 

basic types of winding patterns can be obtained. These are: planar, helical, and hoop (Fig.1.5) 

[40]. The choices made are based on the shape of the part and the reinforcement orientations 

required. Planar winding is used to lay down fibers less than 5° with respect to the 

longitudinal axis. Planar windings pass close to or around the mandrel poles. Each completed 

planar winding pattern covers the mandrel surface with a single layer of reinforcements. 

Helical winding is used to lay fibers at angles from 5° to 80° to the longitudinal axis. These 

fibers are wound on the mandrel surface in alternating positive and negative orientations and 

result in a double layer of wound material. Helical windings may pass around the end of a 

closed-end shape. Hoop winding is a special form of helical winding and is used to deposit 

fibers close to 90° to the longitudinal axis. Hoop windings are generally applied only to the 

cylindrical or straight portion of a mandrel and result in a single layer of reinforcement. 

 

 
Planar winding 

 

 
Helical winding 
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Hoop winding 

Fig. 1.5: Three basic winding patterns 

 

1.2 Composite Pressure Vessels 

1.2.1 Brief introduction 

Pressure vessels have been manufactured by filament winding for a long time. Although 

they appear to be simple structures, pressure vessels are difficult to design. Filament-wound 

composite pressure vessels have found widespread use not only for military but also for 

civilian applications. This technology originally developed for military use has been adapted 

to civilian purposes and was, in a later stage, extended to the commercial market. 

Applications include breathing device, such as self-contained breathing apparatuses used by 

fire-fighters and other emergency personnel, scuba tanks for divers, oxygen cylinders for 

medical and aviation cylinders for emergency slide inflation, opening doors or lowering of 

landing gear, mountaineering expedition equipment, paintball gas cylinders, etc. 

A potential widespread application for composite pressure vessels is the automotive 

industry. Emphasis on reducing emissions promotes the conversion to CNG or hydrogen 

fuelled tanks worldwide [41-44]. Engineers are seeking to replace petroleum derivative 

products with natural gas or hydrogen as the energy supply in automobiles for air quality 

improvements and pollution elimination. Onboard compressed hydrogen storage technologies 

are one of the key requirements for the successful application of fuel cell vehicles [45, 46]. 

One of the limitations is the lack of vehicle range between refueling stops [47]. Efficiency, 

weight, volume and cost of the containment vessel are also important considerations [48]. 

Filament-wound composite pressure vessels utilizing high strength/modulus to density ratio 

offer significant weight savings over conventional all-metal pressure vessels for the 

containment of high pressure gases and fluids [50]. Composite pressure vessels are expected 

to withstand a maximum burst pressure at a maximum internal volume and a minimum weight. 
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Accordingly, a performance factor PF = PV/W is used as an index for rating pressure vessels, 

where P, V, W are the burst pressure, the containing volume and the weight, respectively [51]. 

Composite vessels with very high burst pressures (≥70MPa) are in service today in the 

aerospace and fuel cell vehicles industry [52]. Vessels with burst pressure between 200 and 

400 MPa have been under investigation and such containment levels were achieved in the late 

1970’s through mid 1980’s [53]. The vessel designs based on thin-walled theories are 

currently insufficient for broad application in the transportation industry; therefore further 

development of thick-walled composite designs is required for containing ultra-high 

pressurized gases. Advanced ultra-high pressure composite vessels design techniques must be 

employed to achieve such operations. However, current ultra-high pressure vessels are low in 

structural efficiency. There also exists a fundamental lack of confidence in the ability to 

understand and predict their structural behaviors. Higher pressures are not yet approved for 

use on public roads or commercial aircraft. This implies a need for advancement in composite 

pressure vessel technology. It is known that stress decline rapidly through the wall thickness. 

At first glance pretension of wound fibers appears to be able to change the distribution of 

stress through the wall thickness, but research has shown that the effects are limited. Most of 

finite element analyses on composite pressure vessels are based on shell elements which are 

generated using the classical lamination theory. The results appear to be good when the 

internal pressures are not very high and the ratio of diameter to wall thickness is greater than 

15. Some FEA tools like ABAQUS and ANSYS provide a thick shell element to include the 

shear stress in the radial direction and capture the transverse shear deformation [54]. 

Cylindrical composite pressure vessels constitute an inner liner and a filament wound 

composite overwrap. The liner is necessary to prevent leaking, while some of the liners do 

also provide strength to share the internal pressure load. Composite pressure vessels should 

take full advantage of the extremely high tensile strength and high elastic modulus of the 

fibers from which they are made. Theories of laminated composite materials for evaluating 

these properties are relatively well established for the modulus of elasticity, and to a lesser 

extent for strength. Generally, there are two approaches to modeling composite material 

behaviors [55]: (1) micromechanics where the interaction of constituent materials is examined 

as the behavior of heterogeneous composite material; (2) macromechanics where the material 

is assumed homogeneous and the effect of the constituents are detected only as averaged 

properties. 
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Fig. 1.6: A pressure vessel dome and its fiber trajectory 

 

1.2.2 Filament wound dome heads for pressure vessels 

Pressure vessels may theoretically be almost any shape, but shapes made of sections of 

spheres, cylinders, and cones are usually employed. A common design is a cylinder with end 

caps called domes or heads. Dome shapes are frequently either hemispherical or torispherical 

(Fig. 1.6). More complicated shapes have historically been much harder to be assessed by a 

reliable analysis tools for structural behavior and safe operation and are usually very difficult 

to construct. 

Geodesic-isotensoid dome design [56], modified helically wound dome design [57] and 

planar wound dome design method [58] have been used to determine the winding patterns and 

the dome geometry of pressure vessels. A geodesic-isotensoid dome is assumed to support 

internal pressure by the fiber only and to consist of filaments that are loaded to an identical 

stress level. The geodesic-isotensoid equation is mainly used for domed pressure vessels with 

equal polar openings at the both ends. Planar winding patterns lie in a plane, which is tangent 

to the polar opening at one end of the part and tangent to the opposite side of the polar 

opening at the other end. These are mainly used in pressure vessels with length-to-diameter 

ratios less than 2. Planar winding equations helically wound dome equation is a revised 

version of the isotensoid dome equation and can be applied to pressure vessels that have 

different polar opening radii. This equation is mainly used in pressure vessels with a 

length-to-diameter greater than 2. 

Because the above equations simultaneously provide the dome shape and the winding 

patterns for given parameters such as the radius ratio of the polar opening to a cylindrical part, 
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the initially determined winding patterns are maintained until the end of the winding process. 

The design of the mandrel shape can also be incorporated into the winding trajectory design. 

Theoretically, a sphere would be the optimal shape of an isotropic dome for a pressure 

vessel. Unfortunately, the optimal shape of a composite dome is far more difficult to 

determine due to the anisotropic character of its reinforced wall. With the advent of 

anisotropic fiber reinforced materials with preferred stiffness and strength directions parallel 

to the fibers, it was discovered that the ideal dome shape was an isotensoid [59, 60]. 

Isotensoid implies that all locations within an internally pressurized dome undergo the same 

level of tensile stress, and the design is formulated so that the major stresses are carried solely 

by the fibers of the composite. Thus there is a direct correlation between the dome geometry, 

laminate stiffness parameters, and the fiber trajectories that are used within the manufacturing 

process. Netting analysis is used to formulate and solve the isotensoid dome equation that 

results from this interaction between the dome geometry and winding angles. The resulting 

isotensoid design solution can take into account many particular features of a filament wound 

pressure vessels like the size of the polar openings, the method of filament winding (e.g. (non-) 

geodesic or planar winding). 

The relative dimensions of different sections of a pressure vessel are designed based on the 

space and weight requirements and the pressure levels. Since filament wound pressure vessels 

usually fail in their dome parts, the focus on dome design can never be lost. This is due to the 

fact that the dome regions undergo the highest stress levels and are the most critical locations 

from the viewpoint of structure failure [61]. The desired target of the dome design is to 

achieve a higher burst pressure and internal volume and a lower weight. 

Generally, the shape optimization problem consists of finding out the best profile of a 

component that improves its structural performance and minimizes some properties, for 

example, to minimize the vessel weight or reduce high stress concentrations around the pole 

or the cut-outs. The choice of any parametric curve to represent the dome profile will result in 

a certain degree of restriction to the optimization problem. The objective of shape 

optimization of an engineering component is to search for a feasible solution within a 

prescribed tolerance. Therefore, an adequate selection of a geometric representation and the 

minimum number of appropriate design variables is of vital importance in order to achieve an 

automatic design cycle during the shape optimization, and to guarantee an effective approach 

that is able to provide a straightforward but reliable design for pressure vessels. 

One aspect of filament wound pressure vessels that is somewhat unique, is the fact that 

incorrect increase of the amount of material can actually decrease the load-carrying capability 
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of the structure. This is due to the fact that extra layers of filament wound structures do 

change the stiffness distribution of the shell and thus necessitate a corresponding change in 

the shape of the isotensoid dome profile. Since the end cap geometry is usually dictated by the 

mandrel on which it is formed and thus cannot be changed without re-tooling, the incorrect 

addition of filament wound plies leads to a design that fails below the desired load levels. 

The dome/polar boss interface is one of the most highly stressed areas of a filament wound 

composite motor cases, because all the internal pressure acting across the polar openings must 

be transferred to the composite in this area. In addition, the stress concentration at the 

cylinder/dome junction region is sometimes overestimated due to the rapid change in 

thickness and curvatures. 

 

1.2.3 Toroidal pressure vessels for compressed hydrogen storage 

Hydrogen is a strong contender for future green energy. Hydrogen-powered fuel cell 

vehicles have emerged as an interesting alternative to lower air pollutant emission as well as 

to reduce our dependence on fossil fuels [62-64]. Hydrogen can be stored onboard a vehicle 

either as compressed gas, as cryogenic liquid, or as adsorbed elements using metal hydrides or 

carbon nanotubes [65-67]. Of these alternatives, high-pressure compressed hydrogen storage 

is considered as the most feasible and near-term solution for onboard vehicular applications, 

because of low cost, effective heat transfer, rapid refueling and reasonable operating 

temperature of gaseous hydrogen [68-70]. However, to be competitive with conventional 

vehicles and successfully penetrate the automobile market, hydrogen fuel cell vehicles must 

be able to provide an adequate driving range (≥500 km). Because gaseous hydrogen at 

atmospheric pressure has a very low energy content by volume, hydrogen storage tanks are 

expected to operate at a high pressure to obtain sufficient gravimetric and volumetric energy 

density. It should be mentioned here that 70MPa is more and more preferred to improve 

gaseous hydrogen storage density. It has been demonstrated that with creative packaging, the 

range expectations can be fulfilled by using 70MPa storage systems without seriously 

compromising either passenger or cargo space [48]. On-board hydrogen storage at 70MPa 

provides up to 1.6:1 advantage over storing at 35MPa and 2.2:1 advantage over storing at 

20MPa. Fig. 1.7 displays the relationship between compression energy and various pressures 

of gaseous hydrogen. 
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Fig. 1.7: Relation between compression energy and service pressure [48] 

 

By increasing the pressure of hydrogen, a sufficient driving range can be achieved but at 

the expense of weight, payload and carrying volume within the vehicle. A key technical 

challenge of maximizing the gravimetric and volumetric energy efficiency of gaseous 

hydrogen systems is addressed through the development of a conformable composite pressure 

vessel, which can give a hydrogen fuel cell vehicle a comparable travel range to today's 

gasoline-powered vehicles [71]. To withstand the design stress, thicker walls are required for 

higher-pressure on-board hydrogen storage tanks that results in practical challenges like 

weight penalty in automotive applications. Therefore, carbon fiber-epoxy resin composites 

combined with filament winding technology have been widely applied to produce lightweight 

high-pressure hydrogen storage tanks [72]. Composite overwrapped pressure vessels designed 

to sustain ultra-high pressure have been increasingly used onboard hydrogen-powered fuel 

cell vehicles. The application of composite structures improves the vessel performance and 

offers a significant amount of material saving. Among various processing methods for 

composite structures, filament winding is a highly automated technique of laying down fiber 

reinforcements to create strong, lightweight products so it has gained a widespread application 

in the manufacturing of composite pressure vessels. Compare to other production methods for 

composites, the filament winding process provides significant advantages such as high fiber 

volume fraction, high specific strength/stiffness and exceptional fatigue life. 

The United States Department of Energy (DOE) has presented a series of design targets for 

hydrogen storage system development, particularly for on-board hydrogen storage systems, 

that is, to achieve a system gravimetric density of 6% wt/kg and volumetric density of 45g 

H2/L by 2010, and to achieve 9% wt/kg and 81g H2/ L by 2015 [73]. The current gravimetric 

and volumetric energy densities of compressed hydrogen storage systems are still far fewer 
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than the required properties towards achieving the DOE 2010 and 2015 goals. 

Current high-pressure hydrogen storage tanks are much larger and heavier than desired gas 

tanks for light-duty vehicles and occupy a considerable fraction of the needed passenger space. 

Thus, improving storage pressure without compromising weight and volume is still a key 

technical challenge for successful commercialization of hydrogen fuel cell vehicles. A 

classical hydrogen storage tank consists of a cylindrical section and two quasi-spherical 

domes with polar openings. To date, filament-wound classical (cylindrical) hydrogen storage 

tanks have been studied for years and the design and manufacturing of such tank structures is 

relatively simple and mature [73-78]. However, since the dome regions withstand the highest 

stress levels, they always need thicker walls than the cylindrical parts. In addition, a large 

variation in radius from the dome equator to the pole leads to severe fiber stacking and 

thickness accumulation near the polar area of the classical pressure vessel [79, 80]. 

Among possible shapes of pressure vessels, toroids are recently gaining more attention in 

hydrogen storage because of their high structural efficiency and unique configuration. The 

toroid belongs to the class of doubly curved bodies and can be regarded as a bent, endless 

cylinder that saves on the need for materials in the end caps (Fig. 1.8 [81]). Compared to the 

classical storage tank, it allows for reduced fiber stacking at the polar area of the vessel; this is 

mainly triggered by the relatively homogeneous thickness distribution over the vessel surface 

and the absence of end caps. In winding a convex axisymmetric body, a basic fiber trajectory 

is repeated continuously, opposed to a torus, which is a doubly-closed body having a 

convex-concave surface. Moreover, due to high applied loads, toroidal storage tanks require 

stronger structures and better load carrying capacity than composite elbows [82, 83] used in 

civil pipelines.  

 
Fig. 1.8: A toroidal pressure vessel [81] 
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1.2.4 Thick-walled pressure vessels 

With the development of design and manufacturing technologies to produce multi-layered 

composite vessels, there has been a growing interest in the application of the thick-walled 

multilayered filament-wound pressure vessels. Thick composite cylinders are important 

structural elements which cannot be analyzed by traditional membrane approaches due to 

through-thickness effects. Traditionally, composite analysis techniques rely on the assumption 

of plane stress, and therefore they are only applicable to thin laminates. Originally, many of 

the classical thin shell theories are based on the Kirchhoff-Love hypotheses [84] developed 

over 100 years ago: (1) straight lines normal to the undeformed middle surface remain straight 

and normal to the deformed middle surface; (2) the normal stresses perpendicular to the 

middle surface can be neglected in the stress-strain relations; and (3) the transverse 

displacement is independent of the thickness coordinate. These theories are expected to prove 

sufficiently accurate results when (1) the radius-to-thickness ratio is large; (2) the dynamic 

responses are within the low-frequency range; (3) the material anisotropy is not severe. It is 

shown in [85] that Love's strain energy expression has inherent errors of relative order 

[h/R+(h/L)2] (where h is the thickness of the shell, R is the smallest principal radius of 

curvature, and L is the characteristic wavelength at the deformation pattern of the middle 

surface). However, when the theories of thin shells are applied to thick shells, with h/R not 

small compared to unity, the error can be quite large. Application of such theories to 

anisotropic multilayered thick shells can lead to as much as 30% or more error magnitude in 

deflections, stresses and eigen frequencies [86]. To improve these results, the developed 

refined two-dimensional linear theories of thin shells including several important 

contributions [87-93], have been extensively developed in the last 40 years. However, as 

pointed out by Koiter [94], refinements to Love's theory for thin elastic shells are meaningless, 

unless the transverse shear and normal effects are taken into account. 

Contrary to the theory of thin shells, the theory of thick shells has received relatively less 

attention by researchers up to now. The analysis of cylindrical structures by elasticity 

solutions can be subdivided into "thin wall" and "thick wall". The division point is often 

arbitrarily chosen as a radius-to-thickness ratio of 10:1. This ratio is not appropriate for 

composite structures, especially when designing with highly anisotropic materials [95]. 

Through thickness stresses are particularly important in composite laminates because they can 

cause delamination and other failure modes. For anisotropic composite materials the stresses 

through the wall thickness reduce much more rapidly than for their isotropic (metal) 
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counterparts. This effect leads to a greatly reduced structural performance of pressure vessels. 

It is in general not an easy task to incorporate radial stresses in thin shell theory and to obtain 

nonlinear stress distributions through the shell thickness in order to describe the behavior of 

thick shells. 

 

1.3 Thesis Outline 

The scope of part I is to provide a mathematical and mechanical foundation for the design 

and optimization presented in this dissertation. In chapter 2, with the aid of the so-called 

Darboux frame, the outline of fiber trajectory stability on a generic surface is provided in 

terms of both fiber slippage and bridging tendencies. The basic non-slippage and 

non-bridging criteria are presented for the formulation of design constraints in the subsequent 

optimization for various pressure vessels. Several basic concepts and definitions from 

differential geometry are also provided for formulating the fiber path equations. According to 

the fiber stability analysis, the mathematical description of geodesic and non-geodesic 

trajectories is briefly presented. In the next chapter, 3, we present the basic concepts and 

formulae related to the netting theory and the continuum theory (classical lamination theory), 

serving here as a basis for the analysis of in-plane mechanical behavior of composite pressure 

vessels. Based on the minimum strain energy density criterion, the generalized optimality 

condition that couples the vessel geometry and the laminate layup is given, where its specific 

applications and feasible intervals are also presented for several types of laminations. 

The main subject of part II is to present netting-based design approaches that will finally 

determine the optimal meridian shape and related fiber architectures for pressure vessels. In 

chapter 4, we demonstrate here a netting-based optimization for determining the fiber 

trajectories and related layups of helically and hoop wound circular toroidal pressure vessels, 

where the helical layer angle and thickness are considered as design variables, while the 

minimum vessel weight acts as the objective function. In addition, the fiber trajectory stability 

of filament wound circular toroidal pressure vessels is evaluated for the two mostly used 

patterns: single helical winding, and helical and hoop winding. The influence of the relative 

bend radius of the torus and the hoop-to-helical thickness ratio on fiber slippage and bridging 

tendencies is here evaluated to offer an important design reference for filament wound 

circular toroids. In chapter 5, we outline the geodesic-isotensoid design, which leads to equal 

fiber tension throughout the whole structure, to determine the netting-based isotensoid 

cross-sectional shapes for filament wound toroidal pressure vessels. The cross-sectional 
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shapes are obtained by forcing the geodesic-isotensoid profiles to return to zero altitude so 

that the resulting isotensoid shapes become closed. The influence of the theoretically required 

axial load on the vessel pole, needed for closing the profile, is also evaluated. Moreover, the 

geometry and performance of isotensoid toroids are compared to those of circular toroids, in 

order to demonstrate the better performance and the lower aspect ratio (height-to-width ratio) 

that the isotensoid design can gain for toroids. In the last chapter of this part, 6, we present a 

novel design approach combining isotensoid structures with non-geodesic winding, to derive 

isotensoids with unequal polar openings and non-geodesic-isotensoid toroids. The 

performance improvement that the application of non-geodesics can gain, corresponding to 

various slippage coefficients, is evaluated and compared to the geodesic-isotensoid domes and 

toroids, respectively, in order to show the advantage of the use of non-geodesics instead of 

geodesics. 

The main goal of part III is to present continuum-based design approaches that determine 

the optimal shape and related fiber trajectories for pressure vessels. In chapter 7, the optimal 

design for determining the meridian profiles of filament-wound bellow-shaped pressure 

vessels is outlined, subjected to geometrical limitations, stability-ensuring conditions and the 

Tsai-Wu failure criterion. The stress field is modeled using classical lamination theory, and 

the non-geodesic trajectories are here employed to enlarge the design space and improve the 

structural performance. The effect the slippage coefficient has on the geometry and structural 

efficiency of filament wound bellow-shapes is also investigated. In chapter 8, the optimal 

shapes and corresponding fiber architectures of non-geodesically overwound domes for 

pressure vessels are determined upon the generalized optimality condition as presented in 

chapter 3. Based on the classical lamination theory and the non-geodesic winding law, the 

system of differential equations governing the optimal meridian profiles is derived; a specific 

function is chosen to describe the slippage coefficient distribution for the desired 

non-geodesic trajectories. The meridian profiles are determined for various material 

anisotropy parameters; the related winding angle developments of non-geodesic trajectories 

are also presented. With the aid of the non-geodesic trajectories and the classical lamination 

theory, a design-oriented approach for determining the optimal fiber trajectories of circular 

toroidal pressure vessels is outlined in chapter 9. The influence of the relative bend radius on 

the geometry and performance of the obtained non-geodesic trajectories is also evaluated. In 

addition, the calculations and comparisons of structural mass and on-axis stress of laminate 

shells, respectively designed by geodesics and non-geodesics are carried out, in order to show 

that non-geodesics form a preferable alternative for toroidal pressure vessels. In chapter 10 we 
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determine the optimal cross-sectional shapes for filament wound toroidal pressure vessels. 

The continuum-based meridian profile is derived based on the optimality condition and the 

classical lamination theory. The comparison for the cross-sectional shapes and structural 

weight of equal-volume circular and continuum-based optimal toroids is then performed. In 

addition, for the assessment of the effect of the optimal cross-sections on the vessel 

performance, we respectively calculate and compare the performance factors of optimal 

classical vessels (quasi-ellipsoidal shell), the circular and the optimal toroidal vessels for 

various polar opening radii. Based on the previously presented designs of filament-wound 

toroidal pressure vessels, we outline an integral method for the design, optimization and 

manufacturing of the toroids in chapter 11. In this chapter we perform a combined evaluation 

of the structural optimization for vessel performance and the windability for manufacturing. 

With emphasis on the importance of suitable winding patterns for obtaining an optimal 

toroidal pressure vessel we accordingly derive the "Diophantine"-alike equations that produce 

such patterns. The main objective of the method presented here is to match the 

structure-dictated number of wound circuits to the solution of the "Diophantine" equations for 

determining the proper relative winding velocities of the mandrel and the feed eye. Depending 

on the aimed lathe machine configuration, the underlying geometric model of the dedicated 

toroidal winder is outlined and the kinematic solution for coupling the motion of the mandrel 

and the feed eye are derived. An example of the implementation of these methods for winding 

an actual toroidal pressure vessel is given, as performed in the simulations for generating 

optimal fiber trajectories.  

In part IV we extend two-dimensional anisotropic elasticity solutions to the three- 

dimensional one where the through-thickness stress gradient is taken into account, in order to 

better understand the design and analysis of thick-walled pressure vessels. In chapter 12 a 

review is devoted to 3D elasticity approaches for obtaining the exact solutions of the stresses 

and strains induced by internal pressure, and to the effects of hygrothermal loading and 

twisting in regard to the structural behavior of cylinders. The 3D effective elastic constants 

and most frequently used 3D failure criteria for cylindrically anisotropic materials are also 

presented. A multi-layered thick-walled cylindrical pressure vessel, which comprises four 

CFRP layers and an aluminum seamless liner is analyzed to demonstrate the effects of the 

liner and its thickness variation on the stress distribution of the composite overwrap. In 

addition, the Von Mises stress of the metal liner and the Tsai-Wu strength ratio of the 

composite overwrap are also calculated for various liner/fiber/resin materials to find the best 

combination.  



Introduction and Objectives 

 21 

Lastly, the conclusions chapter, 13, is divided into two sections. After providing an 

extensive list of conclusions for the topics contained in this dissertation, some 

recommendations for future research are given. 
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I  FUNDAMENTALS 

 

 

Chapter 2 

Fiber Trajectories and Their Stability 

 

2.1 Introduction 

This chapter deals with the derivation of geodesic and non-geodesic trajectories on generic 

shells of revolution. Firstly, the stability analysis of fiber trajectories on a generic surface is 

carried out to provide a theoretical foundation for obtaining the geodesic and non-geodesic 

trajectories. Secondly, we present here a summary of the most important topics of differential 

geometry, tailored for filament winding trajectories on a surface. After a brief presentation of 

the fundamental forms we proceed to the outline of several curvatures and the derivation of 

the geodesic trajectories. In the last section, the mathematical description of geodesics and 

non-geodesics on a generic shell of revolution is briefly presented. 

 

2.2 Fiber Stability on a Surface 

In this section, an important topic concerning the stability of fiber trajectories on a surface 

is discussed. Any deviation from geodesics will require a lateral force of friction to prevent 

the fiber sliding from its original trajectory. In addition, for a concave surface the condition 
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which avoids fiber bridging should also be respected when designing winding trajectories. 

Therefore an analysis for the stability of fiber trajectories is imperative which allows accurate 

fiber placement to achieve the optimal vessel performance dictated by structural design. The 

overlook of fiber trajectory stability will make the optimally designed lay-up parameters 

difficult to be realized using filament winding process and hence invalidate the structural 

design and optimization. 

The vector parameterization of an arbitrary mandrel surface in generalized curvilinear 

orthogonal coordinates can be represented as: 

S = S(u, v)                              (2.1) 

where S is a vector-valued function of the parameters (u, v) and the parameters vary within a 

certain domain in the parametric uv-plane. The u-curve is obtained by fixing v = v0 and 

varying u, and the v-curve is obtained by fixing u = u0 and varying v. For shells of revolution 

the u, v-curves denote meridians and parallels. An arbitrary fiber curve on the surface S(u, v) 

can be given by its arclength parametrization: 

C(s) = C(u(s), v(s))                           (2.2) 

An infinitesimal elementary piece P0P1 (| P0P1 | = ds) of a fiber curve is here considered, as 

depicted in Fig. 2.1. P0P1 is subjected to longitudinal tension forces F0 and F1, a normal 

reaction force Fn perpendicular to the surface and a friction force Ff tangential to the mandrel 

surface. The Darboux frame [1], which takes into account the fact that the curve C(s) lies on 

the surface S(u, v), is here considered. Using the right-handed orthonormal basis (n, T, n×T) 

the principal normal curvature vector κ is in the plane spanned by n×T and n, and can thus be 

decomposed into these two orthogonal vectors: 

κ = κg(n×T) + κnn                            (2.3) 

where n, T denote the unit normal and tangent vector, respectively; κn gives the component of 

the principal curvature vector normal to the surface at a point and is called the normal 

curvature; κg gives the component of the curvature vector tangential to the surface and is 

called the geodesic curvature. Please note that κ points towards the center of the curvature of 

the fiber trajectory and can be expressed by [1]: 

κ = κN                                (2.4) 

where κ is the total curvature (usually referred to as “curvature”) of the fiber trajectory at a 

point (P0 or P1); N is the principal normal vector in the Frenet Frame [1]. 
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Fig. 2.1: An infinitesimally small element of a tensioned fiber on an arbitrary surface 

 

For an infinitesimal arclength the magnitudes of the tension at both sides of P0P1 are 

considered equal: 

| F0 | = | F1 | = ℓ                            (2.5) 

Thus we have: 

F0 = -ℓT0                                              (2.6) 

F1 = ℓT1                                (2.7) 

The equilibrium equations of the forces exerting on P0P1 in directions normal and tangent 

to the surface, can respectively be formulated as: 

[(F0+ F1)·n]n + Fn =0                           (2.8) 

[(F0+F1)·(n×T)](n×T) + Ff =0                        (2.9) 

Substituting equations (2.6) and (2.7) into (2.8) and (2.9), leads to: 

Fn = [-ℓ (T1- T0)·n]n                           (2.10) 

Ff = [-ℓ (T1- T0)·(n×T)] (n×T)                       (2.11) 

Since | P0P1 | = ds, according to differential geometry we have: 

T1 - T0 = dsT'= κdsN                          (2.12) 

Substitution of equation (2.12) into (2.10) and (2.11) yields: 

Fn = (-ℓκdsN·n)n                             (2.13) 

Ff = [-ℓκdsN·(n×T)](n×T)                         (2.14) 

Substituting equation (2.4) into (2.3) followed by multiplying both sides of the resulting 
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equation by the normal vector n, results in: 

κN·n = κn                                               (2.15) 

κN·(n×T) = κg                                             (2.16) 

Substitution of equations (2.15) and (2.16) into (2.13) and (2.14) yields: 

Fn = -κnℓdsn                               (2.17) 

Ff = -κgℓds(n×T)                            (2.18) 

To prevent fiber sliding on the supporting surface, the friction force Ff should always be 

less than the maximum static friction between the supporting surface and the fiber bundle: 

| Ff | ≤ μmax | Fn |                             (2.19) 

where μmax is the coefficient of maximum static friction between the fiber and the mandrel 

surface or between the fiber and the previously overwound layer. Note that μmax can be 

affected by the surface quality, fiber morphology, resin viscosity, etc [2]. 

Substitution of equations (2.17) and (2.18) into (2.19) gives the non-slippage criterion: 

| κg / κn | ≤ μmax                                             (2.20) 

The slippage coefficient λ is defined as the ratio of the geodesic curvature to the normal 

curvature [3, 4]: 

λ = κg / κn                                (2.21) 

The non-slippage criterion equation (2.20) can then be rewritten as: 

| λ | ≤ μmax                                                (2.22) 

The slippage coefficient λ represents the slippage tendency between the fiber bundle and 

the supporting surface. The region of possible winding patterns can then be found according 

to λ. 

In addition, the fibers may bridge on the concave surface and lose contact with the mandrel 

surface unless the normal force Fn is acting in the same direction to the normal vector n (if 

pointing outward), or in the opposite direction to the normal vector n (if pointing inward): 

Fn·n ≥ 0   (outward-pointing normal)                  (2.23) 

Fn·n ≤ 0   (inward-pointing normal)                   (2.24) 

Please note that the normal vector is here considered always outward-pointing. Substituting 

equation (2.17) into (2.23) and taking into account that the product ℓκds is constantly greater 

than 0, leads to: 

κn ≤ 0                               (2.25) 

Equation (2.25) provides the non-bridging criterion of fiber trajectories on a surface. It should 

be noted that the fiber bridging can generally be eliminated by modifying the winding angles. 
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2.3 Topics Related to Differential Geometry 

2.3.1 Fundamental forms 

The parametrization of a three-dimensional surface can be expressed as a vector function of 

two independent parameters u, v: 

{ }( , ) ( , ), ( , ), ( , )u v x u v y u v z u v=S      ( , )u v∈ℜ            (2.26) 

The length of a curve on this surface is:  

 2 2 2s dx dy dz= + +∫           (2.27) 

If x, y and z are replaced by a general symbol #, the differentials encountered in equation 

(2.27) can be written as: 

 ( ) ( )
2 2

2 22 # # # ## 2d du dudv dv
u u v v
∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

       (2.28) 

Substitution of equation (2.28) into (2.26) leads to: 

        
2 2

2 2du du dv dvs G F E dv E F G du
dv dv du du

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟= + + = + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
∫ ∫         (2.29) 

where: 
2 2 2

u u
x y zE
u u u
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

S S  

u v
x x y y z zF
u v u v u v
∂ ∂ ∂ ∂ ∂ ∂

= + + = ⋅
∂ ∂ ∂ ∂ ∂ ∂

S S                    (2.30) 

2 2 2

v v
x y zG
v v v
∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

S S                                    

The coefficients E, F, and G presented in equation (2.30), are called the coefficients of the 

first fundamental form, where E represents the metric along the meridional direction of the 

shell, and G denotes the metric along the parallel direction. In addition, Su × Sv is a nonzero 

vector orthogonal to the plane spanned by Su and Sv; we obtain the corresponding unit vector 

by taking: 

|| ||
u v

u v

×
=

×
S Sn
S S

                            (2.31) 

where n is called the unit normal of the parametrized surface. 

In equation (2.30) F is the inner product of the derivatives of S with respect to the main 

directions. For a shell of revolution the meridional and parallel directions are perpendicular to 
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each other and therefore F will be equal to zero. For an arbitrary three dimensional surface 

this is generally not true. 

 

 
Fig. 2.2: Geometrical relations for an elementary part of the fiber curve on a surface 

 

Next to the coefficients of the first fundamental form {E, F, G}, the coefficients of the 

second fundamental form exist as well. These coefficients {L, M, N} also play a role in the 

derivation of curvatures. They are defined as: 

2

det

( , )

uu

u

v
uuL u v

EG F

⎡ ⎤
⎢ ⎥
⎢ ⎥
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−

S
S
S

n S  
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det
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uv
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v
uvM u v

EG F

⎡ ⎤
⎢ ⎥
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−

S
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S

n S                     (2.32) 

2

det

( , )

vv

u

v
vvN u v

EG F

⎡ ⎤
⎢ ⎥
⎢ ⎥
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−

S
S
S

n S  

 

2.3.2 Curvatures 

What distinguishes a circle or a helix from a line is their curvature, i.e., the tendency of the 

curve to change direction [5]. The curvature of C at a point can be seen as a measure of how 

sensitive its tangent line is to moving the point to other nearby points. The higher the 

curvature, the less the curve is straight. We consider here an infinitesimally small elementary 
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part of the fiber curve on a regular parametrized surface S (Fig. 2.2); the lengths of its 

projections in the meridional and parallel directions are respectively given by: 

meridionalds Edu=           (2.33) 

parallelds Gdv=            (2.34) 

The fiber trajectory has an orientation α with respect to the meridian (Fig. 2.2); this angle 

relates the arclength increment in the meridional direction and that in the fiber curve 

orientation: 

cosmeridionalds dsα= ⋅                         (2.35) 

sinparallelds dsα= ⋅                           (2.36) 

The derivatives of u and v with respect to s are given by inverse forms of equation (2.30): 

cosdu
ds E

α
=                              (2.37) 

sindv
ds G

α
=                              (2.38) 

The second derivatives of u and v with respect to s can be expressed as follows: 
22

2 2

cos sin cossin
2 2

u vE Ed u d
ds ds EE E EG

α α αα α
= − − − ,              (2.39) 

22

2 2

sin cos sincos
22

u vG Gd v d
ds ds GG G EG

α α αα α
= − − .              (2.40) 

Then we have: 

cos sin'( ) ( , )s
E G
α α

=C                          (2.41) 

2

2

2

2

cos sin cossin''( ) ( ,
2 2

sin cos sincos              )
22

u v

u v

E Eds
ds EE E EG

G Gd
ds GG G EG

α α αα α

α α αα α

= − − −

− −

C
               (2.42) 

According to equation (2.16), κg can be calculated by [6]: 

κg = C''·(n×T) = det (C', C'', n)                      (2.43) 

With the expression (2.31) for obtaining the unit normal vector n, the geodesic curvature 

can be determined by substitution of equations (2.31), (2.41) and (2.42) into (2.43), leads to: 
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2 2
2 3 2 2

2 2

2 2 2

[ ( ) ( ) ( ) ( ) ( )
2 2

                          ( ) ( ) ( ) ( ) ( ) ]
2 2

v v v
g

u v u

E G Gdu d v dv d u du du dv dv duEG F
ds ds ds ds G ds G ds ds G ds ds

E E Gdu dv dv du dv
E ds ds E ds ds E ds

κ = − − − + +

− − +
    (2.44) 

Substitution of equations (2.30), (2.37) and (2.38) into (2.44) leads, after some simplifications, 

to: 

ln 1 lncos sin
2 2

v
g

Ed E G
ds v uG E
ακ α α∂ ∂

= − +
∂ ∂

              (2.45) 

equation (2.45) is the well-known Liouville formula [1] and provides the equation for 

obtaining the geodesic curvature. 

Depending on this orientation, the curvature κn, normal to surface S, will have a maximum 

and a minimum value at point P. These two extreme values of the curvature are called the 

principal curvatures. The Gaussian curvature (K) and the mean curvature (H) couple these 

principal curvatures to the coefficients of the first and second fundamental form, according to: 
2

1 2 2

LN MK
EG F

κ κ −
= =

−
                         (2.46) 

1 2 2

1 2( )
2 2( )

LG MF NEH
EG F

κ κ − +
= + =

−
         (2.47) 

where κ1 and κ2 are the curvatures in the two principal directions, respectively. From 

equations (2.46) and (2.47), the principal curvatures are the roots of the following equation: 
2 2 0H Kκ κ− + =            (2.48) 

Hence the roots are: 

                  2
1k H H K= + − , 2

2k H H K= − −      (2.49) 

The normal curvature, κn, can be expressed in terms of the two principal curvatures at a 

point P [1]: 
2 2

1 2cos sinnκ κ α κ α= +         (2.50) 

 

2.3.3 Length-minimizing curves – geodesics 

Geodesic trajectories form a class of curves which exclusively connect points via the 

shortest path between them. This principle is comparable to sailing or driving on the earth 

surface in a straight line, without any cornering. In filament winding processes, geodesic 

trajectories are very often used, as the wound paths are completely stable. The filaments are 

often exactly aligned with the loads applied to them, e.g. with fiber tension used in the 
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winding process. The shortest paths can be determined by minimizing the arc length, 

expressed in equation (2.27). In order to find this minimum, a function is needed that relates 

the two independent parameters u and v in such a way that the arc length integral becomes 

minimal. Therefore, the first expression for the arc length integral is written as: 

( , , )dvs f u v du
du

= ∫                             (2.51) 

Once the begin- and endpoints are fixed, the arc length is solely dependent on the function 

v(u). Equation has a stationary value when: 

               

( , , ') '
'

                  ( ) 0
'

e e

b b

e

b

u u

u u

u

u

f fs f u v v du v v du
v v

f f dv v du
v v du

δ δ δ δ

δ δ

∂ ∂⎛ ⎞= = +⎜ ⎟∂ ∂⎝ ⎠

∂ ∂⎛ ⎞= + =⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫
        (2.52) 

Integration of equation (2.52) by parts, gives: 

 0
' '

e e
e

b

b b

u u
u

u
u u

f f d fs vdu v v du
v v du v

δ δ δ δ∂ ∂ ∂⎛ ⎞= + − =⎜ ⎟∂ ∂ ∂⎝ ⎠∫ ∫               (2.53) 

where 

dvv
du

='                         (2.54) 

With fixed start and end points, the second term in equation (2.53) equals zero and hence: 

0
'

e

b

u

u

f d fs vdu
v du v

δ δ⎛ ∂ ∂ ⎞⎛ ⎞= − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
∫          (2.55) 

As the integral above must be equal to zero for any δv, equation (2.55) leads to the 

Euler-Lagrange equation: 

0
'

f d f
v du v
∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂⎝ ⎠

          (2.56) 

Substitution of equation (2.51) for the curve length into equation (2.56), results in: 
2

2 2

' 2 ' ' 0
2 ' 2 ' ' 2 '

v v vv E v F G d Ev F
duEv Fv G Ev Fv G

⎛ ⎞+ + +
− =⎜ ⎟

+ + + +⎝ ⎠
       (2.57) 

The coefficients E, F and G are functions of u and v in general, and solving equation (2.57) 

therefore becomes quite difficult. In [1], a numerical method is described to solve the 

equation by means of Christoffel symbols. Christoffel symbols are first used to express the 

geodesic equations by means of two second order differential equations: 
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2 2

2 2

'' ' 2 ' ' ' 0

'' ' 2 ' ' ' 0
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vv uv uu
u u u
vv uv uu

v v u v u

u v u v u

⎧ +Γ + Γ +Γ =⎪
⎨

+Γ + Γ +Γ =⎪⎩
      (2.58) 

where u', u'', v' v'' are the first and second derivates of u and v with respect to the arclength 

increment ds, respectively, and the Christoffel symbols are given by: 
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− +
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EG F

−
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−
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2
2( )

v u v u
uu

GF GG FG
EG F
− −

Γ =
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.   (2.59) 

For completeness: 

                         u u
uv vuΓ = Γ  and v v

uv vuΓ = Γ                        (2.60) 

Finally, before numerically solving equation (2.58), the system of two second-order 

differential equations is rewritten as a system of four first-order equations: 

                     2 2

2 2

'
'
' 2 0

' 2 0

v v v
vv uv uu

u u u
vv uv uu

v p
u q
p p pq q

q p pq q

=⎧
⎪ =⎪
⎨ = −Γ − Γ −Γ =⎪
⎪ = −Γ − Γ −Γ =⎩

      (2.61) 

The simultaneous solution of the above system of differential equations (2.61) will finally 

determine the geodesics for filament winding processes. A curve on a surface is geodesic only 

if the associated geodesic curvature is equal to zero. For a regular parametrized surface S (F = 

0) this solution can be obtained by setting equation (2.45) equal to 0, given by: 

ln 1 lncos sin
2 2

vEd E G
ds v uG E
α α α∂ ∂
= −

∂ ∂
               (2.62) 

 

2.4 Geodesics and Non-geodesics on Generic Shells of Revolution 

The class of shells of revolution comprises the most commonly used shapes for forming 

filament winding products. This is the reason for providing special attention to this class of 

shapes. The vector parameterization of a generic surface of revolution in polar coordinates 

can be given by: 

{ }( , ) ( ) cos , ( )sin , ( )u v f u v f u v g u=S   (f(u) ≥ 0)            (2.63) 

Here the u-curves are meridians and the v-curves are parallels. We have: 

{ }'( ) cos , '( )sin , '( )u f u v f u v g u=S  
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{ }( )sin , ( ) cos ,0v f u v f u v= −S  

{ }'( ) cos , '( )sin , '( )
|| ||

u v

u v

g u v g u v f u×
= = − −

×
S Sn
S S

 

{ }''( ) cos , ''( )sin , ''( )uu f u v f u v g u=S  

{ }'( ) sin , '( ) cos ,0uv f u v f u v= −S  

{ }( ) cos , ( )sin ,0vv f u v f u v= − −S  

and so we have: 
2 2' 'u uE f g= ⋅ = +S S , 0u vF = ⋅ =S S , 2

v vG f= ⋅ =S S           (2.64) 
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f g
−

= ⋅ = −
+

n S , 0uvM = ⋅ =n S , 
2 2

'
' '

vv
fgN

f g
= ⋅ =

+
n S .    (2.65) 

Specifically, let the meridian curve be defined as f(u) = r(z), e.g. z = u = g(u), equation (2.63) 

can be rewritten as: 

( , ) { ( )cos , ( )sin , }θ z r z θ r z θ z=S                     (2.66) 

where r, z denote the radial and axial coordinate, respectively; θ stands for the angular 

coordinate in the parallel direction, as shown in Fig. 2.3. 

