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Executive summary  
Introduction  
With the prevalence of online ordering, worldwide customer needs have changed over the past 

decades. The need for fast delivery has increased and in order to cope with this manufacturing firms 

are required to improve the product flow through their existing supply chain networks. To enhance 

supply chain agility warehouse activities are outsourced to third-party logistic service providers. In this 

way, warehouse capacity can be adjusted to the latest needs of the manufacturing companies. 

Efficiency in terms of optimal and flexible warehouse management is furthermore increased by the 

close coordination of the expected product flows between the factories and the warehouse. Ideally, 

the specific product flows can be predicted, resulting in the warehouse manager only having to adjust 

its warehouse capacity accordingly to minimize warehousing costs. Nonetheless, in practice this is not 

the case as manufacturing companies have insufficient coordination and synchronisation between 

production planning and warehousing teams (O’Reilly et al., 2015). 

Problem description  
The lack of coordination regarding production and warehousing decisions in the ordering strategy may 

result in unforeseen capacity issues at the warehouse due to misalignment between production plans 

and warehouse availability. These unforeseen issues can result in additional costs due to production 

line closure or last-minute stock reallocations. For this reason, it is relevant to study the effects of 

increasing interdepartmental coordination between production and warehousing departments on 

product flows between factories and warehouses in the supply chain of a manufacturing company.  

Research questions 
To structure the research, a main research question is formulated which entails: “How does the 

coordination between production and warehouse decisions affect the product flow between factories 

and warehouses for manufacturing firms?” In order to find an answer to the main research question 

two individual mathematical models have been proposed which represent the production and 

warehouse operations of a manufacturing company. These mathematical models are thereafter 

combined in two sequential and one simultaneous ordering strategy. In the sequential ordering 

strategy first one model is optimized after which the output of the first model is used as input for the 

second model. In the simultaneous ordering strategy which represents central coordination situation, 

an integrated model simultaneously optimizes the two models. By comparing the different ordering 

strategies in a case study for Kraft Heinz a popular brand in the food industry, the effects of 

coordinating production and warehouse decisions can be analysed.   

Research methods 
In order to find an answer to the main research question and to perform tests with the proposed 

models, different methods have been used. First, a literature research was conducted to find relevant 

research papers in the fields of multi-period warehousing, lot sizing and parallel machine scheduling 

problems. By combing findings from literature, the three mathematical could be proposed. These 

mathematical models were thereafter programmed as Mixed-integer linear programming problems in 

IBM ILOG CPLEX Optimization Studio. The models were subsequently tested in a case study at Kraft 

Heinz to provide a practical setting for the models. Performing a case study helped to reflect on the 

models’ validities as well as generating managerial insights. Finally, an extensive sensitivity analysis 

was conducted to provide managerial guidelines for practitioners and to weigh which department can 

have greater impact on the total cost.  
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Results: Verification 
The proposed models need to be verified and possibly improved before the models can be tested in a 

case study. When the models behave as was intended and thus comply with the formal problem 

description and the proposed conceptual model the models’ verification step is completed. In order to 

verify the model behaviour, both the individual and integrated models are subjected to a set of three 

hypothetical scenarios. In which the results of a base scenario are compared with two scenarios in 

which input parameters are changed. The model behaviour in the three scenarios can be compared to 

each other to confirm if the model behaves as was intended. Once the individual and integrated 

models’ behaviour were verified. The models were tested in three different demand scenarios to 

ensure that the proposed models were suitable to be used in different demand scenarios. The results 

from this test confirmed the models’ abilities to adjust their optimization strategy for different demand 

scenarios. A final step in the model verification was to perform a complexity experiment for the 

integrated model. The complexity experiment should provide insights into how the integrated model 

reacts to the introduction of larger problem sets. To this end, the integrated model is tested in 

hypothetical situations in which the number of products, periods and machines were increased. The 

effect of this increase on the model running time and optimality gap was captured in an overview. 

From the complexity experiment, it emerged that increasing the number of products in the problem 

set increases the model’s complexity. Increasing the number of machines has the opposite effect on 

the complexity. The number of periods considered by the model does not affect the model’s 

complexity but does increase the model running time.  

Results: Case study 
In the case study the Sequential Production Strategy, Sequential Warehouse Strategy and Simultaneous 

Strategy were tested in a real-life scenario of Kraft Heinz, the three ordering strategies were compared 

on costs, order behaviour and warehousing strategy. From this comparison, it emerged that the 

Simultaneous Strategy was the most cost-effective and reliable strategy to optimize the product 

between the considered factory and warehouse. The total costs of the Simultaneous Strategy were 

significantly lower compared to the two sequential ordering strategies. Besides the better 

performance cost-wise, the simultaneous ordering strategy as well emerged to be unsurpassed in 

ensuring feasible product flows between the factory and warehouse. Sequential Production Strategy 

resulted to be infeasibility in the case study setting due to misalignment between the generated 

production plans and available warehouse storage capacity. Altogether, it became clear that the 

Simultaneous Strategy was superior in all comparisons due to the simultaneous consideration of 

warehousing and production constraints. Due to the simultaneous optimization, careful trade-offs 

could be optimized regarding the timing and quantity of products ordered and the effects on 

production and warehousing cost. Due to optimizing these trade-offs, superior decisions could be 

made compared to the sequential ordering strategies in which first one mathematical is optimized 

after which the outcome is used as input for the second mathematical model. By doing so, the 

possibilities to make trade-offs in favour of the total product flow are reduced. A final test that was 

performed in the case study was an extensive sensitivity analysis of the case study cost parameters. 

From this case study, it emerged that the warehouse inbound capacity is a constraint that limits the 

optimal outcome of the model and has a great effect on possible model infeasibility. Moreover, the 

overtime inbound cost and the handling cost were identified as cost parameters with a significant 

effect on the total cost.  

Discussion  
The proposed warehousing and production scheduling models represent supply chain activities. The 

models have been proposed by combining information from literature with information obtained from 

field experts. By combining information sources, it is ensured that theoretical knowledge is combined 
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with practical knowledge from the field. Nevertheless, in the formulation of the mathematical models, 

it is required to make assumptions to ensure that the proposed models can be developed and ensure 

feasible results within the given time and resource constraints. Making modelling assumptions affects 

the preliminary solution space of the models and may affect the real-life representation. The main 

model assumptions which affected the real-life representation of the models were the assumptions to 

consider demand to be deterministic, the assumption to look at the products on recipe level and the 

assumption to consider a single factory and a warehouse in the case study. Even though these 

assumptions affect the real-life representation of the used models, they can still be used as a tool to 

generate useful insight with regards to the high-level product flow between factories and warehouses 

in the supply chain of manufacturing companies as the models’ validities have been accounted for 

throughout the development process.  

Managerial insights 
Managerial insights were generated by interpreting the case study and sensitivity analysis results. The 

managerial insights could be useful for practitioners to improve the product flow between factories 

and warehouses in a supply chain and the according coordination. A first managerial insight is the fact 

that the Simultaneous Strategy is superior in all tested scenarios. This is mostly related to the 

simultaneous consideration of all the warehouse and production cost parameters as well as constraints 

in place. For this reason, it is recommended to consider as many cost parameters and constraints of 

the supply chain activities as possible when optimizing the size and timing of orders placed. By doing 

so, a reliable and cost-effective product flow between factories and warehouses can be ensured. Other 

managerial insights pertain to the outcome of the sensitivity analysis. It is recommended to investigate 

the opportunities to structurally increase the warehouse inbound capacity with the logistic service 

provider as this would be beneficial for the total costs.  

Conclusion 
From the conducted research and the performed studies, it can be concluded that enhancing the 

coordination of operational warehouse and production decisions reduces the total cost and risk of 

unforeseen issues in the supply chain. This was demonstrated by the superiority of the Simultaneous 

Strategy over the two sequential strategies in the various comparisons. This result is in line with 

findings in literature from Bradley and Arntzen (1999) and Atamtürk and Hochbaum (2001). For this 

reason, it is recommended to enhance central coordination of the ordering strategies of large 

manufacturing companies to improve the product flows between factories and warehouses.   

Further research 
This thesis proposes three alternative ordering strategies for large manufacturing companies which 

make use of three developed MILP models. The proof-of-concept of these strategies is provided by 

testing them in a case study of a large manufacturing company in the food sector. This proof-of-

concept opens doors for further research to expand on the insights obtained in this investigative 

research and to further improve the models towards possible real-life implementation. A selection of 

the recommendations for further research entails that it is recommended to further extend the 

developed models to be suitable for stochastic demand. Besides stochasticity, it would be interesting 

to increase the level of detail in the production scheduling model such that production schedules can 

be generated on product level. Another recommendation for further research would be to test the 

proposed models in a scenario with multiple factories and a single warehouse and compare the results. 

A final recommendation for further research would be to propose a solving algorithm for the 

formulated mathematical models and compare its performance against CPLEX. This can be helpful to 

improve the model running time for larger problem sets.  
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1. Introduction 
With the rise of the internet and the prevalence of online ordering, the world-wide competition for 

fast delivery of quality products has increased significantly over the past decades (Ho & Zeng, 2004). 

In order to comply with the changing customer needs, large (inter)national manufacturing and 

distribution firms have extended their portfolios with multiple products. In order to ensure that these 

different products will be delivered on time to the customers, companies have created extensive 

supply chain networks consisting of factories, warehouses, transportation lanes and customers of 

which Figure 1 is an illustrative example. Having such extensive supply chain networks helps companies 

to stay agile and comply with customers expectation to receive quality goods within a limited 

timeframe (Darwish & Ertogral, 2008). The fast-changing customer needs and the required supply 

chain agility has increased the importance of coordinating product flows throughout the global supply 

chain. More specifically, it has enhanced the scrutiny of efficient flows between factories and 

warehouses because of the critical function the warehouse plays in linking the material flows between 

suppliers and customers (Ramaa et al., 2012).  

 

FIGURE 1 SUPPLY CHAIN NETWORK EXAMPLE (L. HUANG, MURONG, & WANG, 2020)  

An increasingly popular solution to achieve a higher supply chain agility is to outsource warehouse 

management to third-party logistic service providers (LSP). By making use of this type of warehousing, 

companies can reduce costs related to large capital investments and rent or lease warehouse capacity 

according to their changing needs (Razzaque & Sheng, 1998). Efficiency in terms of optimal and flexible 

warehouse management is furthermore increased by the close coordination of the expected product 

flows between the factories and the warehouse. Ideally, the specific product flows can be predicted, 

resulting in the warehouse manager to only having to adjust its warehouse capacity accordingly to 

minimize warehousing costs. In practice this is not the case as manufacturing companies have 

insufficient coordination and synchronisation between production planning and warehousing teams 

(O’Reilly et al., 2015). The manufacturers production planners focus on optimizing the factory’s output 

and do not account for all warehouse capacity constraints in place. This may result in a mismatch 

between factory output and available storage capacity at the warehouse. Such issues resulting from 

the lack of coordination between the two teams can lead to unforeseen costs as a consequence of last-

minute stock reallocations or forced line shutdowns. For this reason, it is important that the product 

flows between factories and warehouses are closely coordinated and that ordering strategies account 

for all relevant constraints in place (O’Reilly et al., 2015).  
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Having outlined the coordination and synchronisation problem between production plants and 

warehousing facilities, this thesis’ aim is to analyse the effects of coordinating the production 

scheduling department with the warehouse management department, against the most common 

practical case where the two entities hardly communicate. To this end, two optimization models are 

developed representing the warehouse and factory operations within a supply chain. The first model 

consists of a multi-period multiproduct lot size and warehouse optimization model for the decision on 

warehouse capacities while minimizing warehousing costs. The second model is a parallel non-identical 

machine scheduling model for the optimization of production schedules and the simultaneous 

minimization of the production costs. Both models are solved to find the optimal order quantities of a 

portfolio of products in a multiperiod setting, such that either the warehousing cost or production cost 

are minimized over the time horizon. In other words, in the first model we optimize the cost of the 

production and based on that calculate the resulting warehousing cost. In the second, we optimize 

warehousing costs by choosing the capacity to lease and calculate the resulting production scheduling 

cost. We compare the outcomes of the two models against a model where both decisions are 

integrated. The modelling decisions are taken in a setting with deterministic demand over time. An 

extensive sensitivity analysis aims to provide managerial guidelines for practitioners, to weigh which 

department can have greater impact on the total cost. Also, the integrated model can quantify the 

benefits of coordinating the production and warehouse departments. A case study at Kraft Heinz, a 

popular brand in the food industry, is used to provide a practical setting. Testing the models in a 

practical setting will help to assess the validity of the developed models. Moreover, the case study is a 

useful means to generate managerial insights for Kraft Heinz regarding the coordination of product 

flows between factories and warehouses.  

In literature this class of problems is known as the dynamic lot sizing problem which was first studied 

by Wagner & Within (1958). This problem class has been a popular area of study ever after the paper 

of Wagner & Within. The multi-period warehouse sizing problem under study was first touched upon 

in the paper of White & Francis (1971). They formulated the multi-period warehouse sizing problem 

as a linear programming problem and thereafter translated this to a network flow problem in order to 

find an optimal solution considering stochastic demand (Fan & Wang, 2018). Even though, the 

individual research areas of dynamic lot sizing and multi-period warehouse sizing have been popular 

on their own for the last 50 years. Studies towards the joint optimization of the problems are rather 

scarce. Fan & Wang (2018), Fan et al. (2021) and Atamtürk & Hochbaum (2001) did study the joint 

optimization of lot sizes and warehouse sizes. Nonetheless, they only considered a single product in 

their models. Hence, the research gap entails that no model exists, yet which jointly optimizes dynamic 

lot sizes and warehouse capacity problems for a multi-product range. Similarly, scheduling problems 

have been studied in many different set-ups ever since the problem was introduced in the 1950s 

(Nogueira et al., 2019). The type of scheduling problem that is of interested in this research concerns 

the non-identical parallel machine scheduling problem considering sequence dependent set up times. 

Most research in the scheduling paradigm focuses on identical parallel machine scheduling, but in 

practice machines are mostly non-identical (Balin, 2011). Hence the motivation to consider the non-

identical parallel machines problem in this thesis. This thesis aims to fill the identified research gaps 

by modelling and solving the proposed problems. 
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The remains of this thesis will be structured as follows. The literature review in chapter 2 will further 

elaborate on the key concepts of this thesis being the lot size problem, the multi-period warehouse 

sizing problem and the scheduling problem. With this understanding the research gap of this thesis 

will be expanded. Chapter 3 will elaborate on the research objective, the formulated research 

questions and the according research approach. Chapter 4 will be dedicated to the problem description 

which further discusses the problem relevance and gives the formal problem descriptions of the 

problems. Following, chapter 5 will introduce both the conceptual and the mathematical models. In 

chapter 6 the proposed models will be verified and their behaviour analysed. Chapter 7 will introduce 

the case study and analyse the case study results. Chapter 8 will be a discussion chapter in which the 

research assumptions and limitations as well as the proposed managerial recommendations will be 

discussed. This thesis will be concluded with chapter 9 in which the research questions will be 

answered and recommendations for future research will be provided.  
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2. Literature review 
In this section the research relevance will be elaborated on. This will be done through conducting a 

literature research to the key concepts of the research as well as elaborating on the state of the art in 

the respective research fields. Understanding the key concepts such as the lot sizing, warehouse 

capacity and production scheduling problem is of importance as this will help both the author and the 

reader to better comprehend the requirements for the mathematical model in the following chapters. 

Moreover, understanding the individual key concepts helps to later approach the model with a holistic 

view and examine what happens when the ‘new’ system is studied as a whole, instead of just a 

summation of its separate parts. In this chapter first the key concepts and the state of the art in the 

respective research field will be elaborated on. Followed by and overview of the key concepts found 

in the literature. The chapter will be concluded by elaborating on the identified research gap and the 

societal relevance.   

2.1. Multi-period warehouse sizing problem 
Three types of warehousing problems exist in literature, being throughput capacity models, warehouse 

design models and storage capacity models (Cormier & Gunn, 1992). The latter is of interest for this 

thesis, as a multi-period warehouse size problem will be analysed. The multi-period warehouse size 

problem concerns the problem of finding the optimal warehouse size or capacity for a certain period 

T in which a warehouse facility is leased from a LSP (White & Francis, 1971). The length of the leasing 

period is agreed upon by both parties at the start of the leasing period. The contract period T is divided 

into several sessions, the leased warehouse capacity can be adjusted at the beginning of each session 

(Fan & Wang, 2018). At these decision moments, the logistic manager can decide to expand or reduce 

the leased warehouse capacity against a certain penalty cost. The logistic manager bases this decision 

on the shared demand forecast for the coming period and the paired costs that belong to ordering and 

storing products in the warehouse. The main aim of this problem is to find the optimal warehouse 

capacity such that the warehousing costs are minimized, whilst the warehouse capacity does not 

negatively affect the warehouse performance (Fan & Wang, 2018).  

Within the warehouse storage capacity research field, a distinction can be made between static or 

dynamic problems under consideration. In the static problem interpretation the aim is to find a  

warehouse size which minimizes warehousing costs whilst satisfying service requirements for a single 

period (Cormier & Gunn, 1992). Once this warehouse size decision is made it is fixed for the coming 

period without the possibility to change it. The paper of Jucker et al. (1982) optimizes a warehouse 

and plant size problem with stochastic demand distribution for a single period. The objective is to find 

the optimal warehouse and production plant capacity to maximize the expected profit. No stock-outs 

are allowed and the demand exceeding the capacity is considered to be lost. Construction costs are 

considered to be non-linear in relation to the capacity. The algorithm that is proposed to solve the 

problem is based on the Kuhn-Tucker conditions. Another example of a study with a static, single 

period problem description is the paper of Roll et al. (1989) who developed a simulation model to 

analyse the relation between container sizes and the required warehouse capacity in a stochastic 

environment. One more paper that studied the static warehouse size problem is the paper of Roll & 

Rosenblatt (1988). In their study Roll & Rosenblatt (1988) studied different elements that can affect 

warehouse capacity in a stochastic environment for a single period. The elements under study are the 

number of products stored, the respective demand distribution and the applied reordering policy.  

On the other side of the warehouse capacity problem is the dynamic warehouse capacity problem, in 

which the goal is to find the optimal storage capacity at different points in time and so optimize the 

warehouse size problem over multiple periods. The demand can be either stochastic or deterministic 
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and could vary over time. Having a different demand in each period requires the warehouse capacity 

to be adjustable as well, resulting in expansion or contraction decisions that need to be considered in 

this research field (Cormier & Gunn, 1992). The dynamic warehouse capacity problem was first 

touched upon in the paper of White & Francis (1971). They formulated the multi-period warehouse 

sizing problem as a linear programming problem considering stochastic demand. Thereafter the 

problem was translated into a network flow problem in order to find an optimal solution. The problem 

was thereafter picked up by Lowe et al. (1979) who considered a firm that aimed to minimize the 

overall warehouse leasing costs. Lowe et al. (1979) consider two types of contracts in their problem 

formulation. A primary contract or a base scenario which is agreed upon at the beginning of the of the 

planning horizon and a secondary contract which can additionally be agreed upon if extra storage 

capacity is required within the coming period. Demand is assumed to be randomly generated and a 

greedy algorithm is proposed to solve the according network flow problem. This problem formulation 

differs from the problem under study as this thesis will consider the full warehouse capacity to be 

leased which is captured in a single contractual agreement. Rao & Rao (1998) formulated a dynamic 

warehouse size problem which considers the cost function to be concave. They proved that their 

problem can be solved efficiently by means of a dynamic programming approach. Other well-known 

variations in the dynamic warehouse size problem are the two 1996 papers of Cormier and Gunn. 

Cormier & Gunn (1996a) look at the warehouse sizing problem in a deterministic demand setting with 

the option to lease additional capacity and including inventory policies in their solution strategy. Their 

aim is to minimize warehousing and operating costs and to provide a planning tool to improve the 

warehouse size decision making process. In their other paper, Cormier & Gunn (1996b) solve a single 

and a multi-product alternative of warehouse sizing problem aiming to minimize the overall 

discounting and operating costs, also considering deterministic demand. In order to find an optimal 

solution for the formulated problem they use the Newton-Raphson method. A downside of considering 

deterministic demand in the above problems is that uncertainty and demand variation are not taken 

into account (Shi et al., 2018). Another method to optimize dynamic warehouse size problems is the 

queuing method. This method is used for example by Huang et al. (2014) who develop a two-stage 

network to optimize both the warehouse size and location and solve this problem by means of the 

queuing method considering stochastic demand. Another example of using the queuing method to 

solve a warehouse size problem is the paper of Yuan et al. (2016) who study a public warehouse sizing 

problem in which they maximize the profits for public warehouse by means of a dynamic programming 

algorithm. The dynamic warehousing problem is of interest for this thesis as this problem is suitable 

for LSP warehouses with adjustable warehouse capacity. A similar problem will be analysed in the case 

study in a dynamic deterministic demand scenario. Demand is assumed to be known in advance with 

certainty but can vary over time. All warehouse capacity will be leased from a LSP and the warehouse 

capacity can be adjusted at the beginning of each period. The aim is to find the optimal warehouse 

capacity for the time horizon such that the leasing cost are minimized. This case study scenario can 

best be represented by the multi-period warehouse sizing problem. 

The decision to consider a problem in a static or a dynamic environment is dependent of the type of 

company or range of products under study. Another factor which can play a role in deciding to study 

the problem in a static or dynamic environment can be to newness of the study. For example when 

new parameters are added to the model or when different problems are combined for the first time, 

it can be wise to study the model in a simpler static environment (Jucker et al., 1982). This would make 

the model interpretation and analysis easier, moreover the chances of finding a feasible solution are 

higher in a static problem setting. From the conducted literature research, it did however emerge that 

the dynamic (multi-period) warehouse sizing problem is the closest representation of the problem 

under study in this thesis. The main motivation for this is the optimization of the warehouse size over 
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multiple periods which can be compared with a warehouse LSP leasing contract. This problem is better 

known as the multi-period warehouse sizing problem, since the warehouse size will be optimized for 

all considered periods. The relation between the warehouse size problem and the lot size problem will 

be further elaborated on in the following section, also the effects of considering deterministic or 

stochastic demand will described in more details in the coming section.  

2.2. Lot sizing problem 
Lot sizes are known by the Economic Times as “the quantity of an item ordered for delivery on a specific 

date or manufactured in a single production run”(“Economic Times,” n.d.). In this thesis a lot size will 

be considered as the quantity of a product ordered from a manufacturing site. The rationale behind 

this, is the fact that this thesis considers both production scheduling and warehousing. The relation 

between lot sizes and warehouse size is grounded in the fact that the lot size has a direct effect on 

warehousing costs and warehouse size requirements. Having a large lot size means that large batches 

of products will be ordered less frequently per period compared to smaller lot sizes (Delaware, n.d.). 

This will result in low average ordering and transportation costs but will result in high inventory levels 

which means that the average holding cost will be high. Similarly, ordering large product batches less 

frequent will require more warehouse space to store the inventory compared to ordering smaller 

batches which are ordered more frequent (Kemmner, n.d.). On the other hand, having small lot sizes 

means that you have high ordering and transportation costs but low holding costs, since you will order 

small batches more frequently (Van Den Heuvel, 2006). This trade-off is known as the basic lot sizing 

problem. The main objective of this problem is to find the lot size which minimizes the total costs, 

whist complying with present demand (Erenguc & Aksoy, 1990; W. Lee, 2005). Fan & Wang (2018) even 

state that; “Lot sizing problems lie at the core of many production and inventory planning applications” 

(Fan & Wang, 2018). Due to this link the lot sizing problem has been studied in many different 

directions for the last decades. Below different classifications of the lot sizing problem are described 

and key findings in each classification are touched upon.  

An important distinction in studying the lot size problem is assuming static or dynamic demand over 

time. Static demand assumes a constant demand over a finite horizon, which is e.g. applicable in the 

well-known EOQ model which considers static deterministic demand (Van Den Heuvel, 2006). 

Whereas, in a dynamic demand situation the demand can have a different value in each period which 

is know in advance for the specific horizon, this is called dynamic deterministic demand. The dynamic 

lot sizing problem has been studied thoroughly for many years after the paper of Wagner & Within 

(1958). Wagner & Within (1958) were the first researchers to drop the assumption of a steady-state 

demand in the economic lot sizing model and considered varying demand over time which was known 

in advance. Besides demand, also other parameters can take on different values in different time 

periods. Even though both the dynamic and static lot sizing problem interpretations are simplifications 

of reality, dynamic demand better reflects the real-life situation of demand varying over a time 

horizon. “It is therefore, not surprising that the dynamic lot-sizing problem has been a popular topic in 

the academic ever since it was first touched upon by Wagner & Within (1958)” (Lee et al., 1999). For 

the same reason, this thesis will consider the lot sizing problem to be dynamic deterministic.  

Within the dynamic lot size research area more problem classifications exist. Lot size problems can be 

divided into a problem class which does not consider resource or capacity constraints from a 

production or storage point of view. Such a lot size problem is classified as an uncapacitated lot sizing 

problem. The paper of Wagner & Within (1958) belongs to this class of the lot sizing problems. In the 

capacitated version of the lot size problem production constraints are taken into account when 

formulating the mathematical model. This problem class is also referred to as lot sizing problem with 

bounded inventory (Atamtürk & Küçükyavuz, 2005). These additional constraints increase the model’s 
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complexity (Karimi et al., 2003). Studying lot sizes in a capacitated situation is assumed to be a more 

realistic representation of reality, as it is based on warehouse operations in practice (Fan et al., 2021). 

