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1 Introduction

The Zebro project is an initiative from the Technical University Delft in cooperation with the
Rotterdam University and the Hague University. The goal of the project is to make a modular
and robust robot which could be used as a mars rover. The idea for modularity is that single
parts of the robot van be updated, hard- and software. The main noticable trait of the Zebro
are its C-shaped legs instead of traditional wheels. These legs give it an advantage over other
typical mars rovers that it does not get stuck and can climb over objects easily.
For extra encouragement the Zebro project is taking part in the European Rover Challenge
(ERC) which is organized by the European Space Foundation and regionalne centrum naukowo-
technologiczne. The challenge it’s end goal for the team is to produce the new modules. New
modules that need to be made are motor drivers, a robotic arm and a new communication
system for example.
This thesis is about the latter, the communication system and on top of that autonomous
walking. This includes the communication from the Zebro to a base station, which is a computer,
and the communication between the different modules within the Zebro.
There is already a backbone PCB on which all the different modules can be realized. This means
that our own PCB can be placed upon the backbone. Through this backbone it is possible to
communicate with the different subsystems. On the backbone there are two microcontrollers,
one for the power management (BPU) and one that links all the modules together (ZPU). This
ZPU will be used by our module to extract from and send data to.
On the Zebro a new module has to be manufactured as well as an interface for on the computer
from which the zebro is controlled. The simple overview of the system is seen in figure 1.
Antennas need to be selected along with the peripherals needed to complete the ERC. All these
peripherals will be discussed in the chapters specifications and design choices.

Figure 1: A simple overview of the total system.
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2 Specifications

Since the Zebro explorer is competing in the ERC it will need to fufill certain tasks. The main
task our group is focussing on is the so called ’blind traversal’. In this challenge the robot needs
to navigate from a starting point to the next 3 locations, these are given in GPS coördinates.
Between location 1 & 2 there is a 2m wide obstacle blocking the shortest path. If the robot
reaches the last location within 10m, indicated by the green circle, the challenge is completed.
A map depicting the challenge is seen in figure 2.

Figure 2: A map of the challenge called ’The blind traversal’.

This will result in 100 points for the competition. Bonus points are acquired by walking from
the second location to the third autonomously. Only the position of the robot can be sent to
the Zebro explorer, the rest of the computing has te be done onboard. This will net the team
an extra 25 points. When 2 navigation techniques are used that complement each other agian
an extra 25 points will be rewarded to the team. And the last 10 bonus points will be awarded
when the Zebro explorer can return back to the starting point after finishing the challenge.
The first thing that is absolutely necessary is being able to send and receive data to and from the
Zebro explorer. This communication system will be tested by the judges. The robot will be set
to 1000m from the base station and there should still be communication possible. The second
feature the robot should posses is being able to receive GPS coördinates about its position. For
this a GPS module is needed ofcourse, and more specifically one that has a better accuracy than
10m. Further the robot should be able to be manually controlled by the user, it is preferable
to have a video feed to see where the robot is heading. The video feed should be of an okay
quality, not full HD since the signal needs to be transmitted over 1km and the amount of frames
is important as well. The video feed should not feel laggy thus the amount of frames per second
needs to be around 20 at least.
To score the bonus points we need an extra technique for navigation and since the robot needs
to be able to dodge objects a system that can detect these objects would fit perfectly. Together
with the GPS module the robot has two navigation techniques which complement each other.
In order to walk autonomously from the second location to the third a code needs to be written
on the microcontroller of the Zebro explorer itself. The last 10 points however are just a matter
of time, being quick enough to get back to the starting point.
The most important specification is that the design needs to be as modular as possible. This is
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because when there is a better solution to a problem that it can be easily incorporated in the
rest of the design. Plus when in Poland something goes bust it can be easily swapped out with
spare parts.
To summarize the specifications of our part, ZP EX ONS XX:

1. A communication system that is able to send and receive over 1000m.

2. A GPS module that gives the location of the Zebro explorer within 10m.

3. A system that can detect objects in the surrounding at a distance of 10m.

4. A camera with 240p quality and around 20 fps.

5. A user should be able to control the Zebro explorer manually.

6. The Zebro explorer should be able to walk autonmously from one point to another.

7. An user interface containing all the necessary information to control the Zebro explorer.

8. A system where peripherals can be switched out, with either new ones or improved ver-
sions.

So specification number 1 of our module would be called ZP EX ONS 01 and so forth.
These subsytems are seen in the function tree in blue in figure 3. The orange blocks are possible
solutions to implement these subsystems.

Figure 3: Function tree. The blue blocks indicate the different subsystems and the orange
indicate the different possible solutions.

The subsystems that are part of this thesis are the complete user side, the telecommunications
system on the Zebro as well as the PCB and the cameras. The other parts plus the autonomous
walking algorithm is explained in the thesis onboard navigation system: part 2. This means
that specification number 2, 3 & 6 is not discussed in this thesis.
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3 Design Choices

3.1 Communication system

For the ERC the Rover will need to communicate to mars, but this will be, of course, scaled
down to reasonable distances on earth for the challenge, namely 1000 meters. In order theory in
the form of a link budget analysis and the hardware part which is mainly our two transceivers.
One on the mars rover itself, and one on the user side, and from that it is possible to decide
which module will be best for this task.

3.1.1 Link budget analysis

For communications from point to point a link budget analysis needs to be calculated.

Figure 4: Link Budget Analysis [9]

Here the Transmitter will send a modulated signal, which at the receiver side will be influenced
by a couple of factors. The Ptx is the output power by the sender, and PEIRP is the total
power including the antenna gain transmitted by the sender. The power loss after transmitting
is called free space gain GFS . This loss can calculated at the output of the receiving antenna
Prx according to Equation 1. Note that all the variables are in dB in this equation.

(PRx)dB = GAT −GFS +GAR + PTx (1)

3.1.2 Free space gain

The free space gain is the gain that happens when the wave travels from point to point. The
free space gain can be calculated GFS using equation 2.

GFS = (
λ

4πd
)2 (2)

Where λ = c/f with c the speed of light which is approximately 3 · 108m/s. Since it is more
natural to see this as loss instead of a gain, and to work in dB rather than a factor. The equation
for the free space loss, (LFS)dB becomes:

(LFS)dB = 20 log(
4πd

λ
)dB (3)

3.1.3 Antenna gain

The antenna gain is approximated by Equation 4.

GA =
4πAe

λ2
(4)

With this approximation different antenna options can be viewed with the gains in the table
below.
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Table 1: Antenna gains and effective area’s

Antenna Type GA Ae

Isotropic 1 λ2/4π
Half-wave dipole 1.64 1.64λ2/4π
Horn, mouth area A 10A/λ2 0.81A
Parabola, face area A 7A/λ2 0.56A

As can be seen the Isotropic antenna has a gain of 1, this is because it sends an equal amount
of power, PTx, in all directions thus the isotropic antenna is used as a reference for the antenna
gains. This gain means that the antenna does not send power in all direction. Resulting in
more power sent in a specific direction rather than less power in all directions.

Isotropic antenna

An isotropic antenna has as a disadvantage a low gain, but it has some advantages as well. One
of the advantages is that it radiates in all directions with the same power. All sides will be
covered with the sent signal. The far-field pattern showing this can be seen in figure 5.

