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Executive Summary

The Trans-European Transport Network (TEN-T) is the backbone of Europe , linking
road, rail, and inlandwaterways to move freight efficiently while supporting economic
growth, security, and policy goals. Yet these networks are prone to disruptions such as
accidents, asset failures, maintenance closures, and climate-driven hazards. These dis-
ruptions range from day to day disruptions to long term impact with significant costs.
Identifying critical infrastructure is one of the first steps towards building resilience.
The EU’s Critical Entities Resilience Directive also mandates member states to identify
infrastructure whose failure would degrade essential services. The academic literature
offers many ways to rank critical links, but most concentrate on single-mode road net-
works, require data-hungry congestion models, or rely on topology-only indices that
miss operational realities in multimodal freight. This project addresses that gap with a
scalable framework to identify links in European multimodal networks that cause the
greatest impact when disrupted. It is guided by three questions: (1) what methods
exist to measure link criticality; (2) which are suitable for multimodal freight; and (3)
how can the effects of link removal be assessed empirically at macro scale?

The framework is demonstrated using theNorth Sea–Rhine–Mediterranean (NSRM)
TEN-T corridor using an undirected multimodal graph. Nodes represent intersec-
tions, terminals, andNUTS-3 origins/destinations; links represent roads, railways, and
inland waterways. The framework follows a traditional 4 step transport modelling
approach for simulating the base scenario of the network. The Annual freight de-
mand used is collected from Panteia’s NEACmodel, is represented in tonnes byNUTS-
3 origin–destination pairs and aggregated to ten NST/R commodity classes. Mode
choice is handled with a commodity-specific multinomial logit that uses generalised
transport cost (GTC) to produce probabilities for road, rail, and inland waterway use.
Assignment then applies All-or-Nothing (AON) shortest paths by mode using GTC as
weight. This avoids heavy congestion modelling, which is impractical at corridor scale
and with annual flows. The core methodological contribution is a selective full-scan
criticality algorithm. Rather than recomputing flows for the entire OD table after re-
moving each link, the algorithm (i) removes only links that carry non-zero base flow
and (ii) recalculates only the OD-commodity-mode flows that actually used the re-
moved link. Affected flows first attempt a new shortest path on the original mode; if
none exists, the model triggers a mode choice step and reassigns to alternative modes
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if feasible; otherwise, demand is marked unserved. Criticality is then measured with
system-level indicators (changes in total GTC, time, distance, emissions, and unserved
demand) and equity-style indicators (average relative changes for the affected flows).
This design captures operational impacts and mode shifts while remaining computa-
tionally scalable for large networks.

The criticality analysis for the NSRM network shows that minor detours in road
links translate into large network-wide cost increases when key links fail due to the
level of tonnes exposed. The most critical links are located around Basel and Bern
causing upto ≈€830 million/year when removed. Links near Rotterdam and Antwerp,
are also very critical due to the sheer volume of freight flowing through them as they
are major EU ports. Rail links rarely produce large system-wide shifts because the
network is structurally redundant at corridor scale; however, particular southern seg-
ments impose substantial local delays when removed. Inland waterways also exhibit
vulnerability near the linear river sections offer fewdetours, so removing a single Rhine
segment,especially betweenNijmegen and Strasbourg, forces costlymode shifts to road
or rail. Overall, road and inland waterway disruptions generate the largest increases
in total system GTC (commonly 0.25–1%, with top cases near 2.5%). These links make
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up the top 10 most critical links in the network.

Practically, the framework equips planners with a screening tool for strategic multi-
modal resilience. The tools allows for analysing criticality inmultimodal networkwhile
accounting for interdependent affects instead of analysing them in isolation. The out-
puts support several use cases: identifying links where redundancy should be added,
prioritising maintenance to minimise systemic impact and designing diversion strate-
gies with the best alternatives. By highlighting links whose failure would most impact
performance, authorities can conduct comprehensive assessments of threats for that
specific link to then reduce the impact or probability of failure. Finally, the model
is highly modular and can be adapted to various applications such as national corri-
dors and military mobility. The code used for the research can be found at https:
//github.com/sathvikgadiraju/Link-criticality-framework.

https://github.com/sathvikgadiraju/Link-criticality-framework
https://github.com/sathvikgadiraju/Link-criticality-framework


Contents

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research question . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Literature Review 6
2.1 Literature review methodology . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Link criticality literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Topological measures . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Traffic based measures . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.3 Other approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Link criticality studies in multimodal transport networks . . . . . . . . . 12
2.4 Impact of disruptions on freight transport . . . . . . . . . . . . . . . . . . 13
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5.2 Applicability to multimodal freight networks . . . . . . . . . . . 14
2.5.3 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Methodology 18
3.1 Multimodal freight network . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Freight transport demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Modal split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Route choice and assignment . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Link criticality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Peformance Indicators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



4 Case study 30
4.1 The North Sea - Rhine - Mediterranean Corridor . . . . . . . . . . . . . . 30
4.2 Freight transport demand . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 Modal split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Traffic assignment results . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Link criticality analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Geospatial Visualization of Critical Links . . . . . . . . . . . . . . . . . . 41

4.7.1 Road network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.2 Rail network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7.3 Inland waterway network . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5 Conclusion 48
5.1 Key findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Theoretical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.3 Practical implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Future direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography 53

Scientific Paper 68

Appendices
A Geospatial visualisation of link criticality . . . . . . . . . . . . . . . . . . 69

Annexes
L TENT Corridor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
M NEAC Mode split model parameters . . . . . . . . . . . . . . . . . . . . . 77

vii



This page intentionally left blank.



List of Figures

1.1 Map of the North Sea - Rhine - Mediterranean core TEN-T corridor network 4

2.1 Literature review process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Example representation of the multimodal network . . . . . . . . . . . . . . 21
3.2 Conceptual framework of the multimodal link criticality analysis . . . . . . 24

4.1 North Sea Rhine Mediterranean corridor . . . . . . . . . . . . . . . . . . . . 32
4.2 Freight demand between NUTS 2 Regions in the NSRM corridor network . 33
4.3 Overall mode choice split . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Commodity wise breakdown of mode choice split in the NSRM corridor

network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 AON assignment of NSRM corridor - Picture from python model . . . . . . 36
4.6 Comparision of road traffic assignment - Estimated vs Observed flows . . . 37
4.7 Comparision of rail traffic assignment - Estimated vs Observed flows . . . . 38
4.8 Comparision of inlandwaterway traffic assignment - Estimated vsObserved

flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.9 Tonnes affected vs impact - Link criticality analysis . . . . . . . . . . . . . . 39
4.10 Variance of average impact across modes . . . . . . . . . . . . . . . . . . . . 40
4.11 Link criticality results of the NSRM network 1 . . . . . . . . . . . . . . . . . 42
4.12 Link criticality results of the NSRM network 2 . . . . . . . . . . . . . . . . . 43
4.13 The Top 10 most critical links in the NSRM network . . . . . . . . . . . . . . 45
4.14 Impact assessment dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Geospatial visualisation of total system metrics in the road network . . . . 69
5.2 Geospatial visualisation of average impact metrics in the road network . . 70
5.3 Geospatial visualisation of total system metrics in the rail network . . . . . 71
5.4 Geospatial visualisation of average impact metrics in the rail network . . . 72
5.5 Geospatial visualisation of total system metrics in the IWW network . . . . 73
5.6 Geospatial visualisation of average impact metrics in the IWW network . . 74
5.7 TENT map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.8 NEAC mode split model parameters . . . . . . . . . . . . . . . . . . . . . . . 77

ix



This page intentionally left blank.



List of Tables

2.1 Literature search terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Topological based link criticality measures . . . . . . . . . . . . . . . . . . . 9
2.3 Traffic based link criticality measures . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Hybrid and other link criticality measures . . . . . . . . . . . . . . . . . . . 12
2.5 Summary of link criticality studies in transport networks . . . . . . . . . . . 15

3.1 Transport parameters and cost values [19, 35] . . . . . . . . . . . . . . . . . . . 21
3.2 Time–complexity of different assignment and link criticality algorithms . . 27

xi



This page intentionally left blank.



1
Introduction

Transport networks serve as vital infrastructure enabling the efficient movement of
both goods and passengers. As integral components of global supply chains, these
networks ensure the timely distribution of raw materials, work-in-progress inventory,
and finished products across locations. In that way, transport networks play a crucial
role in a nation’s economic development and growth prospects. Beyond their economic
function, transport networks are strategic assets that serve a nation’s security and pol-
icy interests [3].

The Trans-European Transport Network (TEN-T) represents the European Union’s
strategic policy framework designed to plan and develop an integrated, efficient, multi-
modal, and high-quality transport infrastructure system across member states. As part
of the TEN-T policy, the European Union aims to accelerate the transition toward mul-
timodal and synchromodal freight transport solutions throughout Europe. This shift
aims to optimize the utilization of different transport modes based on their respective
strengths and efficiencies, reduce environmental impacts and congestion on saturated
corridors by promoting more sustainable alternatives and lastly enhance overall sys-
tem resilience through diversified transport options and interconnected networks [7].
Please see Annex L for an overview of the European transport corridors under TEN-T.

1.1 Problem Definition

Networks consist of various connected components that are prone to disruptions or
perturbations. These events can be caused by internal factors within the system such
as accidents, infrastructure failures, maintenance or external factors often related to
nature such as floods, landslides, wildfires, snowfall and storms [18]. The severity can
range from ”day to day” disruptions which lead to minor capacity reductions on a sin-
gle link to critical segments being closed for long periods of time. The failure of certain
critical infrastructure such as a bridge or a terminal can have cascading effects which
can paralyse a network’s performance for a time period leading to significant economic
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2 1. Introduction

loss. The infamous Suez canal blockage in 2021 estimates to have a cost around 6 to 10
Billion USD a day [26]. The Rhine river which one of Europe’s busiest inland water-
way channel for freightwas blocked due to a ship overturning and sinking in 2011. This
lead to over 250 ships stranded on the river for more than 3 weeks [2]. The 2017 Ras-
tatt incident, involving a train tunnel collapse in Germany, resulted in approximately
2 billion Euros in combined direct and indirect damages [15].

Identifying critical linkswithin transport networks is crucial. The EuropeanUnion’s
Critical Entities Resilience (CER) Directive [5] mandates that member states imple-
ment specific measures to maintain essential services, including transportation, which
supports key societal and economic functions. One of the measures required to im-
prove resilience includes the identification of critical infrastructure components within
the transport network. According to Jenelius et al [18] link criticality can be defined
as ”significance of individual links (e.g., roads, bridges, tunnels, channels, railways) in main-
taining network functionality, where the failure of a critical link can disproportionately degrade
system performance, such as increased travel times or reduced connectivity”. This definition
can be extended further to include increases in travel costs, transshipment costs, and
environmental impact. Insights gained frommeasuring and ranking critical links could
inform the development of improved mitigation strategies, guide the prioritisation of
funds for maintenance and repairs and identify regional disparities in infrastructure
[18, 21, 27]. Taking proactive measures to address network vulnerabilities can signifi-
cantly enhance network performance during severe disruptions, thereby strengthening
the overall resilience and robustness of the transportation system.

1.2 Research Gap

The related literature in discussed in more detail in Chapter 2. Here we summarise the
overall gaps that exist. Existing literature reveals numerous studies that have imple-
mented various methods for identifying and ranking link criticality within transport
networks. However, limitations exist in the current body of research. First, most stud-
ies have primarily focused on road transport networks [11, 16, 17, 20, 21, 27, 28, 32],
with very few examining infrastructure criticality in multimodal freight networks that
include road, rail, and inland waterways [34, 36]. The multimodal freight network of
the Netherlands has served as a case study for robustness analysis in multiple studies
[12, 35]. To the author’s knowledge, no studies have examined link criticality at amacro
scale, such as that of the European freight network. While most link criticality studies
measure importance of link based on change in total network performance due to al-
ternative route choice, they don’t take into account user behaviour such as alternative
mode choice due to disruption. Furthermore, measures and methods that incorpo-
rate traffic flow when determining criticality provide accuracy but are computation-
ally intensive to execute and have high data requirements. This computational burden
increases significantly as network size and level of detail expand. Conversely, graph-
based link criticality metrics offer computational efficiency but neglect the operational
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dimensions of transportation networks. This presents a gap in existing methodologies,
as there is scarcity of approaches that can balance computational efficiency with the
incorporation of operational characteristics, particularly for large-scale network analy-
sis. Lastly, there are numerous methods in literature for measuring link criticality but
it is not quite clear which is the most suitable method for our case.

1.3 Scope

This graduation thesis project, conducted in collaboration with Panteia B.V., aims to
develop amodel for identifying critical linkswithin Europe’smultimodal freight trans-
port network. The model will be implemented using the North Sea - Rhine - Mediter-
ranean core TEN-T corridor as shown in Figure 1.1. The Links from the TEN-T com-
prehensive network that fall within this study area are also incorporated. Although
a more detailed regional network exists below this macro-level network, it is omitted
from the analysis to prevent excessive computational complexity resulting from the
increased number of links. Moreover, these regional links are predominantly used by
passenger traffic and traffic for transporting goods within zones. The study models
freight demand at the Nomenclature of Territorial Units for Statistics (NUTS) level 3
matching the resolution detail of the transport network. Demand flows between re-
gions are quantified in tonnes and categorized according to Nomenclature uniforme des
marchandises pour les Statistiques de Transport, Revisée (NST/R) level 1 classification, en-
compassing 10 distinct commodity types.

Themultimodal network consists of three primary transportationmodes: road, rail,
and inland waterways. Although air transport and short sea shipping also facilitate
freight movement within Europe, they fall outside the project scope due to their fun-
damentally different criticality characteristics. The analysis leverages data from Pan-
teia’s European freight transport model NEAC [25], a traditional four-step transport
model to simulate network behavior at NUTS2/NUTS3 regional resolution. Through
iterative removal of links to simulate disruption, the research will determine which
specific infrastructure links would cause the most significant performance degrada-
tion if compromised. The primary deliverable for Panteia B.V. will be a comprehensive
assessment identifying and ranking critical links by applying the framework to a case
study and an interactive impact assessment tool which allows for in-detail analysis of
the link disruption on freight demand. Outcomes provide planners valuable insights
for infrastructure management, investment prioritization and resilience planning. The
total duration of the project is set to be 6 months long.
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Figure 1.1: Map of the North Sea - Rhine - Mediterranean core TEN-T corridor network
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1.4 Research question

Therefore the main research question that the project is aiming to answer is:

How can we identify critical links in the European multimodal freight networks
which create the most impact when disrupted?

To answer the main research question, the following sub questions are formulated:

1. What are the state of the art methods of measuring and ranking critical links in
transportation networks?

2. Which link criticality measures are most suitable for multimodal networks con-
sidering their strengths and limitations?

3. How to assess empirically the effects of link removal in the multimodal freight
networks?

1.5 Outline

Following the introduction chapter, the thesis is structured as follows:
Chapter 2 provides an in-depth literature review of the measures and methods used
to identify and rank critical links in previous studies. Additionally, it includes a brief
review of freight transport behavior under disruptions.
Chapter 3 describes the experimental design and methodology for the freight trans-
port model. This chapter also introduces a novel link criticality analysis algorithm for
multimodal freight networks, along with the corresponding link criticality indicators.
Chapter 4 applies themethodology to the case study of theNorth Sea - Rhine -Mediter-
ranean (NSRM) Trans-European Transport Network (TEN-T) corridor. This chapter
presents the simulation results, including validation and discussion of findings.
Chapter 5 provides conclusions addressing the research questions. It also discusses
practical and theoretical implications, limitations, and directions for future research.