Love (1973) was the first to incorporate production capacity constraints by means of time varying 

inventory bounds in a dynamic lot sizing problem. Atamtürk & Küçükyavuz (2005) conducted a 

polyhedral analysis of this bounded lot size problem. For this they investigated a lot sizing model with 

varying inventory bounds in a multi-period situation, to solve their problem a linear programming 

model was proposed. In their 2008 paper Atamtürk & Kücükyavuz (2008) extend their 2005 research 

by proposing a dynamic programming algorithm to solve the bounded lot sizing problem more 

efficiently. Erenguc & Aksoy (1990) came up with an algorithm based on the branch and bound 

technique to solve the capacitated dynamic lot sizing problem in a deterministic single product 

nonconvex situation including capacity constraints. Chen et al. (1994) also studied the capacitated 

dynamic lot size problem and they presented a dynamic programming algorithm to optimize the 

problem whilst considering piecewise linear inventory and production costs. Other examples of papers 

in the capacitated dynamic lot size research area are Liu & Tu (2008) who considered lot sizing 

boundaries taking into account lost sales and used a network flow algorithm to find the optimal 

solution and the paper of Hwang et al. (2013) who consider the a dynamic lot sizing problem with 

bounded inventory and lost sales and use a polynomial algorithm to solve their problem. A different 

interpretation of the problem is described by Chu et al. (2013) who formulated a dynamic lot sizing 

problem for a single-product in which backlogging and outsourcing were allowed. For this research 

both warehouse and production bounds will be considered in the model as they contribute to the real-

life representation of the case study later in the research as was mentioned by Fan et al. (2021). The 

increased complexity related to including capacity constraints in the model is assumed to not make 

the problem insolvable but could affect the running time of the model. 

It is important to note that joint lot size and warehouse size problems are not the same as lot size 

models which consider inventory levels. In the classical lot size models, the optimal lot sizes are to be 

identified which minimize the total inventory costs and thus most often result in the lowest average 

inventory levels. The classical lot size models consider the inventory level in the objective function as 

a decision driver to order a new batch of products. The difference with the joint warehouse size and 

lot size optimization models is that the warehouse capacity is treated as a decision variable over time. 

In this case both the inventory level as well as the overall warehouse capacity are considered in the 

objective cost function. The goal is to identify the optimal lot and warehouse size such that the overall 

warehousing costs are minimized. The difference then is that the peak inventory levels are kept as low 

as possible, so that the required warehouse size can be minimized.   

Another problem classification within the lot sizing research field is the product range under 

consideration in the problem. Many research papers consider a single product instead of a multi-

product range in the researched problems as can be seen in the literature concept overview in Table 

1. The latter does increase the complexity of the problem in the dynamic lot sizing problem. The paper 

of Chen & Thizy (1990) states that the capacitated multi-product dynamic lot sizing problem is strong 

NP-hard to solve. Nevertheless, with the research objective in mind, it can be assumed that the lot 

sizing problem can best addressed in a dynamic, capacitated and in a multi-product environment. This 

will be the closest representation of the real-life scenario for a large manufacturing company in the 

food sector. Most papers discussed in this section of the literature research consider a single product 

range. Examples of research papers that do considered a multi-product range in their problem 

formulation are the papers of Cormier & Gunn (1996a) who propose multi-product lot size and 

warehouse size problem in continuous time,  Cormier & Gunn (1999) who consider a multi-product 

expansion model in continuous focussing on lot sizes and Minner (2009) who discusses three heuristics 
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to solve a capacitated multi-product dynamic lot size model. The models in these papers will be used 

as examples to formulate a multi-product problem.  

The relationship between lot size and warehouse size was already shortly discussed in the first 

paragraph of this section. This relationship between lot size and warehouse size is also embedded in 

literature as there are several papers that both study warehouse size and lot size decisions. However, 

this joint optimization is not as widely studied as the individual problem settings of the lot sizing and 

the warehouse sizing problem. The first research that jointly looked into optimizing lot sizes and 

warehouse size in continuous-time economic order quantity models was the paper of Cormier & Gunn 

(1996a) who studied a warehouse sizing problem with static demand, which considered inventory 

polices or lot sizes as a tool to minimize the overall warehousing costs. The problem focussed on a new 

warehouse which needs to be constructed. Cormier & Gunn (1996b) considered a similar problem 

environment, but focussed on balancing lot size, warehouse size and leased warehouse size. In their 

1999 paper Cormier & Gunn (1999) discussed a similar model which focussed on a warehouse 

expansion planning, considering constant demand growth. In their problem Cormier and Gunn did not 

consider warehouse renting costs or penalty cost for capacity expansion or contraction. The paper of 

Shi et al. (2018) looked into a dynamic warehouse size planning model considering contract flexibility. 

Their aim was to study the effect of contract flexibility on the subsequent warehouse size planning. 

For their problem formulation they considered two types of contracts, one long-term nominal capacity 

contract and one short-term flexible capacity contract which can be dynamically updated. Fan and 

Wang (2018) studied the warehouse sizing problem over a multi-period planning horizon and were the 

first to combine this with studying the dynamic lot size problem in a discrete time environment. Fan et 

al. (2021) extended their previous model by focussing on optimizing both short-term and midterm 

warehouse management decisions. This extension considered a basic leased storage size which could 

eventually be increased with additional storage size for a higher cost. A different interpretation of a 

similar problem was studied by Atamtürk & Hochbaum (2001) who studied decisions on lot-sizing, 

subcontracting and capacity acquisition. The problem setting is different from the research of Fan & 

Wang (2018), since Atamtürk & Hochbaum (2001) considered warehouses with a fixed capacity and 

the possibility to use subcontractors if the regular capacity is not satisfactory. Whereas Fan & Wang 

(2018) considered the entire warehouse capacity and operations to be carried out by a LSP.  

From the literature overview, it emerges that most lot size research papers consider demand to be 

deterministic. This assumption considers demand to be known in advance without any uncertainty. 

Whilst assuming that demand is known in advance without any uncertainty is not realistic itself, 

inventory models considering deterministic demand have proven to be robust with respect to data 

errors. An example of such a robust model is the well-known EOQ model from Ford Whitman Harris. 

All input parameters such as demand and holding costs are treated as known whilst in fact they are 

not, estimates of parameters are used to operate the model and demand forecast are considered to 

be 100% correct. Whilst, in reality the forecast will be an (close) estimate of the real value. As a result, 

the outcome of the model should be interpreted as an approximated value. The correctness of the 

outcome strongly depends on the correctness of the used demand forecast and the parameter 

estimations. This does not have to form a problem as the model looks at the high level required storage 

capacity. For example, where one product may be overestimated by the company, other products can 

be under forecasted which would balance the overall values. Nevertheless, even when data errors are 

included in inventory models, the outcomes are still representative since inventory models are resilient 

to data errors within a range of 20 to 30% (Taylor, 2006, p.738). Dagnzo (2005) confirms this statement 

by mentioning that decision variables and input parameters when estimated within 20-40% of the 

correct value, do not affect the outcome of the model. Hence the model outcome of deterministic 

inventory models with correctly estimated input parameters are robust to data errors. Even though 
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the model outcomes remain valid when parameters are estimated with an error percentage of 30%, 

the goal should be to estimate the parameters as close as possible to the true value. This research will 

consider demand to be deterministic and varying over time. The reason for this is that it has been 

widely used in the lot sizing research field. Moreover, the deterministic setting proves to be robust 

against data errors, so outcomes of the model would still be relevant for managerial insights.  

2.3. Scheduling problem 
The scheduling problem is a well-known problem in the field of production management. Scheduling 

problem optimization dates to the 1950s when the first problems were described with industrial 

application. Ever after the scheduling problem was introduced, it has been applied to many practical 

situations (Nogueira et al., 2019). The classical scheduling problem looks into what needs to be made 

at what times and by which resources (Cardon et al., 2000). Production scheduling is an important part 

of the supply chain as the production schedule greatly determines the production output from a 

factory. Scheduling which products, in which quantities are produced at what times will also affect how 

products will be stored further down in the supply chain. In an ideal scenario the production scheduling 

accounts for warehousing constraints in order to optimize the product flow throughout the supply 

chain. The scheduling problem assumes that a certain amount of jobs need to be performed on a 

number of machines which can be identical or non-identical, in most scheduling problems the main 

objective is to minimize the makespan of production (Balin, 2011). The makespan represents the 

completion time of the last job in the process. Having a short makespan relates to having a high overall 

utilization, hence the smaller the makespan the higher the throughput rate (Kashan et al., 2008).   

Scheduling problems can be divided into different categories, depending on the machine layout and 

job flow that is considered (Moon et al., 2002). Three main categories are the job shop problem, the 

flow shop problem and the open shop problem. A flow shop is a factory layout in which machines must 

be operated in a sequence. Jobs are required to start on an initial machine, after which they follow a 

path through subsequent machines in a strict order, until they have been processed by the final 

machine (Balin, 2011). On the contrary, in a job shop layout the order in which the jobs are processed 

by the machines is not relevant. Every job has certain operations that need to be performed in an order 

and not all jobs have to be processed by all machines (Balin,2011)). A production schedule is 

constructed based on the operations that need to be done, the processing time that it takes to perform 

a job and precedence requirements of every job. In the case that jobs do not have precedence 

constraints of other jobs, the shop layout is called an open shop (Balin,2011). The difference between 

a flow shop layout and a job shop layout is can be seen in Figures 2 and 3.  

 

FIGURE 2 FLOW SHOP LAYOUT EXAMPLE (OWEN-HILL, 2017)       FIGURE 3 JOB SHOP LAYOUT EXAMPLE (OWEN-HILL, 2017) 

Min & Cheng (2003) state that practical job shop and open shop problem under uncertain conditions 

can be simplified into a parallel machine problem. For this reason parallel machine scheduling 

problems have received much attention in the academic world over the last decades (Min & Cheng, 

2003). Another reason for the attention to parallel machine scheduling problems is that the parallel 

machine scheduling problem is considered to better represent the real-life production scenario 
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compared to the single-machine scheduling problem as most production companies make us of 

multiple machines in their production process. It was therefore decided to focus on the parallel 

machine scheduling problem in this thesis.    

The parallel machine scheduling research area can be divided into two main problem classes. The first 

being problems considering machines to be identical and the second class which considers machines 

to be non-identical. In a classical identical parallel machine scheduling problem the main objective is 

to minimize the maximum makespan of the machines. Karp (1972) proved that these scheduling 

problems are NP-hard to solve. Karp did this by changing the problem under study into a bi-partitioning 

problem. A popular extension of the classical machine scheduling problem is to consider set up times 

between jobs which are sequence dependent. Guinet (1993) proposed a MIP model to find the 

minimum overall completion time for this problem extension. Other popular research directions in the 

field of parallel machine scheduling problems are doing research to the problem and solving the 

formulated problem by means of metaheuristics such as the genetic algorithm, particle swarm 

optimisation or tabu search algorithms (J. Kim & Kim, 2021). An example of using metaheuristics to 

solve scheduling problems is the paper of Yin et al. (2017) who considered the identical parallel 

machine scheduling problem in a disruptive environment where machines can become unavailable for 

a certain amount of time due to break-downs or planned maintenance with the objective to minimize 

the total completion time of jobs under consideration. Polynomial time algorithms were proposed to 

solve the problem. Another example is the paper of Najat et al.(2019) who proposed a model which 

minimizes the number of late jobs whilst the system accounts for periodic maintenance on the 

machines, the authors propose a S-B-C 1 heuristic which combines the earliest due date and the 

minimum load rule to solve the according problem. The paper of Kim & Kim (2021) proposed a hybrid 

genetic algorithm which is combined with a travelling salesman problem based heuristic algorithm in 

order to solve a parallel scheduling problem which considers set up times to be sequence dependent. 

From the above-mentioned examples, it becomes clear that the parallel identical machine scheduling 

problem has been researched in many different directions and different algorithms have been 

proposed to solve the problems under study. 

Whilst, most research in the parallel machine scheduling research field considers the machines to be 

identical, in reality it is more common that machines are not identical (Balin, 2011). The amount of 

research conducted to non-identical parallel machines is limited compared to its identical counterpart. 

An example of a research paper in the non-identical paradigm is the paper of Balin (2011) which aimed 

to minimize the longest processing time for a non-identical machine scheduling problem and proposed 

a genetic algorithm to solve the problem. Another example is the paper of Li & Yang (2009) which 

minimized the total weighted completion time of different non-identical scheduling problems and 

discussed an approximation algorithm to solve the problems. Also the paper of Raja et al. (2008) looks 

into this problem in which the non-identical scheduling problem considering sequence dependent set 

up times was optimized with the objective to minimize the overall earliness and tardiness of the jobs. 

In order to solve the formulated problem a genetic algorithm-fuzzy logic approach was proposed and 

tested against the performance of other genetic algorithms. One more example is the paper of Hulett 

et al. (2017) who studied a non-identical scheduling problem which minimized the total tardiness and 

used particle swarm optimization to solve the formulated problem.  

The earlier discussed characteristics of the machine scheduling research field has led to the conclusion 

to focus on parallel machine scheduling problems with non-identical machines in this thesis. Because 

the topic has not been researched as extensive as its parallel counterpart and a non-identical parallel 

machine set-up is more common in practice which is a relevant feature taking into consideration the 

case study at a later stage in this thesis.   
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2.4. Literature concept overview 
The main concepts of each paper considered in this literature review have been mapped in Table 1. 

Having a clear overview of main concepts discussed in every paper is helpful for the author in the 

process of identifying a research gap and finding useful references during the writing process. From 

Table 1, it emerges that a significant amount of research has been conducted to either the lot sizing 

problem or the warehouse sizing problem but a joint optimization of the two is scarce. Table 1 also 

shows that a multi-product range is only considered in merely four research papers and none of these 

papers optimize both the warehouse as well as the lot size problem. A reason for this low number of 

papers could be that considering a multi-product range does introduce new forms of complexity to the 

model which need to be considered when the mathematical model is constructed and might make the 

problem NP-hard. Another reason is that classically most inventory models were developed under the 

assumption that a company produces and stores merely a single product. Whilst in reality this 

assumption does not hold. Most companies have a large product portfolio to comply with different 

customer needs and in this way sell different products to the same customer (Mousavi et al., 2014).  

In the studied production scheduling literature, the papers were selected on the parallel or single 

machine concept and the consideration of identical or non-identical machines. The solution approach 

of every paper is also depicted in Table 1. From Table 1 it emerges that most used papers consider 

parallel identical machines. A reason for the limited amount of research in the non-identical parallel 

machine scheduling field could be the increased complexity of considering non-identical machines 

compared to identical machines. As was mentioned in the literature review, the distribution of the 

amount of research focussed on non-identical and identical machine scheduling is not representative 

for the number of identical machines used in practice (Balin, 2011). For this reason, it was decided that 

it was most interesting to consider non-identical parallel machines in this thesis, taking the case study 

into consideration. Different solution approaches are proposed in the research papers used for the 

literature review. Nevertheless, the genetic algorithm or heuristics based on the genetic algorithm are 

a popular solution method for the scheduling problems under consideration.  
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2.5. Research gap & Societal relevance 
Limited to the conducted literature research it became clear that to the best of the author’s knowledge 

there does not exist a mathematical model yet, which jointly optimizes lot sizing, production 

scheduling and the warehouse capacity setting for a multi-product range in a multi-period setting 

considering dynamic deterministic demand. This research gap was identified by means of mapping the 

used concepts in literature which are displayed in Table 1.  

This thesis aims to fill this research gap by proposing a Mixed-integer linear programming (MILP) model 

which jointly optimizes dynamic lot sizes and warehouse capacity for a multi-product range as well as 

optimizing the production schedules for the products under study. The papers of Fan & Wang (2018), 

Fan et al. (2021) and Cormier & Gunn (1996a) will be used as inspiration for MILP models concerning 

the joint optimization of lot sizes and warehouse capacities. In order to find a suitable method to 

include a multi-product range in the proposed MILP model, the papers of Cormier & Gunn (1999), Alle 

& Pinto (2002), Minner (2009) and Vaziri et al. (2018) will be used as inspiration. Finally, the papers of 

Kim and Lee (2012), Balin (2011) and Kim & Kim (2021) will be used as inspiration to propose and 

include a non-identical parallel machine scheduling MILP in the combined MILP.   

Besides filling a gap in literature, proposing a combined MILP model which optimizes the three 

different problems for a multi-product range also has other benefits. The first benefit of the proposed 

model is that the multi-product aspect of the MILP makes the model suitable for case studies based 

on real-life situations in which multiple products are produced and stored. This is a new benefit of the 

proposed model, since from the literature it emerged that combined optimization models in these 

problem areas were mostly focussed on a single product. Having a mathematical model which is merely 

focused on a single product can verify the interactions of the model but cannot validate the model’s 

application in a real-life situation and help companies gain useful insights, as most manufacturing 

companies produce more than one product type (Mousavi et al., 2014). The ability of the new model 

to be used in case studies should help generate useful managerial insights for logistic managers.  
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3. Research approach  
In this chapter the thesis research approach is discussed. This will be done by first highlighting the 

research objective and the research questions in section 3.1. Thereafter, the research approach and 

research methods used to answer the developed research questions are discussed in section 3.2.   

3.1. Research objective & questions 
The objective of this thesis is to answer the identified research gap by proposing two MILP 

programming models which optimize multi-period warehouse capacity problems and production 

scheduling problems for a multi-product range. Besides proposing these new models this thesis also 

has another objective, namely testing the integrated and sequential optimization models in a real-life 

scenario by means of a case study. In this thesis the case study will be carried out for a manufacturing 

company in the food industry, which will be carefully constructed. The second research objective will 

help to assess if the proposed models can eventually be used by manufacturing companies to improve 

the coordination between production scheduling and warehousing teams in the future. The research 

objectives should be completed when the proposed main research question can be answered. The 

main research question entails:  

“How does the coordination between production and warehouse decisions affect the product 

flow between factories and warehouses for manufacturing firms?” 

In order to find an answer to the main research question, sub research questions are formulated to 

substantiate the main research question. The sub research questions are:  

1. What are available warehouse sizing and production scheduling optimization models in 

literature?   

2. How can mathematical warehouse sizing models be extended from a single to a multi-product 

range?  

3. How can a warehouse optimization model and a production scheduling optimization model be 

merged? 

4. How do production flows from a factory affect warehousing strategies?  

5. How do the models’ input parameters affect the outcome of the proposed models?   

6. To what extend does the model reflect the real-life scenario for Kraft Heinz?  

3.2. Research approach & methods 
Each sub-research question will need to be answered in order to find an answer to the main research 

question. Finding an answer to each sub-research question will be done in the sequence in which they 

are listed in the previous section. This is necessary since the answer to the first research question is 

required to find an answer for the subsequent research questions. 

3.2.1. Literature review 
The first three sub research questions will be answered through a literature review. A literature review 

will be performed, since this will form the basis of knowledge on which this thesis builds upon in a later 

stage. The literature review is a desk research, which will be carried out mainly through articles found 

on Scopus and Google Scholar. Backward and forward snowballing will used in order to extend the 

number of relevant papers. The literature review will help the author to describe the state of the art 

in the respective research areas and elaborate on the research gap. The literature review also serves 

the purpose of elaborating on the key concepts used in this thesis. These key concepts are dynamic lot 

sizing, the warehouse capacity problem and the production scheduling problem. In the end of the 

literature review, the concepts will be linked to each other to find identify the research gap. Once the 
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first research questions are answered, the mathematical models can be constructed. The basis for this 

also lies in the literature research, as the information on how to construct a mathematical model is 

obtained by combing knowledge from several other research papers.  

3.2.2. Mathematical modelling 
The next step in this research approach is setting up the mathematical models, by making use of the 

answers to the second and third sub research question. The first step in this process is making a 

detailed problem description which sketches the problem situation and introduces all parameters and 

variables. The input parameters and decision variables are retrieved via the performed literature 

research and via interviews from the manufacturing company under study. Once the problem is clear 

to the reader, the mathematical formulations can be introduced. This includes the proposing the 

objective function and constraints. The model description will be concluded with an elaboration on the 

modelling assumptions and limitations. When the problem is clarified on paper, the models can be  

prepared in an optimization program. Finally, the interaction between the decision variables and the 

model outcomes can be verified by means of a simple numerical test setting.  

Modelling technique 
In this thesis it is chosen to formulate the problems as a MILP model. A MILP model is a linear model 

in which some of the variables can only take on integer values. The MILP approach was chosen as it 

seemed most fitting to the nature of the two problems. The fact that both problems concern the order, 

production and storage quantities of a range of products makes it a requirement these variables can 

only take on integer values. Additionally, the multi-period warehouse capacity problem introduces 

capacity expansion and contraction decisions which can be modelled by making use of boolean 

decision variables. The choice for using a MILP model is also supported by literature as the paper of 

Fang & Wang (2018) also uses a MILP model for a single product range of the problem. The same holds 

for the papers of Lee et al. (1999), Lee (2005) and Belvaux & Wolsey (2001) who propose MILP models 

to optimize dynamic lot size problem and the papers of Bradley & Arntzen (1999), Lee & Elsayed (2005) 

and Sazvar et al. (2016) who use MILP models to optimize the warehouse sizing problem.            

Optimization programme  
In this thesis it is chosen to use IBM CPLEX optimizer using Optimization Programming Language. CPLEX 

is an optimization program that can solve large optimization problems via multiple programming 

languages (C++, Java, C#) and programmes (Python, MATLAB, Excel). CPLEX is suitable for mixed integer 

programming amongst other programming problems (“IBM CPLEX Optimizer,” n.d.). CPLEX uses a 

branch and cut algorithm to find the optimal values for the proposed model(“IBM CPLEX Optimizer,” 

n.d.). The branch and cut algorithm is a combination of the well-known branch and bound algorithm 

which is also used in the paper of Erenguc & Aksoy (1990) and combines this algorithm with cutting 

planes or ‘polyhedral algorithms’ which were also used by Atamtürk & Küçükyavuz (2005) to identify 

the optimal values. Combing the two algorithms into the branch and cut algorithm has proven to be a 

successful and efficient method to optimally solve many different integer programming problems 

(Naud et al., 2020). Other research papers have used other solving algorithms to optimize formulated 

warehouse or lot size problems. An example of such a research is the paper of Lowe et al. (1979) who 

use a greedy network flow algorithm to solve the warehousing problem. Ahujaakun & Hochbaum 

(2008) propose a minimum cost flow algorithm to solve a dynamic lot sizing problem. What these 

examples display is the fact that optimization problems can be solved by means of different algorithms 

depending on the problem’s characteristics. In this thesis the MILP problem nature and the availability 

of CPLEX as an optimization program resulted in the usage of the branch and cut algorithm to find the 

optimal solution. The effectiveness of this algorithm is confirmed by Naud et al. (2020).    
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3.2.3. Numerical tests 
Once the models have been completely verified, numerical tests will be performed with the model in 

order to test the model’s solving capabilities and effectiveness. To this end, the number of products, 

periods and machines under consideration will be extended as well as all the related input parameters 

up to the point that the problem becomes insolvable, or the running time exceeds a predetermined 

amount. The running time of the model will be mapped by increasing the data set under consideration. 

In this way the effects of increasing the data set on the models’ running times can be tested. This can 

help to identify what the maximum effective solving capability of the model is and to find at till which 

extend the model is useful for solving warehousing and scheduling problems.  

Besides increasing the input data set for the model, an extensive sensitivity analysis will be performed 

as well. The aim of this analysis is to find out how the values of input parameters affect the values of 

the objective function and according decision variables. This will be achieved by changing the values 

of the input parameters one by one and mapping what the effects are for the objective function and 

decision variables. Studying the effects of changing input parameter values on the objective function 

and decision variables should help generating useful insights for the concluding managerial 

recommendations as well as finding an answer to the fifth sub research question.        

3.2.4. Case study 
After the model is completely verified and the models’ behaviour have been thoroughly analysed, the 

case study will be studied to gain insight into the applicability of the model to a real-world case and to 

generate managerial insights. Case studies have been widely used as a method to test a model in a 

real-life scenario (Patton & Appelbaum, 2003). In this thesis a single Kraft Heinz case will be studied in 

order to obtain useful insights for Kraft Heinz to improve their ordering strategy and to further test the 

proposed models. It should be noted that carrying out a single case study does have certain limitations, 

mostly being a reliability issue, since the model is only tested in one single case (Kanama & Kido, 2016). 

Nonetheless, it was decided to carry out a single case study due to the limited time. 