Figure 5: Isotropic far-field

Another advantage of the isotropic antenna is that it is smaller than other antennas. Together
with the advantage of its far-field pattern it is an easy to implement versatile antenna. The
length of this antenna is dependend upon the wave length of the signal. The length can be
calculated using equation 5. Here Lant is the antenna length in meters, and f the frequency of
the signal in MHz.

Lant =
300

f
(5)

Half-wave dipole antenna

A Half-wave dipole antenna has an antenna gain GA of 1.64. This is higher than that of the
isotropic antenna, but this goes at the cost of the coverage area as seen in figure 6.
Also the antenna is a lot bigger than an isotropic antenna. It takes up much more horizontal
space instead of just vertical. An example can be seen in figure 7. Horizontal length of the
antenna can calculated by forumla 6.
The lenght of the antenna, as can be noticed from the name, is calculated using equation 6.

Lant =
λ

2
(6)

Parabolic antenna

Another much used option is a parabolic antenna. This antenna has a high gain GA as can be
calculated with equation 7. Here r is the radius of the antenna in meters.
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Figure 6: Half-wave dipole far-field

Figure 7: Half-wave dipole form

Lant =
7πr2

λ2
(7)

It can be easily conducted that the gain of a parabolic antenna is dependend on its size, and
thus has it has the potential to have a much larger gain than other antenna’s. On the other
hand, this type of antenna needs to be directed towards the signal because of its coverage area
as seen in figure 8.

Figure 8: Parabolic antenna beam width

When not in need to have your signal emitted all around the sender, or you know which direction
the signal is coming from this is the best option. With the ability to have a high gain, the signal
strength will be much stronger. But it has the downside that is it big and not very suited for
mobility.

Antenna choice

The rover will be walking around, and it is not always possible to precisely know how it is
oriented towards the base station. There is a GPS and compass inside so it could be possi-
ble to mount a small parabolic antenna but this has some big disadvantages. First of all it
needs to be focussed always to the right direction, which requires a motor and power. Second
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the antenna is big, and the robotic arm on the top can be in the way sometimes which will
decrease the signal power or even lose signal when it is in the way. This is why a parabolic
antenna is not an option. The Half-wave dipole antenna looks more like a Isotropic than a
parabolic does, but this one shares the same disadvantages of being very big, and not covering
all sides around it. Even if it does, the robot could be climbing a hill, which would mean the
signal needs to come from the top of the antenna, which is not possible with a parabolic or
half-wave dipole antenna. This is why a Isotropic antenna is needed on the Zebro explorer itself.

This has as a consequence that there is low power gain at the Zebro side, and since the ze-
bro needs to keep low powered, this cannot be compensated on the Zebro side. At the user side
however there is room and possibility for a larger parabolic antenna and high sending power.
Since it is known where the Zebro is at all times using GPS it is possible to aim the parabolic
antenna at it. By using a high power sender and parabolic antenna at the user side and a low
power isotropic antenna at the Zebro side, it is possible to compensate for the low gain of the
isotropic antenna and have a strong connection. When taking the size of the parabolic antenna
at the user side to be 0,5 meters in diameter, resulting in a gain of XXdB.

3.1.4 Protocol and frequency

The choice was made to use 2 communication protocols, Wifi and Zigbee. All the essential
data, like commands and responses from different modules will be sent using zigbee protocol.
The wifi protocol will strictly be used for transferring camera images. This is done because of
serveral reasons. The first reason to do this in 2 seperate systems has to do with the fact that
both protocols work at different frequencies. Zigbee is able to work at 868 MHz which is an
open band in Europe, and Wifi works at 2.4 GHz. An other reason has to do with the free
space loss as shown below.

Free space loss

When using wifi the free space loss can be calculated using equation 3, with the wavelength
λ = c/f where f = 2.4GHz and c = 3, 0 · 108m/s.

λ =
3, 0 · 108

2.4 · 109
= 0.125m (8)

Using equation 3 the free space loss using wifi can be calculated, transmitting over at least 1000
meters. Since this is free space loss, and there is influence of the weather and other objects. A
factor 2 is chosen to be sure that there is a connection at that distance. So the distance used
in the calculations is 2000 meters.

(LFS)dB = 20 log(
4πd

λ
)dB = 20 log(

8000π

0.125
)dB = 106dB (9)

When using Zigbee which has a frequency at 868 MHz the free space loss, according to equation
11, would be:

λ =
3, 0 · 108

0.868 · 109
= 0.346m (10)

(LFS)dB = 20 log(
4πd

λ
)dB = 20 log(

8000π

0.346
)dB = 97dB (11)

As is seen there is a factor 9 dB less loss using zigbee which is the same as a factor 8 more
power. This makes it possible to reach much greater distances with the zigbee module, and also
making the base communication which will run over this protocol more reliable and less prone
to disconnecting.
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Bit rate

The downside of the Zigbee protocol is the low bit rate of 20 kb/s this is why it is not possible
to use just the Zigbee protocol. As can be seen in chapter 3.2.4 the camera has a bit rate of 1
Mb/s, which can not be achieved by the Zigbee protocol. The Wifi protocol 802.11g can work,
according to the IEEE802.11 standard, at an average rate of 22 Mbit/s, which is fast enough
for this application. For this reason the communication goes over the more stable and reliable
Zigbee protocol and the camera images over the faster Wifi protocol.

Zigbee module

For the actual module the choice was made to use the Digi Xbee-Pro 868. This module has a
maximal transmitting power of 315 mW or 25 dBm. The reason for using this module is its high
power, reliability and the modularity of the module. The 868 MHz band is only allowed to use
in Europe. When the Zebro would be used in other world parts, it is possible to simply switch
out the module for another Xbee Zigbee module on another frequency. The receiver sensitivity
is -112 dBm. This is also really powerfull compared to other modules, but using a safety margin
a sensitivity margin of of -100 dBm is assumed where it will work guaranteed. With all these
design choices the eventual sending power can be estimated on the rover side when assuming
a satalite dish of 0,5 meters diameter on the user side. The gain when using a satalite dish is
calculated using the following equation.

Lant =
7πr2

λ2
=

7π0.252

0.3462
= 11.48 = 10.6dB (12)

Since the choice has fallen on a module which can vary in its sending power, the Zebro is
highly versitile and able to communicate over a longer distance than just the 1 km depending
on its sending power, however this would ask more from the battery. Before choosing a definitif
transmitting power, tests need to be done, which are described in the Future Plans chapter.



3 DESIGN CHOICES 12

3.2 Camera

For the camera there was the choice between a CMOS and CCD camera. So first some literature
about these two types of cameras.

3.2.1 CCD

When a CCD, short for charge-coupled device, is exposed to light the small photosites on the
surface of the CCD capture the light and store it in the form of a charge, as seen in figure 9 .

Figure 9: Representation of photosites, charges are collected at the electrodes.

To read out the charge of each photosite a complete row is put into an amplifier one photosite
at a time and after that the amplified signal is then passed on to an ADC, analog to digital
converter. When the complete row has been read out the row above it moves one down, as do
all the rows above, and then that row goes through the amplifier and ADC. This process is done
until all rows are read and the image is now digital. This is also where the name comes from ,
charge-coupled device, because the rows of charges are coupled to the row above them. When
one moves down all do. A visual representation is seen in figure 10.

Figure 10: Visual image of how the CCD reads out the array of photosites. This happens one
row at a time.

