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E X E C U T I V E S U M M A R Y

Excessive car use is one of the main factors of congestion, global warming and bad
air quality in big cities. Therefore, many municipalities are trying to ban out cars
from their cities. To see which policies can achieve this change in traffic, complex
macro-level traffic models that calculate congestion and modal split are created.
More often than not, these models make predictions based on a small set of sce-
narios. However, in the rapidly changing times of today, these scenarios are often
not sufficient enough to account for the highly uncertain future. Therefore, in this
thesis, a traffic model from a case in the municipality of Groningen is tested on the
unpredictable future more broadly. This is called a deep uncertainty analysis. The
main research question is:

“How to account for deep uncertainty in macro-level traffic models to achieve more robust
decision alternatives?”

In order to answer this question a fitting method to apply to the case is found.
After that the model is defined, with the important uncertainties, policies and out-
comes. Then the results are analysed to end with a discussion and conclusion of
these results.

The futures in model studies are described by uncertainties. Uncertainties are
defined in 5 levels of which level 4 and 5 are deep uncertainties. The pandemic that
Covid-19 caused is a good example of such a high level uncertainty. A prominent
method to take these uncertainties into account is Robust Decision Making (RDM).
This is a 5-step model cycle in which the first step consists of defining the model.
The second step runs this model over a wide set of futures described by the possible
uncertainty values of the model. In this thesis, these futures are drawn via Latin
Hypercube Sampling. In the third step, the relative effect of all uncertainties of
all outcomes is calculated. Additionally, scenario discovery techniques can show
which areas of futures is causing the system to fail or succeed. The fourth step
is called the trade-off analysis. Based on robustness metrics, different policies are
compared on performance. The robustness metrics are chosen based on the level of
risk aversion of the decision maker and the preference towards a policy that suffices
a threshold or a policy that performs well compared to other policies. In the last
step new futures and policies are created. This research mainly focuses on the first
four steps.

The idea of RDM is that a very broad set of scenarios is run. However, macro-
level traffic models are often very detailed and complex which causes run time to
be long. Take for example the model of the case study, which runs in 22 hours and
45 minutes. This is too long for the time in which an assignment must be complete
and therefore the run time is reduced. The main place in which time can be reduced
is in the procedure sequence. There are many procedures that are not important
to the goal of this study. Due to the previous mentioned characteristic of macro-
level traffic models, reducing the model detail is a more challenging task. The high
amount of underlying relations makes changes very unpredictable. Eventually the
run time of the case has been brought back to 12 minutes. The software in which
the case runs, PTV Visum, also allows for 5 simultaneous runs. This means that
the total run time of the broad set of scenarios is reduced by a factor 5. The next
obstacle is the fact that the case runs in PTV Visum and the main method to perform
RDM, the EMA workbench, runs in Python. Via a COM interface these two models
are connected.
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In the first step of the RDM, the model is defined by a set of uncertainties, policies
and outcomes. In total 5 uncertainties, 4 policies and 9 different outcomes are
defined. The most important outcome is the total distance travelled by car. This is
an outcome which is often used in traffic research. However, the policies defined are
all fixed. Therefore, a set of changing policies is also defined. The changing policies
allows the researcher to get a more clear view on correlations between policies and
outcomes, but also between policies and uncertainties. The changing policies are
the same as the fixed policies, beside the fact that they can change in value. In the
second step of the RDM cycle the model in run over a wide set of plausible futures.
In this case 1000 runs are performed. Every run describes a different future based
on a combination of uncertainty values between a lower and upper bound.

The analysis of the data with feature scoring, PRIM and 4 different robustness
metrics, showed the value of deep uncertainty analysis for macro-level traffic mod-
els. It can find scenario regions of interest, show interactions between uncertainties
and outcomes and the policies can be ranked based on robustness, However, it
also showed some characteristics of these types of models that limit the usefulness.
The first limitations is the fact that most macro-level traffic models are over fitted.
This causes the effect of a change in a single variable to be negligible. Over fitting
is most obvious in the feature scoring, where policies have very little interaction
effects with the uncertainties. This causes, no matter what the scenario is, the rank-
ing of the policies to be exactly the same. The second limitation is the fact that
the set of variables is limited. Something like costs is not in-bedded in the model
and due to the high complexity it is hard to add this to the model. This limits i.e.
a trade-off analysis, since the modeller is only possible to see trade-offs, based on
different robustness metrics, within a single outcome of interest and not between
the robustness of conflicting outcomes of interest.

There are many different ways future work could built upon this work. The first is
to apply the RDM cycle to a macro-level traffic model with conflicting outcomes of
interest. The second is to perform an optimization on changing policies with more
advanced techniques, like Multi Objective Robust Decision Making. This biggest
obstacle to apply this is the total run time of macro-level traffic models. Therefore,
computational power has to be increased or computational expensiveness has to be
decreased. The first can be achieved by, for example, using nodes from providers
like Amazon web services. The most plausible way to achieve the latter is by com-
pletely remaking a model from scratch. The third option is to build a less complex
model which represent the behaviour of a big macro-level traffic model. This intro-
duces the last possibility for future work, multi-resolution modelling. By making
both a simple small and a big complex model, policies can be tested on a broad set
of futures in a small model, after which a big model runs these policies for more
in depth results. However, the question arises whether or not such a big model is
needed. Due to the high level of uncertainty in these models, very exact calculations
are still uncertain. A in-depth deep uncertainty analysis might prove more useful
than a small set of scenarios in a complex model.
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1 I N T R O D U C T I O N

1.1 the negative effects of car use

Cars are one of the most used vehicles for transportation. However, there are many
negative effects regarding car use. The main negative externalities are the emission
of CO2, NOx and PM10. This causes global warming and harm to public health
(McMichael et al., 2003). There are already many policies made to cope with these
negative effects. For example, the ban of cars with a euro 5 or lower emission
standard in Berlin or the introduction of emissions free zones in many big cities
(Sheahan, 2018). Beside the negative effects of singular car use, there are also some
effects based on the amount of car use. Congestion is the main negative effect
caused by this. Due to the capacity of roads being lower than the volume of vehicles
driving on these roads there are 63.5 million hours of congestion in the Netherlands
in 2020, which was a year with a relatively low amount of congestion (Rijksoverheid,
2020). Next to the congestion there are parking problems in large cities, but smaller
towns as well (Ibrahim, 2017).

The singular car use problem mainly causes negative effects on health and global
warming (Douglas et al., 2011). This is most obvious in cities like Beijing where the
large amount of emissions causes a thick layer of smog above the city (Peng et al.,
2020). As a result of the smog many citizens wear face masks to prevent health
issues and tourists think twice before traveling to Beijing. Global warming is one of
the biggest challenges the world faces. It speaks for itself that the negative effects
this can have are enormous. The capacity problem on both roads and parking space
partly adds to the above painted problems, because of cars having to pull up and
stop more often. It also has some second order negative effects. Due to congestion
or people unable to find a parking spot, efficiency of traffic is lowered. Thereby,
trucks, which are the main transporters of goods, get a lot of delays.

