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Abstract. Image reconstruction of ultrasound computed tomography based on

wave equation is able to show much more structural details than simpler ray-based

image reconstruction methods. However, to invert the wave-based forward model

is computationally demanding. To address this problem, we develop an efficient

fully learned image reconstruction method based on a convolutional neural network.

The image is reconstructed via one forward propagation of the network given input

sensor data, which is much faster than the reconstruction using conventional iterative

optimization methods. To transform the ultrasound measured data in the sensor

domain into the reconstructed image in the image domain, we apply multiple down-

scaling and up-scaling convolutional units to efficiently increase the number of hidden

layers with a large receptive and projective field that can cover all elements in inputs

and outputs, respectively. For dataset generation, a paraxial approximation forward

model is used to simulate ultrasound measurement data. The neural network is

trained with a dataset derived from natural images in ImageNet and tested with a

dataset derived from medical images in OA-Breast Phantom dataset. Test results

show the superior efficiency of the proposed neural network to other reconstruction

algorithms including popular neural networks. When compared with conventional

iterative optimization algorithms, our neural network can reconstruct a 110×86 image

more than 20 times faster on CPU and 1000 times faster on GPU with comparable

image quality and is also more robust to noise.

Keywords : Breast cancer, Ultrasound transmission tomography, Image reconstruction,

Paraxial approximation, Fully convolutional neural network.
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1. Introduction

Breast cancer is one of the most commonly diagnosed cancers for females [1] [2]. Early

breast cancer detection increases the chance of curative treatment [3]. Ultrasound

computed tomography (USCT) is a promising diagnostic tool in this respect. The

method for tomographic imaging with transmission ultrasound (i.e. ultrasound

transmission tomography, UTT) has been intensively studied in recent years. UTT

can record the speed of sound and attenuation simultaneously. The speed of sound is

shown to be closely related to tissue density [4]. It has been proved that by combining

the speed of sound and attenuation images with reflection images, we can discriminate

healthy tissue from cancer masses better than the diagnosis only based on the speed of

sound or attenuation [5].

Transmission tomography involves solving the wave equation (the Helmholtz

equation), which is associated with a heavy computational burden [6] [7] [8]. To

reduce the computational costs, approximation methods are used such as straight

ray approximation, bent ray approximation [9], Born approximation [10], Rytov

approximation [11], and paraxial approximation [9]. The straight ray approximation

ignores refraction and diffraction, which leads to the worst image resolution [12]. Among

the above mentioned approximation methods, the paraxial approximation achieves

the highest precision that is similar to full-wave solutions with the computational

complexity reduced effectively [7]. Recently, this approximation method has been

combined with various optimization methods to accelerate the reconstruction [13].

However, this iterative optimization reconstruction strategy is sensitive to noise and

needs regularization [14].

In recent years, deep learning has been demonstrated to improve the

reconstruction of medical images. The state-of-the-art deep-learning-based medical

image reconstruction falls into two categories: one is to combine deep learning with

traditional algorithms to improve imaging quality, such as using deep learning as prior

(or regularization) term [15]; or using neural networks as post-processing method for

denoising, and artifact removal [16]. The other category is neural-network-based direct

image reconstruction from measurement data [17] [18] [19]. One of the most successful

algorithms in this category is Automap [17]. It combines fully connected layers with

convolutional layers for MRI image reconstruction, where the fully connected layers

are used for domain transform while the convolutional layers are for extracting high-

level features from the data and forcing the image to be represented sparsely in the

convolutional-feature space. However, the fully connected layer requires a huge number

of parameters for normal-size images, which makes Automap difficult for practical

applications. In the field of ultrasound imaging, there has been research works on

applying neural network for improving and accelerating the image reconstruction [20]

[21]. However, up to now, the research on deep-learning-based image reconstruction of

transmission tomography is quite limited. The previous work in this respect yields a

poor image quality with the neural network and involves fully connected layers to deal
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with small-size images only [22].