The polysilicon electrodes on the surface of the chip are so small and close together that the
charge is kept intact when physically moving from the place where the light was actually cap-
tured to the place where the signal is amplified. To achieve this a clock is needed to move all
the charges at the same time, this needs to be done by an off-chip (or secondary chip). This is
in order to not interfere with the closely packed polysilicon electrodes on the chip.
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Because the CCD needs extra circuitry which needs to be accurate, it can result in a very
specified circuit with multiple power sources that need to operate at different, critical values
which might not be regular. It is not rare for CCDs to have 5 or 6 of these power sources, this
means that a lot of power is needed to operate the chip as intended.

3.2.2 CMOS image sensor

A newer technology is the CMOS image sensor, it can be easily incorporated with chips and
other circuitry made on the same CMOS wafers. There are two basic types of CMOS image
sensors, one being passive and the other active. The passive-pixel sensor works along the same
principles as the CCD however now the circuitry is on the same chip as the sensors/photosites.
This causes noise which can be seen on the image produced. The active-pixel sensors have
extra circuitry at each pixel to cancel out the noise, this increases the quality of the image
and makes it possible to go for higher resolutions. Here the performance can be equal to that
of the CCDs. The negative side here is that this takes up extra space within the area of the
photosites/pixels, see figure 11. This results in the photosites not being as close to each other
as they are at the CCDs for example (the fillfactor is lower compared to CCDs). Because there
is less area capturing the light. This results in a lower charge thus a lower amplitude signal
running through the ADC. For the image itself this results in a lower light intensity. This makes
the image appear darker than it actually is and therefor makes the CMOS image sensor less
qualified to take images of dark environments.

Figure 11: An abstraction of the circuitry around the photosites.

3.2.3 Comparison

CMOS imagers have a better intergration in circuits compared to the CCD cameras. Plus
they use less power and are smaller. The negative here is that CMOS imagers have a lower
image quality. Making them they less useful in high end image applications. Another negative
for CMOS imagers compared to CCD cameras is that they are less flexible. This due to the
circuitry already around the sensor, this is needed for it to work and cannot be changed while a
CCD can be implemented in more systems. So the overall trend is that CMOS imagers are used
for lower end imaging applications and in mass production while their counterpart the CCD is
more suitable for the high end imaging applications.

3.2.4 Choice

For our application it is not desirable to have a too high resolution for the camera since the
bandwith of our WiFi module is limited and the amount of FPS is important as well. Therefor
the choice was made to take a CMOS camera and benefit from the lower power consumption,
the small size and the easy integration. The only negative side to this choice is that with low
light intensity the camera will underperform. However the challenges will take place during the
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day so that should not be a problem. The chosen model is seen in figure 12.

Figure 12: The chosen camera model.

The camera has the abillity to stream video, with JPEG compression, at the following quality
and rates:

Table 2: Quality vs FPS

Quality FPS
160*120 60
320*240 60
640*480 30

For the video feed it is preferable to have 480p, but the option to stream at a lower quality
makes it possible to have a video feed even when the connection with the WiFi is not optimal.
Further it has an UART interface which is also on the WiFi module. Both UART connections
can handle the same maximum speed of 1mbit/s. Thus this camera fits perfectly in the design.
It satisfies the specifications and more.
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3.3 User Interface

To be able to control the Zebro an control interface is needed. There are different elements that
need to be taken into account, which platform will be used, is it a possibility to use a controller
and if so what type, what is the most logical way of using the interface and how is it possible
to keep the software modular aswell?

3.3.1 Control from PC

For controlling the Zebro we have serveral options, a tablet, just a controller or an interface
on a PC. We have decided the latter, because of serveral reasons. Using just a controller like
a remote car is not possible since we will not be conrolling the robot in a direct line of sight.
It must be able to walk at least a distance of 1000 meters. On top of that there are serveral
modules which need to be controlled, like in this case we have an arm and motor drive which
need to be controlled. Because of this all visual feedback is a minimal requirement. A tablet
was also not compliant to our requirements. We wanted to be able to control the Zebro, and
especially the arm with great accuracy. The tilt sensor cannot be operated accurate enough,
and using on screen buttons would also decrease the accuracy, and the amount of space that
can be used on the screen. Because of these reasons the choice was made to implement the user
interface (UI) on the PC.
The implementation of the UI will happen in C# and XAML, because of the ease of use of
the language in combination with creating user interfaces and the experience we have with the
language. Matlab could also have been used for this cause but not all computers run matlab,
and since we want to make this interface compatable with more Zebro robots next to the
Zebro Explorer and be able to run on multiple computers this is not an option. On top of
that making an interface using XAML will have better looking graphics as a result of acces to
specific interface libraries.

3.3.2 Hardware controller

When controlling the Zebro from a PC there are multiple options on how to send commands to
the robot. In this case it is possible to make a choice between keyboard and using a controller.
The controller has as an advantage that it makes the interface easy to use, and can make
controlling the arm and robot very easy and intuitive. The choice was made to use an Xbox
controller, since there are good software library’s available for it and the controller sticks are
very precise, with a sensitivity in the X and Y axis running from -32.768 to 32.767. Also the
availability of analog buttons which can be used for switching tabs, grabbing and speed control
for example make it easier to control the Zebro.
The reason to not make our own controller is because the xbox controller is already a finished
product which costed multiple tens of millions dollar to develop. It is ergonomic and ready for
use. An image of the controller layout can be cound in figure 13.

Figure 13: Xbox controller layout
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3.3.3 Design

Since the option for a seperate controller is chosen a display is needed to show the user interface.
The display allows for much information to be present for the user at one time and is just overall
easy to use. Before making the user interface a sketch was made to have a layout of the design.
This layout is seen in figures 14 and 15.

Figure 14: Layout of the driving and navigation window

Figure 15: Layout of the Arm control window

Status lights & info

In this section of the user interface all the connections lights will be shown. This will include
the lights for the controller and the XBee for example. If they are connected correctly the lights
become green, if there is an error they will turn orange and red when they are switched off.
Further status lights for the motors will be implemented, these will show how the motors are
doing and if there are any problems. Since the Zebro is modular it is wise to make the interface
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modular as well. Therefor more space is reserved for extra status lights when for example a
new module is implemented.

Switch tabs

These will be used to switch the green box as seen in figures 14 and 15. The tabs that will
be implemented from the start are one for controlling and navigating the Zebro and one for
controlling the arm. When extra modules are added to the design they can be added to the
interface too with their own tab. This keeps the user inteface clear and manageable and it
allows for easy understanding.

Graphs

On the right side of the layout some standard graphs will be displayed. Things that the user
always wants to monitor are the temperature of the Zebro, the battery power and the power
usage. If one of these parameters are in a danger zone, for exmaple the battery power is only
at 5%, it will affect the whole Zebro and thus it needs to be monitored always.
When other sensor data needs to be checked it can be added to the user interface or it can
be plotted while the Zebro is in operation. The graphs are updated real time with the data
supplied from the Zebro, information can also be manually requested. This keeps the XBee and
WiFi lines as empty as possible rather than constantly pulling and pushing data.

Command window

The command window already says it, is used to manually send commands to the Zebro and to
see what is sent back by the Zebro. In appendices C through E the commands that are possible
to send are shown. The reason for this is that when something goes wrong or an error occurs
in on the zebro, the user can manually fix the Zebro.
Plus for the challenge the jury wants to be able press a button and have the robot make an
emergency stop. From the command window it is then possible to restart the Zebro and continue
the challenge.