Equations (2.64) and (2.65) become: 
2' 1E r= + , 0F = , 2G r= ,                     (2.67) 

2

''
' 1
rL

r
= −

+
, 0M = , 

2' 1
rN

r
=

+
.                 (2.68) 

 

 
Fig. 2.3: A general shell of revolution 
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where r' and r" are the first and second derivative of r with respect to z, respectively. By 

recalling equations (2.46) and (2.47), the Gaussian curvature, K, and the mean curvature, H, 

can be obtained by: 

2 2

''
(1 ' )

rK
r r

= −
+

, 
2

2 3/ 2

1 ' ''
2 (1 ' )

r rrH
r r
+ −

=
+

                 (2.69) 

Then the two principal curvatures (κ1, κ2) can be given by substitution of equation (2.69) into 

(2.49): 

1 2 3/ 2

''
(1 ' )

r
r

κ = −
+

, 2 2

1
1 'r r

κ =
+

.                 (2.70) 

According to equation (2.50), the normal curvature κn is: 

2 2
2 3 2 2

'' cos sin
(1 ' )

1
1 '

n
rk
r r r

α α= − +
+ +

               (2.71) 

Substitution of equations (2.67) and (2.68) into (2.45) leads to the expression for the 

geodesic curvature κg: 

2

'sin
1 '

g
d r
ds r r
α ακ = +

+
                         (2.72) 

By substitution of equations (2.71) and (2.72) into (2.21), the differential equation for the 

non-geodesic trajectories is obtained: 

2 2
2 3 2 2 2

'' 1 'sin( cos sin )
(1 ' ) 1 ' 1 '

d r r
ds r r r r r
α αλ α α= − − −

+ + +
        (2.73) 

The relation between dz/ds and α can be written as follows: 

2 2

coscos
1 ' 1 '

meridian

meridian

dsdz dz dz
ds ds ds r dz r

αα= ⋅ = ⋅ =
+ +

         (2.74) 

Substitution of equation (2.74) into (2.73) leads, after some rearrangements, to the 

expression for determining non-geodesic trajectories with respect to α and z: 

2

sin tan '' ' tancos
1 '

d r r
dz r r r
α α α αλ α⋅ ⋅⎡ ⎤= − −⎢ ⎥+⎣ ⎦

             (2.75) 

For λ=0 the solution of equation (2.75) is the well-known Clairaut equation [7] for 

determining the geodesics on a surface of revolution, given by: 

0sinr rα =                            (2.76) 

where r0 is the polar opening radius of the shell of revolution (see Fig. 2.3).  

In every other case (λ ≠ 0), the fiber trajectories will deviate from the geodesics and are 

therefore renamed as non-geodesics. There is no analytical solution of equation (2.75) for λ ≠ 

0. With the aid of the initial winding conditions, the non-geodesic trajectories can be 
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calculated step by step using the Runge-Kutta method [8]. To avoid fiber sliding, λ should 

always be less than μmax ranging from 0.2 (between the fiber and the previously wound layer) 

to 0.35 (between the fiber and the mandrel surface) [9, 10]. It should be noted here that the 

slippage coefficient λ could be negative as well [11]. The ‘+’ sign refers to the fact that the 

presence of friction can either relatively increase or decrease the resulting winding angles. 

 

2.5 Conclusions 

In filament winding industry, perhaps the most elegant and often-used class of fiber curves 

on mandrel surfaces is represented by geodesic trajectories that connect two arbitrary points 

on a curved surface by means of the minimum arclength. The geodesics we refer here show 

great stability of the wound fibers on the supporting surface. However, since the geodesics are 

entirely determined by the initial winding conditions in terms of fiber position and orientation, 

restricting the winding trajectories to geodesics certainly limits the available design freedom 

and the possible performance improvement of pressure vessels. In fact, a fiber must not 

necessarily be wound geodesically to be stable; non-geodesic trajectories can also be 

overwrapped by a certain deviation from the geodesic paths, counting on friction to keep the 

fiber in its original position. It is thus desirable to exploit friction-based non-geodesics to 

enlarge the design space of filament wound pressure vessels. Compared to geodesic winding, 

the application of non-geodesic winding significantly enlarges the design space for pressure 

vessels. The possibility appears for modifying the λ-value to gain more design freedom for 

the winding trajectories. Consequently, the ability for improving the structural performance 

while satisfying the manufacturing requirements becomes here a fact. 
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Chapter 3 

Basic Design Theories and Optimality 

Conditions 

 

3.1 Introduction 

On normal isotropic materials, it is sufficient to describe their mechanical properties using 

just two engineering constants: usually the Young’s Modulus and the Poisson’s ratio. However, 

on anisotropic materials, much more is required to fully describe the material’s behavior. An 

anisotropic material is a material that its properties at a specified point vary with the direction 

of the reference axes. For example the material’s Young’s Modulus in the longitudinal 

direction might not be the same than in the transverse direction. For this reason the 

engineering mechanics of composite materials are more complex to study than isotropic 

materials and most of the isotropic equations do not apply to composite materials and must be 

modified to study such behavior.  

This chapter presents the basic concepts (related to the netting and continuum theory) 

serving here as a basis for the formulation of in-plane stress and deformation for a pressure 

vessel. The generalized optimality condition of equal shell strains for a pressure vessel, which 

couples the vessel geometry and the laminate anisotropy, is derived based on the minimum 

strain energy density criterion, in order to maximize the structural stiffness and load bearing 

capacity. The specific equations and feasible intervals of the optimality condition are also 

presented for several types of laminations. 
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3.2 Netting Analysis 

Netting analysis of the stress and deformation of a balanced angle ply laminate gives a very 

simple result by ignoring the presence of the matrix and considering only the loading of the 

fibers [1-3], i.e. the stiffness of the matrix is taken to be effectively zero. These assumptions 

are in a certain sense consistent with pressure vessels, in which the fibers are loaded in tension 

and the stiffness of the matrix is considered negligible in comparison to the fiber strength. The 

burst failure tests demonstrated that the resin matrix starts to fail at a low level of internal 

pressure. However, vessels remain able to withstand loading up to fiber fracture and, therefore, 

the fibers at this moment act like a multilayered net-cover that supports the uniformly 

distributed internal pressure and the resulting in-plane membrane forces. The netting theory 

assumes that all loads and the membrane forces are carried by the fibers only, neglecting any 

contribution by the resin matrix and any interaction between the filaments. These assumptions 

do not cause any significant error in the analysis, as long as the fibers are primarily loaded in 

tension and the transverse and shear stresses in the composite laminate are low compared to 

the ultimate tensile strength of the fibers. It is also assumed that the load sharing contribution 

from the inner liner is minimal or non-existent. 

Consider the cylindrical section of a closed-ended pressure vessel of radius R, subjected to 

an internal pressure p (see Fig. 3.1). The pressure vessel is here assumed to be overwound by 

a combination of helical and hoop windings, the former one at a winding angle of α with the 

meridian direction (φ). σα, σh, tα, th are the helical and hoop fiber stress and thickness, 

respectively. Fig. 3.2 shows a basic element of helical and hoop wound fibers, intersecting a 

unit area of the torus in the meridional and parallel directions, respectively.  

 

 
Fig. 3.1: Cylindrical section overwound by helical and hoop winding 
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(a)                                        (b) 

Fig. 3.2: A netting-based element of helically and hoop wound fibers 

 

The force resultants in the axial direction should be balanced. The contribution of the stress 

resultants from the hoop fibers in the axial direction can be neglected. The component of the 

force resultants from the helical fibers in the axial direction is σαtαcos2α (Fig. 3.2(a)). This 

needs to be in equilibrium with the force resultant in the cylindrical shell due to the internal 

pressure in the axial direction, pR/2: 

2cos
2

pRtα ασ α =                          (3.1) 

Secondly, the force balance in the hoop direction needs to take into consideration a 

combination of hoop and helical fibers (Fig. 3.2(b)). The force resultant in the hoop direction 

of the cylindrical shell due to internal pressure is pR: 
2sin h ht t pRα ασ α σ+ =                        (3.2) 

The condition of the netting theory implies: 

hασ σ=                             (3.3) 

Combining equations (3.1), (3.2) and (3.3) and solving for α, results in: 

1 2 /tan
1 /

h

h

t t
t t

α

α

α − −
=

+
                       (3.4) 

It is here assumed that the cylindrical shell is designed in such a way that the ultimate 

strength of the fibers, σf is attained simultaneously along the hoop and helical directions at the 

vessel’s burst pressure, pb. Combination of equations (3.1), (3.2) and (3.3) gives the thickness 

of the hoop and helical layers for the cylindrical pressure vessel: 

22 cos
b

f

p Rtα σ α
= , 

2tan(1 )
2

b
h

f

p Rt α
σ

= −                  (3.5) 
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Therefore, for a pressure vessel with a design burst pressure of pb, the netting analysis 

estimates the total thickness of the composite shell in its cylindrical section to be: 

3
2

b

f

p Rt t tα β σ
= + =                            (3.6) 

Please note here that the calculation above does not include any consideration of a safety 

factor. For the single helical winding (which implies th = 0), equations (3.4) and (3.6) reduce 

to: 

1tan 2 54.7α −= = , 3
2

b

f

p Rt tα σ
= =                    (3.7) 

For any given biaxial stress, there is just one critical winding angle at which the laminate 

can support stress. In a well-known example, a filament-wound cylindrical pressure vessel 

usually contains fibers wound at an angle: arctan 2netα =  with respect to the axis of the 

rotational symmetry. Since internal pressure produces a hoop-to-axis stress ratio of 2:1, 

reinforcement at this angle would ideally support the stress in the wall material. According to 

the predictions of netting analysis, the strains in the two principal directions will be equal, 

given by 

3
2 f

pR
E tϕ θε ε= = ⋅                             (3.8) 

where εφ, εθ are the shell strains in the meridional and parallel direction, respectively. If the 

initial winding angle was different to αnet, no stress could be supported. In this situation, the 

fibers would rotate until they would reach the angle where they could support stress. For 

example, if the initial winding angle was less than αnet, the shell strain would initially increase 

under an infinitesimally small stress. In other words, the material would have zero effective 

stiffness. 

 
 

Fig. 3.3: Global and material axes of an angle lamina 
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3.3 Classical Lamination Theory (CLT) [4] 

Generally, a laminate does not consist only of unidirectional laminae because of their low 

stiffness and strength properties in the transverse direction. Therefore, in most laminates, 

some laminae are placed at an angle. It is thus necessary to develop the stress-strain 

relationship for an angle lamina. The coordinate system used for showing an angle lamina is 

as given in Fig. 3.3. A unidirectional lamina falls under the orthotropic material category. If 

the lamina is thin and does not carry any out-of-plane loads, one can assume plane stress 

conditions for the lamina. The through-thickness normal strain is not an independent strain 

(because it is a function of the two in-plane normal strains) and can thus be omitted from the 

stress-strain relationship. Also, the through-thickness shearing strains can also be omitted as 

they are based on the plane stress assumption.  

The axes in the 1-2 coordinate system are called the material axes or the on-axes, where 1, 

2 denote the fiber and transverse direction, respectively. The axes in the φ-θ coordinate 

system are called the global axes or the off-axes. The angle between the two axes is denoted 

by the winding angle α. For an orthotropic plane stress problem the strain-stress relationship 

in the 1-2 coordinate system is established as: 

1 111 12

2 12 22 2

6612 12

0
0

0 0

S S
S S

S

ε σ
ε σ
γ τ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                     (3.9) 

where Sij (i, j = 1, 2, 6) are the elements of the compliance matrix, given by: 
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= , 12
12
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S
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= − , 22
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= , 66
12

1S
G

= .             (3.10) 

in which E1 and E2 are the Young’s elastic moduli in the fiber and transverse directions (1-2), 

respectively; ν12 and ν21 are the Poisson’s ratios satisfying the following symmetry condition: 

1 21 2 12E Eν ν=                           (3.11) 

Inverting equation (3.9) gives the stress–strain relationship as 

1 111 12

2 12 22 2

6612 12

0
0

0 0

Q Q
Q Q

Q

σ ε
σ ε
τ γ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

                   (3.12) 

where [Q] is the reduced stiffness matrix, which is related to the compliance coefficients: 

22 1
11 2

11 22 12 12 211
S EQ

S S S ν ν
= =

− −
, 12 21 1

12 2
11 22 12 12 211
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S S S

ν
ν ν

= − =
− −

, 
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11 2
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= =             (3.13) 

The stresses refer to the material and global axes; in an angle lamina they are related to 

each other through the angle of the lamina, α: 
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T                           (3.14) 

where T stands for the transformation matrix, defined as: 
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Its inverse matrix is 
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in which c = cosα, s = sinα. Using the stress-strain equation (3.12) in the material axes, 

Equation (3.14) can be rewritten as 
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The strains with respect to the global and material axes are also related through the 

transformation matrix: 
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which can be rewritten as 
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where R is the Reuter matrix and is defined as 
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Then, substituting equation (3.19) in (3.12) and plugging the results into equation (3.17), 

gives 

1 1
ϕ ϕ

θ θ

ϕθ ϕθ

σ ε

σ ε
τ γ

− −

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

T QRTR                     (3.21) 

Multiplication of the first five matrices on the right-hand side of equation (3.21) leads to: 

11 12 16

21 22 26

16 26 66

Q Q Q

Q Q Q

Q Q Q

ϕ ϕ

θ θ

ϕθ ϕθ

σ ε

σ ε
τ γ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

                  (3.22) 

where ijQ  (i, j = 1, 2, 6) are called the elements of the transformed reduced stiffness matrix 

and are given by: 
4 2 2 4

11 12 66 2211

2 2 4 4
11 12 66 1212

4 2 2 4
11 12 66 2222

3 3 2 2
22 11 12 6616

3 3 2 2
22 11 12 6626

2 2 2
11 12 12 6666

2( 2 )

( 4 ) ( )

2( 2 )

( 2 )( )

( 2 )( )

( 2 ) (

Q Q c Q Q c s Q s

Q Q Q Q c s Q c s

Q Q s Q Q c s Q c

Q Q cs Q c s Q Q c s cs

Q Q c s Q cs Q Q c s cs

Q Q Q Q c s Q c

= + + +

= + − + +

= + + +

= − + − + −

= − + + + −

= + − + 2 2)s

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ −⎩

        (3.23) 

Note that six elements are in the Q  matrix. However, by looking at equation (3.23), it can be 

seen that they are just functions of the four stiffness elements, Q11, Q12, Q22, and Q66, and the 

angle of the lamina, α. Inverting equation (3.22) gives: 

11 12 16

21 22 26

16 26 66

S S S

S S S

S S S

ϕ ϕ

θ θ

ϕθ ϕθ

ε σ

ε σ
γ τ

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

                 (3.24) 

where ijS  (i, j = 1, 2, 6) are the elements of the transformed reduced compliance matrix and 

are given by: 
4 2 2 4

11 11 12 66 22

2 2 4 4
12 11 22 66 12

4 2 2 4
22 11 12 66 22

3 3
16 11 12 66 22 12 66

3 3
26 11 12 66 22 12 66

66 11 22 12 66

2( 2 )

( ) ( )

(2 )

(2 2 ) (2 2 )

(2 2 ) (2 2 )

2(2 2 4 )

S S c S S c s S s

S S S S c s S c s

S S s S S c s S c

S S S S c s S S S cs

S S S S cs S S S c s

S S S S S

= + + +

= + − + +

= + + +

= − − − − −

= − − − − −

= + − − 2 2 4 4
66 ( )c s S c s

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪ + +⎩

         (3.25) 
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With these equations it is now possible to study the mechanical behavior of a composite 

lamina. For a unidirectional lamina loaded in the material axes directions, no coupling occurs 

between the normal and shearing terms of strains and stresses. However, for an angle lamina, 

from equations (3.22) and (3.24), coupling takes place between the normal and shearing terms 

of strains and stresses. If only normal stresses are applied to an angle lamina, the shear strains 

are nonzero; if only shearing stresses are applied to an angle lamina, the normal strains are 

nonzero. Equations (3.22) and (3.24) provide the stress-strain equations for a generally 

orthotropic lamina. In pressure vessel design, it is important to find the optimal angle of fiber 

orientation that will maximally utilize the tensile limits along the material axes (1-2). 

 

 
Fig. 3.4: A symmetric laminate under in-plane loads (Nφ, Nθ) 

 

The shell of a pressure vessel is assumed to consist of helically wound layers, each of 

which forms an angle-ply configuration consisting of ±α layers. We consider here a 

symmetric laminate element under in-plane forces per unit length (Nφ, Nθ), as shown in 

Fig.3.4. Since there is rotational symmetry for the shape and the applied load (internal 

pressure, axial force, etc), the shear stress and strain components must vanish. The 

constitutive equation of a symmetric laminate in the global coordinate system is given as 

follows: 

                              11 12

21 22

   
   

N A A
A AN

ϕ ϕ

θ θ

ε

ε
⎛ ⎞ ⎛ ⎞⎡ ⎤

= ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠ ⎝ ⎠

                     (3.26) 

where Aij are the components of the extensional stiffness matrix A, which can be calculated 

by: 

                           
1

n k kk
ij ij ij

k

A Q t t Q
=

= ⋅ = ⋅∑  (i,j=1,2)                  (3.27) 

where the superscript k denotes the kth layer; t is the total thickness of the laminate. The 
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relation between the plane stress vector {σ12}k relative to the material axis (1-2) and the 

resultant force vector {Nφθ} is given by substitution of equations (3.26) and (3.19) into (3.12): 

                           { } { }1
12

k k k Nϕθσ −= T Q A                     (3.28) 

  By multiplication of the first three matrices on the right-hand side of equation (3.28), the 

stress components relative to the material axes in the kth layer are rewritten as follows: 

                           

1 11 12

2 21 22

12 31 32

1 ( )

1( )

1( )

k

k

k

m N m N
t

m N m N
t

m N m N
t

ϕ θ

ϕ θ

ϕ θ

σ

σ

τ

⎧ = +⎪
⎪
⎪ = +⎨
⎪
⎪ = +⎪⎩

                    (3.29) 

where constants mij are functions of the fiber angle and material properties, given by: 

2 22 16 12 26
11 2

11 22 12

2 Q Q Q Qm c cs
Q Q Q

−
= +

−
, 2 11 26 12 16

12 2

11 22 12

2 Q Q Q Qm s cs
Q Q Q

−
= +

−
, 

2 22 16 12 26
21 2

11 22 12

2 Q Q Q Qm s cs
Q Q Q

−
= −

−
, 2 11 26 12 16

22 2

11 22 12

2 Q Q Q Qm c cs
Q Q Q

−
= −

−
,      (3.30) 

 2 2 22 16 12 26
31 2

11 22 12

( ) Q Q Q Qm sc c s
Q Q Q

−
= − + −

−
, 2 2 11 26 12 16

32 2

11 22 12

( ) Q Q Q Qm sc c s
Q Q Q

−
= + −

−
.  

 

3.4 Optimality Conditions 

The inverse form of equation (3.26) is: 

11 12

21 22

   
   

Na a
a a N

ϕ ϕ

θ θ

ε

ε
⎛ ⎞ ⎛ ⎞⎡ ⎤

= ⋅⎜ ⎟ ⎜ ⎟⎢ ⎥
⎣ ⎦⎝ ⎠ ⎝ ⎠

                      (3.31) 

where aij (i,j=1,2) denote the components of the extensional compliance matrix a, which can 

be expressed in terms of the extensional stiffnesses Aij (i,j=1,2): 

22
11 2

11 22 12

Aa
A A A

=
−

,  11
22 2

11 22 12

Aa
A A A

=
−

,  12
12 21 2

11 22 12

Aa a
A A A

= = −
−

       (3.32) 

The elastic strain energy density of a laminate (as shown in Fig. 3.4) is given by [5]: 

1 ( )
2

U ϕ ϕ θ θ ϕθ ϕθσ ε σ ε τ γ= + +                     (3.33) 

where σij and εij (i,j=φ,θ) are the in-plane stress and strain components for the laminate 

relative to the global axes (φ-θ). 
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Substituting equations (3.31) and (3.32) into (3.33) gives: 
2 2

22 12 11
2

22 11 12

2
2

N A A AU
A A A

ϕ χ χ− +
=

−
                    (3.34) 

where χ is the ratio of the in-plane shell forces (membrane forces) in the parallel and 

meridional directions, given by: 

N
N

θ

ϕ

χ =                             (3.35) 

χ is also referred to as the biaxial stress ratio. The following invariant equation is now 

provided for the given ply configuration: 

11 12 222A A A C+ + =                        (3.36) 

where C is a constant value, determined by the commonly known material constants and layer 

thicknesses. 

Next we will obtain the optimal laminate configuration for minimizing the strain energy 

density in equation (3.34), subjected to the equality constraint (3.36). Introducing this 

constraint with the aid of the Lagrange multiplier β [6], we should minimize the following 

augmented function: 
2 2

22 12 11
11 22 12 11 12 222

22 11 12

2( , , ) ( 2 )
2

N A A Af A A A A A A C
A A A

ϕ χ χ β− +
= − + + −

−
    (3.37) 

Here the components of the extensional stiffness Aij (i, j = 1, 2) are considered as the design 

variables. The minimum conditions are active when: 

11

0f
A
∂

=
∂

, 
22

0f
A
∂

=
∂

, 
12

0f
A
∂

=
∂

                   (3.38) 

The simultaneous solution of the system (3.38) in conjunction with the constraint (3.36) 

results in the optimality condition for a pressure vessel under biaxial stress condition: 

22 12

11 12

A A
A A

χ +
=

+
                          (3.39) 

where: 

1

n k

ij kij
k

A Q t
=

= ⋅∑   (i, j = 1, 2)                    (3.40) 

The strain ratio εθ / εφ can be expressed in terms of χ by substitution of equation (3.39) into 

(3.26): 

11 12

22 12

A A
A A

θ

ϕ

ε χ
ε χ

−
=

−
                        (3.41) 
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Subtraction of 1 from the both sides of equation (3.41), leads to: 

11 12 22 12

22 12 11 12

( )A A A A
A A A A

θ ϕ

ϕ

ε ε
χ

ε χ
− + +

= −
− +

                (3.42) 

Substitution of equation (3.39) into (3.42), leads to: 

ϕ θε ε=                            (3.43) 

Then, the strains in the global axes can be obtained by substitution of equation (3.43) into 

(3.26): 

11 12 22 12

N N
A A A A

ϕ θ
ϕ θε ε= = =

+ +
                   (3.44) 

Substituting equation (3.44) into (3.19), leads to: 

1 2
11 12 22 12

N N
A A A A

ϕ θ
ϕ θε ε ε ε= = = = =

+ +
               (3.45) 

with: 

12 0τ =                              (3.46) 

Since the angle α in the transformation matrix T can be chosen arbitrarily in a plane, equation 

(3.45) holds true irrespective of the direction of the material axes (1-2). Therefore, under the 

optimality condition, the strain at each point is the same in all directions in a lamina. 

The third row of equation (3.29) can be expanded and rewritten as: 
2 2 2 2

12 12 21 12 21
12

1 2 1 2

tan 2 sin (1 ) cos (1 ) cos (1 ) sin (1 )[ ( ) ( )]
cos 2

G N N
ct E E E Eθ ϕ

α α ν α ν α ν α ντ
α

+ + + +
= + − +  

                                                                      (3.47) 

Substitution of equation (3.46) into (3.47) takes another form of the optimality condition: 
2

2

1 (1 )cos
(1 )cos

e

e e

k
k k

αχ
α

− −
=

+ −
                      (3.48) 

where: 

2 12

1 21

(1 )
(1 )e

Ek
E

ν
ν
+

=
+

                         (3.49) 

Substitution of equation (3.48) into the first two rows of equation (3.29), after some 

arrangements, leads to: 

1 21
1 2 2

1 21 2 12

(1 )
(1 )cos (1 )sin

N E
E E

ϕ ν
σ

ν α ν α
+

=
+ + +

              (3.50) 

2 12
2 2 2

1 21 2 12

(1 )
(1 )cos (1 )sin

N E
E E

ϕ ν
σ

ν α ν α
+

=
+ + +

               (3.51) 
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Dividing each side of equation (3.51) by equation (3.50), gives: 

2 2 12

1 1 21

(1 )
(1 ) e

E k
E

σ ν
σ ν

+
= =

+
                     (3.52) 

The specific laminate properties can be characterized by the parameter ke, equation (3.49), 

which in fact expresses the degree of material anisotropy [7]. For ke = 1 the engineering 

constants are identical, hence the considered material will be isotropic. The assumption ke = 0 

represents the netting case where the contribution of the matrix to the mechanical properties 

of the lamina is insignificant. Equation (3.48) gives another form of the optimality condition 

and relates the optimal winding angle with the material anisotropy. 

Although condition (3.48) is able to provide zero shear stress in the layers of the pressure 

vessel, it is sometimes convenient to select k in such a way that the laminate strength is fully 

utilized. To achieve this, the optimal biaxial force ratio Nθ / Nφ would be [7, 8]: 

22 2

1 1

( )Sk
Sσ

σ
σ

= =                          (3.53) 

where S1, S2 are the tensile-compressive strength values of a lamina in the fiber and transverse 

direction (1-2), respectively. As a design rule, for shear sensitive laminae condition (3.52) 

should be satisfied and for maximizing strength, condition (3.53) needs to be respected [9]. 

As the stiffness-dominated and strength-dominated k-parameters that are respectively given in 

equations (3.52) and (3.53) do generally not match, the sensitivity of the laminate for shear 

stress will play here an important role. In every case other than given in equation (3.48), the 

pressure vessel will contain a shearing mechanism that loads the matrix. The k-value will 

usually lie between ke and kσ; ideally, for the best laminate ke and kσ should be equal. However, 

it seems that the best possible performance is always achieved with the netting solution (ke = 

kσ = 0). Nevertheless, an important condition to justify this k-value is that the employed 

laminae do indeed sufficiently approach this condition and will not prematurely suffer from 

matrix defects. 
 

3.5 Optimality Conditions for Various Types of Laminations 

3.5.1 Liner / ±α layers 

The in-plane membrane forces Nφ, Nθ can be respectively divided into two parts: 
LN N Nα

ϕ ϕ ϕ= +                              (3.54) 

LN N Nα
θ θ θ= +                              (3.55) 
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where the superscripts L, α denote the metal liner and the ±α layers, respectively. With the aid 

of the optimality condition of equal shell strains, substitution of equation (3.27) into (3.26) 

together with equation (3.23) for ijQ , leads to: 

2 2
11 22 12

2 2
22 11 12

( cos sin )

( cos sin )

N t Q Q Q

N t Q Q Q

α α α α
ϕ α

α α α α
θ α

ε α α

ε α α

⎧ = + +⎪
⎨

= + +⎪⎩
                (3.56) 

where tα is the thickness of the ±α layers. According to the isotropic elasticity theory, 
LNϕ , LNθ  can be given by: 

1
L L L

L
L

EN N tϕ θ ε
ν

= = ⋅
−

                        (3.57) 

where EL and νL are the elastic modulus and the Poisson's ratio of the liner, respectively; tα is 

the thickness of the metal liner. Substitution of equations (3.56)~(3.57) into (3.55) leads to: 

2 2 0
11 22 12

2 2 0
22 11 12

( cos sin )
1

( cos sin )
1

L

L

L

L

EN t Q Q Q

EN t Q Q Q

α α α
ϕ α

α α α
θ α

ηε α α
ν

ηε α α
ν

⎧ = + + +⎪ −⎪
⎨
⎪ = + + +
⎪ −⎩

              (3.58) 

where η0 is the thickness ratio of the metal liner and the ±α layers, defined as: 

0
Lt

tα
η =                               (3.59) 

The optimality condition for a laminate consisting of the metal liner and the ±α layers can 

thus be given by: 

2 2
22 11 12 0

2 2
11 22 12 0

cos sin
1

cos sin
1

L

L

L

L

EQ Q Q

EQ Q Q

α α α

α α α

α α η
νχ

α α η
ν

+ + +
−

=
+ + +

−

                (3.60) 

In addition, the optimal winding angle α and corresponding thickness ratio η0 are 

respectively obtained as follows by rewriting equation (3.60): 

11 12 0 22 12 0
1

11 12 0 22 12 0

( ) ( )
1 1tan

( )
1 1

L L

L L

L L

L L

E EQ Q Q Q

E EQ Q Q Q

α α α α

α α α α

χ η η
ν να

η χ η
ν ν

−

+ + − + +
− −

=
+ + − + +

− −

          (3.61) 

2 2 2 2
11 22 12 22 11 12

0
1 ( cos sin ) ( cos sin )

(1 )
L

L

Q Q Q Q Q Q
E

α α α α α αν χ α α α αη
χ

− + + − + +
= ⋅

−
   (3.62) 

The equal strains ε can also be given by: 
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2 2
11 22 12 0( cos sin )

1
L

L

N
EQ Q Q t

ϕ

α α α
α

ε
α α η

ν

=
+ + +

−

              (3.63) 

 

3.5.2 Liner / ±α layers / 90º layers 

The in-plane membrane forces Nφ, Nθ can be correspondingly divided into three parts: 
L hN N N Nα

ϕ ϕ ϕ ϕ= + +                          (3.64) 

L hN N N Nα
θ θ θ θ= + +                          (3.65) 

where the superscript h denote the 90º layers. Substitution of α = 90º into equation (3.56), 

gives: 

22 12( )h h hN t Q Qϕ αε= +                           (3.66) 

11 12( )h h hN t Q Qθ αε= +                           (3.67) 

Substitution of equations (3.56), (3.57), (3.66) and (3.67) into (3.64) and (3.65) leads to: 

2 2
11 22 12 22 12 0[( cos sin ) ( ) ]

1
h h L

h
L

EN t Q Q Q Q Qα α α
ϕ αε α α η η

ν
= + + + + +

−
       (3.68) 

2 2
22 11 12 11 12 0[( cos sin ) ( ) ]

1
h h L

h
L

EN t Q Q Q Q Qα α α
θ αε α α η η

ν
= + + + + +

−
       (3.69) 

where ηh is the thickness ratio of the 90º layers and the ±α layers, given by: 

h
h

t
tα

η =                               (3.70) 

The optimality condition for a laminate consisting of the metal liner, the ±α layers and the 

90º layers is obtained as: 

2 2
22 11 12 11 12 0

2 2
11 22 12 22 12 0

( cos sin ) ( )
1

( cos sin ) ( )
1

h h L
h

L

h h L
h

L

EQ Q Q Q Q

EQ Q Q Q Q

α α α

α α α

α α η η
νχ

α α η η
ν

+ + + + +
−

=
+ + + + +

−

        (3.71) 

Under the given χ the optimal winding angle α and related thickness ratio λh can 

respectively be determined by: 

0 0
11 12 22 12 22 12 11 12

1

0 0
11 12 11 12 22 12 22 12

( ( ) ) ( ( ) )
1 1tan

[ ( ) ] [ ( ) ]
1 1

h h h hL L
h h

L L

h h h hL L
h h

L L

E EQ Q Q Q Q Q Q Q

E EQ Q Q Q Q Q Q Q

α α α α

α α α α

η ηχ η η
ν να η ηη χ η

ν ν

−

+ + + + − + + + +
− −

=
+ + + + − + + + +

− −

     

                                                                      (3.72) 
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2 2 2 2
11 22 12 0 22 11 12 0

22 12 11 12

( cos sin ) ( cos sin )
1 1

( ) ( )

L L

L L
h h h h h

E EQ Q Q Q Q Q

Q Q Q Q

α α α α α αχ α α η α α η
ν νλ

χ

+ + + − + + +
− −

=
+ − +

 

(3.73) 

According to equation (3.68), the equal strains ε can also be expressed by: 

2 2
11 22 12 22 12 0[( cos sin ) ( ) ]

1
h h L

h
L

N
Et Q Q Q Q Q

ϕ

α α α
α

ε
α α η η

ν

=
+ + + + +

−

       (3.74) 

 

3.5.3 Liner / ±α layers / 0º layers 

On a way similar to section 3.5.2, the membrane forces Nφ, Nθ for this case are expressed 

as: 

2 2
11 22 12 11 12 0[( cos sin ) ( ) ]

1
m m L

m
L

EN t Q Q Q Q Qα α α
ϕ αε α α η η

ν
= + + + + +

−
       (3.75) 

2 2
22 11 12 22 12 0[( cos sin ) ( ) ]

1
m m L

m
L

EN t Q Q Q Q Qα α α
θ αε α α η η

ν
= + + + + +

−
       (3.76) 

where ηm is the thickness ratio of the 0º layers and the ±α layers, given by: 

m
m

t
tα

η =                             (3.77) 

The optimality condition for a laminate consisting of the metal liner, the ±α layers and the 

0° layers: 

2 2
22 11 12 11 12 0

2 2
11 22 12 22 12 0

( cos sin ) ( )
1

( cos sin ) ( )
1

m m L
m

L

m m L
m

L

EQ Q Q Q Q

EQ Q Q Q Q

α α α

α α α

α α η η
νχ

α α η η
ν

+ + + + +
−

=
+ + + + +

−

      (3.78) 

Under the given χ, α and ηm should also be chosen according to the following equations, in 

order to satisfy the optimality condition: 

0 0
11 12 11 12 22 12 22 12

1

0 0
11 12 22 12 22 12 11 12

( ( ) ) ( ( ) )
1 1tan

[ ( ) ] [ ( ) ]
1 1

m m m mL L
m m

L L

m m m mL L
m m

L L

E EQ Q Q Q Q Q Q Q

E EQ Q Q Q Q Q Q Q

α α α α

α α α α

η ηχ η η
ν να η ηη χ η

ν ν

−

+ + + + − + + + +
− −

=
+ + + + − + + + +

− −

 

(3.79) 
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2 2 2 2
11 22 12 0 22 11 12 0

22 12 11 12

( cos sin ) ( cos sin )
1 1

( ) ( )

L L

L L
m m m m m

E EQ Q Q Q Q Q

Q Q Q Q

α α α α α αχ α α η α α η
ν νη

χ

+ + + − + + +
− −

=
+ − +

 

(3.80) 

The equal strains ε throughout the whole structure can then be obtained as: 

2 2
11 22 12 11 12 0[( cos sin ) ( ) ]

1
m m L

m
L

N
Et Q Q Q Q Q

ϕ

α α α
α

ε
α α η η

ν

=
+ + + + +

−

        (3.81) 

 

3.5.4 Liner / 90º layers / 0º layers 

Likewise, Nφ, Nθ are respectively given by: 

11 12 22 12 0[( ) ( ) ]
1

m m h h L
m mh

L

EN t Q Q Q Qϕ ε η η
ν

= + + + +
−

             (3.82) 

22 12 11 12 0[( ) ( ) ]
1

m m h h L
m mh

L

EN t Q Q Q Qθ ε η η
ν

= + + + +
−

             (3.83) 

where ηmh is the thickness ratio of the 90º and the 0º layers, expressed as: 

h
mh

m

t
t

η =                             (3.84) 

Substitution of equations (3.82) and (3.83) into (3.35) leads to the optimality condition for the 

laminate consisting of the metal liner, the 90º and the 0º layers: 

22 12 11 12 0

11 12 22 12 0

( ) ( )
1

( ) ( )
1

m m h h L
mh

L

m m h h L
mh

L

EQ Q Q Q

EQ Q Q Q

η η
νχ

η η
ν

+ + + +
−

=
+ + + +

−

                (3.85) 

Under the given χ the optimal thickness ratio ηmh is determined by: 

11 12 0 22 12 0

11 12 22 12

( ) ( )
1 1

( )

m m m mL L

L L
mh h h h h

E EQ Q Q Q

Q Q Q Q

χ η η
ν νη

χ

+ + − + +
− −

=
+ − +

             (3.86) 

The equal strains ε can also be obtained by: 

11 12 22 12 0[( ) ( ) ]
1

m m h h L
m mh

L

N
Et Q Q Q Q

ϕε
η η

ν

=
+ + + +

−

              (3.87) 

It is worth noting that under the optimality condition the influence of the metal liner on the 

fiber lay-up design can be eliminated only if χ = 1. 
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3.6 Feasible Range of Optimality Conditions 

In this section we will provide the boundary conditions for the optimality condition. 

Equation (10) in fact represents a geometrical criterion that leads to equal shell strains in all 

directions, and thus achieves the best distribution of the laminate stiffness throughout the 

whole structure. Under the given biaxial stress ratio χ, the best combination of the laminate 

stiffness components Aij can be deliberately designed to achieve the optimal condition 

( 22 12

11 12

A A
A A

χ +
=

+
). However, the Aij elements strongly depend on the laminate lay-up and thus 

cannot be chosen freely; the optimality condition is confined by certain limitations under the 

given lay-up configuration. 

The right-hand side of equation (3.39) has a maximum and minimum value, given by: 

22 12
min min

11 12

( )A A
A A

χ +
=

+
                        (3.88) 

22 12
max max

11 12

( )A A
A A

χ +
=

+
                       (3.89) 

If the following relation holds: 

22 12
min

11 12

( )A A
A A

χ +
<

+
 or 22 12

max
11 12

( )A A
A A

χ +
>

+
               (3.90) 

Recalling equation (3.42) we will have: 

ϕ θε ε<  or ϕ θε ε>                         (3.91) 

Equation (3.91) shows unequal shell strains and thus leads to a non-zero shear stress. In 

other words, the optimality condition can only be satisfied if the biaxial stress ratio χ satisfies: 

χmin ≤ χ ≤ χmax                                         (3.92) 

 

3.6.1 Boundary conditions for monolithic fiber laminates 

(1) Angle-ply laminates (±α): 

With the aid of the classical lamination theory, for angle-ply laminates equation (3.39) 

becomes: 
2 2

22 12 22 11 12
2 2

11 12 11 22 12

cos sin
cos sin

A A Q Q Q
A A Q Q Q

α αχ
α α

+ + +
= =

+ + +
               (3.93) 

For anisotropic materials the following condition holds:  

11 22Q Q>                           (3.94) 
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Therefore the boundary conditions can be obtained by respective substitution of α = 0º and 

α = 90º into equation (3.93): 

22 12 11 12

11 12 22 12

Q Q Q Q
Q Q Q Q

χ+ +
≤ ≤

+ +
                   (3.95) 

According to equation (3.95), the feasible range of the optimality condition becomes larger 

when the difference between Q11 and Q22 becomes larger. It is indicated that for the laminate 

with a higher anisotropy the biaxial stress ratio χ can be chosen in a larger range to satisfy the 

optimality condition. For the most extreme case: the netting theory, the difference of Q11 and 

Q22 is maximal hence the feasible range of the optimality condition also reaches largest. The 

netting theory assumes: 

22 12 0Q Q= =                       (3.96) 

Substituting equation (3.96) into (3.95), yields: 

0 χ≤ < ∞                         (3.97) 

From equation (3.97) it is demonstrated that the optimality condition always holds for 

netting-dictated angle-ply laminates. 

 

(2) Double angle-ply laminates (±α and ±β): 

For a double angle-ply laminate equation (3.39) becomes: 
2 2 2 2

22 11 12 22 11 1222 12
2 2 2 2

11 12 11 22 12 11 22 12

( cos sin ) ( cos sin )
( cos sin ) ( cos sin )
Q Q Q Q Q QA A

A A Q Q Q Q Q Q
αβ

αβ

α α η β β
χ

α α η β β
+ + + + ++

= =
+ + + + + +

   (3.98) 

where ηαβ is the thickness ratio of the ±β and ±α layers, defined as: 

t
t
β

αβ
α

η =                          (3.99) 

Notably the boundary conditions can be determined by substitution of ηαβ = 0 (tβ = 0) and 

ηαβ→ ∞ (tα = 0) into equation (3.98): 
2 2

22 12 22 11 12
min 0 2 2

11 12 11 22 12

cos sin( )
cos sin

A A Q Q Q
A A Q Q Qαβη

α αχ
α α=

+ + +
= =
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         (3.100) 

2 2
22 12 22 11 12

max 2 2
11 12 11 22 12

cos sin( )
cos sin

A A Q Q Q
A A Q Q Qαβη

β βχ
β β→∞

+ + +
= =

+ + +
       (3.101) 

Then χ should satisfy: 
2 2 2 2

22 11 12 22 11 12
2 2 2 2

11 22 12 11 22 12

cos sin cos sin
cos sin cos sin

Q Q Q Q Q Q
Q Q Q Q Q Q

α α β βχ
α α β β
+ + + +

≤ ≤
+ + + +

    (3.102) 

For the netting case, substitution of equation (3.96) into (3.102) leads to: 
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2 2tan tanα χ β≤ ≤                      (3.103) 

In contrast to the angle-ply laminates, the optimality condition for netting-dictated double 

angle-ply laminates does have a certain limitation; the feasible range can become larger with 

increasing the difference between α and β and extends to infinity when α = 0º & β = 90º. 