In this work, we propose a fully learned image reconstruction approach using a fully

convolutional neural network for UTT. The contributions of this paper are embodied in

four aspects:

• We designed a neural network that can efficiently reconstruct the ultrasound

transmission tomography image. The proposed reconstruction method overcomes

the deficiency of fully connected neural networks and can work on normal-size inputs

with a reasonable number of model parameters.

• We show the importance of advanced down- and up-scaling (DUS) methods for

efficient image reconstruction by neural networks, which allows a larger number of

parameters with a less computaitonal burden.

• Compared with other state-of-the-art neural networks, the proposed neural network

converges much faster in the training process and achieved a higher imaging quality.

• Compared with traditional algorithms, the proposed neural network is more robust

to noise, at least 20 times faster on a CPU and 1000 times faster on a GPU. Its

robustness to uncertainties in ultrasound transducer locations is also demonstrated.

2. Problem Formulation

The transmission tomography problem can be expressed as the minimization of the

following objective function:

J(η) = ‖T (η)− p‖2
2 (1)

where η ∈ X is the target image to be reconstructed and p ∈ Y is the recorded data

(frequency-dependent pressure field). X and Y are typically Hilbert Spaces, and the

forward operator T : X → Y models the relationship between the target image and the

recorded data. In some conventional iterative algorithms, this inverse problem is often

regularized by assuming that the reconstructed speed-of-sound (SoS) profle is smooth.

The smooth constraint can be implemented by including the total variation (TV) of the

reconstructed SoS vector ‖c‖2
TV [23] [24]. Then we have

J(η) = ‖T (η)− p‖2
2 + λ‖c‖2

TV (2)

with weighting parameter λ.

As for the forward operator T , we consider the wave equation in the frequency

domain. The Helmholtz equation models the wave propagation of ultrasound through

an acoustic background medium including refraction, diffraction, and multiple scattering

as

∆p+ k2
0(1 + η)2p = 0 (3)

where p describes pressure field in the frequency domain (i.e. the Fourier transform

of the raw waveform data), and the background wave number k0 = ω/c0 with angular

frequency ω and the SoS of the background medium c0. The refractive index is 1 + η
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and η = a + i µ
k0

accounts for the deviation of the inhomogeneity from the background

medium. Specifically, Re(η) = a = c0
c
− 1 is related to SoS, where c and c0 are the SoS

in the soft tissue and the background medium respectively. Im(η) = µ
k0

depends on the

parameter µ that accounts for frequency dependent attenuation with i =
√
−1.

The full solution of the Helmholtz equation poses a very high computational burden.

In this paper we use hereby the paraxial approximation [7] [12] [25] [26] [27] which is

faster to compute than the full-wave inversion.

According to [12], we consider that the wave sources (i.e. the emitters) are arranged

around a circle and the receivers (i.e. transducers) are put in a line at the opposite side

of the emitters, where the relative position of the emitters and transducers is fixed. For

each source, the wave propagates from a slice to its neighboring slice (as shown in Fig.

1), where the average ray direction is denoted by z. The forward propagation from the

k-th z slice to the (k + 1)-th z slice on a 2D computational grid [1, Nx] × [0, Nz] with

equidistant step width ∆x and ∆z can be calculated by the following equation:

pk+1 = ei∆zk0ηk · F−1{ei∆z
√
k20−ξ2 · F(pk)} (4)

The index k at p and η represent the k-th z slice. The spectral variable ξ =
2π

∆x(Nx−1)
[−Nx

2
+ 1, · · · , 0, · · · , Nx

2
]T ∈ RNx . The 1D discrete Fourier transform with

respect to the spatial coordinate x and the 1D inverse discrete Fourier transform are

denoted by F and F−1, respectively. For the emitter at different position of the

circle, we rotate the computational grid around the region of interest (ROI) accordingly.