Driving and Navigation

When the tab for driving and navigation is selected a new screen appears within the green box
as shown in firgure 14. In this screen a camera feed will be visible, together with the a GPS and
a LIDAR map. These three will be used to see what is in front of the Zebro as well as scouting
the surroundings to calculate a viable route to the end location.
Next to this a compass will be displayed to show the orientation of the robot as well as the
direction and speed. These can be manually controlled and this part will give visual feedback
of what the user is doing with the Zebro.

Arm control

The other tab is for the arm control as shown in firgure 15. Here it is important to have a large
camera feed and some feedback on the position of the arm. For this we discussed with the arm
team on the Zebro project. Together it was determined that a top view of the arm in respect
to the Zebro itself as well as a side view to see how all the joints are oriented and how far the
telescopic part is extended. When the arm changes from position the top and side view will
update accordingly. With this and the cameras complete control over the arm is possible.
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3.4 Complete design

In figure 3 the specifications for the system are shown. In this chapter all the design choices are
made and explained. The resulting design tree is shown in figure 16. Again all the subsystems
are shown in blue and now the design choices are shown in green.

Figure 16: Design tree. The blue blocks indicate the different subsystems and the green indicate
the choices made.

3.4.1 Power budget

Now that all the components have been picked out it is possible to make a power budget of the
complete system. So in the table 3 the power consumption of all the different components are
listed.

Component Power consumption

Camera 0.5W

XBee zigbee 1.65W

XBee WiFi 1.65W

GPS 0.1W

LIDAR 0.5W

Cortex M0+ 7.12e-3W

Servo 1W

Total 6W

Table 3: The power budget

Note that the power consumption taken here is the absolute worst case. Meaning that the
XBee modules are sending continuously. So in total if all the peripherals are on the ONS
system consumes 6W of power. However this is not the case, all the components can either be
switched off or put into a sleeping mode where they consume a few µW .
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3.4.2 Financial budget

Next to the power budget it is also possible to make a financial budget. This can be seen in
table 4.

Component Financial costs in euros

Camera 39.60

XBee zigbee 80.77

XBee WiFi 41.77

GPS 58.38

LIDAR 94.90

Cortex M0+ 1.67

Servo 4.99

PCB 109

Total 695.42

Table 4: The financial budget

These cover all the big expenses, there are also a few connecters and sockets. However these cost
less than the microcontroller so are not interesting to list here. The total cost of the prototype
is 695,42 EU. Note that these costs can be cut when for example the PCB is not ordered with
urgency or if the parts are ordered in large amounts to get a discount.
In the next chapter the implementation of these subsystems is discussed.
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4 Implementation

4.1 PCB design

With the zebro being modular, it was neccessary to make our own PCB for on the backbone.
This means that there is limited space and that there is already an existing connection between
all the different modules. This constrains the freemdom of designing the PCB. The board
needs to act as an central point for the zebro through which all the data flows from and to the
user side. Next to this there are extra peripherals like the cameras and LIDAR. These need a
connection to the microcontroller on the board. First of the board itself needed to be made.
Next was the layout of the components and the last thing on the list is the routing of all the
components. The final version of the board is visible in appendix A.

4.1.1 Board design

On the backbone we got the space to fit onto the ZPU board. This board had the dimensions
of 75cm length (y-axis) and 80cm width (x-axis). During the layout of the components it
became clear that using these dimension would result in 0.3mm gaps between the Xbee and
WiFi modules and the connectors. This was a risk we were not willing to take because if the all
components came out slightly bigger as mentioned in the datasheets it would not fit anymore.
The decision was made to increase the length of the board an extra 31 mm and the width with
and extra 2 mm.
This resulted in a board with the following dimensions: 106 mm length and 82 mm width.

4.1.2 Resistor values

The LEDs on the PCB are to show if the XBee and WiFi module are working or if there are
any errors with starting up. These LEDs have a voltage drop of 2V and a forward current of
20mA. The supplied voltage from the microcontroller is 3V3, meaning that 1V3 is supplied to
the resistor. Since the LEDS are inside the Zebro itself it is not necessary to let them shine at
full brightness. Going for a 3mA current is bright enough to tell if it is on or not. In figure 17
the circuit is seen.

Figure 17: Circuit with a resistor R and a LED

Following ohms law:

R =
U

I
=

1.3V

3 · 10−3A
= 433Ω (13)

The resistor with the value closest to 433Ω is 430Ω. which will result in a current of 3.02 mA.
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4.1.3 Layout

When the board design was finished the task was to make a layout of the board. There were a
lot of constrains in the space on the board as mentioned earlier. This was due to the connectors
of the ZPU board and the fact that the board had extra peripherals. These peripherals needed
to be on the sides of the board to connect them easliy with wires and antennas. Otherwise
these would be over the board itself. The other parts needed to be on the PCB were the
microcontroller with external crystal, the multiplexer , a few LEDs and the DC/DC converters.
It was chosen to have the DC/DC converters near the power supply itself to keep the tracks
as small as possible. For the microcontroller it was convienient to have it in the middle of the
PCB. The WiFi module and cameras were placed near each other so it was an easy choice to
place the multiplexer in between these components. This all allowed for shorter tracks and
easier routing.
An important decision that was made concerning the layout was to get rid of the connectors on
the sides of the board. These are needed to place the PCB on the ZPU board. However none
of the connections are actually needed for the design. Therefor the one 36 pin connector was
replaced with two 4 pin connectors. This means there is more space for routing and the board
is still stable on the ZPU board.

4.1.4 Routing

Because of the choices made with the layout, the routing was fairly straightforward. It all fitted
on the top and bottom layer of the PCB. Concering the thickness of the tracks, we took 30
mil for the 24V and 2A power tracks. The maximum amount of current we will need is around
400mA though, this is because not all the peripherals are switched on at the same time. Another
thing to notice is that the chosen DC/DC converters work to a maximum of 1A current, which
is more than enough. The 5V tracks are made 20 mil thick and the 3V3 lines are 15 mil thick.
These lines do not neccesarliy need to be this thick, but the room is there to do it and we do not
want to take risk when for example the lines came out too small. The thickness of the tracks
were calculated using an online tool [1] and letting Altium designer check them.
In the Appendix B there are two tables with the connections for the microcontroller and the
multiplexer.
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4.2 Camera subcircuit

The camera feed will be sent via the WiFi, as mentioned in the design choices. The Camera
modules have their own PCB which saves the compressed frame in the microcontroller. Therefor
there is no reason to connect the cameras to the microcontroller on our own board, it can be
directly connected to the WiFi module.
To switch between the different cameras a multiplexer is used, it switches the UART lines so
that either camera 1 or camera 2 is connected to the WiFi. The multiplexer is conencted to the
microcontroller, this way it is possible to switch the camera over the XBee channel. In figure
18 the schematic of the multiplexer is shown.

Figure 18: The schematic of the multiplexer.

The outputs, pin 3 & 13, are connected to thw WiFi module. The UART lines of camera are
connected to pins 2,4 and 12,13. The selector A is connected to our microcontroller, input B
and INH are both linked to the ground in order to have a ”0” input. Through this configuration
it is possible to select the camera that is connected to the WiFi.
The bitrate of the UART interface of the camera is 921.6kbps as well as the bitrate of the WiFi
UART interface. This makes it possible to have them both work at their maximum bitrates
and not have to introduce stalls in one of the modules.
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4.3 Zigbee

As stated in previous chapters the Digi Xbee-Pro 868MHz has been chosen to use. All Digi
Xbee modules share the same footprint which can be seen in figure 19. Since it was not possible
yet to use the zigbee module chosen, the whole system was implemented with a simpler Xbee
2.4GHz module.