 

3.6.2 Boundary conditions for fiber metal laminates (FML) 

(1) Combination of ±α layers and metal layers: 

The optimality condition can be given in the same form as equation (3.60): 

2 2 0
22 11 12 0

022 12

2 2 011 12
11 22 12 0

0

cos sin
1

cos sin
1

EQ Q Q
A A

EA A Q Q Q

α α η
νχ

α α η
ν

+ + +
−+

= =
+ + + +

−

           (3.104) 

where E0 and ν0 respresent the young’s modulus and the Poisson's ratio of the metal material, 

respectively; η0 is the thickness ratio of the metal layers to the ±α layers, defined as: 

0
0

t
tα

η =                             (3.105) 

Similar to equation (3.93), the boundary conditions can be determined by respective 

substitution of α = 0º and α = 90º into equation (3.105): 

0 0
22 12 0 11 12 0

0 0

0 0
11 12 0 22 12 0

0 0

1 1

1 1

E EQ Q Q Q

E EQ Q Q Q

η η
ν νχ
η η

ν ν

+ + + +
− −

≤ ≤
+ + + +

− −

            (3.106) 

 

(2) Combination of ±α layers, ±β and metal layers: 

On a way similar to the calculation in subsection 3.5.1, the optimality condition for this 

case can be given by: 

2 2 2 2 0
22 11 12 22 11 12 0

022 12

2 2 2 2 011 12
11 22 12 11 22 12 0

0

( cos sin ) ( cos sin )
1

( cos sin ) ( cos sin )
1

EQ Q Q t Q Q Q t t
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EA A Q Q Q t Q Q Q t t

α β

α β

α α β β
νχ

α α β β
ν

+ + + + + +
−+

= =
+ + + + + + +

−

 

(3.107) 

The following dimensionless parameters (thickness ratios) are now introduced: 

0 0 /( )t t tα βη = + , /( )t t tα α α βη = +                   (3.108) 

Using equation (3.108), equation (3.107) can be rewritten as a function of ηα: 
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(3.109) 

Considering α ≤ β and Q11>Q22, the following condition holds: 

0d
d α

χ
η

<                           (3.110) 

equation (3.110) shows that χ is a monotone decreasing function of ηα. Since 0 ≤ ηα ≤ 1, χ 

reaches its maximum and minimum values at ηα = 0 and ηα = 1, respectively. The boundary 

conditions can then be given by: 

2 2 2 20 0
22 11 12 0 22 11 12 0

0 0

2 2 2 20 0
11 22 12 0 11 22 12 0

0 0

cos sin cos sin
1 1
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− −

  (3.111) 

 

3.6.3 Boundary conditions for hybrid fiber laminates 

We consider here only the netting analysis using two different fiber materials that are 

overwound with the angles ±α and ±β, respectively. According to the netting theory, we have: 
2 2

1 1 2 222 12
2 2

11 12 1 1 2 2

sin sin
cos cos

f f f f

f f f f

E t E tA A
A A E t E t
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            (3.112) 

We introduce the thickness ratio of two fiber materials: 

1

2

f
f

f

t
t

η =                         (3.113) 

Substitution of equation (3.113) into (3.112), leads to: 
2 2

1 2
2 2

1 2

sin sin
cos cos

f f f

f f f

E E
E E

α η β
χ

α η β
+

=
+

                 (3.114) 

Obviously equation (3.114) has its maximum and minimum values at ηf = 0 (tf2 = 0) and ηf → 

∞ (tf1 = 0). We have: 
2

min tanχ α=  and 2
max tanχ β=                (3.115) 

The boundary condition for this case can then be given by: 
2 2tan tanα χ β≤ ≤                     (3.116) 

Equation (3.116) has the same form as equation (3.103) for netting-dictated double angle-ply 
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laminates using monolithic fiber material. It is revealed that for the netting analysis the 

boundary limitations of the optimality condition are independent of the elastic properties of 

the used fibers; the fiber lay-up can here be regarded as a mechanism. 

 

3.7 Conclusions 

Netting analysis is perhaps the simplest of the analytical techniques used in design and 

evaluation of composite pressure vessels, but it is well suited for filament-wound pressure 

vessels. The analysis establishes the relationship between the stresses resulting in the 

composite layers of the pressure vessel and the internal pressure, material properties and fiber 

trajectories. 

The optimality condition shows that optimal pressure vessels are governed by the condition 

of equal shell strains or, in other words, zero shear stress at lamina level. The tensile strength 

of filaments is completely utilized when the participating individual layers are aligned with 

the direction of the maximum principal stress. Please note that this condition is valid only if 

the shear effects in the global coordinates are considered negligible in the laminate with 

rotational symmetry for the geometry and the applied load. The same condition, based on the 

assumption of the equal strains or minimum mass, has also been derived by other authors [7, 8, 

10, 11]. The present derivation of the optimality condition is based on the criterion of 

minimum strain energy density and the results demonstrate how the material anisotropy and 

the optimal fiber angle of a thin lamina depend on the biaxial stress ratio of the involved 

laminated shell. 

The optimality condition of equal shell strains always holds true for netting-dictated 

angle-ply laminates. It should additionally be mentioned here that due to the nature of 

filament winding, the resulting laminate may be regarded as a symmetric, balanced angle-ply. 

Therefore, the optimality condition is always achieved for filament wound pressure vessels 

with the netting solutions. 
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II  NETTING-BASED APPROACHES 

 

 

Chapter 4 

Netting-based designs for circular 

toroidal pressure vessels 

 

4.1 Introduction 

During the past decades, the design and analysis for filament-wound toroidal pressure 

vessels have been developed in a variety of directions. Li and Cook [1] considered a toroid 

consisting of an inner metal liner and an outer fiber overwrap, and developed a full 

mathematical approach to the design of meridionally overwound toroids using a membrane 

shell theory, taking into account the load-bearing capability of the overwrap and its 

interaction with the liner. Cook et al. [2] employed a metal-aramid fiber hybrid construction 

into the design of light-weight toroidal breathing apparatus, taking into account stress rupture 

and stress relaxation effects in aramid fibers and the fatigue arising from repeated 

filling-discharge cycles. Marketos [3] only considered geodesic winding patterns and assumed 

the toroidal shell undergoes in-plane membrane forces. The circular cross section proved to be 

not structurally optimal because the change in the meridional stress around the cross-section is 

not compatible with the change of the geodesic winding angle. Maksimyuk and 
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Chernyshenko [4] examined the distribution of the displacements, strains, and stresses in 

orthotropic toroidal shells made of nonlinearly elastic composites. Blachut [5] presented a 

numerical study into strength and static stability of externally pressurized filament wound 

CFRP toroids with closed circular and non-circular cross-sections. 

Previous studies have concentrated on the use of geodesic or semi-geodesic trajectories; 

however, the design freedom of geodesics is severely limited because once the initial winding 

conditions of fiber position and orientation have been chosen, the entire fiber trajectory and 

corresponding thickness distribution are determined. Semi-geodesic winding offers more 

design freedom but still remains limited to a constant slippage coefficient during the winding 

process. In general neither geodesic nor semi-geodesic winding can place fibers in the 

principal stress direction of the toroid-shaped shell under internal pressure. It is thus desirable 

to determine the strength-dominated fiber trajectories that are based on the maximum 

principal stress [6-8] and that consequently lead to the optimal lay-up structure. 

Designing optimal laminate lay-up is not the only issue; the fibers must be stable on the 

mandrel and be exactly placed along trajectories as predetermined by strength calculation. 

The fiber trajectories and corresponding winding angles cannot be chosen arbitrarily because 

of the requirements of windability. Any deviation from geodesics will require a lateral force 

of friction to prevent the fiber sliding from its original trajectory. In addition, since a half 

torus is concave the condition which avoids fiber bridging should also be respected when 

designing winding trajectories. Therefore an analysis for the stability of fiber trajectories is 

imperative. The overlook of fiber trajectory stability will make the optimally designed lay-up 

parameters difficult to be realized using filament winding technology and hence invalidate the 

structural design and optimization. 

The main objective of this chapter is to simultaneously attain the minimum weight and the 

minimum strain energy density of helically and hoop overwound toroidal pressure vessels, 

and to evaluate the fiber trajectory stability for the two most commonly used patterns: single 

helical winding, helical and hoop winding. In section 4.1 a netting-based optimization model 

is developed to minimize the weight of the toroidal pressure vessel, subjected to several 

design constraints: the vessel’s burst pressure, non-slippage and non-bridging of wound fibers. 

The strength constraints are derived based on the analysis of stress distribution in the toroidal 

shell; the fiber stability-ensuring constraints are formulated using differential geometry and 

the non-geodesic law. The fiber composite overwrap consists of helical and hoop winding 

layers, with the helical angle α (between the fiber trajectory and the parallel direction of the 

torus). The optimal design problem can be described in the following manner: for prescribed 
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internal pressure and shell geometry determine the laminate parameters (winding angles and 

layer thicknesses) that result in a minimum structural weight and consequently a maximum 

structural performance. A two-level optimization method is developed: firstly, the 

aforementioned optimality condition is used to determine the optimal relation for linking the 

helical winding angle and hoop-to-helical thickness ratio, in order to maximize the average 

stiffness of the laminate. Secondly, the minimization of structural weight is carried out to 

determine the optimal fiber trajectories and related thickness distributions while satisfying the 

design constraints. In section 4.2 we emphasize the importance of the stability analysis for 

fiber trajectories and accordingly derive the general criteria and equations that determine the 

distributions of the fiber slippage and bridging tendencies. The distributions of slippage 

coefficients along the meridional direction and the minimum winding angles that avoid fiber 

bridging are outlined to evaluate the fiber trajectory stability of toroidal pressure vessels. The 

primary goal of the stability analysis is to offer an important reference for the design of 

toroidal pressure vessels. 

 
Fig. 4.1: Geometry of a toroidal pressure vessel with its system of coordinates 

 

4.2 Minimum Weight Design 

4.2.1 Basic geometry and governing equations 

A toroidal pressure vessel is an axisymmetric shell of revolution with a circular 

cross-section that does not intersect the axis of revolution. The torus (surface of a closed 

doughnut) is formed by revolving a circle of radius r about a circle of radius R > r lying in an 

orthogonal plane, as pictured in Fig. 4.1. R is the distance between the center of the 

cross-section and the axis of rotation, being referred to as the major radius; r is the radius of 

the tube, being called the minor radius. The meridional direction φ for a circular toroid is 
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tangent to the cross-section and the parallel direction θ follows the circle of revolution for the 

toroid. The regular parameterization of the torus is given by: 

( cos )cos
( , ) ( cos )sin

         sin

R r
R r

r

ϕ θ
θ ϕ ϕ θ

ϕ

+⎧ ⎫
⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎩ ⎭

S      (0 ≤ φ ≤ 2π, 0 ≤ θ ≤ 2π)          (4.1) 

We consider here an infinitesimal elementary piece of a surface being part of the thin 

toroidal vessel (Fig. 4.2). The normal reaction force is acting as a counterbalance to the 

internal pressure [9]: 

nF p R Rϕ θϕ θ= ⋅ Δ ⋅ Δ                         (4.2) 

where p is the internal pressure; Rφ and Rθ are the meridional and parallel radii of curvatures, 

respectively, given by: 

 R rϕ = , cos
cos

R rRθ
ϕ

ϕ
+

= . 

 
Fig. 4.2: An elementary orthogonal region belonging to a toroidal shell 

 

 
Fig. 4.3: Part of a toroidal shell loaded by an internal pressure p 
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 For a thin-walled pressure vessel, the membrane approximation theory for the stress 

analysis is here considered. According to the force equilibrium in the direction normal to the 

surface element, Fn can be expressed in terms of the membrane forces in two principal 

directions: 

sin sinnF N R N Rϕ θ θ ϕθ ϕ ϕ θ= Δ Δ + Δ Δ                  (4.3) 

where Nφ, Nθ are the in-plane forces per unit length in the meridional and parallel directions. 

The equality relation for the membrane forces can be obtained by equalizing the right-hand 

expression of equation (4.2) with that of equation (4.3): 

N N p
R R
ϕ θ

ϕ θ

+ =                          (4.4) 

 

 
              Fig. 4.4: Schematics of the helical and hoop winding layers 

 

The axial equilibrium of a toroidal shell can be formulated as shown in Fig. 4.3: 
2 2[( cos ) ] 2 ( cos ) cos 0p R r R R r Nϕπ ϕ π ϕ ϕ+ − − + =           (4.5) 

Hence: 

2 cos
2 cos
pr R rN

R rϕ
ϕ
ϕ

+
= ⋅

+
                       (4.6) 

Nθ can be solved by substitution of equation (4.6) into (4.4): 

2
prNθ =                                (4.7) 

For thin shells, the membrane forces are considered to be constant through the thickness. 

The meridional force, Nφ, increases as the parameter φ decreases while the parallel force, Nθ, 

remains constant throughout the toroid. 

Helical winding is usually combined with hoop winding in order to reinforce the laminate 
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structure both in longitudinal and hoop directions (Fig. 4.4). According to the classical 

lamination theory [10], the optimality condition (equation (3.39)) for the combination of 

helical and hoop winding layers can be expressed as: 
90 90

11 12 11 12
90 90

22 12 22 12

( )

( )

Q Q Q Q

Q Q Q Q

α α

α α

ηχ
η

+ + +
=

+ + +

o o

o o                        (4.8) 

where η is the hoop-to-helical thickness ratio, defined as: 

ht
tα

η =                               (4.9) 

where tα  and ht  are the helical and hoop layer thicknesses, respectively. 

This section is based upon the assumption that the shell can be treated as a membrane and, 

therefore, the ratio of in-plane shell forces (membrane forces) due to uniformly distributed 

internal pressure can be given by [11]:  

cos
2 cos
R r
R r

ϕχ
ϕ

+
=

+
                          (4.10) 

According to the netting theory, the effect of the matrix is considered negligible. 

Substituting equation (4.10) into (4.8) and representing ijQ
α

 and 
h

ijQ  in terms of the winding 

angle α, yields the optimality relation between α and η: 

2

2 cos
costan

1

R r
R r

ϕ η
ϕα
η

+
−

+=
+

                      (4.11) 

Considering the winding process that starts from the doffing point P(R, 0, 0) at the equator, 

we have: 

2
0

0 2
0

2 tan

1 tan

R r
R r

α
η

α

+
−

+=
+

                        (4.12) 

where η0 is the hoop-to-helical thickness ratio at the equator: 
0

0 0
ht

tα
η =                               (4.13) 

where 0tα  and 0
ht  are the thickness of the ±α and the hoop layers at the equator, respectively. 

In calculating the thickness, the following two assumptions are made [12]: firstly the fiber 

volume fraction is maintained consistently; secondly, the number of filaments in a cross 

section is always constant. With these assumptions, the thickness distributions along the shell 

meridian can be formulated by: 
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which leads to: 

0
0

sin=
sin

αη η
α

                           (4.15) 

Simultaneous solution of the system of equations consisting of (4.11), (4.12) and (4.15) 

will finally provide the winding angle distribution along the meridional coordinate φ, for the 

toroidal pressure shell with the minimum strain energy density. After dropping the negative 

solution, we obtain: 

21 4 ( 1) 1
arcsin

2
A B B

AB
α

+ − −
=                    (4.16) 

in which 

0
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4.2.2 Optimization model 

We address here the problem of finding the minimum structural weight of toroidal 

hydrogen tanks. The helical layer angle and layer thickness at the equator are considered as 

the design variables, as stated by:  
0

0( , )tαα=X                            (4.18) 

The weight of the fiber composite overwrap is chosen as the objective of the optimal design, 

given by: 
2 0 00

0

sin2 ( )( 2 )
sin hW r R r t d t

π

α
απ γ ϕ π
α

= + ⋅ + ⋅∫               (4.19) 

where γ is the specific weight of the laminate; α is a function of φ, which can be determined 

by equation (4.16). Substituting equation (4.12) into (4.19) leads, after some rearrangements, 

to: 
20 2 0

02 0
0

sin2 2( ) 2 ( )[ ( tan ) ]
1 tan sin

R rW rt R r d
R r

π

α
αππγ α ϕ

α α
+

= + − +
+ + ∫X       (4.20) 

The winding tension induced by the feed eye may drive the fibers to slip on the mandrel 

surface and to bridge on concave sections. To keep the fibers stable, the following condition 

should be fulfilled (equation (2.20)): 
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maxg nk k μ≤                          (4.21) 

The coefficients of the first fundamental form of S(θ, φ) are obtained by substitution of 

equation (4.1) into equations (2.30) and (2.32): 
2( cos )E R r ϕ= + , 0F = , 2G r= , 

( cos )cosL R r ϕ ϕ= − + , 0M = , N r= − .               (4.22) 

Substitution of equation (4.22) into (2.45), kg is given by: 
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α ϕκ α

ϕ
= +

+
                     (4.23) 

Substitution of equation (4.22) into (2.46) and (2.47), followed by plugging the resulting K 

and H into equation (2.49), leads to: 

1
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＝ ,                      (4.24) 

The normal curvature kn is related to the principle curvatures (recall equation (2.50)): 

2 2cos 1cos sin
cosnk

R r r
ϕ α α
ϕ

= − −
+

                   (4.25) 

In addition, the following relation holds: 

sind
dl r
ϕ α
=                           (4.26) 

Substituting equations (4.23), (4.25) and (4.26) into (4.21), the non-slippage constraint can 

be formulated by: 
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             (4.27) 

in which dα/dφ is calculated by the first derivative of both sides of equation (4.16) with 

respect to the variable φ: 
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Rrd
d R r R r R r

ϕ α αα
ϕ ϕ ϕ α α η α ϕ
=

+ + + +
    (4.28) 

The allowable coefficient of friction that is used as a threshold for checking if fiber 

slippage occurs during the winding process, is closely related to the smoothness of the 

mandrel surface, the wound fibers and resin, the manufacturing process, etc. In addition, since 

the torus has a concave surface (90° < φ < 270°), the fiber bridging tendency should also be 

examined. The fiber may bridge and is not closely attached to the supporting surface unless kn 

≤0 (see equation (2.25)). From equation (4.25) we have: 
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2cos tan 0
cos

r
R r

ϕ α
ϕ

−
− <

+
                      (4.29) 

The stress ratio K is here defined as: 

0

K σ
σ

=                             (4.30) 

where σ and σ0 are the fiber stress at an arbitrary parallel periphery (φ ≡ Constant) and the 

equatorial periphery (φ = 0), respectively. K reflects the stress distribution relative to the stress 

level at the outermost periphery (equator). According to the netting theory, we have: 

fEσ ε= ⋅                             (4.31) 

where Ef is the Young's elastic module of the used fibers. Substituting equation (3.45) into 

(4.31) and plugging the result into equation (4.30) leads, after some arrangements, to: 
2

0
2

0

( cos )sin cos
( )sin cos

R rK
R r

ϕ α α
α α

+
=

+
                   (4.32) 

K can be determined by substitution of equation (4.16) into (4.32) for the given α0, as 

shown in Fig. 4.5 (R/r = 4). It is observed that the smaller initial winding angle leads to a 

more homogeneous stress distribution throughout the shell. Without proceeding into details, it 

can be proved that the following condition always holds true for the entire structure: 

                                    1K ≤                              (4.33) 

It is revealed that the fiber stress at the equator (φ = 0) arrives at the maximum and thus, 

the burst of the toroidal tank will take place at the equatorial periphery. The strength 

constraint can then be expressed in terms of the fiber stress at the equator: 

0 0
0

3 2
2 (1 ) f

pr R r X
t R rα

σ
η

+
= ⋅ ≤

+ +
                   (4.34) 

where Xf is the ultimate tensile strength of the used fibers. 

 
Fig. 4.5: Stress distributions relative to the stress magnitude at the equator (R/r = 4) 
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                   Fig. 4.6: Flow chart of the optimal design procedure 

 

4.2.3 Solution procedure 

The optimal design issue here refers to the nonlinear constrained optimization and involves 

minimizing the structural weight W, subjected to the non-linear design constraints of 

equations (4.27), (4.29) and (4.34). The SQP (sequential quadratic programming) algorithm is 

here used to solve the optimization problem [13]. The flow chart below (Fig. 4.6) illustrates 
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the optimal design procedure. In every iteration step, when a netting-dictated fiber trajectory 

and adapted thickness distribution are determined by equations (4.14) and (4.16), the 

expressions on the left-hand side of equations (4.27) and (4.29) are evaluated at all points 

assigned along the meridional coordinate φ within a complete wound circuit (φ = 0° ~ 360°). 

Their maximum value is then selected to verify if the constraints are enabled. The objective 

function W is then calculated by equation (4.20) using Gaussian quadrature rule. The current 

design values are then updated as a new set of values by this procedure. The above steps are 

repeated until a user-defined termination criterion is satisfied. The flow chart of the 

verification for fiber stability constraints (non-slippage and non-bridging conditions) is 

represented in Fig. 4.7. 

                     
Fig. 4.7: Flow chat of the verification process for fiber stability 
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4.2.4 Design example 

In the following example, a composite toroidal hydrogen storage tank, where R = 400mm, r 

= 100mm, μ = 0.3, is considered. The tank is filament wound using a combination of hoop 

and helical windings. The tensile strength of the used fibers is Xf  = 4.9 GPa, while the 

uniform internal pressure is p = 70 MPa. The specific weight of the overwrapped composite 

laminate is γ = 1.57×103 kg/m3. Using the present optimization approach (as elaborated in 

subsection 4.23), the optimal design variables are converged to 0
0( , ) (50.83 ,1.8 )t mmαα = o , 

where the structural weight W reaches a minimum of 6.07 kg. The optimization procedure 

provides both good convergence performance and global searching ability. 

We recall here that λ in equation (2.21) is the slippage coefficient that represents the 

tendency of fiber slippage on the mandrel surface, defined by λ = kg / kn. Fig. 4.8 illustrates 

the optimal winding angle distribution as compared to those dictated by geodesics (λ = 0) and 

semi-geodesics (λ = 0.5, 1 and 1.5). This winding angle of optimal fiber trajectories increases 

from 50.8° at the equator to 54.5° at the inner parallel periphery. It is revealed that the 

winding angle distribution determined by using the present method is centralizing in the small 

range and is almost identical with the optimal winding angle (e.g., 55° [14]) for internally 

pressurized cylindrical tanks subjected to the well-known hoop-to-axial stress ratio of 2. On 

the other hand, the geodesic and semi-geodesic angles are located in relatively wide ranges 

and their initial angles are bigger. It can be concluded that the present method leads to a more 

reasonable distribution of the fiber stress in the toroidal shell; the toroidal hydrogen storage 

tanks designed using the present method can thus have higher structural performance as 

compared to those based on either geodesics or semi-geodesics. 

Fig. 4.9 shows the distribution of slippage coefficient λ of the obtained optimal fiber 

trajectories along the meridional direction. It can be seen that the maximum absolute value of 

λ is 0.3 in a complete wound circuit (φ = 0° ~ 360°). Fig. 4.10 outlines the non-feasible region 

of winding angles that may result in fiber bridging on the mandrel surface. The results 

indicated that the optimal winding angles determined using the present method are 

remarkably bigger than the minimal allowable angles for satisfying the non-bridging 

condition. Accordingly, the obtained optimal fiber trajectories entirely comply with the 

stability-ensuring conditions for the winding process as given in equations (4.27) and (4.29). 

Furthermore, the maximum slippage tendency occurs at the positions of φ = 109º and φ = 251º. 

Fig. 4.11 provides the thickness distributions of helical and hoop layers, respectively. Since 

the parallel radius gradually decreases from the outer equator to the inner periphery of the 
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torus, the layer thickness increases from outside to inside and reaches the maximum at the 

inner periphery. Furthermore, an explicit simulation of the optimal fiber trajectories using the 

present method is performed in Fig. 4.12, compared to the conventionally used geodesic 

trajectories that satisfy the design constraints. The results also demonstrate that the optimal 

winding angles determined using the present method are much smaller than the geodesic 

angles. Therefore, a better distribution of the fiber strength in meridional and parallel 

directions can be achieved and consequently improve the structural efficiency of toroidal 

pressure vessels. 

 
Fig. 4.8: Helical winding angle distributions based on the present method, geodesics and 

semi-geodesics (λ = 0.5, 1 and 1.5), respectively 

 

 
Fig. 4.9: Slippage coefficient distribution of the obtained optimal fiber trajectories 
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Fig. 4.10: Critical winding angle envelope for ensuring non-bridging of fibers 

 

 
Fig. 4.11: Helical and hoop layer thickness distributions along the meridional direction 

 

 
Fig. 4.12: Conventionally used geodesics and the present optimal fiber trajectories 
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4.3 Fiber Trajectory Stability of Toroidal Pressure Vessels 

The influence of the geometry and lay-up of the toroid on the netting-dictated fiber 

trajectory stabilities is here evaluated. For convenience in subsequent evaluation, the 

hoop-to-helical thickness ratio η is here considered constant along the meridional direction. 

This assumption does not lead to any significant error in the analysis, because a toroid is a 

doubly-closed body of revolution and has a relatively homogeneous thickness distribution 

over the surface. In addition, the relative bend radius K, which is defined as the ratio of the 

bend radius R to the tube radius r, is here used to characterize the geometry of the torus: 

/K R r=                             (4.35) 

It should be noted here that K in fact describes the slenderness of the toroid. According to the 

above definitions, equation (4.16) becomes: 

1
1

costan
1

K
K

η
ϕα

η
−

− +
+=

+
  (0 ≤ φ ≤ 2π)               (4.36) 

The winding angle of the netting-based fiber trajectories depends on K and η. The initial 

winding condition of fiber position is able to completely determine the fiber trajectories for 

the given K and η. Note that for the single helical winding we have η = 0 and equation (4.36) 

can accordingly be rewritten as: 

1tan 1
cos
K

K
α

ϕ
−= +

+
  (0 ≤ φ ≤ 2π)                 (4.37) 

Fig. 4.13 presents the netting-based winding angle developments for the single helical 

winding and the helical and hoop winding (K = 3~6, η = 0.5), respectively. The results show 

that at each position along the meridional direction the single helical winding provides a 

bigger fiber angle than the helical and hoop winding. 

By substituting equations (4.23) and (4.25) into (2.21), the slippage coefficient λ can be 

expressed as a function of φ: 

2 2

sinsin cos
cos( ) cos cos sin

cos

d
d K

K

α ϕα α
ϕ ϕλ ϕ ϕ α α

ϕ

+
+=

+
+

                   (4.38) 

where dα/dφ can be obtained by the first derivative of equation (4.36) with respect to φ: 

sin 1
2(3 2cos ) ( cos )[(2 ) (1 )cos ]

Kd
d K K K

ϕ ηα
ϕ ϕ ϕ η η ϕ

+
=

+ + − + −
       (4.39) 
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Fig. 4.13: Winding angle distributions for the single helical winding (η = 0) and the helical and 

hoop winding (η = 0.5) 

 

Substituting equation (4.39) into (4.38), the expression for determining the slippage 

coefficient λ is rewritten as: 

3/ 2

2sin (3 2cos ) ( cos )(1 ) (1 )(2 cos )
4( cos ) (3 2cos )[( cos )(1 )
K K K K K

K K K K
ϕ ϕ ϕ η η ϕ

λ
ϕ ϕ ϕ η

+ + + − + + +
=

+ + + − +
    (4.40) 

The condition for preventing fiber bridging over the torus is transformed into: 

2
1

coscostan
1 cos

K
K

K

η
ϕϕα

η ϕ

+ −
−+= ≥

+ +
                 (4.41) 

Equation (4.41) can further reduce to: 

2(1 1 )ht t Kαη = < −                        (4.42) 

Equation (4.42) provides the non-bridging criterion for fiber trajectories on the torus. Please 

note that for single helical winding this criterion is always satisfied since η = 0. Accordingly 

the single helical winding trajectories determined using the netting theory will never bridge 

over the torus. 

Equations (4.40) and (4.41) give the criteria for assessing the stability of a fiber trajectory 

designed using the netting-based approach. It is shown that for the helical and hoop winding 

the fiber stability is influenced by the relative bend radius K and the hoop-to-helical layer 

thickness ratio η while for the single helical winding K is the only influential parameter. 

Fig. 4.14 outlines the distribution of the minimum required winding angles as dictated by 
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the non-bridging criterion, as compared to the winding angles of fiber trajectories obtained 

using the netting analysis. It can be seen that for the most common K-range [3, 6], the 

netting-based winding angles are much bigger than the critical angles for avoiding fiber 

bridging; the obtained fiber trajectories will therefore not bridge over the entire surface. In 

addition, for a given k there is a maximum value for η able to guarantee the validity of the 

non-bridging criterion. The result is depicted in Fig. 4.15, where the non-bridging-ensuring 

feasible {K, η}-field is dashed. It should be noted here that the non-bridging criterion is 

consistently valid for the convex surface because equation (4.41) always holds true for the 

range φ = [-90º, 90º]. Fig. 4.16 shows the distributions of the slippage tendency |λ| along the 

meridional coordinate φ, corresponding to various K (K = 3~6, η = 0.5). The results reveal 

that the fiber trajectories exhibit an increasing slippage tendency from the inner/outer equator 

towards the crest of the toroid; however, the maximum slippage tendency is not present 

exactly at the crest but somewhere between the crest and the inner equator, depending on the 

K-value. It is thus suggested that more attention should be paid to the winding of the concave 

surface of the toroid. Fig. 4.17 illustrates the maximum slippage coefficients of the obtained 

fiber trajectories corresponding to the most common combinations of K and η (K = 3~6, 

η = 0~1.5). It is shown that the fiber slippage tendency significantly decreases with the 

increase of K, and slightly increases with the increase of η. The relative bend radius proves to 

be the most influential factor on fiber slippage tendency, while the thickness ratio has less 

influence.  

 
Fig. 4.14: Minimum non-bridging-ensuring angles as compared to winding angles of the 

netting-based fiber trajectories 
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As seen in the results of the stability analysis, it is shown that for toroidal pressure vessels 

with K ≥ 4 the fiber trajectories determined using the netting theory can well satisfy the 

stability-ensuring criteria; for toroidal vessels with 3 ≤ K ≤ 4, the maximum coefficient of 

friction between the supporting surface and the placed fiber should be guaranteed to reach 

0.4~0.5, in order to prevent fiber trajectories deviating from the netting-dictated trajectories. 

However, for toroids with K < 3 & η > 1.5, it is strongly suggested to employ geodesic or 

semi-geodesic trajectories instead of the present netting-based trajectories, with a compromise 

between structural performance and windability. 

 
Fig. 4.15: Feasible field of {k, η}-combinations for ensuring non-bridging (shaded area) 

 

 
Fig. 4.16: Slippage tendency distributions along the meridional direction 
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Fig. 4.17: Maximum slippage coefficients of the obtained fiber trajectories for the most 

common K and η 

 

4.4 Conclusions 

A netting-based design method is outlined regarding the optimal design of helically and 

hoop wound toroidal pressure vessels. The structural efficiency can be improved by changing 

the helical fiber orientation and the hoop-to-helical thickness ratio. The optimal values of the 

layup parameters at the equator are determined to create optimal fiber trajectories. The netting 

theory is employed for predicting the structural behavior and the SQP method was utilized as 

a non-linear optimization algorithm. To obtain the strength constraints, the relative stress 

distribution along the meridional direction is outlined and the stress level at the outermost 

periphery has proven to be the maximum in the toroidal vessel. The present method is based 

on non-constant slippage coefficient and determines the optimal fiber trajectories that are 

aligned in the principal stress direction throughout the whole structure. Therefore, the 

obtained optimal laminate configuration has a minimum structural weight (and therefore a 

maximum vessel performance) and can be regarded as the most efficient in terms of the 

netting-based design. 

As a result of the optimal design, the helical winding angle increases along the meridional 

direction from the outer equator towards the inner periphery. The optimization procedure is 

well convergent to stable solutions while the resulting fiber trajectories satisfy all the design 

constraints. The minimum point of the weight function is just on the boundary of the 
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non-slippage and the ultimate strength constraints. The practicality and effectiveness of the 

present method are verified by computer simulations where the obtained optimal fiber 

trajectories satisfy the winding principles of the toroid. Compared to the geodesic winding, 

the results also demonstrate that the fiber trajectories determined using the present method 

lead to a better stress distribution and hence maximize the utilization of the fiber strength 

under internal pressure. Accordingly, the structural performance of toroidal pressure vessels 

can be significantly improved using the present method. 

To evaluate the effect of the geometry and the lay-up on the stability of the netting-based 

trajectories, the fiber slippage and bridging tendencies of the obtained fiber trajectories are 

illustrated for various relative bend radii and hoop-to-helical thickness ratios. It is revealed 

that toroidal pressure vessels with larger relative bend radius and lower hoop-to-helical 

thickness ratio lead to better fiber stability in terms of either slippage or bridging tendency. 

The results also conclude that for the most commonly used toroids, the winding trajectories 

designed by the netting theory satisfy both the non-slippage and non-bridging criteria, and 

show sufficient fiber stability for the winding process. In addition, it is worth mentioning that 

the netting-based fiber trajectories will in general fulfill the non-bridging condition if they 

satisfy the non-slippage criterion. 

Despite the fact that the small relative bend radii (K < 3) result in the instability of fiber 

trajectories on the torus, the present netting-based winding trajectories do satisfy the 

stability-ensuring requirements for the most commonly used toroids (K ≥ 3) in today's 

industries. 
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Chapter 5 

Geodesic-isotensoids 

 

5.1 Introduction 

The generalized optimality condition (see chapter 3) originates from the idea that the 

optimal pressure vessels are governed by the condition of equal shell strains and that the 

laminate strength can be completely utilized when the participating individual layers are 

aligned according to the principal stress direction. It has been proved that the optimal shape 

profile for a filament-wound dome is an isotensoid [1], on the basis of the netting theory [2]. 

The isotensoid, which provides the pressure vessel with the minimum weight and maximum 

carrying capacity, implies that all the fibers undergo uniform tension along their length. It can 

be designed in such a way that the principal stresses are carried only by the fibers of the 

laminate [3-5]. The solution may be regarded as optimal since it guarantees uniform stress 

distribution, minimum vessel weight and maximum occupation of the fiber strength. 

The design of filament wound pressure vessels must take full account of the stress field as 

well as the material properties. Constraints imposed by the manufacturing process need to be 

respected, and the geometry that may restrict the structural efficiency must be properly 

determined. The netting-based optimal design and fiber stability analysis for circular toroidal 

pressure vessels have been carried out in chapter 4. However, one of the shortcomings of the 

application of circular cross sections to toroids is that the tensile strength of the filaments 

cannot be completely utilized, because the structural efficiency of a toroidal pressure vessel is 

entirely governed by the cross-sectional shape. Previous investigations merely considered the 

architecture of reinforcement layers, but overlooked the design of adapted cross-sectional 

shapes (i.e. meridian profiles) for toroids. It is thus desirable to obtain the most efficient 

cross-sectional shapes for these structures. A new possibility to improve the performance of 
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toroidal vessels has been offered by Koussios et al. [6, 7] in which a novel configuration 

combining isotensoids with toroids is developed. 

With the aid of the netting theory and geodesic winding law, in this chapter we outline the 

governing equation for determining geodesic-isotensoids and its feasible intervals. Depending 

on the magnitude of the axial forces as related to the internal pressure, various 

geodesic-isotensoid meridian shapes can be obtained. The cross-sectional shapes of isotensoid 

toroids are derived, leading to constant fiber stress throughout the whole torus. The influence 

of the theoretically required axial load on the isotensoid meridian shape to close it is also 

evaluated. The calculations and comparisons of cross-sectional shapes and structural masses 

of circular and isotensoid toroids are carried out to indicate that isotensoid toroids form a 

preferable alternative for the design of toroidal structures. 

 

5.2 Geodesic-isotensoid Domes 

5.2.1 Geometry and governing equations 

The domes can represent the general class of shells of revolution. The geometry and 

applied loads of a dome meridian is schematized in Fig. 5.1. R and r0 are the radius of the 

equator and the radius of the polar opening, respectively; p is a uniformly distributed internal 

pressure and A is an externally applied axial line load. S(θ, z) represents the vector of a 

generic shell of revolution in polar coordinates, given by: 

{ }( , ) ( )cos , ( )sin ,z r z r z zθ θ θ=S                     (5.1) 

where θ denotes the angular coordinate in parallel direction, while r and z stand for the radial 

and axial distance. 

Under an internal pressure p and an A, the axial equilibrium of the shell is given by: 

2 22 / 1 'A r p rN rϕπ π+ = +                        (5.2) 

The shell force Nφ can be obtained from equation (5.2): 

2( ) 1 '
2 2

A prN r
rϕ π

= + +                          (5.3) 

According to the netting theory, equation (3.51) for obtaining the fiber stress can reduce to: 

2cos
N

t
ϕσ
α

=                                 (5.4) 
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                Fig. 5.1: Loads and geometry of an isotensoidal meridian 

 

After substituting equation (5.3) into (5.4), the fiber stress at any point can be expressed as: 

2

2

( ) 1 '
2 2

cos

A pr r
r

t
πσ

α

+ +
=                        (5.5) 

Considering the geometrical condition at the equator (r = R, r '= 0), the fiber stress at the 

equator is given by: 

0 2
0 0

( )
2 2

cos

A pR
R

t
πσ

α

+
=                            (5.6) 

The aim of the isotensoid design is to determine the meridian profile providing equal fiber 

tension everywhere. To achieve this goal, the fiber stress at any point should be equal to that 

at the equator. Thus we have: 

2

2 2
0 0

( ) 1 ' ( )
2 2 2 2

cos cos

A pr A pRr
r R

t t
π π

α α

+ + +
=                    (5.7) 

Recalling equation (4.14) and using the same assumption [8], the thickness distribution 

along the meridional direction is given by: 

0

0

cos
cos

t R
t r

α
α

= ⋅                             (5.8) 

We consider here the geodesic condition (2.76) in which the Clairaut's equation is satisfied: 

0sinr rα =                               (5.9) 
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To obtain a system of generalized governing equations that adapt to arbitrary geometry and 

internal pressure load, the major geometric and load parameters are normalized using 

appropriate non-dimensional scales: 

r
R

ρ = , z
R

ζ = , 2

Aa
pRπ

=                       (5.10) 

Substitution of equations (5.8), (5.9) and (5.10) into (5.7) leads, after expressing the 

winding angle in terms of ρ and ρ0, to: 
2 2 2 2 2 2 2 2 2 2 2 2

0 0 0' ( ) (1 ) ( 1) ( ) ( ) (1 )a a aρ ρ ρ ρ ρ ρ ρ ρ ρ+ − = + − − + −         (5.11) 

The differential equation for describing the meridian profile thus becomes: 
2 2 2

0
2 2 2 2

0

( 1) ( )' 1
( ) (1 )
a

a
ρ ρρ

ρ ρ ρ
+ −

= −
+ −

                      (5.12) 

The above governing equation provides the shapes of isotensoid meridian profiles for 

various {a, ρ0} values. For a given dimensionless opening radius ρ0, the resulting meridian 

profile will strongly depend on the a-value. The {a, ρ0}-parameter set is able to completely 

determine the cross-sectional shapes of the isotensoids. Depending on the magnitude of the 

axial forces as related to the internal pressure, several isotensoid meridian profiles (ρ0 = 0.4) 

are obtained (see Fig. 5.2). 

 

 
 

Fig. 5.2: Influence of the axial force on the resulting isotensoid meridian profile (ρ0 = 0.4) 
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5.2.2 Feasible intervals of governing equation 

The governing equation (5.12) can be rewritten as: 
2 2 4 2 2 2 2

0 0 0
2 2 2 2

0

(1 )[(1 ) (1 )(2 1) ( 1) ]'
( ) (1 )

a a
a

ρ ρ ρ ρ ρ ρρ
ρ ρ ρ

− − + − + − +
=

+ −
         (5.13) 

Setting the both sides of equation (5.13) equal to zero, e.g. ρ'=0, gives two pairs of real and 

one pair of imaginary roots: 

1,2 1ρ = ± , 
2 2

0
3,4 2

0

(2 1) (4 3)1 1
2 2 1

a aa ρρ
ρ

+ + +
= ± − − +

−
,  (Real roots)    (5.14) 

2 2
0

5,6 2
0

(2 1) (4 3)1 1
2 2 1

a aa iρρ
ρ

+ + +
= ± − − − ⋅

−
 (Imaginary roots)         (5.15) 

By selecting the minimum and maximum real roots by ρmin and ρmax, the biggest and 

smallest radii of the geodesic-isotensoids are: 

2 2
0

min 2
0

(2 1) (4 3)1 1
2 2 1

a aa ρρ
ρ

+ + +
= − − +

−
, max 1ρ =            (5.16) 

equation (5.12) is therefore only valid for the interval [ρmin, 1]. The minimum and maximum 

real roots define the interval where integration of equation (5.12) is possible. Although the 

maximum real root ρmax = 1 does provide exact value for the radius at the equator, the 

minimum root (ρmin) does in general not coincide with the opening radius at the pole. It should 

be noted here that ρ0 only mathematically represents the radius of the polar opening and the 

real polar radius ρmin is generally bigger than ρ0 because the argument contained in the square 

root of equation (5.13) nullifies before ρ can reduce to ρ0. In this case the winding angle at the 

poles becomes less than 90º and decreases as the magnitude of the axial force a increases. In 

practice however, in order to ensure a smooth transition of one wound circuit to the other, the 

winding angle should exactly reach 90º when passing the poles. This implies that ρmin should 

be equal to ρ0 in accordance with the Clairaut's equation. Substitution of this requirement 

together with ρmin'= 0 into equation (5.11), leads to: 
2
0a ρ= −                            (5.17) 

This result can alternatively be obtained by setting Nφ (equation (5.2)) equal to 0. Hence, 

one should keep the a-parameter as close as possible to –ρ0
2. 

Furthermore, we indicate here that the {a, ρ0}-combination is limited according to the 

following statement, dictated by the numerator contained in the root argument of equation 
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(5.13): 
2 4 2 2 2 2
0 0 0(1 ) (1 )(2 1) ( 1) 0a aρ ρ ρ ρ ρ− + − + − + ≥              (5.18) 

Since the left-hand side expression of equation (5.18) is less than 0 at ρ=0, its value has to be 

more than 0 at ρ = 1, in order to make the above inequality valid before ρ rises to 1. Thus we 

have: 
2 2

0( 4 3) 2( 1)a a aρ+ + < +                       (5.19) 

Another important limitation on a is that the right-hand side of equation (5.2) should be 

more than 0, otherwise the fiber stress at the equator will become compressive (physically 

impossible for isotensoids). This limitation leads to: 

1a > −                            (5.20) 

 Then the following relation holds true: 
2( 4 3) 0a a+ + >                         (5.21) 

equation (5.19) can thus be rewritten as: 

0 2

2( 1)
4 3

a
a a

ρ +
<

+ +
                       (5.22) 

The result is depicted in Fig. 5.3, where the feasible {a, ρ0} field is dashed. 

