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Ŕıos Rosas, 21. 28003-Madrid, Spain

e-mail: arturo.hidalgo@upm.es;carlos.conde@upm.es
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Abstract. Nonlinear acoustic waves have many applications in very different fields of
industry. These problems are governed by differential equations of the form (see 7):

ρ0
∂(2)u(x, t)

∂t2
= −ρ0

c2
0

γ

∂u(x, t)

∂x

(

1 +
∂u(x, t)

∂x

)−γ

+ ρ0νb
∂(3)u(x, t)

∂x2∂t
(1)

+ initial and boundary conditions.

The unknown, u(x,t), represents gas particles displacements, as a function of the spatial
coordinate x and time t.

The numerical technique we have applied to solve this nonlinear acoustics problem
is a third order finite volume method with ENO reconstruction, combined with a third
order TVD version of Runge-Kutta method for time integration, as described in references
1,3. We point out that the technique applied in 5 shows stability limitations when the
nonlinearity of the problem is more severe.

The aim of this paper is to improve the stability of numerical solution by applying a
flux reconstruction in the finite volume interfaces, via FORCE scheme. A description of
the FORCE technique may be found in 4,5,6. Results of the application of this technique
are shown and they are compared with the ones obtained in references 1.
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1 INTRODUCTION

Nonlinear ultrasonic waves may be applied in very different fields, such as: submarine
signals, aerosols, foams separation, metal welding, seismic studies, medicine, etc.

The design of devices to carry out these applications requires a detailed knowledge of
the high frequence wave propagation. In this kind of problems, it is very interesting to
develop efficient numerical methods to solve the nonlinear phenomena associated to these
waves.

In particular high order methods based on finite volumes are specially suited to this
purpose. In order to obtain an accurate computation of intercell fluxes, even for very
high frequencies, it is useful to write the governing differential equation as a system of
conservation laws, and to apply appropriate techniques to obtain the solution.

2 MATHEMATICAL FORMULATION

The mathematical model describing nonlinear acoustics problems may be obtained, as
described in references 1,6, from the fluid state equation, the continuity equation and the
momentum conservation equation, and reads:

ρ0
∂(2)u(x, t)

∂t2
= −ρ0

c2
0

γ

∂u(x, t)

∂x

(

1 +
∂u(x, t)

∂x

)−γ

+ ρ0νb
∂(3)u(x, t)

∂x2∂t
(2)

The coefficients in equation (2) represent: x ∈ [0, L] is the spatial coordinate, t > 0 is
the time, γ is the specific heats relation of the fluid (at constant pressure and constant
volume), c0 is the sound speed, ν is the fluid kinematic shear viscosity, ρ0 is the ambient
density, u(x, t) is the displacements function, while b is viscosity number whose value is
obtained from the formula: b = 4

3
+ µB

µ
, where µ is the dynamic shear viscosity and µB is

the dynamic compressive viscosity.
The problem considered in this work is defined by equation (2) with the following initial

conditions:

u(x, 0) = u(0)(x) 0 < x < L (3)

∂u

∂t
(x, 0) = v(0)(x) 0 < x < L (4)

and, also, the following boundary conditions, for the left boundary:

u(0, t) = u0(t) 0 ≤ t ≤ T (5)

∂u

∂t
(0, t) = u′

0(t) 0 ≤ t ≤ T (6)

For the right boundary:

u(L, t) = uL(t) 0 ≤ t ≤ T (7)

∂u

∂t
(L, t) = u′

L(t) 0 ≤ t ≤ T (8)
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We can also obtain the acoustic pressure in the fluid, given by the expression:

p(x, t) = p0





(

1 +
∂u

∂x

)−γ

− 1



 (9)

where p0 = ρ0
c2
0

γ
is the ambient pressure.

3 DISCRETIZATION IN SPACE AND TIME

3.1 Discretization in space

As is shown in reference 1, the equation (2) may be transformed into the following
system of equations:















∂
∂t

u(x, t) = v(x, t)

∂
∂t

v(x, t) = −
c2
0

γ
∂
∂x

(

1 + ∂u(x,t)
∂x

)−γ
+ νb ∂2v

∂x2 (x, t)

(10)

Let us consider, within the interval [0,L], a set of (n+1) nodes, assumed uniformly
distributed for simplicity, obtained as: xi = (i − 1)h, (i = 1, 2, · · · , n + 1) where the
distance between two consecutive points is defined as: h = L

n
.