The iterative process of setting up the case study will be supervised by Paul Strijers as a Kraft Heinz 

representative. Data will be provided through interviews and via the company’s data systems to 

accurately sketch the context in which the model will be tested. The case study shall be carried out on 

a selected product range in order to test the models. The obtained results will then be analysed and 

used to generate managerial insights. The interpretation of the case study results should lead to 

answers for research question four and six. When all the sub research questions have been answered, 

an answer to the main research question can be provided as well.  
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4. Problem description  
In this chapter the problem background will be elaborated on, this will be done by first discussing the 

problem relevance in section 4.1. In the subsequent section 4.2 a more detailed and formal problem 

description of the joint warehouse capacity and lot sizing problem and the production scheduling 

problem will be provided. Providing a detailed description helps the reader to fully understand the 

problem and to understand what steps need to be taken and which assumptions will need to be made 

when constructing the mathematical model. This problem description can be considered as the 

starting point of the mathematical model. Besides the problem descriptions, both models’ 

assumptions will be listed in section 4.3.   

4.1. Business relevance 
In an ideal scenario, manufacturing companies plan productions which match the demand in a period 

and can be produced, transported and stored within the available logistic capacity at hand. In reality 

however, this is not always the case. For example, at the company under study, orders are placed by 

demand planners who request a quantity of products in a period, only taking into consideration the 

needs of the countries who request the products. These order requests are thereafter checked by the 

supply planning team which translate the orders of different countries into production plans for a 

factory. These production plans are optimized taking into consideration the factory’s availability, the 

production constraints and the order request of the different countries. Once a production plan is 

made it is handed over to the factory which will produce according to the shared production plan. 

When the production is completed, the finished goods need to be moved to a warehouse where they 

will be stored. The warehouse itself has a capacity which is fixed for a period but can be increased or 

decreased over time. The last two activities are carried out by the execution team as can be seen in 

Figure 4.  

 

FIGURE 4 CURRENT ORDER GENERATION SEQUENCE 
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From the above description it becomes clear that the planning and execution teams are not always 

aligned. The planning team can plan productions which fall within the production constraints, but do 

not consider the warehouse capacity constraints in place. Hence, the execution team needs to adapt 

by finding short-term alternative solutions if available capacity is insufficient. In such a set-up, the 

execution team is dependent of the plans generated by planning team. This could result in unforeseen 

issues in the factory outbound process as well as the warehouse inbound process. The issues resulting 

from the unsynchronized production planning process are indicated with a spike mark in Figure 4. To 

prevent similar issues in the future, three alternative manufacturing order strategies will be proposed 

in this thesis which generate orders based on shared forecast and considers both production and 

execution constraints. The proposed ordering strategies should help close the gap between planning 

and execution teams and decrease the number of unforeseen issues in the product flow between 

factories and warehouses in the future.  

The proposed ordering strategies make use of warehousing and production scheduling optimization 

models which will be discussed in the following chapter. Two out of the three ordering strategies use 

a sequential set-up. In other words, first one model is optimized, after which the output of the first 

model is used as input for the second model in the sequence. The sequential ordering strategies 

represent the common setting that there is hardly any interdepartmental communication. For the 

Sequential Warehouse Strategy this means that first an order will be placed by the warehouse team 

based on the demand and their respective warehousing constraints, after which the order will be 

pushed to the planning team who will translate the order into a production schedule if it can be 

managed within the production constraints. This ordering strategy is displayed in Figure 6. The second 

sequential ordering strategy has the opposite sequence in which first the planning team optimizes the 

production schedule and pushes the order quantities to the warehouse team in the second step. This 

strategy is displayed in Figure 5 and is called Sequential Production Strategy.  

 

                                                        

FIGURE 5 SEQUENTIAL PRODUCTION STRATEGY  FIGURE 6 SEQUENTIAL WAREHOUSE STRATEGY  FIGURE 7 SIMULTANEOUS ORDER STRATEGY 
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The Simultaneous Ordering Strategy simultaneously optimizes orders for both the planning and 

execution departments. In a simultaneous ordering strategy, an interdepartmental decision is made 

regarding the optimal order quantities which satisfy both the production as well as the warehouse 

constrains in place. The simultaneous ordering strategy represents the setting in which there is central 

coordination over the production and warehousing departments. The simultaneous ordering strategy 

is conceptualized in Figure 7. The three ordering strategies will be tested and  compared in a case study 

in order to find the superior strategy for manufacturing companies.  

The case study provides a practical setting to test the three strategies and analyse the effect of the 

respective strategies on the product flows between the factories and warehouses. In the case study 

the added value of solving the two models simultaneously over sequential optimization can be 

demonstrated. This demonstration is relevant for logistic managers in the manufacturing supply chain 

as the effects of enhancing central coordination through simultaneous optimization can be displayed 

and tested in a real-life example. The goal is to find the optimal ordering strategy with simultaneous 

optimization as in literature the papers of Atamtürk & Hochbaum (2001) and Bradley & Arntzen (1999) 

and Fan & Wang (2018) stated that this leads to superior results. The benefit of simultaneous 

optimization is the concurrent consideration of the two objective functions and all constraints in place. 

By considering all the relevant factors at the same time, the model is able to make optimal trade-offs 

regarding product quantities, available capacity, timing and cost, whilst ensuring a feasible product 

flow. In this way the optimal strategy for the studied company should will be identified. In the case 

study the hypotheses from literature will be either confirmed or rejected for the developed production 

flow models. The simultaneous model optimization will be carried out by optimization software as the 

studied problem is too large and complicated to be solved by hand. The optimization problem has over 

50.000 variables that need to be accounted for and optimized in order to find the optimal warehousing 

and production scheduling strategies. Each added product or period introduces a set of new variables 

that needs to be optimized. Solving similar problems by hand would require full-time commitment 

from an employee. Even then finding the optimal strategy will be difficult or even impossible. For this 

reason, it is better to model the problems in optimization software which can solve the integrated 

problem in minutes instead of days or weeks. By preparing the models in software programs, different 

scenarios can be tested in order to find optimal strategies which are robust. Moreover, the models can 

be run on a daily bases to ensure that the most recent data is used when finding the optimal strategies. 

In this way support is provided for logistic managers to improve the product flows between factories 

and warehouses. 
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4.2. Formal problem description 
The formal problem description provides a more detailed description of the problems under 
consideration. The detailed description of the problem will be used as a starting point for the 
mathematical problem that is to be proposed. In this section the lot size and multi-period warehouse 
problem and the production scheduling problem are described individually.  
 

4.2.1 Lot size & multi-period warehousing problem 
For this problem we consider a manufacturing company that produces a variety of products in a single 

factory. Finished products need to be stored in a warehouse which is not located at the factory. These 

warehouses are not owned by the manufacturing company itself, but the manufacturing company 

leases warehouse capacity from a LSP warehouse operator for a certain price r per pallet storage space. 

The leased capacity is agreed upon via a contract for a certain time interval T. This time interval T can 

be subdivided into smaller sessions t which all have a similar length. At the beginning of each session 

the manufacturing company can choose to either increase, decrease or keep the leased warehouse 

capacity as it is. The leased warehouse capacity w is bounded by the actual maximum capacity of the 

LSP warehouse provider and the minimum agreed warehouse capacity that is to be leased by the 

company. During the session t the warehouse capacity w is a fixed value, it can only be changed at the 

start of a session t. The length of the sessions t and the decision moments are agreed upon by the 

production company and the LSP as the times when the production company can change its warehouse 

capacity w against a certain penalty price p.  

 

FIGURE 8 SUPPLY CHAIN OVERVIEW (KRAFT HEINZ, 2020) 

On a product level we consider a set of products that should be produced before a due date. Products 

are ordered in order quantities x against fixed ordering costs k. When these products enter the 

warehouse, the products are being put into place for handling costs g and they stay in place against 

holding cost h per session t. The demand d for each product is known and no backlog is allowed. The 

company can produce multiple products at a time, but every factory has a fixed production capacity 

per period. Once a product is ready, it will be transferred to the warehouse where it is stored. The 

warehouse has a maximum inbound capacity b per period t. At the warehouse, at time 0, there is 

already stock of the different products. Task of the decision maker is to find the optimal warehouse 

capacity for every interval t such that there is sufficient capacity to store all products for that period, 

but there is no excessive capacity which can result in unnecessary costs. Additionally, the decision 

maker also wants to find the optimal ordering quantity x for the set of products, so to balance 

production and warehousing cost in the supply chain. The optimal values for warehouse capacity and 

lot sizes will be solved simultaneously, since the papers of Atamtürk & Hochbaum (2001) and Bradley 

& Arntzen (1999) proved that making warehouse and lot size decisions simultaneous returns better 

solutions, than solving the sub-problems sequentially.  
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4.2.2. Production scheduling problem  
The production scheduling problem of parallel machines represents the problem to determine which 

products should be produced on which lines at what time in a session t at the factory. The product 

demand will be translated into orders via the lot size and warehouse problem, these product orders 

will thereafter be translated into production flows, which will be moved to the warehouse where the 

products will be stored before they are sent out to the customers.  

 

FIGURE 9 ILLUSTRATIVE EXAMPLE PARALLEL MACHINE SCHEDULING (Xu & Nagi, 2013) 

The aim for the production scheduling problem is to produce all the orders x in a session t. This means 

that all production runs should be finished before the due date D. In the scheduling problem there are 

j independent products which can be produced on m machines which are assumed to be always 

available. Every production line m has a production rate PRj for a product j which in known in advance 

and the same for every session. Every production line m is available between the release date R and 

the due date D in a session t. A production run for product j consists of a set up time S which is 

dependent of the product that was produced prior to product j on production line m and the actual 

production time PTj which depends on the order of product xj and the production rate PRj of the 

machine m for product j. For every first product j which is produced on production line m no set-up 

time S is required. Once a production run in finished the production line m can be immediately set-up 

for the next product j. A product j can only be produced once in every session and only on a single 

machine m. Production lines can run in parallel, but only a single product can be produced on a 

production at the same time, as no overlap between production runs is allowed. The goal is to produce 

order xj within session t before the set due date D against the lowest possible production and set up 

costs. The costs are computed by multiplying the production and set-up times by the respective 

variable production and set-up costs.   

4.3. Problem assumptions 
The proposed problems do make assumptions with regards to the used data. These assumptions make 

it easier to translate the real-life situation into a problem, but on the other side also negatively affect 

the real-life representation of the problem as the problems is a simplification of reality. This holds with 

the statement of George Box who said: “All models are wrong, but some are useful” (Box, 1976). Who 

emphasized that it is impossible for scientific models to capture the complexity of reality in a model. 

The aim of this thesis is to come up with a model which is solvable, but at the same time can be used 

to generate useful insights in current production and warehousing operations. In order to accomplish 

this, a number of assumptions were made for the formulated lot size and multi-period warehouse 

problem and the production scheduling problem, these assumptions can be found below. It should be 

noted that for the combined problem, all assumptions for both the individual problems hold.  
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The lot size and multi-period warehouse problem assumes that demand is discrete deterministic and 

varies over time. This means that the demand is known in advance with certainty for every period in 

the future, during a period the demand is considered to be constant, but every period the demand can 

be different. At most one order can be placed in a period, products can either be included or excluded 

from this order. The problem assumes that an order can be fulfilled in the same period as it is placed. 

The placed order in a period should be produced, nothing more or less than the order can be produced. 

Full pallets will be used as a unit of measure for all parameters and decision variables. In other words, 

order quantities and inventory levels are measured as full pallets. The arrival and departure 

distributions within a period t are not accounted for as the problem merely considers into the overall 

quantities handled per session t.  

Besides the above-mentioned assumptions, three additional assumptions were made for the 

production scheduling problem. The production scheduling problem assumes that all production lines 

are always available between the release date R and due date D, since no maintenance or non-

availability of lines is considered. Furthermore, the problem looks at complete productions runs, 

different jobs for each production are not considered. Moreover, the production model assumes that 

there are sequence dependent set-up times between production runs and that the first production run 

produced on a line in every period does not require set-up time. This assumption is also frequently 

used in production scheduling literature of which the paper of Kim & Kim (2021) is an example. A final 

assumption made is that that raw materials are always available.  
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5. Model design 
This chapter will introduce the models used in this thesis, starting with the conceptual model in section 

5.1. The conceptual model gives a clear overview of the models’ interactions and the environment it 

operates in. Section 5.2 will elaborate on the three mathematical models and their respective 

interpretation.  

5.1. Conceptual model  
A conceptual model is a helpful tool to understand how the input parameters are being used to 

optimize the objective function of the model under study within the given constraints. Additionally, 

the conceptual model forms the basis of the models’ verification steps later in this chapter. The 

conceptual modelling phase succeeds the system description of chapter four which is in line with the 

model design steps from Robinson (2011) that are as depicted in Figure 10.  

 

FIGURE 10 MODEL DESIGN STEPS (ROBINSON, 2011)  

Based on the formal problem descriptions the conceptual model was realized as depicted by Figure 11. 

The conceptual model displays the simulation environment of the proposed warehousing and 

production scheduling models. The starting point of the conceptual model is the inflow of information 

as input parameters for the model. The input parameters can be subdivided into three main types of 

parameters, being the product demand, the warehouse cost parameters which concern different 

warehouse costs such as penalty, holding and handling costs and finally the production scheduling 

parameters such as production rates, set-up times and production cost. Based on this set of input 

parameters the mathematical model will be optimized in order to find the optimal values for the 

decision variables. The mathematical model consists of an objective function in which all cost drivers 

are captured. The aim is to minimize this objective function such that the overall warehousing and or 

production costs are minimized whilst satisfying all the set constraints. The set constraints are in place 

to ensure that inventory and warehouse levels are balanced between periods and that inventory levels 

are not allowed to exceed the warehouse capacity. The production scheduling constraints ensure that 

sufficient productions are planned to meet the respective demand in each period within the given 

capacity constraints. Besides balancing inventory and warehouse sizes between periods and ensuring 

sufficient productions, the constraints also ensure that decision variables stay within the set bounds 

and capacity constraints. Moreover, the constraints ensure that the boolean variables are 0 in case 

that nothing happens and take on value 1 when an expansion, contraction or ordering period takes 

place in the model.  
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The mathematical model is optimized by means of an optimization algorithm in IBM ILOG CPLEX 

Optimization Studio. This optimization algorithm uses the branch-and-cut algorithm to find optimal 

values for decision variables. This algorithm combines the branch and bound algorithm with a 

polyhedral algorithm to reach the optimal values (Naud et al., 2020). The branch and cut algorithm 

uses the cutting planes from the polyhedral algorithm to restrict the solution space and then makes 

use of the branch and bound technique to arrive at the optimal solution. This algorithm type is suitable 

to solve linear problems involving integers, hence the model under study. Once the mathematical 

model is optimized by means of a solver, the resulting decision variables and the overall costs can be 

interpreted. Making interpretations of the outcomes of the model will result in managerial 

recommendations for the factory and warehouse under study. The individual cost parameters and the 

expansion and contraction decisions will be studied in an extensive sensitivity analysis and can be 

useful to show the effects of changing certain parameters and agreements with the LSP on the total 

costs as well as on the factory and warehouse performance.    

 

FIGURE 11 CONCEPTUAL MODEL OF COMBINED OPTIMIZATION MODEL 
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5.2.  Mathematical models  
Insights from the conceptual model and the formal problem description form the basis for the 

mathematical models proposed in this section. The lot size and multi-period warehouse model and the 

production scheduling model are first discussed individually after which the two models are combined 

into an integrated mathematical model.  

5.2.1. Lot size and multi-period warehouse model  
The objective function captures the different cost drivers for the warehouse situation. Part of the 

objective function is summed for every period T as well as for every product J and part of the objective 

function is only summed over every period T. The reason for these two types of summations is that 

some parameters have a different value for each product for every period, whilst other parameters 

are merely measured per period. The 12 constraints are listed below the objective function, the 

constraints represent conditions that the optimal solution must satisfy. The constraints represent both 

practical warehouse constraints as well as variable and parameter constraints. The individual 

constraints will be elaborated on more thoroughly below the mathematical model.  

For each period t ∈ { 1, … … … , 𝑇}, and each product j ∈ { 1, … … … , 𝐽}, the following parameters and 

decision variables are defined. 

Parameters 

• Dtj Demand in period t for product for product j 

• K Fixed ordering cost 

• H Holding cost of a product per period t 

• G Handling costs per product j 

• P Fixed cost of changing the warehouse size  

• R rental cost per unit warehouse size at per period t 

• N Maximum warehouse inbound capacity per period t  

• 𝐼𝑗
0 Initial inventory at t=0 for product j 

• B Maximum warehouse inbound capacity in overtime per period t 

• Wmax Maximum warehouse capacity available  

• Wmin Minimum warehouse capacity that should be leased 

• F Variable inbound cost per pallet in OT 

• SSj The required safety stock level for every product j 

Decision variables 

• xtj Order quantity of product j in period t 

• itj Inventory level of product j at the end of period t 

• wt Warehouse size at the end of period t 

• ut Warehouse size expansion at the beginning of period t 

• vt Warehouse size reduction at the beginning of period t 

• lt Inbound pallets handled in overtime  

• yt Binary variable for placing an order in period t 

• zt+Binary variable for warehouse size expansion in period t 

• zt-Binary variable for warehouse size expansion in period t 
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Objective function and constraints 

(1) L&WS Min∑ (∑ ( 𝐻𝑖𝑡𝑗 +  𝐺𝑥𝑡𝑗) + 𝐾𝑦𝑡 +  𝑃(𝑧𝑡
+ + 𝑧𝑡

−)𝐽
𝑗=1 + 𝑅(𝑢𝑡 + 𝑣𝑡 + 𝑤𝑡) 𝑇

𝑡=1 + 𝑙𝑡𝐹) 

Such that  

(2)  𝑖𝑡−1,𝑗 + 𝑥𝑡𝑗 − 𝐷𝑡𝑗 =  𝑖𝑡𝑗                          ∀ t, j 

(3) 𝑤𝑡−1 + 𝑢𝑡 − 𝑣𝑡 =  𝑤𝑡                                ∀ t, j 

(4) ∑ 𝑖𝑡𝑗
𝐽
𝑗=1 ≤  𝑤𝑡                                                ∀ t, j 

(5) 𝑥𝑡𝑗  ≤  𝐷𝑡𝑇𝑗𝑦𝑡𝑗                                              ∀ t, j 

(6) 𝑢𝑡  ≤ ∑ 𝐷1𝑇𝑗
𝐽
𝑗=1 𝑧𝑡

+                                      ∀ t 

(7) 𝑣𝑡  ≤ ∑ 𝐷1𝑇𝑗
𝐽
𝑗=1 𝑧𝑡

−                                      ∀ t 

(8) ∑ 𝑥𝑡𝑗
𝐽
𝑗=1 ≤  𝑁𝑡 + 𝑙𝑡                                      ∀ t 

(9) 𝑙𝑡  ≤  𝐵𝑡                                              ∀ t 

(10)  Wmin  ≤  𝑤𝑡  ≤ Wmax                                     ∀ t 

(11)  𝑖𝑡𝑗 ≥ 𝑆𝑆𝑗                   ∀ t, j 

(12)   W0 = Wmin                          𝑡 = 0 

(13)   I0j = I𝑗
0                                                           𝑡 = 0,  ∀j 

 

𝑥𝑡𝑗 ≥ 0, 𝐼𝑡𝑗 ≥ 0,                                           ∀ t, j 

 𝑤𝑡 ≥ 0, 𝑢𝑡 ≥ 0, 𝑣𝑡 ≥ 0,                            ∀t 

𝑦𝑡 , 𝑧𝑡
+, 𝑧𝑡

−  ∈ { 0, 1},                                      ∀t 

Model interpretation 
The objective function (1) captures the cost drivers of warehousing such as the holding and handling 

cost per product per period, the fixed ordering cost, the warehouse renting cost and eventual overtime 

cost. The aim is to minimize this objective function whilst satisfying all the listed constraints. 

Constraints (2) and (3) ensure that the inventory and warehouse level in the coming period equals 

what was added or subtracted from the level of the previous period. These constraints ensure the 

warehouse capacity and inventory levels are balanced between subsequent periods. Constraint (4) 

ensures that the sum of inventory in the warehouse cannot exceed the warehouse capacity in the same 

period. This would be the constraint that bounds the inventory level in the model. Constraint (5), (6) 

and (7) ensure that the binary variables take on a value of 1 in case of an ordering, expansion or 

contraction period and 0 if not. Constraint (5) represents that the ordered quantity of product j in 

period t should be smaller than the forward-looking demand of that product (DtTj). This constraint only 

holds when Yt is an ordering period. Constraints (6) and (7) ensure that both ut and vt should be smaller 

than the total demand (D1T) when it is an expansion or a contraction period. Constraint (8) makes sure 

that the ordered or inbound quantity xj to the warehouse does not exceed the available unloading 

capacity of that warehouse in a period, if necessary, the company can use overtime inbound capacity 

lt to increase the warehouse inbound capacity up to a limit. Constraint (9) represents the upper bound 

of possible inbound overtime that can be used in a period t. Constraint (10) represents the minimum 

and maximum capacity the warehouse can take on. Constraint (11) ensures that the inventory level of 

every product should never be below the agreed safety stock level. Constraints (12) and (13) set the 

initial warehouse capacity and inventory levels at time t=0.  
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5.2.2. Production scheduling model  
For each period t ∈ { 1, … … … , 𝑇}, each product j ∈ { 1, … … … , 𝐽}, each product 𝑖 ∈ { 1, … … … , 𝐽},  and 

each production line m ∈ { 1, … … … , 𝑀}the following parameters and decision variables are defined.  

Parameters 

• Pjm Production rate of product j on production line m  

• Sij Setup time for product j, when product j is produced directly after product i  

• D Due date in period t  

• R Release date in period t   

• SC Set-up cost per time unit for a machine  

• PC Production cost per time unit for a machine 

• M is big number M 

Decision variables 

• aijmt Binary variable which takes the value 1 if product j is produced after product i on 

production line m in period t, otherwise it takes on 0. A0jmt will be the first product produced on 

a production line.  

• stjmt Starting time of production for product j on a machine m in period t  

• ptjmt Production time of product j on production line m  

• xjt Ordered quantity of product j in period t  

So, a3214 =1 if machine 1 produces product 2 after product 3 in the 4th period, A3214 is 0 if this is not 

the case.  

Objective function and constraints  

(1)  Minimize   ∑ (𝑇
𝑡=1 ∑ ∑ ∑  𝑎𝑖𝑗𝑚𝑡( 𝑆𝑖𝑗𝑆𝐶 + 𝑃𝐶𝑝𝑡𝑗𝑚𝑡)𝑀

𝑚=1 )
𝐽
𝑖=1

𝐽
𝑗=1    

Such that 

(2)  ∑ ∑  𝑎𝑖𝑗𝑚𝑡  𝑀
𝑚=1

𝐽
𝑗=1 ≤ 1          ∀ t, i ≠j 

(3)  ∑  𝑎0𝑗𝑚𝑡
𝐽
𝑗 ≤ 1          ∀ t, m 

(4)  ∑  𝑎𝑖𝑗𝑚𝑡
𝐽
𝑖 =  ∑  𝑎𝑗𝑖𝑚𝑡

𝐽
𝑖                                                     ∀ t, j, m, i ≠j 

(5)  𝑎𝑖𝑖𝑚𝑡 =  0                                        ∀ t, i, m 
(6)  𝑠𝑡𝑗𝑚𝑡 ≥  𝑠𝑡𝑖𝑚𝑡 +  𝑝𝑡𝑖𝑚𝑡  +  𝑆𝑖𝑗 − 𝑀(1 −  𝑎𝑖𝑗𝑚𝑡)         ∀ t, i, j, m  

(7)  𝑋𝑗𝑡 = ∑ ( 𝑝𝑡𝑗𝑚𝑡  ∗  𝑃𝑗𝑚  )
𝑀
𝑚=1                            ∀ t, j 

(8)  𝑝𝑡𝑖𝑚𝑡  ≤ 𝑀 ∗ ∑  𝑎𝑗𝑖𝑚𝑡
𝐽
𝑗         ∀ t, i, m 

(9)   ∑ 𝑥𝑡𝑗 ≥𝑇
1  ∑ 𝑑𝑡𝑗 

𝑇
1          ∀ t, j 

(10) 𝑅 ≤   𝑠𝑡𝑗𝑚𝑡 +  𝑝𝑡𝑗𝑚𝑡  ≤  𝐷        ∀ t, j, m 

 
 𝑎𝑖𝑗𝑚𝑡  ∈ { 0, 1}                       ∀ t, i, j, m 

  𝑠𝑡𝑗𝑚𝑡 ≥ 0, 𝑝𝑡𝑗𝑚𝑡 ≥ 0,       ∀ t, i, j, m 

  𝑥𝑗𝑡 ≥ 0           ∀ t, j 
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Model interpretation 
The objective function (1) is aimed at minimizing the overall production and set-up costs for all 

production lines m in all periods t. Costs for set-up or production are only counted when binary variable 

aijmt takes on the value one for the specific combination of the product, production line and period. 

Constraint (2) ensures that a product j is produced at most once in a period. Constraint (3) ensures that 

at most one product j can be produced first on every production line. Constraint (4) and (5) ensure that 

no similar products are scheduled twice in the same period and that every sequence combination is 

unique. Constraint (6) ensures that the next production can only start once the previous production 

on a production line has been completed and the line is set-up for the next run. Constraint (7) is in 

place to ensure that the scheduled production plan exactly fulfils the order for product j in a period. 