There are many uncertainties and different possible policies accompanied with
this problem. It is unsure what the future in transportation brings (Lyons and
Marsden, 2019). The upcoming electric vehicles, the evolution of Mobility as a
Service (MaaS), hydrogen driven cars and the reductions in emissions for gasoline
driven cars. Partly due to these new developments, the list of possible policies to
reduce car use and emissions is almost endless. Different roads can be changed or
laid down, a shared bike system can be introduced or the speed on a road can be
changed. The environment in which these policies have effect can also change in
ways that are hard to predicted. For example, a situation in which they lay down
an extra lane for a highway. On the one hand, the impact of this extra lane can be
very big if the population around this highway increases or if this population gets a
higher percentage of commuters. On the other hand, this impact can be negligible
if the volume on the road does not change or even decreases. There are many
external factors that determine these variables. A fixed number struggles to capture
the complete picture. Therefore, a range of possible values covers the future better
than a fixed number.

Even though the future is very uncertain, models that valuate these policies are
not taking these uncertainties into account in a proper manner. In many studies
a set of 3 to 10 different scenarios are researched. In very complex systems these
scenarios only show a small part of the high amount of possible scenarios. Due
to this, policies tested can have completely different outcomes than expected. A
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2 introduction

policy that performs well in 3 different scenarios can perform quite poorly in 500

other scenarios. Therefore, taking these uncertainties into consideration in a broader
manner can prove helpful in finding a more robust policy.

1.2 traffic modelling

There are multiple forms of traffic modelling and simulation. Ratrout and Rahman
(2009) describe three different levels of traffic modelling: microscopic, mesoscopic
and macroscopic. Microscopic modelling focuses on the individual behaviour of
the entities in the model. Macroscopic modelling is based on the continuum traffic
flow theory whose objective is mostly based on the speed, density and volume of
the total traffic. This means that there is little attention to the interaction between
agents. Lastly, mesoscopic modelling is a combination between microscopic and
macroscopic. It tries to catch the dynamics of the micro model while focusing more
on the continuum traffic flow. Sometimes transport models of different levels are
combined. Yang and Morgan (2006) presented a model that was microscopic on the
points of interest and meso- macroscopic at the surrounding areas that were of less
interest. By doing this, a bigger network can be stimulated without losing too much
computing power.

Traffic and transportation systems are complex systems, due to the fact that they
are characterized by a great amount of factors and their relationships (Barceló, 2010).
The complexity increases further by the fact that these factors and relations have
a lot of uncertainty (Ottomanelli and Wong, 2011). This uncertainty stems from
the fact that in these types of models human behaviour, environment and external
effects play a big role. Take for example the effect of COVID-19 on a system, this
is often not possible to predict perfectly. In order to have more reliable solutions,
policymakers have to take this uncertainty into account.

De Jong et al. (2007) describe how uncertainty is taken into account in traffic
forecasts. They consider two different forms of uncertainty, model uncertainty and
input uncertainty. Model uncertainty is mostly based on the relationships within
the system. In order to account for the input uncertainty they use Monte Carlo
sampling. This method is put forward by multiple papers (Hugoson et al., 2005)
(Zhao and Kockelman, 2002). For a part of the model uncertainty they also use
Monte Carlo, but also for a part the bootstrap technique. The bootstrap technique
picks, from a predefined x set of values, x new values where the same value can
occur more than once (Hugoson et al., 2005). By applying these techniques, the
forecast gets a wide range of possible values which represent the uncertain future.
Another way of sampling the uncertainties is through Latin hypercube sampling
(LHS). This technique tries to give an equal distribution of uncertainty values over
scenarios (Sheikholeslami and Razavi, 2017).

De Jong et al. (2007) continue their paper with a case study of the Dutch national
model system, called ”Landelijk Model Systeem” (LMS). The LMS is a model that
contains the whole Netherlands with more than 1300 zones and their OD matrices
focusing of passenger transport. The model calculates growth factors of each origin-
destination relation by mode, purpose and time. The growth factors are of a future
year based on a base year. Uncertainty is tested for the tour frequency models
and the mode destination models. The values of the uncertainties in the scenarios
are picked by Monte-Carlo sampling. First a distribution of an uncertainty was
calculated by checking data from the past 30 years. Based on this distribution
values are picked. In total 100 scenarios were calculated of whom 50 contained a
policy and 50 that contained no policy. The conclusion of the model was that input
uncertainty had the most influence of the outcomes. This contained variables like
”car ownership” and ”income distribution”. The outcomes were expressed in the
standard distribution between runs.
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1.3 deep uncertainty in transport modelling

There is a difference between stochastic uncertainty and deep uncertainty. Lempert
(2003) describes this difference as follows: “The condition in which analysts do not
know or the parties to a decision cannot agree upon (1) the appropriate models to
describe interactions among a system’s variables, (2) the probability distributions to
represent uncertainty about key parameters in the models, and/or (3) how to value
the desirability of alternative outcomes”. This is especially true in model-based
decision support for complex systems (Lempert, 2002). Walker et al. (2012) describe
5 levels of uncertainty, with level 1 being the lowest level and level 5 the highest. A
level 1 uncertainty can often be dealt with through a sensitivity analysis. A level
5 uncertainty is an uncertainty of which we know that we do not know it. Think
about natural disasters which we did not expect. Walker et al. (2012) assign only
the level 4 and level 5 uncertainties to deep uncertainties.

The notion of uncertainty is often mentioned, but not often dealt with extensively
(Rasouli and Timmermans, 2012). Increasingly, studies acknowledge the importance
of uncertainty of all the three levels of transport models. It is also mentioned that
policy makers should not look at the most plausible future, but rather at a range
of possible futures they can encounter (Curtis et al., 2020). Petrik et al. (2018) did
an uncertainty analysis on an agent based model (micro simulation) of Singapore.
A model with more than 600 uncertainties first got reduced to 100 based on a sen-
sitivity analysis. This was possible with so many uncertainties due to the fact that
the model was divided into multiple sub-models. This reduced the amount of sim-
ulations needed to be run and uncovered the most influential uncertainties. After
that, based on latin hypercube sampling, 500 scenarios were run. The uncertainties
used are mostly of level 1, 2 or 3. Therefore, it is not in essence a deep uncertainty
analysis which causes some deep uncertainties to be not dealt with enough. Adding
to this, running only 500 scenarios with a set of 100 uncertainties is very little. The
amount of combinations possible are far greater. Therefore, it is even questionable
if 10000 scenarios would suffice.

The way researchers quantify uncertainties in transport modelling differences be-
tween each other. Most of them quantifies it via link flows (Lowe et al., 1982). An-
other way of quantifying it is via travel times or emissions which need an extra fac-
tor, like emissions per kilometer, in order to quantify (Schrijver et al., 2003). A more
aggregated way of quantifying the effect of uncertainty is by taking the amount
of trips or passenger kilometers per mode (Armoogum, 2003). These quantifica-
tion’s are usually presented by giving the 95% with the variance and the standard
distribution. This accomplishes a percentage based likelihood for a scenario.