We will also consider a partition in intervals (control volumes) Sj = [zj−1, zj] , (j =
2, · · · , n), where: zj = 1

2
(xj+1 + xj).

If we now integrate equations of system (10) over each one of the control volumes, and
divide by the length of the control volume (h) we have:







∂ūi

∂t
(t) = v̄i(x, t)

∂v̄i

∂t
(t) = A

[

(

1 + ∂u
∂x

(zi, t)
)−γ

−
(

1 + ∂u
∂x

(zi−1, t)
)−γ

]

+ B
(

∂v
∂x

(zi, t) −
∂v
∂x

(zi−1, t)
)

(11)
where we have denoted by:

ūi(t) = 1
h

∫ zi

zi−1 u(x, t)dx, v̄i(t) = 1
h

∫ zi

zi−1 v(x, t)dx, A = −
c2
0

hγ
and B = νb

h
.

We can simplify the notation used in (11), writing it as:

∂ūi

∂t
(t) = v̄i(x, t) (12)

∂v̄i

∂t
(t) = Λi(u(t), v(t))

where: Λi(u(t), v(t)) = A
[

(

1 + ∂u
∂x

(zi, t)
)−γ

−
(

1 + ∂u
∂x

(zi−1)
)−γ

]

+B
(

∂v
∂x

(zi, t) −
∂v
∂x

(zi−1, t)
)

.
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3.2 Discretization in time

For time discretization we use a third order Runge-Kutta method verifying the TVD
property (see3 for a description of the method and 1 for its application to nonlinear
acoustics problem). To apply this method for time integration, we start from the initial
conditions given in (3)-(4), so that cell averages may be obtained over each control volume
(ū0

i , v̄
0
i ).

Therefore, it can be assumed that at a particular time tk, the approached values of the
cell averages are known, so we can compute values for the next time step (tk+1 = tk +∆t)
by means of the following process:

ūk,1
i = ūk

i + ∆tv̄k
i , v̄k,1

i = v̄k
i + ∆tLi

(

ūk, v̄k
)

ūk,2
i = 3

4
ūk

i + 1
4
ūk,1

i + ∆t
4

v̄k,1
i , v̄k,2

i = 3
4
v̄k

i + 1
4
v̄k,1

i + ∆t
4

Li

(

ūk,1, v̄k,1
)

ūk+1
i = 1

3
ū

k+ 2

3

i ūk,2
i + 2∆t

3
v̄k,2

i , v̄k+1
i = 1

3
v̄

k+ 2

3

i v̄k,2
i + 2∆t

3
Li

(

ūk,2, v̄k,2
)

(13)

where it has been denoted as Li

(

ūk,j, ūk,j
)

an approach to Λi

(

u(tk,j, v(tk,j)
)

using the
cell average values. This process, called reconstruction, consists of approximating the
intercell derivatives in each step of Runge-Kutta method:

∂u
∂x

(

zi−1, t
k,j

)

,∂u
∂x

(

zi, t
k,j

)

, ∂v
∂x

(

zi−1, t
k,j

)

, ∂v
∂x

(

zi, t
k,j

)

by the intercell values taken by the derivatives of an interpolating function obtained
from cell-averages.

This process is described in 1. The technique we have used is based on Harten’s
”primitive function” (see 2 for the description of this technique, and 1 for its applica-
tion in nonlinear acoustics problem), and the interpolating polynomials are obtained by
the E.N.O. method. By this method, a piecewise interpolating polynomial function is
obtained, and it defines, over each control volume, one different polynomial.

4 INTERCELL FLUX RECONSTRUCTION

When calculating intercell derivatives, discontinuities may be present (since the deriva-
tives have been computed by means of, in general, different polynomials) which are nec-
essary to avoid. We have used and compared three methods for this purpose:

• Lax-Friedrichs scheme for a system of conservation laws (LF).