2
Literature Review

This chapter presents a detailed literature review of link criticality research in trans-
port networks. The aim of this chapter is to directly answer the first research subques-
tion ”What are the state of the art methods of measuring and ranking critical links in
transportation networks?” and partially answer the second research subquestion. The
chapter is structured as follows: Section 2.1 presents the methodology used to con-
duct the literature review. Section 2.2 introduces the concept of link criticality and
describes various approaches used to measure it in transport networks. Section 2.3
summarizes the literature on link criticality specifically within multimodal transport
networks. Section 2.4 examines how freight travel behaviour is affected by network
disruptions. Finally, Section 2.5 concludes by summarising the discussed literature,
evaluating its applicability to multimodal freight networks, and identifying gaps in
the current research.

2.1 Literature review methodology

To ensure a systematic and transparent review methodology, this section explains the
process used to find, select, and analyze the literature. Our primary objective is to
understand the state-of-the-art measures and methods for identifying critical links in
transport networks. Table 2.1 presents the keywords and search terms employed in
our literature gathering process. The search strategy centered on three main concepts:
”Link criticality,” ”Transport network,” and ”Vulnerability analysis,” along with vari-
ous alternative keywords for each. Google Scholar served as our primary search engine
for gathering literature, with the TU Delft Library portal used as a supplementary re-
source.

The primary selection criteria for inclusion in the review were studies published
in peer-reviewed journals and conference papers. Figure 2.1 visualizes the process of
filtering literature. Since identifying critical links in networks was a vast topic, we at-
tempted to limit the literature search to transportation journals. Despite this constraint,
we found literature from other domains such as computer science to be highly relevant.

6



2.2. Link criticality literature 7

Concept Groups Link criticality; Transport Network; Vulnerability analysis

Keywords Link criticality Vulnerable links, Critical links, Critical segments
Transport network Road transport network, Multimodal network
Vulnerability analysis Disruption analysis, Robustness analysis

Truncation (Link criticality) AND (Transport network)
(Vulnerability analysis) AND (Transport network)

Table 2.1: Literature search terms

Figure 2.1: Literature review process

2.2 Link criticality literature

Link criticality is a concept that extends beyond transport networks and is discussed in
various fields, including computer networks, power grids, social networks, and water
infrastructure. A critical link is onewhose failure or disruptionwould substantially de-
grade the performance, connectivity, or functionality of the network. Identifying these
links is foundational for prioritizing mitigation and investment strategies that enhance
network reliability, service, and efficiency [16, 21, 31]. Link criticality is closely related
to the concept of network robustness. Network Robustness is the network’s ability to
maintain performance under both random and targeted disruptions. Networks with
many critical links are less robust, because performance degrades sharply if any such
link fails. Robustness is highest when no individual link is indispensable. There is
a large body of literature on link criticality, within the context of transport networks.
Growing risks associated with geopolitical conflicts, extreme weather events, and ag-
ing infrastructure have further highlighted the importance of identifying critical links.

Variousmeasures have been proposed tomeasure the criticality of link in literature.
They can be categorised into two main categories: 1) Topological-based measures and
Traffic based measures [24]. The categorisation has been extended further by introducing
Hybrid measures that combines both traffic and topological elements into a measure
[31].
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2.2.1 Topological measures

Topological based measures take into account the topological properties of the trans-
port network and its connectivity. These measures are grounded in traditional graph
theory and can be translated to other applications. Another advantage of such meth-
ods is that they are very simple to calculate and are less data hungry [24]. Additionally
there are relevant when planning for disruption management under emergencies and
relief care where travel demand and congestion can be neglected [29].

Traditional centrality measures such as Degree centrality, Eigenvector centrality (or)
Eigen centrality, Closeness centrality and betweeness centrality are measures which to
some extent give information regarding the importance of a node in a network. Among
them, betweeness centrality is a particularly useful measure which can be also trans-
lated to the criticality of a link. By definition, the betweenness centrality of a link is
its importance in a network based on how often it lies on the shortest paths between
pairs of nodes [10]. It reflects the extent to which a link acts as a bridge or connector
between different parts of the network. As we will see later many measures are built
on top of this simple measure to incorporate transport related indicators.

[22] introduced amethod tomeasure the efficiency of a network. This method calcu-
lates the global efficiency as the average of the reciprocals of the shortest path lengths
(distances) 𝑑𝑠𝑡 between all pairs of nodes in the network. Consequently, the change in
network efficiency Δ𝐸(𝐺) resulting from the removal of a link can be used as a measure
to identify critical links. Links whose removal causes a significant decrease in global
efficiency are considered critical, as they play a vital role in maintaining the network’s
overall connectivity and performance.

Following a similar principle of measuring network performance before and after
removal of a link [28] attributed linked criticality to accessibility. The accessibility
score of the counties is calculated using distance and traffic volume The method was
applied to rank the significance of highway links under flood damage in the state of
Maryland, USA. The results indicated that the measures calculated based on distance
and distance-traffic considerations were different. The percentage loss of accessibility
was greater in the latter case.

2.2.2 Traffic based measures

Traffic-based measures consider the travel behavior of users when assessing the criti-
cality of a link. These measures account for travel demand and route choice, making
them more data-intensive than topology-based measures. However, they are also re-
garded as more informative and realistic.

The Network Robustness Index (NRI) was introduced in 2006 [27]. Previous to the
method, network planners used Volume/Capacity (V/C) ratio to identify highly con-
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Author Measure Equation

[10] Betweenness Centrality 𝐶𝐵(𝑒) = ∑
𝑠≠𝑡∈𝑉

𝜎𝑠𝑡 (𝑒)
𝜎𝑠𝑡

𝜎𝑠𝑡 is the total number of shortest paths
from 𝑠 to 𝑡; 𝜎𝑠𝑡(𝑒) is the number of those
paths passing through edge 𝑒. For node
𝑣, 𝜎𝑠𝑡(𝑣) counts paths through 𝑣.

[22] Global Efficiency 𝐸(𝐺) = 1
𝑁(𝑁−1)

∑
𝑠≠𝑡∈𝑉 1

𝑑𝑠𝑡
𝑁 is the number of nodes. 𝑑𝑠𝑡 is the
shortest path length between nodes 𝑠 and
𝑡. Efficiency reflects how well
information or flow is exchanged across
the network.

[28] Accessibility Deterioration 𝐴 𝑗 = 𝑝 𝑗
∑𝑛
𝑖 (𝐴𝑖 − 𝐴 𝑗

𝑖 ) 𝐴 𝑗 : Accessibility deterioration when link
𝑗 is disrupted. 𝑝 𝑗 : Probability of link 𝑗
being disrupted. 𝐴𝑖 : Accessibility score
of county 𝑖 before disruption. 𝐴 𝑗

𝑖 :
Accessibility score of county 𝑖 after
disruption.

Table 2.2: Topological based link criticality measures

gested links. According to the authors, this resulted in localized solutions which did
not consider systemwide impacts. The V/C ratio, while appropriate for representing a
link’s capacity utilization, is inadequate for measuring its criticality. A link with a low
V/C ratio but high traffic volume may be more critical than links with high V/C ratios
but low traffic volumes. NRI measures the critical importance of a highway segment or
link to the overall system. In other words, it is defined as the change in travel time cost
associated with re-routing all traffic in the system should a segment or link become
unusable. The travel time cost can also be easily generalised to monetary costs. To
measure the traffic flows after the link is removed, the model has to run a user equilib-
rium assignment to calculate the rerouted flows. The total number of times the model
is to be run is based on the number of links removed from the network i.e. n + 1 times.
This makes the model computationally complex as the size of the study area or level
of detail increase.

A vulnerability indicator 𝑉𝑟𝑠 was introduced which integrates travel demand and
change in accessibility [32]. In the study, multiple indices for accessibility were tested
such as generalised travel costs, Hansen integral accessibility index, and Accessibili-
ty/Remoteness Index ofAustralia. Similar toNRI,𝑉𝑟𝑠 measures the global consequence
of link failure. Method was demonstrated using the Australian national road network.

[18] proposed the importance score (IS) as ametric to evaluate the criticality of a net-
work link. This measure can be computed from two distinct perspectives: the ”equal
opportunities perspective” and the ”social efficiency perspective.” In the equal oppor-
tunities perspective, all origin-destination pairs are assigned equalweights. In contrast,
the social efficiency perspective assignsweights based on travel demand. Thismethod-
ology is designed to assess the significance of a link relative to the entire network. It is



10 2. Literature Review

also the first method to account for unsatisfied demand along with traffic performance
in link criticality.

[30] extended on the work from [27] and introduced two new measures of mea-
suring link criticality and overall network robustness. They are the modified Network
Robustness Index (NRI*) and the Network Trip Robustness (NTR). The NRI* method
is similar to the original measure NRI introduced by [27] but the main difference is
the ability to model and measure disruption that involve capacity reductions less than
100% unlike NRI. This allows for modelling of more realistic disruptions such as road
maintainence, weather events or accidents that do not involve complete closure of links.
They demonstrate that that modelling 100% capacity reductions to measure network
robustness doenst not reflect actual link capacities resulting from day to day disrup-
tions and does not produce worst case travel time scenarios due to the Braess’ para-
dox. NTR is another meathod introduced that measures the overall robustness of the
network based on NRI* and can be used to compare different network with different
topological characteristics and connectivity.

Author Measure Equation

[27] NRI 𝑁𝑅𝐼 =
∑
𝑎 𝑡
′
𝑎(𝑥𝑎)𝑥′𝑎𝛿𝑎 −

∑
𝑎 𝑡𝑎(𝑥𝑎)𝑥𝑎 𝑥𝑎 traffic flow on link 𝑎; 𝑡𝑎(𝑥𝑎) travel time

on link 𝑎; 𝑥′𝑎 traffic flow of link 𝑎 under
disruption; 𝑡′𝑎(𝑥𝑎) travel time on link 𝑎
under disruption; 𝛿𝑎 0 if link 𝑎 is
removed, else 1.

[32] 𝑉𝑟𝑠 𝑉𝑟𝑠 =
∑
𝑖
∑
𝑗 𝑑𝑖 𝑗𝑣𝑖 𝑗𝑟𝑠 𝑑𝑖 𝑗 Travel Demand between node 𝑖 and 𝑗;

𝑣𝑖 𝑗𝑟𝑠 change in accessibility index
between node 𝑖 and 𝑗 if link 𝑟𝑠 fails.

[18] 𝐼1 𝐼1 = 𝑇𝐶𝑎−𝑇𝐶
𝑄 𝑇𝐶𝑎 Total network travel time if link 𝑎 is

disrupted; 𝑇𝐶 base total system travel
time; 𝑄 total demand.

[18] 𝐼2 𝐼2 =
∑
𝑤 𝑢𝑤 (𝑎)
𝑄 𝑢𝑤(𝑎) Unsatisfied demand between OD

pair 𝑤 if link 𝑎 is disrupted; 𝑄 total
demand.

[30] 𝑁𝑇𝑅 𝑁𝑇𝑅𝑛 =
∑
𝑎 𝑁𝑅𝐼𝑎
𝐷𝑛

𝑁𝑅𝐼𝑎 Network robustness index of link
𝑎;𝐷𝑛 is the total demand between all OD
pairs

Table 2.3: Traffic based link criticality measures

2.2.3 Other approaches

Hybrid measures are ones that combine both topological and traffic based measures.
These measures aim to balance between the computational requirements and accuracy
of ranking critical links. [11] proposed Travel-time weighted Betweenness Centrality
(TTWBC) and used a stress test criticality simulation which reduced the capacities of
links rather than completely removing them. In their study they also compared three
other link criticality measures including Unweighted betweeness centrality, Betwee-
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ness centrality on entry and exit nodes and travel time weight betweeness centrality on
entry and exit nodes. The results indicated a signficane difference in ranking between
links depending upon the measure used.

[31] proposed ninemore hybridmeasures based on Betweenness Centrality of a link.
They proposed nine different link attributes/weights to calculate hybrid betweenness
centrality of the link. They are: Free flow travel time, Congested travel time, Travel
time loss, Flow as a decay function, flow weighted BC,flow weighted free flow travel
time, flow weighted congested travel time, flow weighted travel time loss and flow
weighted flow BC. They compared the measures with existing traffic based measures
for identifying critical links such as NRI, IS and NRI*. Based on the results Flow wegi-
hted betweeness centrality, flow weighted free flow travel time betweenness centrality
and flow weighted congrest travel time betweenness centrality ranked the closesest to
the traffic based measures. The primary benefit of applying this method that it incor-
porates traffic based measures and topolical measures into a hybrid measures while
does not need to run the experiment more than once. It provides a balalnce between
accuracy and computational complexity.

[21] has taken a multi criteria approach in identifying critical links in the transporta-
tion network. The authors identified three important factors that determine the criti-
cality of the link. The first factor (𝜔1)is based on link flows at equilibrium i.e.. traffic
usage. The second factor (𝜔2) is based on disruption the link failure causes to critical
services such as hospitals, fire stations, police stations, schools and grocery stores. The
last factor (𝜔3) is based on the number of Origin-Destination pairs the link serves prior
to disruption. They argue that all the stated factors are important but different factors
can have different preference weightage 𝛽 based on various planning agencies. The
links would be ranked based on the weighted sum of all three factors.

The traditional full scan method of identifying links involves iteratively removing
links andmeasuring its impact on the performance of the network. [23] argue that this
process becomes time consuming when identifying links in a large scale road network.
This is because, after each link removal, the performance of the network is reevalu-
ated by running a traffic assignment problem. This process becomes very exhaustive
in large scale transport networks with a high amount of links present. They propose a
new method called Traffic flow betweenness index (TFBI) to identifying critical links
while reducing the computational burden of the process in comparison to the tradi-
tional method. The TBFI indicator is based on betweeness. In general, Betweeness is
a rough indicator of the consequences of link closure but is not always accurate. For
example in cases where a link has a high value of betweeness and low traffic flow, clo-
sure of such a link is not consequential compared to the other way around. The TFBI
indicator considers the betweeness, the traffic flow and the rerouted Orgin-Destination
demand. In the next step, the links are ranked based on the TBFI values to determine
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candicate links. Now the preselected candidate links are used to calculate the 𝑁𝑅𝐼𝑎
values of the links to find the real critical links.

The Link Criticality Index (LCI), introduced by [1], offers a more efficient way to
identify critical links in transportation networks. Unlike traditional methods that re-
quire removing each link individually and recalculating traffic patterns, LCI deter-
mines link importance using just one user equilibrium (UE) traffic assignment, sav-
ing computational time. The Frank-Wolfe Algorithm is commonly used to calculate
user equilibrium, distributing traffic across network links. LCI works by monitoring
how frequently each link is used across multiple iterations of this algorithm. A link
is considered critical if it consistently carries traffic despite increasing congestion and
travel costs. LCI uses link marginal cost (MC), which is tracked during each iteration
of the Frank-Wolfe Algorithm. While the basic LCI calculation doesn’t fully account for
factors like origin-destination pairs served or network redundancy, additional weights
can be incorporated to improve link criticality rankings. The main advantage of this
method is that it requires only one run of the UE algorithm. Although the authors
demonstrated that LCI performs comparably to other measures like Network Robust-
ness Index (NRI) and Importance Score (IS), its main limitation is the need to enumer-
ate all possible paths through the network, which can still be time-consuming.

Author Measure Equation

[11, 31] WBC 𝑊𝐵𝐶 = 𝑤 ·∑𝑠𝑡
𝜎𝑠𝑡 (𝑎)
𝜎𝑠𝑡

𝑤 link attribute/ weight;
∑
𝑠𝑡

𝜎𝑠𝑡 (𝑎)
𝜎𝑠𝑡

Betweeness centrality.
[21] MCLI 𝑀𝐶𝐿𝐼 = 𝛽1𝜔1 + 𝛽2𝜔2 + 𝛽3𝜔3 𝛽𝑥 weights; 𝜔𝑥 factors.
[23] TFBI 𝑇𝐹𝐵𝐼𝑎 = [(𝑇𝐹𝐵𝑎)𝑛𝑜𝑟]𝑟 · [(𝑑𝑠𝑡)𝑛𝑜𝑟]1−𝑟 𝑇𝐹𝐵𝑎 flow weighted betweeness

centrality of link 𝑎; 𝑟 weight calculated
through systemic indicators; 𝑑𝑠𝑡 rerouted
travel demand.