 

 
 

Fig. 5.3: Feasible {a, ρ0}-field (shaded area) 
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Fig. 5.4: Cross-sectional shape for a toroidal pressure vessel [6, 7] 

 

5.3 Geodesic-isotensoid Toroids 

A toroidal pressure vessel can be regarded as a particular form of the shell of revolution, in 

which the revolved meridian profile is a closed curve (Fig. 5.4 [6, 7], not necessarily circular). 

In this section the differences of geometry and performance between circular and 

geodesic-isotensoid toroids are outlined to demonstrate the favorable properties of toroids 

with isotensoid-based cross sections. 

 

5.3.1 Cross-sectional shapes 

In Section 5.1, several isotensoid dome profiles are obtained using various magnitude of 

dimensionless axial force (recall Fig. 5.2). When the axial force is sufficiently large for 

forcing the resulting meridian profile to become closed, the shape of the isotensoid becomes a 

toroid. Note that the tensional forces of the rovings that proceed from the polar area towards 

the equator replace here the theoretically required external axial force A, which is applied on 

the polar cap. The resulting meridian profiles, i.e. cross-sections of isotensoid toroids for 

different polar openings, are shown in Fig. 5.5. The resulting cross-sectional shape is 

quasi-elliptic. The isotensoid toroid belongs to the class of doubly curved surfaces, and is an 

interesting alternative for spaces having limited height. 
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Fig. 5.5: Resulting cross sectional shapes for iso-toroids with various ρ0 

 

5.3.2 Evaluation and comparison 

The dimensionless internal volume and structural mass are defined as follows: 

3/ 2V V R= , 32
TXM M

p Rγ π
= ⋅                    (5.23) 

The dimensionless volume of an isotensoid toroid is then given by: 

2

0

m
isoV d

δ
πρ ζ= ∫                         (5.24) 

where ζm is the maximum height of the meridian profile, at which the first derivative of ρ 

tends to infinity. When setting the denominator of equation (5.13) equal to zero, the radial 

coordinate ρm of the maximum point can be calculated as follows: 
2 0m ma aρ ρ+ = ⇒ = −     where a<0                (5.25) 

With the aid of Runge-Kutta formulae, ζm can be further calculated by equation (5.13): 

( ) |m aρ
ζ ζ ρ

= −
=                         (5.26) 

The structural mass can be calculated by: 

2

0
4 1 'mz

isoM rt r dzπ= +∫                        (5.27) 

Solving equation (5.9) for the winding angle α and substituting the results into equation 

(5.5), the thickness distribution of isotensoid toroids is obtained by: 

2

2 2
0

( ) 1 '
2 2

(1 / )T

A pr r
rt

X r r
π

+ +
=

−
                       (5.28) 
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By substitution of equation (5.28) into (5.27) together with equations (5.10) and (5.23), the 

mass (in dimensionless form) is given by: 
2 2 2

2 20
0

( )( ' 1)m
iso

aM d
ζ ρ ρ ρ ζ

ρ ρ
+ +

=
−∫                     (5.29) 

The dimensionless internal volume and mass of a circular toroid are given by the 

expressions [9]: 
2 2

0 0(1 )(1 )
8cV π ρ ρ+ −

=                        (5.30) 

2
0 0 0

0

(1 ) (3 )(5 ) 1
8 sin

cM d
πρ ρ ρ

ϕ
α

− + +
= ∫               (5.31) 

where ρ0 is the relative bend radius of torus. 

To equalize the internal volume of an isotensoid toroid with that of a circular one, the 

cross-sectional shape of an isotensoid toroid is obtained using Newton-Raphson method [10]. 

When a relative bend radius ρ0 is assigned, the minimum radial distance ρmin of an isotensoid 

toroid is calculated by setting equation (5.24) equal to equation (5.30). The relations for the 

relative bend radii of equal-volume isotensoid and circular toroids are shown in Fig.5.6.  

Fig. 5.7 displays the distribution of internal volumes of isotensoid and circular toroids 

respectively, corresponding to various relative bend radii. The results indicate that the internal 

volumes of circular and isotensoid toroids can be equal only if the relative bend radius of the 

circular toroid is above 0.29. 

 

 
 

Fig. 5.6: Relative bend radii for isotensoid and circular toroids at equal volumes 
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Fig. 5.7: Internal volumes of isotensoid and circular toroids with ρ0 

  

Fig. 5.8 depicts the cross-sectional shapes of isotensoid and circular toroids at equal 

volumes. It is shown that the aspect ratio of the isotensoid meridian profile is always lower 

than that of the circular one and increases with the raise of relative bend radius. Additionally, 

the isotensoid-based cross-sectional shape becomes identical with the circular one at small 

internal volumes and large bend radii. 

The total mass of circular and isotensoid toroids is respectively calculated at equal volumes. 

Fig. 5.9 illustrates the comparison of dimensionless mass of isotensoid and circular toroids, as 

a function of internal volume. The results show that the isotensoid toroid is consistently 

lighter than the circular one at any equal volume and internal pressure. The mass values of 

isotensoid toroids show about 30% maximal reduction compared with circular toroids. It is 

therefore desirable to employ isotensoid-based cross sections instead of circular toroids for 

toroidal pressure vessels. 
 

    

(1) 0 0.3,  0.786Vρ = =                       (2) 0 0.4,  0.622Vρ = =  
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(3) 0 0.5,  0.463Vρ = =                       (4) 0 0.6,  0.316Vρ = =  

        

(5) 0 0.7,  0.189Vρ = =                      (6) 0 0.8,  0.089Vρ = =  

Fig. 5.8: Cross-sectional shapes of the isotensoid and circular toroids at equal volumes 
 

 
Fig. 5.9: Dimensionless masses of isotensoid and circular toroids at equal volumes 
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5.4 Conclusions 

The main goal of this chapter is to provide a design method for determining the 

cross-sectional shapes of isotensoid toroids, and to evaluate the effect of the isotensoid design 

on the geometry and performance of toroids. The results indicate that the isotensoid meridian 

curve can only become closed if the axial load reaches a sufficient value. The cross-sectional 

shapes of isotensoid toroids have been determined for various internal volumes, and the 

structural masses of circular and isotensoid toroids have been calculated in order to 

demonstrate the preferable performance and robustness of isotensoid toroids. It is concluded 

that the isotensoid toroid has a significantly lower weight and a lower aspect ratio than the 

circular one at any equal volume and internal pressure. Therefore the structural performance 

and the conformability to limited-height storage space of filament-wound toroidal pressure 

vessels can be remarkably improved using the isotensoid-based cross sections. 
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Chapter 6 

Non-geodesic-isotensoids 

 

6.1 Introduction 

A number of studies have been conducted on the design of isotensoid pressure vessels. de 

Jong [1] presented the geometry and structural properties for isotensoid pressure vessels with 

the aid of the continuum theory, in which the behavior of matrix in composites has been taken 

into account. Koussios et al. [2] evaluated the influence of the fiber bundle geometry and 

thickness build-up on the final performance of the isotensoid pressure vessel. Zu et al [3] 

determined the geodesic-isotensoid cross sectional shapes for toroidal pressure vessels. 

Marketos [4] presented the optimal geodesic trajectories in combination with the isotensoid 

meridian shape of the toroidal mandrel. Vasiliev et al. [5] investigated optimal fibrous 

structures and composite laminates of uniform strength by means of a parameter k that in fact 

expresses the degree of laminate orthotropy, and then derived the optimal profile shapes and 

fiber paths for isotensoid domes. Hojjati et al. [6] developed a technique to design the optimal 

dome profile, which depends on the ratio of the Young’s modulus in longitudinal and 

transverse directions, based on the isotensoid condition. A key factor in their design and 

development process is the creation of equally stressed structures that are mainly based on the 

principle of geodesic winding. The geodesics we refer here represent the shortest paths 

connecting any two points on a continuous surface; these paths show great stability on a 

curved surface and are relatively easy to calculate with the Clariaut equation. However, as the 

geodesic path is entirely determined by the underlying meridian profile and the initial winding 

angle, their geometry combined with the tangential requirements on the polar area for fiber 

paths is certainly limiting the available design space [7, 8]. Typical examples of this 

restriction are the limit for creating isotensoid structures with unequal polar openings at both 
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ends (Fig. 6.1), and the restriction for further improving the structural performance of 

isotensoid toroidal pressure vessels. The possibility appears now for applying non-geodesic 

trajectories instead of geodesics. In fact, a fiber must not necessarily be wound geodesically to 

be stable; non-geodesic trajectories can also be overwrapped by a certain deviation from the 

geodesic paths, counting on friction to keep the fiber in its predetermined position. While 

having enlarged design possibilities by using non-geodesics, the principle of constant fiber 

tension can still remain valid. It is therefore desirable to employ non-geodesic trajectories to 

enlarge the design space of isotensoid structures. Recent progress on such structures has been 

offered by Koussios et al. [9, 10] in which a method for determining the 

non-geodesic-isotensoid shapes is developed based on maximum-friction-utilizing 

non-geodesic trajectories. 

The main goal of this chapter is to present the design approach for isotensoid domes having 

unequal polar openings, and to determine the cross-sectional shapes of non-geodesic- 

isotensoid toroids. In section 6.2, the system of differential equations that governs the 

non-geodesic-isotensoid meridians and related non-geodesic trajectories are derived based on 

the isotensoid condition. The dimensionless performance factor is employed to compare the 

structural performance of the geodesic and non-geodesic isotensoid domes. The meridian 

curve and roving trajectories must have C1 and C0 continuity when passing the equator, 

respectively. A root searching procedure with the aid of the Newton method [11] is applied to 

find a pair of slippage coefficients as related to both upper and lower domes. In addition, the 

simulations for the resulting domes with unequal opening and related non-geodesic 

trajectories are performed. Based upon the obtained non-geodesic-isotensoid domes, in 

section 6.3 the cross-sectional shapes of non-geodesic-isotensoid toroids are derived by 

forcing the non-geodesic isotensoid dome meridians to return to zero altitude and the resulting 

isotensoid shapes to become closed toroids. The influence of the magnitude of the axial load 

on the non-geodesic isotensoids, which forces the meridian curve to be closed, is also 

evaluated. The related winding angle distributions for various slippage coefficients are 

presented and compared to each other. Furthermore, the rates of performance improvement 

that the application of non-geodesics can gain, corresponding to various slippage coefficients, 

are also given. 
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6.2 Isotensoid Pressure Vessels with Unequal Polar Openings 

6.2.1 Governing equations 

The geometry of an isotensoid meridian with unequal polar openings is given in Fig. 6.1. 

The shapes for this class of structures are similar to oblate spheroids. The vessel here is 

regarded as the combination of two general isotensoid domes, i.e., part I and part II. r1, r2 are 

the polar radii of both domes. A schematic representation of a general dome profile is shown 

in Fig. 6.2. When rotated around the Z-axis, a shell of revolution is obtained. The basic input 

parameters are the internal pressure p, the axial load A (as applied on the dome opening) and 

the polar opening radius r0. 

 
Fig. 6.1: Meridian profile of a pressure vessel with unequal polar openings 

 

 

Fig. 6.2: Loads and geometry of a shell meridian 

 

An elementary piece of a shell of revolution is here considered, as depicted in Fig. 6.3. The 

fiber trajectory placed on the surface is subjected to a longitudinal force F, a normal force per 

unit length fn and a lateral force per unit length fg. The static equilibrium of the forces in the 
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direction perpendicular to the surface can be expressed as follows [9, 10]: 

2 sin( )
2n n n nf R F f Fυυ κΔ

Δ = ⇒ ≈ ⋅                   (6.1) 

The lateral fiber force is generated by the friction between the fiber bundle and the 

supporting surface. Similarly to equation (6.1), for the calculation of the lateral force we have: 

2 sin( )
2g gf R F f Fμ μ
ωω κΔ

Δ = ⇒ ≈ ⋅                  (6.2) 

where Rg and Rn are the radii of geodesic and normal curvatures, respectively. When placing a 

roving band on the mandrel by the path of non-geodesics, a lateral force will be required to 

keep that roving in place. 

 

 
Fig. 6.3: Elementary fiber force equilibrium [9, 10] 

 

 
Fig. 6.4: An infinitesimal ring element 
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An infinitesimal ring element is shown in Fig. 6.4. The elementary piece must be in 

equilibrium with the forces generated by internal pressure. The shell under consideration is 

covered with N fiber bundles, where each of them generates a force F. Assuming that the 

resultant force per length unit from the supporting surface is f, the equilibrium of the forces 

can be given as: 

2 meridianNf dl p rdsπ⋅ = ⋅                         (6.3) 

f can be decomposed into fn and fg with the aid of equations (6.1), (6.2) and (2.21):  

2 2 21n g nf f f Fk λ= + = +                       (6.4) 

Substitution of equation (6.4) into (6.3) yields: 

2

2 cos
1n

NF r
P k

α
π λ

=
+

                          (6.5) 

The isotensoid design principle is here used to determine the meridian profile. Therefore 

the fiber force F is constant along its entire length. Substitution of equation (2.71) into (6.5) 

leads, after some arrangements, to the second derivative of the meridian profile: 
2 2 2 2 2

2

(1 ' )( ' tan 1 2 sec 1 ' )''
1

z S z r zz
S r
α λ α

λ
+ ⋅ ⋅ ⋅ + + ⋅ ⋅ +

= −
⋅ ⋅ +

        (6.6) 

in which S = NF / πp. Plugging equation (6.6) into non-geodesic equation (2.75) leads to: 
2

2

tan 2 1 '
1

d r z
dr r S
α α λ

λ
+

= − −
+

                  (6.7) 

The simultaneous solution of the system of differential equations (6.6) and (6.7) will finally 

provide the isotensoid meridians and related non-geodesic trajectories. Fig. 6.5 presents a 

collection of meridian profiles determined using the present method, corresponding to various 

slippage coefficients ranging from 0 to 0.4. 

 
Fig. 6.5: Isotensoid meridian profiles for various slippage coefficients λ 



Chapter 6 

 106 

6.2.2 Structural performance 

The performance factor PF = pV/W is used as an index for rating pressure vessels, where P, 

V and W are the burst pressure, the internal volume and the shell weight, respectively. 

Accordingly, the performance factor of a dome is given by: 
0

0

2

2

'

2 1 ' '

r

R
r

R

p r z dr
PF

rt r z dr

π

γ π

⋅
=

⋅ +

∫
∫

                      (6.8) 

where γ is the specific weight of the used material. The dimensionless factor is defined as: 

t

PF PF
X
γ

= ⋅                                (6.9) 

where Xt is the tensile strength of the laminate in the fiber direction. Based on the netting 

theory, the filaments are assumed to carry all the loads. Thus the laminate thickness of the 

dome shell can be calculated by: 

2 cost

pSt
X r α

=                              (6.10) 

where α can be determined by the simultaneous solution of the differential equations (6.6) and 

(6.7). We introduce: 

0

r
r

ρ = , 
0

z
r

ζ = , 2
0

NFq
prπ

=                       (6.11) 

Substituting equation (6.10) and (6.11) into (6.8) and plugging the dimensionless 

parameters shown in equation (6.9), we obtain: 

                           
2

1
2

1

'

1 '
cos

eq

eq

d
PF

q d

ρ

ρ

ρ ζ ρ

ζ ρ
α

= −
+

∫

∫
                      (6.12) 

To evaluate the influence of the slippage coefficients on the structural performance of 

non-geodesics-based isotensoids, the dimensionless performance factors obtained using the 

present method with the slippage coefficients ranging from 0 to 0.5, are shown in Fig. 6.6. 

The results prove that the non-geodesics-based isotensoid dome has better performance than 

the geodesic-isotensoid one. It is also indicate that the structural efficiency of the dome can be 

considerably improved with increasing slippage coefficients. The performance factor of the 

isotensoid dome at λ = 0.5 shows about 10.88% improvement compared with that of the 

geodesic-isotensoid. It is accordingly desirable to employ non-geodesic trajectories with 

allowable slippage coefficients for the design and production of isotensoid domes. 
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Fig. 6.6: Variation of dimensionless performance factors with slippage coefficients λ 

 

 
Fig. 6.7: Meridian profiles corresponding to various {r0, λ}-combinations 

 

6.2.3 Feasibility and design approach 

To verify the feasibility of the present method to create isotensoid pressure vessels with 

unequal polar openings, we present the isotensoid meridian profiles with various slippage 

coefficients for r0 range [1, 5] (Fig. 6.7). It is shown that the equator radius R has a slight 

change with a large increase in the polar radius r0. Therefore the equators of the domes with 

different polar openings can be perfectly matched based on the selection of slippage 

coefficients for both domes. 

A key factor in this design is the determination of adapted slippage coefficients and their 
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corresponding isotensoid meridians between unequal polar openings at both ends. The 

filament winding process requires perfectly tangent placement of the fibers when passing the 

polar areas of the dome structure, to make continuous to a next wound circuit. Therefore, by 

application of a non-geodesic trajectory, this requirement must be satisfied. The winding 

angle at the polar area should reach 90º. Moreover, the first derivative of the z(r) function at 

the polar area, which reflects on the manufactured meridian shape, must be equal to zero 

(Fig.6.2). To ensure C1 continuity of the meridian curve when passing the equator, the radii 

and the derivatives of the meridian curves at the equators of part I and part II (see Fig. 6.1) 

must have the same value. Thus the following geometrical constraints can be defined: 

                    1 2part partR R R= = , 1 2 0part part
r R r R

dr dr
dz dz= == =              (6.13) 

In addition, the winding angle at both equators must be equal, that is: 

1 2eq eqα α=                           (6.14) 

We assume here that the slippage coefficient is given by a piecewise function for both 

upper and lower dome parts: 

1

2

           Part I
          Part II

λ λ
λ λ
≡⎧

⎨ ≡⎩
                        (6.15) 

For given S and both polar radii r0, the solution procedure is outlined in the flow chart (see 

Fig. 6.8. The goal is now to provide a pair of slippage coefficients (λ1,λ2) that ensure winding 

angle of 90° at exactly both polar openings. The design variable vector (λ1,  λ2) is determined 

up to a desired level of accuracy ε and must belong to a predetermined feasible friction 

interval {-µ, µ}. It should be noted here that the slippage coefficient λ could be negative as 

well [12]. Recalling the non-slippage condition λ should meet: 

maxλ μ≤                            (6.16) 

 

6.2.4 Results and discussion 

The present design method is applied to determine an isotensoid pressure vessel with r0 = 1 

and r0 = 2. A pair of slippage coefficients (λ1, λ2) for both dome parts is taken as the design 

variables. The initial set of values here consists of Z0 = 8 (arbitrary value), Z0' = 0 and α0 = 90º. 

In the numerical solution procedure, however, a slightly reduced initial value for α is rather 

desirable (herein α = 0.4999π), in order to avoid infinity during the solution procedure of the 

differential equations. After application of the calculation routine (Fig. 6.8), we find two 

slippage coefficients for both dome parts, λ1 = -0.228 and λ2 = -0,146. Additionally, substitute 
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the resulting λ1 and λ2 into the system of equations (6.6) and (6.7) and obtain the equator radii 

for both parts as R = 10.154. Fig. 6.9 illustrates the meridian profiles of non-geodesics-based 

isotensoid domes with r1 = 1 and r2 = 2. In Fig. 6.10, a comparison of non-geodesic 

trajectories on both dome parts is provided, in terms of winding angle developments along the 

radial direction. The results show that the radii and winding angles obtained using the present 

method, are matched exactly at the equators of both dome parts. 

 

 
Fig. 6.8: Design procedure for searching the slippage coefficients 
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The sectional 3D views for the isotensoid pressure vessel designed using the present 

method, are given in Fig. 6.11. Furthermore, Fig. 6.12 shows the corresponding non-geodesic 

trajectories that proceed from one polar area towards the other. It is shown that the 

non-geodesic trajectory obtained using the present method satisfies the winding conditions 

perfectly. Simulation results also conclude that the present method is able to successfully 

create an isotensoid structure with unequal polar openings. 

 

 
Fig. 6.9: Isotensoid meridian profiles for r0=1 and r0=2 

 

 
Fig. 6.10: Winding angle propagations for r0=1 and r0=2 
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Fig. 6.11: Sectional 3D profile for the isotensoids obtained using the present method 

 

 
Fig. 6.12: Non-geodesic trajectories on the isotensoids obtained using the present method 

 

6.3 Non-geodesic-isotensoid Toroids 

 

6.3.1 Governing equations 

In this section we provide the design solution to determine the cross-sectional shapes of 

isotensoidal toroids based on non-geodesic trajectories. Pressure vessels are governed by the 

condition of equal shell strains (principal stress design), which results in the complete 

occupation of the fiber strength and the participating layers aligned in the direction of the 

maximum principal stress. 
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If we remove the geodesic condition (5.9) in subsection 5.2 for geodesic-isotensoids, 

substitution of only equations (5.8) and (5.10) into (5.7) will lead to the basic equation for 

non-geodesic-isotensoids: 

2 2 2 2

2

cos ( )
'

C a
a
α ρ

ρ
ρ

⋅ − +
= −

+
                 (6.17) 

where: 

0( 1) / cosC a α= +                       (6.18) 

This design considers the non-geodesic equation for which equation (2.7) is satisfied. One 

should note that equation (2.75) contains the second-order derivative of ρ, which can be 

reduced to the first-order derivative. By differentiating both sides of equation (6.17) with 

respect to z, ρ'' can be obtained by: 
2 2

2
2

2 ' 1 ''' [tan ]
( )( ' sin )a

ρ ρ ρρ α
ρ ρ λ α ρ

+
= − ⋅

+ −
            (6.19) 

Substituting equation (6.19) into (2.75) and plugging the dimensionless parameters listed in 

equation (6.11), the non-geodesic equation can be simplified as: 

2

' 2 'costan
( )( ' sin )

d
d a
α ρ λρρ αα
ζ ρ ρ ρ λ α
= − +

+ −
            (6.20) 

Simultaneous solution of the system of differential equations (6.17) and (6.20) will finally 

provide the isotensoidal meridian profiles and related non-geodesic fiber trajectories. 

equation(6.17) has two pairs of real, and one pair of imaginary roots. This expression is only 

valid for the interval [ρmin, 1] (selected positive real solutions by setting the argument of the 

numerator equal to zero). For a given slippage coefficient λ, the resulting meridian profile will 

strongly depend on the value of the axial load a and the initial winding angle α0. The {a, 

α0}-parameter set is able to completely determine the cross-sectional shapes of the 

non-geodesic isotensoids. 

 

6.3.2 Cross sections and related winding angles 

For numerically solve the coupling equations (6.17) and (6.20), we choose the geometrical 

parameters at the equator as the initial set of values, consisting of ρ'0 = 0, z0 = 0 and α0. In 

addition, a slightly reduced initial value for ρ is required (ρ0 = 0.9999) in order to avoid 

singularities during the solution procedure of equations (6.17) and (6.20). 

Depending on the magnitude of the axial forces as related to the internal pressure, several 
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non-geodesic isotensoidal meridian profiles are obtained (Fig. 6.13) with α0 = 5º and λ = 0.04. 

When the axial force is sufficiently large for forcing the resulting meridian profile to be 

closed, the shape of the isotensoid becomes here a toroid. One should note that the tensional 

forces of the fibers that proceed from the pole towards the equator replace the theoretically 

required external axial force applied on the polar cap. A collection of meridian profiles, i.e. 

cross-sectional shapes of non-geodesic isotensoidal toroids with the given polar radius ρ0=0.2 

corresponding to different slippage coefficients, is depicted in Fig. 6.14. It is revealed that the 

resulting cross-sectional profiles are almost identical to each other. Fig. 6.15 illustrates a 3D 

sectional view of an obtained isotensoidal toroid (ρ0 = 0.2, λ = 0.04). In Fig. 6.16 the fiber 

trajectories for various slippage coefficients are outlined in terms of winding angle 

development. The results show that the winding angle varies from a relatively small value 

around 5° at the outer periphery of the toroid to about 50° at the inner periphery, and its value 

decreases with increasing slippage coefficient. 

 

 

 
 

Fig. 6.13: Influence of the axial force on non-geodesic isotensoidal meridian profiles 
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Fig. 6.14: Cross sections of non-geodesic-isotensoid toroids for various λ (ρ0 = 0.2) 

 

 
Fig. 6.15: A sectional view of the non-geodesic isotensoid toroid (ρmin = 0.2, λ = 0.04) 

 

 
Fig. 6.16: Winding angle distributions for various slippage coefficients (ρ0=0.2) 
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6.3.3 Structural performance improvement 

In this section the performance factors PF = PV/W of the non-geodesic isotensoid torods 

are determined to demonstrate the favorable alternative of non-geodesics to the winding on 

the isotensoid toroids.  

According to equation (5.5), the minimally allowable laminate thickness t can be written as: 

2

2

( ) 1 '
2 2

cosf

A pr r
rt
X

π
α

+ +
=                       (6.21) 

We recall here expression (6.8) for calculating PF for an isotensoid; substitution of 

equations (6.21) into (6.8) with the aid of equations (6.11) and (6.9), leads to: 

                      min

min

1 2

2 2 21

2

'

( ) (1 ' ) '
cos

d
PF

a d

ρ

ρ

ρ ζ ρ

ρ ρ ζ ρ
α

=
+ +
∫

∫
                  (6.22) 

where ρmin is the minimum radial distance of the meridian profile with respect to z-axis, at 

which the first derivative of ρ is exactly zero. By setting the numerator of equation (6.17) 

equal to zero, the radial coordinate ρmin can be obtained as follows: 
2

min mincosC aα ρ⋅ = +  

min mincosC aρ α⇒ = ⋅ −     where a<0             (6.23) 

where αmin represents the fiber angle at the inner circle of the toroid, corresponding to ρmin. 

With the aid of the Runge-Kutta formulae [13], αmin can be determined by equation (6.20) for 

a given set of initial conditions. 

Once a non-geodesic isotensoidal meridian profile is determined, the integrands in the 

right-hand side of equation (6.22) are evaluated at several grid points within the interval [ρmin, 

1] and then the dimensionless performance factor PF  is given using n-point Gaussian 

quadrature rule [14]. The values of variables ρ, ζ ' and α required for evaluations are 

calculated by solving the system of differential equations (6.17) and (6.20). Fig. 6.17 presents 

the rates of performance improvement that the non-geodesic winding can obtain for 

isotensoidal toroids with various slippage coefficients (range: [0 – 0.07], ρ0=0.2). The results 

show that the performance factor improves as the slippage coefficient λ increases. Particularly, 

the performance factor of the isotensoidal toroid for λ=0.07 show over 2% increase as 

compared to that for λ=0 (the geodesic one). It is demonstrated that the non-geodesics-based 

isotensoidal toroids have slightly better structural efficiency than the geodesics-based ones. 
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Fig. 6.17: Rates of performance improvement for various slippage coefficients (ρ0 = 0.2) 

 

6.4 Conclusions 

In this chapter we have presented a novel design approach combining isotensoidal 

conditions with non-geodesic trajectories, which is able to improve the geometric flexibility 

and structural performance of filament wound pressure vessels. It is shown that the 

performance factor of non-geodesics-isotensoids increases compared to the one relying on 

geodesics. 

With the proper initialization and root searching algorithm for determining two slippage 

coefficients that fulfill the winding conditions of both upper and lower dome parts, the 

isotensoids with unequal polar openings are obtained. The proposed method for non-geodesic 

trajectories, specifically applied on isotensoid domes with unequal polar openings, performs 

well in terms of accuracy, flexibility and winding demands. By creating a perfect tangential 

roving passage at the end openings, continuation to the following wound circuits does become 

in this case feasible. It provides a straightforward tool for immediate creation of possible 

dome shapes with unequal polar openings.  

In this chapter the key factor of the creation of isotensoid toroidal pressure vessels is that 

the isotensoid design is based on the principle of non-geodesic winding. The non-geodesic 

equations for deriving fiber trajectories on an axisymmetric body of revolution are already 

known but the emphasis of this research is mainly oriented towards the relation between the 
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isotensoid conditions and the non-geodesic law. With these equations we can develop 

non-geodesically overwound toroidal pressure vessels that provide equal fiber tension 

everywhere. 
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Chapter 7 

Bellow-shaped Pressure Vessels 

 

7.1 Introduction 

The axial load carrying capability of pressure vessels is mainly the result of the internal 

pressure that transforms compressive roving stresses into tensional ones. The combination of 

this property with an extended degree of flexibility introduces a new range of applications 

where rather large forces can be translated over certain distances. These distances however, 

are not unlimited, since the dimensions of such a vessel are finite. The solution for this 

problem is a novel configuration of vessels being stacked on top of each other and overwound 

in an integral fashion, i.e., bellow-shaped pressure structures. Recently, filament wound 

bellow-shaped structures have emerged as an attractive alternative in aerospace and 

underwater fields where high loading capacity, translational and rotational flexibility, and 

theoretically infinite length are required. The bellow-shaped pressure vessels are light-weight 

structures possessing higher flexibility then the current composite vessels [1, 2]. 

  A major advantage of composite materials is the large number of design variables available 
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to the designer. To realize this potential and to maximize the structural efficiency which 

composites can offer, the design has to properly capture the specific requirements of the 

problem. Optimal design is an effective way of achieving this goal. Various methods have 

been presented for designing optimal shapes of rotationally symmetrical shells. Several 

authors have performed detailed analysis of optimal shape profiles by using the netting theory 

and anisotropic elasticity theory (continuum theory). For the design objectives, the 

minimization of weight [3] and strain energy [4], the maximization of structural performance 

[5] and burst pressure [6], were discussed. The deformation and strength conditions [7] in 

combination with the Tsai-Wu failure criterion [8] were used as constraints. The meridian 

shape, fiber orientations, stacking sequences, and layer thickness were considered as design 

variables. A sensitivity analysis of a finite element model was also conducted during the shape 

optimization stage for a pressure vessel, although only thickness discontinuity was considered 

[9]. Koussios et al. [10, 11] systematically studied geometrical and structural properties of 

bellow-shaped vessels based on the isotensoid-netting theory. They pointed out that the 

available design space and flexibility of isotensoid bellow-shaped structures can be 

sufficiently enlarged when using non-geodesic trajectories. 

  Little research has focused on the design method using the continuum theory in 

combination with non-geodesic winding law. Most of the previous models have employed the 

geodesic winding principle [12] and the netting theory assumption [13] to design rotationally 

convex structures. However, restricting the winding trajectory to a geodesic path certainly 

limits the opportunity to match the fiber orientation to the applied stress system. The method 

based on the netting theory has a major defect in that design calculations are based on fiber 

strength alone, and the matrix effect is considered negligible. Moreover, both convex and 

concave parts of bellow-shaped structures should be considered, whereas no investigation so 

far has addressed how to optimally design a convex-concave combined structure overwound 

by non-geodesic trajectories. 

This study aims to determine the optimal geometry for the meridian profiles of filament 

wound bellow-shaped pressure vessels, subjected to the Tsai-Wu failure criterion, by means of 

maximizing the performance factor. The performance factor PF = PV / W is used to estimate 

the efficiency of bellow-shaped pressure vessels. The coordinates of the internal knots which 

interpolate the meridian curve are used as design variables to search under a given slippage 

coefficient. The stress field is modeled using classical lamination theory, and the slippage 

coefficient, which is related to the friction between the placed fiber bundle and the supporting 

surface, is here introduced to find the region of possible winding trajectories. The geometrical
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continuity at the dome-dome conjunction should be ensured to avoid stress jumps. The 

formulation of the optimal design problem is regarded as a nonlinear constrained optimization 

problem and the SQP algorithm is here used to find the optimal profile shape. A practical 

design example is presented and investigated by this design procedure. The effect of the 

slippage coefficients on the structural efficiency and optimal shape is also studied. 

 

7.2 Mathematical Model 

7.2.1 Description of the meridian profile 

  The verticality of the dome profile at the end points creates the ability for interconnecting 

several pressure vessels without roving interruption. This is the basic idea for the geometry of 

articulated pressure vessels, as shown in Fig. 7.1. For the convenience of outlining the present 

method, we choose half of one cell of an articulated vessel as the design objective, which is 

here referred to as a “half-cell dome”. The loads and geometry of a half-cell dome structure is 

depicted as Fig. 7.2, where φ and θ are the angular coordinates in meridional and parallel 

directions, while r and z stand for the radial and axial coordinates. The vector representation 

of a half-cell dome structure in polar coordinates is: 

{ }( , ) ( ) cos , ( )sin ,z r z r z zθ θ θ=S                      (7.1) 

 

 
Fig. 7.1: Meridian profile of a bellow-shaped pressure vessel (3D and 2D views) 
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Fig. 7.2: Loads and geometry of a half-cell dome structure [19, 20] 

 

  There exists no general rule for the mathematical description of the shape to be optimized. 

The approximations are typically used to approach the desired optimal shape in the best 

possible way. For this reason, the approximation should be as adjustable as possible. For a 

specific selection of the type of approximate functions, some information and values about the 

expected optimal shape can be very helpful. The meridian profile of such half-cell dome can 

be described by a convex-concave joint curve with several equidistant interpolation knots 

between P0 and Pn, as shown in Fig. 7.3. Its meridian shape is formed from several individual 

segments which are joined at internal knots Pi (i=1, 2, 3,…, n-1) with continuous first and 

second derivatives. No assumptions are made about continuity of the third or higher 

derivatives, but it is postulated that the profile is composed of both convex and concave parts. 

Considering the satisfaction of C0, C1 and C2 continuity conditions, cubic splines which 

intersect at a knot with the same slope and curvature are very suitable for the approximation 

of the dome profiles. 

 
Fig. 7.3: Meridian profile of a half-cell dome with n+1 equidistant knots 
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7.2.2 Objective function 

The mathematical model of the optimal design for domes includes the design variables, 

objective function and design constraints. For convenience in subsequent computations, the 

dimensionless internal pressure is here introduced: 

                  r Rρ = , z Rζ = ,  
02 t

Rp p
t Y

= ⋅                      (7.2) 

where R and t0 are the radius and the thickness of the dome equator, respectively. 

  The material properties and polar opening radius r0 are taken as pre-assigned parameters, 

with both being given at the outset. The n-1 unknown interpolation knots, Pi (i= 1, 2, 3,…, n-1) 

and the depth of the dome ζp are taken as the design variables, so the design variable vector is 

X = {ρ1, ρ2, …, ρn-1, ζp}. These values are employed to describe a half-cell dome profile and 

calculate the performance factor by a numerical integration technique. 

  Composite pressure vessels are expected to withstand a maximum burst pressure at a 

maximum internal volume and a minimum weight. Therefore, the evaluation criterion is pV/W, 

where p, V and W are the burst pressure, the internal volume and the weight of the half-cell 

dome, respectively. For an axisymmetrical dome shell, the performance factor PF is given by: 
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                   (7.3) 

where γ is the specific weight of the used composite material. 

  The dimensionless performance factor is defined as: 

                                
t
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Y
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= ⋅                         (7.4) 

  Substituting equation (7.3) into (7.4) and plugging the dimensionless parameters as shown 

in equation (7.2), we obtain: 
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                    (7.5) 

  With the assumptions presented in section 4.2, the laminate thickness along the meridional 

direction can be written as: 

                               0

0

cos1
cos

t
t

α
ρ α

= ⋅                          (7.6) 

where α0 is the winding angle at the dome equator, which can be determined by non-geodesic 

equation (2.75). 
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  Substitution of equation (7.6) into (7.5) leads to the final form of the objective function: 
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X                  (7.7) 

7.2.3 Constraints 

Both the design constraints of geometry and ultimate strength are here considered. The 

geometrical conditions at ζ = 0 and ζ = ζm, where the coordinate and slope at the dome-dome 

conjunction should be continuous, give the following equations: 

                        0ζ = :      1ρ =  and ' 0ρ =  

                       mζ ζ= :     0 ρ ρ=  and ' 0ρ =                  (7.8) 

where ρ0 is the dimensionless polar opening radius of a half-cell dome. 

The convex and concave parts of a half-cell dome must be maintained. Assuming that the 

point of inflexion on the meridian curve is P (ρip, ζip), which is determined by interpolating the 

result of cubic splines, the following conditions should be met: 

                           0 ipζ ζ< < :       '' 0ρ <  

                          ip mζ ζ ζ< < :      '' 0ρ >                     (7.9) 

The shell is assumed to consist of helically wound layers, each of which forms an angle-ply 

configuration of ±α layers. The stress components referred to the material axes in an 

individual layer are given by (recall equation (3.29)): 
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                    (7.10) 

where mij (i, j=1,2,3) are functions of ply angles and material properties; these are given in 

equation (3.30). 

The failure of a composite pressure vessel includes generally two main steps: firstly, cracks 

appear in the matrix, and then the pressure is taken up by the fibers until they fail [14]. 

However, in a commercial storage vessel, e.g., a hydrogen storage pressure vessel, leakage 

always happens prior to fiber failure and can be disastrous as the leaked gas or liquid might 

pose a number of hazards to human safety. Hence a leak-before-break safety assessment plays 

a vital role for avoiding pressure loss and fluid leakage of pressure vessels. The matrix failure 
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thus becomes a major issue for the safety of a pressure vessel. In this study, the Tsai-Wu 

failure criterion [15] is used: 

1i i ij i jF F Fσ σ σ= + ≤    (i, j = 1, 2, 6)                (7.11) 

in which the strength parameters F11, F22, F12, F66, F1, F2 and F6 are given by: 
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where XT, XC, YT, YC are the tensile and compressive strengths of the unidirectional layer in 

the fiber and transverse directions, and S is the in-plane shear strength. Substituting the 

stresses from equation (7.10) and the dimensionless variables from equation (7.2) into (7.11), 

we obtain a quadratic failure criterion in terms of the dimensionless burst pressure p : 
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where 2

''2
1 '

J ρρ
ρ

= +
+

. In addition, since the surface near the conjunction area of two dome 

cells is concave, the fiber non-bridging condition should also be considered. Substituting 

equation (2.71) for κn into the non-bridging criterion (2.25), leads to: 

                                  2
2

''
1 '

tg ρρα
ρ

≥
+

                        (7.14) 

 

7.2.4 Optimization procedure 

  The optimization problem is attributed to the maximization of the dimensionless 

performance factor under the constraints given by equations (7.8), (7.9), (7.13) and (7.14). 

This design case can be classified as a nonlinear constrained optimization problem. The SQP 

(sequential quadratic programming) method [16] is here employed to find the optimal solution. 

In this method, the function solves a quadratic programming (QP) sub-problem at each step. 

The current point is updated as a new point by this procedure, until a termination criterion is 

met. The flow chart of the optimization procedure is shown as Fig. 7.4. 
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Fig. 7.4: Flow chart of the optimal design procedure 

 

Solving the quadratic equation (7.13) yields the burst pressure ( )p ρ (selected positive real 

solution) corresponding to the failure of that point with the given radial coordinate ρ. The 

burst pressure of the vessel is further given by: 

                                  
0 1
min ( )p p
ρ ρ

ρ
≤ ≤

=                         (7.15) 

When a meridian profile that satisfies the constraint conditions, is determined by a set of 

design variables (interpolation knots) in the ith iteration step of optimization procedure, the 
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values of p  in equation (7.13) are evaluated at many points along the non-geodesics and 

their minimum value is employed as the burst pressure of the bellow-shaped vessel. At each 

iteration step, the points used for the evaluation are determined by solving the dimensionless 

differential equation of non-geodesic trajectories on the half-cell dome shell: 

                    2

sin tan '' ' tancos
1 '

d
d
α α α ρ ρ αλ α
ζ ρ ρ ρ

⎡ ⎤⋅ ⋅
= − −⎢ ⎥+⎣ ⎦

            (7.16) 

  In regard to the windability of the vessel, the winding angle at the polar areas should 

rapidly approach the value π/2. Thus the initial value is α(c) = π/2 for the solution of the 

equation (7.16). For the numerical solution, however, a slightly reduced initial value for α is 

preferable. The solution procedure for determining the burst pressure of the structure is shown 

in Fig. 7.5. The dimensionless performance factor PF  is then calculated using n-point 

Gaussian quadrature rule. 

 
Fig. 7.5: Flow chart of the design procedure for determining the burst pressure 
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7.3 Results and Discussion 

  The optimization process of the bellow-shaped pressure vessel is carried out by considering 

a half-cell dome with the given polar opening radius ρ0 = 0.4. The laminate is made of 

T300/5208 graphite/epoxy the elastic constants of which are E1 = 142 GPa, E2 = 10.8 GPa, 

G12 = 5.49 GPa and ν12 = 0.3. The strength values are Xt = 1568 MPa, Yt = 57 MPa, 

Xc=1341MPa, Yc = 212 MPa, and S = 80 MPa. The values for the material properties are taken 

from Ref. [17]. 

  Fig. 7.6 illustrates the geodesics-based half-cell dome profiles determined using the 

isotensoid design method and the present method, respectively. The maximum value of the 

objective function PF  is 2.2547 herein. On the other hand, substitution of the dome profile 

using isotensoid design method into the objective function, gives a result of 2.1694. It is 

visible that the optimal profile obtained by the present method has better performance and 

greater internal volume than the isotensoid one. Fig. 7.7 shows the optimal half-cell dome 

profiles determined by the present method corresponding to various slippage coefficients 

ranging from 0 to 0.3. The optimal values of performance factor, PF , obtained using the 

present method with the slippage coefficients ranging from 0 to 0.4, are listed in Tab. 7.1. The 

results reveal that the performance of the half-cell dome can be improved with increasing λ. 

  Fig. 7.8 displays the laminate thickness distributions of the half-cell dome shell designed 

using the present method, with slippage coefficients range [0-0.3]. Since the winding angle 

near the region of polar opening approaches 90°, the shell thickness tends to infinity due to 

fiber accumulation. Owing to the same winding conditions being considered, the thickness 

distributions all share similar tendencies. However, due to the different slippage coefficients 

being applied, different thickness distributions are obtained. Fig. 7.9 illustrates the winding 

angle developments on the half-cell dome determined by the present method. The winding 

angle has risen from a relatively small angle at the equator to 90° at the polar opening region. 