Figure 19: xbee footprint

The module can be used by attaching the 3V3 pin to a 3V3 source, and the ground pin to
the ground of the arduino. An arduino was used to simulate the ONS board on the rover to
programm and configure all the peripherals. The Tx is the data that the module received from
the user side and the Rx the data that needs to be send to the user side. It has its own buffer
onboard, which can be read through the Tx pin. The other module connected to the PC is
connected by using the Sparkfun Xbee Explorer, shown in figure 20. This makes it easy to
connect, and it allows for simple use by reading out the USB connected to the PC and sending
data through it.

Figure 20: Sparkfun Xbee Explorer

In order to configure the module, code has been written on the arduino using C++ and behind
the interface using C#. By having written a library in C# which has a send(string) function
and a read() function it is possible to send commands to the other module attached to the
arduino. The read() function keeps emptying the buffer asynchronous from the rest of the C#
code. The same for the onboard code running for the arduino, the buffer keeps getting emptied
in case a command arrives, and this happens asynchronous aswell from the rest of its tasks.
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4.4 User interface

In the chapter design choices the layout for the user interface was made. The idea is to keep the
design as clear and simple as possible. This way it is easy for new users to understand and find
all the possibilities and features. Further one of the main tasks was to keep the user interface
modular as well.

4.4.1 Navigation and Drive window

In figure 14 the layout is visible, in figure 21 the implementation of the design is seen.

Figure 21: The implementation of the design for the Navigation and drive window.

It is noticable that initial layout looks like the interface that is designed. The interface was
made in C# and xaml using visual studios. The reason for this is that we had experience in
this language and the programming environment is one of the best out there.
The implementation of the compass and the mini Zebro can both rotate accordingly. The com-
pass will get feed back from the sensors on the zebro and point in the right direction. And the
mini Zebro has an arrow that rotates around it which indicates the direction the user is driving
in. The sliderbar can be set to four different values to change the speed, ranking from standstill
to top speed.
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4.4.2 Arm control window

When the tab is changed to ”Robot arm” the window changes as seen in figure 22.

Figure 22: The implementation of the design for the Robot arm window.

Here too it is evident that the layout was inspiration for the end product. The top view of the
arm is able to rotate clockwise and counterclockwise to show the position of the arm. The side
view can rotate all its individual joints and extend its first part, together with the top view the
complete position of the arm can be modeled.
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5 Modularity and external systems

The most important feature of the ONS, next to being able to navigate, is its ability to pass
through communication with all the other subsystems , since it is the wireless communication
hub. This communication must be well defined. An overview of the total zebro system with
the modules being used now can be seen in figure 23. We have one external connection to and
from the ONS to the ZPU using I2C. This way it is possible to use the system not only on the
Zebro Explorer, but also on other zebro robots, and even completely different systems.

Figure 23: System overview

5.1 Modular PCB

The place of the ONS board on the Zebro wil be on top of the ZPU which also has multiple
connections to it of other external modules like the robot arm, motor drive and the battery
system. Most of these systems are also modular, making it available for every robot with the
same interface. Further are all the connections with peripherals are based on I2C except for the
XBee and WiFi module, which are connected via UART. All the peripherals can be changed
out with improved versions as long as they support I2C. The XBee modules too are placed on
headers and not soldered on the PCB itself making them interchangable.

5.2 Package details

In order to communicate in a safe and reliable way we have established a standard protocol
which will be used throughout the whole Zebro. The first part of this protocol is that the
communication functions through a master-client way of communication. Here the ONS will
work as a master and other systems will only send info to the ONS when it has requested it.
The packages sent to other modules, and from other modules are defined as following:

[Number][Destination][Error][Datalenght][Data][Checksum]

Where the length of each part is divided as

[8bits][4bits][1bit][8bits][Xbits][?bits]
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5.2.1 Number bits

In this packaging standard Number stands for which package number it is that has been sent
from a certain module. Thus each module keeps track of it’s own packages sent. The sender
will keep a list of every package sent. When the receiver receives a package an acknowledgement
will be sent to the sender that the package has been received, and the number will be crossed
off the list. When the sender does not receive an acknowledgement within a second, the package
will be resent. If then again there is no acknowledgement or a request to resend the package
because of an error, it could be the result of the wireless module being out of range.

5.2.2 Destination bits

The Destination bits will be linked to a list of numbers, in which each number represents a
module. There are 4 bits available which allow for 16 different modules. After the checksum has
been executed the package will be acknowledged and checked what the destination is. When
the destination is the same as that of the receiver, it will read the rest of the package. If the
destination is different, it will repackage it again as the data part of a new package, and send
it to the end destination. The module acting as this hub is in this case the ZPU. This can be
seen in figure 23 where it acts as the hub between the different modules. The different numbers
given to the modules can be seen in table 5. These numbers are kept in the ONS, UI and ZPU
to keep track where a package has to go to.

Table 5: Corresponding modules

0 UI
1 ONS
2 ZPU
3 Arm
4 Motor Drive
5 Battery System

5.2.3 Error bit

There is an Error bit included in the package, so it is possible to quickly identify if there is an
error going on in a certain module. Since the error needs to be presented to the user, it is not
needed to attach a sender to it. The ONS will request the status from a certain module and if
its response has the error bit set to 1, it is clear that the system it requested status was from
has a malfunction. When this bit is set, the Data part will include the error in the form of a
number. This number is kept within a lookup table in the UI so it is easy to indentify what
error number corresponds to what condition. By using this bit we can manipulate the Data
entry and give the package priority so the error can be handled as soon as possible.

5.2.4 Datalength bits

The decision to include a Datalength byte was the fact that the system is dealing with a lot
of different possible lengths of data. An option was to set the length to the largest amount of
data, however this length is not known. And on top of that every packet would be that same
lenght, which is just very ineffiecient. Next to that the way the Zigbee module is read out does
not guarantee that there is a complete package. If there are different data lengths, it isl not
known when the package ends. So this is required to have stable and reliable communication
assuming the package is received correct.
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5.2.5 Data contents

The Data part will contain the data sent and received from the different modules. In the
master-client setup that is used, the data sent to other modules, except from the UI, from the
ONS will always contain commands, and data sent to the ONS from other systems but the UI
will contain the sensor data and feedback requested by the ONS.
The data sent from the UI to the ONS will always contain commands for the ONS, or commands
that the ONS needs to pass to the ZPU. In which case passes it through to the module of
destination. All the commands sent by the UI to the different modules are kept in a list within
the code and can be found in appendices C through E. So to conclude the length of Data is
variable, since it can simply contain a few bits, namely the command number or a whole array
of sensor data.

5.2.6 Checksum

The checksum is needed to be able to check if the received package is still the same as when
it was sent. There are multiple methods to do a checksum, but the most common ones are
CRC and parity check. We have chosen to use the parity check instead of CRC since we are
talking about small packages, and not much computational power on the different modules. A
parity check however works by computing a XOR over a package. This is done by dividing
the package in 2 parts, and computing a XOR operation over those 2 parts. The result of it is
sent with the package itself, which is an array of 0 and 1 bits. When the package arrives, the
receiver will repeat exact the same operation, and compare that with the attached checksum
which is computed at the client. If this gives only 0, we can assume that the package has kept
its integrity. The upside of this method is that it is simple and quick to compute. The downside
is that only odd number of errors can be detected.