[1] LCI 𝐿𝐶𝐼𝑎 =
∑𝑁−1

0 𝑚𝑎𝑥([𝑥𝑛+1
𝑎 − 𝑥𝑛𝑎 ], 1) · 𝑚𝑐𝑎 (𝑥

𝑛
𝑎 )

𝑡𝑎 (𝑥𝑛𝑎 ) 𝑚𝑐𝑎 marginal cost of link 𝑎; 𝑥𝑛𝑎 Flow on
link 𝑎 under iteration 𝑛; 𝑡𝑎(𝑥𝑛𝑎 ) Travel
time on link 𝑎 with 𝑥𝑛𝑎 flow; 𝑁 set of
interations 𝑛.

Table 2.4: Hybrid and other link criticality measures

2.3 Link criticality studies in multimodal transport networks

Compared to research on resilience in road transport and other single networks, the
field of multimodal transport resilience has received limited scholarly attention [36].
A notable contribution comes from [12], who conducted a robustness analysis of the
Netherlands’ integrated road, inland waterway, and rail networks. Their study aimed
to support maintenance planning by prioritizing critical infrastructure elements. The
authors employed centrality measures to evaluate the criticality of interdependent in-
frastructure and nodes. Through experiments simulating various capacity degradation
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scenarios, they assessed network performance impacts. Their findings revealed that
while interdependent nodes slightly reduced network performance, they ultimately
improved overall travel time in the network. Additionally, they determined that node
criticality was strongly correlated with freight volume passing through that node. [35]
also studied the Netherlands’s multimodal freight transport network but the focus was
on the network’s ability towithstand disruptions and function before collapsing. While
their analysis aimed to assess network robustness rather than identify critical elements,
the research offers a robust methodological framework for modeling transport net-
works and disruptions within multimodal freight systems.

Another study presents a traffic micro-simulation model to analyze the impact of
disruptions in intermodal transport networks. The authors identified critical links by
simulating individual transport unit decisions during disruptions, using real-life data
from the Austrian transport system. The model helps assess network vulnerability via
delay-based indicators such as ”total disruption delay time”, ”average disruption de-
lay time”, ”number of affected units” and influence of disruption [4]. [34] introduce a
multi-modal transport model that simulates behaviours such as route changes, mode
shifts, departure time adjustments, and trip cancellations—in response to infrastruc-
ture disruptions. Their model focuses on failures in the TEN-T network. The network
is modelled using a hybrid approach: a highly detailed Local Disruption (LD) model
for the area around the failure and a coarser Global Spillover (GS) model for the rest of
Europe. This structure allows for high-resolution delay estimation while maintaining
computational feasibility. The model was applied to a case study of the Port of Rot-
terdam, revealing that road bridge failures cause significant local delays but limited
continental-scale effects.

2.4 Impact of disruptions on freight transport

To performs link criticality analysis on multimodal freight networks, we must also un-
derstand how freight transport behaviour is affected during disruptions. Compared to
passenger transport there are relatively few studies regarding the impact of disruption
on freight transport behaviour [34]. An ex post analysis of the Rastatt incident where
a freight rail track was blocked for 7 weeks, 33% of freight volume still ended up be-
ing transported through rail after severe delays. 32% of the freight was transported
through othermodes such as road and shipwhile the rest of the freight demandwas left
unfulfilled [14]. In [4]’s study each transport unit independently chooses the route and
mode that minimizes its transport time during a disruption. Units evaluate three op-
tions in order: continue through the disrupted link if there is residual capacity, reroute
on the same mode, or switch to a different mode via intermodal terminals. Approx-
imately 17% of transport units chose alternative routes/modes, particularly those on
inland waterways, with accounted for 64%mode switches. [33] developed a stochastic
mixed intergermodel tominimize operational costs of variousmodes and transfer costs
at terminals but also penalty costs associated with unsatisfied demands. The model fa-



14 2. Literature Review

vored robust, lower-cost rail-road combinations but shifts to direct road transportwhen
terminals are disrupted or rail capacity is reduced due the network being more dense
and redundant. [13] used a hybrid simulation optimisation tool to optimally re-plan
in response to disruption to minimise externalities in real time. In the first step when
a disruption is detected a feasibility check is done to verify if affected units require re-
planning. If yes, three options are presented : 1) Wait, 2) Transship at next point or 3)
Detour. Best option is chosen based on minimum extra costs.

2.5 Conclusion

2.5.1 Summary

The summary of the state of the art link criticality measures has been provided in
Table 2.5. [32] and [28] both proposed similar measures based on accessibility. The
first study is more focused on the areas being disconnected if a link fails while the latter
is more focused on link criticality of highway roads connecting counties. [18]’s Impor-
tance Score has a similar theme of measuring criticality based on network performance
before and after disruption. It Introduces two perspectives of weighing links, A equal
opportunities perspective where all links are important and a social efficiency perspec-
tive where links are weighed based on traffic flow through them. The NRI indicator
incorporates rerouting costs in the form of travel time if a link fails and determines link
criticality [27]. The modified NRI* has developed the measure further to model and
measures disruptions which do not necessarily shut down the link [30].

[11] and [31] proposedmeasures that incorporate different link attributes asweights
to the betweenness centrality measure of the link. A significant advantage of these
methods is that they require to run the transport model once to retrieve the link at-
tribute which can be used to calculate the measures. This reduces the exhaustive and
computationally intensive process of performing a full scan analysis. Previous studies
involve removing each link iteratively and performing a traffic assignment to measure
link criticality. This full scan process gets more computationally challenging when
dealing with a network with large number of nodes and links. The LCI method also
addresses this problem by computing link criticality based on the traffic being assigned
to the link between iterations of the Frank Wolfe UE algorithm [1]. The TFBI method
preselects potential critical links which can be used to perform the full scan analysis
reducing the number of steps in the process [23].

2.5.2 Applicability to multimodal freight networks

Topological measures, while computationally efficient and straightforward to calcu-
late, are inadequate for multimodal link criticality analysis. These measures implic-
itly assume synchromodality where different transportation modes operate with per-
fect flexibility and real-time information enables seamless mode switching. However,
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Table 2.5: Summary of link criticality studies in transport networks

Author(s) Measure Description

Jenelius et al.
(2006)

Importance Score
(IS)

Demonstration shownusing the road network ofNorthern
Sweden. Link travel times increased to∞ tomodel disrup-
tion. Proposed two measures with equal opportunity and
social efficiency perspective.

Taylor and Susi-
lawati (2006)

Accessibility Re-
moteness Index of
Australia (ARIA)

Australian National Transport Network is used as case
study. Link removed and accessibility is measured. Fo-
cus more on affected nodes/cities over critical links.

Scott et al. (2006) Network Robust-
ness Index (NRI)

Proposed measure as alternative to traditional V/C ratio
approach. Three hypothetical networks used to demon-
strate the method. Quantifies criticality as the cost of re-
routing all traffic if a link is failed.

Sohn (2006) Accessibility Index Measures change in accessibility index of counties if a link
is removed. Takes into account probability of link failure
but does not model link disruption. Case study of state
road network of Maryland, USA.

Sullivan et al.
(2010)

Modified Network
Robustness Index
(NRI*)

Modified NRI is capable of measuring disruptions with
less than 99% capacity degradation. Additionally intro-
duced global network measure, Network Trip Robustness
(NTR) based on NRI*.

Gauthier et al.
(2018)

Travel time
weighted between-
ness centrality
(TTWBC)

Hybrid measure to integrate traffic flow data into topo-
logical measures. Case study - DIRIF network and link
ranking were highly dependent on measure used.

Takhtfiroozeh et al.
(2021)

Weighted be-
tweenness central-
ity measures

Introduced nine other weighted BC measures and com-
pared them to pure traffic basedmeasures. Flowweighted
betweenness centrality measures were highly correlated
with other traffic based measures.

Almotahari and
Yazici (2019)

Link criticality in-
dex (LCI)

LCI measures link criticality during the process of User
equilibrium. It assigns a link higher score marginally as
more flow is being assigned to it despite congestion.

Kumar et al.
(2019)

Multi-criteria link
importance

The measure consists of three factors which can have ad-
justed weights based on planner preference. Considers
traffic flow, access to important services andOD pairs con-
nected. Is limited to road networks.

Li et al. (2020) Traffic flow be-
tweenness Index
(TFBI)

The measure acts as a preselection method to identify po-
tential critical links. Second step involves removing pres-
elected links and measuring criticality using NRI.

this assumption contradicts the operational reality of multimodal networks, where dif-
ferent modes function as subsystems connected only through specific transshipment
points that introduce transfer costs, time penalties, capacity and commodity specific
constraints. Moreover freight transport is dependant on long term contracts which
makes switching modes less flexible. The study which has used topological metrics
for infrastructure criticality analysis has made this key distinction of synchromodality
[12]. Consequently, multimodal networks cannot be treated as single network, making
topological metrics like betweenness centrality and efficiency not suitable of accurately
measuring network criticality. Furthermore, these topological measures fail to incor-
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porate actual travel demand patterns that determines operational importance.
In contrast, traffic-based measures such as Network Robustness Index (NRI), vul-

nerability index (𝑉𝑟 𝑠), Importance Score (IS), and modified NRI* offer superior capa-
bilities by explicitly incorporating traffic flow patterns and their system-wide implica-
tions. Thesemeasures quantify link importance through operationally relevantmetrics
such as travel time increases, generalized travel cost variations, and unserved demand
levels when specific links are removed. Additionally, these measures are typically im-
plemented using sophisticated traffic assignment models such as user equilibrium,
which capture realistic route choice behavior. While this computational complexity
presents scalability challenges for larger networks, traffic-based measures can be ef-
fectively adapted through appropriate experimental designs to analyze multimodal
freight networks.

Hybridmeasures theoretically address the computational complexity of traffic-based
approaches by combining topological and flow-based elements under equilibrium as-
signments. However, implementing congestion modeling in freight networks presents
significant practical challenges that limit their applicability. First, freight transport
models typically operate in tonnage units rather than vehicle counts. Second, freight
and passenger transport modes frequently share infrastructure, creating complex in-
terdependencies that are difficult to model accurately. Third, calculating congestion
effects across large-scale networks becomes computationally prohibitive as network
size and detail increase, undermining the computational advantages hybrid measures
are designed to provide. These constraints make congestion-based traffic assignment
impractical for multimodal freight analysis. Consequently, faster computational ap-
proaches such as all-or-nothing assignment andprobabilistic k-shortest path algorithms
becomemore suitable formultimodal network applications. Under these simplified as-
signment methods, however, the computational benefits that justify hybrid measures
become obsolete, as the measures lose their primary advantage of balancing accuracy
with computational efficiency.

2.5.3 Research Gap

Based on this, several gaps in the literature can be identified. First, to the best knowl-
edge of the author, only a few studies have focused on measuring the criticality of
infrastructure in multimodal networks as shown in Section 2.3. Second, no studies
have addressed link criticality on a macro/strategic scale, such as the European TEN-T
network or its corridors. Lastly, existing approaches to model and measure link crit-
icality are not suitable for marcoscopic multimodal networks. Many approaches ei-
ther lack sufficient representation of the complex operational aspects of transport net-
works or are computationally time consuming and have high data requirements when
applied to macroscopic network analyses. Furthermore, most current method do not
adequately capture traveller behaviour in response to disruptions, such as rerouting,
mode changes, and trip cancellations, all of which are essential for more‘ realistic as-
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sessments. There is, therefore, a clear need for new frameworks that better balance
computational efficiency with operational accuracy, and that more fully integrate trav-
eller behaviour into the analysis of link criticality at strategic network scales.



3
Methodology

The preceding chapter identified a research gaps concerning the use of link criticality
methods and measures in multimodal freight networks. In this chapter, we aim to di-
rectly address these gaps by presenting a comprehensive framework to identify critical
links within such networks. Subsequently, this chapter addresses the third research
subquestion: How can the effects of link removal in multimodal freight networks be
assessed empirically? The chapter is structured as follows: Section 3.1 introduces the
approach for representing multimodal freight networks in out simulation model. Sec-
tion 3.2 details the resolution at which freight demand is modeled and explains how
demand data between regions is estimated. Section 3.3 describes the methodology
used to determine and distribute modal split probabilities for each Origin-Destination-
Commodity (ODC)pair. Section 3.4 presents how themultimodal network is saturated
and how annual freight demand flows through the network. Section 3.5 introduces the
novel link criticality algorithm proposed in this research, outlining the key steps in-
volved. Finally, Section 3.6 defines the indicators used to measure link criticality in
multimodal networks that are applied in this study.

3.1 Multimodal freight network

TEN-T corridors function as a backbone of freight transport across Europe, designed
to facilitate efficient, seamless, and sustainable movement of commodities between
member states. It integrates road, rail, inland waterways, and maritime ports con-
nected through strategically located terminals, logistic hubs, and urban centers. The
corridor ensures coordinated infrastructure development, standardized technical re-
quirements, and interoperable services, optimizing capacity and minimizing bottle-
necks along these paths. It supports high volumes of freight traffic, facilitating modal
transfers at intermodal terminals to leverage the strengths of different transportmodes.
TEN-T corridors help reduce transport times and costs, promotes modal shift towards
environmentally friendlymodes like rail andwaterways, and increases overall network
resilience by providing alternative routes in case of disruptions. In real-world freight
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networks, critical infrastructure assets like bridges, tunnels, barges, locks, weirs, and
crossings play an important role. However, incorporating such detailed micro-level in-
frastructure falls beyond the scope of this research due to added complexity. Instead,
this work focuses on representing the operational aspects of freight networks using
a graph-theoretical approach, where intersections, terminals, and origin-destination
points serve as nodes, and links correspond to segments such as roadways, railway
tracks, or waterways connecting these nodes. This modelling framework captures the
key elements of network structure and operational dynamics, including traffic flows
and modal interactions, while accounting for transport costs. Graph-based models are
widely recognized and used in simulating transport networks and are also very com-
mon in identifying critical infrastructure within these systems.

The multimodal freight network is represented in our model using a undirected
graph 𝐺 = (𝒩 ,ℒ). 𝒩 represents the set of nodes and ℒ represents the set of undi-
rected link where movement can be done in both directions. While a directed graph
represents the reality better, we chose to model the network as a undirected graph to
reduce complexity.

𝒩 = 𝒩 road ∪𝒩 IWW ∪𝒩 rail ∪𝒩OD (3.1)

ℒ = ℒroad ∪ ℒIWW ∪ ℒrail ∪ ℒOD (3.2)

The multimodal network consists of different network layers for each mode. Each
mode is represented by a different sub graph with its own set of nodes and links. Ad-
ditionally, another sub graph for Origin and Destinations 𝐺𝑂𝐷 includes centroids of
regions according to the NUTS3 classification. To model the flow of freight demand
in the network, the Origin-Destination (OD) nodes must be connected with the multi-
modal freight network. To achieve this connector links are generated using algorithm 1.
For each OD node and each mode, the procedure assembles candidate nodes from the
corresponding mode sub graph and retains those within a search radius 𝑑max. If the
road layer yields none, the radius is expanded in 10 km increments until at least one
candidate is found. The candidates are then ordered by distance and the k nearest are
linked to the OD node, forming ℒ𝑂𝐷 . In this design 𝑘 controls access redundancy,
while 𝑑max adapts to sparse areas without over-connecting dense regions. An example
representation of the network is given in Figure 3.1. The connector links ℒ𝑂𝐷 rep-
resents the underlying detailed regional road networks the exists beneath the study
network. In the model these links are only used to serve the OD nodes and are not
used by through traffic.
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Algorithm 1: Generating connector links
Input: Full transport graph 𝐺 = (𝒩 ,ℒ); origin node set𝒩𝑂𝐷 ; nearest

neighbour count 𝑘; mode set 𝑀; max distance 𝑑max.
Output: OD subgraph 𝐺𝑂𝐷 = (𝒩𝑂𝐷 ,ℒ𝑂𝐷).