Supposing we have NE emitters and NT transducers at the opposite position of each

emitter and their relative positions are fiexed, a full scan consists of NE×NT recorded

waves.
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Figure 1: Steps of the paraxial approximation forward model. The ROI (indicated

by the red circle) is covered by the computational grid of paraxial approximation. The

ultrasound is emitted in an approximately spherical wave from the emitter in z-direction.
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Our objective in this paper is to achieve fully learned direct reconstruction of

image η from data p, i.e., T −1 : Y → X with a convolutional neural network only.

The structure of the subsequent paper is organized as follows. We will show the

network architecture and training strategy in Section 3; the material and methods for

experiments are illustrated in Section 4; and the results in Section 5; Finally, discussion

and conclusion are put in Section 6.

3. Network Architecture and Training Strategy

3.1. Neural Network Architecture

Figure 2: The receptive and projective field of the hidden layers in different neural

networks. (a) The convolutional network with multiple down- and up-scaling operations;

(b) The convolutional neural network without scaling operations; (c) The fully connected

neural network.

For direct image reconstruction from recorded data, the value of each pixel is related

to the measurement data from all sensors. Thus we need a neural network with a large

receptive and projective field [28] that can cover the whole input sensor data and output

image data. Recent work normally employs a fully connected neural network to obtain

the maximum receptive and projective field (as shown in Fig. 2c). However, the fully

connected neural network is limited to reconstructing small 2D images due to its large

memory requirements. Apart from fully connected neural networks, a UNet [29] can

be another option, which uses pooling units (for down-scaling) and unpooling units

(for up-scaling) to gain a large receptive and projective field. However, the normal

UNet uses low-pass filters such as max-pooling or average pooling methods to finish the

downscaling operation. As demonstrated in [16] and [30], even though the UNet has by-

pass connection to compensate for the loss of high frequency signal, it still emphasizes

too much on the low-frequency signal because of the duplication of the low frequency

branch. In [31], wavelet-based scaling methods are used to give more focus on high-

frequency signals. However, as the wavelet transform is a special case of a convolutional
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layer, using the wavelet for down-scaling may limit the performance when compared

with the case of using a trainable convolutional layer [32]. In this paper, we adopt a

convolutional layer with a stride of 2 for tensor down-scaling as in [32] and [33]. The

sub-pixel convolutional unit [34] is used for up-scaling because of its low computational

cost.

The overall architecture of the proposed neural network is shown in Figure 3. The

whole neural network is like a big U-shaped residual neural network containing 4 densely

connected small DUS units that each forms a small U-shaped residual neural network.

We hereby denorminate the neural network as multiple W-net (mWnet for short). As

a whole, the neural network comprises 3 parts: feature extraction, domain transform,

reconstruction.

• Initial feature extraction: The convolutional layers with a stride of 2 are used

to down-scale the feature map. At each scaling level, a residual block with nine

convolutional layers (as shown in Fig. 3) is used to encode the feature map.

• Domain transform: Since the domain transform is mainly done by the ’high

level’ layers (i.e. the hidden layers processing highly down-scaled feature maps)

with a large receptive and projective field, it is necessary to put more parameters

to the ’high level’ layers. Inspired by the deep-learning-based work in image

denoising [32] [35] and super-resolution [33], we add multiple down- and up-scaling

(DUS) units to gain the number of ’high level’ layers. Since these ’high level’ layers

are used to process the highly scaled feature maps only, the filters from these layers

are more computationally efficient than those filters in the ’low level’ layers (i.e. the

hidden layers processing feature maps with less downscaling). Inspired by the work

of DenseNet [36], we give a dense connection between these down- and up-scaling

(DUS) units to further boost the performance. We use 1×1 convolutional layer for

feature pooling and dimension reduction.