5.3 Communication with other modules

This communication is for the biggest part one sided, where the ONS system functions as the
master in this system onboard of the Zebro. Other systems will only send information to the
ONS when it asks for specific information.

5.3.1 User side

The user side is where all the manual controls happen. This side will be sending all the com-
mands, and is the master over the ONS system on the Zebro. The UI has a list with commands
for all the different modules on the Zebro. The UI will send a command, which is received at
the ONS. Then the data will be sent to the end receiver, or if it is meant for the ONS itself it
will execute the command. When there is data expected back the ONS will wait for a response.
The different commands that the UI can send will be listed in the following paragraphs. The
command list which is meant for the ONS can be found in appendix C.

5.3.2 Robotic arm

The robotic arm has serveral joints, which in turn can be added and removed in a modular way
as seen in figure 24. The UI can send commands to the robotic arm, manually controlling each
joint with a controller. These commands will be received at the ONS, which send them to the
ZPU, which in turn sends it to the robotic arm. The different commands for the arm are for
each joint a up, down and stop command. When an up command for a joint is sent, that specific
joint wil keep moving up until a stop command is sent. This system works for every joint, and
thus will keep its modularity. Futhermore there is a status command, which in response sends
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back the angles of every joint, and other statusses like errors, on/off. A full list of commands
and the exact responses can be found in appendix D.

Figure 24: User interface representation of the orientation of the arm.

5.3.3 Motor drive

The motor drive takes care of the 6 different legs on it’s own microprocessor. This has as a
result that only the walking direction is needed to be sent. This walking direction exists of 8
directions. Next to the walking direction, a stop command can be sent and a command to let
the robot ”sit down” so the arm can be used safely. The commands and exact responses for the
motor drive can be found in appendix E.

Figure 25: User interface representation of the motor drive directions

5.3.4 Battery system

The only command sent here is for a status report, whichl in return will give the current battery
status and the amount of battery power left.
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5.4 Error protocols

The package that needs to go to one of the modules sent from the ONS will be confirmed using
an acknowledgement system. When a package is sent, it will be checked at the receiver with
a checksum. If this comes out correct, a package containing an acknowledgement will be sent
back which is illustrated in figure 26

Figure 26: Acknowledgement system

This way the ONS will know if a package has been received correctly.

Time out

There are some things that can go wrong while sending the package. First of all the package
could not be received at all. First the package will be resent 3 times. Resending a package is
shown in figure 27, where it is anwsered after the first time resending. If after 5 times resending
there is still no response the system can be assumed disconnected and appropriate measures
need to be taken.

Figure 27: Resent package
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Wireless timeout

A timeout of the wireless communication could happen because of a variety of reasons. First
of all on top of the rover there is only 1 antenna and an arm. It could happen that the rover
is far away, which means more data loss, and the arm is in the way of the signal. In previous
chapters the link budget was analysed, but this is only applicapable when assuming free space
loss. When the arm is in the way, the theory of free space loss no longer complies without taking
the loss that happens because of the signal needing to pass through the material of the arm.
The first step towards regaining signal is letting the ONS send a signal to the arm, which is
inside the rover, to move the arm in base position. If it then still does not receive a signal within
5 seconds, it could mean that the arm, even if it is in base down is still in the way because of a
slope the rover is standing on. The next step is to turn the Zebro slowly 360 degrees untill the
signal is regained. If the Zebro is still disconnected it means it is out of range or some other
object is between the sending station and the rover. The ONS will turn the rover around and
let it move back to the base station using its autonomous walking algorithm, until it reconnects
again. If it doesn’t reconnect it will walk all the way back until it is within 10 meters of the
endpoint. This way it is able to always come back even if the signal is completely lost. The
steps to handle a wireless timeout are summed up in steps below.

1. Send command to arm to move into base position.

2. Wait 5 seconds.

3. Turn around 360 degrees or until signal is regained.

4. Walk back towards last known base station location until connection is regained or it
arrives.

Checksum error

Between receiving a package and sending an acknowledgement as shown in figure 26 the check-
sum is commputed. As previously explained a parity check is computed from which is detectable
wether a package is received correct or not. If it is not received correctly a package will be sent
back not containing an acknowledgement but a request for resending the package. After receiv-
ing this package, the checksum will be computed again.If it is correct an acknowledgement will
be sent. Otherwise the client will request for the same package again until it is received correct.
This whole overview is shown in figure 28.

Figure 28: Checksum error
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6 Results

6.1 X User Interface

It has already been shown how the total interface looks like in figures 21 and 22. However
below are all the results of the user interface. All the subsystems of the interface are shown and
explained how they give feedback to the person controlling the Zebro explorer.

X Status lights and info

An important aspect of debugging the Zebro explorer and knowing during the challenge what
modules are holding up or are failing is having the status lights work porperly. An even bigger
help is building in error messages to show what is wrong with a certain module. In figure 29a
and firgure 29b a few lights are shown on and off to indicate if there is a connection or not with
the XBee module.

(a) The status lights all turned off.
(b) The XBee and controller status lights turned on
when they are connected properly.

Figure 29: The status lights turned on and off.

When a new module is implemented an extra status light and error messages can be added.
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X Command window

In figure 30 the command window is shown. It is displaying the input from the Xbox controller.

Figure 30: The command window showing the input from a Xbox controller.

Further the user can type commands into the command window to request certain data or
execute a command manually. So this part of the interface is checked off.

X Graphs

The graphs which show the temperature, battery power and power consumption can plot the
data retrieved from the Zebro. The graphs are updated everytime new data is available. For
now it has only been simulated with test data which is shown in figure 31.

Figure 31: The graphs in the interface simulated with test data.

When extra data is required for permanent display it can easily be added to the interface.

X Switchs tabs

One of the ways to keep the design clear was to introduce different tabs for different tasks.
This way different information can be displayed on the screen and the environment to fulfill the
task can be optimized. For now the different tabs are ’Navigation and Drive’ and ’Robot arm’.
When the tab is switched the interface fades to the new layout and the task can be completed.
In figure 32 and 33 it can be seen that the different tabs correspond with different layouts.
Here the design also lends itself to implementing an extra tab when for example other tasks
need to be done or when a completely new module is added to the Zebro explorer.
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Figure 32: The Navigation and Drive tab is active.

Figure 33: The Robot arm tab is active.

• Navigation and Drive

First of is the compass, it should point to the direction the Zebro is aimed at. On the Zebro
explorer there already is a compass, so it is possible to collect that information and display it.
Below in figure 34a and 34b the compass is shown pointing in the North East direction and the
West direction respectively.
The second part of the Navigation and Drive window is the mini Zebro which indicates the
direction the user is driving. In figure 35a and 35b the user is driving the zebro slightly to the
right and backwards respectively.
This function of the user interface is directly linked to the controller and therefor gives instant
visual feedback to the user. It can also help with the debugging of the Zebro, for example when
the Zebro does not drive in same direction as the controller is steering.
The next part is the camera feed, it has been tested with just a regular video. But unfortunately
the camera did not make it on time.
The GPS map and the LIDAR map too have not been finalized in the design, for the GPS only
the asynchronous polling needs to be implemented. For the LIDAR map the code that plots
the readings still has to be made. So for this part of the interface there are still a few things
that need to be finished.
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(a) Compass pointing in the North East direction. (b) Compass pointing to the West.