1 foreach OD node 𝑛 ∈ 𝒩𝑂𝐷 do
2 foreach mode 𝑚 ∈ 𝑀 do
3 Initialize candidate node set 𝐶𝑚 ← ∅
4 foreach link (𝑢, 𝑣) ∈ ℒ𝑚 do
5 Add 𝑢 and 𝑣 to 𝐶𝑚
6 Initialize list of valid distances 𝐷𝑚 ← ∅
7 foreach node 𝑐 ∈ 𝐶𝑚 do
8 Compute 𝑑(𝑛, 𝑐) if 𝑑(𝑛, 𝑐) ≤ 𝑑max then
9 Add (𝑑(𝑛, 𝑐), 𝑐) to 𝐷𝑚

// Road progressive search: expand 𝑑max until at least one
candidate exists

10 if 𝑚 = ROADS ∧ |𝐷𝑚 | = 0 then
11 while |𝐷𝑚 | ≤ 0 do
12 𝑑max ← 𝑑max + 10km
13 foreach node 𝑐 ∈ 𝐶𝑚 do
14 Compute 𝑑(𝑛, 𝑐)
15 if 𝑑(𝑛, 𝑐) ≤ 𝑑max then
16 Add (𝑑(𝑛, 𝑐), 𝑐) to 𝐷𝑚

17 Sort 𝐷𝑚 by distance and select the 𝑘 nearest foreach (𝑑, 𝑐) in top 𝑘 of 𝐷𝑚

do
18 Create OD link (𝑛, 𝑐); add link to ℒ𝑂𝐷

19 return 𝐺𝑂𝐷 = (𝒩𝑂𝐷 ,ℒ𝑂𝐷)

𝐺𝑇𝐶𝑖 = 𝐾𝑚 · 𝑑𝑖 + 𝑇𝑚 · ( 𝑑𝑖𝑣𝑚 ) (3.3)

Lastly, to prepare the network for by assigning weights on links. Link distance and
link travel times can be used in transport model but in order to simulate the network
more realistically a form of generalised transport costs (GTC) are calculated for each
link. Equation 3.3 is used to calculate the GTC of all links which has been used in
previous research [12, 19, 35]. In this equation, 𝐾𝑚 and 𝑇𝑚 denote the cost per unit
distance and time for mode 𝑚 respectively, while 𝑑𝑖 represents the length of link 𝑖 and
𝑣𝑚 indicates the average travel speed. The parameter values used in this study are
presented in Table 3.1. It represents the average cost of transporting a tonne of freight
over a particular link. Since, OD links were generated as a straight line between the
centroids and the links, the distance is multiplied by 1.5 to have a conservative estimate
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Figure 3.1: Example representation of the multimodal network

of the real world distance of the underlying regional roads [35].

Parameter Symbol Value Unit

Unit cost per unit of time for
waterway 𝑇𝐼𝑊𝑊 0.13 €/tonne/h
road 𝑇𝑅𝑜𝑎𝑑 3.98 €/tonne/h
railway 𝑇𝑅𝑎𝑖𝑙 1.00 €/tonne/h

Unit cost per unit of distance for
waterway 𝐾𝐼𝑊𝑊 0.004 €/tonne/km
road 𝐾𝑅𝑜𝑎𝑑 0.038 €/tonne/km
railway 𝐾𝑅𝑎𝑖𝑙 0.004 €/tonne/km

Average speed for
waterway 𝑣𝐼𝑊𝑊 10 km/h
road 𝑣𝑅𝑜𝑎𝑑 70 km/h
railway 𝑣𝑅𝑎𝑖𝑙 25 km/h
OD 𝑣𝑂𝐷 30 km/h

Table 3.1: Transport parameters and cost values [19, 35]

3.2 Freight transport demand

The freight demand data used in our model is derived from the broader NEAC model
provided by Panteia. Specifically, it originates from the model’s mode chain builder,
which estimates transshipment points and transport modes per commodity for each
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NUTS3 OD pair. A key input to the mode chain builder is a trade model that estimates
commodity flows between NUTS3 regions. Equation 3.4 illustrates the functional form
of this model, which is used to forecast freight demand [25]. The 𝛼 parameters are cal-
ibrated by log-linearizing the equation and applying the ordinary least squares (OLS)
method. The base year for demand data is 2019, with forecasts for subsequent years ad-
justed using economic growth factors. Since the network is modeled at the NUTS3 and
NST/R 1 level, the commodity demand data was aggregated accordingly by converting
the NST/R 2 level to NST/R 1 level. After filtering, the freight demand is represented
in terms of Origin Zone (NUTS3), Destination Zone (NUTS3), Commodity (NST/R
1), and Tonnes. For more detailed explanation about the freight demand model please
refer to the NEAC model’s documentation [25].

𝑇𝑖 𝑗 𝑔 = 𝛼1 · 𝑃𝛼2
𝑖 𝑔 · 𝐴𝛼3

𝑗 𝑔 · 𝐷𝛼4
𝑖 𝑗 · 𝑒𝛼5·DUMMY (3.4)

Where:

𝑇𝑖 𝑗 𝑔 The trade of a commodity between region 𝑖 and 𝑗 in tonnes
𝑃𝑖 𝑔 The added value (GVA) of the sector that supplies the commodity in region 𝑖
𝐴 𝑗 𝑔 The added value (GVA) of the sector that consumes the commodity in region 𝑗
𝐷𝑖 𝑗 The economic distance (cost of transport) between region 𝑖 and 𝑗
DUMMY Dummy variable capturing economic co-operation or grouping
𝛼 Model parameters

3.3 Modal split

The specific demand between Origin and Destinations per commodity must be further
distributed between the available modes. The distribution is based on the total GTC
incurred of using a mode 𝑚 between Origin 𝑖 and Destination 𝑗. A Multinomial logit
model is used commonly to calculate the relative probability of choosing a mode over
others. The cost function i.e utility𝑉 𝑔

𝑖𝑗𝑚 of the model is specified in Equation 3.5. 𝐴𝑆𝐶 𝑔
𝑚

is the alternative specific constant which represents the baseline preference/ bias of
commodity 𝑔 towards a mode 𝑚. 𝛽

𝑔
𝑔𝑡𝑐 is the sensitivity parameter or the marginal

utility of GTC for commodity 𝑔. 𝐺𝑇𝐶𝑖 𝑗𝑚 is the total GTC of using mode 𝑚 between 𝑖
and 𝑗. The probability 𝑝𝑔𝑖𝑗𝑚 is calculated using Equation 3.6 and demand is distributed
accordingly. The parameters have been tuned based on the NEAC mode chain builder
output. Refer to Annex M for the commodity specific parameters.

𝑉 𝑔
𝑖𝑗𝑚 = 𝐴𝑆𝐶 𝑔

𝑚 + 𝛽
𝑔
𝑔𝑡𝑐 · 𝐺𝑇𝐶𝑖 𝑗𝑚 (3.5)

𝑝𝑔𝑖𝑗𝑚 =
𝑒−𝑉

𝑔
𝑖𝑗𝑚∑

𝑚∈𝑀 𝑒−𝑉
𝑔
𝑖𝑗𝑚

(3.6)

Where:
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• 𝑉 𝑔
𝑖𝑗𝑚 : Systematic utility of mode 𝑚 between origin 𝑖 and destination 𝑗 for com-

modity 𝑔
• 𝐴𝑆𝐶 𝑔

𝑚 : Alternative-specific constant for mode 𝑚 for commodity 𝑔
• 𝛽

𝑔
𝑔𝑡𝑐 : Coefficient for the generalized travel cost (GTC) for commodity 𝑔

• 𝐺𝑇𝐶𝑖 𝑗𝑚 : travel costs between origin 𝑖 and destination 𝑗 using mode 𝑚
• 𝑝𝑔𝑖𝑗𝑚 : Probability of choosing mode 𝑚 for the OD pair (𝑖, 𝑗) for commodity 𝑔
• 𝑀: Set of available transport modes

3.4 Route choice and assignment

Freight demand assignment on the network enables the simulation of freight trans-
portation flows and provides insights into how link disruptions affect traffic patterns.
This study implements All-or-Nothing assignment for route choice. In the All or Noth-
ing assignment all demand for eachmode specific origin destination pair is assigned to
the shortest path between them. The algorithm assumes that there is no congestion in
the network and the traveller has prior knowledge of the exact costs incurred by choos-
ing the route. This means that the travel costs of choosing the shortest path is fixed and
does not vary based on the flow travelling through the links. The use of all-or-nothing
assignment can be justified by noting that, unlike passenger demand, freight demand
is typically planned and scheduled in advance. As a result, freight movements are less
affected by perceived travel time errors or random route choice variability. Moreover,
freight is managed by profit-driven companies that generally prioritize cost minimiza-
tion in their routing decisions. The generalised travel costs calculated are used as link
weights for the shortest path calculation. Although other traffic assignment methods
such as User Equilibrium assignment offer more realistic modeling capabilities, they
are not appropriate for this research due to several limiting factors.

The model operates at a macroscopic level, where demand data represents annual
freight flows across an extensive network. ImplementingUser Equilibrium assignment
would require calculating congestion parameters, which demands additional data in-
puts and significant computational resources. Given that the full scan methodology
involves executing traffic assignment algorithms multiple times to evaluate network
responses to disruptions, employing computationally intensive methods would be im-
practical for a network of this magnitude. Therefore, the selected assignment algo-
rithms provide a more feasible approach for analyzing freight flow patterns and dis-
ruption impacts within the constraints of this study. We implemented a custom Di-
jkstra’s algorithm to compute the shortest paths from a single node to all other nodes
in a mode-specific graph. This custom function ensures that OD connector links are
excluded from the shortest path calculation, except when the connector is connected
to the origin or destination node.
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Figure 3.2: Conceptual framework of the multimodal link criticality analysis

3.5 Link criticality analysis

In this section we describe the methodology for the link criticality analysis process
which will help us measure the criticality of links in the multi-modal network.

The link’s criticality is determined by the extent of impact its removal causes within
the network. Highly critical links generate significant negative impacts on overall trans-
portation performance. This evaluation process also highlights the quality and avail-
ability of alternative routes when a given link is removed. The traditional full scan
method is a common technique used to analyse link criticality in transport networks.
In the method, first a base overall system performance of the network is measured (eg.
total network travel time). In the next step, a link is removed from the network and
the transport model is run again and the overall system performance is measures. The
criticality of the link is then the difference in the overall system performance of the
network. The higher the difference the more critical the link is.

The algorithm is exhaustive and the number of iterations increases as the number
of links the network increases. Moreover, the larger the network the more computa-



3.5. Link criticality analysis 25

tionally challenging it becomes to run a single iteration of the the transport model. To
combat this a a new algorithm 2 is proposed tomeasure the link criticality. The process
is as follows:

Step 1: Base scenariomodelling. Similar to the traditional full scanmethodwe first
run a base iteration of the transport model to capture the performance of the network
under normal conditions.

Step 2: Identify links to remove. In this process only linkswho’s flows 𝑓𝑙 in the base
iteration are greater than 0 are removed. Connecter links which have been artifically
generated are also not removed. This reduces the number of iterations that are run in
the algorithm.

ℒremoved =
{
𝑙 ∈ ℒ �� 𝑓𝑙 > 0 and 𝑙 ∉ ℒ𝑂𝐷} (3.7)

Step 3: Link removal. For each iteration of the process, a single link 𝑙 is removed
from the orignal network 𝐺 creating a new modified network 𝐺′.

Step 4: Identify and reset affected flows. When a link 𝑙 is removed from the trans-
port network, the flows assigned to that linkmust be recalculated. In the base transport
model, for each Origin–Destination–Commodity–Mode (ODCM) flow, demand 𝑞𝑖 is
assigned along a path, and the indices of these flows are stored on every link 𝑙 in that
path. We denote by ℱ𝑙 the set of flow indices associated with link 𝑙. Upon removal of
link 𝑙, the set ℱ𝑙 becomes the set of affected flows, denoted ℱaffected. The model then
recalculates the flows on all links that are part of the paths corresponding to flows in
ℱaffected, updating the network to reflect the disruption. This process significantly re-
duces the number of ODCM pairs which have to be re-simulated capture the effect of
a disruption.

𝑓𝑙 = max ©­«0, 𝑓𝑙 −
∑

𝑖∈ℱ𝑙∩ℱaffected
𝑞𝑖
ª®¬ , ∀𝑙 ∈ ℒ (3.8)

Step 5: Re-routing. In this step, all ODCM pairs in the set ℱaffected are considered
for re-routing. For each affected pair, an alternative shortest path is calculated using
the updated network 𝐺′. The underlying assumption is that freight operators typically
do not alter their chosen routes unless the travel impedance has increased significantly
or the destination becomes unreachable via the originally selectedmode. Furthermore,
due to the long-term nature of freight transport contracts, there is often limited flex-
ibility to switch between transport modes in response to disruptions [34]. For those
ODCM pairs for which feasible alternative paths are identified, the associated demand
is reassigned to the network.

Step 6: Mode switch For ODCM pairs where the destination cannot be reached
using the originally assigned mode, a mode choice model is applied across the set of
available alternative modes. The demand is then redistributed according to the result-
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ing mode choice probabilities. In practice, not all freight demand can necessarily be
shifted to other modes. For example, during the Rastatt incident, approximately 33%
of the disrupted freight was successfully transshipped using alternative modes, while
another 33% remained unserved and demand was instead met through alternative re-
gions. In this study, however, we assume that suitable alternative modes are always
available in order to evaluate the resulting changes in network performance. Lastly,
the shortest path for alternative mode are found and demand is assigned accordingly.

Step 7: Calculate Performance Indicators. If no feasible alternative mode is found
for anODCMpair, the corresponding demand ismarked as unserved. After all affected
pairs have been processed—either reassigned or identified as unserved—the network
performance indicators are recalculated to reflect the impact of the disruption. Finally,
the removed link is reinstated into the network to restore its original state. At this
stage we measure operational performance difference between the base scenario and
the scenario with the link absent and other relavent metrics.

Step 8: Repeat step 3-7 until all links have been analysed.