• Reconstruction: Immediately after the domain-transform part, we put a residual

block after every up-scaling operation to reconstruct the image. We use sub-pixel

convolutional layers to up-scale the features without degradation of features. With

skip connection from the feature extraction part to the reconstruction part, we can

reuse the extracted feature at different scaling levels to enhance the accuracy of

reconstruction.
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Figure 3: The architecture of the proposed network. (a) The overall architecture of

mWnet with 4 DUS blocks; (b) The DUS block; (c) Res-N block of N channels.
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We refer to the network with 1 DUS unit as mWnet 1 and the network with 4 DUS

units as mWnet 4. The size of input tensor is 2 × 110 × 128 (110 transducers and 128

emitters), and the size of output tensor is 2×110×86 (containing the real and imaginary

part of η that are related to the SoS and attenuation, respectively). Before processed

by convolutional layers, each input tensor is first padded into a 2 × 128 × 128 tensor.

After the processing of convolutional layers, each output tensor is obtained by cropping

a 2× 128× 128 tensor. The basic convolutional unit consists of one convolutional layer

followed by PReLU [37] activation function. We only use convolutional kernels with size

= 3×3 or 1×1. The total number of parameters for mWnet 1 and mWnet 4 are about

34.5 million and 113.6 million, respectively.

3.2. Training Strategy

The model is trained on the simulated data derived from natural images from ImageNet

dataset [38] using paraxial approximation forward model. In the training of the neural

network, to augment the data and speed up the convergence [39], random Gaussian noise

is added to the input tensor with a probability of 0.7. As for the noise level, it should be

noted that too high a noise level may affect the accuracy of the reconstruction, while an

excessively low noise level (close to zero) cannot lead to a decent boost of convergence.

Empirically, we set the SNR (Signal to Noise Ratio) range as 112 to 142 dB. Adam

optimizer and l1 loss are applied. For the implementation of l1 loss, the real part and

imaginary part of η are multiplied by a coefficient of τ and 1 − τ , respectively. We

empirically set τ = 0.9 for optimal training performance. To reduce the training time,

we adopt the training strategy described in [40] by fixing the learning rate lr = 1.0 ·10−4

and increasing the batch size gradually. The model is first trained with a batch size of

16 for 49 epochs, then a batch size of 32 for 8 epochs, a batch size of 64 for 8 epochs,

a batch size of 128 for 8 epochs, a batch size of 256 for 8 epochs, and finally a batch

size of 512 for 8 epochs. To implement the training with a large batch size, we split a

large batch of samples into a few mini-batches of size 16, and accumulate the gradients

of these mini-batches before updating the variable.

To compare the neural networks with different numbers of DUS units, we

implemented two different models in Pytorch [41]: mWnet 1 with one DUS unit only,

and mWnet 4 with 4 DUS units. The training of all these two models follows the same

strategy. The training was performed on a server with GPU of NVIDIA TITAN XP,

where the training of neural network mWnet 1 and mWnet 4 needed about 4.5 and 6.3

days, respectively.

For comparison, we further trained three other neural networks with the same

training strategy: Automap, UNet, and FC-DenseNet103 [42]. Both of these three

neural networks have been used in the reconstruction of MRI images successfully [43].

For the tests on uncertainties in transducer locations, the mWnet 4 trained using

the above training strategy is further trained on the dataset simulated with perturbed

settings and follows the same training strategy.
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4. Material and Methods

4.1. Data Preparation

The image size for all phantoms is 110× 86 with each pixel of size 1.88 mm, where the

radius of the measuring device is 130 mm and the radius of the phantom is 79.7 mm,

and 110 transducers and 128 emitters are simulated at the frequency of 0.5 MHz.

The natural images from ImageNet are used to generate training set and validation

set. We obtain grayscale images with pixel value x ∈ [0, 255] by extracting Y-channel

luminance from the RGB color images. In total, 49,998 natural grayscale images are

accumulated from ImageNet. Specifically, 47,998 images are used as training set. The

size of the training set is further quadrupled by combining two data augmentation

operations: grayscale-value reversing and 90 degree rotation. Considering any pixel with

grayscale value x, the grayscale value is reversed as 255−x. Each image is then rotated

through 90 degrees to double the size of the training set. After data augmentation, all

the 47,998 × 4 images are scaled to a size of 110 × 86. Then, for validation set, the

remaining 2000 images are used and scaled to the same size. For any grayscale image

derived from ImageNet set with value in the range of [0, 255], its grayscale value is scaled

and discretized into six integers i.e. 0, 1, 2, 3, 4 and 5 which represents water, skin, fat,

gland, tumor, and calcification, respectively.