The constraint indicates that if a product j is produced on machine m, the production time multiplied 

with the production rate should be equal to the order quantity of the product j. Constraint (8) ensures 

that only a production time is assigned to production runs if they are included in the production 

schedule. Constraint (9) ensures that sufficient products are ordered and produced in order to cope 

with the demand. Constraint (10) ensures that all completion times should end between the release 

date and the due date.  

5.2.3. Simultaneous optimization model 
For each period t ∈ { 1, … … … , 𝑇}, each product j ∈ { 1, … … … , 𝐽}, each product 𝑖 ∈ { 1, … … … , 𝐽},  and 

each production line m ∈ { 1, … … … , 𝑀}the following parameters and decision variables are defined.  

Parameters 

• Pjm Production rate of product j on production line m  

• Sij Setup time for product j, when product j is produced directly after product i 

• D Due date in period t  

• R Release date in period t   

• SC Set up cost per time unit for a machine 

• PC Production cost per time unit for a machine  

• M is big number M 

• Dtj Demand in period t for product for product j 

• K Fixed ordering cost 

• H Holding cost of a product per period t  

• G Handling costs per product j 

• P Fixed cost of changing the warehouse size  

• R rental cost per unit warehouse size per period  

• N Maximum warehouse inbound capacity per period t  

• 𝐼𝑗
0 Initial inventory at t=0 for product j 

• B Maximum warehouse inbound capacity in overtime per period t 

• Wmax Maximum warehouse capacity available  

• Wmin Minimum warehouse capacity that should be leased 

• F   Variable inbound cost per pallet in OT 

• SSj The required safety stock level for every product j 
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Decision variables 

• aijmt Binary variable which takes the value 1 if product j is produced after product i on 

production line m in period t, otherwise it takes on 0. A0jmt will be the first product produced on 

a production line.  

• stjmt Starting time of production for product j on a machine m in period t  

• ptjmt Production time of product j on production line m  

• xtj Order quantity of product j in period t 

• itj Inventory level of product j at the end of period t 

• wt Warehouse size at the end of period t 

• ut Warehouse size expansion at the beginning of period t 

• vt Warehouse size reduction at the beginning of period t 

• lt Inbound pallets handled in overtime  

• yt Binary variable for placing an order in period t 

• zt+Binary variable for warehouse size expansion in period t 

• zt-Binary variable for warehouse size expansion in period t 

Objective function and constraints 

(1)  Minimize ∑ (∑ ( 𝐻𝑖𝑡𝑗 +  𝐺𝑥𝑡𝑗) + 𝐾𝑦𝑡 +  𝑃(𝑧𝑡
+ + 𝑧𝑡

−)𝐽
𝑗=1 + 𝑅(𝑢𝑡 + 𝑣𝑡 + 𝑤𝑡) 𝑇

𝑡=1 + 𝑙𝑡𝐹 +

∑ ∑  𝑎𝑖𝑗𝑚𝑡( 𝑆𝑖𝑗𝑆𝐶 +  𝑝𝑡𝑗𝑚𝑡𝑃𝐶)𝑀
𝑚=1 )

𝐽
𝑖=1  

 

Such that  

(2)  𝑖𝑡−1,𝑗 + 𝑥𝑡𝑗 − 𝐷𝑡𝑗 =  𝑖𝑡𝑗                                        ∀ t 

(3) 𝑤𝑡−1 + 𝑢𝑡 − 𝑣𝑡 =  𝑤𝑡                                    ∀ t 

(4) ∑ 𝑖𝑡𝑗
𝐽
𝑗=1 ≤  𝑤𝑡                                                 ∀ t 

(5) 𝑖𝑡𝑗 ≥ 𝑆𝑆𝑗                  ∀ t     

(6) 𝑥𝑡𝑗  ≤  𝐷𝑡𝑇𝑗𝑦𝑡𝑗                                               ∀ t, j 

(7) 𝑢𝑡  ≤ ∑ 𝐷1𝑇𝑗
𝐽
𝑗=1 𝑧𝑡

+                                       ∀ t 

(8) 𝑣𝑡  ≤ ∑ 𝐷1𝑇𝑗
𝐽
𝑗=1 𝑧𝑡

−                                        ∀ t 

(9) ∑ 𝑥𝑡𝑗
𝐽
𝑗=1 ≤  𝑁𝑡 + 𝑙𝑡                                       ∀ t 

(10)  𝑙𝑡  ≤  𝐵                                              ∀ t 

(11)  Wmin  ≤  𝑤𝑡  ≤ Wmax                                       ∀ t 

(12)  W0 = Wmin       t=0 

(13)  I0j = 𝐼𝑗
0                                                           t=0, ∀j 

(14)  ∑ ∑  𝑎𝑖𝑗𝑚𝑡  𝑀
𝑚=1

𝐽
𝑗=1 ≤ 1        ∀ t, j, i ≠ t 

(15)  ∑  𝑎0𝑗𝑚𝑡
𝐽
𝑗 ≤ 1         ∀ t, m 

(16)  ∑  𝑎𝑖𝑗𝑚𝑡
𝐽
𝑖 =  ∑  𝑎𝑗𝑖𝑚𝑡

𝐽
𝑖                                                    ∀ t, m, j, i ≠j 

(17)  𝑎𝑖𝑖𝑚𝑡 =  0                                       ∀ t, i, m 

(18)  𝑠𝑡𝑗𝑚𝑡 ≥  𝑠𝑡𝑖𝑚𝑡 +  𝑝𝑡𝑖𝑚𝑡  +  𝑆𝑖𝑗 − 𝑀(1 −  𝑎𝑖𝑗𝑚𝑡)          ∀ t, i, j, m  

(19)  𝑋𝑗𝑡 = ∑ ( 𝑝𝑡𝑗𝑚𝑡  ∗  𝑃𝑗𝑚  )
𝑀
𝑚=1                           ∀t, j 

(20)  𝑝𝑡𝑖𝑚𝑡  ≤ 𝑀 ∗ ∑  𝑎𝑗𝑖𝑚𝑡
𝐽
𝑗        ∀ t, i, m 

(21)  ∑ 𝑥𝑡𝑗 ≥𝑇
1  ∑ 𝑑𝑡1𝑗 

𝑇
1         ∀ t, j 

(22)  𝑅 ≤   𝑠𝑡𝑗𝑚𝑡 +  𝑝𝑡𝑗𝑚𝑡  ≤  𝐷    ∀ t, j, m 
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 𝑠𝑡𝑗𝑚𝑡 ≥ 0, 𝑝𝑡𝑗𝑚𝑡 ≥ 0     ∀ t, i, j, m 

𝑥𝑡𝑗 ≥ 0, 𝐼𝑡𝑗 ≥ 0,                                              ∀ t, j 

 𝑤𝑡 ≥ 0, 𝑢𝑡 ≥ 0, 𝑣𝑡 ≥ 0,                                ∀ t 

𝑦𝑡 , 𝑧𝑡
+, 𝑧𝑡

−  ∈ { 0, 1},                                             ∀ t 

 𝑎𝑖𝑗𝑚𝑡  ∈ { 0, 1}                       ∀ t i, j, m 

Model interpretation  
The simultaneous optimization model consists of a summation of both the objective functions and the 

constraints of the lot size and multi-period warehouse optimization model and the production 

scheduling model. The interpretation of each constraint can therefore be found in the previous 

sections in which the mathematical models of the individual optimization models were explained.  
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6. Model verification  
When the mathematical models have been introduced, the models themselves need to be set up, 

verified, and possibly improved before the models can be tested in a case study. The steps required to 

perform these actions are depicted in Figure 12. Chapter 4 and chapter 5 pertain to the first step, being 

the model specification step. The problem description, mathematical model and the model 

assumptions have been provided in these respective chapters. The subsequent sections of this thesis 

will be dedicated to the process of verifying the three models. When the models behave as was 

intended and thus comply with the formal problem description and the proposed conceptual model 

the models’ verification step is completed. Once the models have been completely verified, they will 

be put into practice in a case study, after which the models and the according results will be analysed 

on their real-life representation as the validation step for the model.  

 

 

FIGURE 12 MODEL VERIFICATION AND VALIDATION PROCESS  

In the verification step, the proposed models are checked if they correctly represent the conceptual 

models and if the constructed model is built the right way. Questions asked in the verification process 

are: Does the model correctly represent the conceptual model and the mathematical formulations? 

Does the outcome of the model make sense based on the input parameters? The three models will be 

verified by means of simple numerical tests, which can be solved manually as well. The rationale behind 

this is that the outcomes of the verification tests can be cross checked, to ensure the model’s outcomes 

are correct. Different scenarios will be simulated with the aim of testing the model’s behaviour under 

different circumstances. Below the model verification process will be discussed step by step through 

the explanation of the different numerical tests per model.  
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6.1. Lot size & Warehouse model 
Input parameters 
For the model verification of the lot size and warehouse size model, three simple and hypothetical 

scenarios were made up in which three products (P1, P2 and P3) are studied for six demand periods. 

In Table 2 the considered input parameters can be found. 

TABLE 2 INPUT PARAMETERS BASE SCENARIO 

 

From the table it emerges that the demand varies over time per period and is different for every 

product. Considering Table 2 to represent the base scenario, two other scenarios have been generated 

by changing the parameters inbound overtime cost F and the fixed cost of changing warehouse size P.   

The other parameters do have the same value for every product and for every period in the performed 

numerical tests. The model outcomes will be verified by analysing the effects of changing input 

parameters on the model’s outcome. A more thorough analysis of the effect of changing input 

parameters will be conducted in the sensitivity analysis chapter once all the models have been verified.  

Model outcome  
Figures 13,14 and 15 depict the model’s output decision variables after optimizing the mathematical 

model in CPLEX. The used CPLEX script can be found in Appendix B.   

 

FIGURE 13 MODEL VERIFICATION BASE SCENARIO: ITOT REPRESENTS INVENTORY, W IS WAREHOUSE CAPACITY, XTOT IS THE QUANTITY ORDERED 

AND L THE INBOUND OVERTIME CAPACITY USED 

The base scenario outcome in Figure 13 considers the input parameters described in 5.3.1. Based on 

the described input parameters the model optimizes the ordering and warehousing strategy for the 

indicated periods. The model outcome can be interpreted as follows, orders are placed in periods 1, 3, 

5 and 6 in these periods the binary variable Y takes on the value 1 and fixed ordering cost must be paid. 

The model aims to combine orders for consecutive periods whenever possible accounting for the 

objective function to minimize the overall cost, hence the ordering costs as well. An example of this is 

the order in period 3 which accounts for the demand in both periods 3 and 4. The model can combine 

the orders due to the relative low demand in both periods without compromising any capacity 

constraints. As a result, no orders have to be placed in period 4, hence no ordering costs have been 
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incurred. Over the different periods inventory levels Itot are increased by placed orders and are being 

reduced by demand in each period. The resulting warehouse strategy is to change the warehouse size 

W three times, in periods 1,3 and 4. The warehouse size W is increased to cope with increasing demand 

and inventory levels, once the demand is expected to drop, the warehouse size W will be reduced in 

order to minimize the warehousing leasing cost. The decision variable L indicates the number of pallets 

handled in overtime for the inbounding of pallets into the warehouse. This overtime capacity L was 

used in periods 1,3 and 5 as the orders in these periods exceeded the available regular inbound 

capacity of the warehouse. The pallets inbounded in overtime are incurred for a higher cost than 

pallets inbounded in the regular capacity, this additional cost is indicated by the parameter F. The base 

scenario shows that the binary variables are correctly linked to the according decision variables. 

Moreover, the orders and warehouse size seem to be representative for the changes in demand 

considering the main objective to minimize the cost. To further verify the model’s interactions two 

other scenarios will be analysed below.  

 

FIGURE 14 MODEL VERIFICATION F =100: ITOT REPRESENTS INVENTORY, W IS WAREHOUSE CAPACITY, XTOT IS THE QUANTITY ORDERED AND L THE 

INBOUND OVERTIME CAPACITY USED 

In this second scenario the overtime inbound costs have been increased from 10 euro per pallet to 100 

euro per pallet, the model outcome is displayed in Figure 14. Increasing the cost of overtime inbound 

handling makes this option unattractive for the model, hence the decision variable L is not used in any 

period and thus takes the value 0 in every period. Due to this new cost consideration, the model now 

has a stricter maximum inbound capacity of 1500 pallets every period, which it will try not to exceed 

in any period. As a result, less orders can be combined in this scenario due to the inbound capacity 

constraint. In this scenario now all periods except period 3 are ordering periods. Orders have to be 

spread out over different periods in order to build inventory for periods in which demand is expected 

to increase e.g., period 5. This capacity constraint is also the reason why the order sizes are different 

from the previous scenario. Resulting, the warehousing strategy is also adjusted to cope with the 

increasing inventory levels as a result of the new ordering strategy in this scenario.   
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In the third model verification scenario, the base scenario is considered in which the fixed cost of 

changing warehouse size is increased from 200 to 20.000. Due to the increased cost of changing 

warehouse size, the model aims to reduce the number of warehouse size adjustments compared to 

the base scenario if this is will reduce the overall cost. The results of the new scenario can be found in 

Figure 15. Due to the higher penalty cost of changing warehouse sizes, the model now aims to fulfil 

demand in every month without adjusting the warehouse size W. As a result, the ordering strategy is 

adjusted to ensure that no additional warehouse space is required in a period, hence stock building 

will be not be done in this new scenario as this would require additional warehouse capacity. For this 

reason, the aggregated inventory level is equal to the warehouse size in every period at 900 pallets 

and orders are placed in every period.    

 

 

FIGURE 15 MODEL VERIFICATION P =20.000: ITOT REPRESENTS INVENTORY, W IS WAREHOUSE CAPACITY, XTOT IS THE QUANTITY ORDERED AND L 

THE INBOUND OVERTIME CAPACITY USED 

Based on the above discussed model outcomes from different hypothetical scenarios it can be 

concluded that the model is verified and that the model is built correctly. The model minimizes the 

ordering and warehousing costs for the given set of input parameters within the given constraints. This 

is in line with the formal problem description and the conceptual model from section 5.1. If a 

parameter is increased, the model will adjust the ordering and warehousing strategy accordingly to 

minimize the total cost. The next step is to verify the scheduling model and the combined model before 

the model’s real-life representations will be tested in a case study of a food manufacturing company.    
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6.2. Scheduling model 
Input parameters 
In order to verify the scheduling model similar numerical tests will be conducted to analyse the model’s 

behaviour in different scenarios. First the model outcome of a base scenario will be analysed, similar 

to the lot size and warehouse model. Thereafter, the set-up times and production rates of machines 

will be adjusted and the new model outcomes will be analysed. Combining knowledge from the three 

test scenarios will provide the necessary proof of the model’s behaviour in order to start verifying the 

combined model.    

The input parameters for the base scenario are displayed in Tables 3, 4 and 5. Other relevant input 

parameters of the base scenario are that the set-up costs per day are considered to be €18.000, - and 

the production cost per time unit are €12.000, -. All productions should start and be completed 

between day 1 and day 30 of every period T.  

TABLE 3 ORDER QUANTITIES BASE SCENARIO 

 

TABLE 4 PRODUCTION RATES BASE SCENARIO 

 

TABLE 5 SET UP TIMES BASE SCENARIO 

 

Model outcome 
The main aim of the scheduling model is to produce the order before the due date against the minimal 

costs within the given constraints. For the verification test we consider six periods, in which three 

products can be produced on two available production lines. The model outcomes are displayed in 

Figures 16 and 17. The model treats every period as an individual period, hence there is no interrelation 

between periods. For this reason, if the order quantity, the production rates and the set-up times are 

the same for two or more periods, the model will also assign the same optimal production schedule to 

these periods. This is the case for periods 1,3,5 and 6 in the base scenario. In these periods, product 2 

is scheduled first on machine 1 and product 3 is scheduled first on machine 2. Once the production run 

of product 2 is completed on day 11, the production run of product 1 on machine 1 will be set up and 

started at day 13. At time 17 all three production runs will be completed. Product 1 is scheduled on 

machine 1 and not on machine 2 due to the shorter production time it has on machine 1 compared to 

machine 2. The fact that machine 2 is earlier available than machine 1 does not play a role as sufficient 

time is still available to complete a production run on machine 1 after the production of product 2. 

Considering the input parameters, this production schedule is most cost efficient. Set-up costs are only 

Product X1 X2 X3 X4 X5 X6

1 100 0 100 300 100 100

2 400 0 400 200 400 400

3 350 0 350 350 350 350

Production rate Machine 1 Machine 2

1 25 20

2 40 25

3 50 70

Set up time 1 2 3

1 0 3 6

2 2 0 3

3 3 4 0
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incurred once, between the production of product 2 and product 1, for the minimal possible duration 

of 2.  

In the situation that demand is different in a period as in this model is the case in periods 2 and 4, the 

production schedule will be different as well. In Table 3 it is visible that no order is placed for period 2, 

hence the production schedule does not assign a product to a machine in this period. For the same 

reason period 2 not displayed. In period 4, the order quantities are different compared to the other 

periods. As a result, the production schedule also differs from the other periods. Product 1 is assigned 

to machine 1 and product 2 is assigned to machine 2. Once the production of product 2 on machine 2 

has finished, the machine will be set up for the production run of product 3 which takes 3 days. After 

this product 3 can be produced as well. The different demand scenario in period 4 shows the trade-off 

between minimizing production time and set up time. The increased quantity of product 1 and the 

decreased order quantity of product 2, resulted in the assignment of different machines to the 

products. Due to the increased order quantity for product 1 and the assignment on machine 1, the 

production run now has a duration of 12 instead of 4. Nevertheless, combining the productions of 

product 2 and product 3 on machine 2 is completed at time 17. Considering the given order quantities 

in this period it was optimal to assign products to different machines in order to minimize the overall 

costs, even if this new schedule accounts for an extra day of set up time between productions of 

product 2 and 3.  

 

FIGURE 16 PRODUCTION SCHEDULE PERIODS 1, 3, 5 AND 6 

 

FIGURE 17 PRODUCTION SCHEDULE PERIOD 4 

As every period is treated individually by the scheduling model, for the new scenario generation we 

will only consider period 1 and change the set-up times between the products in order to generate a 

new scenario. Looking at more than a single period to analyse the model’s behaviour is redundant as 

was seen in the base scenario. The new set-up times considered can be found in Table 6, the order 

quantities of period 1 from the base scenario will be used.  

TABLE 6 ADJUSTED SET-UP TIMES 

 

With the adjusted set-up time the model finds a different optimal production schedule which can be 

found below in Figure 18. The model now schedules product 1 first on machine 2 and product 2 first 

on machine 1. The reason for this is that the products which are scheduled first, require no set-up 

times prior to the production. Since the production of product 3 requires the least amount of set-up 

time for all options, the model will schedule this production after either the production of product 1 
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Set up time adjusted 1 2 3

1 0 6 3
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or 2 depending on which production run is competed first. In this way the set-up times between 

products can determine the sequence in the production schedules, this is however not the only factor 

determining the production sequence as was visible in period 4 in the base scenario, where the 

production schedule was different for different order quantities when the set-up times were constant.     

 

FIGURE 18 PRODUCTION SCHEDULE ADJUSTED SET-UP TIME 

A final verification scenario will be generated in which the production rates of the machines will be 

adjusted. Similar to the set-up time analyses, only period 1 of the base scenario will be considered with 

the adjusted production rates of the machines which can be found in Table 7.  

TABLE 7 ADJUSTED PRODUCTION RATES 

 

In the generated scenario, machine 2 has a higher production rate for every product. Hence, it would 

be fastest to produce every product on machine 2 if the set-up times would not be accounted for. In 

the new production schedule one can see that the production times have decreased due to the 

increased production rates. Similar to the base scenario, product 1 is scheduled right after product 2 

as this sequence has the lowest set-up time. Nevertheless, what changed compared to the base 

scenario is that the production runs of product 1 and 2 have now been scheduled on machine 2 instead 

of on machine 1. The scheduling model has adjusted the production schedule, to ensure that the 

machine with the highest production rate produces two products and the machine with a lower 

production rate will produce only a single product. A reason for splitting the productions over two 

machines instead of scheduling all production runs on machine 2 with the higher production rate, is 

the model’s consideration to the total production cost. If the model would schedule product 3 on 

machine 2 as well, additional set-up time would be required which would drive up the cost.  These 

considerations resulted in the production schedule which displays the effects of changing the 

production rates of a machine which can be found below in Figure 19.  

 

FIGURE 19 PRODUCTION SCHEDULE ADJUSTED PRODUCTION RATES 

Based on the model outcomes of the three studied scenarios it can be assumed that the model’s 

optimization behaviour is correct following the formulated problem description, mathematical and 

conceptual models. The model minimizes the production and set-up cost the given set of input 

parameters within the given constraints and will adjust the production schedules accordingly when 

input parameters change. For this reason, it is concluded that the model is built right, hence the model 

is verified.  
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Production rate Machine 1 Machine 2

1 25 50

2 40 50

3 50 70
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6.3. Combined model 
Where the previous sections verified the individual model’s behaviour, this section will focus on the 

simultaneous optimization of the two models and how the constraints of both models affect the 

combined model’s outcome. More trivial aspects of the individual models such as the effect of the 

production rate and warehouse costs on the model outcome will not be discussed in this section, since 

this was already discussed in the previous sections.  

Input parameters 
In order to verify the combined model’s interactions and behaviour, the base scenarios of the 

individual models will be combined. By using similar input parameters as in the base scenarios, the 

model outcome of the combined model can be compared with the model outcomes of the individual 

models and is this way the combined model can be cross verified. There is one difference with respect 

to the used input parameters which is that the orders from the scheduling model will not be used as 

an input parameter in the combined model. The reason for this is that the order size is a decision 

variable in the combined model which will be optimized so that both the warehousing as well as the 

production costs will be minimized.   

Model outcome 
The combined model outcome is divided into the warehouse results and the production scheduling 

results, this helps to compare the results with the individual models. Nevertheless, the model is solved 

at once and simultaneously optimizes the warehouse and the production scheduling model. If one 

compares Figure 20 with Figure 13 it emerges that the ordering and warehousing strategies have 

changed now that the production constraints are accounted for as well. Instead of four ordering 

periods, the combined model finds that in the new situation one must order in five of the six periods. 

This can be accounted to the new production capacity constraints, which may limit the number of 

orders that can be combined in a single period. As a result of the more equally distributed ordering 

strategy, the inventory levels and the warehousing strategy also must be adjusted. The simultaneous 

model decides to make a total of five warehouse size adjustments in order to facilitate the changing 

inventory levels due to the new order behaviour. Another effect of the more equally distributed 

ordering strategy is that less inbound overtime capacity is required to inbound the ordered goods into 

the warehouse which can be seen in Figure 20.  

 

FIGURE 20 VERIFICATION OF WAREHOUSE OUTCOME COMBINED MODEL: ITOT REPRESENTS INVENTORY, W IS WAREHOUSE CAPACITY, 

XTOT IS THE QUANTITY ORDERED AND L THE INBOUND OVERTIME CAPACITY USED 
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The resulting ordering strategy of the combined model also effects the outcome of the production 

scheduling strategy which can be found in Figure 21. The first difference compared to the individual 

model is that no period has the same order size. Consequently, the production schedules are also 

different in each period. Depending on the quantity of a product ordered in a period the sequence and 

machine assignment can be different as was seen in the verification of the individual production 

scheduling model. Despite the fact that the production schedules are different in every period, all 

production schedules ensure that the complete order quantities are produced within the set time 

constraints for the minimal possible cost. Period three is not included in Figure 21 since no order is 

placed in this period. 

 

FIGURE 21 VERIFICATION OF PRODUCTION SCHEDULE OUTCOME COMBINED MODEL 

Comparing the results of the combined model with the results of the individual models shows the 

effects of simultaneous optimization versus single or sequential optimization. The effects of 

simultaneously considering all constraints on the decision variables and model outcome make sense 

given the set of input parameters used. Combining the insights obtained through the verification of 

the three models under study, it can now be assumed that all models have been built correctly and 

their behaviour is verified.  

6.4.  Strategy Behaviour Analysis 
The individual optimization models and the combined model have been verified for a single demand 

scenario. Testing the models in different demand scenarios is the next step in the verification process 

as this can prove if the models also behave correctly when the optimization environment changes. 

When the models and ordering strategies have been verified in different scenarios, the simultaneous 

ordering strategy will be tested on its complexity. Once both the individual models as well as the 

according ordering strategies have been verified, they can be tested and validated in the case study.  

6.4.1.  Demand scenario verification  
The three ordering strategies introduced in chapter 4.1 will be tested and compared in three simulated 

demand scenarios. A base demand scenario which was used in the verification process of the individual 

models. A demand scenario in which the total demand is spread equally over the three products under 

study and a third demand scenario in which there is one dominant product which accounts for a 

significant share of the total demand. The three used demand scenarios can be found in appendix A. 

The ordering strategies will be compared on total cost and the cost split between warehousing and 
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production related cost. In this way the ordering strategy behaviour in different demand scenarios can 

be compared and verified. A more detailed analysis of the model outcomes is not relevant as the 

models have been verified in the previous sections of this chapter and will be more closely studied in 

the case study chapter.  

In Figure 22 the cost comparison of the three ordering strategies in the three demand scenarios is 

displayed. The input parameters from the previous sections are used as input for the three strategies. 