The primary distinction between the traditional full scanmethod and our approach
lies in the handling of flow reassignment following the removal of a network link. In
contrast to the conventional method, which reassigns all flows regardless of their ex-
posure to the removed link, our method updates only those flows directly affected by
the link’s removal. This targeted reassignment is logical and efficient, as it avoids un-
necessary computation for unaffected flows. However, in scenarios where route choice
decisions are influenced by network congestion, removing a link could impact travel
times on alternative routes, potentially resulting in cascading adjustments across the
network. Despite this, our approach enables a much faster evaluation of link criticality.
For links that affect aminimal number of flows, the computational effort is significantly
reduced compared to the traditional method, which requires a complete reassignment
of all flows after each link removal. Table 3.2 shows the big 𝒪 notation of different as-
signment and link criticality algorithms. The notation for the link criticality analysis in
given in two parts. The first part of the equation is to model the base scenario which is
similar to the computation required for the AON (Multimodal) method. The second
part of the equation represents the selective reassignment that we propose, which is
overall faster than the traditional full scan method as the number and size of dimen-
sions are reduced.
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Method Time complexity

AON (Unimodal) 𝒪(𝒦 (𝒩 +ℒ) log𝒩 )
AON (Multimodal) 𝒪(𝒦 ·ℳ (𝒩 +ℒ) log𝒩 )
Congested assignment Frank-Wolfe algorithm (Unimodal) ≈ 𝒪(𝒦 · 𝒯 (𝒩 + ℒ)log𝒩 )
Traditional full scan method (Unimodal) ≈ 𝒪((ℒ + 1) · 𝒦 · 𝒯 (𝒩 + ℒ)log𝒩 )
This study - Link criticality algorithm (Multimodal) 𝒪(𝒦 ·ℳ (𝒩 +ℒ) log𝒩 )

+ 𝒪
( ∑
ℒremoved ℱaffected · ℳ (𝒩 + ℒ) log𝒩

)
Table 3.2: Time–complexity of different assignment and link criticality algorithms

Algorithm 2: Link criticality analysis
Input: Network graph 𝐺 = (𝒩 ,ℒ); demand table 𝐷;
Output: Results ℛ with criticality metrics per link

1 foreach 𝑙 ∈ ℒ ∀ 𝑓𝑙 ≥ 0 and 𝑙 ∉ ℒ𝑂𝐷 do
2 Create a graph copy 𝐺′← 𝐺

3 Identify affected ODCM pairs affected ℱ𝑎 𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 by link 𝑙
4 Remove link 𝑙 from 𝐺′

5 foreach affected ODCM pair 𝑖 ∈F𝑎 𝑓 𝑓 𝑒𝑐𝑡𝑒𝑑 do
6 Attempt to compute an alternative shortest path
7 if Alternative path does not exist then
8 Attempt to reroute using alternative modes 𝑀
9 if Alternative path does not exist in any mode then

10 Mark demand as unserved
11 else
12 Assign flow based on new mode choice probabilities and new

shortest paths
13 else
14 Assign flow based on new shortest paths
15 Record metrics for removing link 𝑙
16 Return ℛ

3.6 Peformance Indicators

Various approaches have been proposed to assess link criticality, as summarized in
Chapter 2. In this study, we focus on traffic-based measures to evaluate link criticality,
as topological measures previously discussed are less relevant for our context. Assess-
ing the reduction in network performance following a link removal serves as a good
indicator of that link’s significance within the network. Among available system-wide
performancemetrics, total systemgeneralized travel costs is particularly useful, as it ac-
counts for both distance and travel time increases, providing an integrated measure of
overall link criticality. However, it is important to note that different transport modes
prioritize performance changes differently. For instance, in road transport, increases in
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travel time are typically more critical than cost increases, whereas in lower cost modes
such as rail and inland waterways, increases in travel cost are generally more signif-
icant than additional travel time. Therefore, in addition to total system GTC change,
this study also examines total system travel time, distance, and emissions change to
capture a comprehensive picture of network performance across different modes.

ΔTotal system travel time =
𝑇𝑇𝐺

′ − 𝑇𝑇𝐺
𝑇𝑇𝐺

(3.9)

ΔTotal system generalized travel cost = 𝐺𝑇𝐶𝐺
′ − 𝐺𝑇𝐶𝐺
𝐺𝑇𝐶𝐺

(3.10)

ΔTotal system travel distance =
𝑇𝐷𝐺′ − 𝑇𝐷𝐺

𝑇𝐷𝐺
(3.11)

ΔTotal system emmisions = 𝐸𝐺
′ − 𝐸𝐺
𝐸𝐺

(3.12)

When a link is removed that serves as the only connection between an OD node
and the rest of the network, it is possible for all the demand associated with that node
to go unserved. In these cases, metrics for total system performance might actually
appear to improve. For example, the calculated overall travel time could decrease sim-
ply because the system no longer attempts to serve the affected demand, and those
unserved demand are excluded from the results. To give a more accurate picture, we
include total unserved demand as an additional metric to help identify those links that
are essential for maintaining connectivity in the network. We also consider the total
volume of goods affected by a link removal. This information can help estimate the
monetary value of the affected commodities, which provides another perspective on
the criticality of links.

𝑄unserved =
∑

𝑖∈ℱunserved
𝑞𝑖 (3.13)

Total volume of goods affected = 𝑓 𝐺𝑙 (3.14)

In addition to system-widemeasures, it is important to evaluate link criticality from
an equity perspective by examining performance changes specifically for the flows af-
fected by a link removal. We use four additional metrics: average relative travel time
change, travel distance change, gtc, emission change. These metrics quantify the pro-
portional change in travel time, distance, cost, and emissions, averaged to the flows
experiencing the disruption. Such metrics ensure that criticality assessments account
for localized effects and the fairness of consequences faced by affected flows, rather
than purely total system performance.
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Average relative travel time change =
1

|ℱaffected|
∑

𝑖∈ℱaffected

(
𝑡𝑡𝐺

′
𝑖 − 𝑡𝑡𝐺𝑖

)
(3.15)

Average relative travel distance change =
1

|ℱaffected|
∑

𝑖∈ℱaffected

(
𝑡𝑑𝐺

′
𝑖 − 𝑡𝑑𝐺𝑖

)
(3.16)

Average relative generalized travel cost change =
1

|ℱaffected|
∑

𝑖∈ℱaffected

(
𝑔𝑡𝑐𝐺

′
𝑖 − 𝑔𝑡𝑐𝐺𝑖

)
(3.17)

Average relative emissions change =
1

|ℱaffected|
∑

𝑖∈ℱaffected

(
𝑒𝐺
′

𝑖 − 𝑒𝐺𝑖
)

(3.18)

3.7 Conclusion

In this chapter, we presented amultimodal freight networkmodel designed to simulate
traffic volumes, expressed in tonnes, across the network’s links. The freight demand
used in this study is based on data from Panteia’s NEAC model. To accurately reflect
the heterogeneity in mode preferences among different commodity groups, we imple-
mented a commodity-based mode choice model. We use the All-or-Nothing assign-
ment using Dijkstra’s algorithm to route freight demand along cheapest path, assum-
ing no congestion effects. This approach is chosen for its computational efficiency and
suitability for large-scale networks. A key contribution of this chapter is the introduc-
tion of a new link criticality algorithm, which enables iterative and efficient removal of
individual links to assess their impacts on network traffic. Link criticality is then quan-
tified using a range of operational, traffic-basedmeasures, allowing for evaluation from
both system-wide and local perspectives. The code for the framework is available at
https://github.com/sathvikgadiraju/Link-criticality-framework.

https://github.com/sathvikgadiraju/Link-criticality-framework


4
Case study - North Sea Rhine

Mediterranean (NSRM) TEN-T
corridor

Following the methodology described in the previous section, we demonstrate the im-
plementation of the link criticality analysis algorithm for multimodal networks on the
North Sea–Rhine–Mediterranean TEN-T corridor. Section 4.1 introduces the NSRM
network corridor, detailing its structure, coverage, and the components included in
this study. Section 4.2 presents the freight demand data between zones, highlighting
sections with the high trade volumes both between and within countries. Section 4.3
shows the results of the modal split model and the distribution of commodity freight
flows across modes. Section 4.2 visualizes the results of the traffic assignment and
Section 4.5 validates them against observed flows. Section 4.6 and Section 4.7 present
the results of the link criticality analysis, identifying and mapping the network’s most
critical links.

4.1 The North Sea - Rhine - Mediterranean Corridor

The North Sea Rhine Mediterranean transport corridor is a major European transport
corridor established as part of the TEN-T (Trans-European Transport network) policy.
The NSRM corridor plays a crucial role in connecting Europe’s largest economic zones,
ports and multimodal hub. It is the result a merger between two former TEN-T corri-
dors, the Rhine-Alpine Corridor and the North Sea - Mediterranean corridor under the
regulation (EU) 2024/1679. The corridor spans across eight countries namely: Ireland,
the Netherlands, Belgium, Luxembourg, France, Germany, Italy and Switzerland. The
core network spans over 12150 km of railway lines, 5000km of roadways and 5030km
of inland waterways. The network analyzed includes links from both the NSRM core
network and the TEN-T comprehensive network, which differ in their implementation

30
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timelines and requirements. The core network, representing the most strategically im-
portant connections, must meet specific EU standard requirements by 2030, while the
comprehensive network, which provides broader connectivity beyond the core infras-
tructure, has a deadline of 2050 to meet these standards.

The multimodal network here consists of 774 roads links, 1186 railway links and
481 inlandwaterway links. 253 NUTS3 level zones are modeled and an additional 1641
OD connector links were generated to connect them to the network using the algorithm
described in the previous section. Figure 4.1 shows the visual representation of the net-
work imported into the model along with prominent cities along the network. Within
our modeling approach, freight demand is exclusively simulated between NUTS 3 re-
gions, which serve dual functions as both origin-destination points for freight flows.

4.2 Freight transport demand

The freight demand data is derived from the NEAC model using trade data from 2010,
which has been updated using growth factors. While the simulation operates at the
NUTS3 level, this visualization aggregates the demand between NUTS3 regions to
NUTS2 level to provide a clearer understanding of inter-zonal demand patterns in
Figure 4.2. The diagonal boxes outlined in black represent intra-country demand i.e.
freight movement within the same country which consistently show high demand
(bright yellow/green colours), showing that most freight movement is occurring do-
mestically. Countries with major ports, especially the Netherlands and Belgium, show
high freight demand as both origins and destinations, reflecting their substantial im-
port and export activities. The regions around Rotterdam and Antwerp, two key Eu-
ropean ports, also experience the highest freight demand. The demand matrix im-
plemented within the model has dimensions of 253 × 252 × 10, representing origins,
destinations, and commodity types respectively, totalling 637,560 individual entries.

4.3 Modal split

The mode split model was applied as described in the previous chapter, with param-
eters detailed in the annex. The commodity-wise breakdown of mode choice is pre-
sented in Figure 4.3. The results indicate that road transport is the predominant mode
in the network (79.8%), followed by rail and inland waterways. This preference stems
from the high utility that roadways provide for short-distance transport. As distances
increase, generalized transport costs rise accordingly, leading the utility function to fa-
vor alternative modes such as rail and inland waterways. Additionally, the availability
and accessibility of modal networks significantly influence mode choice decisions.

Figure 4.4 presents the commodity-wise mode split, which follows a similar over-
all pattern. However, there are notable discrepancies where large quantities of oil and
ores appear to be transported by roadways, which does not reflect real-world practices.
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Figure 4.1: North Sea Rhine Mediterranean corridor network
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Figure 4.2: Freight demand between NUTS 2 Regions in the NSRM corridor network
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In reality, oil is typically transported between regions through dedicated pipeline net-
works, which are not considered in this study. Ores, conversely, are predominantly
transported in bulk via railways rather than road transport. A specific study of the
Rhine Alpine corridor by [6] found that inland waterways dominate the modal split at
50.8%, followed by road transport at 28.8%, and rail at 20.4%. In contrast, according to
[8], the overall freight transport modal share in the EU—excluding maritime and air
transport—is led by road transport at 75.7%, with rail at 16.7% and inland waterways
at 4.9%. The model results align more closely with these broader EU figures. Since
the model parameters are trained on data aggregated across the entire EU, they do
not capture the notably high preference for inland waterways seen in the Rhine Alpine
network; however, compared to EU-wide data, the model shows an increased modal
share for both road and inland waterways.

Figure 4.3: Aggregated modal split in the NSRM corridor

4.4 Traffic assignment results

The traffic assignment is done using the All or nothing assignment. Figure 4.5 shows
a picture of the AON assignment taken from the python model. The width of the link
represents the amount of flow passing through it annually in term of kilotonnes. To
provide a more in depth visualization of the traffic assignment in the base scenario and
also compare the flows estimated by the model to data available regarding observed
flows were present Figure 4.6, Figure 4.7 and Figure 4.8. Observed values were col-
lected from publicly available datasets, accessed via Eurostat [9], and subsequently
processed and compiled by Panteia B.V.. The observed values reflect the actual traffic
on the link, including traffic traveling within the NUTS3 region, through traffic, as well
as traffic originating from or destined outside the study area.
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Figure 4.4: Commodity wise breakdown of mode choice probability in the NSRM corridor network

The traffic assignment process was executed through a two-stage process. Initially,
the shortest paths from each origin node to all other nodes were pre-computed for all
transportation modes using Python’s NetworkX library. Subsequently, freight from
the demand data was iteratively assigned to the network until completely allocated.
The computational performance for the base scenario traffic assignment was evaluated
on an Apple MacBook Pro equipped with 10 CPU cores, requiring approximately 2
minutes and 13 seconds to complete.

4.5 Validation

The road traffic assignment results have been validated against observed flow data,
as presented in Figure 4.6. The observed flow data, provided in heavy-duty vehicles
per day, required conversion from the model’s annual tonnage output by dividing by
3,650 (assuming 10 tonnes per heavy-duty truck and 365 operating days). The vali-
dation scope is constrained by the spatial coverage of the observed dataset, which en-
compasses only the core NSRM network rather than the complete study region. Both
datasets demonstrate similar patterns, including heavy traffic concentrations around
the ports of Antwerp andRotterdam, and higher traffic density in the northern portions
of the network compared to the southern areas.

The model captures north-south traffic flows in both directions but exhibits lim-
itations in representing east-west movements. This discrepancy is particularly evi-
dent in the central and southern portions of the network. Additionally, the observed
data shows significantly more traffic activity in the vicinity of Paris than the model
predicts. These differences can be attributed to several modeling limitations. First,
the model does not account for through-traffic that neither originates nor terminates
within the study region. Second, demand flows originating or terminating outside the
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Figure 4.5: AON assignment of NSRM corridor - Picture from python model
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Figure 4.6: Comparision of road traffic assignment - Estimated vs Observed flows

study boundaries are not represented. Furthermore, the traffic assignment method-
ology assigns demand along single optimal paths, even when alternative routes have
marginally different costs, potentially underestimating traffic distribution across par-
allel corridors.

Similarly, the rail assignment results are compared to observed values in Figure 4.7.
The annual freight demand was converted to daily train movements by dividing by
164,250 (assuming 450 tonnes per train and 365 operating days). The observed data
reveals substantial train movements along the Old Rhine-Alpine TEN-T corridor, par-
ticularly the route from Duisburg to Basel, which represents a critical European rail
artery. However, the assignment model fails to adequately capture these high-volume
flows, indicating a underestimation of rail preference along this corridor. This discrep-
ancy suggests that the mode choice and assignment model does not fully account for
the established rail infrastructure advantages or operational efficiencies that make this
particular corridor highly attractive for rail freight transport.

Lastly, the inlandwaterway assignment is compared to observed values in Figure 4.8.
The comparison reveals strong similarities in relative traffic density patterns, with both
data showing high concentration along the main Rhine artery between Rotterdam and
Strasbourg, and progressively decreasing traffic volumes on smaller tributary water-
ways. However, there is a significant discrepancy in absolute demand levels, with
observed values substantially higher than model predictions. This difference can be
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attributed to two primary factors: first, the model may underestimate the modal share
for inland waterways, failing to fully capture the cost advantages and operational pref-
erences that make waterway transport attractive for bulk commodities. Second, the
model does not account for intra-regional freight flows that utilize the waterway net-
work for shorter-distance movements within the study regions, which could also con-
tribute to the total observed traffic volumes on these routes.

4.6 Link criticality analysis

In this section we report the link-criticality results. As outlined in the methodology, we
remove one link at a time and quantify the resulting changes in network performance
to assess that link’s importance. The algorithm ran on a MacBook Pro using 10 CPU
cores and finished in 3 h 17 min; because the procedure is parallelized, allocating more
cores would further reduce runtime.