Figure 34: The compass of the user interface.

(a) Zebro driving slightly to the right. (b) Zebro driving backwards.

Figure 35: The Zebro driving direction.

X Robot arm

In this tab the camera feed is larger. However the same goes for the Navigation and Drive
window, it has only been tested with a prerecorded video and not with the actual camera.
What has been completed in this tab are the top and side view of the arm.
As seen in figures 36a and 36b the the arm can be rotated a full circle to show its position
relative to the Zebro explorer.

(a) The arm is pointing forward. (b) The arm is pointing to the right.

Figure 36: The position of the arm as seen from above.

In the figures 37a and 37b two different configuration of the joints of the arm are shown. All the
different joints can turn seperately and the first bar is a telescopic part which is also extendable
in the interface itself. In figure 37a the first bar of the arm is shorter than the one in figure 37b.



6 RESULTS 36

(a) A possible position of the arm without the tele-
scopic part extended.

(b) An other possible position of the arm, this time
with the telescopic part extended.

Figure 37: Possible configurations of the arm as seen from the side of the Zebro explorer.

And these three parts make up the tab for the arm control. When the camera arrives it can be
implemented and the whole tab is finished.
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6.2 • PCB

When the PCB was finished it was manufactured by eurocircuits. They sent us the PCB as
seen in figure 38.

Figure 38: A picture of the manufactured PCB.

Since our components were not delivered it was not possible to test the PCB if it is working
correctly. In the chapter ’Future plans ’ the plans for assembling the PCB and testing it are
explained.

6.3 X Zigbee

X Stable and reliable communication

After implementing the Zigbee protocol using the 2.4GHz Xbee module we had a reliable con-
nection where it is possible to send data to the arduino, and receive responses.

• 1000 meter distance

We can conclude that it is possible to send data over, but we can not send it over 1000 meters
yet since we have not received the module we want to implement. When the new module arrives
however it is plug and play, using the code already written at the moment.
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7 Future plans

In the week of August teammembers can work on the Zebro project and finish their parts. This
means the group needs to think on what to do and make a plan beforehand. Below the building
of the prototype, the testing and the final integration in the Zebro explorer itself is discussed.

7.1 Building prototype

When in August all the parts have been delivered the actual building of the prototype can take
place. First off the components have to be soldered on the PCB. Next is making the wires to
connect all the peripherals to the PCB.

7.1.1 Soldering

For the soldering of the components first the SMD parts need to be done. These include the
microcontroller and the external crystal. When these are on the PCB the rest of the components
can be soldered regularly. The things to look out for is not to damage the PCB or burn away
the silk on top. Further the components have to be soldered the right way around, luckly there
are signs to where the parts should be and where pin number 1 is located on the PCB. This for
all the components that can be the wrong way around.

7.1.2 Wires

For the wiring of the peripherals the size of the Zebro explorer needs to be known. By the time
we can work on the module again the final concept of the chassis will be done. With these
parameters it is possible to make the wires the right length instead of making them too long or
short. This makes the Zebro less prone to issues with cables getting stuck behind other things
or being just to short and falling loose during a task.

7.2 Testplan

7.2.1 PCB

When all the components are on the PCB it is time to test it. First thing to do is programming
the microcontroller. The other subgroup has already made a code on an arduino so the only
changes that have to be made are certain addresses that the microcontroller needs to write to
or read from.
If the programming of the microcontroller works the following step is to simply control the
LEDs that are on the board. This is to check if the microcontroller is actually executing the
code. If it is all the other subsystems can be attached and checked if they work accordingly.
When the PCB is not working the next task is to find out why it is not. After that the
design of the PCB should be updated and ordered again. If the PCB is working properly other
parameters of the PCB can be tested. For example what happens when the Zebro explorer is
above 60 degrees celsius inside. This to see what the board can handle and what it cannot.
If the PCB fails to handle conditions that can be expected during operation it needs to be
redesigned, or if a certain component is failing it can be replaced with another part that can
handle these conditions like temperature.
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7.2.2 Wireless communication

The communication is already working between an arduino board and using a low power cheap
zigbee module from Digi. This module however has exactly the same footprint. Because of this
it is possbile to simply interchange the current module with the new one and the code written
will still be applicable. For WiFi however there were no possibilities to test since it was not
possible to get our hands on a XBee WiFi module, so this still has to be done in the future.
The following testplan needs to be done with both the WiFi and the zigbee modules.

Effect of objects

Since the theory of our link budget is based upon estimations. And our zigbee module has
variable power output, which is desirable to be as low as possible. This is why some testing
needs to be done to be able to understand in detail how much power is necessary for a certain
distance. This can be done first by investigating what the effect of objects are. To test this first
a sender and receiver must be placed in a direct line of sight, and measure the amount of dB
that is transferred and received. After this is done the same test must be done but this time
with an object in the way. By doing this it is possible to know which material and object have
what effect, which can help make a needed estimation needed for a range of 1 km. The test
setup can be seen in figure 39.

Figure 39: Setup object test

Range in weather

In the calculation of the link budget analysis the loss was calculated using free space loss.
However weather has a certain effect upon data loss of the communication. This can be tested
by first calculating the free space loss, and then measuring over the same distance in a direct
line of sight. There will be a difference in the amount of dB. If this is done for a certain amount
of time an average can be found for certain weather, and it is possible to discover the difference
between free space loss and real weather effects.

Receiver power

The last thing that needs to be tested is how much power the receiver actually needs in order
to be able to still receive the signal. According to the datasheet of the XBee zigbee module this
is in the order of -112 dBm, but this is the absolute minimum. We can do this by connecting
the sending and receiving modules together by using a wire, which has minimal loss. From that
point we place dampener which is controllable and we can continue increasing the amount of
dB that is lost until the data loses its integrity. Of course we need to measure the amount that
is received in order to be able to make a clear conclusion. The test setup can be seen in figure
40
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Figure 40: Receiver sensitivity test

Calculating sending power

It is important that in the worst case conditions the rover is still able to communicate at at
least 1000 meters. Since the receiving and sending antenna gain are set, and using the results
from the tests that are planned it is possible to accurately calculate the sending power that is
needed from the Zebro. This can then be increased whenever a bigger range is needed, in trade
for a lower battery life.

7.3 Integration in Zebro

If our module has passed the testing phase it needs to be integrated with the Zebro explorer.
physically this is not challenging, however getting it work with the ZPU is. Therefor all the
standards we made in for the Zebro need to be integrated in all the different modules. After
this the Zebro should be tested in its entirety by trying the different ERC tasks and see where
it struggles to complete one or more. The Zebro explorer can than be modified accordingly
or maybe the user interface needs to display extra information. When the Zebro explorer can
fulfill all the tasks normally it is possible to try the task in more extreme conditions or give it
more difficult tasks to do. This should be all the steps for making the robot ready for the ERC,
however that does not mean the team is done. There are more modules to make next to the
ones that are already there. An example might be a charging system for the Zebro, this way it
could be on the go for a longer period of time.
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8 Discussion

8.1 ONS team

At the start of the project our only goal was to make a long range wireless communication
system, and be able to navigate using LIDAR or Radar and GPS. However soon after that we
needed a camera system as well, and it soon became clear that there was not enough time to
make a wireless module by ourselves. This is when we decided that the project was too short
and needed to use components off the shelf. This however gave us much more time, and we
decided to also take the user side of the project on us. We have had a setback because of
components that have not yet arrived after a long waiting time, and decided to use this time
to build an eleborate user interface. At this point we also split up in two groups, group one
with Alex and Peter working on all the communications outside and inside the robot and the
user interface, and the other group, Bart B. and Bart R. working on all the integration of the
peripherals and autonomous walking.
By having used a lot of components off the shelf we were able to build a robust system, of which
each off the shelf component can be replaced by something self designed afterwards.