Calvert et al. (2018) research the effect of uncertainties in traffic planning. They
noticed that the average of scenario inputs are not the average of scenario outputs.
This is caused by the fact that there are many secondary effects like congestion.
This means that in a big part of the scenarios there in no heavy congestion, while
congestion is one of the main reasons for traffic planning. Therefore, focusing on
these scenarios can prove more useful than focusing on the scenarios in which traffic
planning is not needed.

Overtoom et al. (2020) assessed the impact of shared autonomous vehicles on
congestion and curb use. Again, they acknowledge the presence of deep uncertain-
ties, however they do not assess these uncertainties thoroughly. This seems to be
the case in most of the researches found. Deep uncertainties are acknowledged,
but weakly accounted for by for example a sensitivity analysis. This makes the
presented solutions less robust than could be possible.
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1.4 research scope
Traffic models are usually representations of very complex systems, this is even
more the case in macro-level traffic models. Macro-level traffic models are therefore
dependent on deep uncertain factors. These uncertainties, which are mainly input
uncertainties, are often not properly accounted for. Some researchers have tried
to account for uncertainties in macro-level traffic models but have either failed in
acknowledging the deep uncertain nature or have tried to account for it by running
just a small set of scenarios. This research applies the Robust Decision Making
(RDM) cycles in a case study to account for the deep uncertainties in a macro-level
traffic model.

1.5 research questions
A lack of regarding deep uncertainty in traffic models makes the reviewing of poli-
cies a less robust process. Therefore, In this research, the first steps into regarding
deep uncertainty in traffic models are taken. The research question that fits that
purpose is:

“How to account for deep uncertainty in macro-level traffic models to achieve more robust
decision alternatives?”

In order to answer the main research question, some sub-questions are defined.
These sub-questions will divide the research in multiple segments which can jointly
answer the main research question. Below every sub-question is listed and de-
scribed. They will also be linked to each other to see how they can answer the main
research question. Some sub-questions are based on the case study defined. The
sub-questions go along the line of the Exploratory Modeling and Analysis (EMA)
methodology defined by Bankes (1993).

• Which method can be used to take deep uncertainty into account in a traffic model?

This sub-question has little to do with the EMA methodology. The purpose is to
extend the basis on which the research is conducted. There is a lot of theory about
how numerous deep uncertainty methods can improve decision-making. Some of
these methods are fitting for traffic models and some are not. The eventual outcome
of this research will depend on these methods.

• What are the important deep uncertainties, policies and outcomes in traffic models?

Among the EMA methodology three steps are identifying the (deep)uncertainties,
the design of policy levers and the identification of troublesome/promising regions.
The uncertainties are set at the early stages of the modeling process while the out-
comes and policy lever are able to change based on outcomes. As mentioned by
Walker et al. (2012), only level 4 and level 5 uncertainties are regarded as deep un-
certainties. Therefore, the uncertainties found have to be evaluated on their level.
The policies that are possible to input in the model will be based on the resources
of the problem owner of the case that is studied. Regarding the outcomes, not only
the types of outcomes are important. For example the maximum acceptable values
are of importance to find regions of interest.

• Which uncertainties and policies is the model sensitive to?

If all the uncertainties are implemented the model can produce outcomes. This
gives a first insight into the uncertainty space and which regions produce interesting
outcomes. This part of the EMA methodology is iterative. Policies will be adjusted
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based on the interesting regions. The outcomes differ from the past results due
to the changed policies. This shows new interesting regions on which again the
policies can be adjusted.

• Which policies perform best across a wide set of future scenarios?

The result of the other sub-questions lead to a set of policies that perform best
in certain situations. Based on the answer of sub-question 1, a conclusion can be
drawn about which policy proves most useful for this case. The word “best” thus
has to be defined by the results of sub-question 1.

1.6 research approach
The goal of the research is to analyse how deep uncertainty can be taken into ac-
count in a decision based on a traffic model. Yin (2017) emphasizes that in order
to test if a certain method works, a case study is a good approach. Therefore, the
research will be conducted on the basis of a case study. The case is based on a
research currently conducted by Sweco for the municipality of Groningen. Gronin-
gen is developing the mobiliteitsvisie for 2030 and 2040. The mobiliteitsvisie is a report
about the future of transportation in the municipality. It contains for example the
percentage of car users per age and the kilometers traveled by bicycle. In coop-
eration with Sweco, a model in PTV Visum, which represents the traffic flows on
a small scale within Groningen and on a big scale around Groningen, is created.
The model allows different policies to be inputted. It can be classified as a macro-
level model, due to the high level view on the road system. The main goal for the
municipality of Groningen is to reduce the amount of kilometers travelled by car.
These kilometers should be transferred to for example bicycle kilometers or public
transport kilometers.

The Visum model that is used is designed by a collaboration between 4cast and
Sweco for the municipality of Groningen. It contains the details of all the roads and
all the demographic data of Groningen in detail. A model view in given in figure 1.1.
Data of the rest of the Netherlands and foreign destinations is less detailed, but it is
taken up in the model. The demographic data is described in more than 2200 zones
defined in the model. The model is based on the four-step travel model (McNally,
2007). The four step are trip generation, trip distribution, mode choice and route
assignment. The trip generation part determines trips from origins to destination
for each zone based on demographic and socioeconomic data. Trip distribution
matches the origins with the destinations using a gravity model. This takes into
account the travel costs between origins and destinations and the relative activity at
them. The latter two parts are described in more detail in the next to sub chapters.

1.6.1 Mode choice

The mode choice part of the model determines the proportion that transport modes
are used between origins and destinations. The modal model is of the multinominal
logit form (Kwak and Clayton-Matthews, 2002). It uses the first two steps and data
about transportation modes and their usage costs as input. In the Visum model
of Groningen the mode choice is done for single movements and for chains of
movements. A single movement is for example from home to the supermarket and
back. A chain of movements is for example from home to the supermarket, from the
supermarket to school and from school back home. These movements are calculated
in 15 different procedures in the procedure sequence of the Groningen model. The
first procedure, which calculates the mode choice for the non-chain movements,
accounts for around 80% of all the movements, which means that around 20% are
chain movements. The mode choice model results in two dataframes which contains
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Figure 1.1: Groningen Visum model view

Table 1.1: Regions in the model
1 Municipality Groningen
2 South
3 Southeast
4 Northeast
5 Northwest
6 Southwest
7 Other parts of the Netherlands
8 Abroad
>=2 <=6 Region outside municipality
<=6 Region Groningen

the amount of movements per travel purpose per transportation mode from every
region to every other region (table 1.1).