Figure 4.9 plots impact versus tonnes affected. Impact is measured as the average
relative change in delay, generalized transport cost (GTC), emissions, and distance
for the flows that used the removed link. The orange iso-contribution lines show the
product of tonnes affected and impact i.e., the share of the total system cost increase.
Because roads carry most freight, removing a road link typically affects more tonnes.
Most road removals raise average GTC by 1–10 EUR/tonne, with a few outliers. Inland-

Figure 4.7: Comparision of rail traffic assignment - Estimated vs Observed flows
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Figure 4.8: Comparision of inland waterway traffic assignment - Estimated vs Observed flows

Figure 4.9: Tonnes affected vs impact - Link criticality analysis
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waterway removals display much greater dispersion, including a small cluster with
very large GTC increases consistent with forced shifts to road. At the system level, road
and inland-waterway removals generally produce the largest cost increases: most links
raise total system GTC by 0.25 -1%, while the most critical approach 3%. Rail removals
are comparatively contained.

For delay, most road removals reroute substantial demand but keep average in-
creases under 3 h, except for a few cases where mode shifts drive large delays. Inland-
waterway removals affect fewer tonnes but exhibit a wide spread; some even yield neg-
ative relative delay when traffic shifts to faster modes. Rail removals are the most con-
tained, influencing fewer tonnes and producing smaller network-wide effects. Emis-
sions follow a similar pattern: roads show the largest relative increases, inland water-
ways change little on average, and rail is generally low with a few notable spikes in-
volving limited demand. For Average distance increases, the additional detour length
when a link is removed are broadly comparable across modes, though some road and
rail links require detours exceeding 150 km/tonne.

Finally, Figure 4.10 summarizes the variance of impact across modes. Roads carry
the largest demand but show relatively moderate per-tonne effects. Inland waterways
exhibit the widest spread in delay, GTC, and detour distance with heavy-tailed outliers
and the share of mode switches. Rail is the most stable overall with lower medians
and tighter spreads, though a small number of links still trigger long delays detours.
Emission penalties are highest when traffic diverts to road, while IWW and rail shifts
add little on average.

Figure 4.10: Variance of average impact across modes
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4.7 Geospatial Visualization of Critical Links

The link criticality results have been plotted geographically using Geographic informa-
tion system (GIS) software. In this section, we present some of the notable results of
the process. Complete results can be found in appendix A .

4.7.1 Road network

Figure 5.6 identifies critical road network links that significantly impact total system
GTC (Top-left) when removed. The most notable increases occur near Basel and Bern,
where three key links; Bern (Forsthaus) ↔ Bern (Wankdorf), Basel (Oberer tunnel)
↔ Kaiseraugst, and Luterbach ↔ Boncourt (border CH-FR),cause total system GTC to
increase bymore than 2%. Links connecting themajor ports of Rotterdam andAntwerp
also demonstrate similarly high impact when disconnected.

The figure also presents the average GTC increase (Top-right) and delay (Bottom-
left) imposed on affected tonnes when individual links are removed. These figures
highlight links that are critical based on their impact severity on the affected freight.
The southern network contains more links that cause substantial cost and travel time
increases compared to the northern network. The Basel and Bern region links again
demonstrate high impact, causing significant GTC and travel time increases when re-
moved. The link connecting Genoa and Monaco (Albenga ↔ Ventimiglia) shows the
most severe impact, with more than 15 EUR/tonne increase in GTC when removed.
Due to low density of infrastructure in Ireland the link connecting the ports are also
critical. The road link connecting Switzerland and Italy (Martigny<–>Gondo (border
CH-IT)) causes 10+ hours in travel time increase when removed.

4.7.2 Rail network

Compared to road network, the rail network Figure 5.6 (Bottom-left) is seen to not cre-
ate significant impact to total system performance. Most system performance change
can be seen near the railway tracks leading towards Rotterdam. Large number of rail-
way links cause high delays (4-10 hours) to the tonnes affected. these links are espe-
cially present where the network is not as dense as shown in Figure 4.12 (Top-left).

4.7.3 Inland waterway network

As shown Figure 4.12 (Top-right), Links from the main Rhine river artery from Ni-
jmegen causes a significant increase in total system GTC when removed. This river
section represents one of Europe’s busiest inland waterway corridors. Since the river
topology in this section offers no alternative routes or redundancy, any link disruption
forces freight flows to shift to alternative transportmodes, effectively disconnecting the
inland waterways sections. The number of mode shifts which occur due to the IWW
link being removed can be seen in Bottom-right plot. Figure 4.12 (Bottom-left) shows



42 4. Case study

Figure 4.11: Geospatial visualisation of link criticality measures in the NSRM network: Road - Change
in total GTC (Top-left), Road - Average GTC change (Top-right), Road - Average delay (Bottom-left),
Rail - Change in total GTC (Bottom-right)
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Figure 4.12: Geospatial visualisation of link criticality measures in the NSRM network: Rail - Average
delay (Top-left), IWW - Change in total GTC (Top-right), IWW - Average delay (Bottom-left), IWW -
Mode shifts (Bottom-right)
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the links that have alternative detours available within the IWW network, allowing
freight to reroute when they are disconnected.

4.8 Discussion

The results reveal distinct patterns of link criticality across different transportation
modes. The road network shows dense connectivity with abundant alternative routes.
However, as the predominant freight transport mode, road links generate marginal
impacts that translate into substantial economic costs. Despite the availability of alter-
native routes within the road network, these links remain critical due to the high traffic
volumes they serve. The rail network presents a contrasting scenario. The network
topology demonstrates considerable redundancy on paper, resulting in no individ-
ual railway links significantly impacting overall network performance. Nevertheless,
few links cause substantial localized disutility, particularly in the southern network
where infrastructure density is lower. Inland waterways results identifies several crit-
ical links in areas where river sections are narrow and constrained. Link removal here
triggers significant economic cost increases as shifts to more expensive modes such as
road transport. These cost increases often exceed twice the price of fulfilling demand
through inland waterways, creating large impact on total system performance and for
the traffic affected.

In terms of link criticality measures, Change in total system GTC provides an eco-
nomic value of the effects of link removal. The measure encompasses changes in travel
time, distance, emissions (which is a function of distance) and also mode shifts. By
translating operational performance into monetary terms, the approach enables the
representation of criticality combined with risk metrics as a cost of inaction that is, the
economic consequence of failing to address potential link failures or vulnerabilities.
This makes this measure a general suitable measure for link criticality in multimodal
networks. However, other system wide metrics remain important. Different modes
are chosen based on varying priorities, including sensitivity to price, travel time, and
emissions levels. For example, a nominal price increase to road transport may not be
particularly significant, but when the same price increase affects railways, that increase
is felt more acutely. Similarly, travel time is especially important for roadway transport
when compared to inland waterways. Although GTC provides a general indicator for
link criticality, individual metrics can be utilized as well to capture mode-specific im-
pacts. When adopting an equity perspective, average impact measures provide a more
detailed representation of the localized effects of link removal, which highlights struc-
tural weaknesses within the network.

The top 10 most critical links of the NSRM corridor are shown in Figure 4.13. Road
links near Basel and Bern represent the threemost critical links in the network. The link
removal causes a total system GTC increase of 2.2% or € 830 million annually. These
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Figure 4.13: The Top 10 Most critical links in the NSRM network
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sections contain multiple tunnels that function as single points of failure. The main
Rhine river artery, which constitutes one of Europe’s busiest inland waterway chan-
nels, also proves critical for network operations. Any disruption in this section forces
freight to shift modes to rail or road transport, increasing total system GTC between
1.9% to 1.4% (€ 750 - € 530 million). Links near Rotterdam and Antwerp, which serve
substantial traffic volumes, appear among the critical links because, despite the exis-
tence of viable alternatives, the volume of traffic they handle makes them essential to
network performance.

The model equips planners with a tool for scanning large multimodal networks to
identify and rank critical links without requiring extensive data collection or compu-
tational power. This initial screening enables planners to focus their attention where it
matters most, performing comprehensive assessments toward those links whose fail-
ure would have the most significant system-wide impacts. For each identified critical
link, planners can explore potential disruption threats for that specific link and develop
targeted mitigation measures to reduce the likelihood or severity of failure. Disrup-
tions are not always day to day, climate changes can have long term impacts on the
usability of certain modes. For example, planners can model the annualised effect of
extended low water levels on inland waterways, recognising that such issues cannot
be resolved immediately and require strategic adaptation measures. In the context of
maintenance planning, the model’s results can inform decisions if careful planning is
required for long term maintenance works. As the model integrates all modes into a
unified performance view, it also helps identify the most effective substitutes when a
particular link is closed. The model also quantifies the “cost of inaction” by estimating
the economic and operational consequences of leaving a vulnerable link unaddressed,
and conversely, it can assess the benefits to the overall network from adding new links,
supporting robust cost–benefit analyses for infrastructure projects. Beyond civilian lo-
gistics, the framework’s outputs are also relevant in the context of the EU’s Military
Mobility plan, which envisions the TEN-T network as dual-use infrastructure for both
civilian and defence purposes. In such scenarios, the model can identify highly vul-
nerable links whose disruption would hinder rapid military deployment. Here, per-
formance indicators such as average travel time or network accessibility become more
critical than purely cost-based measures, as there is more priority for rapid troop and
equipment movement to border regions during emergencies.

As part of the researchwe have also developed a interactive impact assessment dash-
board. This dashboard allows use to quickly simulate the removal of any link in the net-
work and visualise the impact through an interactive graph. As shown in Figure 4.14,
we can observe the changes in freight flow in the network see the changes in freight
volumes on each link by hovering over them. On the right side of the dashboard, the
criticality metrics of the link are also provided. This dashboard allows for an in-depth
exploration of the exact effects of link removal.
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Figure 4.14: Impact assessment dashboard

There are simplifications in themodel to trade between computational efficiency and
realism. Our graph-based framework represents every NUTS-3 region with a single
OD node, which is connected to the nearest road, rail, and waterway links. We as-
sume that local access infrastructure such as regional roads, rail-road terminals, or
ports lie close enough to those links for transshipment, simplifying the first/last-mile
network and terminal operations into the OD connector rather than modelling them
explicitly. Second, our model uses all or nothing assignment ignoring congestion and
capacity constraints. While this that means detour links may unrealistically accept ad-
ditional flow without degrading speeds or increasing operating costs beyond the base
assumptions. Third we implicitly treat all links as technically compatible. For instance,
it assumes any train can operate on any rail segment, regardless of gauge, axle-load,
or electrification differences. As a result, our findings likely understate how critical
certain railway links truly are. Finally, the analysis omits both intrazonal demand and
through-traffic, factors that could have an impact on the criticality results.



5
Conclusion

This thesis set out to develop a method critical links in European multimodal freight
networks. Critical links are those who degrade network performance disproportion-
ately when failed. Identifying critical elements in the network is one of the first steps
towards improving robustness and overall resilience in the network. Measuring criti-
cality allows us to prioritise investments to reinforce or introduce good enough alter-
natives in case of disruptions. While link criticality has been extensively studied in
road networks, very few studies have examined component criticality in multimodal
networks. This gap is significant because multimodal networks are interdependent as
infrastructure failure in onemode can trigger cascading effects across others, making it
essential to study these networks together rather than in isolation. Previous studies of
link criticality have also overlooked important behavioural responses to network fail-
ures, such as mode shifting and trip cancellation. Additionally, existing methods that
capture the operational aspects of networks are computationally intensive and require
extensive datasets for analysis.

5.1 Key findings

Along with our main research question we have formulated three research sub ques-
tions which have been answered below:

1. What are the state of the art methods of measuring and ranking critical links
in transportation networks?
This question is addressed through the literature review presented in Chapter 2. Link
criticality measures are commonly categorized into three groups: topological, traffic-
based, and hybrid approaches. This study offers a comprehensive and up-to-date
overview of state-of-the-art methods for assessing link criticality in transportation net-
works, as summarized in Table 2.5.

2. Which link criticality measures are most suitable for multimodal networks

48
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considering their strengths and limitations?
Topological measures are very easy to compute and require minimal data, but they are
not suitable for identifying critical links because they assume synchromodality in the
network, which is not the case in reality. Additionally, they do not take into account
the traffic demand, which makes them inaccurate. Traffic-based measures are suitable
in capturing the traffic effects and also capture system-wide effects. The downside is
that they require more data and are computationally very complex if we use more traf-
fic assignment methods which take congestion into account. But they can be adapted
to be used in the case of multimodal networks using simpler traffic assignment meth-
ods. The main advantage of hybrid methods is to balance computational efficiency
and metric accuracy. This benefit becomes irrelevant when we choose to use simpler
traffic assignment methods such as All or Nothing. To summarise, we have adapted
traffic-based measures from literature such as change in total system travel time and
total system travel costs but also propose other operational metrics described in Chap-
ter 3. Out of the measures used in our study, Total system GTC change is the most
representative metric for criticality as it incoporates the effects of distance, travel time,
mode shifts and emissions (which is a function of distance) into a single metric. The
change can also be translated into a monetary value which can be used by planner to
prioritise investments.

3. How to assess empirically the effects of link removal in themultimodal freight
networks?
To empirically assess the effects of link removal in multimodal freight networks, a link
criticality analysis algorithm is introduced. This involves first simulating a base sce-
nario to establish benchmark network performance indicators. Links with zero flow
or artificially created connectors are excluded to reduce computational load. For each
remaining link, the network is modified by removing the link, and only flows using
that link are recalculated. Affected Origin-Destination-Commodity-Mode (ODCM)
pairs are rerouted along alternative paths within the same mode, and if no feasible
route exists, a mode-switching model is applied. If no alternative mode is available,
the demand is marked as unserved. After reassignment, system performance metrics
are recalculated and compared with the base scenario to quantify the impact of each
link removal, capturing operational changes.

”How canwe identify critical links in the Europeanmultimodal freight networks
which create the most impact when disrupted?”.

Using the North Sea - Rhine - Mediterranean (NSRM) TEN-T corridor as a case
study, we demonstrated a framework for identifying critical links in European multi-
modal freight networks. Our analysis reveals patterns across transport modes. Road
network disruptions affect the largest volume of tonnes but cause relatively moderate
impacts per affected shipment. Due to this even links with cause marginal affects be-
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come critical when removed due to the number of tonnes being rerouted. Railway net-
works show the most resilient performance when links are removed, as their high net-
work density provides multiple alternative routes. While the railway links don’t rank
highly in total system criticality measures, they create significant impact locally, espe-
cially in the southern part of the network where the density of infrastructure is lower.
Conversely, inland waterway networks are most vulnerable to link removal, generat-
ing the highest number of modal shifts due to linear sections with limited branching
or alternative routes. Geographically, critical road network links around Basel, Bern,
Rotterdam, and Antwerp, created significant systemic cost increase. For inland water-
ways, the Rhine river segment between Nijmegen and Strasbourg emerges as particu-
larly critical infrastructure. These critical links when removed cause the total system
gtc to increase between € 530 - 830 million.

5.2 Theoretical implications

Themodel introduced in our study contributes to the literature by addressing research
gaps in link criticality in transport networks. The link criticality algorithm is computa-
tionally simple and less data hungry. While traditional methods of full scan criticality
analysis provide a more accurate representation of criticality as they take into account
link capacity and congestion, they are very exhaustive. They are also difficult to scale
for larger networks and require more data. Our model strikes a balance between com-
putational complexity and operational accuracy. We also contribute to the less popular
area of link criticality in multimodal networks. By analysing the networks together, we
measure the effect of link removal in one network and also simulate the cascading ef-
fects into another network.