If the three ordering strategies are to be compared for the three different demand scenarios it can be 

seen that the simultaneous ordering strategy is the most cost-effective ordering strategy in all 

scenarios. The simultaneous ordering strategy is followed by sequential production strategy 

production which has the second lowest cost in two out of the three analysed scenarios and is 

infeasible in the third scenario. The sequential warehouse strategy has the highest total cost in all three 

demand scenarios, if the infeasible solution of the sequential production strategy in the dominant 

demand scenario is not accounted for. The reason for the different total cost per ordering strategy is 

accounted for by the different sequence of model optimization between sequential strategies. The 

model which is optimized first in the sequence will have lower cost than the model that is optimized 

subsequently. The total cost of the simultaneous strategy is lower than the cost of the two sequential 

strategies since the simultaneous strategy accounts for the production and warehouse cost 

parameters at the same time. The model will optimize the trade-off between for example increasing 

the warehouse capacity to be able to better schedule productions and in this way minimize the total 

cost. The individual models in the sequential strategies do not have this trade-off and as a result have 

higher total cost, even though the individual warehouse or production cost for a sequential strategy 

may be similar to that of the simultaneous strategy in the same scenario.  

 

FIGURE 22 STRATEGY BEHAVIOUR COMPARISON VERIFICATION 

The demand scenario in place also has an effect on the total cost per ordering strategy. From Figure 

22 it emerges that an equal demand distribution is more beneficial for the production cost in the 

simultaneous and sequential production strategy, as the production cost with equal demand 

distribution is €96.857, - compared to €114.000, - in the base scenario. This does not hold per definition 

for the warehousing cost, which are €3.235, - higher for the simultaneous strategy, €25.808, - lower 
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for the sequential production strategy and the same for sequential warehouse strategy if one 

compares the equal demand scenario results with the base scenario.  

The dominant demand scenario has the lowest total cost for all three ordering strategies. The reason 

for this lower cost is the reduction in production cost compared to the base and equal demand 

scenario. The production scheduling model is able to better prioritize long production runs of the 

dominant product on production lines with the highest production rate in a dominant demand 

scenario. As a result, the total production time in the dominant scenario will be lower than the total 

production time of the base and equal demand scenarios, hence the production cost will be lower. In 

the dominant demand scenario, the sequential production strategy proved to be infeasible in the 

second optimization stage. This was the result of the order placement of the production scheduling 

model which did not fit within the warehouse constraints in place. This resulted in no result for the 

warehouse cost in the sequential production strategy. The effects of the order placement on 

warehousing results will be discussed in more detail below. 

That the timing and quantity of the orders are placed has a clear effect on the subsequent model 

outcome as became clear from Figure 22. This effect can be seen as the production cost are similar for 

the simultaneous and the sequential production strategy in all three demand scenarios. Nevertheless, 

the warehousing costs are different in all three scenarios. The reason for this difference is the order 

placement of the different strategies. The primary focus in the sequential production strategy is to 

minimize the production and set-up cost and comply with demand. In order to accomplish this the 

model will aim to aggregate productions as much as possible in the first periods, after which the model 

can minimize the scheduling cost by producing at most the number of products as the number of 

production lines available. In this way no set-up costs are incurred and the production costs can be 

minimized. This ordering behaviour is represented by the red line in Figure 23 and is characterized by 

the fact that most orders are placed in the first half of the periods under study and no orders placed 

in the last two periods. The simultaneous model behaves differently under similar input parameters as 

the model not only accounts for production cost and constraints, but also considers the warehousing 

costs and constraints. Resulting, the model aims to better balance the orders over the different periods 

in order to manage the in and outflow of products in the warehouse and the according inventory level. 

The result of this way of placing orders is that the inventory level and according warehouse capacity 

are minimized which minimizes that total warehousing cost, hence the difference in warehouse cost 

between the simultaneous and sequential production strategies. Another possible effect of the order 

placement of the sequential production strategy is the risk of placing too high orders in the first 

periods. This may result in warehouse capacity issues and thus into an infeasible result, as can be seen 

in the dominant demand scenario in Figure 22.  
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FIGURE 23 STRATEGY ORDER DISTRIBUTION COMPARISON 

Based on the outcome of the strategy comparison for different demand scenarios it can be concluded 

that the individual optimization models and ordering strategies are verified for different scenarios. The 

model outcomes are as expected based on the used input parameters and the effects of different 

demand scenarios on the model outcome are clear. The infeasibility of the warehousing model in the 

dominant demand scenario for the sequential production strategy can be accounted to the effect of 

distributing the productions in favour of the production scheduling model which did not comply with 

the warehouse capacity constraints as was explained in the previous section. This does make the 

sequential production order strategy less suitable for the optimization of ordering strategies with one 

dominant product.  

6.4.2.  Complexity experiment 
The increased complexity of considering a multi-product range in integrated models was already 

touched upon shortly in the literature research. The reason for this increased complexity of these 

models is the increasing number of variables that needs to be considered by the model when multiple 

products are considered or when two problems are solved simultaneously. Each additional product, 

period or machine introduces a new set of variables that will need be considered and optimized. In 

other words, increasing the number of considered products will significantly increase the number of 

parameters and variables considered by the model, hence the running time as well as the problem-

solving chances of the model will be affected due to this. In order to test the complexity of the 

integrated model, an experiment will be conducted to analyse how the integrated model reacts to 

increasing the number of variables considered. By mapping the effects on the model running time and 

optimality gap the increased complexity can be analysed.  

For this experiment, the integrated model is tested in a hypothetical environment in which the 

number of products, periods and machines considered varies. The quantity of the products, periods 

and machines considered in each tested scenario can be found in the first three columns of Table 8. 

The running time in seconds and the optimality gap percentage are depicted in the last two columns 

of the table. The optimality gap percentage indicates the gap between the best feasible solution that 

was found by the solver and a value which bounds the best possible solution of the MILP problem. A 

high optimality gap thus indicates that there is a possibility that better solutions can be found by the 

solver. Further elaboration on the effects of the optimality gap on the reliability of the model 

outcome will be discussed in the following paragraph. The integrated model complexity experiment 

was performed in IBM ILOG CPLEX Optimization Studio on a personal computer with an Intel® Core™ 
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i5 processor with 2.4 gigahertz and 8 gigabytes RAM. A solving limit of 250.000 ticks which is a 

deterministic time unit was set to limit the maximum running time of the integrated model. The 

results of the experiment can be found in Table 8.  

TABLE 8 COMPLEXITY EXPERIMENT INTEGRATED MODEL       

Products Periods Machines Time (s) Gap (%) 

3 6 2 1,20 1,06 

  12 2 0,78 1,44 

  18 2 3,64 0,10 

  18 3 3,36 0,19 

  18 4 0,61 2,48 

  18 5 0,89 0,23 

  18 6 0,89 0,04 

6 6 2 1,20 1,06 

  12 2 238,61 0,16 

  18 2 353,93 4,92 

  18 3 385,09 0,42 

  18 4 145,52 0,03 

  18 5 24,00 0,02 

  18 6 4,20 0,08 

  18 12 15,23 0,00 

12 6 2 343,19 39,13 

  12 2 504,30 54,81 

  18 2 585,02. 70,05 

  18 3 342,61 46,83 

  18 4 360,33 35,12 

  18 5 475,33 18,59 

  18 6 404,17 10,46 

  18 12 25,97 0,73 
 

From Table 8 it emerges that the running time of the model is affected by the number of products 

considered. This conclusion was also drawn by Hu et al., 2008 and Gao et al., 2020 in literature. The 

reason for the increased running time are the new variables that need to be optimized as well. The 

solver requires more time to find an optimal solution for this larger set of variables. In this way, 

increasing the number of considered products increases the model running time. Besides the model 

running time, the introduction of new products also increases the model’s complexity. This is indicated 

by the increased optimality gap when the model considers six and twelve products instead of the 

original three products. Another observation that can be made from Table 8 is that increasing the 

number of periods considered affects the running time of the model. This can be accounted to the 

additional computations the model has to perform to incorporate the additional periods and the 

related variables in the solution. Different from the number of products and periods, introducing 

additional machines to the problem has a positive effect on both the model run time as well as the 

optimality gap in most cases. This is because the same number of products now can be produced on 

more machines, this increases the problem-solving chances of the model and reduces the model 

running time. For the situation of 12 products and two machines for a period of 12 and 18 months, the 

model emerged to be insolvable because of too little machine availability to ensure that all products 

are produced before the due date.  
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In order to further test the hypotheses from literature that increasing the number of products in a 

MILP increases the model’s complexity a second experiment is conducted with the integrated model. 

In a scenario of considering six periods and twelve machines the number of products is increased with 

three in every step. The remaining optimality gap of the solver after a maximum of 250.000 ticks is 

mapped in Figure 24, the limit was set to bound running time of the model. The higher the optimality 

gap, the further the model is from the most optimal solution within the 250.000 ticks. In other words, 

the more difficult it is to find the optimal solution, due to the increased complexity of the model. From 

the figure it emerges that when the number of products considered is below the number of available 

machines, the problem is not complex and can be solved as the optimality gap is close to zero. 

However, when the number of products considered exceeds the number of available machines the 

optimality gap will increase. This is a result of the new production scheduling decisions which are 

introduced in the production scheduling model related to scheduling more products than machines 

available. The more products are considered by the model, the more of these decisions need to be 

made, hence the more time will be required to find the optimal solution. This trend is confirmed in 

Figure 24 and is in line with findings in literature from Hu et al., 2008 and Gao et al., 2020 who found 

that increasing the number of variables increases the model complexity and solving time of supply 

chain optimization models.  

 

FIGURE 24 OPTIMALITY GAP EXPERIMENT IN A SCENARIO WITH 12 MACHINES AND 6 PERIODS 

In conclusion, the number of periods considered by the model does not have a significant effect on the 

model’s complexity. Nevertheless, it does affect the running time of the model. The number of 

machines considered decreases the model’s complexity and running time. The number of products 

considered by the model increases both the model’s complexity and running time which is in line with 

findings from literature. The fact that the performed tests with resulted in optimality gaps up to 70% 

indicates that the algorithm has not yet covered all the available solution space, hence giving the 

algorithm more time could result in better solutions with lower optimality gaps. However, for this 

complexity experiment it was decided to set the limit on 250.000 ticks due to the limited time available.  
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7. Food manufacturing case study  
The discussed models will be tested by means of a case study for Kraft Heinz in a real-life situation to 

analyse the models’ behaviour in a practical situation. In this chapter the case study will be discussed. 

This will be done by introducing the food manufacturing company under study and through describing 

the case study background and the according selection process in section 7.1. In section 7.2 the used 

input parameters for the case study and the case study assumptions will then be discussed to be 

followed by a detailed analysis of the case study results in section 7.3. This chapter will be concluded 

with a cost parameter sensitivity analysis in section 7.4.  

7.1. Food Manufacturing Case Study  
Kraft Heinz is the fifth largest food and beverage company in the world, they manufacture and 

distribute condiments, sauces, meals, dairy products, soups, meats and beverages across the globe. 

Well-known brands in the Kraft Heinz portfolio are amongst others Heinz, Kraft, Honig, DeRuijter, 

Caprisun, Jell-O and Lea & Perrins. In order to supply this wide variety of products to customers across 

the globe, Kraft Heinz has set out an extensive supply chain world-wide. The focus of Kraft Heinz is to 

transport their goods as time and cost efficient as possible from the factories to the customers. The 

Kraft Heinz supply chain consists of internal and external factories, internal and external warehouses 

and multi-model transportation lanes. The terminology ‘internal’ or ‘external’ indicates if the 

warehouse or factory is owned by Kraft Heinz (internal) or if the factory is owned by a LSP (external). 

In the latter case Kraft Heinz has an agreement to use or lease the factory or warehouse. By combing 

internal and external warehouses and factories in their supply chain, Kraft Heinz managed to find the 

balance between reducing investment costs and staying agile throughout their supply chain.  

In the underlying case study, the effects of using different ordering strategies on the costs and product 

flows between a factory and an external warehouse in the Kraft Heinz supply chain will be analysed. 

The three different ordering strategies will make use of the developed optimization models in different 

simulated scenarios. The results of the different tests will be compared and interpreted in order to 

identify which new ordering strategy can help Kraft Heinz coordinate production and warehousing 

decisions for product flows between factories and warehouses. To fit within the scope of the research, 

the real-life situation was simplified. It was decided to test the ordering strategies in a case study that 

focusses on a product flow between a single factory and warehouse for a 12-month period as this 

better fitted the designed models and would not overcomplicate the analysis. Insights obtained from 

the case study between the factory and warehouse are representative for other transportation lanes 

in the Kraft Heinz supply chain, hence these insights can be used throughout the entire supply chain 

to improve the ordering process, even though the case study was carried out on a single transportation 

lane.  
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The process of selecting a factory and warehouse most suitable for a case study was carried out in 

cooperation with Paul Strijers (Logistic Manager HUB), Thanos Papakonstantinou (Logistics excellence 

manager Central Europe) and Luuk Oudendorp (Logistic manager D&E), who are responsible for 

different warehouses in the European supply chain. Subsequently the rationale behind choosing the 

desired factory and warehouse will be described. Starting with the selected warehouse, the AGPark15 

warehouse was chosen for three main reasons. The first reason why AGPark15 was selected for the 

case study was the location of the warehouse. AGPark15 has a central location between Kraft Heinz 

operations in the Netherlands and has a good accessibility due to the multi-model transportation 

options in the area as can be seen in Figure 25. The AG Park15 warehouse is located close to Elst where 

Kraft Heinz’ largest European sauce factory is located. Moreover, the access to the A15 make that the 

warehouse is well connected for both east-west as well as north-south travel across the Netherlands 

and to Germany and Belgium via the A50 with the A12. Figure 26 depicts a close-up of the area 

surrounding Park15. Across the A15 a rail terminal is being constructed which will be connected to the 

Betuwe rail line which connects the Port of Rotterdam to Germany. On the south side of the warehouse 

park a barge terminal is located on the banks of the river Waal. Being located this close to a highway 

entry, a rail terminal and a barge terminal makes the AG Park15 a suitable multimodal DC in the Kraft 

Heinz supply chain and therefore an interesting warehouse to perform a case study upon. The second 

reason which makes this warehouse suitable for the case study is the fact that AGPark15 is an external 

warehouse in the Kraft Heinz supply chain. Kraft Heinz leases storage capacity at AGPark15 from a LSP 

and has the option to adjust this capacity to their needs. This makes this warehouse suitable for the 

multi-period warehouse size optimization model, as this model requires the warehouse to be able to 

adjust the warehouse capacity over time. The third reason which makes this warehouse most suitable 

for a case study is the fact that the warehouse was taken into operation on December 1st, 2021. Due 

to the newness of the warehouse, the chances of making useful recommendations are higher 

compared to doing the analysis for a warehouse which is already in operation for numerous years and 

thoroughly studied by different teams.  

FIGURE 26 AG PARK15 LOCATION IN THE NETHERLANDS (PARK15, N.D.) FIGURE 26. AG PARK15 AREA (PARK15, N.D.)  
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Continuing with the desired production facility, the Elst factory was chosen primarily because Elst is 

the largest sauce factory within Europe and the middle east in the Kraft Heinz portfolio. Due to its size 

and importance within the Kraft Heinz portfolio it will be most interesting to study and test the 

proposed models on product flows in which the Elst factory is the source. A second aspect which makes 

Elst a suitable factory to study is its location which is about 15 minutes driving distance from the 

AGPark15 warehouse. Due to the short distance between the factory and the external warehouse this 

link in the supply chain of Kraft Heinz plays a crucial role for the product flow from Elst sourced 

products to the rest of the world.  

Finished products are stored at AG Park15 before they are moved further down the supply chain 

towards customers. The warehouse functions as a distribution centre and a critical changeover point 

in the product flow between factories and customers as was seen in chapter 4 in Figure 8. This key 

position within the supply chain makes it important that the optimal warehouse capacity is determined 

to ensure an efficient and cost-effective product flow through the warehouse and thus the entire 

supply chain. The AG Park15 warehouse is used as a distribution centre for three markets of Kraft Heinz 

being D&E, Nordics and affiliates. Nordics is another naming used within Kraft Heinz to describe the 

Scandinavian markets, D&E stands for distributers and exports which are mainly focused at countries 

who do not have their own business units in Europe and lastly affiliates is used for countries not in 

Europe. From the 700 different products sold in all three markets, roughly 200 products are produced 

at the Elst factory. In the Elst factory productions are scheduled by the supply planning team who 

ensure that the demand is translated into feasible and optimized production schedules based on 

production and material constraints. The Elst factory produces all the products according to the 

production plan and once a production run is completed the finished products need to be transported 

to the warehouse where the products will be unloaded and stored before being transported towards 

the customer. This chain of events describes the different stages of the product flows between the 

factory and the warehouse.  

The described process is vulnerable to different last-minute problems which can negatively affect the 

product flow between the factory and the warehouse. Two real-life examples from Kraft Heinz are: 

Insufficient warehouse capacity available to store already produced products and insufficient 

unloading capacity at the warehouse to unload arriving trucks at the warehouse. These unforeseen 

issues in the supply chain are the result of not considering warehousing constraints when making 

production plans. These unforeseen issues can drive up logistic costs as these shipments will need to 

be redirected last minute to other warehouses against higher cost. These issues are the result of 

insufficient communication and misalignment between the planning and warehousing teams within 

Kraft Heinz. The case study is aimed at generating insights in the effects of enhancing synchronization 

between the planning and warehousing teams. These insights can thereafter by used by logistic 

managers to improve the product flow between factories and warehouse and reduce the number of 

logistic issues in the future. 

7.2. Case study data & assumptions  
The data used to perform the case study has been collected through interviews with warehouse and 

factory representatives. Information which could not be retrieved via interviews such as current 

inventory levels or expected future demand were collected through company data sources in order to 

ensure that the used parameters were up to date and realistic. The case study data is representative 

for the 2022 cost and demand forecast of Kraft Heinz. With the available data and the described case 

study setting the actual case study tests can be prepared. Besides using company data, a number of 

assumptions had to be made as well in order to prepare a business relevant case study which focused 

specifically on the product flow between the Elst factory and the AGPark15 warehouse. These case 
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study assumptions have been verified by Paul Strijers to be representative for the company setting. It 

is important that the made assumptions do not significantly affect the case study’s real-life 

representation, as having a case study which is not representative for the real-life scenario also 

minimizes the chances of making useful managerial insights in this thesis. This can be ensured through 

using a portion of the actual capacities and costs which is representative for the reduced case study. 

In this way, the insights obtained in the reduced case study are still relevant for the real-life scaled 

operations. The rationale behind the data assumptions will be discussed in the following paragraph. 

The case study input parameter tables display the used input values for the case study. The warehouse 

handling, holding, overtime and rent cost parameters considered in the case study are similar to the 

real-life costs paid by Kraft Heinz for these services. The ordering cost parameter K is however 

corrected for by the share of products originating from Elst versus the total products stored in the 

warehouse. The same holds for the warehouse capacities considered in this case study. The rationale 

behind this is that the case study only accounts for the product flow between Elst and AG Park15 which 

is about 30% of the total products stored at the warehouse. For this reason, the first case study 

assumption is that the warehouse capacity and the fixed ordering cost should be reduced to 30% of its 

real-life value, since normally these capacities and costs are used for the entire product portfolio. Using 

the 30% share of these input parameters enhances the real-life representation of the case study. The 

second assumption for the warehousing model is that it is assumed that there is sufficient carrier 

capacity to transport the finished goods from the factory to the warehouse at all times. The rationale 

behind this assumption is that considering carrier capacity as well in the model might make the model 

too complex. In addition to the added complexity, the fact that the warehouse is only 15 minutes away 

from the factory makes the transportation factor less significant compared to the production and 

storage capacity issues. Therefore, it was decided to leave this out of the scope of this research.  

Warehouse model assumptions: 

o The ordering cost and warehouse capacities are considered to be 30% of their real-life 
value;  

o It is assumed there is sufficient carrier capacity to transport the finished goods from 
the factory to the warehouse at all times.  

 
Similar to the warehouse assumptions, the production scheduling model also requires a number of 

assumptions in order to ensure a better real-life representation of the model. After conducting 

interviews and comparing demand data from the Elst factory for the coming two years it became clear 

the overall demand from the business unites Nordics, D&E and Affiliates together accounts for 25% of 

the total demand from the Elst factory every month. For this reason, it was decided to only consider a 

total of three instead of the original 12 production lines in Elst factory for the scheduling problem. In 

the case study it will be assumed that these three lines will be dedicated to produce all the different 

products for these markets in a period, whilst in reality the products are produced on all the 12 

production lines. Considering all original lines would mean that there are no production constraints at 

all due to the availability of all the lines and only 25% of the regular products that need to be produced. 

As a result, only the warehouse model would affect the model outcome, hence it would not be 

representative for the real-life situation. Another assumption made for the production scheduling 

model is that production runs are scheduled on a recipe level. An example of this would be that 

mayonnaise is scheduled prior to ketchup runs and after barbeque sauce. Even though, this is similar 

to the real-life scenario the proposed scheduling model does not account for bottle changes within the 

recipe schedules itself. The reason for this is that the focus is on the product flows between the factory 

and the warehouse and the details of the factory production constraints are relatively less interesting. 

Due to this assumption, the products are grouped by recipe and are not considered on stock keeping 
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unit level. Resulting, six sauces recipes are accounted for in the case study and this grouping is also 

considered in the warehousing model for consistency.  A third assumption for the production process 

is to assume that the production lines are available 24/7 without interruptions. The final assumption 

is that every month consists of 30 days. These last two assumptions were made to increase the 

production scheduling model’s feasibility and to limit the model’s complexity.  

Production scheduling model assumptions: 

o A total of three production lines will be considered for the case study; 
o Products are grouped by recipe into a total 6 different recipes; 
o It is assumed the factory is available to run 24/7 without interruptions every week ; 
o It is assumed that every month consists of 30 days. 

 
 

7.3. Case study results 
In this case study the Sequential Production Strategy, Sequential Warehouse Strategy and 

Simultaneous Ordering Strategy will be tested on their effectiveness and effects on the overall 

outcome in a practical setting in order generate managerial insights. The names of the sequential 

strategies indicate which model is optimized first in the sequence. The three strategies will be 

compared on total cost, order behaviour and warehousing strategy for the 12 months studied. The 

analysis of the according results will lead to managerial insights regarding a superior ordering strategy 

which can help Kraft Heinz improve the product flows between factories and warehouses. The first 

subsection will however be dedicated to describing and analysing the infeasibility of the sequential 

production strategy, after which the remaining strategy comparisons will be brought forward.    

7.3.1. Infeasibility of the Sequential Production Strategy 
The sequential production strategy which was introduced in chapter 4 is the first strategy that is tested 

in the case study. The outcome of this optimization is an optimal production and ordering schedule for 

the coming 12 months, resulting in total production cost of €79.959, - for all considered periods. The 

second step was to insert the order quantities in the warehouse model to compute the warehousing 

cost of the sequential production strategy. The warehousing model could however not be solved for 

these order quantities within the set constraints. For this reason, no warehousing cost can be given for 

the sequential production strategy, as the model is infeasible for the given data. In the following 

paragraph a root cause analysis to the restricting constraints will be carried out to understand why and 

how the constraints were violated.  

Root cause analysis 
The first step to analyse why this strategy resulted to be infeasible was to check the aggregated 

scheduled order quantities X in every period and comparing these with the available warehouse 

inbound capacity constraint. Aggregating the products ordered in every period resulted in the blue line 

in Figure 27. The red line in the graph indicates the maximum warehouse inbound capacity every 

month which is 8.000 pallets. This inbound capacity already includes available overtime which can be 

scheduled whenever required.  
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FIGURE 27 INBOUND OVERFLOW SEQUENTIAL PRODUCTION STRATEGY 

From Figure 27 and the insights obtained in chapter 6 it emerges that the production scheduling model 

aims to optimize the production schedules for the coming 12 months by scheduling productions for all 

six recipes in the first month so that demand for the coming months is covered for most recipes. After 

the first month, the model schedules at most three recipes on three different machines in every month. 

By doing this the total set-up and cleaning costs are minimized, as these costs are not incurred for the 

first recipe on a machine. The side effect of this way of scheduling productions is that the 75% of the 

total output from the factory is produced in the first six months and the other 25% is produced in the 

last six months. As a consequence, the warehouse will not be able to process the output of the factory 

in the first eight months which makes the problem infeasible from a warehouse point of view.  