1.6.2 Route assignment

The route assignment part allocates a route for every origin destination pair com-
bined with the mode choice. There are several ways this can be done. Two examples
are the Wardrop equilibrium assignment and the ICA (Intersection Capacity Anal-
ysis) assignment. In the Wardrop equilibrium assignment every car chooses the
shortest route, subject to the other drivers. The difficulty here is that drive time
is influenced by demand and demand is influenced by drive time. This is called
a bi-level problem. Therefore, there are multiple iteration needed to find a good
balance. ICA assignment is a combination between an equilibrium assignment and
node impedance calculation (PTV Visum 2021 - Manual). These two parts influence
each other in an iterative manner. The assignment calculates the volume on node
and with this information the delay time and capacities of nodes/turns is calculated.
The ICA assignment is usually more demanding than the Wardrop equilibrium as-
signment.

In the Groningen model the route assignment gives a clear overview of the busi-
ness of roads. For some parts it uses the ICA assignment and for some parts the
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equilibrium assignment. It gives a map where the roads are colored based on the
amount of cars or congestion on a certain street.

1.6.3 Run time

The Groningen model has a run time of around 22 hours. The first two parts of
four step travel model take very little time. The mode choice model takes around
2 hours and the route assignment model around 5 hours. However, the last two
parts are run 3 times to account for deviations in the results. These numbers are
retrieved from an 80 core computer. For many methods that take deep uncertainty
into account a lot of different runs have to be conducted. It is clear that the run
time of the Visum model is to high and therefore is one of the key obstacles in this
research.

1.7 structure
The remainder of this thesis has the following structure. Chapter 2 describes the
methods used to deal with deep uncertainty. Chapter 3 first addresses the run time
of the model and then a connection between python and Visum is made. Finally,
the method describe in chapter 2 is applied to the model. Chapter 4 discusses the
results from the analysis. In chapter 5 the discussion of the results is given, which
include the limitations of this work and ideas for future work. Lastly, a conclusion
is given in chapter 6. This includes the answering of the research questions and a
recommendation to the municipality of Groningen.





2 M E T H O D O LO GY

This chapter dives deeper into the notion of deep uncertainty and the value within
policy making. A prominent method from the literature, called robust decision
making, is discussed. Thereby, methods for global sensitivity analysis and scenario
discovery are given. The chapter is finalized with a discussion of different robust-
ness metrics, which are used to evaluate the policies.

2.1 uncertainty is everywhere
There are almost no policy issues that are not influenced by uncertain factors.
Walker et al. (2013) argued that there are several reasons that considering uncer-
tainty is essential in policy analysis. They explained these reasons by the hand of
a couple different examples, of which some are briefly discussed here. Firstly, a re-
search of Flyvbjerg et al. (2003) reviewed the cost and benefits analysis of multiple
mega projects. It came to light that in nearly every case the costs were underesti-
mated while the benefits were overestimated. Due to the usage of a single scenario
or a small set of scenarios, the estimations were just one single value. If the fu-
ture is uncertain, the future can not be portrayed by a single value, but should be
a range of possible values to account for a wide set of different futures. Another
example is found in the predictions of the growth of passengers and noise emis-
sions by Schiphol airport. Researchers tried to predict the growth in passengers
by following the growth of the Gross national product (GNP). For the GNP three
scenarios were created, a low, medium and high scenario. The predicted growth of
passengers was based on the highest growth of the GNP. However, in 1999 the GNP
growth followed the line of the low scenario and the passenger growth was way
higher than the growth of the GNP in a high scenario. What happened was that the
passenger growth was also influenced by factors that were not known beforehand.
As a result, the policies made for up until 2015 had to be changed. To conclude the
main reasons to regard uncertain in policy analysis come down to this:

1. Uncertainty cannot be eliminated since we cannot see in the future.

2. Ignoring uncertainty can lead to poor policies and inefficient use of resources.

3. Ignoring uncertainty can limit our ability to take corrective action in the future

Beside the reasons of regarding uncertainty in policy analysis Walker et al. (2013)
also describe 4 different locations of uncertainty in policy analysis:

1. Uncertainty in the external factors (X)

2. Uncertainty about the response of the system on external factors and policy
changes (R)

3. Uncertainty about the outcomes of the model (O)

4. Uncertainty about the weights that are assigned to the outcomes(W)

Figure 2.1 shows in more detail how the uncertainties are located. External factor
uncertainty (X) is based on the fact that we do not know how the future develops.
Usually there is a prediction about the range of values the uncertainty can end

9
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Figure 2.1: Locations of uncertainties in policy analysis (Walker et al., 2013)

in. Depending on the level of the uncertainty this range can be very small or very
large. The relation uncertainty (R) is based on the fact that it is almost impossible
to perfectly explain the (cor)relation between factors. This is most obvious in very
complex systems (Agop et al., 2014). In complex systems there are a tremendous
amount of variables that influence each other. Thereby there is the notion of emer-
gence where the behaviour of the system cannot be explained by looking at single
interactions. The example about the growth of Schiphol is a good example of a
unpredicted relation. The outcome uncertainty (O) is the result of the two above
mentioned uncertainties. Due to uncertain externalities and relations it is also im-
possible to give a single outcome value. The outcomes also have a range of different
values based on the input that is given. The weight uncertainty (W) is based on the
value that stakeholders give to outcomes. A stakeholder now can have a different
view on life in ten years. For example, in the Dutch government the people in
charge change every 4 years. The old minister of climate can have a more conserva-
tive view on global warming and will therefore weight less value to reducing CO2

emissions.

2.2 ways to deal with uncertainty

There are a lot of different methods to deal with uncertainty in policy analysis,
ranging from a sensitivity analysis to Monte Carlo simulations. These methods are
all viable in different systems and situations. The situation depends heavily on the
uncertainties in the system that is analysed. By first analysing which uncertainties
are present a useful method can be chosen. Methods like a sensitivity analysis are
often only useful for dealing with level 1 or 2 uncertainties. Policy problems are
usually influenced by many level 3, 4 and 5 uncertainties. Therefore, there are other
tools needed to deal with these uncertainties.

Level 3 uncertainties are mostly dealt with by either reducing it to a level 2 or
increasing it to a level 4 uncertainty. The first is possible by giving probabilities to
values while the latter is possible by taking all the values as equal likely. For level
4 uncertainties it is best practice to find the most robust policy. This is a policy
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that performs good in most of the plausible futures. This is also known as static
robustness or scenario planning (Van der Heijden, 2011). Walker et al. (2013) discuss
ways to deal with level 5 uncertainties. The first is resistance, where you try to plan
for the worst possible future. The second in resilience, this means picking a policy
that is able to quickly ’repair’ the system after a disruption. The third and last one
is adaptive robustness. The difference with static robustness is that you change the
policy if the future develops different than is viable for the current policy. According
to Kwakkel et al. (2012) the latter has proven to be the most fitting method. In later
work Kwakkel and Haasnoot (2019) describe 5 other ways of dealing with level 5

uncertainty. These are Robust Decision Making (RDM), Dynamic adaptive planning
(DAP), Dynamic adapative policy pathways (DAPP), Info Gap decision theory (IR)
and Engineering options analysis. The first is further elaborated on in next section.