• Two step Richtmyer version of Lax-Wendroff scheme for a system of conservation
laws (LW2).

• FORCE scheme.

Comparison of these three schemes is made in terms of experimental stability limit.
This stability limit is experimentally obtained according to numerical schemes.
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All of them require system (10) to be written as a system of conservation laws with
source term:

∂U

∂t
+

∂F(U)

∂x
= S(U) (14)

where,

U = {u, v}T (15)

F(U) =







0,−
c2
0

γ

(

1 +
∂u

∂x

)−γ

+ νb
∂v

∂x







T

S(U) = {v, 0}T

The time integration in system (14) is carried out by means of the Runge-Kutta TVD
scheme (using expressions (13)), while fluxes are computed by the methods mentioned
above. In the next subsections, the methods applied are briefly described.

4.1 Lax-Friedrichs scheme for a system of conservation laws (LF)

Lax-Friedrichs flux for a system of conservation laws (see 4) at the intercell zi, is given
by the expression:

FLF (zi, t
k) =

1

2

(

F(U(xi, t
k)) + F(U(xi+1, t

k))
)

+
h

2∆t

(

U(xi, t
k) − U(xi+1, t

k)
)

(16)

We can apply this flux to the nonlinear acoustics problem, obtaining:

FLF
1 (zi, t

k) =
1

2

[

F1(u(xi, t
k)) + F1(u(xi+1, t

k))
]

−
h

2∆t

(

u(xi+1, t
k) − u(xi, t

k)
)

(17)

FLF
2 (zi, t

k) =
1

2

[

F2(v(xi, t
k)) + F2(v(xi+1, t

k))
]

−
h

2∆t

(

v(xi+1, t
k) − v(xi, t

k)
)

where,

F1(u(xj, t
k)) = 0 (18)

F2(v(xj, t
k)) =

A

2
Nu +

B

2
Mv, (j = i, i + 1)

where it has been used the notation:

Nu =

(

1 +
∂u

∂x
(xj, t

k)

)−γ

(19)

Mv =
∂v

∂x
(xj, t

k), (j = i, i + 1)

5



A. Hidalgo, E.F. Toro and C. Conde

4.2 Two step Richtmyer version of Lax-Wendroff scheme for a system of
conservation laws (LW2)

This method consists of two steps (as can be found in 4):
First step: Evaluate the intermediate solution:

U(zi, t
k+ 1

2 ) =
1

2

(

Uk
i + Uk

i+1

)

+
∆t

2h

(

Fk
i − Fk

i+1

)

(20)

The expression (20) corresponds to the solution at the point zi at the time tk+ 1

2 , which
is the half time in the interval [tk, tk+1].

Second step: Compute the flux as:

FLW2(zi, t
k) = F

(

Uk+ 1

2 (zi)
)

(21)

When applying the formulation to nonlinear acoustics problem, we start by applying
formula (20) to obtain the intermediate solution :

u(zi, t
k+ 1

2 ) =
1

2

(

u(xi, t
k) + u(xi+1, t

k)
)

(22)

v(zi, t
k+ 1

2 ) =
1

2

(

v(xi, t
k) + v(xi+1, t

k)
)

+
∆t

2

(

F2(xi, t
k) − F2(xi+1, t

k)
)

where F2(xi, t
k) = A

(

1 + ∂u
∂x

(xi, t
k)

)−γ
+ B ∂v

∂x
(xi, t

k)).

From the intermediate solution, calculated above, we can finally obtain the final ex-
presion ef the LW2 flux (FLW ):

FLW2
1 (zi, t

k+ 1

2 ) = 0 (23)

FLW2
2 (zi, t

k+ 1

2 ) = A

(

1 +
∂u

∂x
(zi, t

k+ 1

2 )

)−γ

+ B
∂v

∂x
(zi, t

k+ 1

2 )

4.3 FORCE scheme for systems of conservation law

FORCE scheme, as described in 4,5,6 is just an arithmetic mean between the Lax-
Friedrichs scheme and the Lax-Wendroff one. Therefore, we can write the FORCE flux
as follows:

FFORCE(zi, t
k) =

1

2

(

FLF (zi, t
k) + FLW2(zi, t

k)
)

(24)

5 NUMERICAL EXAMPLE

We have solved the same problem as in 1 but trying to reach stability in the solution
for higher frequencies.