8.2 Zebro team

The team consisted out of 3 teams, Arm, Motor drive and ONS. Every morning we had a
meeting which helped in understanding what other teams were doing. The standards set in the
system integration chapter have been thoroughly discussed with other teams before we were
able to set standards for everyone. The downside is being dependend upon choices, for example
the arm team had to change their design a couple of times which is understandable but needs to
be implemented in the UI as well. Partaking in a big team is a whole new level of working on a
project and bringing its own advantages and disadvantages. One big advantage is that keeping
the system modular is easier to do since integrating different modules takes a lot of time so it
needs to be as modular as possible in order to be less dependend on eachother, which makes
the final integration easier.
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9 Conclusion

As seen in the chapter Results we have finished most of our project. Below is a short recap of
all the specifications we have met or are guaranteed to meet when the parts arrive.

1. X A communication system that is able to send and receive over 1000m.

2. X A GPS module with with an accuracy of less than 10m.

3. X A system that can detect objects in the surrounding at a distance of 10m.

4. X A camera with 240p quality and around 20 fps.

5. XA user should be able to control the Zebro explorer manually.

6. X The Zebro explorer should be able to walk autonmously from one point to another.

7. XAn user interface containing all the necessary information to control the Zebro explorer.

8. X A system where peripherals can be switched out, with either new ones or improved
versions.

The orange checkmarks indicate that the system will work when everything has arrived, plus
these systems are explained in the thesis of the other subgroup. For the communication system
the code has been completed and when the new XBee modules arrive they can be directly con-
nected to the system and they will work.
The green checkmarks indicate that those subsystems are completed and are already working.
The user interface is completed except for the a few minor bugs and features that are almost
ready to be implemented.
Specification number 6 is also in the other subgroups thesis. The rest of the specifications are
discussed in the chapter results that they are finished and working.
A note on the modularity of the system is that all the peripherals can be swapped out and new
or better ones can be connected as long as they have an I2C or UART interface. Which are
probably two of the more used protocols. Therefor this specification can be checked off.
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11 Appendices

11.1 Appendix A

Figure 41: The board size.
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Figure 42: The PCB layout and routing.
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Figure 43: 3D look of the PCB.
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11.2 Appendix B

Table 6: Microcontroller pin configuration

Pin number Signal Comment

Pin 1 Output XBee LED

Pin 2 Not connected

Pin 3 3v3 supply

Pin 4 Not connected

Pin 5 Not connected

Pin 6 Ground

Pin 7 External oscillator 32.768KHz

Pin 8 External oscillator 32.768KHz

Pin 9 PWM output PWM signal for the servo

Pin 10 Output Request to send for XBee

Pin 11 Input Clear to send from XBee

Pin 12 Not connected

Pin 13 Not connected

Pin 14 Not connected

Pin 15 Not connected

Pin 16 Not connected

Pin 17 UART-RX connected to UART-TX of the XBee

Pin 18 UART-TX connected to UART-RX of the XBee

Pin 19 Not connected

Pin 20 Not connected

Pin 21 Not connected

Pin 22 Not connected

Pin 23 I2C SCL Connected to LIDAR,GPS and the ZPU

Pin 24 I2C SDA Connected to LIDAR,GPS and the ZPU

Pin 25 Output MUX B selector input

Pin 26 Output MUX A selector input

Pin 27 Output Sleepcontrol WiFi

Pin 28 Output Error LED

Pin 29 Output WiFi LED

Pin 30 SWD CLK Programming pin

Pin 31 RESET B Programming pin

Pin 32 SWD DIO Programming pin
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Table 7: Multiplexer pin configuration

Pin number Signal Comment

Pin 1 Not connected

Pin 2 UART-TX of camera camera 1

Pin 3 UART-RX of WiFi connected to UART-TX of camera 1 & 2

Pin 4 UART-TX of camera camera 2

Pin 5 Not connected

Pin 6 Ground Inhib needs to be 0

Pin 7 Not connected

Pin 8 Ground

Pin 9 Input B Connected to pin 25 of the microcontroller

Pin 10 Input A Connected to pin 26 of the microcontroller

Pin 11 Not connected

Pin 12 UART-RX of camera camera 2

Pin 13 UART-TX of WiFi connected to UART-RX of camera 1 & 2

Pin 14 UART-RX of camera camera 1

Pin 15 Not connected

Pin 16 5V power supply
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11.3 Appendix C: Command Table Arm

Command sent Response Command UI Comments

01 BaseLeft Whole arm turns left from base
02 BaseRight Whole arm turns right from base
03 BaseStop Whole arm stops turning from base
04 Up1 First joint from base keep going up
05 Down1 First joint from base keep going down
06 Stop1 First joint from base stop moving
07 Up2 Second from base joint keep going up
08 Down2 Second from base joint keep going down
09 Stop2 Second from base joint stop moving
10 Up3 Third joint from base keep going up
11 Down3 Third joint from base keep going down
12 Stop3 Third joint from base stop moving
13 WristLeft Turn hand left
14 WristRight Turn hand right
15 WristStop Stop the hand from turning
16 TelescopicUp Make telescopic part go up
17 TelescopicDown Make telescopic part go down
18 TelescopicStop Lock telescopic part into length
19 Grab Grab the object
20 Angles, height, Status Status Ask for all statusses and response
21 Attachment Change attachment
22 Attachment number AttachmentStatus Get which attachment is equipped
23 On Turn the robotic arm on
24 Off Turn the robotic arm off
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11.4 Appendix D: Command Table Motordrive

Command sent Response Command UI Comments

01 On Turn on motors
02 Off Turn off motors
03 Errors, statusses Status Receive all motor statusses
04 SitDown Make robot sit down for stability
05 GoUp Reactivate robot to continue walking
06 0Degrees Walk forward
07 45Degrees Slight turn forward-right
08 90Degrees Turn around to the right
09 135Degrees Slight turn backwards-right
10 170Degrees Walk backwards
11 215Degrees Slight turn backwards-left
12 260Degrees Turn around to the left
13 305Degrees Slight turn forward-left
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11.5 Appendix E: Command Table ONS

Command sent Response Command UI Comments

01 Distance in cm GetDistance Distance measurement with LIDAR
02 Distance array ScanArea Do a 90 degrees sweep with LIDAR
03 GPS Coordinates GetPosition Request the current position of the Zebro
04 FlushBuffer Flushes the command input buffer of Zigbee
06 TurnL0 Turn LIDAR to 0 Degrees
07 TurnL10 Turn LIDAR to 10 Degrees
08 TurnL20 Turn LIDAR to 20 Degrees
09 TurnL30 Turn LIDAR to 30 Degrees
10 TurnL40 Turn LIDAR to 40 Degrees
11 TurnL50 Turn LIDAR to 50 Degrees
12 TurnL60 Turn LIDAR to 60 Degrees
13 TurnL70 Turn LIDAR to 70 Degrees
14 TurnL80 Turn LIDAR to 80 Degrees
15 TurnL90 Turn LIDAR to 90 Degrees
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