2.2.1 Robust decision making

One of the most prevalent methods that take deep uncertainty into account is RDM.
The main idea of RDM is to not use models and data as a predictive tool, but rather
as a way to stress test policies on multiple possible future (Lempert et al., 2013).
With the help of visualisations and statistics, analysts can than discovery which
uncertainties and policies are most influential in the futures that are of interest.
This can, for example, be the future in which almost all policies seem to fail to meet
a certain requirement. This way, policy makers are able to find a set of policies that
meets multiple objectives. In other words, a robust policy.

Foundations

RDM is built upon a set of strong foundations (Lempert, 2019). The first foundation
is decision analysis (DA). Empirical research has shown that people make better
decisions when use decision aids. DA comprises the theory, methodology and prac-
tice of such aids. RDM applies this by evaluating alternative actions on alternative
future states of the world and comparing trade-offs between these actions. The key
difference between regular DA and RDM is that DA takes future states based on a
probability function, while RDM regards future states as deep uncertain which does
not include a probability function (Walley, 1991). In other words, DA focuses on
optimality and RDM on robustness. This difference is also present in the approach.
DA uses a predict-than-act approach (Lempert et al., 2004) and RDM uses an agree-
on-decision approach (Helgeson, 2020). The former seeks the most plausible future
to get to a set of alternatives. The latter tests a set of alternatives to get to a broader
set of alternatives based on the possible future states of the world.

The second foundation of RDM is assumption-based planning (ABP). ABP aims
to reduce the deleterious effects of over-confidence in existing systems and plans by
improving understanding of how and why they may fail (Lempert, 2007). This is
achieved by first identifying which assumptions are critical to make the plan work
and than judge these assumptions on vulnerability. Based on the assumption that
are both critical and vulnerable, three things are considered. Shaping actions, which
try to make the assumptions less likely to fail, hedging actions, which can be taken
if the assumptions start to fail, and signposts, trends and events that signal the start
of a failing assumption.

The third foundation of RDM is scenario analysis. The idea of a scenario is that
it is a way of looking at the future, without assigning a probability to it. In other
words, it does not look at probability, but it looks at possibility. RDM uses sce-
nario analyses to characterize and communicate deep uncertainty (Lempert, 2003).
It applies quantitive scenario discovery algorithms to find a set of scenarios that
are interesting. Than stakeholders can identify strategies based on these scenarios.
Lastly, these strategies are tested over a wider set of scenarios to see which performs
well overall. (Van der Heijden, 2011).
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The fourth and last foundation of RDM is exploratory modeling (EM) (Bankes,
1993). EM is the concept that combines the three previous mentioned foundations.
Exploratory models map a range of assumptions onto their consequences without
giving a probability to these assumptions. This is effective if there is no consensus
over the way these assumptions will develop or behave. With a proper experimental
design EM can prove to be useful to inform policy makers about policy choices. It
can help to generate a hypothesis, find interesting cases or tell something about the
effect of different variables on the system. RDM makes use of all these benefits, but
primarily uses the EM framework to find robust policies. Another advantage of EM
is that is allows for global sensitivity analysis, since it does not use a base case as
anchor point.

Steps of a RDM

Figure 2.2: 5 steps of a RDM (Lempert et al., 2013)

The workflow of RDM, as can be seen in 2.2, is an iterative process in which
every step can be reiterated based on the results in other steps. Below the steps are
described in greater detail:

1. The model is defined based on a XLRM diagram (Lempert, 2003). These are
the exogenous factors (X), policy levers (L), Relations (R) and metrics (M).
The exogenous factors are the uncertainties in the model and have a range of
values. The lever can either be some fixed policies or changing policies. In
the case that they are changing, they are also given with a range of possible
values. The relations describe how the system works and how the levers
and exogenous factors are influencing the system. Lastly, the metrics are the
outcomes of interest. These can be a time series in the case of a model that
runs over time or one value in the case of a model that calculates for one point
in time.

2. The second step starts with the selection of a set of interesting policies. This
set can be chosen via a discussion with stakeholders, the public debate or by
exploring the model itself. The latter can be achieved via a optimisation over
the policy levers that are in the model. This is possible if there are a broad set
of possible policies. When the policies are chosen, the policies are run over
a wide set of different scenarios. These scenarios try to represent the uncer-
tain future as good as possible. Every scenario is defined by a unique set of
uncertainty values. In order to do this, techniques like Latin hypercube sam-
pling (LHS) are applied. This method picks scenarios in such a manner that
every corner of the uncertainty space is represented. The uncertainty space
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is defined by all the combination between possible values of the uncertainties
defined.

3. Visualizations and data analysis are used on the data retrieved from broad set
of model runs. A prominent way to analyse the data in by doing a global sen-
sitivity analysis. This shows the effect of all the uncertainties on the outcomes
of the model. Another often applied method to explore and characterize vul-
nerabilities in the model is scenario discovery. This method searches for sce-
narios where the proposed solutions meet or miss their goal. The cluster of
scenarios that are vulnerable can be used for further analysis. An adapted
version of the Patient Rule Induction Method (PRIM) is incorporated in the
EMA workbench as a scenario discovery algorithm (Hamarat et al., 2013).

4. In this step the analyst can make trade-offs between competing strategies.
Since there are often competing objectives these trade-offs can help in balanc-
ing between these objectives. An example is cost vs reliability. You would like
to maximize reliability while minimizing the costs. Problem is that lower costs
usually mean lower reliability. The trade-off analysis can also be performed
by looking at the score on robustness metrics between competing objectives.

5. After the vulnerability analysis or the trade-off analysis, new futures and
strategies can be developed. From the vulnerability analysis it can become
clear that a certain future causes the whole system to fail and the current poli-
cies cannot fix that. Than the modeller can go back to the decision framing to
add other policies that do fix the problem in that specific future. Same goes
for the trade-off analysis. If there are no policies in the analysis that perform
above a certain threshold value, new policies have to be made.

Latin hypercube sampling - RDM step 2

LHS is a small-sample Monte Carlo approach. It preserves marginal probability dis-
tributions for every variable, while matching target correlations between variables
(Huntington and Lyrintzis, 1998). LHS constructs a highly dependent joint proba-
bility density function for the random variables in the problem, which allows good
accuracy in the response parameters using only a small number of samples. LHS
consists out of two steps. In the first step a set of samples in chosen that represent
the probability function of a input variable. In the second step the variables are
ordered so they match the correlation between the variables. Due to the fact that
correlations are enforced by the modeller the marginal probability distributions of
the variables remain intact.

Figure 2.3 shows how LHS looks like in a two dimensional uncertainty space
with 5 samples. Both variables are divided in 5 equal parts, which means that both
variables are uniformly distributed. The 5 samples are chosen in such a manner
that no row or column has more than 1 sample. This ensures that the uncertainty
space is represented in a broad manner. LHS is also the default way of sampling in
the EMA workbench, which is the main python library used in this research.