The test dataset comprises four standard test phantoms (as shown in Figure 4)

and nine medical images that are randomly selected from the OA-Breast Phantom

dataset [44] (as shown in Figure 5). As for the nine medical images, the pixels for

different tissues in the breast are labeled as: 0 for background, 2 for fibro-glandular

tissue, 3 for fat, 4 for skin layer, and 5 for blood vessel. All the images are scaled to the

size of 110× 86.

Given the image set with each tissue labeled, we assign the value of η for each pixel

according to the property of SoS and attenuation for each tissue. Specifically, for water,

skin, fat, gland, tumor, and calcification, the values simulated for SoS are 1485, 1570,

1450, 1490, 1560, and 6420 m/s, respectively; and the values simulated for attenuation

are 0, 2.08, 1.26, 0.88, 1.60, and 8.0 dB/cm/MHz, respectively. The η image is then

smoothed by a Gaussian filter so as to ensure that the area between different tissues has

a smooth gradient of SoS and attenuation and thus becomes more realistic.

The measurement data collected by receivers (i.e. frequency-dependent sound

pressure p in the frequency domain) is then calculated based on the η image and the

paraxial approximation method for wave equation as described in [12]. The complex-

valued measurement data (of size 110 × 128) is turned into a 2 × 110 × 128 real input

tensor. Finally, the element values of all the input tensors and target images are scaled

to the range of (0, 1).

To test the algorithms’ robustness to uncertainties in transducer locations, we

generate another set of measurement data based on all the above-mentioned η images

and the paraxial approximation method by adding random additive white Gaussian noise

to transducers’ location parameters. Specifically, we add zero-mean white Gaussian
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Figure 4: Four standard test samples.

Figure 5: Nine medical image samples from the OA-Breast Phantom dataset.

noise of standard variance 0.02◦ to the rotation angle, and we add zero-mean white

Gaussian noise of standard variance 0.01mm to both the x value and the z value (as

shown in Fig. 1) of each receiver.
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Figure 6: The learning curves for different neural networks with horizontal axis the

training steps and vertical axis the l1 loss.

Table 1: The training time and number of parameters for different neural networks

Automap UNet FC-DenseNet103 mWnet 1 mWnet 4

Training Time (days) 4.6 2.1 4.7 4.5 6.3

Number of Parameters (million) 356.0 7.8 9.3 34.5 113.6

Table 2: The average runtime per image for different algorithms

Newton CG L-BFGS Automap UNet FC-DenseNet103 mWnet 1 mWnet 4

Runtime 49.1min(CPU) 24.9s(CPU) 0.011s(GPU) 0.008s(GPU) 0.014s(GPU) 0.778s(CPU) 0.012s(GPU) 1.056s(CPU) 0.018s(GPU)

4.2. Performance Evaluation

Imaging quality is quantified using two standard metrics: normalized root mean square

error (NRMSE) and structure similarity (SSIM). The NRMSE is defined as:

NRMSE =

√∑M
i=1

∑N
j=1[x(i, j)− y(i, j)]2

MN(xmax − xmin)2
(5)

where x and y denote the ground truth and the reconstructed image, respectively. M

and N are the number of pixels for row and column, respectively. xmax and xmin are

the maximal and minimal pixel value of the ground truth image, respectively.

The SSIM is defined as:

SSIM =
(2µyµx + c1)(2σyx + c2)

(µ2
y + µ2

x + c1)(σ2
y + σ2

x + c2)
(6)

where µy is an average of y, σ2
y is a variance of y, and σyx is a covariance of y and x.