The modelled high factory output not only conflicts with the warehouse inbound capacity, it is also 

violating the maximum warehouse storage capacity constraint which is set at 6.000 pallets. In order to 

map the resulting inventory levels from the optimized scheduling orders, both the maximum 

warehouse as well as the inbound capacity constraints were relaxed. This resulted in Figure 28 which 

displays the inventory overflow resulting from the sequential production strategy. From Figure 28 it 

emerges that the warehouse capacity constraint is violated in 11 of the 12 months. This is directly 

related to the fact that 75% of production runs is planned in the first six months. By scheduling 

production is this manner, inventory is built in the first six months which will be slowly degraded by 

demand. As a result, the inventory levels are higher than the available storage capacity in the 

warehouse.  
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FIGURE 28 INVENTORY OVERFLOW SEQUENTIAL PRODUCTION STRATEGY 

The reason for the violation of the inbound and warehouse capacity constraints is the unawareness of 

the production scheduling model of these constraints. As the production scheduling model solely 

focusses on minimizing the production scheduling cost within the production scheduling constraints 

whilst it does not account for warehouse constraints. The unawareness of the constraints of the 

warehouse model increases the chances of infeasible results. The fact that for the case study the 

warehouse model is infeasible demonstrates that coordination between the two models or the two 

different teams is key in finding feasible and cost-effective solutions for optimal product flows between 

factories and warehouses. Apart from the warehouse storage capacity and the available inbound 

capacity no other warehouse constraints were violated due to the ordering strategy from the 

production scheduling model. Running the relaxed warehousing model with the maximum warehouse 

capacity of 25.000 and a maximum inbound capacity of 13.000 pallets resulted in a total cost for the 

relaxed sequential production strategy which will be discussed in the following section.  

7.3.2. Resulting comparison between the strategies 

Cost comparison 
The overall cost for producing and storing the six recipes for 12 months is displayed per strategy in 

Figure 29. From this bar chart it emerges that the simultaneous ordering strategy is more cost efficient 

than both the sequential strategies, as the total cost of the simultaneous strategy is € 850.490, - against 

a total cost of €1.615.819, - from the sequential warehouse strategy and a total cost of €1.709.294, - 

from the relaxed production strategy. For Figure 29 it should be noted that the relaxed model outcome 

of the sequential production ordering strategy was used for the cost comparison, since the regular 

model did not return any warehousing cost. Due to this relaxation more holding and warehouse renting 

cost need to be paid which drive up the warehouse cost. As a result, the warehouse cost of the relaxed 

sequential production ordering strategy is €1.629.335, - which is higher than the total cost of the two 

other strategies. With this relaxation in mind, it is surprising that the total cost of the relaxed sequential 

production ordering strategy is just €93.475, - higher than the total cost of the sequential warehouse 

ordering strategy.  
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FIGURE 29 COST COMPARISON CASE STUDY 

The cost split within each strategy also differs. For example, the total cost of the sequential production 

strategy consists of only 5% production cost and 95% of warehousing cost, whereas the cost split in 

the sequential warehouse ordering strategy is 44% of warehousing cost and 56% of production cost. 

The different split can be accounted to the primary focus of each ordering strategy on the model which 

is optimized first in the sequence, so the costs related to the first model are minimized and the cost 

related to the second model in the sequence will be optimized for not optimal input parameters which 

result in higher cost for the second model in place. The costs are split more equally in the sequential 

warehouse ordering strategy than in the sequential production ordering strategy for two main reasons. 

First, the warehouse model has more cost parameters with higher values than the production 

scheduling model. As a result, the warehousing cost account for a bigger cost share than the 

production scheduling cost. A second reason for the different split is the fact that the cost of the 

sequential production ordering strategy are the results from the relaxation with a higher warehouse 

storage capacity compared to the situation of B, hence the warehousing cost are higher in the relaxed 

sequential production ordering strategy. The cost split in the simultaneous model is balanced between 

strategies A and B. The production costs account for 9% of the total cost and the warehousing costs 

account for 91% of the total costs. This is the result of simultaneously optimizing the two models when 

accounting for all cost parameters and constraints at the same time. The model finds an optimal trade-

off between increasing the cost of the production model and producing orders by evenly spreading 

them over the 12 months to reduce the warehousing and storing cost. The result of this is a feasible 

solution and a more balanced split of total cost compared to the sequential ordering strategies.  

Comparing the total cost of the three models clarified that the sequence in the sequential ordering 

strategy has a significant effect on the cost split between warehousing and production cost. Moreover, 

simultaneously optimizing the models resulted in better balanced cost split which is also more cost 

efficient for the total cost of the ordering strategy. It should be noted that the costs of the different 

strategies could not be compared with actual company results, since the product flow between the 

factory and warehouse has only recently been taken into operation. As a result, no company results 

are available for comparison at this point in time.  
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Order placement comparison  
In this section the three ordering strategies will be compared on the placed orders. The size and 

number of orders placed in every month has a significant effect on the overall outcome, as for the 

sequential models the orders generated by the first model will be used as input parameter in the 

second model. The second model needs to adjust to the orders placed by the first model which largely 

determines the total cost as was proven in the previous paragraph.  

  

FIGURE 30 ORDERS PLACED BY SEQUENTIAL PRODUCTION STRATEGY CASE STUDY 

In Figure 30 the optimized orders from the production scheduling model of the sequential production 

strategy are depicted. The model aims to minimize the total production and set-up time cost for every 

individual period based on the input parameters and the given constraints. As a result, the model aims 

to schedule at most three production runs in every period. The reason for this is that with three 

available production lines every recipe can be produced on one machine and no cleaning or set-up 

time cost are incurred. By doing so, the total production costs can be minimized. This does however 

not hold for the first period as in this period the model schedules all six recipes. The reason for this is 

that the model aims to produce sufficient quantities of every product to meet the demand in the first 

period. If possible, the model schedules the productions in such manner that inventory will be built for 

the coming months. An example of this is product 3 in Figure 30 which is only produced once in the 

first month, in this production run sufficient products are produced to cope with the forecasted 

demand for the coming 12 months. The scheduling models aims to increase the overall cost in the first 

month and produce all the considered products, after which in the consecutive months the model can 

minimize the production cost by scheduling at most three products in a month whilst meeting the 

requested demand. This optimization strategy affects the distribution of the orders placed by the 

model and the resulting production schedules as can be seen in Figure 30.  
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FIGURE 31 ORDERS PLACED BY SEQUENTIAL WAREHOUSE STRATEGY CASE STUDY 

In Figure 31 the optimized orders from the warehousing model of the sequential warehouse strategy 

are displayed. From the bar chart it emerges that due to the different prioritization of the optimization 

model the order behaviour is different as well. The warehouse optimization model aims to minimize 

the warehousing costs by keeping the inventory levels as low as possible such that the holding costs  

as well as the number of warehouse capacity adjustments can be minimized. This different focus 

results in the model aiming to spread out the orders over all the available periods. Due to this order 

distribution the inventory levels and the required warehouse capacities can be minimized, whilst 

demand is met every month. On the other side, this order behaviour affects the production cost as 

more than three different recipes must be produced every month so the production scheduling model 

will incur set-up costs in the optimal production schedules. The effect of this order behaviour on the 

total cost is captured in Figure 29 in the previous section.  

 

FIGURE 32 SIMULTANEOUS ORDERS PLACED CASE STUDY 

In Figure 32 the order behaviour of the simultaneous ordering strategy is displayed. Similar to the cost 

split comparison, the simultaneous model balances the strategies of the sequential models. Because 

the model accounts for both the warehousing as well as the production costs the model orders all the 

six products in the first period incurring higher production cost in this month and requiring storage of 
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the products for the future months. Nevertheless, the sum of the orders placed by the simultaneous 

model is just below the inbound capacity constraint of 8.000 pallets which was violated by the 

sequential production strategy in this first period. By ordering all six products in the first period the 

model enabled itself to optimize the production cost in the following periods as it is possible to 

schedule a total of three products in every period whilst meeting the requested demand. Placing the 

orders in this manner is beneficial for both the warehouse as well as the production cost, since no set-

up cost are incurred for 11 out of the 12 months, whilst the orders are still spread out enough to keep 

warehouse cost low and stay within the warehouse capacity limits.  

The difference in order behaviour between the three proposed strategies is visualized in Figure 33 in 

which the total number of production runs for the 12 months per strategy are displayed. Figure 33 

confirms that for the production scheduling model it is most cost efficient to minimize the number of 

productions scheduled, whereas from a warehouse point of view it is most beneficial to spread the 

orders as much as possible over all the available periods which results in a total of 69 production runs 

compared to 23 production runs scheduled by the sequential production strategy. Optimizing the 

models simultaneously results in a more balanced production strategy which behaves like the 

production scheduling model, whilst accounting for all warehouse capacity constraints in place and 

thus spreads out the production runs more to minimize the warehousing cost and find a feasible 

ordering strategy.  

 

FIGURE 33 ORDER PLACEMENT COMPARISON CASE STUDY 
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Warehouse behaviour comparison 
The final aspect on which the strategies will be compared is the warehouse behaviour resulting from 

the ordering strategy in place. The Sequential warehouse and simultaneous strategies will be 

compared on this aspect. The sequential production strategy will be left out of scope due to the 

model’s infeasibility, including the relaxed outcome in the analysis is not helpful as the warehouse and 

inbound strategy are the violated constraints.  

 

FIGURE 34 WAREHOUSING STRATEGIES CASE STUDY COMPARISON ITOT REPRESENTS INVENTORY AND WH IS WAREHOUSE CAPACITY  

Figure 34 displays the warehouse capacities WH and the inventory levels Itot for the sequential 

warehouse strategy and the simultaneous strategy. The green lines represent the warehouse capacity 

and inventory levels of the sequential warehouse strategy and the blue lines depict the warehouse 

behaviour of the simultaneous strategy. The warehouse capacity is at the minimum level for 11 out of 

the 12 months in the sequential warehouse strategy. The warehouse capacity is only expanded in 

period three to 3.686 pallets to cope with a peak in demand. From period four onwards the warehouse 

capacity is back to the minimum level. Different than the sequential warehouse strategy, the 

simultaneous model does increase and decrease the warehouse capacity two times to cope with 

increasing in inventory levels. The model decides to have a structurally higher warehouse capacity than 

the warehouse capacity of the sequential warehouse strategy with a peak in capacity in period three 

of 4.573 pallets. The simultaneous model chooses for this higher warehouse capacity such that it can 

minimize the number of production runs and can store more inventory from period to period. Even 

though this means that the warehousing cost will be higher, the overall cost will be lower as this can 

facilitate optimal production scheduling as was highlighted in the cost comparison section. Another 

behavioural treat that emerges from Figure 34 is that even though inventory levels drop below the 

available warehouse capacity during the last three months the simultaneous model decides to not 

reduce the warehouse size for these periods. Maintaining a constant higher warehouse capacity is 

more cost efficient than reducing the capacity for these last three months as penalty cost will be 

incurred for this.  
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7.3.3. Concluding remarks 
From the case study it becomes clear that using the simultaneous ordering strategy results in the 

lowest total cost of €850.489, -. The sequential ordering strategies have significant higher total cost 

due to the primary focus on the first optimization model in the sequence which strongly affects the 

outcome of the subsequent optimization model. The simultaneous ordering strategy overcomes this 

by making concessions between the warehousing and production scheduling costs to minimize the 

total cost. The sequential production ordering strategy resulted to be infeasible in the case study 

setting due to warehousing capacity constraints which did not allow the production scheduling order 

distribution. In a demand scenario in which the sequential production strategy would have been 

feasible the difference between the sequential and simultaneous strategy could have been smaller as 

was identified in the model verification process. However, this could not be confirmed with the case 

study results due to the infeasibility of the sequential production strategy.   

Both the warehouse behaviour and order placement comparisons confirmed that the simultaneous 

ordering strategy makes concessions between the warehouse and production scheduling model in 

order to minimize the total cost. The simultaneous model increases its warehouse capacity and thereby 

the overall warehouse costs in order to store more inventory in the beginning of the year. In this way 

the model will be able to better distribute the orders and the production runs so that the total 

warehouse and production cost can be minimized. This differs from the sole focus of warehouse cost 

minimization in which the warehouse capacity and inventory levels are kept at the minimal level for 

11 out of the 12 periods.  

7.4. Cost parameter sensitivity analysis  
Now that the models and strategies have been verified and validated in a real-life case study for Kraft 

Heinz, they will be further analysed by means of a sensitivity analysis on the cost parameters which 

should help generate useful insights with regards to the effects of the individual parameters on the 

total cost and the parameters behaviour. These effects will be elaborated on in the following 

paragraphs as well as in the managerial insights.  

The results of the cost parameter sensitivity analysis can be found in Table 9. In the detailed table the 

cost % change, the cost difference and the solving gap are also displayed. Table 9 does however focus 

on the main sensitivity analysis outcomes which are needed to compare the three ordering strategies. 

The first column shows which input parameter is changed compared to the case study base scenario. 

The second column shows the new value of the input parameter used in the sensitivity analysis. Every 

parameter is changed multiple times to verify the parameters sensitivity in different scenarios. The 

parameter % change can be found in the third column, this will later on be used to compute the 

parameter’s sensitivity. The other columns that can be found in the sensitivity analysis table are order 

strategy specific. The first column for each order strategy displays the total cost of the ordering 

strategy when the input parameter is changed. The second column for each ordering strategy displays 

the sensitivity % of the input parameter based on the model’s input. The sensitivity % is computed by 

dividing the % of change of the input parameter by the % change of the model outcome as can be seen 

in function 7.5. In this way the effect of the individual input parameters on the overall model outcome 

is mapped in Table 9.  

 
% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

% 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑐𝑜𝑚𝑒
= 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦    (7.5) 
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Due to the infeasibility of the sequential production ordering strategy, no sensitivity analysis can be 

performed for the different input parameters as the model does not have a feasible outcome. For this 

reason, the sequential production strategy is not included in Table 9. This leaves the sequential 

warehouse strategy and the simultaneous strategy available for the sensitivity analysis which is 

described below.  

TABLE 9 SENSITIVITY ANALYSIS COST PARAMETERS 

 

7.4.1. Sequential ordering strategies 
From the results displayed in Table 9 it emerges that input variables warehouse inbound capacity N 

and production rate PR have a negative sensitivity in the sequential warehouse strategy. This indicates 

that if these variables are inversely related to the total cost. In other words, if the parameter is to be 

increased the overall cost will decrease and the other way around. This is not surprising as producing 

the same quantities with higher production result in shorter production times which will then result in 

less production cost as these are incurred per hour of production. The negative sensitivity of inbound 

parameter N can be accounted to the fact that having more inbound capacity at the warehouse during 

working hours means that larger production runs can be produced which is cost effective from a 

production point of view as was seen in the case study results. Besides combining production runs, 

having more inbound capacity during regular working hours also reduces the need of inbound capacity 

in overtime which has a variable penalty cost, hence the overall cost will be lower. It should however 

be noted that decreasing the production rates by 50% resulted in an infeasible model outcome as the 

Parameter Value % Param change Cost Sequential WH Sensitivity Cost Simultaneous Sensitivity

Base scenario 0 1,615,819.00€           0 850,489.00€            0

Holding cost (H) 4 51% 1,619,588€                0% 907,570€                 13%

8 202% 1,847,483€                7% 1,076,698€              13%

16 504% 1,983,656€                5% 1,414,954€              13%

Ordering cost (K) 2000 -50% 1,591,819€                3% 826,489€                 6%

8000 100% 1,663,819€                3% 898,489€                 6%

16000 300% 1,759,819€                3% 994,489€                 6%

50000 1150% 2,167,819€                3% 1,402,489€              6%

Handling cost (G) 2 -53% 1,409,105€                24% 654,522€                 43%

8 86% 1,910,793€                21% 1,165,740€              43%

16 272% 2,598,377€                22% 1,847,364€              43%

Rent cost (R) 4 100% 1,697,935€                5% 947,339€                 11%

8 300% 1,862,167€                5% 1,139,707€              11%

16 700% 2,190,631€                5% 1,525,227€              11%

Penalty cost (P) 0.00001 -100% 1,611,819€                0% 841,021€                 1%

1000 -50% 1,613,819€                0% 846,245€                 1%

4000 100% 1,619,819€                0% 857,174€                 1%

8000 300% 1,627,819€                0% 865,254€                 1%

Warehouse inbound capacity (N) 3000 -50% Infeasible Infeasible Infeasible Infeasible

9000 50% 1,486,655€                -16% 702,271€                 -35%

12000 100% 1,485,486€                -8% 701,388€                 -18%

Overtime inbound cost  (F) 2 -80% 1,443,851€                13% 740,025€                 16%

6 -40% 1,570,471€                7% 795,257€                 16%

20 100% 1,737,856€                8% 988,569€                 16%

Production cost (PC) 500 -65% 1,261,430€                34% 818,983€                 6%

2000 41% 1,832,278€                33% 870,240€                 6%

6000 322% 3,313,585€                33% 1,006,924€              6%

Set-up cost (SC) 0.0001 -100% 1,235,057€                24% 816,985€                 4%

1000 -50% 1,430,229€                23% 834,489€                 4%

4000 100% 1,970,806€                22% 882,489€                 4%

Production rates (PR) Alt A -50% Infeasible Infeasible Infeasible Infeasible

AltB 100% 1,343,215€                -17% 826,193€                 -3%

AltC 200% 1,205,420€                -13% 814,046€                 -2%
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orders could not be produced within the set time constraints. The same holds for the inbound capacity, 

as reducing this by 50% also resulted in an infeasible model due to inbound capacity constraints.  

The remaining input parameters have positive sensitivities, which indicates that increasing the 

parameter will result in an increase in overall cost. Parameters fixed ordering cost K, rent cost R and 

fixed warehouse adjustment penalty cost P have relative low sensitivities. This indicates that changing 

them will not have a significant effect on the model outcome. This is related to the fact that these 

variables are fixed cost and are not affected by the number of products handled. As a result, changing 

the cost parameter only has limited effect on the total cost.  

Input parameters with relatively high sensitivities are handling cost G, production cost PC and set-up 

cost SC. This indicates that these cost parameters are key cost drivers in the models for the sequential 

warehouse ordering strategy. The high sensitivities of these parameters can be accounted to the fact 

that handling cost G is incurred for all the products coming into the warehouse, hence it has a 

significant effect on the overall cost. The production cost and set-up cost also have a large sensitivity 

as these are the only two cost parameters accounted for in the production model, hence they are both 

significant cost drivers, reducing or increasing these will strongly affect the production cost.  

Holding cost parameter H and overtime inbound cost F do not have constant sensitivities when the 

input parameters are changed. For example, the holding cost is insensitive for a cost increase of 50%, 

however increasing the holding cost by 200% or 500% gives a 7% and 5% sensitivity. This means that 

there is a barrier up to a point that increasing holding cost affects the model’s decision and thus the 

model outcome. The same holds for inbound overtime cost F, where decreasing the cost by 80% results 

in a sensitivity of 13% and decreasing the cost by 40% results in a sensitivity of 7%, hence the parameter 

is more sensitive for bigger decreases than smaller decreases.  

7.4.2. Simultaneous ordering strategy 
Performing the same sensitivity analysis for the simultaneous ordering strategy resulted in a different 

outcome. Variables inbound warehouse capacity N and production rate PR still have a negative 

sensitivity which represents their inverse relation to the total cost. Nevertheless, the variable N’s 

sensitivity has more than doubled in the simultaneous strategy compared to the sequential warehouse 

strategy. A reason for this increased sensitivity is the increased effect of the warehouse inbound 

capacity on the simultaneous optimization of warehousing and production cost. If both the warehouse 

capacity and the inbound capacity allow it, the model can optimize the distribution of orders such that 

production and warehouse cost are minimized. This optimization behaviour was displayed in the case 

study results section 7.3. As a result of this, increasing the inbound capacity will lead to lower total 

cost thanks to the enabled optimization space. For the production rate PR the opposite holds, as the 

parameter still is negatively sensitive, but only for 3 and 2 % instead of the 17 and 13 % it was in the 

sequential warehouse strategy. This means that changing the parameter does not have a big effect on 

the total cost. This can be accounted to the fact that if the simultaneous and the sequential warehouse 

strategy ordering cost are compared, the production cost are merely 9% of the total cost instead of 

the 56% of the total cost they represented in the sequential warehouse ordering strategy. This cost 

split is discussed in the case study results and can be found in Figure 29. Due to the smaller share of 

the total cost, the effect of changing the production rate PR also has less effect on the total cost, hence 

its sensitivity is smaller. The same holds for the production cost PC and the set-up cost SC which 

sensitivities dropped from 34 to 6 % and from 23 to 4 % due to the lower cost share of production cost.  
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The opposite is true for the warehouse cost parameters, which sensitivities have increased due to the 

different cost split in the simultaneous ordering strategy. The warehouse cost account for 91% of the 

total cost in the simultaneous ordering strategy, moreover the total costs of the simultaneous strategy 

are 53% of the total cost of the sequential warehouse strategy. As a result, the fixed ordering cost K, 

the handling cost G and the rent cost R sensitivities doubled from 3 to 6, 22 to 43 and from 5 to 11 %, 

due to their increased share in the total cost in the simultaneous ordering strategy. The holding cost H 

and the inbound overtime cost F have also increased in sensitivities and have a similar sensitivity in all 

three scenarios which was not the case in the simultaneous strategy. The increased sensitivity of the 

two variables can be accounted to the changed cost split. The fact that the sensitivity percentage is 

the same in every tested scenario compared to the different sensitivities in the sequential strategy, 

can be accounted to the fact that in the sequential warehouse strategy first the warehouse model is 

optimized. Changing input parameters can have strong effects on the decision variables and the 

model’s optimization behaviour. An example of this is when the inbound overtime cost is increased, 

the model will aim to not use inbound overtime in order to reduce cost, hence the variable F will be 

used less and thus has less effect on the overall cost. Therefore, its sensitivity gradually decreases 

when the parameter is increased in the sequential warehouse ordering strategy. The same theory 

holds for holding cost H. In the simultaneous optimization strategy this effect is however less strong, 

as the model also accounts for the production scheduling optimization at the same time. This means 

that even if the holding cost or the inbound overtime cost are increased, the model is less likely to 

change its behaviour as keeping inventory or using overtime for inbounding might be more beneficial 

for the overall optimization than changing its behaviour to merely decrease holding or overtime cost. 

In other words, the simultaneous optimization model has a higher threshold before the model will 

adjust its optimization strategy. As a result, the sensitivities are constant in the simultaneous 

optimization strategy for all tested scenarios for parameters H and F.  

7.4.3. Conclusion  
From the cost parameter sensitivity analysis, it emerges that the type of ordering strategy used does 

have an effect on the sensitivity of the input parameters. Most of this difference can be accounted to 

the difference in total cost and the cost split of the total cost which depends on the ordering strategy 

that is used. Another effect of using either the sequential or the simultaneous ordering strategy is that 

the simultaneous model is less likely to change its behaviour due to single parameter changes 

compared to the sequential optimization strategies. The reason for this is the dual objective of the 

simultaneous model. If a parameter is to be increased the model will carefully analyse the trade-off 

between incurring the increased parameter cost or changing its optimal solution. This trade-off makes 

the model less likely to change its optimal solution due to single cost parameter changes. If it is 

required to increase the warehousing cost partly in order to minimize the production cost the model 

will do this. This does not hold for the sequential ordering strategies as these merely focus on either 

the warehouse or the production model in the first optimization step. As a result of this, parameter 

cost increases have a stronger effect on the models’ optimization behaviour compared to the 

simultaneous model. For this reason, increasing the cost parameters leads to declining sensitivities in 

the sequential models, whereas in the simultaneous model the sensitivity is the same for most 

scenarios.  
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Another insight which emerged from the cost parameter sensitivity analysis is the fact that the 

handling cost G has a high sensitivity in both scenarios. This means that it is an important cost 

parameter which drives the total cost and should be closely monitored or reviewed if the aim is to 

reduce the overall cost further. Holding cost H and inbound overtime cost F are also cost parameters 

which have relatively high sensitivities, hence they could be interesting to monitor or minimize as well.  

In both the sequential and the simultaneous model, inbound capacity N and production rate PR have 

negative sensitivities. Meaning that increasing these parameters will reduce the overall cost. For the 

production rates this is straight forward as increasing the production rates means that less production 

time is required to produce the same amount of products, hence less production cost. The biggest 

negative sensitivity is however from the inbound capacity N in both models. This means that this 

capacity bound value plays a key factor in the model outcome as the parameter value constraints the 

optimization options. With this in mind it should also be noted that the parameter N was one of the 

two constraints which made the sequential production strategy infeasible. Therefore, it can be 

concluded that the warehouse inbound capacity plays a crucial role in the total cost generation for the 

studied case. Possibilities to structurally increase the inbound warehouse capacity should therefore be 

explored as this will have strong effects on the overall production and warehousing cost.    
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8. Discussion  
For the model outcome interpretation, it should be noted that the case study results are not in 

principle demonstrative for other scenarios. Consequently, carefulness should be exercised in the 

generalization of the case study results. This chapter will discuss the limitations as well as the 

assumptions of the proposed models and their effect on the model results, the validity of the models 

and the overall generalizability of the results. The chapter will be concluded by discussing the 

generated managerial insights.   

8.1. Critical assumptions and limitations of the research 
In the process of describing, conceptualizing, verifying and validating the models and according 

strategies multiple assumptions have been made. In this section, these assumptions and their effect 

on the model outcome will be more thoroughly discussed. Followed by an elaboration on the research 

limitations themselves.  

8.1.1. Model assumptions and limitations 
The proposed warehousing and production scheduling models represent supply chain activities. The 

models have been proposed by combining information from literature with information obtained from 

field experts. By combining information sources, it is ensured that theoretical knowledge is combined 

with practical knowledge from the field. Nevertheless, in the formulation of the mathematical models 

it is required to make assumptions to ensure that the proposed models can be developed and will 

provide feasible results within the given time and resource constraints. Making modelling assumptions 

affects the preliminary solution space of the models and may affect the real-life representation. For 

this reason, it is important to reflect on the made assumptions and their effect on the model outcome.  