Global sensitivity analysis - RDM step 3

Global sensitivity analysis (GSA) is a important step in the assessment of uncer-
tainty in mathematical models (Christopher Frey and Patil, 2002). GSA considers
the influence of the full domain of uncertainties on the output behaviour. Therefore,
the complete distribution of every input must be evaluated and in addition the im-
portance of the input must be evaluated over the complete domain of the other
parameters Liu and Homma (2009). GSA differs from normal sensitivity analysis
due to the fact that GSA looks at the effect of the change of one single input com-
pared to a base case. GSA is very helpful in complex cases like this due to the fact
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Figure 2.3: Example of a 2D LHS (van der Scheer, 2021)

that there are many different inputs with interactions that have to be considered. A
downside to GSA is that it can become expensive rather quickly.

Saltelli et al. (2008) describes four different research objectives in regard to GSA.
The first is factor prioritization, which finds inputs that have the most influence on
the output uncertainty. The second is factor fixing, which searches for inputs that
are negligible in their effect on output uncertainty and can therefore be taken as
constant. The third is variance cutting, which looks at on which level of input values,
the output values can be reduced below a threshold. The fourth and last research
objective is factor mapping, which identifies spaces in the uncertainty space that
produce certain outputs. Factor prioritization and factor fixing are the two research
objectives that are of interested for the GSA in this research. This shows which
inputs are important and are worth taking a closer look at and can reduce the size
of the analysis by removing certain uncertainties in future runs. Factor mapping is
part of scenario discovery and is therefore discussed in the next section.

There are many ways to perform a GSA. Jaxa-Rozen and Kwakkel (2018) discuss
the effectiveness on decision trees in performing GSA. It tries to find the splitting
criteria between a set of input combinations, and regions of the output space. In-
dividual trees usually show a lot of variance, which means that a small change in
the input data can transform the structure of the tree. Therefore, techniques are
developed that aggregate a bigger set of different trees. One of the most prominent
is extra-trees (Geurts et al., 2006). This algorithm produces more accurate results
and is also computational efficient.

The EMA workbench has a certain method to implement extra-tree algorithms
to gain insight into the effect of uncertainties on outcomes. This method is feature
scoring (Kwakkel, 2021). Feature scoring is often used in machine learning to find
the most relevant factors. It is very efficient to use for factor prioritization in GSA.
An advantages of this technique is that it can also handle categorical factors like
policies and therefore it does not put any constraints on experimental design.
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Scenario discovery - RDM step 3

Scenarios are tools to communicate uncertainty in decision making. However, choos-
ing scenarios to run the model for can be very challenging in complex models with
a wide range of uncertain dimension. Lempert et al. (2008) compare different meth-
ods to identify scenarios of interest, which is also referred to as scenario discov-
ery. They compare the classification and regression tree (CART) method and the
patience rule induction method (PRIM) method. In this section only PRIM is ex-
plained further. The goal of scenario discovery is to find a set of input parameters
that are strongly predictive to a certain set of outcomes. The idea is that one or
multiple criteria are given which the outcomes must suffice. The outcome of the
scenario discovery is a region in the scenario space for which this is true.

The first method compared is based on PRIM, which is a method brought forward
by Friedman and Fisher (1999). Lempert et al. (2008) use PRIM to find boxes within
the uncertainty space which contain a high level of policy relevant scenarios. These
boxes should give the user a simplified image of the relevant inputs within the
uncertainty space. There are three metrics that are used to measure the quality of
the boxes. The first is coverage, which looks at the percentage of true case in the
box compared to the total amount of true cases. The second is density, which looks
at the percentage of true cases in the box compared to the total amount of cases in
the box. The last one in interpretability, which looks at how easy the visualizations
can be understood. This is usually based on the amount of boxes that are in a box
set which explain the data.

PRIM is an iterative process with two main steps, which can be found in appendix
C figure C.1. It begins with the entire data set and no restricted dimensions. Than
it creates a series of boxes that are increasingly smaller and denser. PRIM finds a
these smaller and denser boxes by removing a small slice which is picked based on
the highest increase in density. The series of boxes that come out of this so called
’peeling trajectory’ are than visually presented to the modeller. The modeller can
pick a certain box that has the best balance between coverage and density according
to the modeller. After the box is chosen the boxes can be expanded via pasting. This
is a process where unnecessarily restricted dimensions are allowed to expand. The
next step in the process is called covering. The data within the chosen box is deleted
from the data set and the peeling/pasting process is repeated. These steps can all
be reiterated until the modeller decides the algorithm cannot adequately find useful
boxes.

Robustness metrics - RDM step 4

The trade-off between the competing strategies is often based on a robustness score
for the outcomes, which depends on a robustness criteria (Hall et al., 2012). This cri-
teria determines how robustness is viewed in a certain research. A few examples of
robustness criteria are the signal-to-noise ratio which takes the mean of a dataset di-
vided by its standard deviation or minimal regret which takes for every scenario the
difference between the best performing scenario and the scenario reviewed. Both
methods usually generate roughly the same outputs. If for example the best sce-
nario is an outlier compared to the other scenarios, the signal-to-noise ratio will,
on average, have a better value than the minimal regret has. This is because this
one scenario makes the regret on all other scenarios automatically way higher. The
choose for a robustness metric depends on the preference of the researcher. Another
option is to apply multiple metrics at first and choose one as leading afterwards.

The robustness metrics used in this research are a set of the proposed metrics
by McPhail et al. (2018), which are also found in figure 2.4. They scale the metrics
from low risk aversion to high risk aversion. A high risk averse metric weights
bad outcomes highly while low risk averse metrics tend to mainly look at the good
performing outcomes. Robustness metrics have two more ways in which they differ
McPhail et al. (2018). The first is if a metric looks at absolute or relative performance.
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The second is if a metric tries to satisfy a certain condition or if it looks at actual
system performance. In this research the set that is used encapsulates as many
dimension as possible.

The used set is listed below.

• Minimax regret: This is one of the most risk averse metrics. It looks at the
relative values between policy outcomes of all scenarios. The idea is that for
every scenario every policy is compared to the policy that performs best, this
is called the regret. After that, the minimax regret of a policy is the highest
regret the policy has over all the scenarios. The benefit of this metric is that
you can reduce the change that you pick a policy that is the worst in a certain
scenario. However, this metric is very susceptible for outliers. One outlier
for a policy can make the minimax regret very high, while the average regret
might be a lot lower.

• 90th percentile minimax regret: This metric fixes the problem that minimax
regret might have. Instead of take the maximum regret, this metric picks the
90 percentile regret. If in 10% of the scenarios the policy performs poorly
it is not an outlier anymore. A negative side is that it is still possible that
the outcome falls within the worst 10%. This is something that has to be
considered by the decision maker.

• Maximax: This is the least risk averse metric thinkable. Maximax purely looks
at the scenario in which the policy performs best. This is very easy to calculate,
which makes it easy to apply. However, the big problem is that over a set
of 100000 scenarios this one good outcome says very little about the overall
performance. This metric is not used often in decision making under deep
uncertainty. A danger is that the modeller uses that one good performing
scenario as the outcome to show to the decision maker. This way, on average
bad performing policies are implemented due to a single good performance.