It is considered a horizontal 1-D tube, filled with air, and with a length L. In its left
boundary there is a piston hitting the gas for a particular frequency. The maximum
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displacement allowed for the piston is 3 × 10−7m. The air density 1.29kg/m3 and the
speed of sound in air is considered to be c0 = 340m/s. The value of the coefficient of
specific heat relation is taken as γ = 1.6. The maximum simulation time is obtained as:
tfin = 100π

ω
, where ω = 2πν. The number of time steps is 5000. To achieve a correct

discretization for good stability conditions, the length L is equivalent to half the wave-
length of sound, that is: L = c0

2ν
. The number of spatial nodes, in which numerical solution

is computed, that have been used in calculations is 100.
The initial conditions considered are:

u(x, 0) = 0, 0 < x < L (25)

∂u

∂t
(x, 0) = 0 0 < x < L (26)

And, also, the following boundary conditions, for the left boundary:

u(0, t) = 3 × 10−7sin(ωt), 0 ≤ t ≤ T (27)

∂u

∂t
(0, t) = 3 × 10−7cos(ωt), 0 ≤ t ≤ T (28)

And for the right boundary:

u(L, t) = 0, 0 ≤ t ≤ T (29)

∂u

∂t
(L, t) = 0, 0 ≤ t ≤ T (30)

In the following examples, we compare LW2 and FORCE schemes. LF scheme is just
used in order to build the FORCE one.

Results are shwon for frequencies: ν = 20kHz (Figures 1-4) and ν = 100kHz (Figures
5-12).

The results for ν = 20kHz show a perfect agreement with the ones obtained in 1,
regarding both gas particles displacement and pressure. There is also a perfect agreement
whether using LW2 scheme or FORCE scheme.

The numerical solution for ν = 100kHz is also stable, although it shows oscillations for
both schemes considered. For this frequence, it is also shown pressure and displacement
in the middle point of the tube.

Experiments carried out for higher frequencies have shown a higher stability limit for
FORCE scheme than for LW2 one.

6 CONCLUSIONS

- It has been developed a scheme in high order finite volumes to solve the 1 − D
nonlinear acoustics problem.

- The intercell flux reconstruction have been carried out, writing the mathematical
formulation of the problem as a system of conservation laws with source term, and solving
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it by three different schemes for conservation laws: Lax-Friedrichs, the two step Richtmyer
version of Lax-Wendroff method and FORCE sheme.

- The use of E.N.O. interpolation in the finite volume formulation do a very good job
to eliminate oscillations appearing.

- Numerical examples show that stability for increasing frequencies depends clearly
on the reconstruction process, being the FORCE the one with better stability conditions,
among the ones considered.

- Further work will consider a theoretical stability study, other types of non-oscillatory
interpolation (such as, for example WENO), and application to bi and tridimensional
problems.
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Figure 1: Displacement of gas particles for t=0.01 s. Scheme LW2. ν =20kHz
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Figure 2: Pressure for t=0.01 s. Scheme LW2. ν =20kHz
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Figure 3: Displacement of gas particles for t=0.01 s. Scheme FORCE. ν =20kHz
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Figure 4: Pressure for t=0.01 s. Scheme FORCE. ν =20kHz
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Figure 5: Displacement of gas particles for t=0.01 s. Scheme LW2. ν =100kHz
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Figure 6: Pressure for t=0.01 s. Scheme LW2. ν =100kHz
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Figure 7: Displacement of gas particles for t=0.01 s. Scheme FORCE. ν =100kHz
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Figure 8: Pressure for t=0.01 s. Scheme FORCE. ν =100kHz
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Figure 9: Displacement of gas particles in x = L/2. Scheme LW2. ν = 100kHz
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Figure 10: Pressure in x = L/2. Scheme LW2. ν = 100kHz
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Figure 11: Displacement of gas particles in x = L/2. Scheme FORCE. ν = 100kHz
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Figure 12: Pressure in x = L/2. Scheme FORCE. ν = 100kHz
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