There are two variables to stabilize the division such as c1 = (k1L)2 and c2 = (k2L)2. L
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Figure 7: The average RMSE and SSIM results on simulated images. The lines with

different colors represent the quantitative results for different algorithms. The lines

marked with asterisks are results for the imaginary part of η and lines without asterisks

are results for the real part of η.

is a dynamic range of the pixel intensities. k1 and k2 are constants with k1 = 0.01 and

k2 = 0.03 by default.

5. Results

We compare mWnet 1 and mWnet 4 with three neural networks: Automap, UNet, and

FC-DenseNet, and two other traditional reconstruction algorithms that use different

optimization methods: Gauss Newton CG [14] and L-BFGS [13] on a laptop with CPU
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Figure 8: The reconstructed SoS (m/s) and attenuation (dB/cm/MHz)

results on Phan 5 with SNR = 50dB.
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Figure 9: The reconstructed SoS (m/s) and attenuation (dB/cm/MHz)

results on Phan 6 with SNR = 40dB.
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Figure 10: The reconstructed SoS (m/s) and attenuation (dB/cm/MHz)

results on img07bx00328 from the OA-Breast Phantom dataset with SNR = 30dB.

Intel Core i5 8400 2.80GHz and GPU Nvidia GeForce RTX 2070. All the algorithms

are tested with their optimal default settings, where the maximum iteration numbers

for Gauss Newton CG and L-BFGS are 500 and 100, respectively.

The learning curves for different neural networks are displayed in Fig. 6. We see

that the proposed neural networks converge much faster than other algorithms. Table.
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Figure 11: The reconstructed SoS (m/s) and attenuation (dB/cm/MHz)

results on img07bz00347 from the OA-Breast Phantom dataset without noise.
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Figure 12: The reconstructed SoS (m/s) and attenuation (dB/cm/MHz)

results on img07bx00300 from the OA-Breast Phantom dataset simulated with

perturbed transducer locations.

1 shows the general training time and number of parameters. The average runtime per

image for different algorithms is shown in Table 2. We see that compared with traditional

algorithms, deep-learning-based algorithms are much faster on CPU. Running on GPU

can further speed up the deep-learning-based reconstruction significantly. Even though

the number of parameters of mWnet 4 is about 3 times as large as that of mWnet 1,

the increase of runtime of mWnet 4 is less than a factor of two. This is because the

additional parameters in mWnet 4 lie only in the DUS units that process the down-

scaled tensors.

The quantitative results are presented in Fig. 7 for both the four standard test

images and the medical images derived from the OA-Breast Phantom dataset. We have
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the input data corrupted by Additive white Gaussian noise at 4 different noise levels with

the signal-noise-ratio SNR=30dB, 40dB, 50dB and noise-free, respectively. As a whole,

the neural network is more robust to noise and can reconstruct both the real part and

imaginary part well, while the traditional algorithms can only reconstruct noisy real part

and the imaging quality decreases significantly with the increase of noise. In addition,

it can be noted that mWnet 4 is more robust to noise than mWnet 1, especially at a

high noise level such as SNR = 30dB.

The visual results for standard test samples and the medical images at different

noise levels are shown in Fig. 8-11, which verify the proposed neural network’s superior

imaging quality for noisy inputs. Specifically, on the one hand, for the reconstruction

of the real part of η, image quality by mWnet is comparable to that by traditional

algorithms for noise-free cases, and mWnet is superior to the traditional algorithms at a

high noise level (i.e., SNR = 30dB in Fig. 10). On the other hand, for the reconstruction

of the imaginary part, mWnet can always achieve a decent visual performance, while

traditional algorithms normally fail to reconstruct a meaningful image in the presence

of noise.

In addition, mWnet 4 has much better visual performance than mWnet 1 for noisy

cases. For example, in Fig.8, the sides of the rectangular are straight in the result for

mWnet 4 but are distorted in the result for mWnet 1; in Fig. 10, mWnet 1 has more

artifacts than mWnet 4.

Fig.12 shows mWnet 4’s robustness to uncertainties in transducer locations

compared with Gauss Newton CG. With more training on the dataset simulated with

perturbed settings, the mWnet 4’s imaging quality is improved further.