5.3 Practical implications

We identified critical links in the region near Basel and Bern, an area which has ex-
tensive tunnel infrastructure that creates potential vulnerabilities for transport con-
nectivity. The terrain in this region necessitates numerous tunnels for both road and
rail networks, making these links particularly susceptible to disruption from natural
disasters, maintenance issues, or structural failures. Additionally, the main artery of
the Rhine river, which serves as a crucial waterway for freight transport, presents sig-
nificant criticality due to its vulnerability to disruption from low water levels during
drought periods and potential accidents.

The model gives planners a fast, data-lean way to identify and rank critical links
acrossmultimodal freight networks, so they can targetmitigation and investmentwhere
it delivers the biggest payoff. By screening for the links whose failure would most in-
crease the generalised transport costs, authorities can prioritise reinforcement or create
viable alternatives, reducing disruption risk and keeping freight moving efficiently.
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Demonstrated on the NSRM corridor, the approach scales to the full TEN-T and to
national networks, and it aligns with dual-use objectives in the EU with roughly 93%
TEN-T overlap with member-state military networks, a single pipeline of projects can
strengthen both civilian and military resilience. An accompanying interactive dash-
board supports rapid “what-if” testing—removing any link, visualising flow reassign-
ments and link-level criticality metrics. The model is also highly modular, parts of the
model can bemodified/upgraded as needed by the planner depending upon the scope
of the analysis.

5.4 Future direction

This study has several limitations due to scope and time constraints that future re-
search can address. First, the simulation does not explicitly model rail-road terminals
and ports, including their capacities, transshipment times, and costs. Incorporating
these elements would producemore realistic traffic assignments. Additionally, the All-
or-Nothing assignment method assigns all traffic to a single path, even when slightly
more expensive alternatives exist. This limitation could be addressed using stochastic
assignment methods that account for path overlap to introduce heterogeneity in traffic
distribution. Future research should also integrate congestion effects using precom-
puted flow-speed curves, particularly for road networks which are more susceptible to
congestion impacts. Second, the current approach evaluates behavioural responses to
link removal through incremental checks, which may not capture the full complexity
of shipper decision-making. A more sophisticated simultaneous choice model could
better represent shippers’ behaviour by incorporating commodity-specific transship-
ment willingness, price sensitivity, and travel-time sensitivity. This approach would
evaluate all alternatives simultaneously and produce more consistent mode and route
choices under disruption scenarios. Third, the criticality measures developed in this
study could be enhanced by incorporating risk elements to provide amore comprehen-
sive assessment of network vulnerability. For example, combining criticality measures
with hazardmaps or infrastructure failure probabilitieswould enable the calculation of
expected impact metrics that better reflect real-world conditions and provide more ac-
tionable insights for transportation planning and risk management. Lastly, the model
would benefit from richer datasets that incorporate additional network characteristics
and constraints. Future studies should consider directional graphs, technical compati-
bility between different vehicle types and specific links, and region-specific cost mod-
els that reflect local conditions. Furthermore, expanding the freight transport model to
include other networks such as pipelines would provide a more comprehensive repre-
sentation.
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Simulation framework to measure and rank critical
links in multimodal freight networks
Sathvik Gadiraju, MSc Transport Infrastructure and Logistics, TU Delft

Abstract—Growing geopolitical risks and climate ex-
tremes have prompted renewed interest in to strengthen
the resilience of its transport networks to ensure economic
competitiveness and stability. Identifying critical compo-
nents in the network is a crucial step in resilience planning.
While existing literature has extensively investigated ways
to measure link criticality in transport networks, imple-
mentation for freight networks is challenging due to their
multimodal, multi-commodity nature. This study develops
a simulation framework to evaluate the criticality of links
in multimodal freight networks at a transnational scale,
balancing operational accuracy with computational effi-
ciency. The framework integrates mode choice and routing
algorithms while preserving key operational characteristics
of multimodal freight networks. The approach consists
of a traditional transport model for simulating the base
scenario and link criticality analysis algorithm to measure
the impact of link disruption on the network performance.
By systematically removing links, we quantify network-
wide impacts using operations-based metrics. A case study
on the North Sea–Rhine–Mediterranean TEN-T corridor
demonstrates the tool’s practicality. The framework equips
planners and policymakers with the ability to quantify
the impacts of link removals, supporting decision making
on where to invest resources, ultimately enhancing the
resilience and sustainability of freight transport systems.

Index Terms—Transport infrastructure planning, Net-
work Resilience, Vulnerability measures

I. INTRODUCTION

Transport networks are essential infrastructure for
global supply chains, enabling the efficient and timely
movement of goods. They play a crucial role in sup-
porting a nation’s economic growth, security, and policy
objectives. These networks are made up of components,
each susceptible to various types of disruption. Such
disruptions can stem from factors including infrastruc-
ture maintenance or failure, accidents, extreme weather
events, and targeted attacks. Their severity can range
from minor, day-to-day capacity reductions to major
incidents with severe, cascading effects across both space
and time. The failure of critical infrastructure can lead

to substantial economic losses. For example, the Ever-
green blockage in the Suez Canal was estimated to cost
between $6 - $10 billion per day (Russon, 2021), while
the 2017 Rastatt rail incident incurred approximately C2
billion in direct and indirect costs (HUPAC, 2018). Such
events can create bullwhip effects that ripple through
supply chains, making transport network resilience es-
sential for maintaining economic continuity (ITF, 2024).

Identifying critical links is a crucial step towards
resilience. According to Jenelius et al. (2006) link crit-
icality can be defined as ”significance of individual
links (e.g., roads, bridges, tunnels, channels, railways)
in maintaining network functionality, where the fail-
ure of a critical link can disproportionately degrade
system performance, such as increased travel times or
reduced connectivity”. Insights from identifying critical
links help transport operators and planners prioritise
maintenance, implement mitigation strategies, and direct
investments effectively (Kumar et al., 2019; Scott et al.,
2006).

There have been numerous studies related to link
criticality in transportation networks but most of them
focus on road networks (Gauthier et al., 2018; Jafino
et al., 2020; Jenelius and Mattsson, 2015; Knoop et al.,
2012; Kumar et al., 2019; Scott et al., 2006; Sohn, 2006;
Taylor et al., 2006). Limited studies have researched
criticality in multimodal networks that include roadways,
inland waterways and railways. Notable exceptions in-
clude W. J. L. van Dam (2017) and He et al. (2021),
who conducted robustness analyses of the Netherlands’
multimodal freight network and identified critical nodes.
The European Union’s Critical Entities Resilience (CER)
Directive mandates member states to identify critical
infrastructure components within transport networks as
part of broader measures to ensure essential services (Cy-
berRisk, 2025). To the author’s knowledge, no studies
have investigated link criticality at the strategic, macro
scale of transnational freight networks. Existing methods
are computationally intensive and require large amounts
of data (Takhtfiroozeh et al., 2021). Their complexity
grows exponentially with the size of the network and
the inclusion of additional transport modes. Furthermore,
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previous studies have not accounted for travel behaviours
such as mode shifting and trip cancellations alongside
re-routing in response to disruptions.

In this study, we propose a simulation framework for
assessing link criticality in multimodal freight networks.
The framework is designed to operate at a transnational
scale while maintaining computational efficiency, inte-
grating mode choice, routing, and re-routing behaviour
to capture realistic responses to link removals. It ex-
tends beyond traditional link removal approaches by
selectively reassigning only affected flows and modelling
mode shifts and trip cancellations. The methodology is
applied to the North Sea–Rhine–Mediterranean TEN-T
corridor as a case study, demonstrating its capability
to identify critical links across various performance
measures. The resulting tool provides planners and pol-
icymakers with a practical means to pinpoint vulner-
abilities, evaluate trade-offs, and prioritise investments
that enhance the robustness and sustainability of freight
transport systems.

II. RELATED LITERATURE

Link criticality is a concept that extends beyond
transport networks and is discussed in various fields,
including computer networks, power grids, social net-
works, and water infrastructure. A critical link is one
whose failure or disruption would substantially degrade
the performance, connectivity, or functionality of the
network (Akbarzadeh et al., 2019). Identifying these
links is foundational for prioritizing mitigation and
investment strategies that enhance network reliability,
service, and efficiency (Jafino et al., 2020; Kumar et al.,
2019; Takhtfiroozeh et al., 2021). There is a large
body of literature on link criticality within the context
of transport networks. Growing risks associated with
geopolitical conflicts, extreme weather events, and age-
ing infrastructure have further highlighted the importance
of identifying critical links in these networks. Various
measures have been proposed to quantify link criticality
in the literature. They can be categorised into two main
categories: topological-based measures and traffic-based
measures (Mattsson and Jenelius, 2015).

A. Topological measures

Topological-based measures assess the structural prop-
erties and connectivity of a transport network, drawing
on traditional graph theory and adaptable to other do-
mains. They are relatively simple to compute, require
less data (Mattsson and Jenelius, 2015), and are par-
ticularly relevant for disruption management in emer-
gencies or relief operations where travel demand and

congestion can be neglected (Sugiura and Kurauchi,
2023). Traditional centrality measures such as degree,
eigenvector (or eigen) centrality, closeness centrality, and
betweenness centrality provide insight into the relative
importance of nodes in a network, with betweenness
centrality being especially valuable for assessing link
criticality. By definition, the betweenness centrality of
a link quantifies how often it lies on the shortest paths
between node pairs, reflecting its role as a bridge or
connector between network segments (Freeman, 1977).
Building on such concepts, (Latora and Marchiori, 2001)
introduced a network efficiency measure, defined as the
average reciprocal of shortest path lengths dst between
all node pairs, where the change in efficiency ∆E(G)
following the removal of a link indicates its criticality.
While these measures are simple, easy to compute and
require minimal data, they do not take into account traffic
behaviour.

B. Traffic based measures

Traffic based measures address this issue by inte-
grating travel demand and routing when assessing the
criticality of link making them more accurate. The
traditional full scan method is a common approach for
assessing link criticality in transport networks. In this
method a base scenario is computed to benchmark the
network performance under normal conditions. After
this, a link is removed from the network and the transport
simulation is re-run to measure the change in total
network performance to represent the criticality of that
particular link. This process is then repeated for all
the links in the network making it very exhaustive.
Most commonly a User Equilibrium traffic assignment
is used to calculate congestion in the network. While
this makes the traffic assignment realistic, it is highly
computationally expensive and is unfeasible to scale to
larger networks.

Commonly, traffic based measures use total travel time
and generalised travel cost as a peformance indicator
to measure criticality. The Network Robustness Index
(NRI) quantifies the change in travel time cost after re-
routing traffic due to a link failure (Scott et al., 2006).
Taylor et al. (2006) proposed the vulnerability indicator
Vrs, combining travel demand with changes in accessibil-
ity, demonstrated on Australia’s national road network.
The importance score (IS) evaluates links under equal-
weight and demand-weighted perspectives, accounting
for unsatisfied demand (Jenelius et al., 2006) . Sullivan
et al. (2010) introduced the modified NRI (NRI*) for
partial capacity losses and the Network Trip Robustness
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(NTR) to compare robustness across networks, address-
ing limitations of full-closure assumptions.

C. Other approaches

Few other approaches have been used to reduce
the computational requirements of the traditional full
scan method while maintaining the operational accuracy.
Gauthier et al. (2018) proposed Travel-time Weighted
Betweenness Centrality (TTWBC) with a stress test
simulation using partial capacity reductions, comparing
it with other betweenness-based criticality measures.
Takhtfiroozeh et al. (2021) developed nine hybrid be-
tweenness measures with different link weights, finding
that flow-weighted variants aligned most closely with
traffic-based measures such as NRI, IS, and NRI*.
Kumar et al. (2019) applied a multi-criteria approach
combining traffic usage, disruption to critical services,
and number of OD pairs served, weighted according to
planning priorities. (Li et al., 2020) proposed the Traffic
Flow Betweenness Index (TFBI), which preselects candi-
date links using betweenness, flow, and rerouted demand
before performing a more intensive criticality analysis
for the selected links. (Almotahari and Yazici, 2019)
introduced the Link Criticality Index (LCI), identifying
critical links in a single user equilibrium assignment by
tracking marginal cost in the Frank–Wolfe algorithm.

D. Criticality analysis in multimodal networks

Research on resilience in multimodal transport net-
works remains limited compared to single-mode systems
(Zhou et al., 2019). He et al. (2021) analysed the
robustness of the Netherland’s integrated road, inland
waterway, and rail networks to support maintenance
planning, using centrality measures and capacity degra-
dation scenarios. The results showed node criticality
correlated strongly with freight volume passing through
the node. W. J. L. van Dam (2017) also studied the
Netherlands’ multimodal freight network, focusing on
overall robustness of a synchromodal freight network
rather than critical link identification. Another study
applied a traffic micro-simulation model with Austrian
data to identify critical intermodal links via delay-based
indicators (Burgholzer et al., 2013). Van Der Tuin and
Pel (2020) developed a multimodal disruption model
for the TEN-T network that integrates a detailed Local
Disruption model with a coarser Global Spillover model.
Applied to the Port of Rotterdam, the approach showed
that road bridge failures generated substantial local de-
lays but had limited impacts at the continental scale. The
model offers a framework for assessing disruption effects
at both local and global levels.

In summary, existing link criticality methods present
a trade-off between accuracy and scalability. Traffic-
based approaches offer operational realism but are com-
putationally prohibitive for large, multimodal networks,
while topological measures are efficient but oversimplify
network dynamics. Furthermore, explicit studies on link
criticality in multimodal freight systems remain scarce,
with most work focused on single-mode or regional
networks. No established framework currently balances
computational efficiency with behavioural realism in a
way that can be applied to large-scale, strategic freight
corridors.

III. METHODOLOGY

The methodology section is divided into two parts.
In the first section, we introduce the multimodal freight
transport model and the techniques used to simulate the
traffic behavior within the network. In the section part,
we introduce the link criticality analysis algorithm. This
methodology will be later demonstrated using the case
of the NSRM TEN-T corridor.

A. Base scenario modelling

Multimodal freight networks integrate road, rail, in-
land waterways, and maritime ports through strategically
located terminals, logistics hubs, and urban centres. They
enable coordinated infrastructure development, standard-
isation, and interoperability, supporting high freight vol-
umes, facilitating intermodal transfers, and enhancing
resilience by providing alternatives during disruptions.
While these networks also include micro-level assets
such as bridges, locks, weirs, crossings and tunnels, their
detailed representation is beyond the scope of this study.
Instead, we adopt a graph model where intersections,
terminals, and origin–destination (OD) points are nodes,
and links represent road, rail, or waterway segments
between them. This approach captures network structure,
traffic flows, modal interactions, and costs, and is widely
used in transport network analysis and criticality studies.

The multimodal freight network is represented as an
undirected graph G = (N ,L), where N is the set of
nodes and L the set of links. Although a directed graph
would better reflect reality, an undirected representation
is adopted here to reduce complexity. Nodes and links
are classified by mode as:

N = N road ∪N IWW ∪N rail ∪NOD

L = Lroad ∪ LIWW ∪ Lrail ∪ LOD

The multimodal network is structured as separate
layers for each mode, each represented by a subgraph
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Fig. 1. Annual freight demand between regions (NUTS3 and NST/R
1 commodities have been aggregated to NUTS2 for visual purposes)

with its own nodes and links. An additional OD subgraph
GOD contains region centroids based on the NUTS3
classification. To link OD nodes to the multimodal
freight network, connector links LOD are generated. For
each OD node, connector links are generated and they
aim to represent the underlying regional road network.

The cost of transporting a unit of freight on a link is
calculated using Equation 1, following previous studies
(de Jong et al., 2011; He et al., 2021; W. J. L. van Dam,
2017). In this equation, Km and Tm denote the cost per
unit distance and time for mode m respectively, while
di represents the length of link i and vm indicates the
average travel speed. For OD links generated as straight
lines between regional centroids and the network, the
distance is multiplied by 1.5 to conservatively approx-
imate the actual travel distance on underlying regional
roads (W. J. L. van Dam, 2017).