Assumptions 
A first model assumption made is that both optimization models consider demand to be deterministic. 

Assuming that future demand is known with certainty whilst in reality it is not, affects the model 

outcome as the uncertainty effect of the future is not accounted for. In a deterministic model the 

correctness of the model outcome strongly depends on the correctness of the used demand forecast 

and the parameter estimations. Because the used demand forecast is an (close) estimate of the actual 

demand, the model outcome should be interpreted as an approximated value. In case of perfect 

demand forecasting, the model assumption does not affect the validity of the model outcome. The 

likelihood of a perfect 12-month forecast is however non-existent. More plausible is the expectation 

that the forecast is mostly accurate for the first months under study and that the forecast for 

consecutive months will be less and less accurate. This does not have to form a problem as the model 

looks at the high level required storage capacity and product flows. For example, where one product 

may be over forecasted by the company, other products can be under forecasted which would balance 

the overall results. A consequence of a wrong forecast may be that excessive warehouse capacity is 

leased if solely the deterministic model outcomes will be used to determine the optimal company 

strategy. The opposite is also plausible as too little warehouse capacity might be leased due to wrongly 

predicted scenarios. This may result in supply chain issues and customer service level risks. For this 

reason, the model outcomes should be interpreted as approximated values and be used for what-if 

scenario analyses to see what optimal strategies in case of simulated demand scenarios would be. 

Updating the models regularly with the latest available forecast should pertain to ensure that model 

outcomes are as accurate as possible. The negative effect of this assumption on the model outcome 

could have been resolved by proposing two-stage stochastic optimization models instead of 

deterministic models. However, due to the limit time available to propose and test the models, it was 

decided to make this model assumption as this enhanced the project’s feasibility. The stochastic 
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modelling approach remains an interesting direction for further research which will be more 

thoroughly discussed in the subsequent chapter.  

A second model assumption made is that no transportation time and capacity is accounted for in the 

models. This assumption was made as solely the factory and warehouse operations are considered in 

this study. How and when the finished goods are transported between the factory and the warehouse 

is not within the scope of this research and thus not considered in the models. This assumption does 

affect the real-life representation of the model results, as in reality the transportation of goods 

between factories and warehouses is of interest and might cause issues in the product flow between 

a factory and a warehouse. It was decided to make this assumption to enhance the model’s feasibility 

and not overcomplicate the model. To enhance the reliability of the case study results it was chosen 

to study the product flow between a factory and warehouse which are just 8 kilometres apart. Due to 

the relative short distance between the factory and the warehouse the transportation time and 

capacity should have less effect on the reliability of the model outcome.   

A third model assumption made is that products are grouped by recipe. Both optimization models 

consider six different product recipes for production and warehouse storage. The products have been 

grouped by recipe as considering individual products would overcomplicate the production scheduling 

model due to the introduction of too many new constraints such as bottle change overs, minimal 

production quantities, minimal remaining shelf-life and short production runs. This was overcome by 

aggregating the products considered on a recipe level. Not considering these aspects affects the real-

life representation of the model outcome as the inclusion of these new constraints would affect the 

production schedules and according warehousing strategies. When productions would be scheduled 

on a product level the added the production schedules would be more detailed and the optimal bottle 

and label changeover sequences would also need to be optimized. This would introduce more variables 

and so further increase the complexity of the model. By making the assumption to aggregate the 

products on recipes a less detailed production plan is generated. It should therefore be accounted for 

in the interpretation of results that the model is based on aggregate information and can be used for 

a high-level analysis of product flows between factories and warehouses in the supply chain but is not 

representative for detailed real-life production schedules. A more detailed production scheduling 

model would generate different optimal production schedules with different production scheduling 

costs.  

A fourth model assumption is that no raw material availability is considered in this model. This 

assumption was made as the scope of this thesis is to study the product flows between the factory and 

warehouse and not consider the product flow before the factory and after the warehouse as this would 

be too much. Not including these product flows in the model does negatively affect the real-life 

representation of the model and should therefore be taken into account when interpreting the results. 

Including the raw material availability of the model would introduce a new feature in the production 

scheduling model as the availability of raw materials would also affect the possibility and timing of the 

production runs. This feature would make both the production scheduling and the integrated model 

more complex. Besides the increased complexity the problem-solving chances of the sequential 

warehouse strategy would also decrease, since the warehouse model does not consider the availability 

of raw materials and might request products which are not available at certain times. This could result 

in infeasible results in the second stage of the sequential warehouse strategy. For the above-

mentioned reasons, it should be accounted for that in reality the optimal strategy can be affected by 

a shortage of raw materials which can have an effect on the possible production schedules which is 

not accounted for in the proposed model.  
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A fifth and final modelling assumption made is that the proposed models solely consider the product 

flow between a single factory and warehouse, whilst in practice warehouses receive goods from 

multiple factories. Due to this assumption, capacity reduction assumptions had to be made in order to 

make the models capacities representative for the product flow between a single factory and 

warehouse. Modelling with only part of the actual capacity has the risk that the model outcome is less 

representative for the real-life scenario. Since in reality, the warehouse inbound capacity and the 

overall storage capacity has to be shared with products from other factories as well. The product mix 

inside the warehouse changes continuously depending on the different factory outputs. Whereas, in 

the case study merely the product flow from a single factory is considered.   

Model limitation  
A limitation of the used models is that the model outcomes are as reliable as the data used. This model 

treat was already shortly discussed in the first model assumption elaboration. This model limitation 

does not only hold for the demand forecast used but holds for all input parameters considered in the 

proposed models. Therefore, it is of significant importance to ensure that the input data is as accurate 

as possible. Since making use of inaccurate input data will make the model outcome more unreliable. 

However, the effects of this model limitation are limited as Daganzo (2005) and Taylor (2006) argued 

that deterministic inventory models are robust to data errors of forecast and decision variables. Even 

though the model outcomes remain valid when parameters are estimated differ from the true value, 

the goal is to estimate the parameters as close as possible to the true value for enhancement of the 

models’ validities.  

8.1.2. Research method limitation 
The limitation of the used research method to propose and test two optimization models in multiple 

ordering strategies lies within the fact that the strategies and models have only been tested in a single 

case study. Carrying out a single case study negatively affects the reliability of the model outcomes, 

since the models are only tested in one single case (Kanama & Kido, 2016). Nonetheless, it was decided 

to carry out a single case study due to limited time and resource availability. This research limitation 

was partly compensated by analysing and testing the different strategy behaviours in three simulated 

demand scenarios. By doing so, the strategies have been tested and verified in a total of four different 

scenarios which increases the reliability of the model outcomes. Ideally, the models should have been 

tested in multiple real-life case studies to further increase the reliability of the model outcomes. This 

could have been realized by performing similar case studies to other factory, warehouse combinations. 

However, due to the limited time available this was not feasible.   

Another limitation of the research is the that the case study results cannot be compared with previous 

company results. Comparing the case study results with company results would further validate the 

case study results and could confirm the dominance of the simultaneous ordering strategy compared 

to both the sequential and the current Kraft Heinz strategy. The reason for this limitation is the fact 

that a new warehouse was studied in the case study. Since this warehouse was recently taken into 

operation and this year demand forecasts were used, no historical results were available which can be 

used as a comparison for the case study results. In hindsight, this could have been resolved by choosing 

a different warehouse for the case study or by performing more than one case study in this thesis. By 

doing so, comparisons between case study results and historical company results could have been 

realized.   
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8.2. Reflection on model validities 
The validity of the model expresses if the model outcomes are reliable, representative for the real-life 

scenario and how well the outcome of the model can be generalized for other situations. The validity 

of the proposed models is ensured throughout different stages of the models’ development which will 

be discussed in the first subsection. This section will be concluded by touching upon the models’ 

generalizability.  

8.2.1. Validity  
In the first part of this research the validity of the models was ensured by combining findings from 

different scientific research papers to come up with the mathematical models which form the bases of 

the proposed models and tested ordering strategies. The findings from the different scientific papers 

were complemented with model features and constraints inspired by operational problems from Kraft 

Heinz. Through using findings from literature it is ensured that the proposed models consist of well-

known input parameters which make the models suitable for different cases. Combining these findings 

with model suggestions from field experts, further ensures that the models are representative for real-

life operations. During the conducted literature research, it was decided to consider demand to be 

deterministic in the tested scenarios as this would reduce the models’ complexities. Even though, 

assuming demand to be deterministic whilst in fact it is not, affects the real-life representation of the 

models. It is argued in literature by Daganzo (2005) and Taylor (2006) that deterministic inventory 

models are robust to data errors and are useful to generate managerial insights as long as the models’ 

assumptions are accounted for when interpreting the results. An example of such a robust 

deterministic inventory model is the well-known EOQ model from Ford Whitman Harris. 

Once the mathematical models were formulated, they were checked and validated by different logistic 

managers from Kraft Heinz to ensure the real-life representation of the formulated models and made 

assumptions. This cross-validation further pertained to the increased validity of the models and the 

according outcomes.  

A third mitigation to ensure the models’ validities was to use actual company forecasts and cost 

calculations as input parameters for the models in order to reduce the possibility of data errors. Kraft 

Heinz has decades of experience with regards to forecasting the demand for their products in different 

markets, therefore it is assumed that the forecasted values are a close representation of real demand. 

Using real-life data further pertains to the real-life representation of the models and their respective 

outcomes. 

A final step in ensuring the model validities was testing the models in a total of four scenarios. First the 

models were tested in three hypothetical scenarios of which the results verified the models’ behaviour. 

Thereafter, the proposed models were tested in a case study based on real-life input parameters in 

which the models displayed similar behaviour. Thoroughly testing the formulated models was 

considered the final step in the model validation as the models behaved similar in all the tested 

scenarios and can therefore considered to be valid.  

One of the objectives of this thesis was to come up with an optimization model to study the real-life 

product flows between a factory and a warehouse in the supply chain of a manufacturing company. It 

should be noted however that it is nearly impossible for mathematical and scientific models to capture 

the complexity of reality. On this note George Box stated in 1976; “All models are wrong, but some are 

useful” (Box, 1976). He sought to emphasize that all scientific models are simplifications of reality, but 

that simplified models can generate useful insights as well if they are formulated correctly. The same 

holds for the proposed models in this research. Even though the aim was to study the real-life product 

flows between a factory and a warehouse in the supply chain of a manufacturing company, several 
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assumptions had to be made to make it possible to study the product flows. These discussed 

assumptions make the models to be a simplification of reality and thus have an effect on the real-life 

representation of the models. Nevertheless, the model validities are ensured through the described 

actions in this section. Altogether, it can be assumed that the simplified models can be a useful tool to 

generate managerial insights for real-life operations regarding the product flows between factories 

and warehouses for manufacturing companies as long as the effects of the made assumptions are 

considered during the interpretation of the model results.  

8.2.2. Generalizability  
The case study results themselves cannot be generalized for other manufacturing companies that 

make use of LSP warehouses in their supply chain. The case study results hold specifically for the used 

set of input parameters which were based on real-life data from Kraft Heinz. Changing the input 

parameters will affect the model outcome as was demonstrated in chapters six and seven of this 

research. The proposed models themselves can however be used by other manufacturing companies 

to analyse the product flows between factories and warehouses as the models’ objective functions 

and constraints have been generally formulated. This general set-up of the models makes the models 

suitable to be used and tested for other case studies as well. The complexity of setting up and using 

the proposed models for other manufacturing companies depends on the case study details that 

should be accounted for such as the number of periods, products, machines and possible missing input 

data.   

8.3.  Managerial insights 
Preparing and conducting the research and performing the according case study resulted in a number 

of relevant insights which can be used by logistic managers and researchers to improve the ordering 

strategy and resulting product flows between factories and warehouses. These managerial insights will 

be individually discussed on their business relevance, potential effect and possible implication.  

A first managerial insight is that simultaneous optimization of the models leads to superior results. The 

main reason for this is the fact that the simultaneous ordering strategy ensures that the total cost is 

minimized whilst ensuring that the model outcomes are feasible from both a warehousing as well as 

production point of view. This does not hold for the sequential ordering strategies, as the optimal 

outcome of one model might not be optimal or even feasible as input for the other model. As a result, 

the sequential ordering strategies may lead to infeasible outcomes in some scenarios. The according 

managerial insight is that it is valuable for business to consider as much cost parameters and 

constraints of the supply chain activities as possible when optimizing the size and timing of orders 

placed. Ensuring that the placed production orders satisfy not only the production constraints but also 

the warehousing constraints will reduce the risk of infeasible results, hence the risk of capacity issues 

in the supply chain. By simultaneously optimizing multiple segments in the supply chain in-depth trade-

offs can be made which are beneficial for ensuring reliable product flows as well as minimizing the 

total cost throughout the supply chain. This is in line with findings in literature from Bradley and 

Arntzen (1999) and Atamtürk and Hochbaum (2001) who argued that simultaneous consideration of 

capacity, inventory and production decisions leads to superior results. As was explained in chapter 4, 

the simultaneous ordering strategy resembles a company situation in which there is central 

coordination between the production and warehouse departments and both teams are aware of all 

the needs and constraints in place of the complete product flow. In this way trade-offs can be made 

to find the optimal production and warehousing strategies. Because the simultaneous optimization 

leads to superior results, it is also recommended for logistic managers to enhance central coordination 

and interdepartmental coordination in order to improve the product flow between factories and 

warehouses. A possible strategy to facilitate this is introducing key performance indicators which 



                                                              MSc Thesis Complex System Engineering & Management |Bas Busser 

78 
 

monitor unforeseen supply chain issues due to misalignment between production scheduling and 

logistic teams. Closely monitoring this key performance indicator and holding multiple teams 

accountable for this key performance indicator’s performance should ensure more interdepartmental 

collaboration and reduce the future logistic cost and issues. Other strategies to enhance 

interdepartmental communication would be to organize weekly meetings including both the 

warehousing and production scheduling team discuss the constraints, capacities and foreseen issues 

for the near future. Concluding, through interpreting the case study results it emerged that 

simultaneous optimization the best results are achieved, for business this indicates that enhancing 

coordination and interdepartmental communication will have a positive effect on the product flow. 

In addition to the previous managerial insight that simultaneous optimization is achieving better 

results than solving the subproblems in a sequence. Another business recommendation would be to 

invest in an optimization software program to help plan and optimize production scheduling and 

warehousing planning. The case study results proved that integrated models are most suitable for 

solving large problem sets and that these problems can easily contain 50.000 variables that need to be 

optimized. Since solving such problems (partially) by hand is very time consuming and can lead to non-

optimal outcomes it is recommended to investigate the possibility to invest in planning optimization 

applications which consider production and warehousing constraints simultaneously. Investment costs 

made for the improved planning tools could be saved by decreasing the number of required production 

planners as well as a reduction in unforeseen logistic costs due to capacity issues or planning errors.          

A second managerial insight obtained through the case study results is that the warehouse inbound 

capacities have a strong effect on the model outcomes and possible (in)feasibility. For this reason, it is 

of importance that the inbound capacity and overtime inbound capacity cost parameters are correct 

and representative for the real-life circumstances as wrongly estimating them can have a significant 

effect on the model outcome. Because of the large and negative sensitivity of the warehouse inbound 

capacity and the high positive sensitivity of the warehouse inbound overtime cost it is recommended 

to investigate opportunities to structurally increase the warehouse inbound capacity at the LSP 

warehouse as this will have a positive effect on both the warehouse as well as the production costs. 

Besides the positive effect on the costs, increasing the warehouse inbound capacity will also reduce 

the chance of unforeseen issues at the warehouse due to limited inbounding capacity, since the 

inbound capacity is limiting the solution space of the studied models and is the first constraint that is 

violated in case of an infeasible model outcome. To this end, it is recommended to increase the 

warehouse inbound capacity.  

A third managerial insight would be to closely monitor the handling cost and explore options to reduce 

this cost in the future. The performed sensitivity analysis resulted in the observation that the handling 

cost have a significant effect on the model outcome for both analysed strategies. Exploring options to 

reduce this cost parameter in cooperation with the warehouse LSP would be beneficial for the total 

cost related to the product flows.  

The described managerial insights from this research entail recommendations for logistic managers to 

further improve the product flows between factories and warehouses in supply chains. The first 

managerial insight is a general managerial insight applicable for all people who are interested in 

developing or using the proposed model in the future. The second and third proposed managerial 

insights are related to insights obtained in the sensitivity analysis of the case study. The outcome of 

this is specific for the case study input parameters, hence different case studies may have different 

results. Nevertheless, he proposed models and ordering strategies could be used to test different 

instances which may result in different outcomes.  
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9. Conclusion  
The aim of the final chapter of this research is to summarize the findings and conclude this research. 

This will be done by first answering the formulated sub research questions. Through combining the 

answers to the sub research questions, an answer for the main research question can be formulated. 

This chapter will be concluded by discussing the recommendations for future research.  

9.1. Answers to the sub research questions  
In this section answers to the sub research questions will be provided. This will be done by 

simultaneously discussing the answers to the first three sub research questions as these have been 

answered through the conducted literature research. Thereafter, the final three sub research 

questions will be answered individually as these questions pertain to the case study outcomes.  

The conducted literature review helped to map the state of the art in the research fields of the multi-

period warehouse problem, the lot size problem and the scheduling problem. The different problem 

classifications and solving methods were mapped as such in Table 1. By doing so sub research question 

one was answered. Furthermore, the conducted literature research helped to identify the necessary 

adjustments to propose a multi-product version of the combined lot size and multi-period warehouse 

capacity model. This was done by searching for research papers that focussed on the optimization of 

multi-product multi-period warehousing models and for papers that proposed integrated lot size and 

multi-period warehouse problems. From this literature study it emerged that input parameters such 

as demand and inventory parameters and constraints needed to be made appropriate for multiple 

products. Besides these adjustments new constraints had to be introduced which captured the effect 

of considering multiple products on the lot sizes and warehouse strategies. By combining these 

findings, the second sub research question was answered. The final sub research question which could 

be answered through consulting research papers was the question how to combine a production 

scheduling model with a multi-period lot size and warehouse capacity optimization model. By 

combining findings from papers on the individual models it was decided that the two models could be 

connected through the generated ordered products that needed to be produced and thereafter 

stored. As this parameter was present in both models it could be used to connect the two models in a 

sequential and a simultaneous optimization set-up. In the second phase of this research the fourth, 

fifth and sixth sub research question were answered. The answers to these sub research questions will 

discussed in the subsequent paragraphs.  

SQ4: “How do product flows from a factory affect warehousing strategies?” 

The effect of the product flow on the warehousing strategy depends on the incentive behind the 

scheduled productions as was displayed in the chapters six and seven. If the production schedules are 

planned solely to minimize the production scheduling cost such as in the Sequential Production 

Strategy, production runs will be consolidated and the production cost will be minimized. Due to this 

focus on the production perspective, the factory output will most likely have production peaks 

followed by periods with lower output. This will result in high inventory levels which requires additional 

warehouse capacity. In this situation the warehousing strategy is affected by the product flows from 

the factory as it is reactive to the factory output and will have to adjust its warehouse capacity 

accordingly. The result of this is an increase in warehousing cost due to high inventory levels. If the 

warehouse team is integrated in the production flow strategy, the effects for the warehouse would be 

different. This could be seen in the model outcomes of the Sequential Warehouse Strategy and the 

Simultaneous Strategy. If the warehouse cost and constraints are accounted for in the production 

planning step, the productions will be spread out more over the available periods. In this way a more 

consistent product flow is ensured and inventory as well as warehouse capacities can be better 
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controlled. In this production planning strategy, the warehouse team is integrated in the decision 

making which enhances the coordination of operational production and warehousing decisions. The 

results from the model verification and the case study proved that enhancing this coordination and 

integrated decision-making leads to superior results and reduces the chances of infeasible outcomes.  

SQ5: “How do the models’ input parameters affect the outcome of the proposed models?”  

The question how the input parameters affect the outcome of the proposed models has been 

answered by performing a demand scenario behaviour analysis as well as a cost parameter sensitivity 

analysis in the case study. By performing a sensitivity analysis to the cost parameters, the effects of 

changing a single cost parameter on the model outcomes became clear. By doing so, managerial 

insights for the company under study were generated. Main findings form this sensitivity analysis were 

that the warehouse inbound capacity has a significant effect on the model outcome. Therefore, it is 

was recommended to investigate the structural increase this parameter as this will improve the model 

outcome. Additionally, the handling and holding cost were identified as cost drivers of the model 

outcome which should be accounted for if one aims to improve the model outcomes in the future. The 

demand scenario behaviour analysis verified the models’ behaviour in different demand scenarios. In 

this way the effects of demand scenarios on the model outcomes could be mapped. A conclusion 

drawn from this analysis was that the Simultaneous Ordering Strategy achieved the best results in 

every demand scenario. Another insight from this analysis was that in the demand scenario in which 

one product is dominant the total cost would be lowest for all strategies, the chances of an infeasible 

result in the Sequential Production Strategy are however also higher for dominant demand scenarios.  

SQ6: “To what extend does the model reflect the real-life scenario for Kraft Heinz?” 

The final sub research question was answered in the discussion chapter. The models’ validity and 

correct representation of the real-life scenario was reflected upon. It was concluded that the validity 

was ensured through all stages of the model development by means of model validation by field 

experts as well as using widely known parameters and constraints inspired by real-life operations from 

Kraft Heinz and using real-life company data in the case study. Nonetheless, a number of assumptions 

had to be made in order to be able to model the problem. These assumptions did affect the real-life 

representation of the proposed models, as the due to the made assumptions the models represent a 

simplified version of reality. Because of these made assumption the model as well as its outcomes 

should be viewed as an informative simulation of the real-life scenario. The models and the made 

analyses provide a realistic high-level overview of the operations and product flows between a factory 

and a warehouse in the supply chain of a large manufacturing company. Nevertheless, it is important 

to be aware of the high-level representation of the Kraft Heinz operations in the models and the lack 

of detail in certain model aspects which may affect the model outcome. With this in mind the models 

can be used to analyse the effects of changing cost or characteristics at the factory or the warehouse 

and study the effects on the optimal ordering strategies.  
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9.2. Answer to the main research question 
By combining the answers of the sub research questions, an answer to the main research question 

could be formulated. The main research question entails:   

“How does the coordination between production and warehouse decisions affect the product 

flow between factories and warehouses for manufacturing firms?” 

From the conducted research it emerged that increasing interdepartmental coordination between 

production and warehousing teams has a positive effect on the product flow and according cost. The 

simultaneous optimization model which accounted for both the warehouse as well as the production 

constraints simultaneously emerged to be the model which leads to superior results when compared 

to two sequential alternative strategies. This is in line with findings in literature from Bradley and 

Arntzen (1999) and Atamtürk and Hochbaum (2001) who found that simultaneous consideration of 

capacity, inventory and production decisions leads to superior results compared to sequential decision 

making. Since simultaneous optimization represents a company setting in which there is central 

coordination, it is important to enhance coordination between warehouse and production decisions 

through raising awareness for all the constraints and cost drivers in place in this process. Besides the 

simultaneous model being the most cost-effective model, the simultaneous model also is more reliable 

to generate feasible results due to the simultaneous consideration of warehousing as well as 

production constraints. This will translate in practice to a lower risk of capacity issues in the supply 

chain due to a lack of coordination between production planning and logistic departments. Altogether, 

this research confirmed the statement in literature that simultaneous optimization achieves better 

results than sequential optimization. Moreover, this research demonstrated the positive effect of 

centrally coordinating production and warehousing decisions due to the integrated model’s 

superiority. By doing so, the main research question has been answered and the research objectives 

have been fulfilled.  

  



                                                              MSc Thesis Complex System Engineering & Management |Bas Busser 

82 
 

9.3. Further research  
This thesis proposes three alternative ordering strategies for large manufacturing companies which 

make use of two developed MILP models. The proof-of-concept of these strategies is provided by 

testing them in a case study of a large manufacturing company in the food sector. This proof-of-

concept opens doors for further research to expand on the insights obtained in this investigative 

research and to further improve the models towards possible real-life implementation. The 

recommendations for further research will be discussed separately below.   

A first recommendation for further research would be to test the proposed models in a stochastic 

environment. Now that the models’ optimization behaviours have been verified and their real-life 

representation have been validated, the models could be extended to include demand uncertainty. 

Adding demand uncertainty does increase the models’ complexities. On the other side, it also 

enhances the models’ real-life representation. The developed models could be extended into a two-

stage stochastic MIP model and demand can be treated as the uncertain variable. For other possible 

extension options in the stochastic environment the research of White & Francis (1971), Roll & 

Rosenblatt (1988) And Huang et al. (2014) may be used as examples of how to include stochasticity in 

warehousing models. It could be interesting to compare the case study and sensitivity analysis results 

of the stochastic and deterministic models and describe benefits of the respective models. Moreover, 

the effects of using different demand distributions on the model outcome could be studied with the 

stochastic model. Insights obtained from this comparison may help to further improve the models for 

future real-life implementation.  

A second recommendation for further research would be to extend the proposed MILP models to 

consider multiple factories and a single warehouse in the product flow study. The additional 

consideration of multiple factories requires an extension of the production scheduling model as certain 

products may only be produced in specific factories and on specific lines. Moreover, product flows 

from multiple factories will have to be consolidated and stored in a single warehouse. As a result of 

this extension, interesting new trade-offs regarding warehouse inbound and storage prioritization can 

be studied.  