The tangential requirement at the polar region for the roving paths is perfectly satisfied. 

 

7.4 Conclusions 

  In this chapter, the optimal design problem of a half-cell dome profile for filament wound 

bellow-shaped pressure vessels is presented. A design-oriented optimization method, which 

aims to maximize the structural performance of pressure vessels, is outlined based on the 

continuum theory and the Tsai-Wu failure criterion. The classical lamination theory is 
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employed for the stress analysis and the SQP method is used as a non-linear optimization 

algorithm. Moreover, the method proposed here is dedicated to non-geodesic trajectories and 

therefore is very flexible for the optimal design of pressure vessels. 

An actual example with a given polar opening is here outlined to demonstrate the favorable 

performance of the proposed method. The optimal meridian profiles are obtained using 

various slippage coefficients. The results indicate that the optimal pressure vessel designed 

using the present method has a lighter structure and greater internal volume than the one using 

the geodesic-isotensoid design method. The distributions of the laminate thickness and the 

winding angle obtained using both methods show similar development tendencies. The 

performance factor improves with increasing slippage coefficients, and the dome height 

becomes greater with the increase in slippage coefficient. It is thus concluded that the 

structural performance of bellow-shaped pressure vessels can further be improved using 

non-geodesic winding. 

 

 
Fig. 7.6: Geodesic dome profiles dictated by the present method and by isotensoid method 

 

Tab. 7.1: Dimensionless performance factors and related increase rates for various λ 

Slippage coefficient Performance factor (PF) Increase rate (%) 

λ = 0 2.2547 0 

λ = 0.1 2.4344 7.97 

λ = 0.2 2.4847 10.20 

λ = 0.3 2.5390 12.61 

Present 
Method 

(ρ0 = 0.4) 

λ = 0.4 2.6121 15.85 
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Fig. 7.7: Half-cell dome profiles corresponding to various slippage coefficients 

 

 
Fig. 7.8: Shell thickness distributions for the half-cell dome designed by the present method 

 

 
Fig. 7.9: Winding angle developments corresponding to various λ 
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Chapter 8 

Continuum-based Domes for Pressure 

Vessels 

 

8.1 Introduction 

The quality of composite pressure vessels is usually expressed in terms of the performance 

factor, which is defined as pressure times volume divided by weight (PV/W). From this 

formulation it becomes evident that accurate estimations of the burst pressure and the 

resulting vessel weight are of vital importance. For the calculations of the required properties 

one can distinguish two approaches: the netting theory and the continuum theory. In both 

approaches, the basic idea is to maximally utilize the available strength. During pressurization, 

the structure is under uniform through-thickness strain and consequently no bending or 

discontinuity stresses are here assumed. The netting theory provides results according to 

analytical or graphical approaches [1-3]; however, it has a major defect in that design 

calculations are solely based on fiber strength and the matrix effect is not considered. The 

mechanical and structural performance is predicted by neglecting the contribution of the resin 

system. In addition, the continuum theory is more accurate and shows the ability to cover the 

complete range from fully orthotropic to entirely isotropic materials. Considering the current 

availability of computational resources and the accessibility of the numerical operations that 

have to be undertaken, the continuum theory is actually preferred, unless the designer seeks 

for a preliminary dimensioning procedure. One should note that the netting approach is a 

special case of the continuum theory. 

The geometrical determination of the dome is the major part of designing pressure vessels. 

Various methods have been presented for determining optimal domes, based on the continuum 
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theory. de Jong [4] compared the shapes of optimal profiles determined by the netting and the 

continuum theory and indicated that the geometry and performance of optimal domes are 

dependent on the elastic properties of the materials used. Hojjati et al. [5] evaluated the effect 

of mechanical properties of composites on the dome profiles and proved that the matrix 

properties have a major role in the dome design. Vasiliev et al. [6, 7] derived the optimality 

conditions for a pressure vessel based on the classical lamination theory and outlined the 

shapes of optimal dome profiles corresponding to various anisotropic characteristics. Liang et 

al. [8] presented the optimal design of dome profiles by maximizing the shape factor and 

evaluated the effect of the dome depth on the structural performance. Zu et al. [9] developed 

an optimal design method for the class of bellow-shaped pressure vessels comprising various 

dome cells that are axially stacked on each other. Fukunaga et al. [10] determined optimal 

meridian shapes using several failure criteria and presented an analytic approach for the 

optimal design of dome structures. Tackett et al. [11] conducted a combined analytical and 

experimental effort to characterize dome reinforcement requirements for intermediate 

modulus carbon/epoxy pressure vessels and evaluated the influence of shallow dome profiles 

on their performance. Vita et al. [12] outlined the process simulation in filament winding of 

composite structures. Blachut [13, 14] investigated the optimal meridian shape and thickness 

distributions in a filament wound dome closure, and discussed the relevant details of 

manufacture, testing and numerical analysis of the torispherical heads. In recent years, 

researchers have carried out many investigations into shape optimization problems which are 

proving useful for different optimization problems. They usually use the nodal coordinates of 

the discrete model as design variables [9, 15-17]. These approaches require a large number of 

design variables and constraints, which significantly complicate the design procedure. 

Although the continuum-based design is sufficiently covered in the literature, there are 

some deficiencies. The majority of previous research has merely considered the dome design 

based on geodesics, and overlooked the application of non-geodesics to the optimal design of 

meridian profiles and their related fiber trajectories. Geodesics represent the shortest paths 

connecting two arbitrary points on a surface, and they show great stability on a surface and 

calculability with the Clariaut equation [18]. However, as geodesics are entirely determined 

by the underlying meridian profile and initial winding angle, their geometry, combined with 

the requirement for tangential placement of the fibers at the polar areas, certainly limits the 

design opportunities of domes [19, 20]. A typical example of this restriction is the limit for 

improving the structural performance of domes. The possibility appears now for applying 

friction-based non-geodesics to the design of roving trajectories for pressure vessels. 
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The optimal dome design relies on the most efficient distribution of laminate thickness and 

stress, in order to maximize the structural performance. As the strength-dominated and 

manufacturing-dominated thickness distributions do generally not match, the laminate 

strength cannot be maximally utilized. A well-known solution for this problem comprises 

geodesic-isotensoid designs, based on the netting analysis. However, geodesics do generally 

not result in optimal solutions for vessel design problems whereby the matrix strength has to 

be taken into account [9, 21, 22]. It is thus desirable to exploit non-geodesics to enlarge the 

design space for obtaining the optimal meridian shapes and related roving trajectories, so that 

the minimum required thickness distributions as determined by strength analysis can 

maximally coincide to the manufactured thickness distributions as determined by the winding 

process. In section 8.2 the non-geodesics-based optimal meridian profiles are determined with 

the aid of the generalized optimality condition, and the influence of the material orthotropy on 

geometrical issues, such as the resulting meridian shape and the tangentiality of the fibers at 

the polar opening. The feasible intervals for the system of governing equations are also 

elaborated in section 8.3. The method is then demonstrated by three typical composite 

materials, reflecting on the most general design scenarios of domes (section 8.4). To assess 

the effect of non-geodesic paths on the structural performance of the dome, we calculate and 

compare the performance factors of non-geodesics-based optimal domes for various slippage 

coefficients and polar opening radii. The shell thicknesses are determined by the combination 

of a strength criterion and the geometric (winding) condition. Lastly, the distributions of 

laminate stresses are obtained in order to illustrate that non-geodesics-based optimal domes 

are relatively thinner than the geodesics-based ones, mainly triggered by the efficient 

utilization of the laminate strength. 

 

8.2 Optimal Meridian Profiles 

In this section we provide the governing equations for determining the dome profiles based 

on the optimality condition and non-geodesic roving trajectories. The geometry and loads of a 

generic shell of revolution is given are Fig. 8.1. The classical lamination theory [23] is 

employed in this study, that is, the role of the matrix is indeed considered. To satisfy the 

optimality condition, equation (18), the domes should have equal shell strains. 

Under an internal pressure P, the in-plane shell forces Nφ, Nθ are given by [24]: 
21 '

2
Pr rNϕ

+
= , 

2

2

1 ' ''(2 )
2 1 '
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+
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Fig. 8.1: Geometry and loads of a dome head 

 

We consider here dome shells made by winding of angle-ply rovings. Recalling the 

optimality condition, equation (3.48), the ratio of the biaxial shell forces Nθ / Nφ can be 

determined: 
2

2
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N k
N k k
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ϕ
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− −
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+ −
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where: 
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We introduce now: 

r Rρ = , z Rζ =                           (8.4) 

Substituting equations (8.1) and (8.4) into (8.2), the differential equation which links the 

geometry, the fiber angle and the material properties of the dome shell can be formulated by: 
2 2 2

2 2

1 (1 )cos 1 '[ 2]
(1 )cos

d k
d k k
ρ α ρ
ζ α ρ

− − +
= − ⋅

+ −
                  (8.5) 

where ρ' is the first derivative of ρ with respect to ζ. Substitution of equation (8.5) into the 

non-geodesic equation (2.75) results in: 
4

2

[ 2(1 )cos ] ' tan
cos [ (1 )cos ]

d k k
d k k
α λ α ρ α
ζ ρ α α ρ

+ − ⋅
= −

+ −
               (8.6) 

For the creation of C1 continuity for the roving path when passing the equator, the 

derivative of the winding angle must have the same value as the derivative of a geodesic path 

at exactly that place. Therefore, the slippage coefficient at that point should be equal to zero. 
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For this reason we introduce the following distribution for the slippage coefficient (Fig. 8.2): 

0

0

cos( )
2 1

c ρ ρπλ
ρ

−
= ⋅

−
                       (8.7)  

where c is a constant which in fact represents the top value of the slippage coefficients 

(Friction between the fiber and the supporting surface). Substituting equation (8.7) into (8.6) 

gives: 
4

0
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      (8.8) 

Simultaneous solution of the system of differential equations (8.5) and (8.8) will finally 

provide the optimal meridian profiles and related winding angle distributions along the 

coordinate ζ. The initial set of values consists of ζ0 = 0, ρeq = 1, ρeq' = 0. 

 

 

Fig. 8.2: Distribution of slippage coefficient (c=0.3, ρ0=0.2) 

 

For a given polar radius ρ0, the resulting meridian profile will strongly depend on the value 

of c and the initial winding angle αeq. The {c, αeq}-parameter set is able to completely 

determine the optimal meridian shapes of non-geodesics-based domes for the given 

distribution for the slippage coefficient. One should note that the slippage coefficient and the 

winding angle are assumed to be constant through the thickness direction. 

 

8.3 Feasible Intervals 

As previously stated, the optimal dome geometry is in essence governed by equation (8.5) 

for which the winding angle development is determined by equation (8.8). Therefore, the 
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parameter set {k, ρ0, c} is able to entirely capture a particular design case. 

As the fiber trajectory approaches the polar opening, the winding angle α should attain 90°. 

Therefore, for ρ = ρ0, we require that α = 90°. Depending on the {k, ρ0, c}-combinations, the 

system of equations (8.5) and (8.8) might run into imaginary solutions for ρ>ρ0. Hence, for a 

given ρ0 and c, there is a (minimum) value for k, able to guarantee the existence of a 

real-valued solution for the system of equations (8.5) and (8.8), over the entire [ρ0, 1] interval 

(recall that ρ=1 represents the dimensionless equator radius). For the determination of this 

k-value as a function of {ρ0, c} it can be shown that the worst case scenario is given by c = 0. 

The limiting k-value obtained on basis of this assumption is the most conservative one and 

will thus guarantee feasible solutions for every positive c. With c = 0, equation (8.8) becomes: 

    0sin ρα
ρ

=                              (8.9) 

Substitution of this expression into the shape equation (8.5), followed by integration gives: 
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The square root argument must be non-negative for 0[ ,1]ρ ρ∈ . This implies that:  

 
6( 2)2 1

0 0[1 (1 ) ] kk k ρ ρ
−

+≥ − − ⋅                      (8.11) 

With a standard numerical root searching procedure the k-value that nullifies equation (8.10) 

for a given ρ0, can now be determined. The result is depicted in Fig. 8.3, where the feasible {k, 

ρ0} field is dashed. 

 

 
Fig. 8.3: Feasible field of {k, ρ0}-combinations (shaded area) 
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8.4 Results and Discussion 

8.4.1 Structural performance 

The performance factor PF = pV/W is used as an index for rating pressure vessels, where p, 

V and W are the burst pressure, the internal volume and the shell weight, respectively. 

Accordingly, the performance factor of a dome is given by: 

2
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2 1 '
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γ π
=

⋅ +

∫
∫

                     (8.12) 

where γ is the specific weight of the used composite material; zp is the height of the dome, 

which can be determined by solving the system of equations (8.5) and (8.8) for the given {c, 

αeq} combination. The dimensionless performance factor and thickness are defined as: 
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where YT is the tensile strength, transverse to fibers. 

  Substitution of equation (8.13) into (8.12) yields: 
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Recalling equation (7.6), the laminate thickness along the meridional direction is 

formulated as: 
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Substitution of equation (8.15) into (8.14) leads to the final form of the objective function: 
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8.4.2 Determination of laminate thickness 

The on-axis stress components in an individual layer are given by (recall equation (3.29)): 
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where mij (i,j=1,2,3) are given in equation (3.30). 

The Tsai-Wu failure criterion [25] is here employed: 

1i i ij i jF F Fσ σ σ= + ≤    (i, j = 1, 2, 6)                (8.18) 

We introduce: 
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Substituting equation (8.16) into (8.18) and plugging the dimensionless variables in 

equation (8.19) into the results, leads to a quadratic failure criterion in terms of the 

dimensionless thickness: 
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where the dimensionless in-plane shell forces are given by: 
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           (8.21) 

When a meridian shape and related non-geodesic trajectory are determined, the minimally 

required strength-dominated thickness t(ρ) at each point assigned on the dome is evaluated by 

solving equation (8.20). Then, the equatorial thicknesses teq(ρ) corresponding to each t(ρ) are 

calculated using the “geometric” equation (8.15), and their maximum value teqmax is selected 

as the final shell thickness at the equator: 

0
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t t
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Once teqmax is obtained, the dimensionless performance factor PF  can be computed by 

equation (8.16) according to the Gaussian quadrature rule [26]. 
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8.4.3 Meridian shapes 

In the numerical solution procedure, the goal is now to provide a pair of design variables {c, 

αeq} that ensures a winding angle of 90° at exactly the polar opening which should be 

achievable. Here c must belong to a predetermined feasible friction interval {-µ, µ}. It should 

be noted here that the slippage coefficient λ could be negative as well [27]. The influence of k 

on the resulting meridian profile is demonstrated in Fig. 8.4 for ρ0 = 0.4. The continuous lines 

denote the non-geodesics-based optimal meridians and the dashed lines stand for the 

geodesics-based optimal meridians (i.e. c ≡  0). The optimal meridian profile is additionally 

governed by the material anisotropy parameter k. Such an optimal dome would have a 

spherical shape in the case of isotropic materials (k = 1). In general, due to the anisotropic 

character of the reinforced wall the resulting meridian shape is oblate-spherical. For a vessel 

loaded only by internal pressure, the “flatness” of the dome is entirely dependent on k. The 

parameter k can be regarded as an interpolator between two extreme cases: the sphere and the 

netting solution. The results also show that for the same material anisotropy, the 

non-geodesics-based optimal dome has a slightly smaller volume and lower aspect ratio than 

the geodesics-based one. 

 

 
Fig. 8.4: Geodesics and non-geodesics-based optimal meridian profiles for increasing k 
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8.4.4 Structural performance evaluation 

The evaluation of the structural performance is illustrated by considering composite 

materials with various fibers and matrices: glass-epoxy (k = 0.2645), carbon-epoxy (k=0.0977) 

and aramid-epoxy (k = 0.0706). Typical values for the mechanical properties for these 

composites are given in Tab. 8.1 [28]. Fig. 8.5 presents the gain of the performance factors, 

triggered by application of non-geodesic trajectories. PFG and PFNG are the performance 

factors of the geodesics and non-geodesics-based domes, respectively. It is observed that the 

structural performance of the dome improves with the coefficient c (top value of the assumed 

distribution of slippage coefficient). The performance factor of a non-geodesics-based 

aramid-epoxy dome for ρ0=0.5 shows about 13.7% increase as compared to the 

geodesics-based one. It is therefore suggested that the maximum allowable coefficient of 

friction µ should be selected as the optimal value of c. For the winding process however, a 

slightly reduced value for µ is rather desirable (e.g. multiply µ with a safety factor), in order 

to ensure the stability of fibers. The results also indicate that the increase rate of the 

performance factor can be further improved by using composites of which the orthotropy 

tends to the netting configuration (k = 0). 

 

Tab. 8.1: Typical properties of unidirectional composites [28] 

Properties Glass-epoxy Carbon-epoxy Aramid-epoxy
Longitudinal modulus (GPa) 60 140 95 
Transverse modulus (GPa) 13 11 5.1 

Shear modulus (GPa) 3.4 5.5 1.8 
Poisson’s ratio ν12 0.3 0.27 0.34 

Longitudinal tensile strength (MPa) 1800 2000 2500 
Transverse tensile strength (MPa) 40 50 30 

Longitudinal compressive 
strength (MPa) 650 1200 300 

Transverse compressive 
strength (MPa) 90 170 130 

In-plane shear strength (MPa) 50 70 30 
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(a) 

 
(b) 

 
(c) 

Fig. 8.5: Increase rates (in percent) of the performance factors that non-geodesics can gain for 

domes made of (a) glass-epoxy; (b) carbon-epoxy; and (c) aramid-epoxy 



Chapter 8 

 144 

Assuming that the allowable coefficient of friction is 0.3, Tab. 8.2 lists the values of the 

design parameters {c, αeq} for geodesics and non-geodesics-based optimal domes with various 

polar opening radii. Fig. 8.6 illustrates the winding angle developments on the domes for 

various c values [0-0.3]. The results show that the winding angle rises from a relatively small 

value at the equator to 90° at the polar opening region, and it reduces with increasing c. The 

tangential requirement at the polar region for the roving paths is perfectly satisfied. Fig. 8.7 

depicts the distributions of laminate stresses referred to the material coordinates for geodesics 

and non-geodesics-based optimal domes (c = 0.3, ρ0 = 0.4). It appears that the σT/YT is much 

higher than σL/XT and that structural failure is always triggered by the transverse stress at the 

region near the dome equator. The results indicate that the laminated shell determined by 

non-geodesics produces higher stresses than the one relying on geodesics. Fig. 8.8 gives the 

distributions of ply failure level for geodesics and non-geodesics-based optimal domes. 

Apparently, the laminate strength of the dome is more efficiently utilized by using 

non-geodesics. Therefore, the non-geodesics-based optimal dome is relatively thinner than the 

geodesics-based one, as shown in Fig. 8.9. 

 

Tab. 8.2: Values of design parameters {c, αeq} for various polar radii (Carbon-epoxy) 

Design parameters ρ0 = 0.1 ρ0 = 0.2 ρ0 = 0.3 ρ0 = 0.4 ρ0 = 0.5 

c 0.3 0.3 0.3 0.3 0.3 

αeq for geodesics (°) 5.7392 11.5370 17.4576 23.5782 30.0000 

αeq for non-geodesics (°) 0.3505 5.9366 11.7675 17.8789 24.2987 
 

 

 
Fig. 8.6: Winding angle developments for various slippage coefficients (ρ0=0.4) 
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      (a) 

 
(b) 

Fig. 8.7: Laminate stresses referred to the material principle axes (c=0.3, ρ0=0.4): (a) 

longitudinal stress; and (b) transverse stress 

 

 
Fig. 8.8: Distributions of the failure level for geodesics and non-geodesics-based domes 
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Fig. 8.9: Thickness distribution for geodesic and non-geodesic optimal domes 

 

8.5 Conclusions 

The main goal of this paper is to outline a design method for determining the optimal 

meridian shape and related structural efficiency for non-geodesically overwound domes, and 

to evaluate the effect of the application of non-geodesic trajectories on the geometry and 

structural performance of domes. With the aid of the minimum strain energy criterion, an 

explicit optimality relation, which relates the roving angle and the shell stress ratio, is derived 

with the material anisotropy parameter k. A specific function is chosen to describe the 

distribution of the slippage coefficient along the coordinate ρ for the desired non-geodesic 

paths, in order to ensure C1 continuity of the roving paths when passing the dome-cylinder 

conjunction. The optimal meridian shapes of non-geodesics-based domes have been outlined 

for various material anisotropy parameters k, based on the continuum lamination theory and 

the equal shell strains condition. The laminate thickness distributions are determined using the 

Tsai-Wu failure criterion, and the dimensionless performance factors for geodesics and 

non-geodesics- based optimal domes have been respectively calculated, in order to 

demonstrate the gain in structural performance that the non-geodesics can result in. The 

on-axis stress of the laminated shells designed by the geodesic and non-geodesic are 

respectively presented to show that the non-geodesic paths determined here maximize the 

utilization of laminate strength and consequently minimize the shell thickness. It is concluded 

that the structural efficiency of filament-wound domes can be improved by using 

non-geodesic paths, and that the performance factor increases with the maximum slippage 

coefficient c. The results also reveal that the non-geodesics-based domes form a preferable 
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alternative for storage spaces having limited height. 

Although the shape differences in geodesics and non-geodesics-based meridian profiles are 

relatively small, the available design space is sufficiently enlarged. This increase of 

possibilities particularly reflects on improved structural performance, while still being able to 

satisfy the conditions of the winding process.  
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Chapter 9 

Non-geodesics-based Circular Toroidal 

Pressure Vessels 

 

9.1 Introduction 

Previous investigations on filament-wound toroidal pressure vessels have merely 

considered the winding patterns based on geodesic trajectories, and overlooked the 

application of non-geodesic paths to the design of toroids. In 1963, Marketos presented 

geodesic-isotensoid cross-sections for the optimum toroidal pressure vessels [1]. Zu et al. [2, 

3] proposed a design method for determining the fiber paths and laminated configuration of 

filament-wound toroidal vessels using a two-level optimization approach, and developed a 

CAD system for their design and production. Li et al. [4] outlined a full mathematical 

approach to the design of overwound toroids using the membrane shell theory, considering the 

load-bearing capability of the wound layer and its interaction with the metallic liner. 

Mitkevich et al. [5] developed a model for calculating the winding trajectory and the profile 

shape of a mandrel and its transformation into given surface elements, based on the example 

of a toroidal membrane. Chen [6] determined the equations to quantify the burst pressure of 

toroidal vessels with various types of winding, based on the equal-strains condition. Yu et al. 

[7] provided a winding pattern for geodesically overwound toroidal vessels and carried out the 

computer simulation for such pattern. Koussios [8] and Zu [9] presented the cross-sectional 

shapes of isotensoid toroids and compared the structural efficiency of such toroids with the 

circular ones. A key factor in their design process is the creation of filament-wound toroidal 

pressure vessels that are mainly based on the principle of geodesic winding, the netting theory 

and the equal-strains condition. 
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Geodesics fiber paths show great stability on a curved surface and calculability with the 

Clariaut equation [10]. However, as geodesics are entirely determined by the underlying 

meridian profile and initial winding angle, their utilization is certainly limiting the available 

design possibilities [11, 12]. One of the disadvantages of the application of geodesics is that 

the structural efficiency of a toroidal vessel is entirely predetermined under a given initial 

condition. A typical example of this restriction is the limited space for improving the 

structural performance. However, the possibility appears now for modifying the fiber 

trajectories by the utilization of the friction available between the fiber bundles and the 

supporting surface. Furthermore, previous studies have failed to consider the optimal design 

of the winding trajectories based on the continuum theory of orthotropic laminates. The 

method based on the netting theory has a major defect in that design calculations are based on 

fiber strength alone, and the matrix contribution is considered negligible. In addition, despite 

the fact that toroidal vessels, which are governed by the condition of equal shell strains or, in 

other words, zero shear stress at lamina level, do show great performance, the rigorous 

friction coefficients required during the winding process certainly confine the smaller relative 

bending radius a toroids can achieve. It is thus desirable to exploit friction-based 

non-geodesics to enlarge the design space of circular toroidal vessels and determine the most 

efficient winding paths for such structures using the continuum theory. 

In this chapter we outline a design-oriented method for determining the optimal 

non-geodesic fiber trajectories for filament-wound circular toroidal vessels under uniform 

internal pressure. Firstly we present the system of differential equations for determining 

non-geodesics on the surface of circular toroids. Then, the optimal design for 

non-geodesically overwound toroids is outlined for obtaining the preferred fiber path, while 

taking the laminate thickness build-up along the meridional direction into account. The 

influence of the relative bending radii on the geometry and performance of the optimal 

non-geodesic paths is also evaluated. Lastly, the calculations and comparisons of structural 

mass and on-axis stress of laminate shells designed by the optimal geodesics and 

non-geodesics are carried out to show that non-geodesic paths form a preferable alternative 

for the design and production of toroidal pressure vessels. 
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Fig. 9.1: Geometry of a toroidal vessel and its fiber path 

 

9.2 Non-geodesics on a Torus 

The vector parameterization of a torus can be given by: 

( cos )cos
( , ) ( cos )sin

         sin

R r
R r

r

ϕ θ
θ ϕ ϕ θ

ϕ

+⎧ ⎫
⎪ ⎪= +⎨ ⎬
⎪ ⎪
⎩ ⎭

S                         (9.1) 

where θ and φ stand for the angular coordinates along the parallel and meridional direction of 

the torus respectively, as shown in Fig. 9.1. 

Substitution of equations (4.23) and (4.25) into (2.21), the basic non-geodesic equation for 

the torus is given by: 

2 2cos 1 sin( cos sin ) cos
cos cos

d
dl R r r R r
α ϕ ϕα α λ α

ϕ ϕ
= − + −

+ +
           (9.2) 

 

 
Fig. 9.2: Geometrical relations for θ, φ, l and α 
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Since the fiber curve has an orientation α with respect to the parallel circle of the torus, the 

relation among geometric parameters dθ/dl, dφ/dl and α, can be given by (Fig. 9.2): 

cos
cos

d
dl R r
θ α

ϕ
=

+
, sind

dl r
ϕ α
=                       (9.3) 

Substituting equation (9.3) into (9.2) leads, after some algebraic manipulations, to a system 

of differential equations for determining non-geodesic trajectories on a circular toroid: 

cos cos sinsin
( cos ) ( cos )

( cos ) sincos cos sin

d r r
d R r tg R r tg

d R r tg
d r

α ϕ α ϕα λ
ϕ ϕ α ϕ α

α ϕ α αϕ α λ ϕ
θ

⎧ ⎡ ⎤
= ± + −⎪ ⎢ ⎥+ +⎪ ⎣ ⎦

⎨
+⎡ ⎤⎪ = ± + −⎢ ⎥⎪ ⎣ ⎦⎩

            (9.4) 

The simultaneous solution of the above system of differential equations will provide the 

non-geodesic winding trajectories on a torus. Fig. 9.3 shows several winding angle 

developments for non-geodesics with slippage coefficients ranging from 0 to 0.2. Fig. 9.4 

depicts various geodesics (λ = 0) and non-geodesics (λ ≠ 0) starting from the equally initial 

winding angle, corresponding to various slippage coefficients. 

 

 
 

Fig. 9.3: Winding angles developments for non-geodesics with various slippage coefficients 
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(a) λ = 0.1 

 

 
(b) λ = 0.15 

 

 
(c) λ = 0.2 

Fig. 9.4: Geodesic and non-geodesic trajectories for (a) λ=0.1; (b) λ=0.15; (c) λ=0.2 



Chapter 9 

 156 

9.3 Optimal Design for Minimum Structural Mass 

In this section, we address the problem of searching the minimum mass of a laminate 

structure for internally pressurized toroidal vessels. The initial winding angle at the equator 

and the slippage coefficient of the non-geodesic trajectories are considered as the design 

variables, as stated by: 

0( , )α λ=X                             (9.5) 

The laminate mass of a toroidal shell is supposed to be the objective function of the optimal 

design problem, given by: 
2

0 0 0
2 ( )sin cscM r R r t d

π
π γ α α ϕ= + ∫                   (9.6) 

where γ is the density of the used composite laminate, α is a function of meridional coordinate 

φ, which is given by equation (9.4).  

To simplify the mathematical modeling and computation, the following dimensionless 

variables are introduced: 

RK
r

= , 32
TYM M

p rγ π
= ⋅ , 2 TYt t

pr
= ⋅                     (9.7) 

where K is the so-called relative bending radius, M and t  denote the dimensionless mass 

and thickness of the toroidal shell, p is the uniform internal pressure, and YT is the tensile 

strength transverse to fibers. 

Substituting equation (9.7) into (9.6), the dimensionless mass of a toroidal vessel becomes: 
2

0 0 0
( 1)sin cscM K t d

π
α α ϕ= + ∫                        (9.8) 

To keep the fibers stable on a mandrel surface, the winding path must meet the following 

criterion (recall equation (4.27)): 

2 2

sinsin cos
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d
d K
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+ − ≤

+
+

                    (9.9) 

where μ is the allowable friction coefficient between the fiber bundles and the supporting 

surface of application. 

For the satisfaction of fiber non-bridging condition (2.25), the winding angle α on the 

concave part (-1 ≤ cosφ < 0) should comply with the following condition: 

2cos 0
cos

tg
K

ϕ α
ϕ

−
− <

+
                           (9.10) 



Non-geodesics-based Circular Toroidal Pressure Vessels 

 157 

The internal resultant forces of the toroidal shell are evaluated using the membrane theory. 

From the static equilibrium equations of the shell element under internal pressure p, the 

internal resultant forces in geometric coordinates are given by [13]: 

2 cos
2 cos
pr KN

Kϕ
ϕ
ϕ

+
= ⋅

+
,  

2
prNθ =                      (9.11) 

where the subscripts φ and θ indicate the meridional and parallel directions, respectively. The 

membrane shear force vanishes identically in the problem as a result of the axisymmetry of 

the structure and the load. 

The stress components in the material axes for a layer are given by (equation (3.29)): 
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                     (9.12) 

where mij (i,j=1,2,3) are given in equation (3.30). 

The FPF mode of the Tsai-Wu failure criterion (recall equation (7.11)) is here used to check 

the failure of a lamina: 

                         1i i ij i jF Fσ σ σ+ ≤    (i, j = 1, 2, 6)                  (9.13) 

 

9.4 Optimization Solution Procedure 

The design problem involves minimizing the structural mass M, subjected to the constraint 

equations (9.9), (9.10) and (9.13). This design procedure is in essence a nonlinear constrained 

optimization problem. The SQP method [14] is here employed to solve the optimization 

problem. As the fibers proceed from the outer periphery to the inner periphery of the pressure 

vessel, it is expected that the laminate thickness will grow rapidly. Since the number of fibers 

passing through the cross section of a slice of the torus at any meridional location is constant, 

the thickness distribution can be expressed as a function of the meridional coordinate φ as 

follows (recall equation (4.14)): 

0
0

( 1)sin
( cos )sin

Kt t
K

α
ϕ α

+
= ⋅

+
                         (9.14) 

When a winding trajectory, which satisfies the constraint conditions, is assigned as a set of 

design variables in the ith iteration step of optimization procedure, the values of minimum 
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thicknesses t(φ) required at many points along the non-geodesic path are calculated by solving 

equation (9.13). The related equatorial thicknesses t0(φ) are evaluated using the “geometric” 

equation (9.14) and their maximum value t0max is selected as the real laminate thickness at the 

equator. Once t0max is obtained, the thickness distribution on the torus is determined by 

equation (9.14), and the objective weight M is computed using the Gaussian quadrature rule at 

each iteration step. The current design point is updated as a new point by this procedure. The 

above steps are repeated until a termination criterion is satisfied. At each iteration step, the 

points used for the evaluation are determined by solving the differential equations of 

non-geodesic trajectories. The flow chart of the solution procedure for determining the 

thickness distribution of the laminate shell is shown in Fig. 9.5. 

 
Fig. 9.5: Design procedure for determining the thickness distribution of the toroidal shell 
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9.5 Results and Discussion 

The optimization of the toroidal hydrogen storage vessel is here carried out by considering 

a collection of tori with various relative bending radii K. The laminate is made of T300/5208 

graphite/epoxy the elastic constants of which are E1 = 142 GPa, E2 = 10.8 GPa, G12 = 5.49 

GPa and ν12 = 0.3. The strength values are XT = 1568 MPa, YT = 57 MPa, XC=1341MPa, YC = 

212 MPa, and S = 80 MPa. The values for the material properties are obtained from Ref. [15]. 

Fig. 9.6 shows the effects of the number of iterations on the values of the objective 

functions, i.e. dimensionless masses of toroids (K = 3~6). It is revealed that the optimization 

procedure provides both good convergence performance and global searching ability. Since 

the geometry of geodesics certainly limits the available design possibilities while the 

non-geodesics give more design freedom by searching the optimal value of the slippage 

coefficient λ, the difference of masses between geodesics- and non-geodesics-based toroids 

becomes relatively larger as the number of iterations increases. Fig. 9.7 illustrates the winding 

angle developments of the optimal non-geodesic and geodesic trajectories along the 

meridional coordinate φ. The results show that the winding angle determined using the 

optimal non-geodesics is centralizing in the small range of 50º-56º, which is almost identical 

with the optimal winding angle for internally pressurized cylindrical vessels. Fig. 9.8 shows 

the winding angle development for K = 105 and demonstrates that the winding angles of 

optimal geodesic and non-geodesic paths become identical to each other and tend to the value 

of the optimal angle of a cylinder subjected to the well-known hoop-to-axial stress ratio of 2. 

A toroid can actually be regarded as a bent, endless cylinder that saves on the need for 

material in the end caps. As a shape, it is thus at least as structurally efficient as a cylinder. On 

the other hand, the optimal geodesic angles lie in a relatively large range, of which the initial 

angles are always about 60º or even bigger. Therefore, the toroidal vessel obtained using the 

present method shows better performance as compared to the geodesics-based toroid. At the 

same time, the fiber path entirely meets the stability-ensuring conditions for the winding 

process as given in equations (9.9) and (9.10). The simulation results for the optimal fiber 

trajectories determined by the present method are depicted in Fig. 9.9, where it is 

demonstrated that the winding pattern satisfies the mathematical principles of winding a torus. 
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Fig. 9.6: Effects of the number of iterations on the values of the objective functions M  
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Fig. 9.7: Winding angle developments of the optimal geodesics and non-geodesics for (a) K = 3; 

(b) K = 4; (c) K = 5 and (d) K = 6 
 

 
Fig. 9.8: Optimal geodesic and non-geodesic winding angle developments for K = 105 
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Fig. 9.9: Optimal non-geodesic trajectories determined using the present method 

 

Fig. 9.10 shows the distributions of laminate stresses with respect to material coordinates 

for toroidal vessels (K = 4) determined by the present method and the geodesic winding 

method. It appears that the σT is relatively high and that structural failure is always governed 

by the transverse stress at the region near the outer periphery. The results indicate that the 

laminate shell obtained here produces higher stresses than the one relying on the geodesic 

winding, while the Tsai-Wu criterion is satisfied throughout the whole structure. Therefore, 

the strength of the toroidal vessel can be maximally utilized. As a result of this, the 

non-geodesics-based optimal laminate shell of the toroid is considerably thinner than the 

geodesics-based one, as shown in Fig. 9.11. 

Table 1 lists the optimal values of dimensionless masses and slippage coefficients for the 

non-geodesics-based optimal toroidal vessels corresponding to the relative bending radii 

range [3, 8], compared with the masses of geodesics-based optimal toroids. The results show 

that the toroids determined by the present method are consistently lighter than the ones using 

geodesic winding. It is revealed that the filament-wound toroidal pressure vessel designed 

using the optimal non-geodesic trajectories has better structural efficiency and thus higher 

pressure carrying capacity. It should be noted that the failure criterion (9.13) corresponding to 

the first ply failure is true for non-geodesics-based circular toroids, because after the matrix 

failure the angle-ply laminate becomes a mechanism and cannot take the pressure. However, 

the level of longitudinal stresses in the ply, as given in Fig. 9.10, is rather low (about 0.45 of 

the ultimate stress). In contrast, geodesic-isotensoid vessels remain able to withstand loading 

up to fiber failure. Therefore the results showing that non-geodesic vessels are more efficient 

than geodesic ones do not always hold true, especially when fiber breakage becomes the 
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major issue for the failure of a pressure vessel. The optimal geodesic vessel is not circular and 

works up to fiber failure irrespective of the matrix failure predicted by equation (9.13). 

 

 

 
Fig. 9.10: On-axis stresses for toroidal vessels (K = 4) obtained using the geodesics and 

non-geodesics: (a) longitudinal stress; (b) transverse stress and (c) shearing stress 
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Fig. 9.11: Thickness distributions for the optimal non-geodesic and geodesic toroidal vessels 

 

Tab. 9.1: Optimal values of dimensionless vessel mass M  and slippage coefficients λ 

Relative bending Radius K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 100

Mass for Optimal Geodesics 8.423 7.684 7.786 7.998 8.296 8.656 67.715

Mass for Optimal Non-geodesics 2.777 3.330 3.945 4.578 5.220 5.867 67.088

λ for Optimal Non-geodesics 0.211 0.157 0.136 0.116 0.106 0.097 0.012 

 

 

9.6 Conclusions 

The main goal of this chapter is to provide a design-oriented method for the determination 

of optimal non-geodesic fiber trajectories and laminate thickness distributions for 

filament-wound circular toroidal hydrogen storage vessels, and to evaluate the effect of the 

non-geodesics on the geometry and performance of toroids. The optimization procedure for 

the minimization of the structural mass of toroidal vessels is outlined based on the continuum 

theory of laminate composite materials, stability-ensuring winding conditions and the 

Tsai-Wu failure criterion. The classical lamination theory is employed for the stress analysis 

and the SQP method is utilized as a non-linear optimization algorithm. In addition, the 

non-geodesic winding procedure is based on a constant allowable coefficient of friction and is 

therefore convenient for pressure vessels manufacturing. 

As a result of the design procedure, the winding angle distribution of the non-geodesic path 
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is similar with that for the cylindrical vessel under a constant biaxial stress ratio of 2, and thus 

results in better structural performance of toroidal vessels. The optimization procedure is 

rapidly converging to stable solutions while the resulting fiber trajectories satisfy all design 

constraints. Compared with the optimal geodesic paths, the results also demonstrate that the 

non-geodesic paths determined here maximize the utilization of laminate strength and 

consequently minimize the mass of the circular toroid. Hence, the structural efficiency of 

toroidal vessels can be remarkably improved using the present design method. Furthermore, 

the outlined non-geodesic trajectories in combination with the optimization method provide a 

straightforward tool for the elaboration of winding patterns for filament-wound toroidal 

hydrogen storage vessels and enhance the determination of CNC data for controlling winding 

machines. 
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Chapter 10 

Continuum-based Optimal Cross 

Sections of Toroidal Pressure Vessels 

 

10.1 Introduction 

Various design methods have been devoted to the design and manufacturing of 

filament-wound toroids. Zu et al. [1-3] proposed design approaches involving the 

determination of optimal fiber trajectories and winding patterns of filament-wound toroids, 

and developed a CAD system for their design and production. Li et al. [4] outlined a full 

mathematical approach to the design of overwound toroids using the membrane shell theory, 

considering the load-bearing capability of the wound layer and its interaction with the metallic 

liner. Mitkevich et al. [5] determined the winding trajectories and the profile shape of a 

mandrel and its transformation into given surface elements, based on the example of a toroidal 

membrane. Chen [6] developed a methodology to predict the burst pressure of toroidal vessels 

with various types of winding patterns. Yu et al. [7] have provided winding patterns for 

geodesically overwound toroidal vessels and carried out the computer simulation for such 

patterns. Jiang et al. [8] developed a novel winding machine for toroidal pressure vessels, 

based on the optimal design of the winding patterns. A key factor in their design process is the 

creation of filament-wound toroids that are mainly based on circular cross sections. 

Although the toroid design is sufficiently covered in the literature, there are some 

deficiencies. The design for a composite toroid must take full account of the stress field as 

well as the material properties. Constraints imposed by the manufacturing process need to be 

respected, also the cross-sectional shape that may restrict the structural efficiency must be 

properly determined. Previous research has considered the design of fiber paths and winding
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parameters, but overlooked the design of adapted cross-sectional shapes (i.e. meridian 

profiles). One of the shortcomings of the application of circular cross sections to toroids is 

that the tensile strength of the filaments cannot be completely utilized, because the structural 

performance of a toroid is entirely governed by the cross-sectional shape. A new possibility to 

improve the performance of toroidal vessels has been offered by Koussios [9, 10] and Zu [11, 

12] in which the adapted cross-sectional shapes of isotensoid toroids were presented and the 

structural efficiency of such toroid was compared with the circular one. However, these 

studies have not considered the continuum theory of orthotropic laminates. 

An optimal shape design relies on the most efficient distribution of materials and laminate 

stress, in order to maximize the structural performance. As the strength-dominated and 

manufacturing-dominated thickness distributions do generally not match, the laminate 

strength cannot be maximally utilized. A well-known solution for this problem comprises 

netting-based geodesic-isotensoids. However, the method using the netting theory has a major 

defect in that the design is solely based on fiber strength and the matrix effect is not 

considered [13, 14]. In this chapter we determine the optimal cross-sectional shape for 

filament-wound toroidal pressure vessels, based on the classical lamination theory. The 

continuum-based meridian profile is derived with the aid of the optimality condition and the 

geodesic law. The influence of the theoretically required axial load on the optimal meridian 

shape, needed for closing the profile, is also evaluated. The comparison for the cross-sectional 

shapes and structural weight of equal-volume circular and continuum-based optimal toroids is 

then preformed. In addition, for the assessment of the effect the present optimal cross-sections 

can have on the vessel performance, we respectively calculate and compare the performance 

factors of the classical vessels, the circular and the optimal toroidal vessels for various polar 

opening radii. 
 