GTCi = Km · di + Tm · ( di
vm

) (1)

The base scenario simulation follows the traditional
four-step transport modelling framework. In conventional
applications, the first two steps involve estimating de-
mand between origins and destinations. In this study,
we use Panteia’s NEAC model, which estimates an-
nual multi-commodity freight demand between NUTS3
regions based on economic and trade data (Newton
et al., 2015). Freight demand is specified between each
Origin–Destination (NUTS3) pair and commodity type
(NST/R 1) in tonnes. Figure 1 illustrates the resulting
demand matrix for the NSRM TEN-T corridor.

The specific demand between Origin, Destinations
and Commodity (ODC) pair must be further distributed
between the available modes. The distribution is based
on the total GTC (GTCijm) incurred of using a mode m
between Origin i and Destination j. A Multinomial logit
(MNL) is used to calculate the relative probability of
choosing a mode over others . The cost function i.e utility
V g
ijm of the model is specified in Equation 2. ASCg

m

is the alternative specific constant which represents the
baseline preference/ bias of commodity g towards a
mode m. βg

gtc is the sensitivity parameter or the marginal
utility of GTC for commodity g. The probability pgijm is
calculated using Equation 3 and demand is distributed
accordingly. The parameters have been tuned based on
the NEAC mode chain builder output. This approach
captures commodity-specific mode choice behaviour by
accounting for both cost sensitivity and modal prefer-
ences, resulting in freight flows that more accurately
represent real-world operations.

V g
ijm = ASCg

m + βg
gtc ·GTCijm (2)

pgijm =
e−V g

ijm∑
m∈M e−V g

ijm

(3)

Freight demand assignment on the network enables the
simulation of freight transportation flows and provides
insights into how link removal affect traffic patterns. This
study implements All-or-Nothing assignment for route
choice. In the All or Nothing assignment all demand for
each mode specific origin destination pair is assigned to
the shortest path between them. The algorithm assumes
that there is no congestion in the network and the
traveller has prior knowledge of the exact costs incurred
by choosing the route. This means that the travel costs
of choosing the shortest path is fixed and does not vary
based on the flow travelling through the links. The use of
all-or-nothing assignment can be justified by noting that,
unlike passenger demand, freight demand is typically
planned and scheduled in advance. As a result, freight
movements are less affected by perceived travel time er-
rors or random route choice variability. Moreover, freight
is managed by profit-driven companies that generally
prioritize cost minimization in their routing decisions.
The generalised travel costs calculated are used as link
weights for the shortest path calculation.

Although other traffic assignment methods such as
User Equilibrium assignment offer more realistic mod-
elling capabilities, they are not appropriate for this
research due to several limiting factors. The model
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operates at a macroscopic level, where demand data rep-
resents annual freight flows across an extensive network.
Implementing User Equilibrium assignment would re-
quire calculating congestion parameters, which demands
additional data inputs and significant computational re-
sources. Given that the link criticality methodology
involves executing traffic assignment algorithms multi-
ple times to evaluate network responses to disruptions,
employing computationally intensive methods would be
impractical for a large network.

B. Multimodal link criticality analysis

In this section, we describe the methodology for
multimodal link criticality analysis. A link’s criticality
is determined by the change in network performance
after its removal; highly critical links cause substantial
degradation. As mentioned previously, traditional full-
scan methods evaluate each link by removing it, per-
forming complete network reassignment, and comparing
performance to the base case. The conceptual model for
our framework is shown in Figure 2. The process is
described as follows:

Step 1: Base scenario modelling. Run the transport
model under normal conditions to establish baseline
performance.

Step 2: Identify links to remove. Consider only
links with non-zero flows (fl > 0) and exclude artificial
connector links:

Lremoved = {l ∈ L | fl > 0, l /∈ LOD}.

Step 3: Link removal. Remove one link l from the
network G to obtain G′.

Step 4: Identify and reset affected flows. Determine
flows Faffected that are affected by the removal of linkl
and remove the freight demand of the affected flows from
the network.

f̃l = max(0, fl −
∑

i∈Fl∩Faffected

qi), ∀l ∈ L.

Step 5: Re-routing. For each affected ODCM pair,
calculate an alternative shortest path in G′ and reassign
demand if feasible. The underlying assumption is that
freight operators typically do not alter their chosen routes
unless the travel impedance has increased significantly or
the destination becomes unreachable via the originally
selected mode. Furthermore, due to the long-term nature
of freight transport contracts, there is often limited
flexibility to switch between transport modes in response
to disruptions Van Der Tuin and Pel (2020).

Step 6: Mode switch. If no route exists in the original
mode, we perform mode choice using the MNL model to

Fig. 2. Conceptual framework of the multimodal link criticality
analysis model

re-distributed affected freight using the available modes
between the regions.

Step 7: Calculate performance indicators. If no path
exist to fulfil a ODCM pair, mark demand as unserved
and recompute performance metrics. Finally add the
removed link l back to the network.

Step 8: Repeat. Continue steps 3–7 until all candidate
links have been analysed.

C. Criticality Indicators

This study focuses on traffic-based measures, as the
previously discussed topological measures are less rel-
evant in our context. The reduction in network perfor-
mance after a link removal is used as the primary in-
dicator of its significance. Among system-wide metrics,
total system generalized travel cost (GTC) is particularly
valuable, as it incorporates both distance and travel time,
offering an integrated view of link importance. Since dif-
ferent modes weigh performance changes differently we
also track changes in total system travel time, distance,
and emissions. To represent these, we use a generic
relative change formula:

∆M =
MG′ −MG

MG
,

where M can be travel time, GTC, distance, or emis-
sions.

In addition to system-wide measures, we assess equity
impacts by calculating the average proportional change
in travel time, distance, GTC, and emissions for only
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Fig. 3. The North Sea–Rhine–Mediterranean corridor network

those flows affected by the disruption. These localized
metrics ensure that the analysis captures both aggregate
network effects and the fairness of impacts on disrupted
flows.

∆M =
1

|Faffected|
∑

i∈Faffected

(
mG′

i −mG
i

)
(4)

IV. CASE-STUDY

The framework is demonstrated using the case of
the North Sea–Rhine–Mediterranean (NSRM) TEN-T
corridor. It is a major European transport corridor estab-
lished as part of the TEN-T (Trans-European Transport
network) policy. The NSRM corridor plays a crucial
role in connecting Europe’s largest economic zones,
ports and multimodal hub. The corridor spans across
eight countries namely: Ireland, Netherlands, Belgium,
Luxembourg, France, Germany, Italy and Switzerland.
The core network spans over 12150 km of railway lines,
5000km of roadways and 5030km of inland waterways.
The network analyzed includes links from both the
NSRM core network and the TEN-T comprehensive
network, which differ in their policy implementation
timelines and requirements. The multimodal network
here consists of 774 roads links, 1186 railway links
and 481 inland waterway links. 253 NUTS3 zones are

modelled and an additional 1641 OD connector links
were generated.

We use the multi-commodity freight demand from
the NEAC model and distribute the tonnes according
to the mode choice model. The route assignment is
performed using an all-or-nothing (AON) approach. The
base scenario takes approximately two minutes to run on
an Apple MacBook Pro with 10 CPU cores. The traffic
flow in the base scenario is visualised in Figure 4. The
modal split of the model is predominantly Road (79.8%),
followed by Railways (12.1%) and Inland Waterways
(8.1%). It is important to note that the model simulates
demand only between regions, not within them. Addi-
tionally, we exclude demand that originates or terminates
outside the network, as well as through-traffic. This
pattern can be observed in the results, as there is minimal
demand moving from the east/southeast to the west of
the network. The network shows particularly high traffic
near the major EU ports of Rotterdam and Antwerp.

Fig. 4. AON traffic assignment of the NSRM corridor - Picture from
the python model

Next we perform the link criticality analysis for the
NSRM network. The algorithm ran on 10 CPU cores
and finished in 3 h 17 min; because the procedure is
parallelized, allocating more cores would further reduce
runtime. Figure 5 plots impact versus tonnes affected.
Impact is measured as the average relative change in
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Fig. 5. Tonnes affected vs impact - Link criticality analysis

Fig. 6. Variance of average impact of different measures across modes
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delay, generalized transport cost (GTC), emissions, and
distance for the flows that used the removed link. The
orange iso-contribution lines show the product of tonnes
affected and impact i.e., the share of the total system cost
increase. Because roads carry most freight, removing
a road link typically affects more tonnes. Most road
removals raise average GTC by 1–10 EUR/tonne, with
a few outliers. Inland-waterway removals display much
greater dispersion, including a small cluster with very
large GTC increases consistent with forced shifts to road.
At the system level, road and inland-waterway removals
generally produce the largest cost increases: most links
raise total system GTC by 0.25 -1%, while the most
critical approach 2.5%. Rail removals are comparatively
contained.

For delay, most road removals reroute substantial
demand but keep average increases under 3 h, except
for a few cases where mode shifts drive large delays.
Inland-waterway removals affect fewer tonnes but exhibit
a wide spread; some even yield negative relative delay
when traffic shifts to faster modes. Rail removals are the
most contained, influencing fewer tonnes and producing
smaller network-wide effects. Emissions follow a similar
pattern: roads show the largest relative increases, inland
waterways change little on average, and rail is generally
low with a few notable spikes involving limited demand.
For Average distance increases, the additional detour
length when a link is removed are broadly comparable
across modes, though some road and rail links require
detours exceeding 150 km/tonne.

Finally, Figure 6 summarizes the variance of impact
across modes. Roads carry the largest demand but show
relatively moderate per-tonne effects. Inland waterways
exhibit the widest spread in delay, GTC, and detour
distance with heavy-tailed outliers and the share of mode
switches. Rail is the most stable overall with lower
medians and tighter spreads, though a small number of
links still trigger long delays detours. Emission penalties
are highest when traffic diverts to road, while IWW and
rail shifts add little on average.

The top 10 most critical links of the NSRM corridor
are shown in Figure 7. Road links near Basel and Bern
represent the three most critical links in the network.
The link removal causes a total system GTC increase of
2.2% or C 830 million annually. These sections contain
multiple tunnels that function as single points of failure.
The main Rhine river artery, which constitutes one of
Europe’s busiest inland waterway channels, also proves
critical for network operations. Any disruption in this
section forces freight to shift modes to rail or road
transport, increasing total system GTC between 1.9% to

Fig. 7. Top 10 most critical links in the NSRM network based on
change in total system GTC

1.4% (C 750 - C 530 million). Links near Rotterdam and
Antwerp, which serve substantial traffic volumes, appear
among the critical links because, despite the existence
of viable alternatives, the volume of traffic they handle
makes them essential to network performance.

The results reveal distinct modal patterns for criti-
cality. Road links, particularly carry the largest freight
volumes and, despite abundant alternative routes, create
significant total system cost increases when disrupted
due to the sheer volume affected. Railways show high
redundancy at the system level, but have high localised
impacts particularly in the southern part of the network.
Inland waterways, especially near sections where the
river becomes narrow, exhibit high vulnerability because
of limited rerouting options, with link removals forcing
costly modal shifts to road and rail.

Among the criticality measures tested, change in
total system generalised transport cost (GTC) proved
most comprehensive, capturing travel time, distance,
emissions (as a function of distance), and mode shifts
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in a single monetary metric. The most critical links
increased total system GTC by C530–830 million an-
nually. Nonetheless other metrics are also important
when comparing links within a modality. This is be-
cause different modalities value have varying prefer-
ence for different parameters. For example, a nominal
price increase to road transport may not be particularly
significant, but when the same price increase affects
railways, that increase is felt more acutely. Similarly,
travel time is especially important for roadway transport
when compared to inland waterways. When adopting
an equity perspective, average impact measures provide
a more detailed representation of the localized effects
of link removal, which highlights structural weaknesses
within the network irrespective of traffic volume.

V. CONCLUSION

Transport resilience has become a highly relevant field
in recents years due to growing geopolitical and climate
change risks. This study developed and demonstrated a
computationally efficient framework to identify and rank
critical links in multimodal freight networks at a strate-
gic level. Using the North Sea–Rhine–Mediterranean
(NSRM) TEN-T corridor as a case study, we applied a
multi-commodity freight demand model (NEAC), mode
choice modelling, and all-or-nothing (AON) route as-
signment to assess the impacts of link removal on
network performance using a novel multimodal link
criticality model.

The model addresses gaps in link criticality re-
search by incorporating multimodality and behavioural
responses into a computationally light framework. While
it simplifies certain aspects such as aggregating demand
at the NUTS-3 level, assuming technical compatibility
across all links, omitting intrazonal and through-traffic,
and ignoring capacity and congestion, it balances realism
with scalability. These trade-offs allow application to
larger networks such as the larger comprehensive TEN-T
network.

Practically, the proposed framework equips planners
with a tool for scanning large multimodal networks to
identify and rank critical links without requiring exten-
sive data collection or computational power. This initial
screening enables planners to focus their attention where
it matters most, performing comprehensive assessments
toward those links whose failure would have the most
significant system-wide impacts. For each identified crit-
ical link, planners can explore potential disruption threats
for that specific link and develop targeted mitigation
measures to reduce the likelihood or severity of failure.
Disruptions are not always day to day, climate changes

can have long term impacts on the usability of certain
modes. For example, planners can model the annualised
effect of extended low water levels on inland water-
ways, recognising that such issues cannot be resolved
immediately and require strategic adaptation measures.
In the context of maintenance planning, the model’s
results can inform decisions if careful planning is re-
quired for long term maintenance works. As the model
integrates all modes into a unified performance view, it
also helps identify the most effective substitutes when
a particular link is closed. The model also quantifies
the “cost of inaction” by estimating the economic and
operational consequences of leaving a vulnerable link
unaddressed, and conversely, it can assess the benefits to
the overall network from adding new links, supporting
robust cost–benefit analyses for infrastructure projects.
Beyond civilian logistics, the framework’s outputs are
also relevant in the context of the EU’s Military Mobility
plan, which envisions the TEN-T network as dual-use
infrastructure for both civilian and defence purposes. In
such scenarios, the model can identify highly vulnerable
links whose disruption would hinder rapid military de-
ployment. Here, performance indicators such as average
travel time or network accessibility become more critical
than purely cost-based measures, as there is more priority
for rapid troop and equipment movement to border
regions during emergencies.

Future work could enhance the framework by in-
corporating greater network detail, such as explicitly
modelling terminals, ports, and directed links, to more
accurately represent real-world infrastructure and opera-
tional constraints. Integrating capacity measures would
allow the analysis to capture how the removal of a
particular link affects the throughput of connected in-
frastructure. The framework could also be combined
with hazard maps or failure probability data to produce
risk maps, enabling prioritisation not only by criticality
but also by likelihood of disruption. Finally, extending
the methodology to other infrastructure systems such
as pipelines would broaden its applicability and support
more interdependent network resilience planning.

In summary, the proposed framework offers a
scalable, adaptable, and decision-oriented method for
evaluating multimodal freight network robustness,
enabling targeted investments that deliver the
greatest system-wide benefits. The code for the
framework and the data used can be found at
https://github.com/sathvikgadiraju/
Link-criticality-framework.
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Appendices
A Geospatial visualisation of link criticality

Figure 5.1: Geospatial visualisation of total system metrics in the road network
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Figure 5.2: Geospatial visualisation of average impact metrics in the road network
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Figure 5.3: Geospatial visualisation of total system metrics in the rail network



72 5. Conclusion

Figure 5.4: Geospatial visualisation of average impact metrics in the rail network
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Figure 5.5: Geospatial visualisation of total system metrics in the IWW network
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Figure 5.6: Geospatial visualisation of average impact metrics in the IWW network
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Figure 5.7: TENT map
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Figure 5.8: NEAC mode split model parameters
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