A third recommendation for further research would be to expand the mathematical models to include 

the transportation of the goods between the factory and the warehouse. Including the transportation 

of the goods, the availability of trucks, the transportation time and cost into the model further 

increases the real-life representation of the models as well as the model’s complexity. This could be 

included by introducing a carrier capacity and a transportation cost parameter for produced products. 

A study towards this extension might be interesting to see how this affects the optimal ordering 

strategies and how this effect is related to the distance between a factory and a warehouse. 

A fourth recommendation for further research is to extend the models to analyse the product flows 

on a product level instead of the current recipe level. The increased level of detail in the models would 

require a number of new constraints such as the inclusion of bottle and label changeovers which will 

increase the models’ complexity. The product level detail does however introduce new possibilities for 

the analysis of product flows, since the more detailed production model will affect the ordering 

strategies due to the added constraints. Other possibilities for extending the production scheduling 

model would be to include operator assignment and production line maintenance to further improve 

the models’ real-life representation.   
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A fifth recommendation for further research would be to include arrival and departure intervals of the 

queuing theories in both the MILP models for the arrival of raw material at the factory and arrival of 

goods at the warehouse. Including these intervals in the product flow study further increases the level 

of detail and introduces new subproblems within the periods under study. The complexity of the 

models will increase but the inclusion of this distribution would also be interesting to see how the 

ordering strategies would change and what this means for the overall model outcome if the raw 

materials are not available at all times and if the finished goods arrive with changing intervals at the 

warehouse.  

One more recommendation for further research would be to test the proposed ordering strategies and 

according optimization models in case studies of other manufacturing companies or for different 

factory warehouse combinations and compare the results of this case study. By testing the models in 

different real-life case studies, the model outcomes can be further validated. Moreover, the effects of 

using different production and warehouse situations on the model outcomes can be compared. For 

example, other manufacturing companies may require part of the inventory to be stored at specified 

areas in the warehouse for cooling or other purposes. Studying the effects of these different 

warehouse layouts on the model outcome might generate new managerial insights. Moreover, 

performing case studies to warehouses of which historical data is available can help to compare the 

case study results with company actuals from the past, as this was not available for the Kraft Heinz 

case study. This contributes to further validation of the strategies as well as highlighting the added 

value of using a proposed strategy to the business. Another interesting direction for further research 

would be test the models for manufacturing companies who are not active in the fast moving 

consumer goods market and investigate if the case study results have similar trends or not.  

A final recommendation for further research would be to propose a new optimization algorithm(s) for 

the proposed mathematical models and test these algorithm’s solving performance against the solving 

times of CPLEX for similar problems. Research in this direction can be of interest to further prepare the 

proposed models for larger problem sets as this might help increase the solving speed.   
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Appendix  
A: Tables & Figures 
 

TABLE 10 DEMAND BASE SCENARIO MODEL VERIFICATION 

Period Product 1 Product 2 Product 3 

1 100 400 200 

2 200 200 350 

3 100 400 350 

4 300 200 350 

5 700 800 650 

6 100 400 350 

 

TABLE 11 DEMAND EQUAL SCENARIO VERIFICATION 

Period Product 1 Product 2 Product 3 

1 233 233 233 

2 250 250 250 

3 283 283 284 

4 283 284 283 

5 717 717 717 

6 284 283 283 

 

TABLE 12 DEMAND DOMINANT SCENARIO VERIFICATION 

Period Product 1 Product 2 Product 3 

1 100 100 500 

2 100 100 550 

3 150 100 600 

4 100 200 550 

5 350 300 1500 

6 50 200 600 
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B: CPLEX scripts Case study 
Asequentialprod.Mod 

// Number of Machines  

int nbPeriods = ...; 

range Time = 1..nbPeriods; 

range T1 = 0..nbPeriods; 

 

 

// Number of Machines  

int nbMachines = ...; 

range Machines = 1..nbMachines; 

 

// Number of Jobs 

int nbProds = ...; 

range Products = 1..nbProds; 

range nodes = 0..nbProds; 

 

// Parameters 

float PR[Products][Machines] = ...; 

int release = ...; //could potentially be changed to time  

int due = ...;     //could potentially be changed to time  

int SUcost= ...; 

int d [T1][Products] = ...; 

int S [Products][Products] =...; 

int M =...; 

int PCost= ...; 

 

// Decision variables 

dvar int+ i [T1][Products]; 

dvar int+ x [T1][Products]; 

dvar float+ pt [Time][Products][Machines]; 

dvar float+ st [Time][Products][Machines]; 

dvar float+ ct [Time][Products][Machines]; 

dvar boolean a [Time][nodes][nodes][Machines]; 

 

 

 dexpr float SchedCost = sum(t in Time)sum(i in Products)sum(j in 

Products)sum(m in Machines)(a[t][i][j][m]*(S[i][j]*SUcost + 

pt[t][j][m]*PCost)); 

 minimize SchedCost; 

 

 subject to{  

 forall(i in Products, t in Time){ 

 c21:sum(m in Machines)sum(j in nodes:j!=i)a[t][i][j][m]<=1;  

  } 

 

forall(m in Machines, t in Time){ 

c22:sum(j in Products)a[t][0][j][m]<=1; 

} 

 

 forall(j in Products,m in Machines, t in Time){ 

 c23:sum(i in nodes)a[t][i][j][m]==sum(i in nodes)a[t][j][i][m]; 

}  

 

 forall( i in Products,m in Machines, t in Time){ 

 c24: a[t][i][i][m]==0;                       // ensures that product 1 is 

not scheduled after product 1  

}  
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forall(j in Products, t in Time){ 

c25:x[t][j]==sum(m in Machines)(pt[t][j][m]*PR[j][m]); 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c26:ct[t][j][m]==st[t][j][m]+pt[t][j][m]; 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c27:release<=ct[t][j][m]; 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c28:ct[t][j][m]<=due; 

} 

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

 c29:st[t][j][m] >= st[t][i][m]+pt[t][i][m]+S[i][j] - M*(1-a[t][i][j][m]); 

 }  

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

  c30:st[t][j][m] >= release; 

}  

 

forall(i in Products, m in Machines, t in Time){ 

c31: pt[t][i][m]<= M*(sum(j in nodes)a[t][i][j][m]);  

} 

 

forall(j in Products, t in Time){ 

c32:sum(t in 1..t)x[t][j]>= sum(t1 in 1..t)d[t1][j]; 

} 

} 

 

execute 

{ 

var f=new IloOplOutputFile("output2.csv"); 

f.writeln("x",x); 

f.close(); 

} 

ASequentialWH.Mod 

int nbPeriods = ...; 

int nbProds = ...; 

 

range T=0..nbPeriods; 

range Products=1..nbProds; 

range Time=1..nbPeriods; 

 

 // Parameters 

 int d [T][Products] = ...; // demand in period t 

 int x [T][Products] = ...; // demand in period t    

 int K  = ...; // fixed order cost in period t  

 float h  = ...; // unit holding cost in period t  

 float g = ...; // handling cost 

 int p  = ...; // fixed cost of increasing WH size in period t 

 float r  = ...;  // WH rental cost per unit in period t  

 int b  = ...;  

 int MaxWH = ...; //maximum WH capacity 

 int MinWH = ...; // Minimum WH capacity 
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 int IINV [Products] = ...; // Initial inventory P1 

 int n = ...; //max inbound capacity 

 int F = ...; //OT cost 

 int SS[Products] = ...; 

 int y [T] = ...; 

 

  

//dvar int+ x[T][Products]; //order quantity in period t  

dvar int+ i[T][Products]; //inventory lvl at the end of period t of every 

product 

dvar int+ itot [T]; //sum of inventory at the end of period t  

dvar int+ w[T]; // warehouse size at the end of period t  

dvar int+ u[T]; // warehouse size expansion at beginning of period t  

dvar int+ v[T]; // warehouse size contraction at beginning of period t  

dvar int+ l[T]; // Number of pallets inbounded in OT   

dvar boolean z1[T]; // binary variable for WH expansion in period t  

dvar boolean z2[T]; // binary variable for WH contraction in period t  

 

  

 //objecTive funcTion 

dexpr float ProdCost = sum(t in T)sum(j in Products)(h*i[t][j]+g*x[t][j]); 

dexpr float PeriodCost = sum(t in 

T)(K*y[t]+r*u[t]+p*z1[t]+r*v[t]+p*z2[t]+r*w[t]+l[t]*F);  

dexpr float WHCost = ProdCost+PeriodCost;  

  

minimize WHCost;  

 

//constraints 

subject to { 

 

forall(t in Time, j in Products) { 

c1: i[t-1][j] + x[t][j] - d[t][j] == i[t][j];    //Inventory balance 

constraint  

} 

 

forall(t in Time, j in Products) { 

c3: i[t][j]>=SS[j]; // Ensures that in all periods t the inventory level 

should be as least as high as the required SS 

}    

 

forall(t in Time){ 

c4: w[t-1] + u[t] - v[t] == w[t];   //warehouse balance constraint 

} 

 

forall(t in Time){ 

c5:(sum(j in Products)i[t][j]) <= w[t];   // inventory should be max. the 

warehouse level 

} 

 

forall(t in Time){ 

c6:u[t] <= (sum(t in T)sum(j in Products)d[t][j])*z1[t]; // Total demand from 

1 to T * z1   

} 

 

forall(t in Time){ 

c7:v[t] <= (sum(t in T)sum(j in Products)d[t][j])*z2[t]; // Total demand from 

1 to T  *z2    

} 

 

forall(t in Time){ 

c8:w[t] <= MaxWH; // WH max available capacity  
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} 

 

forall(t in Time){ 

c9:w[t] >= MinWH; // Min WH capacity that is agreed upon 

} 

 

forall(t in Time){ 

c10:(sum(j in Products)x[t][j])<= n + l[t]; //sum of ordered products should 

be below inbound capacity 

} 

 

forall(t in Time){ 

c11:l[t] <= b; // upperbound of OT capacity for inbounding pallets in a period 

} 

 

forall(t in Time,j in Products){ 

c12:(sum(j in Products)i[t][j]) == itot[t]; //For visualization of itot 

} 

 

forall(j in Products){ 

c13:i[0][j]== IINV[j];   // initial inv prod  

} 

 

c14:w[0]==MinWH;  //initial warehouse size 

} 

BSequentialWH.Mod 

int nbProds = ...; 

int nbPeriods = ...; 

 

range Products = 1..nbProds; 

range Time = 1..nbPeriods; 

range T=0..nbPeriods; 

  

// Parameters 

 int d [T][Products] = ...; // demand in period t   

 int K = ...; // fixed order cost in period t  

 float h  = ...; // unit holding cost in period t  

 float g = ...; // handling cost 

 int p = ...; // fixed cost of increasing WH size in period t 

 float r = ...;  // WH rental cost per unit in period t  

 int b  = ...; // Pallet inbound capacity per period t   

 int MaxWH = ...; //maximum WH capacity 

 int MinWH = ...; // Minimum WH capacity 

 int IINV [Products] = ...; // Initial inventory at t=0 

 int n = ...; //max inbound capacity 

 int F = ...; // inbound pallet cost in OT 

 int SS [Products] =...; //required safetystock per product 

  

 //////////////////////////////Decision variables 

WH&LS//////////////////////////////// 

dvar int+ x[T][Products]; //order quantity in period t  

dvar int+ i[T][Products]; //inventory lvl at the end of period t of every 

product 

dvar int+ itot [T]; //sum of inventory at the end of period t  

dvar int+ w[T]; // warehouse size at the end of period t  

dvar int+ u[T]; // warehouse size expansion at beginning of period t  

dvar int+ v[T]; // warehouse size contraction at beginning of period t  

dvar int+ l[T]; // Number of pallets inbounded in OT   

dvar boolean y[T]; // binary variable for ordering in period t     

dvar boolean z1[T]; // binary variable for WH expansion in period t  
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dvar boolean z2[T]; // binary variable for WH contraction in period t     

 

 

 //////////////////////////////objecTive 

funcTion//////////////////////////////// 

dexpr float ProdCost = sum(t in T)sum(j in Products)(h*i[t][j]+g*x[t][j]); 

dexpr float PeriodCost = sum(t in 

T)(K*y[t]+r*u[t]+p*z1[t]+r*v[t]+p*z2[t]+r*w[t]+l[t]*F);  

dexpr float WHCost = ProdCost+PeriodCost;  

 

minimize WHCost; 

 

//////////////////////////////Constraints 

LS&WHS//////////////////////////////// 

subject to { 

 

forall(t in Time, j in Products) { 

c1: i[t-1][j] + x[t][j] - d[t][j] == i[t][j];    //Inventory balance 

constraint if order takes 1t to arrive would x[t-1] be the right adjustment?  

} 

 

forall(t in Time, j in Products) { 

c2:x[t][j] <= (sum(t1 in t..nbPeriods)d[t1][j])*y[t];  // dtT Cumulative 

demand from t to end T, ensures that Y[t] holds as a binary variable 

} 

 

forall(t in Time, j in Products) { 

c3: i[t][j]>=SS[j]; // Ensures that in all periods t the inventory level 

should be as least as high as the required SS 

}    

 

forall(t in Time){ 

c4: w[t-1] + u[t] - v[t] == w[t];   //warehouse balance constraint 

} 

 

forall(t in Time){ 

c5:(sum(j in Products)i[t][j]) <= w[t];   // inventory should be max. the 

warehouse level 

} 

 

forall(t in Time){ 

c6:u[t] <= (sum(t in T)sum(j in Products)d[t][j])*z1[t]; // Total demand from 

1 to T * z1   

} 

 

forall(t in Time){ 

c7:v[t] <= (sum(t in T)sum(j in Products)d[t][j])*z2[t]; // Total demand from 

1 to T  *z2    

} 

 

forall(t in Time){ 

c8:w[t] <= MaxWH; // WH max available capacity  

} 

 

forall(t in Time){ 

c9:w[t] >= MinWH; // Min WH capacity that is agreed upon 

} 

 

forall(t in Time){ 

c10:(sum(j in Products)x[t][j])<= n + l[t]; //sum of ordered products should 

be below inbound capacity 
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} 

 

forall(t in Time){ 

c11:l[t] <= b; // upperbound of OT capacity for inbounding pallets in a period 

} 

 

forall(t in Time,j in Products){ 

c12:(sum(j in Products)i[t][j]) == itot[t]; //For visualization of itot 

} 

 

forall(j in Products){ 

c13:i[0][j]== IINV[j];   // initial inv prod  

} 

 

c14:w[0]==MinWH;  //initial warehouse size 

} 

 

execute 

{ 

var f=new IloOplOutputFile("output3.csv"); 

f.writeln("x",x); 

} 

BSequentialProd.Mod 

int nbPeriods = ...; 

range Time = 1..nbPeriods; 

range T1 = 0..nbPeriods; 

 

 

// Number of Machines  

int nbMachines = ...; 

range Machines = 1..nbMachines; 

 

// Number of Jobs 

int nbProds = ...; 

range Products = 1..nbProds; 

range nodes = 0..nbProds; 

 

// Parameters 

float PR[Products][Machines] = ...; 

int release = ...;   

int due = ...;      

int SUcost= ...; 

int x [T1][Products] = ...; 

int S [Products][Products] =...; 

int M =...; 

int PCost= ...; 

 

// Decision variables 

dvar float+ pt [Time][Products][Machines]; 

dvar float+ st [Time][Products][Machines]; 

dvar float+ ct [Time][Products][Machines]; 

dvar boolean a [Time][nodes][nodes][Machines]; 

 

 

 dexpr float SchedCost = sum(t in Time)sum(i in Products)sum(j in 

Products)sum(m in Machines)(a[t][i][j][m]*(S[i][j]*SUcost + 

pt[t][j][m]*PCost)); 

 minimize SchedCost; 
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 subject to{  

 forall(i in Products, t in Time){ 

 c21:sum(m in Machines)sum(j in nodes:j!=i)a[t][i][j][m]<=1;  

  } 

 

forall(m in Machines, t in Time){ 

c22:sum(j in Products)a[t][0][j][m]<=1; 

} 

 

 forall(j in Products,m in Machines, t in Time){ 

 c23:sum(i in nodes)a[t][i][j][m]==sum(i in nodes)a[t][j][i][m]; 

}  

 

 forall( i in Products,m in Machines, t in Time){ 

 c24: a[t][i][i][m]==0;                       // ensures that product 1 is 

not scheduled after product 1  

}  

 

forall(j in Products, t in Time){ 

c25:x[t][j]<=sum(m in Machines)(pt[t][j][m]*PR[j][m]); 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c26:ct[t][j][m]==st[t][j][m]+pt[t][j][m]; 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c27:release<=ct[t][j][m]; 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c28:ct[t][j][m]<=due; 

} 

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

 c29:st[t][j][m] >= st[t][i][m]+pt[t][i][m]+S[i][j] - M*(1-a[t][i][j][m]); 

 }  

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

  c30:st[t][j][m] >= release; 

}  

 

forall(i in Products, m in Machines, t in Time){ 

c31: pt[t][i][m]<= M*(sum(j in nodes)a[t][i][j][m]);  

} 

} 

Simulataneous.Mod 

int nbMachines = ...; 

int nbProds = ...; 

int nbPeriods = ...; 

 

range Products = 1..nbProds; 

range Machines = 1..nbMachines; 

range Time = 1..nbPeriods; 

range T=0..nbPeriods; 

range nodes = 0..nbProds; 

 

// Parameters 
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//////////////////////////////Parameters 

LS&WH//////////////////////////////// 

 float d [T][Products] = ...; // demand in period t   

 int K = ...; // fixed order cost in period t  

 float h  = ...; // unit holding cost in period t  

 float g = ...; // handling cost 

 int p = ...; // fixed cost of increasing WH size in period t 

 float r = ...;  // WH rental cost per unit in period t  

 int b  = ...; // Pallet inbound capacity per period t   

 int MaxWH = ...; //maximum WH capacity 

 int MinWH = ...; // Minimum WH capacity 

 int IINV [Products] = ...; // Initial inventory at t=0 

 int n = ...; //max inbound capacity 

 int F = ...; // inbound pallet cost in OT 

 int SS [Products] =...; //required safetystock per product 

//////////////////////////////Parameters 

Schedulling//////////////////////////////// 

float PR[Products][Machines] = ...; 

int release = ...;   

int due = ...;       

int S [Products][Products] =...; 

int M =...; 

int PCost= ...; 

int SUcost= ...; 

 

//Decision variables 

//////////////////////////////Decision variables 

schedulling//////////////////////////////// 

dvar float+ pt [Time][Products][Machines]; //Production time  

dvar float+ st [Time][Products][Machines]; //Starting time  

dvar float+ ct [Time][Products][Machines]; //Completion time 

dvar boolean a [Time][nodes][nodes][Machines];  

 

//////////////////////////////Decision variables 

WH&LS//////////////////////////////// 

dvar int+ x[T][Products]; //order quantity in period t  

dvar int+ i[T][Products]; //inventory lvl at the end of period t of every 

product 

dvar int+ itot [T]; //sum of inventory at the end of period t  

dvar int+ w[T]; // warehouse size at the end of period t  

dvar int+ u[T]; // warehouse size expansion at beginning of period t  

dvar int+ v[T]; // warehouse size contraction at beginning of period t  

dvar int+ l[T]; // Number of pallets inbounded in OT   

dvar boolean y[T]; // binary variable for ordering in period t     

dvar boolean z1[T]; // binary variable for WH expansion in period t  

dvar boolean z2[T]; // binary variable for WH contraction in period t     

 

 

 //////////////////////////////objecTive 

funcTion//////////////////////////////// 

dexpr float SchedCost = sum(t in Time)sum(i in Products)sum(j in 

Products)sum(m in Machines)(a[t][i][j][m]*(S[i][j]*SUcost + 

pt[t][j][m]*PCost)); 

dexpr float ProdCost = sum(t in T)sum(j in Products)(h*i[t][j]+g*x[t][j]); 

dexpr float PeriodCost = sum(t in 

T)(K*y[t]+r*u[t]+p*z1[t]+r*v[t]+p*z2[t]+r*w[t]+l[t]*F);  

dexpr float WHCost = ProdCost+PeriodCost;  

dexpr float Combi = WHCost+SchedCost;  

  

minimize Combi; 
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 //Constraints 

 //////////////////////////////Constraints 

schedulling//////////////////////////////// 

subject to{  

forall(i in Products, t in Time){ 

c21:sum(m in Machines)sum(j in nodes:j!=i)a[t][i][j][m]<=1;  //ensures that 

every product can only be produced on a single mahcine in a period and ensures 

that every product is only scheduled once 

  } 

 

forall(m in Machines, t in Time){ 

c22:sum(j in Products)a[t][0][j][m]<=1; // Ensures that at most 1 product 

starts on a machine in a period 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c23:sum(i in nodes)a[t][i][j][m]==sum(i in nodes)a[t][j][i][m]; //Flow 

constraint, to ensure that if j is scheduled after i, then i cannot be 

scheduled after j  

}  

 

forall(i in Products,m in Machines, t in Time){ 

c24: a[t][i][i][m]==0;                           // Ensures that if j is 

scheduled after i, then i cannot be scheduled after j  

}  

 

forall(j in Products, t in Time){ 

c25:x[t][j]<=sum(m in Machines)(pt[t][j][m]*PR[j][m]); // Ensures that 

exactly the order will be produced in a period 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c26:ct[t][j][m]==st[t][j][m]+pt[t][j][m];    //introduces that completion 

time of a production run 

} 

 

forall(j in Products,m in Machines, t in Time){ 

c27:release<=ct[t][j][m];                   //Ensures that the completion 

time of a product should be after the release date  

} 

 

forall(j in Products,m in Machines, t in Time){ 

c28:ct[t][j][m]<=due;                      //Ensures that the completion time 

of a product should be before the release date 

} 

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

c29:st[t][j][m] >= st[t][i][m]+pt[t][i][m]+S[i][j] - M*(1-a[t][i][j][m]);  

//Ensures that a starting time of a product j is bigger than the startingtime 

of the prior product +  the production time and the setup time  

 }  

 

forall(j in Products,i in Products,m in Machines, t in Time){ 

c30: st[t][j][m] >=release;             //Ensures that the starting time of 

every production should be bigger than or equal to the release date  

} 

 

forall(i in Products, m in Machines, t in Time){ 

c31: pt[t][i][m]<= M*(sum(j in nodes)a[t][i][j][m]);   // Links production 

times to the binary assignment variable 

} 
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forall(j in Products, t in Time){ 

c32:sum(t in 1..t)x[t][j]>= sum(t1 in 1..t)d[t1][j]; 

} 

} 

 

 //////////////////////////////Constraints 

LS&WHS//////////////////////////////// 

subject to { 

 

forall(t in Time, j in Products) { 

c1: i[t-1][j] + x[t][j] - d[t][j] == i[t][j];    //Inventory balance 

constraint if order takes 1t to arrive would x[t-1] be the right adjustment?  

} 

 

forall(t in Time, j in Products) { 

c2:x[t][j] <= (sum(t1 in t..nbPeriods)d[t1][j])*y[t];  // dtT Cumulative 

demand from t to end T, ensures that Y[t] holds as a binary variable 

} 

 

forall(t in Time, j in Products) { 

c3: i[t][j]>=SS[j]; // Ensures that in all periods t the inventory level 

should be as least as high as the required SS 

}    

 

forall(t in Time){ 

c4: w[t-1] + u[t] - v[t] == w[t];   //warehouse balance constraint 

} 

 

forall(t in Time){ 

c5:(sum(j in Products)i[t][j]) <= w[t];   // inventory should be max. the 

warehouse level 

} 

 

forall(t in Time){ 

c6:u[t] <= (sum(t in T)sum(j in Products)d[t][j])*z1[t]; // Total demand from 

1 to T * z1   

} 

 

forall(t in Time){ 

c7:v[t] <= (sum(t in T)sum(j in Products)d[t][j])*z2[t]; // Total demand from 

1 to T  *z2    

} 

 

forall(t in Time){ 

c8:w[t] <= MaxWH; // WH max available capacity  

} 

 

forall(t in Time){ 

c9:w[t] >= MinWH; // Min WH capacity that is agreed upon 

} 

 

forall(t in Time){ 

c10:(sum(j in Products)x[t][j])<= n + l[t]; //sum of ordered products should 

be below inbound capacity 

} 

 

forall(t in Time){ 

c11:l[t] <= b; // upperbound of OT capacity for inbounding pallets in a period 

} 
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forall(t in Time,j in Products){ 

c12:(sum(j in Products)i[t][j]) == itot[t]; //For visualization of itot 

} 

 

forall(j in Products){ 

c13:i[0][j]== IINV[j];   // initial inv prod  

} 

 

c14:w[0]==MinWH;  //initial warehouse size 

} 

 

 

execute 

{ 

var f=new IloOplOutputFile("output.csv"); 

f.writeln("d",d); 

f.writeln("x",x); 

f.writeln("w",w); 

f.writeln("itot",itot); 

f.writeln("y",y); 

f.writeln("l",l); 

f.writeln("a",a); 

f.close(); 

 

 

 

 