10.2 General Optimal Cross-sections 

In this section we provide the governing equations for determining the continuum-based 

optimal profiles based on the optimality condition. The geodesically placed fibers satisfy the 

Clairaut's condition as given in equation (2.76): 

0sinr rα =                              (10.1) 

where r0 is the polar opening radius (see Fig. 2.3). We introduce now: 

r
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ρ = , z
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where R is the equatorial radius (Fig. 2.3). Substitution of equation (10.1) into (8.5), results in 

the differential equation which links the geometry, the roving angle and the material 

properties in a straightforward formulation: 
2 2 2 2

0
2 2 2

0

(1 ) 2 1 ''' [ ]
(1 )

k k
k a

ρ ρ ρ ρρ
ρ ρ ρ ρ

+ − +
= − ⋅

− − +
                (10.3) 

where ρ' and ρ'' are the first and second derivatives of ρ with respect to ζ, respectively. 

According to equation (10.3) the meridian shape can be adjusted to the roving orientation and 

the material anisotropy. However, the obtained differential equation (10.3) is of the second 

order, therefore it is necessary to transform it in to a first order one. Multiplication of equation 

(10.3) with ρ'/ρ, followed by integrating leads, after some rearrangements, to: 
2 2 1

2 2 2 1

( 1) ( )' 1
( ) (1 )

k

k

a
a

ρρ
ρ ρ

+

+

+ −
= − −

+ −
Γ
Γ

                   (10.4) 

where: 
2
0(1 )k ρ= −Γ                           (10.5) 

where ρ0 is the dimensionless polar opening radius. For the integration of equation (10.4), the 

initial set of values consists of ρ(0) = 1 and ρ'(0) = 0. The governing equation (10.4) provides 

the shapes of continuum-based optimal meridians for various {a, ρ0, k} values. This 

expression is only valid for the interval [ρmin, 1] (selected positive real solutions by setting the 

argument of the numerator equal to zero), where the minimum dimensionless radius ρmin is, in 

most cases, slightly bigger than ρ0. For a given anisotropy parameter k and polar opening 

radius ρ0, the resulting meridian profile will strongly depend on the a-value (dimensionless, 

externally applied axial force). The {a, ρ0, k}-combination is able to completely determine the 

cross-sectional shape for a continuum-based optimal pressure vessel. 

Depending on the magnitude of the axial forces as related to the internal pressure, equation 

(10.2), several optimal meridian profiles are obtained (see Fig. 10.1). When the axial force is 

sufficiently large for forcing the resulting meridian profile to be closed, the shape of the 

pressure vessel becomes a toroid. Fig. 10.2 outlines the sectional 3D view for a resulting 

toroidal pressure vessel designed using the optimal cross section (ρmin = 0.25, carbon-epoxy). 

One should note that the tensional forces of the rovings that proceed from the polar area 

towards the equator replace here the theoretically required external axial force A, which is 

applied on the polar cap. The optimal cross-sectional shapes of continuum-based 

(carbon-epoxy, k = 0.0977) and isotensoid-based (k = 0) toroids for various minimum radii 

ρmin, are shown in Fig. 10.3. It is illustrated that the aspect ratio of the optimal cross section 
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increases with increasing anisotropy parameter. The present optimal toroid belongs to the 

class of doubly curved surfaces, and forms a preferable alternative for storage spaces having 

limited height. In addition, the optimal meridian profile of a classical pressure vessel (oblate 

spheroid) can also be determined by setting a = 0 (Fig. 10.4). 

 

 
 

Fig. 10.1: Influence of the axial force on the resulting meridian profile 

 

 

 

 
 

Fig. 10.2: Mandrel shape for an optimal toroids (ρmin = 0.25, carbon-epoxy) 
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Fig. 10.3: Optimal cross-sections for isotensoids (k=0) and carbon-epoxy toroids (k=0.0977) 

for various ρmin 

 

 
Fig. 10.4: Optimal Meridians of the classical pressure vessels corresponding to various ρmin 

 

10.3 Volume, Weight and Thickness 

In this section the cross-sectional shape, the vessel weight and performance factor of the 

circular and the present optimal toroid are quantified in order to demonstrate the preferable 

performance of toroids with the present cross sections. 

The vessel volume and weight of a present optimal toroid can be given by: 

2

0
2 mz

optV r dzπ= ∫ , 2

0
4 1 'mz

optW rt r dzγ π= ⋅ +∫            (10.6) 

where zm is the maximum height of the meridian profile, γ is the specific weight of the used 
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composite material. We introduce the following dimensionless parameters: 

3/ 2V V R= , 32
TXW W
PRγπ

= ⋅ , 2 TXt t
PR

= ⋅             (10.7) 

where XT is the tensile strength in the fiber direction. Substituting equations (10.2) and (10.6) 

into (10.7), the dimensionless volume and weight can be given by: 

2

0

m
optV d

ζ
πρ ζ= ∫ ,                      (10.8) 

2

0
1 'm

optW t d
ζ
ρ ρ ζ= ⋅ ⋅ +∫ .                    (10.9) 

The first derivative of ρ tends to infinity at ζ = ζm (the maximum height). As the result of 

this, the radial coordinate ρm of the peak point can be calculated by setting the denominator of 

equation (10.4) equal to zero: 
2 0m ma aρ ρ+ = ⇒ = −     where a<0            (10.10) 

With the aid of Runge-Kutta formulae, ζm can be further determined by equation (10.4): 

( ) |
m

m m aρ
ζ ζ ρ

= −
=                       (10.11) 

With assumptions given in section 4.2, the thickness along the meridional direction can be 

formulated as: 

cos1
cos

eq

eq

t
t

α
ρ α

= ⋅                        (10.12) 

where teq is the shell thickness at the equator. 

By substitution of equations (10.1) and (10.12) into (10.9), the vessel weight (in 

dimensionless form) finally becomes: 
2 2

0
2 20

0

(1 ' )(1 )m
opt eqW t d

ζ ρ ρρ ζ
ρ ρ

+ −
= ⋅ ⋅

−∫               (10.13) 

The performance factor PF is used as an index for rating pressure vessels and defined as: 

pVPF
W

=                          (10.14) 

where p, V and W are the ultimate internal pressure, the vessel volume and weight, 

respectively. The dimensionless performance factor of an optimal toroid is given by: 

opt
opt opt

T opt T

pV
PF PF

X W X
γπ γπ

= ⋅ = ⋅                   (10.15) 

Substitution of equation (10.7) into (10.15) results in: 
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opt

opt

VPF
W

=                          (10.16) 

Substitution of equations (10.8) and (10.9) into (10.16) leads to: 

2

0
2 2

0
2 20

0

(1 ' )(1 )
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m
eq

d
PF

t d

ζ

ζ

πρ ζ

ρ ρρ ζ
ρ ρ

=
+ −

⋅ ⋅
−

∫

∫
             (10.17) 

Substituting equation (3.29) into (7.11) results in Tsai-Wu quadratic failure criterion [15] in 

terms of the dimensionless thickness: 
2

1 11 12 2 21 22

2 2 2
11 11 12 22 21 22

2
66 31 31 12 11 12 21 22

            [ ( ) ( )]

           [ ( ) ( )

( ) 2 ( )( )] 0

T
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X F m N m N F m N m N

F m N m N F m N m N m N m N

ϕ θ ϕ θ

ϕ θ ϕ θ

ϕ θ ϕ θ ϕ θ
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+ + + + + ≥

    (10.18) 

where the dimensionless shell forces are given by (refer to previous equation (8.21): 

2( ) 1 'aNϕ ρ ρ
ρ

= + + , 
2

2
2 2

2 ''( )( ) 1 '
1 '

aN
a

θ
ρ ρρρ ρ

ρ ρ ρ
= + + +

+ +
     (10.19) 

When a meridian shape and related geodesic trajectory are determined, the minimally 

required strength-dominated thickness t(ρ) at each point assigned on the meridian is evaluated 

by setting equation (10.18) equal to zero and solving for t. Then, the equatorial thicknesses 

teq(ρ) corresponding to each t(ρ) are calculated using the “geometric” equation (10.12). From 

the obtained teq(ρ) collection, the maximum value teqmax is selected as the final shell thickness 

at the equator: 

0
max

1

cos ( )max ( )
cos

eq

eq

t t
ρ ρ

ρ α ρ ρ
α≤ ≤

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
                   (10.20) 

Once teqmax is obtained, the dimensionless vessel weight W and performance factor PF can 

be respectively computed by equations (10.13) and (10.17) using the Gaussian quadrature rule 

[16]. 

For comparisons, the dimensionless volume and weight of an optimal toroidal vessel 

based on the circular cross section are given by [1, 3]: 
2 2

min min(1 )(1 )
8cV π ρ ρ+ −

=                     (10.21) 

min
min 0

min

3 2(1 ) sec
(5 )(1 )

c eq
KW t d
K

πρρ α ϕ
ρ
+ −

= −
+ − ∫             (10.22) 

where: 
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1 min min

min min

(2 )(1 ) (1 )(1 )coscos
(1 )[3(1 ) 2(1 )cos ]

K K
K

ρ ρ ϕα
ρ ρ ϕ

− − + + − −
=

− + + −
            (10.23) 

 

10.4 Evaluation and Comparison 

To equalize the internal volume of a present optimal toroid with that of a circular one, the 

present cross-sectional shape is determined using the Newton-Raphson method [17]. When an 

internal volume is assigned, the minimum vessel radii ρmin of a circular and a present optimal 

meridian are respectively calculated by setting equation (10.8) equal to equation (10.21). Fig. 

10.5 illustrates the distribution of dimensionless internal volumes for circular and the present 

optimal toroids, corresponding to various ρmin. The results indicate that the internal volumes 

of circular and present optimal toroids can be equal only if ρmin for the circular toroid is above 

0.246. Fig. 10.6 depicts the cross-sectional shapes of circular and the present optimal toroids 

at equal volumes. It is shown that the aspect ratio of the present cross section is always less 

than that of the circular one and increases with the raise of ρmin. Additionally, the present cross 

section becomes identical with the circular one at small internal volumes (large ρmin). 

The evaluation of the vessel weight is demonstrated by considering composite materials 

with various fiber-matrix combinations: glass-epoxy (k=0.2645), carbon-epoxy (k=0.0977) 

and aramid-epoxy (k=0.0706). Typical values for the mechanical properties for these 

composites are given in Tab. 10.1 [18]. The dimensionless weight of circular and the present 

optimal toroids is calculated at equal volumes and internal pressures. Fig. 10.7 shows the 

comparison of the dimensionless weight as a function of the dimensionless internal volume. 

The results reveal that the present optimal toroid is consistently lighter than the circular one at 

any volume and internal pressure. The weight values of the optimal aramid-epoxy toroids 

show about 25% maximal reduction as compared with the circular ones. It is therefore 

desirable to employ the present optimal cross sections for the design and production of 

toroidal pressure vessels. In addition, Fig. 10.8 presents the dimensionless performance 

factors of the classical pressure vessels, the circular and the obtained optimal toroidal pressure 

vessels (carbon-epoxy). It is observed that the obtained optimal toroid has better performance 

than the classical vessel and the circular toroid. Compared to the classical pressure vessel, the 

present optimal toroidal vessel is a doubly-closed body that saves on the need for materials in 

the end cap; in addition it reduces fiber stacking at the polar area. 
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Fig. 10.5: Internal volumes of circular and the present optimal toroids with various ρmin 

 

 

 

Tab. 10.1: Typical properties of unidirectional composites [18] 

Properties Carbon-epoxy Glass-epoxy Aramid-epoxy 

Longitudinal modulus 140 60 95 

Transverse modulus 11 13 5.1 

Shear modulus 5.5 3.4 1.8 

Poisson’s ratio ν12 0.27 0.3 0.34 

Longitudinal tensile strength 2000 1800 2500 

Transverse tensile strength 50 40 30 

Longitudinal compressive 
strength 1200 650 300 

Transverse compressive 
strength 170 90 130 

In-plane shear strength 70 50 30 
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Fig. 10.6: Continued cross-sectional shapes for the circular and the present optimal toroids at 

equal volumes (continuous line: circular; dashed line: the present) 

 

 

 

 
 

Fig. 10.7: Dimensionless weight of the circular and the present optimal toroids for various 

composite materials 

 



Chapter 10 

 180 

 
 

Fig. 10.8: Dimensionless performance factors of the classical vessels, the circular and the 

obtained optimal toroidal vessels corresponding to various ρmin (carbon-epoxy) 

 

10.5 Conclusions 

The main goal of this chapter is to provide a design-oriented method for determining the 

cross-sectional shapes of continuum-based optimal toroids, and to evaluate the effect of the 

continuum-based optimal cross sections on the geometry and structural performance of 

toroids. With the aid of the minimum strain energy criterion, an explicit optimality condition, 

e.g. equal-strains condition, which relates the roving angle and the shell stress ratio, is derived 

as a function of the material anisotropy parameter k. The influence of the axial load on the 

meridian shape is evaluated and the results indicate that the continuum-based optimal 

meridian curve becomes closed if the axial load reaches a particular value. The cross-sectional 

shapes and vessel weight of circular and continuum-based optimal toroids have been 

respectively determined at equal internal volumes, in order to demonstrate the reduction in 

structural weight that the application of the optimal cross sections can realize. 

As a result of the design procedure, the present optimal toroidal vessel provides a 

significantly lower weight and a lower aspect ratio than the circular one at any equal volume 

and internal pressure, and consequently results in better performance. The structural 

efficiency of filament-wound toroids can be remarkably improved using the present cross 

sections as determined by the optimal condition of equal shell strains. The results also show 
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that the optimal cross sections offer an interesting alternative to spaces having limited height 

and volume. In addition, the optimal toroidal vessel proposed here has better structural 

performance than the classical vessel; this is mainly triggered by the relatively homogeneous 

thickness distribution over the vessel surface and the saving of materials in the end cap. 
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Chapter 11 

Integral Design and Manufacturing of 

Toroidal Pressure Vessels 

 

11.1 Introduction 

Various design methods have been addressed to the design and production of 

filament-wound toroidal pressure vessels [1-4]. However, previous investigations on toroidal 

vessels have only considered the structural design and optimization, and overlooked the 

determination of adapted winding patterns and kinematic models for involved toroidal 

winders. Therefore, it is desirable to provide an integral design method which links all the 

major design issues including structures, patterns and kinematics. Furthermore, the lack of 

dedicated toroidal winders is also a main drawback to permit highly automated production of 

toroidal pressure vessels. 

In this chapter we outline a design-oriented integral method for determining the optimal 

fiber trajectories and related winding patterns for toroidal hydrogen storage tanks. In the 

second section we briefly present the model for fiber trajectories on a torus. Both geodesics 

and non-geodesics are considered, combined in a single theory. The governing equations for 

geodesic and non-geodesic trajectories on the toroial mandrel are then given. In section 11.2 

the optimal design procedure is outlined for obtaining the preferred fiber trajectories. This 

procedure performs a combined evaluation of the structural optimization for vessel 

performance and the windability for manufacturing. In section 11.3 we emphasize the 

importance of suitable winding patterns for obtaining an optimal pressure vessel and 

accordingly derive the "Diophantine" equations that produce such patterns. The main 

objective of the method presented here is to match the structure-dictated number of wound 
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circuits to the solution of the Diophantine equations for determining the proper relative 

winding velocities of the mandrel and the feed eye. Depending on the aimed lathe machine 

configuration, the underlying geometric model of the new-fashioned toroidal winder is 

outlined and the kinematic soulution for coupling the motion of the mandrel and the feed eye 

are derived in section 11.4. An example of the implementation of the methods for an actual 

toroidal hydrogen storage tank is given, as performed in the simulations for generating 

optimal fiber trajectories (section 11.5). Finally, some conclusions and recommendations are 

drawn in section 11.6. 

 

11.2 Structural Optimization 

The design of fiber trajectories is based on two criteria: optimal laminate structure and 

suitable winding patterns. The fiber trajectories should be able to fulfill design requirements 

for either strength or producability, e.g. maximum vessel performance, maximum buckling 

strength, uniform stress distribution, non-slippage, non-bridging, full coverage, so that the 

fiber bands can precisely be positioned onto a mandrel. Providing excellent structural 

performance is a key issue in the design of composite hydrogen storage vessels. 

A major advantage of composite materials is the large number of design variables available 

to the designer. To realize this potential and to maximize the structural efficiency which 

composites can offer, the design has to properly capture the specific requirements of the 

problem. Optimal design is an effective way of achieving this goal. A compromise strategy 

between "design for structures" and "design for windability" must be sought. A constrained 

optimization problem can be represented as follows: 

Min ( )PF
X

X  

Subject to Ci(X) ≤ 0  i = 1, 2,..., m 

Gk(X) = 0  k = 1, 2,..., n 

XL ≤ X ≤ XU 

where X is the vector of design variables, and XL and XU are the lower and upper limits of the 

design variables, respectively. The meridian shape, fiber orientations, stacking sequences, 

slippage coefficient and layer thickness can be considered as the design variables. PF(X) is 

the objective function, Ci(X) and Gk(X) denote the inequality and equality constraint 

functions, respectively. There are two classes of constraints: explicit and implicit constraints. 

For example, the non-bridging and non-slippage criteria are typical explicit constraints which 
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are explicitly expressed in term of the design variables; the Tsai-Wu criterion and the full 

coverage condition are typical implicit constraints which cannot be explicitly expressed in 

term of the design variables. A number of possible indices, e.g. performance factor, vessel 

weight, burst pressure, strain energy density, bulking load, can be considered as the 

optimization objectives by which the vessel performance can be improved. According to the 

customers' demands and the actual manufacturing conditions, various design requirements 

and appropriate goals are selected as the optimization constraints and objective functions. A 

typical example of specific optimization for filament-wound toroidal pressure vessels can be 

found in [5], which the structural mass of non-geodesically overwound toroidal hydrogen 

storage tanks is minimized with the aid of the continuum theory and the non-geodesic law. 

The flow chart of structural optimization procedure is shown in Fig. 11.1. 

 
Fig. 11.1: Flow chart of structural optimization procedure 
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11.3 Kinematic Solutions for Toroidal Winders 

Toroidal winding is in essence different from classical filament winding. The mandrel 

rotates in the horizontal plane and its rotation is not driven by the spindle, but some friction 

rollers which closely contact the outer periphery of the mandrel. The feed eye does not move 

parallel to the spindle nor the rotational axis of the mandrel, but at some intersecting plane 

perpendicular to the mandrel. The involved toroidal winder configuration is shown in Fig. 

11.2. We consider here a three-dimensional model of the toroidal winder. The fiber coming 

from the feed eye is always tangent to the surface of the mandrel. The tangent connection 

point P is called the contact point between the free-hanging fiber and the mandrel surface. 

O-xyz is the moving coordinate system which is attached to the mandrel and the z-axis is 

overlapping with the rotational axis (Z-axis). O-XYZ is the static coordinate system and the 

O-XZ is the plane of the motion of the feed eye. Φ is the rotation angle of the mandrel with 

respect to the static coordinate system. 

 

 
 

Fig. 11.2: Lay-out of a toroidal winder and its coordinate system 

 

Assuming that the Ox- and OX-axes are overlapping initially, the relation for the moving 

coordinates and static coordinates can be given by: 

cos     sin       0
sin   cos      0

   0           0          1 

x X
y Y
z Z

Φ Φ⎧ ⎫ ⎧ ⎫⎧ ⎫
⎪ ⎪ ⎪ ⎪⎪ ⎪= − Φ Φ⎨ ⎬ ⎨ ⎬⎨ ⎬
⎪ ⎪ ⎪ ⎪⎪ ⎪
⎩ ⎭ ⎩ ⎭⎩ ⎭

                  (11.1) 

According to the vector representation of the torus, the coordinates of the point P are:  
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{ }( , ) ( cos )cos , ( cos )sin , sinR r R r rθ ϕ ϕ θ ϕ θ ϕ= + +P            (11.2) 

The direction of the tangent line between the feed eye and the point P can be represented by 

the directional derivative with respect to φ: 

The tangent equations connecting the point P with the feed eye are given as [9]: 

( cos )cos ( cos )sin sin
sin sin cos cos sin sin cos
x R r y R r z r

tg tg tg
ϕ θ ϕ θ ϕ

θ α ϕ θ θ α ϕ θ α ϕ
− + − + −

= =
− − −

.       (11.3) 

Substitution of equation (11.1) into (11.3) leads, after some arrangements, to: 

( cos )cos( ) ( cos )sin( ) sin
sin( ) sin cos( ) cos( ) sin sin( ) cos

X R r Y R r Z r
tg tg tg

ϕ θ ϕ θ ϕ
θ α ϕ θ θ α ϕ θ α ϕ
− + +Φ − + +Φ −

= =
+Φ − +Φ − +Φ − +Φ

  (11.4) 

One should note here that the Y-coordinate of the feed eye will always be zero. Hence 

equation (11.4) becomes: 

cos ,
cos( ) sin sin( )

( cos ) cos sin( )sin .
cos( ) sin sin( )

R rX
tg

R r tgZ r
tg

ϕ
θ α ϕ θ

ϕ α ϕ θϕ
θ α ϕ θ

+⎧ =⎪ +Φ + +Φ⎪
⎨ + +Φ⎪ = +
⎪ +Φ + +Φ⎩

           (11.5) 

Equation (11.5) gives the kinematic equations of the feed eye. The eye moves along the 

periphery of a circle (winding ring) of radius re and the following relation holds: 
2 2 2

eX Z r+ = .                          (11.6) 

Substitution of equation (11.5) into (11.6) gives the non-linear equation for the mandrel 

rotation angle Φ: 
2

2

2

{ cos [1 cos( ) sin sin( )]}
[ sin cos( ) ( cos ) sin( )]
{ [cos( ) sin sin( )]}p

r R tg
r R r tg
r tg

ϕ θ α ϕ θ

ϕ θ ϕ α θ

θ α ϕ θ

+ − +Φ − +Φ

+ +Φ + + +Φ

= +Φ + +Φ

           (11.7) 

Together with the non-geodesic equation (9.4), equation (11.7) can be solved numerically 

for Φ by the Newton method [6] with {θ, φ}-value of every step. Once Φ is obtained, the 

coordinates of the feed eye can then be retrieved from equation (11.5). It should be noted here 

the initial position of the contact point P is not located in the plane O-XZ and needs to be 

determined by equation(11.8) with the initial value Φ = 0. 

  The lay-out of a toroidal winder allows one or two winding rings (placed 180° apart). The 

machine with one winding ring places only the plus or the minus layer at a time. In contrast, 

the winder with two rings creates an angle-ply laminate consisting of ±α layers at one go and 

thus has a greater manufacturing efficiency. 
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11.4 Uniform and Full Coverage 

The fiber bands must be equally distributed, without leaving any gaps or creating excessive 

overlaps. Since the applied fiber band has certain dimensions (width and thickness), the 

winding patterns obtained by the structural optimization can generally not fully cover the 

mandrel surface with least fiber overlap and a minimum number of wound circuits. The result 

of this shortcoming is additional overwound fiber length, excessive fiber stacking and 

increased production time. The structure-dictated optimal trajectories need thus be adjusted 

according to the criterion of uniform and full coverage. Next, the required winding velocities 

of the toroidal mandrel and the feed eye must be determined. 

Assuming that the feed eye rotates K rounds around the Y-axis in the O-XZ plane while the 

mandrel rotates N rounds around the Z-axis, the relative winding velocity can be defined as: 

m

p

NI
K

ω
ω

= =                           (11.8) 

where ωm and ωp are angular velocities of the mandrel and the feed eye, respectively. N and K 

are relative prime (have no common division factor). After completing certain number of 

wound circuits, the fiber band should be placed in a leading or lagging with respect to the first 

winding (we assume here the first winding starts from the outer periphery). Accordingly, a 

fine-tuning of the relative winding velocity I must be considered: 

02 ( )sin
b

K R r
I

π α
=

+
Δ                        (11.9) 

where b is the band width. Then the corrected relative winding velocity can be formulated as: 

02 ( )sin
N bI
K K R rπ α

= ±
+

                     (11.10) 

Equation (11.10) is a "Diophantine"-alike equation [7], since K, N are all integers. There is 

infinity of solutions to equation (11.11), and the minimum values of K and N which satisfy the 

equation dictate the required number of wound circuits and the fiber patterns. The ' ± ' 

determines whether the final contact point leads or lags the initial point. The mandrel rotation 

angle corresponding to one complete rotation of the feed eye is then given by: 

0

2
2 ( )sinm

bN
K R r
πθ

π α
⎡ ⎤

= ±⎢ ⎥+⎣ ⎦
                  (11.11) 

The minimum production time and minimum fiber stacking can be achieved if the mandrel 

rotation angle satisfies equation (11.11). The procedure of winding pattern adjustment is 

outlined in Fig. 11.3. 
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Fig. 11.3: Flow chart of winding pattern adjustment 

  

11.5 Numerical Examples and Simulation 

The integral design method of the toroidal pressure vessel is here demonstrated by 

considering a toroidal mandrel with R = 540mm, r = 135mm and b = 12mm. The laminate is 

made of T300/5208 graphite/epoxy the elastic constants of which are E1 = 142 GPa, 

E2=10.8GPa, G12 = 5.49 GPa and ν12 = 0.3. The strength values are XT = 1568 MPa, YT = 57 MPa, 

XC = 1341 MPa, YC = 212 MPa, and S = 80 MPa. The values for the material properties are 

obtained from Ref. [8]. To avoid collision between the mandrel and the feed eye, the 

geometry of the latter has to be properly depicted. With a suitable determination for the 

dimensions of the feed eye and its supporting ring (winding ring), the allowed moving region 

of the feed eye can be obtained by checking the minimum distance between the mandrel 

surface and the feed eye. The ring radius re is here chosen as 173mm and the angular velocity 

of the mandrel is ωm = 0.035 rad/s. The feed eye movement during 0~35s is outlined in 

Fig.11.4, in terms of the X- and Z-coordinates. To further indicate the position of the feed eye 

relative to the mandrel, Fig. 11.5 presents the X-coordinate corresponding to the meridional 

coordinate φ. The results indicates that the moving range of the feed eye varies from X = 367mm 
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to X = 713mm in the horizontal direction and from Z = -173mm to Z = 173mm in the vertical 

direction. Note that the errors of the winding patterns may be accumulated due to the 

numerical solution for the nonlinear equation (11.7). 

The optimal geodesic trajectories for single and symmetrically helical winding patterns are 

shown in Figs. 11.6-11.7, respectively, corresponding to 10 and 30 complete rotations of the 

mandrel (100 and 300 winding circuits). Similarly, Figs. 11.8-11.9 illustrate the optimal 

non-geodesic trajectories of single and symmetrically helical winding after 10 and 40 

rotations of the mandrel (40 and 160 winding circuits), respectively. The results reveal that the 

initial winding angle of the optimal non-geodesics is about 10 degree smaller than that of the 

optimal geodesics. Therefore, the resulting structure in the parallel direction can further be 

enhanced and the better distribution of the fiber strength in the two main directions 

(meridional and parallel) of the toroidal shell is achieved by using the optimal non-geodesics. 

 
Fig. 11.4: Feed-eye movement as a function of time 

 

 
Fig. 11.5: Feed-eye movement as a function of φ 
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(a) Single helical winding patterns         (b) Symmetrically helical winding patterns 

 

Fig. 11.6: Optimal geodesic trajectories after 10 rotations of the mandrel (100 wound circuits) 

 

 

 

           
 

(a) Single helical winding patterns         (b) Symmetrically helical winding patterns 

 

Fig. 11.7: Optimal geodesic trajectories after 30 rotations of the mandrel (300 wound circuits) 
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(a) Single helical winding patterns       (b) Symmetrically helical winding patterns 

 

Fig. 11.8: Optimal non-geodesics after 10 rotations of the mandrel (40 wound circuits) 

 

 

 

      
 

(a) Single helical winding patterns          (b) Symmetrically helical winding patterns 

 

Fig. 11.9: Optimal non-geodesics after 40 rotations of the mandrel (160 wound circuits) 
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11.6 Conclusions 

Toroidal winding is a relatively recent development that is mostly used to produce donut 

shaped pressure vessels for applications that require space-saving, weight reduction and 

constant centre of mass. The main difference with classic filament winding is that the axis of 

rotational symmetry lies outside of the toroid itself and thus leads to a concave section. The 

goal of this paper is to match the fiber trajectories obtained by structural optimization to the 

winding patterns dictated by uniform and full coverage criteria. In order to achieve this, the 

structure-dominated parameters are indirectly introduced as variables in the pattern equation, 

which determines suitable winding patterns. The structural optimization procedure for 

achieving the maximum vessel performance factor is outlined and the resulting fiber 

trajectories are adjusted to uniformly and fully cover the mandrel with the minimum number 

of wound circuits, least fiber overlap and homogenous thickness distribution. The kinematic 

model of the toroidal winder is presented and the machine movement is determined by 

solving the kinematic equations for the mandrel and the feed eye. A practical example is 

applied to demonstrate the favorite performance and flexibility of the present method, where 

both the optimal fiber patterns and the kinematic solutions of the winder are evaluated.  

As a result of the design procedure, the number of required fiber bands (dictated by 

structural optimization) corresponds exactly to the necessary number of wound circuits in 

order to create uniform and full coverage patterns. The optimal fiber trajectories suit various 

possible winding patterns due to their geometric flexibility and satisfy the uniform and full 

coverage condition well. The solution eliminates excess windings and guarantees a minimum 

number of wound circuits and maximum utilization of the fiber strength. Compared to the 

optimal geodesics, the results also show that the optimal non-geodesic patterns lead to better 

distribution of the fiber strength in meridional and parallel directions and consequently 

improve the structural efficiency of toroidal pressure vessels. 

 

References 

1. S.G. Li, J. Cook, An analysis of filament overwound toroidal pressure vessels and 

optimum design of such structures, J Press Vessel Technol 124 (2002) 215-222. 

2. L. Zu, S. Koussios and A. Beukers, Design of filament-wound circular toroidal hydrogen 

storage vessels based on non-geodesic fiber trajectories, Int J Hydrogen Energy 35 (2010) 

660-670. 



Chapter 11 

 194 

3. A.B. Mitkevich, A.A. Kul'kov, Design optimization and forming methods for toroidal 

composite shells, Mech Compo Mater 42 (2006) 95-108. 

4. L. Zu, S. Koussios, A. Beukers, New generation of filament wound toroids based on 

isotensoid design, Proceedings of the 17th International Conference on Composite 

Materials, Edinburgh, UK, Jul. 2009. 

5. Zu L, Koussios S, Beukers A. Design of filament-wound circular toroidal hydrogen 

storage vessels based on non-geodesic fiber trajectories. Int J Hydrogen Energy 2010; 

35(2): 660-70. 

6. P. Deuflhard, Newton Methods for Nonlinear Problems. Affine Invariance and Adaptive 

Algorithms. Springer Series in Computational Mathematics, Vol. 35. Springer, Berlin, 

2004. 

7. Mordell, L. J. (1969). Diophantine equations. Academic Press. 

8. Tsai, SW, Hahn HT. Introduction to composite Materials. Westport, Conn.: Technomic 

Publishing Company, Inc., 1980. 

9. Thomas GB, Finney RL. Calculus and Analytic Geometry (9th Ed.). Addison Wesley, 1995 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 195 

 

 

IV  THICK-WALLED PRESSURE 

VESSELS 

 

 

Chapter 12 

Three-dimensional Stress, Strain & 

Displacement Analysis 

 

12.1 Introduction 

Cylindrical composite pressure vessels made of fiber-reinforced materials have many 

potential advantages over their steel counterparts, such as high specific stiffness and strength, 

convenient designability, good corrosion resistance and thermal insulation. Fuel tanks, rocket 

motors, breathing apparatus and pipes are some examples of composite pressure vessels. This 

chapter outlines a 3D elastic solution for stresses and deformations of thick-walled anisotropic 

cylinders. Each cylindrical lamina is made from an orthotropic material with a given filament 

winding angle, which can be varied for each layer. This study is limited to linear elastic 

relations between stress/strain and strain/displacements and neglects the transition regions 

near end closures of a cylinder. The design and analysis approaches pertaining to the elastic 

stress solution and the general stress-strain, strain-displacement and shell equilibrium 
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equations for an element within a thick cylindrical lamina are here documented and presented. 

A review is devoted to 3D elasticity approaches for obtaining the exact solution of the stresses 

and strains induced by internal pressure, and to the effects of hygrothermal loading and 

twisting. A thick-walled cylindrical pressure vessel, which comprises four CFRP layers and 

an aluminum liner, is analyzed to demonstrate the effects of the liner and its thickness 

variation on the stress distribution of the composite overwrap. In addition, the Von Mises 

stress of the metal liner and the Tsai-Wu strength ratio of the composite overwrap are 

calculated for various liner/fiber/resin materials to find the best combination. 

 

 
 

Fig. 12.1: Illustration of the cylindrical coordinate system and the stress components 

 

12.2 Three-dimensional Stress and Strain 

In the following analysis, the attention is addressed on the cylindrical section of a 

filament-wound pressure vessel with an isotropic liner. A standard cylindrical coordinate 

system is used in the analysis, the axial, hoop (circumferential), and radial coordinates being 

denoted as z, θ and r, respectively. The inner and outer radii of the isotropic liner are denoted 

as ra and rb while the outer radius of the laminated orthotropic shell is rc. The interface 

between the kth and k+1th lamina is denoted as rk. The innermost lamina is referred to as the 

lamina 1 while the outermost lamina is referred to as lamina N. The orientation of the fibers in 

a given lamina is denoted by the angle α. This angle is measured relative to the cylindrical 

axis of symmetry (Z-axis). The inner radius of the metal liner and its thickness are constant 

throughout the cylinder. The internal pressure is supported by fiber overwrapped laminae as 

well as the liner. The state of stress or strain in the thick-walled cylinder is three-dimensional. 
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The stresses on a small infinitesimal element taken from the shell are illustrated in Fig. 12.1. 

Standard notation is here used and the six components of stress are σzz, σθθ, σrr, τθr, τzr, and τzθ, 

while the six components of strain are εzz, εθθ, εrr, γθr, γzr, and γzθ. 

Linear elasticity requires that the equations defining strains and displacements must 

simultaneously be satisfied. It is necessary that in the process of deformation no voids or 

dislocations are created. This condition (referring to a monolithic material or elastic 

continuum) possesses limitations upon the strains and the displacements. Such restrictions are 

mathematically defined as compatibility equations. For the general case, six compatibility 

equations exist; however when one condenses a problem to either plane stress or strain, a 

single compatibility condition emerges. For generalized plane strain along the axis of a 

cylinder, the compatibility equation can be derived by taking appropriate partial derivatives of 

the stress-strain relations and making substitutions to eliminate displacements. The general 

theory of the anisotropic cylinders is given by Lekhnitskii [1]. He investigated the plane 

stresses in a cylindrical shell subjected to internal and external pressures, which is 

cylindrically orthotropic. By layering a number of such shells and by matching the radial 

stresses and deformations of adjacent shells at their interfaces, he developed relations 

describing the stresses and strains in a multi-layer cylindrical shell [2]. Tsai [3] has extended 

Lekhnitskii's work to the case of generalized plane strain, in which the axial strain of the 

cylinder is a constant rather than zero (εz = ε0), and applied it to a filament-wound cylinder 

where each layer of Lekhnitskii's model corresponds to a 'winding layer' of the cylindrical 

pressure vessel. The assumption based on the generalized plane strain can introduce small 

errors because the restraint condition itself superposes its own stresses due to internal 

Poisson's action [4]. Witherell [5] presented a three step axial strain equilibrating correction 

procedure for the plane-strain analysis method. First the conventional (εz = 0) plane-strain 

axial procedure is used to determine laminate stresses due to the applied pressure. Then, in the 

correction, axial forces are applied to the individual lamina such that each lamina sees the 

same common axial strain that has initially been assumed (εz = ε0). In the third step, the gaps 

and overlaps resulting in the radial direction from the equilibrium lamina stresses are used to 

compute additional inter-ply stresses which are finally added to the original pressure solution. 

Roy and Tsai [6] proposed a simple and efficient design method for thick composite cylinders; 

the stress analysis is based on 3-dimensional elasticity by considering the cylinder in the state 

of generalized plane strain for both open-ended (pipes) and closed-ended (pressure vessel) 

cases. Based on the three-dimensional anisotropic elasticity, an exact elastic solution for 

stresses and strains of the pipes under internal pressure is presented by Xia et al. [7]. A 
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computer model [8] has been developed to investigate stresses and strains of thick-walled, 

orthotropic sandwich pipes under internal pressure. Noor and Burton [9] have systematically 

evaluated the effects of variation in the lamination and the geometric parameters of 

multilayered composite cylinders on the accuracy of the static and vibrational responses 

predicted by eight modeling approaches. Mackerle [10] presented a bibliographical review of 

finite element methods applied in thick-walled pressure vessels and piping. Tabakovin [11] 

presented an exact analytical solution for closed-ended laminated cylinders limited to five 

layers. Wild and Vickers [12] developed an analytical procedure to assess the stresses and 

deformations of filament-wound structures under combined centrifugal loading, internal 

pressure, and axial loading. Hyer [13] discussed the results of a layer-by-layer analysis of a 

thick-walled cross-ply graphite-epoxy cylinder subjected to external hydrostatic pressure. The 

analysis, which is valid away from the ends of the cylinder and is based on a generalized 

plane deformation elasticity solution for each layer, considers inter- and intra-laminar stresses. 

Mirza et al. [14] studied composite cylindrical vessels under concentrated moments applied at 

discrete lug positions by using the finite element method. The first-ply failure in composite 

pressure vessels were investigated by some authors [15, 16] by using acoustic emission 

technique. Their results showed good agreement between FEM and experiments. Ruddock 

and Spencer [17] proposed a new numerical method for the determination of stress and 

deformation in laminated and inhomogeneous, anisotropic, elastic and thermo-elastic plates 

and shells, without recourse to any thin plate or shell approximations. Kokan and Gramoll [18] 

described techniques for calculating the elastic stresses and strains that would be encountered 

as a result of manufacture and utilization. Optimization of the stress-strain state of a 

thick-walled pipe on the basis of Young's modulus of the material has been made by 

Kalinnikov and Korlyakov [19]. Ren [20] presented a 3-D elasticity solution for an 

anisotropic laminated circular cylindrical shell, simply supported under axisymmetric loads 

and used the power series method for the analysis of anisotropic laminated circular cylindrical 

shells under axisymmetric loading. He also obtained exact solutions for cross-ply laminated 

cylindrical shells [21]. Chandrashekhara and Gopalakrishnan [22] presented an elasticity 

solution for a long transversely isotropic multilayered circular shell. An approximate 3-D 

elasticity solution has been presented for an infinite, thick, orthotropic laminated circular 

cylindrical shell of revolution subjected to a distributed pinch load [23]. A three-dimensional 

analysis of cylindrical shells can be also found in works of Noor and Rarig [24], Grigorenko 

et al. [25], Noor and Peters [26], Roy [27], and others. More complex 3-D analytical 

approaches can be found in works of Dotvc and Tso [28], Whitney and Sun [29], Lee and 
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Springer [30], Ding and Tang [31], Spencer et al. [32], Chandrashekhara [33, 34], Kollar et al. 

[35], where an arbitrary lay-up and/or more complex loading conditions were considered. 

A thick-walled multi-layered filament-wound cylindrical shell is here considered based on 

Lekhnitskii's theory [1, 2] which assumes that the axis of cylindrical anisotropy coincides 

with the geometrical axis of the cylinder (Z-axis). In most previous work, the following 

hypotheses have been proposed for the formulation of stresses and deformations: 

(1) The cylinder is subjected to axisymmetric loading and keeps symmetry before and after 

deformation. The stresses and strains are independent of the hoop coordinate θ (∂/∂θ = 0); 

(2) The shell is assumed to consist of several helically wound laminae, each of which forms 

an angle-ply anisotropic configuration of ±α lamina acting as a homogeneous and 

orthotropic unit, as shown in Fig. 12.2; 

(3) For an axially symmetric case, the shear stresses τrz, τrθ are equal to zero. τzθ is also 

assumed to be zero since the twisting moment can be considered negligible for moderate 

and low pressure vessels; 

(4) Since the interlaminar shear modulus can be considered negligible in comparison to the 

elastic moduli of the laminae in the fiber direction, the interlaminar shear or tensile stress 

will not lead to delamination failure and is not here considered; 

(5) The end cap effects are limited to only small end portions of the pressure vessel. The 

cylinder is assumed to be in a state of generalized plane strain (εz = ε0), since the plane 

sections remain plane at distant sections from the closed-ends (Saint-Venant's principle). 

The design and analysis are primarily based on the direct solution method or the stress 

function method. These two approaches are elaborated as follows: 

 

12.2.1 Direct solution method 

The equilibrium equation of the element in the radial direction can be written as: 
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  (12.1) 

Since sinΔ ≈ Δ and cosΔ ≈ 0 for Δ → 0, neglecting 2nd order terms and than dividing both 

sides of equation (12.1) by (dzdθdr) yields [36]: 
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                  (12.2) 
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Fig. 12.2: Anisotropic configuration of ±α laminae 

 

A similar procedure can be followed for the derivation of equilibrium equations in the hoop 

and axial directions, respectively: 

Hoop direction:  21 0r r z

r r r z
θ θ θ θσ τ τ τ
θ

∂ ∂ ∂
+ + + =
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                    (12.3) 

Axial direction:   1 0zz rz rz

z r r r
θτσ τ τ
θ

∂∂ ∂
+ + + =
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                    (12.4) 

The strain-displacement relations are written as [1]: 
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where ur, uθ, and uz represent radial, hoop and axial displacements, respectively. It should be 

stated that these equations are restricted to small displacements since they comprise only the 

linear terms of the full set. 

Using the preceding hypotheses (∂/∂θ=0, τrz = τrθ = τzθ = 0), only equation (2) remains for 

equilibrium of the cylindrical shell element and simplifies to: 
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0rr
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                       (12.6) 

In addition, the strain-displacement relations can be rewritten as: 

r
r

u
r

ε ∂
=
∂

, ru
rθε = , 0zε ε=                     (12.7) 

For thick-walled filament-wound pressure vessels, the relations for stresses and strains 

become more complicated because of their anisotropic character. A single orthotropic lamina 

of fiber-reinforced composite material is here considered, as shown in Fig. 12.3. In this 

lamina, the {1-2-3} principle material coordinate system is used where 1, 2, 3 denote the fiber, 

transverse and normal (through-thickness) directions, respectively. 