• Mean variance: This is the same metric as the signal-to-noise ratio of the
previous paragraph. It is a metric based on absolute performance and the
level of risk is on a medium level. As mentioned, this metric takes the mean
divided by the standard deviation. The benefit of this is that an on average
poor performing policy can still proof good due to their consistency.

• Starr’s domain criterion: This is a satisficing metric. The idea is to find the
volume of scenarios in which a certain criteria is met. According to this metric,
the policy with the highest volume of correct scenarios is the most robust.
On the one hand, this metric gives you the policy with the highest change of
meeting your goal. On the other hand, this metric does not say anything about
the negative consequences a policy can have if the goal is not met. Thereby,
this metric is vulnerable to uncertainty from the side of the decision maker.
The decision maker can slightly lower or higher the criteria to get out the
policy or their liking.

2.3 conclusion methodology
One of the prominent methods to deal with deep uncertainty is RDM. With this
method the most robust policies for the uncertain future can be found. There are
5 steps in the RDM cycles. The first step, decision framing, is performed in the
implementation part of this thesis. The second part, evaluating strategies over fu-
tures, is setup and performed in the first part of the results. The experiments are
drawn via LHS. The third part, the vulnerability analysis, is also performed in the
results section. A global sensitivity analysis is conducted with feature scoring. This
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Figure 2.4: Robustness metrics as defined in McPhail et al. (2018). The bar goes from green
to blue, where green is a low level of risk aversion and blue is a high level of risk
aversion

shows the relative effect of all the uncertainties on the output variables. After that,
scenario discovery shows some regions in the data which produce results of inter-
est. The PRIM method is applied in order to do this. The fourth step of the RDM
cycle is also the last part of the results. Here, five different robustness metrics are
compared. These metrics all reward policies in a slightly different manner. The
last part of the RDM cycles will only be performed if new futures and policies are
deemed interesting.





3 M O D E L I M P L E M E N TAT I O N

In this chapter first step of the RDM cycles, which is the decision framing, is per-
formed. This means that the XLRM diagram is defined. These are the externalities,
levers, relations and metrics. Thereby, the Groningen model has to be adjusted to
have a lower run time and the connection between python and Visum has to be
made. First the latter part is discussed and after that the XLRM diagram is defined.

3.1 adapted model

As mentioned, the Visum model has a run time that is too high to apply to the
EMA workbench and must therefore be reduced. Reducing the run time is an itera-
tive process. With every step, more is learned about the model. The most important
steps and changes are described in greater detail.

3.1.1 Considerations to make when adapting the model

There are some important considerations to make when reducing the run time of
the model. Firstly, the model must be reduced in a way that it still suffices the
purpose of this research. The purpose of this research, in regard to the model, is
to run a sufficient amount of different scenarios with the model to get the distance
travelled by car within the municipality in every scenario. This means that the
amount of scenarios has to be determined and that the distance travelled by car
within the municipality must be produced by the model. This introduces the second
consideration, the outcomes have to be valid. Changes in the model can cause big
changes in the results of the model. This can be checked in several ways. The most
time-efficient way is to compare the produced data from the adapted model to the
data produced by the original model. By doing this the expectation of experts
is compared to the model of this research. Landry et al. (1983) refer to this as
”convergent validation”. The third and last consideration is that the run time should
be manageable for the amount of runs. Optimally the run time would be not more
than 1 second. However, the model structure does not allow such a big reduction.
Regarding the fact that the planned time for experimentation is 3 weeks, the total
run time should not surpass the duration of a week. Later in chapter 4 a more
accurate approximation is made.

3.1.2 Changes in the model

Initially there are two main parts of the model that can reduce run time. The first is
in the model network. This could, for example, be the level of detail of the streets
or by aggregating the zones found in the model. The second is in the procedure
sequence. Here the amount of procedures can be reduced or some of the heavier
procedures can be removed. Another option in the procedure sequence is reducing
the amount of iterations done in the route assignment and the mode choice part.
Table 3.1 describes these steps.

The three steps that have reduced the most time are the removal of the route
assignment part, the reduction in the MD model and the reduction in iterations
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Table 3.1: Steps taken to adapt model
Model part Change Reason Gone through? Time reduction

1 Network Reduce Zones
Amount matrix calculations is zonesˆ2.
Reducing zones reduces computation time.

No. Reducing the model structure
would have needed too much work,
because things like demographic
data are also entangled with this.

-

2

Procedure
sequence

Reduce iterations assignments
and mode choice model.

An assignment or mode choice model does
the amount of iterations it needs to find
an equilibrium or until the max amount of
iterations is reached. Reducing the amount of
max iterations

No. Model time was reduced just
a little while the results where less accurate.
The trade-off between time
and quality was not worth considering.

-

3

Procedure
sequence

Remove route assignment
Takes the most time and is not needed to
determine the modal split.

Yes. 5 hours

4

Procedure
sequence

Reduce MD model steps
The first step, of 15 steps, of the MD model
calculates the mode choice for 80% of the tours.

Yes.
2 hours

5 minutes

5

Procedure
sequence

Creations of tables
Originally the MD model creates 4 end tables,
from this tables only 1 is
useful for the purpose of this research.

Yes. 3 minutes

6

Procedure
sequence

Reduce model iterations

The total MD model usually takes a weighted
average of 3 iterations. Since the goal of this
research is to run at least a broad set of different
scenarios, this weighted average is not needed.

Yes.
No. Amplifies all
time reductions
by a factor 3

of the model. To give a short overview the MD model first took around 2 hours
and 15 minutes and the route assignment part around 5 hours. If this is done for
three iterations this equals 21 hours and 45 minutes. The reduced model only takes
around 12 minutes, where 9 minutes are taken by the first part of the MD model.
Other procedures like changing attributes and changing matrices account for the 3

minutes that are left.

Adapting the model is a very fragile process. Small changes can be devastating
for the quality of the model. Therefore, changes have to be made with caution.
Changes in the model network seem to have a disastrous effect. A small change in
the network results in outputs being completely unviable. This is a con of having a
model with such a high level of detail. However, changes in the procedure sequence
do not have this extreme impact. These changes have a big impact on the quantity
of data that the model produces. Removing the route assignment part does leave
out data about how tours are exactly taken, but it does not effect the mode choice
part at all. Therefore, all the changes in the adapted model have been made in the
procedure sequence.