6. Discussion and Conclusion

The proposed neural networks show superior imaging quality to any other neural

networks including the Automap, FC-DenseNet, and the classical UNet. Among these

three neural networks, the Automap is the most inefficient one with the worst imaging

quality and the highest number of parameters due to the use of fully connected layers.

On the other hand, the fully convolutional neural networks FC-DenseNet and UNet

have the smallest number of parameters but only yield a blurred result. Meanwhile, the

proposed neural networks show the highest imaging quality and maintain an acceptable

inference speed. Compared with the other two popular convolutional neural networks

FC-DenseNet and UNet, the factors that lead to mWnet’s superior performance in

both imaging quality and efficiency are: 1) As demonstrated in the section of Network

Architecture and Training Strategy, the proposed neural networks use advanced down-

scaling and up-scaling operators, which give more emphasis on the high-frequency part

of the data; 2) The proposed neural networks iteratively implement multiple down- and

up- scaling operator to gain the number of layers with large receptive and projective

field, which also allows the efficient implementation of large number of parameters.

The results show that with more DUS units in the hidden layers, the neural network
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obtains a higher imaging quality and becomes more robust to noise, which is also

confirmed by the works in [32] and [33]. Although the increase of the number of DUS

units leads to a significant increase in model size, it is still much smaller than the neural

network using fully connected layers, and the computational burden is controlled in an

acceptable range. The multiple down-up scaling strategy allows the neural networks to

implement more parameters efficiently with much lower computational burden. It is also

possible to extend the mWnet to dealing with larger-size 2D or 3D images by putting

more scaling operations to both the initial feature extraction part and the reconstruction

part. This kind of extension ensures that the size of the feature maps processed by DUS

units is within the receptive field and projective field of hidden layers in DUS units.

Adding more scaling operations will increase a tiny number of parameters and help

control the computational burden within a reasonable range. Apart from the number

of scaling operations in the initial feature extraction part and the reconstruction part,

the number of DUS units in mWnet should also be changed based on experiments.

The traditional algorithm Gauss Newton CG gives a result much better than the

result by L-BFGS for the noise-free test cases. It is because of their different settings

on initialization, step length, and iterative number, which make the implementation

of Gauss Newton CG more suitable for noise-free cases. Meanwhile, we also see that

these conventional algorithms all perform better than mWnet on noise-free cases. One

reason for this phenomenon is that Gauss Newton CG and L-BFGS use exactly the same

forward model for simulation to iteratively optimize the solution, while neural network

only learns the solution indirectly via the dataset generated based on the forward model

and ends up yielding an approximate solution. When training dataset getting larger, this

gap between the traditional algorithms and neural networks can be narrowed further.

It should be noted that the traditional iterative optimization algorithms (Gauss

Newton CG and L-BFGS) are often stuck into various local optimal solutions in the

presence of noise or uncertainties in transducer location, while the neural network

can obtain an approximation solution that is closer to the global solution easily.

Meanwhile, the fully learned neural network approach is also much faster than the

iterative optimization approaches. However, in the case of low noise level, the neural

network is inferior to traditional algorithms in terms of imaging accuracy. For higher

imaging accuracy of the neural network, one solution is to enlarge the training set or

to involve medical images into the training set for finetuning. In addition, the imaging

quality can be further improved by using the neural network to get a good initialization

for traditional optimization.

Since the wave-based transmission tomography has high degrees of scattering due

to the long wave length at the scale of the objects, the UTT image reconstruction has

higher complexity than Radon inversion in the straight-ray-based tomography (such

as X-ray CT) and is of high non-linearity, the favorable performance of the proposed

neural network on UTT image reconstruction proves its potential to tackle other image

reconstruction problems such as CT and MRI image reconstruction.

In the future work, we will continue investigating how to impove the efficiency of
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the neural network further to deal with large-size images. We will also test the proposed

neural networks on real data from different imaging tasks.
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