 

 
 

Fig. 12.3: Relation of coordinate system between principle material axes and cylindrical axes 

 

The stress-strain relations for the kth lamina in the material coordinate axes are given by: 
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            (12.8) 

where subscripts 1 and 2 denote the in-plane longitudinal and transverse directions referred to 

as the material axes; 3 is the direction perpendicular to the 1-2 plane. The on-axis stiffness 

components Qij (i, j = 1~6) are stated by engineering constants [3]: 
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where 
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Δ =  

E1, E2, and E3 are Young’s elastic moduli along the 1, 2, and 3 directions, respectively; νij (i, j 

= 1, 2, 3) are the Poisson's ratios; G12, G23, and G13 are the shear moduli. 

The stresses in the principal material coordinate system (1-2-3 system) can be transformed 

into the z-θ-r global coordinate system as shown in Fig. 12.3. The fibers are oriented at angle 

α with respect to the +z axis of the global system. The fibers are parallel to the z-θ plane and 

the 3 and z axes coincide with each other. The winding angle α will be considered positive 

when the fibers rotate counterclockwise from the +z axis toward the +θ axis. The stresses on 

an infinitesimal element are now identified with respect to the z-θ-r system. The stress–strain 

relations in the z-θ-r coordinate system are given as follows [1]: 
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     (12.10) 

ijQ  (i, j = 1~6) are the off-axis stiffness components related to the on-axis stiffness Qij: 
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where c = cosα, s = sinα. Substituting the stress-strain relation of equation (12.10) into (12.6), 

and using equation (12.7), the governing equation for the radial displacement of the kth lamina 

is now given by: 
( ) ( )( )2 ( ) ( ) ( )
12 13 022

( ) ( )2 2

33 33

1 0
k kkk k k

r r r
k k

Q QQd u du u
dr r dr r rQ Q

ε−
+ − − =               (12.12) 

Please note here for anisotropic materials the following conditions holds: 
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, the general solution for equation (12.12) 

can be given by: 
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where D1
(k) and D2

(k) are the unknown constants of integration which can be determined by 

the boundary conditions and the interface continuity conditions that apply between adjacent 

laminae. Substituting equation (12.13) into (12.7) and plugging the result into equation 

(12.10), gives: 
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where: 
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22 23

k kk kI Q Qθ β= + , 
( ) ( )( ) ( )
22 23

k kk kJ Q Qθ β= − ,  (12.15) 

( ) ( ) ( )( ) ( )
13 23 33( )

k k kk k
rH Q Q Qη= + + , 

( ) ( )( ) ( )
23 33

k kk k
rI Q Qβ= + , 

( ) ( )( ) ( )
23 33

k kk k
rJ Q Qβ= − . 
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The design of composite pressure vessels usually involves placing FRP laminae over an 

inner liner made of some isotropic material [17]. The use of the liner is preferred for several 

reasons. The liner serves as a protective layer for the composite overwraps while preventing 

leakage of the stored gas or liquid. Furthermore, the isotropic liner typically has better elastic 

properties in the radial direction for transferring load. In this case, the following relations for 

the stiffness components are given: 

11 22 33
L L LQ Q Q= = , 12 13 23

L L LQ Q Q= = , 44 55 66
L L LQ Q Q= = , 16 26 36 0L L LQ Q Q= = =  (12.16) 

where the superscript L denotes the isotropic liner. The governing equation (12.12) thus 

reduces to: 
2

2 2

1 0
L L L
r r rd u du u

dr r dr r
+ − =                      (12.17) 

The general solution for equation (12.17) is: 

1 2( ) /L L L
ru r D r D r= +                       (12.18) 

where D1
L and D2

L are the unknown integration constants. The stress-strain relations for an 

isotropic material liner can be formulated as: 
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      (12.19) 

where 
(1 2 )(1 )

Eλ
μ μ

=
− +

; E and μ are the Young's modulus of elasticity and the Poisson's 

ratio of the used isotropic material, respectively. Substituting equation (12.18) into (12.7) and 

plugging the result into equation (12.10), leads to the well-known Lame's equations for 

thick-walled cylinders of isotropic materials: 

0

1
2

2

   ( ) 1     2       0
( )            1    1 2    

           1    2 1 /( )

L
z
L L

LL
r

r

r D

D rr
θ

εσ μ μ
σ λ μ μ

μ μσ

⎧ ⎫ ⎧ ⎫−⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥−⎣ ⎦ ⎩ ⎭⎩ ⎭

            (12.20) 

If the number of laminae is n, the total number of the unknown integration constants will be 

2n+3 (D1
L, D2

L, D1
(k), D2

(k), ε0). In addition, since the vessel is only subjected to uniform 
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internal pressure, the radial normal stress at the inner liner surface is equal to the pressure p, 

while at the outer surface of the nth lamina the radial stress is zero. Assuming that the 

interfaces between adjacent laminae and between the metal liner and the first lamina are 

perfectly bonded, the boundary conditions, which ensure continuity for the displacements and 

stresses at each interface, can be summarized as follows: 

Displacement continuity: 
( ) ( 1)( ) ( )k k
r k r ku r r u r r+= = =                      (12.21) 

(1) ( ) ( )L
r b r bu r r u r r= = =                        (12.22) 

 

Radial stress continuity (traction boundary conditions): 
( ) ( 1)( ) ( )k k
r k r kr r r rσ σ += = =                       (12.23) 

(1) ( ) ( )L
r b r br r r rσ σ= = =                        (12.24) 

( )L
r ar r pσ = = −   for the inner liner surface              (12.25) 

( ) ( ) 0n
r cr rσ = =   for the outer composites surface         (12.26) 

 

Axial equilibrium: 

Closed-end condition (Pressure vessels): 

For a cylindrical pressure vessel with closed ends, the axial equilibrium should be satisfied 

by the following relation: 

1

( ) 2

1
2 ( ( ) ( ) )b k

a k

nr rL k
z z ar r

k
r rdr r rdr prπ σ σ π

−=

+ =∑∫ ∫              (12.27) 

Open-end condition (Pipes): 

When both ends of the cylinder are free, the resultant of σz for an open-end condition is 

equal to the axial force at the ends: 

1

( )

1

2 ( ( ) ( ) )b k

a k

nr rL k
z zr r

k

r rdr r rdr Aπ σ σ
−=

+ =∑∫ ∫                (12.28) 

where A is the resultant axial force acting on the ends of the cylinder. It should be mentioned 

that the axial equilibrium equation with closed-end condition is generally used for pressure 

vessels. 

A 2n+3 order linear system of equations can be formulated by substitution of equations 

(12.13), (12.14), (12.18) and (12.20) into preceding boundary conditions. The simultaneous 

solution of these equations will finally determine the 2n+3 unknown integration constants: 
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(12.29) 

where: 

2 2
1 ( )b ar rχ = − , 2 2

2 1( )br rχ = − , 2 2
3 1( )cr rχ = − , 

(1) (1)( 1) ( 1)
1

4 (1) 1
br rβ β

χ
β

+ +−
=

+
, 

(1) (1)(1 ) (1 )
1

5 (1)1
br rβ β

χ
β

− −−
=

−
,

( 2) ( 2)( 1) ( 1)
1

6 (2) 1
cr rβ β

χ
β

+ +−
=

+
,

( 2) ( 2)(1 ) (1 )
1

7 (2)1
cr rβ β

χ
β

− −−
=

−
     (12.30) 

Once the integration constants D1
L, D2

L, D1
(k), D2

(k), ε0 are determined by solving equation 

(12.29), the stresses and deformations of the liner and each lamina can be evaluated by 

substitution of these constants into equations (12.13), (12.14), (12.18) and (12.20). 

 

12.2.2 Stress function approach 

The foundation of the present approach is an exact three-dimensional solution obtained by 

Lekhnitskii [1, 2] for a single-layered anisotropic cylinder with uniformly distributed pressure. 

This solution has been extended for multilayered cylinders with open and closed ends by 

deriving the governing differential equations in terms of stress functions proposed by 

Lekhnitskii [2]. The strain-stress relations of the kth lamina can be written as the inverse form 

of equation (12.10): 
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Three-dimensional Stress, Strain & Displacement Analysis 

 207 

According to the hypotheses that have been proposed for the formulation of stresses and 

deformations, the stress-strain relations for the kth lamina can be expressed in terms of the 

compliance components: 
( )( ) ( )      
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zz z zrz z

z r

r zr r rr r
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a a a
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                (12.32) 

Since εz = ε0, we have: 
( ) ( ) ( ) ( ) ( ) ( ) ( )

0
k k k k k k k

z zz z z zr ra a aθ θε σ σ σ ε= + + =                 (12.33) 

If εz is taken out from the above equation and then substituted into equation (12.32), the 

following equations are obtained for the radial and hoop strains: 
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where 
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θ
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Using Lekhnitskii's theory in a cylindrical coordinate system, the stress functions F and Ψ 

are related to the stress components by the equations [2]: 
( ) 2 ( ) ( )( )

2 2

1 1k k kk
r

F F U
r r r

σ
θ

∂ ∂
= + +

∂ ∂
, 

2 ( ) ( )( )
2

k kk F U
rθσ

∂
= +

∂
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2 ( )
( ) ( )

k
k
r

F
r rθτ θ

∂
= −

∂ ∂
, 

( )
( ) 1 k
k

zr r r
τ ∂Ψ

=
∂

, 
( )

( )
k

k
z rθτ

∂Ψ
= −

∂
.                 (12.36) 

Since the body force U  is not considered, the preceding equations are here simplified for 

the axisymmetric problem: 
2 ( ) 2 ( )

( )
2 2

k k
k F d F

r drθσ
∂

= =
∂

, 
( )

( ) 1 1k
k

r
F dF

r r r dr
σ ∂

= =
∂

           (12.37) 

The compatibility equation which relates the radial and hoop strain components is: 
( )

( ) ( )
k

k k
r

dr
dr
θ

θ
εε ε= +                      (12.38) 

Substituting equation (12.37) into (12.34) and plugging the results into (12.38) gives an 

ordinary differential equation of the stress function F as: 
3 ( ) 2 ( ) ( )

3 ( ) 2 ( ) ( ) 2 ( )
03 2

k k k
k k k k

rr
d F d F dFr r r r

dr dr drθθ θθ εβ β β ε β+ − =         (12.39) 
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where 
( ) ( )

( )
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= . The solution for the stress function F(k) can then be given as: 
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Substituting equation (12.40) into (12.37) gives the expression for normal stress components: 
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Substituting equation (12.41) into (12.32) and using the relation ur
(k)

 = εθ(k)r, leads to: 
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                                                                     (12.42) 

where C1
(k) and C2

(k) are unknown constants of integration which can be determined by the 

boundary conditions presented in equations (12.21) ~ (12.28). The stresses and strains can 

then be determined by substituting the obtained constants into equations (12.32) and (12.41). 

 

12.3 Hygrothermal Effects 

It is well known that material properties as well as the structural behavior are affected by 

environmental factors, such as elevated or reduced temperature, humidity and corrosive fluids. 

These factors must be taken into consideration since they affect the mechanical and physical 

properties of composite materials, resulting in a reduced performance. The effect of elevated 

temperature can be observed in the mechanical properties as a decrease in the modulus and 

strength because of thermal softening. Especially in polymer-based composites, the 

matrix-dominated properties are more affected than the fiber-dominated properties. For 

example, the longitudinal strength and modulus of a unidirectional composite lamina remain 

almost constant but the off-axis properties of the same lamina are significantly reduced as the 

temperature approaches the glass transition temperature of the polymer. When exposed to 

humid air or sea water environment, many polymeric matrix composites absorb moisture by 
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instantaneous surface absorption followed by diffusion through the matrix. Analysis of 

moisture absorption shows that for epoxy and polyester matrix composites, the moisture 

concentration increases initially with time and approaches an equilibrium (saturation) level 

after several days of exposure to humid environments [3]. 

Roy [37] presented the thermal stress analysis of a thick laminated ring, which was 

assumed to be cylindrically orthotropic. The analysis was based on considering the ring with 

orthotropic materials in the state of plane stress in the hoop and axial plane. Ben [38] has 

reported an accurate, finite-cylindrical element method to obtain the thermal stresses and 

deformation for thick-walled cylinders and evaluated the effects of thermal residual stresses 

on thick-walled FRP cylindrical pipes. Parnas and Katirci [39] developed an analytical 

procedure to design and predict the behavior of fiber reinforced composite pressure vessels. 

Internal pressure, axial force and body force due to rotation, in addition to temperature and 

moisture variation throughout the body are here considered. Jacquemin and Vautrin [40] 

examined the moisture concentration and the hygrothermal internal stress fields for evaluating 

the durability of thick composite pipes subjected to cyclic environmental conditions. Hyer et 

al. [41, 42] investigated the effects of a uniform temperature change on the stresses and 

deformations of angle-ply and cross-ply composite tubes, and determined the accuracy of an 

approximate solution based on the principle of complementary virtual work. Xia et al. [43] 

presented a solution based on the classical cylindrically anisotropic theory for the thermal 

stress and strain in a filament-wound fiber-reinforced sandwich pipe subjected to internal 

pressure and temperature change. Khdeir [44] investigated thermal deformations and stresses 

in cross-ply laminated circular cylindrical shells based on the state space approach which is 

used to solve exactly the thermoelastic governing equations. Sayman [45] investigated 

multilayered closed composite cylinders under hygrothermal loading by using analytical and 

finite element methods. Akcay and Kaynak [46] performed a failure analysis on the basis of 

analytical expressions of multilayered filament wound structures in composite cylinders for 

the plane-strain and closed-end condition cases, under internal pressure and uniform thermal 

loading.  

The assumptions used in the majority of the aforementioned investigations are: 

(1) Temperature and moisture content inside the material vary only in the thickness direction; 

(2) thermal conductivity of the material is independent of temperature and moisture level; 

(3) the environmental conditions (temperature and moisture level) are constant. 

Similar to chapter 3, the cylinder is assumed to be under a plane-strain state, and all shear 

strain components vanish. Using the cylindrical coordinate system shown in Fig. 12.1, the 
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stress-strain relations of the kth layer considering the thermal expansion and chemical changes 

("shrinkage") are given by: 
( )

( ) ( )
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        (12.43) 

where αz, αθ and αr are the thermal expansion coefficients, respectively; βz, βθ, βr and c are the 

hygroscopic expansion coefficients and moisture concentration, respectively. 

Since the temperature is assumed to be spatially uniform and the cylinder is long enough, 

none of the tube responses are dependent on the circumferential and axial coordinate, θ and z. 

As a result of this, the equilibrium conditions take a form similar to equation (12.6). 

Consideration of only the thermal effect, followed by substitution of equation (12.43) into 

(12.6) in combination with the strain-displacement relations (12.10), gives: 
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               (12.45) 
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L L
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r
Tu r D r D r r rδ ε η+ Δ
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(12.47) 

where D1 and D2
 are unknown constants of integration which can be determined by the 

boundary conditions presented in equations (12.21)~(12.28). The stresses can then be 

determined by substituting the obtained constants into equation (12.43). 
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12.4 Twisting 

Twisting, due to lack of exact symmetry in ply stacking, can be calculated on an individual 

lamina basis using the methods presented by Sherrer [47]. It has theoretically been shown [48, 

49] that filament-wound cylinders under internal pressure exhibit twisting even though the 

lay-up is of a symmetric angle-ply, i.e., [±α]n. This is because the off-axis laminate causes a 

non-zero resultant in the coupling terms of the transformed reduced stiffness matrix. This 

twisting gives in-plane shear strains of the cylindrical shell. Hoa and Mannarino [49] 

investigated twisting in filament-wound cylinders subjected to internal pressure and used two 

approaches to give a rigorous proof for the existence thereof. The twisting effect has also been 

taken into account by other researchers [4, 6, 7, 13, 30, 37, 41, 42]. 

Considering the twisting moment, located in the z-θ plane of the cylinder, the shear strain 

γzθ of the kth lamina can be expressed as [7]: 
( )

0
k

z rθγ γ=                           (12.48) 

where γ0 represents the twisting rate of pipe (angle/unit length). The off-axis hoop and radial 

stress-strain relations of the kth lamina are thus written as: 
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Substituting equations (12.48) and (12.49) into (12.6), the governing equation for the radial 

displacement becomes: 
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33 33 33

21 0
k k k kkk k k

r r r
k k k

Q Q Q QQd u du u
dr r dr r rQ Q Q

ε γ− −
+ − − − =     (12.50) 

Let 
( ) ( )

( ) 26 36
( ) ( )

33 22

2

4

k k
k

k k

Q Q

Q Q
ζ −

=
−

. The general solution for equation (12.50) can now be derived as: 

( ) ( )( ) ( ) ( ) ( ) ( ) 2
1 2 0 0( )

k kk k k k k
ru r D r D r r rβ β η ε ζ γ−= + + +            (12.51) 

where D1
(k) and D2

(k) are constants of integration. Substituting equation (12.51) into (12.7) and 

plugging the result into equation (12.10), gives: 
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where: 
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  (12.53) 

Substitution of equations (12.51) and (12.52) into the boundary conditions given in equations 

(10.21) ~ (10.28) leads to an algebraic system of equations for the unknown constants C1, C2, 

D1
(k), D2

(k), ε0, γ0. It should be noted that there is one more unknown constant, i.e., the twisting 

coefficient γ0. Therefore, the following boundary condition needs to be added for satisfying 

the zero-torsion criterion: 

1

( ) 2

1
2 ( ) 0k

k

n r k
zr

k
r r drθπ τ

−=

=∑∫                    (12.54) 

The stresses and displacements can then be calculated by using the obtained integration 

constants. 

Hoa and Mannarino [49] also stated that there are a few situations where twist disappears: 

(1) Symmetric laminate: If the filament winding process creates a perfectly symmetric 

laminate about its midplane, the coupling terms B16, B26 vanish and twisting will not occur; 

(2) Winding at 0º (polar winding) or 90º (hoop winding) or combination of both. In these 

cases, Q16 = Q26 = 0; 

(3) There are intermediate angles between 0º and 90º where twist vanishes, depending on 

material constants, the radius of the cylinder as well as lamina thickness (Refer to [59] for the 

governing equation). 

 

12.5 Effective Elastic Properties 

For most composite materials, the engineering constants E11, E22, E33, G12, G13, G23, ν12, ν13, 

ν23 are required for the 1-2-3 principal material coordinate system. These engineering 

properties are indirectly involved in the transformed reduced stiffness and compliance 

matrices. Engineering properties can also be defined in the z-θ-r global coordinate system; 
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they are much more often used and mean considerably more to many designers and engineers 

because the physical interpretation of these quantities is well established and understood. 

There is plenty of information on the elastic constants for unidirectional fiber-reinforced 

composites and in-plane elastic constants for thin laminates, but a limited number of studies 

aimed at determining the effective material properties of laminates in three dimensions, thus 

including the through-thickness direction. 

Enie and Rizzo [50] estimated all the elastic constants needed for three-dimensional stress 

analysis. They assumed uniform in-plane strains and used a "heuristic parallel model" for 

determining through-thickness Poisson ratios. Chou et al. [51] considered laminates 

consisting of an assembly of identical repeated sub-laminates and determined the effective 

elastic constants in three dimensions by assuming that all layers in any given sub-laminate 

experienced constant in-plane strains and through-thickness normal and shear stresses. Sun 

and Li [52] predicted negative through-thickness Poisson ratios for angle-ply laminates and 

showed that the magnitude of the Poisson ratio depends greatly upon the degree of anisotropy 

of the material and the orientation of the layers. Pagano [53] conducted a more rigorous 

theoretical analysis for thin laminates allowing for bending and twisting and assuming 

constant through-thickness normal and shear stresses and derived expressions for the effective 

elastic constants in three dimensions. Roy and Tsai [54] employed a numerical approach to 

analyze orthotropic and symmetric laminates without the assumption of constant 

through-thickness stresses. Herakovich [55] presented a theoretical analysis to calculate the 

effective Poisson ratios for angle-ply laminates. In his analysis, he assumed that 

through-thickness stresses were zero and he predicted negative Poisson ratios in the 

through-thickness direction for angle-ply laminates made from graphite/epoxy. 

A laminated composite with its own effective elastic properties, contains a number of 

anisotropic plates. When these effective elastic properties of the laminate are used, the body is 

considered to as responding to the applied loads as a single unit. The effective elastic 

properties of the laminate can be determined by using the theory of the laminated plates. In 

this study filament wound structures are assumed to be made of angle-ply laminates. An 

angle-ply laminate has alternating lamina having +α and –α winding angles. Therefore, a 

filament-wound cylindrical shell can macroscopically be considered as an angle-ply laminate. 

For multi-layered cylinders, each layer is an angle-ply laminate with its own winding angle. 

Neglecting the effect of curvature, the effective elastic properties of each of these layers can 

be formulated as follows: 

The average (effective) through-thickness normal stress rσ  is taken into account and is 
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treated as constant throughout the thickness. From row 3 of matrix equation (12.10), εr can 

be expressed as: 

31 32 36

33

r z z
r

Q Q Q
Q

θ θσ ε ε γ
ε

− − −
=                  (12.55) 

Substituting equation (12.55) into row 1, 2, 6 of matrix equation (12.10), respectively, leads 

to: 
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   (12.56) 

If the filament-wound cylinder is modeled with a balanced and symmetric arrangement of 

layers (±α)n as shown in Fig. 11.2 with the same materials, fiber orientations, and the same 

thickness of layers, we have: 
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          (12.57) 

where Nz, Nθ, Nθr, Nzr and Nzθ are the force resultants per unit length acting on the edges of an 

elementary sheet of thickness. Aij (i, j = 1, 2, 4, 5, 6) and Hij (i, j = 1, 2) can be defined as: 
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where 

3 3

33

i j
ij ij

Q Q
W Q

Q
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Because an equal number of ±α laminae have the same thickness, equation (12.58) can be 

rewritten as: 
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Substituting expressions (equation (12.60)) for Aij and Hi into equation (12.57) yields: 
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Now assume that a uniaxial direct stress (σr) is applied in the through-thickness direction 

and no external load is exerted in the x-y plane (i.e. the in-plane stress resultants Nx, Ny, Nxy 

are all zero). The simultaneous solution of the row 1, 2, 6 of matrix equation (12.61) provides: 
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From row 3 of matrix (12.10), the radial normal stress can be given by (γzθ = 0): 

31 32 33r z rQ Q Qθσ ε ε ε= + +                      (12.63) 

Substitution of εz and εθ from equation (12.62) into (12.63) gives a direct relation for σr and 

εr. All layers are of the same material; therefore, the effective constants in the 

through-thickness direction Er, νzr and νθr can be found: 
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Similarly, other effective elastic constants can be obtained by considering uniaxial tension or 

shear loading applied in the x-y, x-z, y-z planes, respectively: 
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The generalized Hooke's law for a transversely isotropic cylinder can be written in terms of 

the effective elastic constants: 
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            (12.66) 

Recalling the compatibility equation (12.38) for linking the radial and hoop strains and 

substituting equation (12.66) into (12.38) gives (εz = ε0): 
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The solution of the above equation is: 
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C1 and C2
 are constants of integration which can be determined by the boundary conditions 

for stress continuity and axial equilibrium (see equations (12.21) ~ (12.28)): 
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It should be noted that these results for the stresses and strains under internal pressure are 
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equivalent to those determined by the direct solution approach and stress function approach 

(see section 12.2.1 and 12.2.2) for an anisotropic cylinder. 

 

12.6 Three-dimensional Failure Criteria 

For strength-dominated structures, the dimensioning process is performed by comparing 

stresses (or strains) created by the applied loads with the allowable strength (or strain) values 

of the material. The failure of a composite pressure vessel generally includes two main steps: 

firstly, cracks appear in the matrix, and then the pressure is taken up by the fibers until they 

fail [56]. However, in a commercial storage vessel the matrix failure becomes a major issue 

for the leak-before-break safety of a pressure vessel. 

Kitao and Akiyama [57] analyzed and evaluated the progress of failure in thick-walled FW 

pipes with different winding-angles under internal pressure. Roy and Massard [58] studied the 

design of thick multi-layered composite spherical pressure vessels based on a 3-D linear 

elastic solution. They found that the Tsai-Wu failure criterion [59] is suitable for strength 

analysis. One of the important contributions of Roy's investigation is that hybrid spheres made 

from two different materials showed an opportunity to increase the burst pressure. Adali et al. 

[60] proposed another method on the optimization of multi-layered composite pressure 

vessels using a 3-D exact elasticity solution, subjected to axisymmetrical loading conditions. 

In his study, the three dimensional interactive Tsai-Wu failure criterion was employed to 

predict the maximum burst pressure. Sun et al. [61] calculated the stresses and the burst 

pressure of filament wound solid-rocket motor cases, which are a type of thick-walled 

filament-wound pressure vessel. The maximum stress criteria and the stiffness-degradation 

models were introduced in their failure analysis. Onder et al. [62] used an analytical elastic 

solution and finite element method to determine the burst pressure of multi-layered angle-ply 

composite pressure vessels under internal pressure and hygrothermal forces. The Tsai-Wu 

criterion, the maximum stress and maximum strain theories were used to compute the failure 

loads of the composite layers in a simple form.  

Composite pressure vessels, where aligned fiber bands are laid down in the filament 

winding process, can usually be regarded as having a transversely isotropic character at the 

macroscopic lamina level. There have been a great number of papers covering a variety of 

failure criteria for transversely isotropic fiber composites. Ref. [63] reviews the results of a 

12-year "World Wide Failure Exercise" where 19 failure criteria were outlined and evaluated, 

aimed at providing a comprehensive description of the foremost failure theories available at 
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the present time. However, with improved manufacturing technology, fiber reinforced 

composite materials are used in thicker structures with significant out of plane stresses, for 

which the plane stress assumption is no longer valid and thus, 2D failure criteria are no longer 

reliable. Therefore, a reliable 3D failure criterion, which does not assume a state of plane 

stress, is needed for thick cylinders. The strength of filament-wound composite pressure 

vessels is determined by the tensile and compressive strengths in the fiber and transverse 

directions and by the in-plane shear strength of the composite material. 

Failure in tension usually occurs when the fibers break, whereas failure in compression 

involves debonding of the fibers and the matrix material as a result of micro-buckling. Failure 

in shear is usually characterized by crack propagation through the composite material. In 

composite structures, tensile, compressive and shear stresses may result even from simple 

loading conditions, and therefore the failure mode of composite structures is rather 

complicated. There exists a number of criteria to predict failure of composite pressure vessels, 

ranging from the simplest non-interactive ones to highly interactive ones. The most frequently 

used criteria can be divided into two groups: 

 

12.6.1 Tensor polynomial interactive criteria 

These criteria are extensions of similar criteria for isotropic materials, which include the 

maximum stress/strain conditions and quadratic failure criteria (Tsai-Wu / Tsai-Hill / 

Hoffman / Chamis), and employ mathematical formulations to describe the failure surface as 

a function of the material strength parameters. Generally, these formulations are based on the 

process of adjusting the strength parameters to curve-fit experimental test data. The most 

general polynomial failure criterion for composite materials has been first proposed by 

Gol'denblat and Kopnov [64]: 

... 1i i ij i j ijk i j kF F Fσ σ σ σ σ σ+ + + =    (i, j, k = 1, 2, … , 6)       (12.71) 

where the stresses σi, σj, σk are the components of the stress tensor referred to the principle 

material coordinates; Fi, Fij and Fijk are strength parameters related to the unidirectional 

lamina strengths in the material axes. For practical application to anisotropic materials, the 

third-order tensor Fijk can generally be neglected [65]. Accordingly, the general form equation 

(12.71) reduces to the most widely used quadratic criterion (Tsai-Wu criterion [69]), given by: 

1i i ij i jF Fσ σ σ+ ≤    (i, j = 1, 2, ..., 6)              (12.72) 

In equation (12.72) the coefficients Fi and Fij are strength tensors of the second and fourth 
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rank, respectively; they can be evaluated by uniaxial tensile, compressive, and shear tests, 

except for the interactive coupling terms Fij (i ≠ j) which must be obtained by biaxial tension 

tests. Considering that the change in the sign of shear stress does not change the failure stress, 

all terms containing a shear stress to first power must vanish: 

F4 = F5 = F6 = F45 = F56 = F46 = F14 = F15 = F16 = F24 = F25 = F26 = F34 = F35 = F36 = 0. 

(12.73) 

Then the Tsai-Wu quadratic tensor form equation (12.72) is rewritten in the following 

expanded form: 
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where the strength tensors F1, F2, F3, F11, F22, F33, F12, F13, F23, F44, F55 and F66 are given by: 

1
1 1

T CF
X X

= − , 2
1 1

T CF
Y Y

= − , 3
1 1

T CF
Z Z

= − , 11
1

T CF
X X

= , 22
1

T CF
Y Y

= , 33
1

T CF
Z Z

= , 

44 2
23

1F
S

= , 55 2
13

1F
S

= , 66 2
12

1F
S

= , 12
1

2 T C T C
F

X X Y Y
= − , 13

1
2 T C T C

F
X X Z Z

= − , 

                          23
1

2 T C T C
F

Y Y Z Z
= − ,                        (12.75) 

in which XT, YT, ZT denote the tensile strengths of the unidirectional lamina in the fiber, 

transverse and normal (through-thickness) directions, respectively. Similarly, XC, YC, ZC 

denote the compressive strengths in the three principal material directions. Further, S12, S13 

and S23 denote the shear strengths in the three orthogonal planes. equation (12.74) represents 

the general 3D quadratic failure criterion for the kth lamina in material symmetry coordinates. 

Various other quadratic criteria have been proposed to determine the strength parameters 

and differ solely on the approximation used to compute the strength tensors Fi and Fij. They 

show identical tensor forms with the general Tsai-Wu quadratic criterion, where only the 

expressions for parameters Fi and Fij are varied in order to give a good fit of the failure 

surface to the experimental data. The most popular and well-known quadratic criteria include: 

 

(1) Tsai-Hill 3D criterion [66]: 

1 2 3 0F F F= = = , 11 2

1
TF

X
= , 22 2

1
TF

Y
= , 33 2

1
TF

Z
= , 44 2

23

1F
S

= , 55 2
13

1F
S

= , 66 2
12

1F
S

= , 

12 2 2 2

1 1 1 1( )
2 T T TF

X Y Z
= − + − , 13 2 2 2

1 1 1 1( )
2 T T TF

Z X Y
= − + − , 23 2 2 2

1 1 1 1( )
2 T T TF

Y Z X
= − + − . 

(12.76) 
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(2) Hoffman 3D criterion [67]: 

1
1 1

T CF
X X

= − , 2
1 1

T CF
Y Y

= − , 3
1 1

T CF
Z Z

= − , 11
1

T CF
X X

= , 22
1

T CF
Y Y

= , 33
1

T CF
Z Z

= , 

44 2
23

1F
S

= , 55 2
13

1F
S

= , 66 2
12

1F
S

= , 12
1 1 1 1( )
2 T C T C T CF

X X Y Y Z Z
= − + − , 

13
1 1 1 1( )
2 T C T C T CF

Z Z X X Y Y
= − + − , 23

1 1 1 1( )
2 T C T C T CF

Y Y Z Z X X
= − + − .  (12.77) 

 

(3) Chamis 3D criterion [68]: 

1 2 3 0F F F= = = , 11 2

1
TF

X
= , 22 2

1
TF

Y
= , 33 2

1
TF

Z
= , 44 2

23

1F
S

= , 55 2
13

1F
S

= , 66 2
12

1F
S

= , 

12
12 T T

KF
X Y

= − , 13
12 T T

KF
X Z

= − , 23
23 T T

KF
Y Z

= − .               (12.78) 

where K12, K13 and K23 are the strength coefficients that depend on the material. 

Among these failure theories, the Tsai-Wu criterion is a relatively new multi-axial strength 

theory and gives the most conservative results for strength in many problems. Specific merits 

of the Tsai-Wu criterion include (1) invariance under rotation or redefinition of coordinates; 

(2) transformation via known tensor transformation laws; and (3) symmetry properties similar 

to those of the stiffness and compliances [69]. 

For transversely isotropic materials with plane 2-3 as the isotropic plane, the indices 

associated with this plane are identical. Thus the following 5 relations hold: 

F2 = F3, F12 = F13, F22 = F33, F55 = F66, F44 = 2(F22-F23).        (12.79) 

Hence the 12 strength parameters in equation (12.74) reduce to 7 independent parameters 

(F1, F2, F11, F22, F12, F23 and F66) for transverse isotropy. Then the 3D Tsai-Wu criterion for 

the kth lamina becomes: 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( ) ( )2 ( )2 ( ) ( ) ( ) ( )

1 11 2 22 33 11 11 22 22 33 12 11 22 33

( ) ( ) ( ) ( ) ( ) ( )2 ( ) ( )2 ( )2
23 22 33 22 23 23 66 13 12

( ) ( ) 2 ( )

2 2( ) ( ) 1

k k k k k k k k k k k k k k

k k k k k k k k k

F F F F F

F F F F

σ σ σ σ σ σ σ σ σ

σ σ τ τ τ

+ + + + + + +

+ + − + + =
  (12.80) 

where the strength parameters F1
(k), F2

(k), F11
(k), F22

(k), F12
(k), F23

(k) and F66
(k)

 are given by: 

( )
1 ( ) ( )

1 1k
T k C kF

X X
= − , ( )

2 ( ) ( )

1 1k
T k C kF

Y Y
= − , ( )

11 ( ) ( )

1k
T k C kF

X X
= , ( )

22 ( ) ( )

1k
T k C kF

Y Y
= , 

( )
12 ( ) ( ) ( ) ( )

1
2

k

T k C k T k C k
F

X X Y Y
= − , ( )

23 ( ) ( )

1
2

k
T k C kF

Y Y
= − , ( )

66 ( )2
12

1k
kF

S
= .   (12.81) 

It should be noted here that failure in cylindrical pressure vessels due to uniformly 
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distributed pressure is normally intra-laminar (due to fiber fracture, matrix cracking, etc) [3]. 

Therefore, the transverse shear stresses are not here considered and the Tsai-Wu criterion is 

applied to each individual lamina to check for failure or otherwise. Equation (12.80) is 

accordingly rewritten as: 
( ) ( ) ( ) ( ) ( ) ( ) ( )2 ( ) ( )2 ( )2

1 11 2 22 33 11 11 22 22 33

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
12 11 22 33 23 22 33 66 12

( ) ( )

2 ( ) 2 1

k k k k k k k k k k

k k k k k k k k k

F F F F

F F F

σ σ σ σ σ σ

σ σ σ σ σ τ

+ + + + +

+ + + + =
       (12.82) 

Equation (12.80) can be used to predict the intra-laminar failure for the kth layer of 

filament-wound multilayered pressure vessels. The normal stresses components σ11, σ22, σ33 

and in-plane shear stress τ12 are referred to the principal material coordinates and are related 

to the shell stresses by: 
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         (12.83) 

The design objective is usually to maximize the burst pressure Pb subjected to a failure 

criterion like equation (12.82). The design problem for a multilayered pressure vessel of a 

given inner-to-outer radius ratio rc/ra, number of layers n and (possible) axial force F, can be 

stated as (First-Ply-Failure): 

max ( , )b br
P Max P r Max Min P

α α
α= =                   (12.84) 

where 1 2( , ,......, )nα α α α= . 

 

12.6.2 Failure modes based failure theories 

The disadvantage of the tensor polynomial failure theories is that they are not directly 

related to damage mechanisms and do not explicitly differentiate matrix failure and fiber 

failure. Some modern failure theories have emerged which distinguish between failure modes, 

including: Hashin-Rotem [70, 71], Puck [72, 73], Dávila-Pinho [74, 75], Christensen [76, 77], 

Hinton [78], Daniel [79-83], Sun-Tao [84], Cuntze [85], Yamada-Sun [86], Koop-Michaeli 

[87], Kroll-Hufenbach [88], Zinoviev [89], Gosse [90], Hart-Smith [91], etc. Hashin and Puck 

are credited for establishing the need for failure criteria that are based on failure mechanisms. 

The historical importance of these proposals is that they initiate a different way of 

approaching the formulation of composites failure criteria. To our knowledge, these are the 

first to recognize different modes of failure, followed by the recognition of the variables that 
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correspond to these modes and the interactions between them. The most general 3D criteria 

which probably received the most attention, are here outlined:  
 

Hashin's 3D criteria [71] 

Hashin's criteria have been usually implemented within the two dimensional classical 

lamination approach for point stress calculations with ply discounting as the material 

degradation model. These criteria are extended to three-dimensional problems where the 

transverse normal and shearing stress components are taken into account. Furthermore, the 

effect of the shear stress is now taken into account in the tensile fiber mode. The in total six 

failure modes are: 

(1) Tensile fiber failure mode (σ11 ≥ 0): 
2 2 2

12 1311
2

1 failure    
1 no failureTX S

σ σσ ≥⎧+⎛ ⎞ + = ⎨⎜ ⎟ <⎝ ⎠ ⎩
               (12.85) 

(2) Compressive fiber failure mode (σ11 < 0): 
2

11 1 failure    
1 no failureCX

σ ≥⎧⎛ ⎞ = ⎨⎜ ⎟ <⎝ ⎠ ⎩
                    (12.86) 

(3) Tensile matrix failure mode (σ22 + σ33 > 0): 

( )2 2 2 2
22 33 23 22 33 12 13

2 2 2

1 failure    
1 no failureT TY S S

σ σ σ σ σ σ σ ≥+ ⎧− +
+ + = ⎨<⎩

        (12.87) 

(4) Compressive matrix failure mode (σ22 + σ33 < 0): 

( )2 2 2 2 2
22 3322 33 23 22 33 12 13

2 2 2

1 failure    
1

1 no failure2 4

C

T C T T

Y
S Y S S S

σ σσ σ σ σ σ σ σ⎡ ⎤ ≥+⎛ ⎞ ⎧+ − +⎛ ⎞⎢ ⎥− + + + = ⎨⎜ ⎟ ⎜ ⎟ <⎝ ⎠⎢ ⎥ ⎩⎝ ⎠⎣ ⎦
  (12.88) 

(5) Interlaminar tensile failure mode (σ33 > 0): 
2

33 1 failure    
1 no failureTZ

σ ≥⎧⎛ ⎞ = ⎨⎜ ⎟ <⎝ ⎠ ⎩
                    (12.89) 

(6) Interlaminar compression failure mode (σ33 < 0): 
2

33 1 failure    
1 no failureCZ

σ ≥⎧⎛ ⎞ = ⎨⎜ ⎟ <⎝ ⎠ ⎩
                   (12.90) 

where σij are the stress components; the tensile and compressive strengths for the lamina are 

denoted by superscripts T and C, respectively; S and ST represent the in-plane and transverse 

shear strengths, respectively. 

Failure indices for Hashin's criteria refer to fiber and matrix failures and involve different 

failure modes. For the matrix failure mode, a quadratic criterion was used since a linear 
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approximation usually underestimates the material strength, and a higher degree would be too 

complicated for this formulation. 

 

Puck's criteria [73] 

These criteria avoid the deficiencies of both non-interactive and interactive criteria. Puck's 

theory consists of in total five failure modes, two for fiber failure (tensile and compressive) 

and three for matrix failure. The physically-based inter-fiber fracture conditions with their 

corresponding mechanisms are summarized in Tab. 12.1. This theory, which is extracted from 

the brittle failure behavior of composites, makes failure analysis even more realistic than it 

has been with the methods described previously. In addition, it makes the distinction between 

different failure modes (A, B and C) possible. 

 

LaRC04 criteria [75] 

The domain determination of elastic response under complex stress states is an essential 

component for an accurate damage model. A set of 3D failure criteria denoted LaRC04, 

which is formulated by damage activation functions, can be also applied to a 3D state of stress 

and predict fiber and matrix failure accurately, without any curve-fitting. This approach 

assumes that the elastic domain is enclosed by four surfaces, each of which accounts for one 

failure mechanism: longitudinal and transverse fracture under tension and compression. 

Furthermore, it contains a correction for considering shear-induced non-linear behavior and 

fiber kinking triggered by an initial fiber misalignment angle and by the rotation of the fibers 

during compressive loading. However, the improvement in accuracy of the LaRC04 criteria is 

associated with a significant increase in computational effort. The total of six failure modes 

(LaRC04 #1~#6), which represent two fiber failure modes, three matrix failure modes and a 

combined mode (when fiber and matrix failures occur simultaneously), are presented in Tab. 

12.2. The meanings of the symbols and the full details on the derivation and validation of the 

LaRC04 failure criteria can be found in Ref. [84]. 

 

Christensen's criteria [76] 

Christensen developed a 3D stress-strain relation for a transversely isotropic material that 

can be expressed in a regular part, plus a term that only includes the effect of deformation in 

the direction of the fiber, a term that the author relates to a particular reinforcement effect. 

This theory considers two modes of yield/failure, one being matrix dominated, the other being 

fiber dominated. The resulting criteria are quadratic in the components of the average stress 
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tensor with two material parameters for each mode of yield/failure. A balance is sought 

between achieving the maximum generality and minimizing the number of material 

parameters (that must be experimentally evaluated) for application to any particular material 

system. The failure criterion can be expressed in terms of two failure modes: 

(1) Matrix mode: 
2 2 2 2

22 33 23 12 13
22 33 2

1 failure    ( ) 4 ( )1 1( )( )
1 no failureT C T CY Y Y Y S

σ σ σ σ σσ σ
≥⎧− + +

− + + + = ⎨<⎩
 (12.91) 

(2) Fiber mode: 
2

211
11 11 22 33

1 failure    1 1 1 1 1( ) ( ) ( )
1 no failure4T C T C T CX X X X X X

σσ σ σ σ
≥⎧

− + − + + = ⎨<⎩
 (12.92) 

 

NU criteria [80] 

This is a recently developed interfiber/interlaminar failure theory at Northwestern 

University (NU) based on interlaminar matrix strain criteria. It was found [89, 91] that the NU 

theory was in better agreement with experimental results than all other theories for off-axis 

compressive behavior, i.e., under combined transverse compression and shear parallel to the 

fibers. Depending on different failure modes (compression/shear/tension), the failure criterion 

is governed by the maximum shear strain, the maximum tensile strain (set by pure shear) and 

the maximum tensile strain (set by transverse tension), respectively, all situated in the 

interlaminar region. The theory is expressed in the form of three sub-criteria: 

(1) Compression-dominated failure: 

2 2 233 13 3

13

( ) ( ) ( ) 1C C

E
Z Z G
σ τ

+ =    (NUa criterion)            (12.93) 

(2) Shear-dominated failure: 

213 33 13

13 13 3

( ) 2 1G
S S E
τ σ

+ =    (NUb criterion)            (12.94) 

(3) Tension-dominated failure: 

2 233 13 3

13

( ) ( ) 1
2T T

E
Z Z G
σ τ

+ =    (NUc criterion)            (12.95) 

For loading on the1-2 plane, results are simply obtained by changing the through-thickness 

stresses and strength tensors to the corresponding in-plane tensors in the above criteria [89]. 



 

 

 

Tab. 12.1: Puck's criteria failure modes with corresponding mechanisms [73] 
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Tab. 12.2: Summary of the LaRC04 criteria [75] 

MATRIX FAILURE 

Matrix compressive failure σ22 < 0 

Matrix tensile failure σ22 ≥ 0 (LaRC04 #1) 
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12.6.3 Reviews of failure criteria 

Daniel [83] reviewed the major laminate failure analyses and the primary divergence 

observed in the prediction of laminate failures. A practical approach for laminate failure 

analysis, which considered the validity and applicability of various failure theories, has also 

been recommended. Sun et al. [84] reviewed six failure theories which appear representative 

of those that have been proposed over the years and showed comparisons of theoretical 

predictions with experimental results for six different composite material systems and various 

loading conditions. Echaabi et al. [92] briefly reviewed the formalisms of most recent and 

widely used failure models and discussed their applications to capture failure of composite 

laminates by comparing the advantages and limitations of each criterion. 
 

12.7 Numerical Examples and Discussion 

In this section, the previously presented 3D elasticity solution is applied to the cylindrical 

section of thick-walled filament-wound pressure vessels. With the aid of the anisotropic 

elasticity theory, the exact solutions for the stress and deformation fields are given, taking the 

through-thickness stress gradients into account. The assumption of generalized plane strain, 

which states that the axial strain of the cylinder is a non-zero constant, is here applied. The 

in-plane twisting moment and shear stress are also considered and assumed to be a linear 

function of the radial coordinate.  

Substitution of equations (12.18), (12.20), (12.51) and (12.52) into the boundary conditions 

given in equations (21)~(28) and (54), leads to a system of linear algebraic equations for the 

unknown constants D1
L, D2

L, D1
(k), D2

(k), ε0, γ0: 
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   (12.96) 
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where the expressions for parameters aij, dij, eij, fij, gij in the coefficient matrix are given by: 

11d λ=  

2
11 (2 1) / ae rλ μ= −  

11a λμ=  

12 bd r=  
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22 bd r β= −  
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(3) (4)
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82 236 36 23 33 23 33[ ( 2 ) ( 2 )]a Q Q Q Q Q Q rζ ζ= − + + − +  

(3) 1(3) (3)(3)
94 323 33( )d Q Q r

β

β
−

= +  
( 4) 1(4) (4)(4)

95 323 33( )d Q Q r
β

β
−

= − +  

(3)(3) (3)(3) 1
94 323 33( )e Q Q r ββ − −= −  

( 4)(4) (4)(4) 1
95 323 33( )e Q Q r ββ − −= − −  
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(3) (4) (3) (3) (4) (4)(3) (4)
91 13 13 23 33 23 33( ) ( )a Q Q Q Q Q Qη η= − + + − +  

(3) (4) (3) (3) (4) (4)(3) (4)
92 336 36 23 33 23 33[ ( 2 ) ( 2 )]a Q Q Q Q Q Q rζ ζ= − + + − +  

( 4) 1(4) (4)(4)
05 23 33( ) cd Q Q r

β

β
−

= +  

( 4)(4) (4)(4) 1
05 23 33( ) ce Q Q r ββ − −= −  

(4) (4) (4)(4)
01 13 23 33( )a Q Q Qη= + +  

(4) (4) (4)(4)
02 36 23 33[ ( 2 )] ca Q Q Q rζ= + +  

2 2
01 ( )b af r rλμ= −  

(1) (1)1 1(1) (1)(1)
112 13

02 (1)

( )( )
1

bQ Q r rf
β β

β
β

+ +

+ −
=

+
 

( 2) ( 2)1 1(2) (2)(2)
2 112 13

03 (2)

( )( )
1

Q Q r rf
β β

β
β

+ +

+ −
=

+
 

(3) (3)1 1(3) (3)(3)
3 212 13

04 (1)

( )( )
1

Q Q r rf
β β

β
β

+ +

+ −
=

+
 

( 4) ( 4)1 1(4) (4)(4)
312 13

05 (4)

( )( )
1

cQ Q r rf
β β

β
β

+ +

+ −
=

+
 

(1) (1)1 1(1) (1)(1)
112 13

07 (1)

( )( )
1

bQ Q r rf
β β

β
β

− −

− −
=

−
 

( 2) ( 2)1 1(2) (2)(2)
2 112 13

08 (2)

( )( )
1

Q Q r rf
β β

β
β

− −

− −
=

−
 

(3) (3)1 1(3) (3)(3)
3 212 13

09 (3)

( )( )
1

Q Q r rf
β β

β
β

− −

− −
=

−
 

( 4) ( 4)1 1(4) (4)(4)
312 13

10 (4)

( )( )
1

cQ Q r rf
β β

β
β

− −

− −
=

−
 

( ) ( ) ( )( ) 2 22 2 4
111 12 13

11
1

[ ( )]( )(1 )( )
2 2

k k kk
k kb a

k

Q Q Q r rr rf ηλ μ −

=

+ + −− −
= +∑  

( ) ( ) ( )( ) 3 34
116 12 13

12
1

[ ( 2 )]( )
3

k k kk
k k

k

Q Q Q r rf ζ −

=

+ + −
=∑  

(1) (1)2 2(1) (1)(1)
126 36

02 (1)

( )( )
2

bQ Q r rg
β β

β
β

+ +

+ −
=

+
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( 2) ( 2)2 2(2) (2)(2)
2 126 36

03 (2)

( )( )
2

Q Q r rg
β β

β
β

+ +

+ −
=

+
 

(3) (3)2 2(3) (3)(3)
3 226 36

04 (3)

( )( )
2

Q Q r rg
β β

β
β

+ +

+ −
=

+
 

( 4) ( 4)2 2(4) (4)(4)
326 36

05 (4)

( )( )
2

cQ Q r rg
β β

β
β

+ +

+ −
=

+
 

(1) (1)2 2(1) (1)(1)
126 36

07 (1)

( )( )
2

bQ Q r rg
β β

β
β

− −

− −
=

−
 

( 2) ( 2)2 2(2) (2)(2)
126 36

08 (2)

( )( )
2

bQ Q r rg
β β

β
β

− −

− −
=

−
 

(3) (3)2 2(3) (3)(3)
126 36

09 (3)

( )( )
2

bQ Q r rg
β β

β
β

− −

− −
=

−
 

( 4) ( 4)2 2(4) (4)(4)
126 36

10 (4)

( )( )
2

bQ Q r rg
β β

β
β

− −

− −
=

−
 

( ) ( ) ( )( ) 3 34
116 26 36

11
1

[ ( )]( )
3

k k kk
k k

k

Q Q Q r rg η −

=

+ + −
=∑  

( ) ( ) ( )( ) 4 44 4 4
166 26 36

12
1

[ ( 2 )]( )( )
8(1 ) 4

k k kk
k kb a

k

Q Q Q r rE r rg ζ
μ

−

=

+ + −−
= +

+ ∑  

 

Once the integration constants are determined by solving equation (12.96), the stresses and 

displacements of the isotropic liner and each anisotropic layer can then be recovered by 

substitution of these constants into equations (12.31), (12.48), (12.51) and (12.52). 

A computerized procedure based on the above multi-layered anisotropic analysis has been 

incorporated into a MATLAB program that allows the user to input material properties, 

boundary/interface conditions, internal pressure load and winding angle distributions. The 

program can calculate stress, strain, and deformation of multi-layered composite pressure 

vessels. A numerical example, which was previously described by Xia et al. [7], is 

investigated herein with the addition of an aluminum alloy (A6063-T6) liner. In this example 

(see Fig. 12.4), a thick-walled anisotropic cylindrical vessel comprises four CFRP (T300/934 

carbon fiber/epoxy) layers and an aluminum alloy (A6063-T6) seamless liner, which has an 

inner radius ra = 50 mm and a thickness 0.5 mm for each CFRP layer. The four layers are 

oriented symmetrically as [55º/-55º/55º/-55º] and the vessel is subjected to the internal 
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pressure of 10 MPa. To assess the influence of the liner thickness on stress distribution of the 

multilayered anisotropic shell, the stress components in the cylindrical coordinates (σzz, σθθ, σrr 

and τzθ) are evaluated with various thicknesses of the aluminum liner (tL = 1mm, 2mm, 3mm 

and 4mm), and the results are compared to those obtained by Xia et al. [7] (tL = 0, no liner). 

 

:  

 

Fig. 12.4: An aluminum-lined cylindrical pressure vessel with 4 composite layers 

 

Figs. 12.5-12.8 represent the axial, hoop, radial and in-plane shear stress distributions along 

the multilayered anisotropic wall, respectively. The results show that the magnitude of all the 

stress components rapidly decrease as the liner thickness is increased. For instance, the axial 

stresses of the cylindrical vessel with the liner thicknesses of 1 mm, 2 mm, 3 mm and 4 mm 

show about 34.7%, 51.8%, 61.9% and 68.6% reduction, respectively, as compared to that 

without liner (tL = 0 as presented by Xia et al. [7]). Figs. 12.5 and 12.6 show that the 

composite overwrap has a nearly constant axial stress and a reduced hoop stress through the 

wall thickness; moreover, the hoop stress is decreased by a greater slope than the axial stress. 

This indicates that the ratio of hoop-to-axial stress is no longer a constant through the cylinder 

wall and varies with the wall thickness. From Fig. 12.7, it can be seen that the radial stress is 

compressive under the uniform internal pressure and shows a nearly linear distribution 

through the wall of the cylinder. The magnitude of the radial stress is much smaller than that 

of the axial and hoop stresses. Fig. 12.8 illustrates that the shear stress τzθ has a piecewise 
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distribution and alternates between positive and negative values that are identical with the 

sign of the winding angle. From Figs. 12.5~12.8, it is also demonstrated that the addition of 

the liner leads to more homogenous stress distributions through the wall thickness, and that 

the difference of stress between the inner and outer layers diminishes while increasing the 

liner thickness. 

 

 
 

Fig. 12.5: Distributions of the axial stress through the wall of the composite overwrap 

 

 
 

Fig. 12.6: Distributions of the hoop stress through the wall of the composite overwrap 



Chapter 12 

 234 

 
Fig. 12.7: Distributions of the radial stress through the wall of the composite overwrap 

 

 
Fig. 12.8: Distributions of the shear stress through the wall of the composite overwrap 

 

Fig. 12.9 gives the twisting rates γ0 of the cylindrical shells with various liner thicknesses, 

as compared to that calculated by Xia et al. [7] (no liner). It is shown that the addition of the 

aluminum liner does considerably reduce the twisting of the cylinder; with a thicker liner it 

exhibits a smaller twisting rate. However, it is also observed that the twisting is fairly small as 

compared to the dimensions of the cylinder.  

Fig. 12.10 shows the Tsai-Wu strength ratios R through the wall of the anisotropic 

laminated shell. It is revealed that the strength reserve of the laminate is considerably 
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improved by the addition of the liner; it is also increased with increasing the liner thickness. 

In addition, the strength ratio increases from the inner layer to the outer layer; this implies that 

the inner layer withstands the highest stress levels and is the most critical location in regard to 

structural failure. 
 

 
Fig. 12.9: Comparison of the twisting rates for various liner thicknesses 

 

 
Fig. 12.10: Tsai-Wu strength ratios through the wall of the composite overwrap 

 

The effect of liner material selection on the stress distributions of anisotropic composite 

overwrap layers is demonstrated by considering three liner materials with the same thickness 
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(tL = 2 mm): Aluminum 6063-T6 (E = 68.9 GPa, μ = 0.34), Titanium B-120VCA (E= 120 GPa, 

μ = 0.33) and Strainless Steel 301 (E = 193 GPa, μ = 0.3) [93]. Figs. 12.11~12.13 describe the 

stress distributions through the wall of the composite overwrap layers in the axial, hoop and 

radial directions, respectively. In Fig. 12.14 the twisting rates of the cylinders are determined 

for the above given materials. The results show that the isotropic metal liner with a higher 

elastic modulus yields a lower stress level as well as a smaller twisting rate of the anisotropic 

composite shell. 

Various combinations among three composite materials (T300/934, B(4)/5505, 

E-glass/epoxy) and three liner materials (A6063-T6, B-120VCA, Steel 301) are evaluated by 

calculating the equivalent Von Mises stress through the wall of the metal liner (Fig.12.15) and 

the Tsai-Wu strength ratio R through the wall of the anisotropic composite laminate (Fig. 

12.16). Typical values of the mechanical properties for the three composite materials are 

given in Tab. 12.3 [94-96]. A material anisotropy parameter k is here adopted to represent the 

degree of laminate anisotropy; k is defined as [97-101]: 

2 12

1 21

(1 )
(1 )

Ek
E

ν
ν
+

=
+

                        (12.97) 

where the involved engineering parameters refer to the individual UD layer of the used 

composite material. For k = 1 the engineering constants are identical, hence the considered 

material will be isotropic; k = 0 represents the netting case where the contribution of the 

matrix to the mechanical properties of the layer is considered negligible. The anisotropy 

parameters of the considered three composite materials are k=0.0939 for T300/934, k =0.1093 

for B(4)/5505 and k = 0.4101 for E-glass/epoxy. It should be noted here that a composite layer 

with a higher anisotropy has a lower k. 

Fig. 12.15 illustrates that a composite wall with higher anisotropy results in a lower Von 

Mises stress for a given liner material, and that for a given composite material a low-modulus 

metal liner exhibits a lower Von Mises stress. Fig. 12.16 reveals that for a given liner material 

the Tsai-Wu strength ratios as obtained using high-anisotropy composite materials are higher 

than those using composites with low anisotropy; in addition, for the same composite material 

a high-modulus metal liner leads to a higher strength ratio.  

It can be concluded that the combination of a high-anisotropy composite and a 

low-modulus metal liner produces a lower Von Mises stress level of the liner; on the other 

hand, the combination of a high-anisotropy composites and a high-modulus metal liner 

provides larger strength reserve of the composite overwrap laminate. 

 



Three-dimensional Stress, Strain & Displacement Analysis 

 237 

 
Fig. 12.11: The axial stress of the composite overwrap with various liner materials 

 

 
Fig. 12.12: The hoop stress of the composite overwrap with various liner materials 

 

 
Fig. 12.13: The radial stress of the composite overwrap with various liner materials 
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Fig. 12.14: Twisting rates of the composite overwrap with various liner materials 

 

 
Fig. 12.15: Von Mises stress distributions through the wall of the metal liner 

 

 
Fig. 12.16: Distributions of Tsai-Wu strength ratios through the composite wall 
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Tab. 12.3: Typical mechanical properties of unidirectional composites [94-96] 

Properties T300/F934 E-glass/epoxy B(4)/5505 

Longitudinal modulus, E1 
(GPa) 141.6 43.4 204 

Transverse modulus, E2 (GPa) 10.7 15.2 18.5 

In-plane shear modulus, G12 
(GPa) 3.88 6.14 5.59 

Major poisson's ratio, ν12 0.268 0.29 0.23 

Through thickness poisson's 
ratio, ν23 

0.495 0.38 0.3 

Longitudinal tensile strength, 
XT (MPa) 1314 1062 1260 

Transverse tensile strength, YT 
(MPa) 43 31 61 

Longitudinal compressive 
strength, Xc (MPa) 1220 610 2500 

Transverse compressive 
Strength, Yc (MPa) 168 118 202 

In-plane shear strength, S 
(MPa) 48 72 67 

 

 

12.8 Conclusions 

In order to increase the applicability and efficiency of high-pressure filament-wound 

pressure vessels, it was concluded already several years ago that more knowledge regarding 

stress analysis and structural optimization of thick-walled multilayered anisotropic shells 

needed to be generated.  

It is shown that for composite pressure vessels with a ratio of outer to inner radius, up to 

1.1, thin and thick wall solutions give similar results in terms of the optimal winding angle, 

stress/strain distribution, the burst pressure, etc. As the ratio increases, a thick-walled shell 

analysis is imperatively required. This chapter is a preliminary investigation aimed at 

improving the understanding of engineering design and analysis for thick-walled 

filament-wound cylindrical pressure vessels. 

In the last few years, much effort is dedicated towards understanding the mechanisms of 

stress and strain distributions of thick-walled composite pressure vessels subjected to internal 



Chapter 12 

 240 

and external pressure, axial force, centrifugal force, temperature and moisture variation, etc. 

Because of the anisotropy in composites and the presence of curvature in shell structures, 

obtaining exact three-dimensional elasticity solutions for laminated cylinders imposes 

considerable mathematical complexity. However, in some cases a three-dimensional approach 

can still be used. For example, load conditions specified as axisymmetically distributed load 

(internal or external pressure), will considerably simplify the equations of the exact 

three-dimensional theory. It has been shown that the stresses and deformations of thick-walled 

multilayer cylinders depend strongly on the stacking sequence. For cylindrical pressure 

vessels with different angle-ply laminae, the ratio of hoop-to-axial stress varies with each 

lamina and is no longer a constant of 2. The through-thickness normal stress distributions 

show nearly linear variations that are relatively smaller compared to those in hoop and axial 

directions. It is also found that the lamina sequence is very critical for the stress analysis and 

the optimization of, in particular, thick cylinders. After identification of the most important 

parameters for stress analysis with respect to thick-walled composite cylinders, it may be 

concluded that the stress and strain distributions are most dependent on the lamina sequence, 

and, in the second place, on different loading conditions such as thermal loading and twisting 

moment. 

The assumption of generalized plane strain, in which the axial strain of the cylinder is a 

constant rather than zero, has been widely applied in stress analysis of thick-walled 

filament-wound cylinders. Twisting, due to lack of exact symmetry in ply stacking, can be 

calculated on an individual layer basis. The absence of this twisting may create erroneous 

results in calculations that assume axisymmetry of the system. This effect can be considered 

negligible for low pressure but becomes significant for cylinders at relatively high internal 

pressure. 

Thermal stresses are associated with thermal strain incompatibility. These stresses can exist 

without the action of external forces. In anisotropic solids, the stresses can occur even under a 

uniform temperature change due to thermal anisotropy. Some studies investigated the 

"hygrothermal problem" due to elevated temperature and moisture absorption. It can be 

solved mainly in three steps: First, the temperature distribution and the moisture content 

inside the material are calculated. Then from known temperature and moisture distribution, 

the hygrothermal deformations and stresses are calculated. Finally, the changes in 

performance due to both effects are superposed. 

Several studies have been published regarding the 3D effective elastic constants for 

filament-wound cylindrical pressure vessels and pipes, including the effective elastic 
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constants in the through-thickness direction. Results have been presented to show how all the 

elastic constants for filament-wound cylinders vary with winding angle and the effective 

through-thickness Young's modulus was found to be only slightly bigger than the transverse 

modulus of the unidirectional fiber-reinforced material for all winding angles. The 

through-thickness shear modulus decreased approximately linearly with winding angle and 

the through-thickness Poisson’s ratios varied greatly with the winding angle and even 

decreased to negative values in some cases. 

The stress analysis based on three-dimensional elasticity solution allows the burst pressure 

for both open-ended (pipes) and closed-ended (pressure vessels) cylinders to be predicted 

accurately, and allows us to evaluate a multilayered pressure vessel with an arbitrary number 

of layers of any thickness. The previous studies also showed that the stacking sequence can be 

employed effectively for maximizing burst pressure of thick-walled multilayered pressure 

vessels. A reliable design method for thick cylinders is formulated with the use of an 

appropriate 3D failure criterion which includes the contribution of all stress components to the 

failure.  

Failure of composites has been investigated extensively from micromechanical and 

macromechanical points of view. The accuracy of the prediction strongly depends on the 

selected criteria. The most widely used failure theories have been categorized in terms of two 

main groups: tensor polynomial criteria and failure modes based criteria. The first category 

consists of failure criteria that do not integrate any physical consideration or failure modes. 

Failure theories of the second group incorporate the effect of failure modes in their 

formulation. Failure-modes based criteria consider that the non-homogeneous character of 

composites causes different failure modes for the constituents. These failure theories are 

formulated in terms of several sub-criteria corresponding to various failure modes and related 

conditions for validity. The criteria, which are represented by mathematical expressions that 

incorporate material strength values, are able to predict failure modes and become thus 

adequate to deal with progressive damage analysis. The validity and applicability of a failure 

theory depend on the convenience of applying it, and the agreement with experimental results. 

In general, a large divergence has been observed in the failure prediction by the different 

theories. The modeling and solutions for laminate failure analysis should be deliberately 

applied and the adapted failure theories need to be selected in view of the expected failure 

modes and locations. 

For a multi-layered thick-walled cylindrical pressure vessel consisting of an angle-ply 

laminate and an isotropic liner, the magnitude of all stress components in the cylindrical 



Chapter 12 

 242 

coordinates decreases from the inside out. The hoop-to-axial stress ratio varies along the wall 

thickness and is no longer a constant; this is mainly triggered by a faster decline of the hoop 

stress than the axial stress through the wall of the vessel. The through-thickness normal stress 

distributions show nearly linear variations that are relatively smaller compared to those in 

hoop and axial directions. To evaluate the effect of the liner's thickness on the stress 

distributions of the composite overwrap, the stress components in the cylindrical coordinates 

are evaluated with various thicknesses of the aluminum liner. It is found that the addition of 

the liner and the increase of the liner thickness results in smoother stress gradients and more 

homogenous stress distributions through the wall of the shell and can thus improve the 

structural performance of pressure vessels. It is also shown that the addition of the liner 

considerably reduces the in-plane twisting of the vessel and, meanwhile, increases the 

strength reserve of the composite reinforcement. 

The stress distributions through the wall thickness of the pressure vessel are outlined for 

various anisotropic composite and isotropic liner combinations, in order to locate the best 

combination of fiber/matrix/liner materials for internally pressurized multilayered anisotropic 

vessels. It is concluded that the use of a high-anisotropy composite material or a low-modulus 

metal liner can lead to lower equivalent stress of the liner and should be chosen when the 

yield of metal inner liner becomes a critical issue for the failure of a pressure vessel; in 

addition, under a given internal pressure, a high-anisotropy composite material combined with 

a high-modulus metal liner reserves more additional strength to which the composite 

overwrap may be subjected prior to failure. 
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Chapter 13 

Conclusions and Recommendations 

 

13.1 Introduction 

In this dissertation we have presented an overview and performed an elaboration of the 

design and optimization procedure associated with filament wound toroidal pressure vessels 

and domed pressure vessels. Among possible shapes of pressure vessels, toroids have been 

recently gaining wide attention for the storage of pressurized liquids and gases, due to their 

high structural efficiency and novel configuration. Since the dome regions are the most 

critical locations with regard to structure failure, the optimal design of the domes became also 

one of the most imperative issues in pressure vessel design. Beginning with the outline of 

several fundamental issues related to the stability analysis of fiber trajectories and the 

generalized optimality condition for coupling the vessel geometry and the laminate layup, we 

have proceeded to the presentation of several types of pressure vessel designs for 

geodesic-isotensoids, non-geodesic-isotensoids, non-geodesic bellow-shape vessels, 

continuum-based optimal domes, continuum-based optimal toroids, isotensoids with unequal 

polar openings, and thick-walled cylinders. The netting theory and the orthotropic plate theory 

were employed to predict the mechanical behavior of pressure vessels, corresponding to 

various design scenarios. Non-geodesic trajectories were extensively applied to replace the 

conventionally used geodesics, in order to improve the structural performance, and to produce 

unique vessel shapes, e.g. domes with unequal polar openings. The optimal cross sectional 

shapes (quasi-ellipses) of the toroids were determined and compared to circular toroids. The 

non-geodesics-based dome profiles were also derived and proved to show better performance 

as compared to the geodesics-based ones. In addition, an overview was conducted on 3D 

elasticity solutions and failure theories of multi-layered thick-walled pressure vessels, taking 
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into account the several effects like hygrothermal loading and twisting. The effects of the 

inner liner and its thickness on the stress distribution of the composite overwrap are evaluated 

using various liner thicknesses. The equivalent stress of the liner and the Tsai-Wu strength 

ratio of the composite overwrap were also calculated for various liner/fiber/resin material 

combinations to find the best material combination. The conclusions and recommendations 

are summarized as follows. 

 

13.2 Conclusions 

13.2.1 Fiber stability analysis for winding toroidal pressure vessels 

An analysis for fiber trajectory stability was elaborated for providing a design reference of 

filament-wound toroidal pressure vessels. It was revealed that toroidal pressure vessels with 

larger relative bend radius and lower hoop-to-helical thickness ratio lead to better fiber 

stability in terms of either slippage or bridging tendency. The results also imply that for the 

most commonly used toroids, the winding trajectories designed by the netting theory satisfy 

both the non-slippage and non-bridging criteria, and show good fiber stability for the winding 

process.  

 

13.2.2 Netting-based design of toroidal pressure vessels 

 Circular toroids: A netting-based approach is outlined for the optimal design of 

helically and hoop wound toroidal pressure vessels. The optimal fiber trajectories with 

non-constant slippage coefficients are aligned in the principal stress direction throughout 

the whole structure. Compared to the geodesic winding, the results demonstrated that the 

optimal fiber trajectories lead to a better stress distribution and hence maximize the use of 

the fiber strength under internal pressure. 

 Isotensoid toroids: Design approaches for determining the geodesic and non-geodesic 

isotensoid toroids were presented. The results indicated that the meridian curve of the 

classical isotensoid dome can become closed if the axial load reaches a sufficient value. 

The results showed that the isotensoid toroid has a significantly lower weight than the 

circular toroid at any equal volume and internal pressure. In addition, the combination of 

isotensoids with non-geodesics provides a novel and effective solution to improve the 

weight efficiency of toroidal vessels as well as to increase the gravimetric and volumetric 
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densities of compressed gaseous storage. The ability for improving the structural 

performance and satisfying the manufacturing requirements becomes here a fact. 

 

13.2.3 Isotensoid pressure vessels with unequal polar openings 

A design method for determining isotensoid domed pressure vessels with unequal polar 

openings was elaborated. With the root searching algorithm for determining two slippage 

coefficients that fulfilled the winding conditions, the isotensoid domed pressure vessels with 

unequal polar openings were created. The present method provided a straightforward tool for 

immediate creation of domed pressure vessels with unequal polar openings. While providing 

sufficient flexibility for dimensioning winding trajectories, the fibers placed according to the 

non-geodesic trajectories are still equally tensioned throughout the whole structure. 

 

13.2.4 Continuum-based design of pressure vessels 

 Domed pressure vessels: A design method for determining the optimal meridian shape 

and related structural efficiency for continuum-based domes was outlined, and the effect 

the employment of non-geodesic trajectories can have on the dome geometry and 

performance was evaluated. It is concluded that the structural efficiency of 

filament-wound domes can be improved by using non-geodesic trajectories, and that the 

vessel performance increases with the increase of the slippage coefficient. The results 

also revealed that the non-geodesic domes form a preferable alternative for storage spaces 

having limited height. The available design space is sufficiently enlarged by the use of 

non-geodesics; this particularly reflects on improved structural performance, while still 

being able to satisfy the conditions of the winding process. 

 Toroidal pressure vessels: A design method for determining the optimal meridian 

profiles of continuum-based toroids was presented, and the effect of the cross-sectional 

shapes on the geometry and the weight of the continuum-based toroids was also evaluated. 

The cross-sectional shapes and the vessel weight of the circular and the continuum-based 

optimal toroids were respectively determined at equal volumes and internal pressures; the 

results demonstrated that the optimal toroidal pressure vessel provides a significantly 

lower weight and lower aspect ratio than the circular one, and thus leads to better 

performance and an interesting alternative to spaces having limited height and volume. In 

addition, the optimal toroids has better structural performance as compared to the optimal 
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classical vessel (quasi-ellipsoidal); this is mainly triggered by the relatively homogeneous 

thickness distribution over the vessel surface as a result of the absence of end enclosures. 

 

13.2.5 Integral design and manufacturing of toroidal pressure vessels 

An integral design and production method for filament-wound toroidal pressure vessels 

was systematically developed. The number of required fiber bands (dictated by structural 

optimization) corresponded exactly to the necessary number of wound circuits in order to 

create a uniform and full coverage patterns. The optimal fiber trajectories suited various 

possible winding patterns due to their geometric flexibility and did satisfy the uniform and 

full coverage conditions well. The solution eliminates excess windings and guarantees 

minimum number of wound circuits and maximum utilization of the fiber strength. Compared 

to optimal geodesics, the results also showed that optimal non-geodesic patterns lead to better 

distribution of the fiber strength in meridional and parallel directions and consequently 

improve the structural efficiency of toroidal pressure vessels. 

 

13.2.6 Elasticity solution of thick-walled filament wound pressure 

vessels 

An overview of 3D elasticity solutions of the stresses and strains induced by the internal 

pressure loading, the hygrothermal effects and the twisting moment was presented. The 3D 

effective elastic constants and the most commonly used 3D failure criteria for cylindrically 

anisotropic materials were also presented. A simple and efficient elasticity solution for 

thick-walled filament-wound pressure vessels was given, taking the through-thickness stress 

gradients and the in-plane twisting into account. It was found that the addition of the liner and 

the increase of its thickness result in smoother stress gradients and more homogenous stress 

distributions through the vessel wall and can thus improve the vessel performance. In addition, 

it is concluded that the use of a high-anisotropy composite material or a low-modulus metal 

liner can lead to a lower equivalent stress of the liner and should be chosen when the yield of 

metal inner liner becomes a critical issue for the failure of a pressure vessel; a high-anisotropy 

composite material combined with a high-modulus metal liner reserves more additional 

strength to which the composite overwrap may be subjected prior to failure. 
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13.3 Achievements 

 Derivation of generalized optimality conditions from the minimum strain energy criterion, 

which relates the vessel geometry, material anisotropy parameter and the winding angle. 

 The specific applications and feasible intervals of the optimality condition for various 

types of lamination. 

 Determination of netting-based optimal fiber trajectories for winding circular toroidal 

pressure vessels, instead of using geodesics and semi-geodesics. 

 Investigation of fiber trajectory stabilities on the torus in terms of the slippage and 

bridging tendencies. 

 Determination of the cross-sectional shapes of geodesic-isotensoid toroidal pressure 

vessels, by forcing the geodesic-isotensoid dome profiles to be closed. 

 A novel design combining isotensoid conditions with non-geodesic trajectories, which is 

able to improve the geometric flexibility and structural performance of pressure vessels. 

 Determination of the isotensoid pressure vessels with unequal polar openings. 

 Determination of the non-geodesic-isotensoid toroidal pressure vessels. 

 Determination of the bellow-shaped pressure vessels based on non-geodesic trajectories 

and continuum lamination theory. 

 Determination of the optimal dome shapes through the combination of the non-geodesic 

equations and the optimality conditions, where a specific function was chosen to describe 

the distribution of the slippage coefficients. 

 The feasible intervals of the governing equations for netting- and continuum-based dome 

profiles. 

 Determination of the optimal non-geodesic trajectories for winding circular toroidal     

pressure vessels based on the continuum lamination theory, which showed the use of the 

non-geodesics can achieve better vessel performance. 

 Determination of the optimal cross-sectional shapes for toroidal pressure vessels based on 

the optimality condition and continuum lamination theory. 

 Derivation of the kinematic model and machine movement of the toroidal winder. 

 Derivation of the "Diophantine" equations that enable the fibers to fully cover the 

mandrel surface. 

 3D elasticity solution for thick-walled filament-wound pressure vessels taking the 

through-thickness stress gradients and in-plane twisting into account, where the best 

combinations of fiber/matrix/liner materials were demonstrated. 
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13.4 Recommendations and Future Directions 

13.4.1 Strength prediction based on progressive failure analysis 

In this dissertation the failure of composite pressure vessels was predicted using first ply 

failure (FPF); however, filament wound structures can retain significant internal pressure after 

failure of the first ply. Thus, a progressive failure analysis, which takes into account the 

material properties degradation, should be considered to provide a more accurate prediction 

for the ultimate strength and burst pressure of filament wound pressure vessels.  

 

13.4.2 Closed-form solution of composite toroidal shells 

The linear membrane theory presented here for obtaining the stress and deformation of a 

toroidal shell does yield a singularity at the crest (a transition from positive to negative 

curvature of the torus). It is thus difficult to find an exact solution valid for a complete 

meridian (0 ≤ φ ≤ 2π); in addition, the displacement form governing equation is very 

complicated and hard to be resolved. In the future some simplified or reduced forms of the 

general toroidal equation would be considered to give more reasonable and effective solutions 

around the crests. 

 

13.4.3 Finite element analyses 

The basic equations were here presented using anisotropic elasticity theory; however, in the 

case of some complex design scenarios, e.g. stress concentration around the pole or the 

cut-outs, thick-walled designs considering transverse shear effects and progressive damage 

prediction, the analytical solutions are rather complicated and difficult. It is therefore 

necessary to use finite element method (FEM) to analyze the behavior of filament wound 

pressure vessels having a complex geometry and loading distribution, taking into account not 

only the modeling of (non-) geodesic trajectories, but also the complex failure mechanism. 
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13.4.4 Accurate estimation for laminate thickness distribution 

The present prediction for the laminate thickness over the vessel surface can only be 

considered as a simple and rough approximation at the polar area. When the winding angle 

approaches 90º the laminate thickness becomes infinitely high. This singularity appears 

because in deriving the thickness distribution we actually assume that the fiber band width is 

considered negligible and all the fiber bands have the same winding angle and are tangent to 

same parallel circle. Therefore, a more reliable and accurate thickness schematization would 

be created by considering the applied fiber band dimensions. Although this subject is 

sufficiently covered in the literature, the assessment and refinement of the available thickness 

approximations would be needed. 

 

13.4.5 Shape optimization for thick-walled filament wound domes 

To the best of the author’s knowledge, no extensive study has yet been conducted on the 

inverse optimization problem for determining the optimal meridian shapes of 3D thick-walled 

domes with arbitrary curvature and variable thickness along the meridian direction. Due to the 

increased laminate thickness, the dome shape will significantly deviate from the 2D-based 

optimal one, particular at the regions near the poles where the thin-walled analysis is no 

longer applicable. When the optimal design is based on 2D thin-walled theory, the obtained 

ultimate strength and vessel performance are usually overestimated as compared to the actual 

values. Therefore, a novel approach based on 3D thick-shell theory would be proposed for 

calculating the optimal dome shapes including the effects of thickness accumulation.  

 

13.4.6 Transverse shearing, liner elastoplasticity and stacking sequence 

Since the present analysis for thick-walled pressure vessels can only be considered as a 

simple solution for which the transverse shear effects are considered negligible, a more 

complete and reliable solution should be created by considering through-thickness shear 

stresses and deformations. Future study should also focus on the non-linear elastic solution 

which incorporates the full transverse shear effects; in addition, the metal liner would be also 

considered as an elasto-plastic material, able to yield prior to the failure of the composite 

overwrap. The influence of the stacking sequence on the stress and displacement distributions 

would also be investigated to find the optimal laminate lay-up. 
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13.4.7 Advanced toroidal winders 

Since a winding machine can have up to 6 individual axes, multi-axis (3~6 axes) toroidal 

winder configurations would be developed to produce toroidal vessels with higher placement 

accuracy and performance. A dedicated CAD system with a more reliable collision avoidance 

procedure would also be developed to automatically calculate the optimal fiber patterns and 

offer kinematic simulations of the toroidal winder.  

 

13.4.8 Other vessel shapes, computer software and experiment 

In addition to cylinders, domes and toroids, several other pressure vessels like spheres, 

ellipsoids, paraboloids, and hyperboloids are also frequently used in various industries; these 

shapes of pressure vessels would also be considered as design objectives in the future study. 

Moreover, a dedicated and all-embracing software and database for design, optimization and 

production of filament-wound pressure vessels should be created. Further elaboration and 

experimental verification of the proposed designs for pressure vessels is also here 

recommended. 
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Nomenclature 

 

Abbreviations 

2D/3D             Two / Three-dimensional 

LaRC         NASA Langley Research Center 

Aspect ratio      Height-to-width ratio of a cross section 

CAD            Computer aided design 

CFRP           Carbon fiber reinforced polymer/plastic 

CNC            Computerized Numerical Control 

CNG            Compressed natural gas 

DOE            U.S. Department of Energy 

FEA/FEM           Finite element analysis / method 

FW             Filament winding 

PF              Performance factor 

PVC            Polyvinyl chloride 

SQP            Sequential quadratic programming 

UD             Unidirectional 

 

Matrices & Vectors 

A              Extensional stiffness matrix 

a       Extensional compliance matrix 

B              Coupling stiffness matrix 

D              Bending stiffness matrix 

C              Arclength vector describing a curve 

F                    Force vector, general
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N              Principal normal vector to a curve 

n              Unit vector normal to a surface 

P              Position vector of a doffing point 

Q              Reduced stiffness matrix 

Q              Transformed reduced stiffness matrix 

R              Reuter matrix 

S              Vector function describing a surface 

               Reduced compliance matrix 

S               Transformed reduced compliance matrix 

T              Unit vector tangent to a curve 

Transformation matrix 

X              Vector of design variables 

κ              Principal normal curvature vector 

 

Scalars (Latin) 

A               External axial force 

a               Dimensionless axial force 

B               Fiber band width 

C              Constant, general 

c               Polar opening radius 

   Maximum value of slippage coefficients 

   Constant of integration 

   Moisture concentration 

D               Constant of integration 

E               Coefficient of the first fundamental form 

   Modulus of elasticity 

F               Coefficient of the first fundamental form 

Force magnitude, general 

Strength parameters 

Failure index of Tsai-Wu criterion 

Stress function 
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f              Coefficient of the second fundamental form 

Fiber force per unit length 

Function, general 

G             Coefficient of the first fundamental form 

Shear modulus 

g              Function, general 

H              Mean curvature 

h              Height, general 

90º layer 

I              Performance factor 

i                    Counter 

j             Counter 

K              Gaussian curvature 

Ratio of fiber stress at an arbitrary parallel to stress at the equator 

Relative bending radius 

               Rotation number of the feed eye 

k              Material anisotropy parameter 

               Counter 

L             Coefficient of the second fundamental form 

Curve length 

M             Coefficient of the second fundamental form 

              Mass, general 

m             Functions of the fiber angle and material properties 

N             Coefficient of the second fundamental form 

Membrane force in a shell 

Rotation number of the mandrel 

Number of fiber bundles 

n             Counter 

Number of laminae 

Number of interpolation knots 

O             Origin of coordinates 

P             Points or knots 

p             Internal pressure 

Burst pressure 
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R             Radius of curvature 

Equatorial radius 

r             Radial coordinate 

Radius of the tube of a torus 

S             In-plane shear strength 

s             Arc length 

t             Thickness, general 

Time, general 

U             Elastic strain energy density 

u             Curvilinear coordinate in the parametric surface (u-curve) 

           Displacement, general 

V             Internal volume of a pressure vessel 

v             Curvilinear coordinate in the parametric surface (v-curve) 

W            Weight of a pressure vessel  

X             Strength in the fiber direction (tensile or compressive)  

              X-coordinate 

Y             Strength in the transverse direction (tensile or compressive) 

Y-coordinate 

Z             Strength in the through-thickness direction (tensile or compressive) 

Z-coordinate 

z           Axial coordinate 

 

Scalars (Greek) 

α             Winding angle 

Thermal expansion coefficient 

β             Lagrange multiplier 

Hygroscopic expansion coefficient 

Γ             Christoffel symbol of the second kind 

γ              Specific weight 

Shear strain 

ε              Strain, general 

               Level of accuracy necessary to ensure iterative convergence 

ζ              Dimensionless axial coordinate 
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η              Hoop-to-helical thickness ratio 

θ              Angular coordinate in the parallel direction 

κ              Curvature 

λ              Slippage coefficient 

μ              Coefficient of friction 

ν              Poisson's ratio 

ρ              Dimensionless radial coordinate 

σ              Stress, general 

Ultimate fiber stress in tension 

τ              Shear stress, general 

Φ             Rotation angle of the mandrel 

φ         Angular coordinate in the meridional direction 

χ       Parallel-to-meridional force ratio (biaxial ratio) 

ω       Angular velocity 

 

Indices 

0            Polar opening related 

Initial position related 

1            First principal material direction (Longitudinal direction) 

2            Second principal material direction (Transverse direction) 

3            Third principal material direction (Through-thickness direction) 

C           Compressive 

c            Circular toroids 

eq           Equator 

f            Fiber related 

             Friction 

g            Geodesic 

iso          Isotensoid 

m           Mandrel 

max         Maximum value 

min          Minimum value 

n            Normal direction 

net       Netting-based 
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opt          Optimal 

S           Shear stress/strength 

T           Tensile stress/strength 

α      ±α layers 

 

Special Functions & Operations 

∞          Infinity 

C          Shortcut for “continuity” 

c           Shortcut for “cosine” 

           Shortcut for “constant value” 

d          Differential 

f           Functional operation 

s           Shortcut for “sine” 

×          Vector outer product (cross product) 

·           Vector inner product (dot product) 

Scalar multiplication 

'           First derivative 

''           Second derivative 

&          And 
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