The changes in the model all have some effect on the performance of the model.
The first change is the removal of the complete route assignment part. This has no
effects on the distance travelled by car within the municipality, which is the inter-
esting output of this research. The difference with the old model is that there is no
information about how exactly traffic is divided within the municipality. However,
this is mostly useful for insight into congestion on roads. The second change is the
reduction in MD model steps. Initially there were 15 MD steps in the model. The
first calculates all direct tours and the other 14 all the indirect tour. Direct tours
are for example tours from home to work and back home. Indirect tours are for
example from home to work to the supermarket and back home. So there is at least
one extra stop within the tour of an indirect tour. In the changed model all indirect
tours are removed from the procedure sequence. The indirect tours account for ap-
proximately 20% of all tours. This means that the results of this research are based
on only 80% of all tours. These results are validated in the next section. The third
alteration is the amount of times that the route assignment and mode choice is per-
formed. The model originally runs this three times which is changed to one. The
model ran three times to account for random deviations in the results. However, in
the light of deep uncertainty running three times does not cover the randomness.
Therefore, changing this to one iterations does not change the model outputs much.
The last change in the model is removal of some tables that can be made. Since the
removed results are not used in the analysis or the model itself, it has no effect on
the outcomes of interest.
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3.1.3 Validation of the adapted model

In order to validate the model a convergent validation method is applied. This
method compares the results to the expectation of experts. In this case, the results
from the original model is based on a expert opinion. Therefore, the results of the
adapted model are compared to that of the original model. The outcomes that are
looked at are: the total distance travelled, the share of the car in the total distance
travelled and the total amount of distance travelled by car. These outcomes are
chosen due to the fact that the municipality of Groningen wants to know how much
distance is travelled by car. The first two determine the third, which is the most
important outcome of this research. The original model is run 4 times and the
adapted model 10 times. There are multiple runs to account for some deviations in
the results. The second model has more runs because the run time allowed for a
higher amount of runs. For all outcomes the average of the runs for each model is
taken.

Figure 3.1 shows the comparison of the results of the original and the adapted
model. As mentioned, the expected change in distance travelled was approximately
20%. This expectation seems to be correct. This change in total distance travelled
does not have to influence the outcome of this research. This is the case when the
distribution over transport modes stays the same. Therefore, it is important that
the car share does not change. This is possible when direct tours are for example
taken by car more often. The difference between the two models in car share is not
more than 1%. Since this is a very small change compared to the original model,
this difference in negligible. It is to be expected that the same interaction found in
the original model are found in the adapted model. Due to the fact that the total
distance travelled changes by 20% and the car share is constant, the total distance
travelled by car also changes by 20%. This shows that the model correctly calculates
the total distance travelled by car.

Figure 3.1: Comparison of the original and adapted model based on three different outcomes

3.2 connection between visum and the ema workbench
One of the prevalent tools of doing a RDM study is the EMA workbench. This is
a python based library which is specially developed for exploratory modelling and
analysis (EMA) research. The workbench hands tools to run a wide set of scenarios
on a model. The user has to define a model with its levers, uncertainties and
outcomes. Than the workbench draws scenarios from a range possible values for
all uncertainties and levers. For example, gasoline price is predicted to be between
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€0,80 per liter and €1,20 per liter by 2030. The workbench takes a different value
between the upper and lower bound for every scenario. It takes a certain method to
draw these values, this can be LHS, Monte Carlo sampling or a full/partial factorial
design. Depending on the amount of runs that can be done, one method performs
better than the other. As mentioned in chapter 2, LHS is used in this research.
The model is than run with the different scenarios as input. The workbench offers
simple to use tools to present the retrieved results. PRIM and feature scoring are
also both provided by the EMA workbench.

In order to apply to functions and tools of the EMA workbench to the Visum
model a connection between the two is made. Visum already has a built-in python
console and is therefore also very easy to connect to python. Visum does this con-
nection via a COM interface. A COM interface allows for the decoupling of the
method and the implementation. Figure 3.2 shows how this conceptually works. It
also shows which RDM steps are represented by the different parts. From the top
left corner, it all starts with defining the inputs. These are the uncertainties, levers,
the outcome and most importantly the model it self. With the possible input values
the EMA workbench generates a set of scenarios based on LHS. The Python script
now iterates through the list of scenarios. After every iteration the information of
the scenario is send to the Visum model via a COM interface. The Visum model
applies all the newly received input values and run the procedure sequence. The
Visum model than communicates, via a COM interface, with the python script to
start a new scenario iteration. After the model has ran all scenarios the data is ready
to be analysed. In this case a vulnerability analysis and a trade-off analysis can be
performed.

Figure 3.2: Conceptual connection between the EMA workbench and Visum

The code which implements the above concept can be found in https://github.

com/ilmovanbaarle/Thesis-Ilmo. The code in visum connector.py is the code that
perform both step 1 and step 2 of the RDM cycle, as shown in figure 3.2. This means
that it also connects the Python model to Visum. Firstly, the model is defined. This
model is a child of the parent class ”VisumModel”. The parent class ”VisumModel”
has some interesting features. However, to understand these features first the inputs
of the model have to be defined. These are the uncertainties, outcomes and policies.
The first two are given in a range while the policies are all just one single policy. The
policies have a ”model file” as attribute. This ”model file” defines which model is
run. Each model has a different policy active. Then the results are defined by the
performs of a given set scenario runs. These scenario are picked via LHS from the
ranges given for the inputs. Every scenario is put into the ”VisumModel” child.
In the ”VisumModel” class the model is initialized. Via a COM command Python
and Visum are connected and with the help of ”model file” the correct model is
opened. Now that the model is opened, the uncertainties can be changed. The
”Visum.Net.SetAttValue(k, v)” changes all uncertainties in the Visum model. With

https://github.com/ilmovanbaarle/Thesis-Ilmo
https://github.com/ilmovanbaarle/Thesis-Ilmo
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”Visum.Procedures.Execute()” the model performs a run. Finally the results can be
retrieved from the Visum model. Beforehand, Visum is given the task to create an
excel file with information about the mode choice in every region of Groningen.
The ”output changer” function then turns this data into the outputs of interest. To
reduce the amount of opened files on a single computer, the ”VisumModel” ends
with closing the Visum model. Closing the model only happens if a different policy
is run, if the same policy is applied in the new scenario there is no need to change
the ”mode file” since this only changes the policy. This also reduces the amount of
times that the model has to open and close a ”model file”. The Python file repeats
this sequel with a different scenario, until all scenario are run. With the retrieved
results the other 2 steps can be performed within Python.

Since there is a wide set of scenarios that are run, running multiple Visum models
simultaneously would reduce total run time. There are 2 options handed by Visum
to perform this. The first is to distribute the model runs over different computers.
This way the run power of a single computer is not exhausted when multiple runs
are performed on the same computer. In theory one could couple 10 different
computers through Visum. The second option is to run multiple runs on a single
computer. Visum allows for 5 parallel runs on a single computer. This is due to
the license that is given out and the possible memory capacity problems. In this
research the second option is only used. This means that instead of 1, 5 models
are run in parallel. This does increase the run time of a single run slightly. Due to
problems in memory usage, 95% - 100% is constantly used, the computer has a little
more struggles when computing. The run time increased from around 12 minutes
to around 15 minutes. The first option is not used due to the more challenging
coupling process and the already sufficing second option. However, a combination
of both options would give some great scaling opportunities. If only 5 computers
would be connected, 25 models could be run simultaneously. This is something to
consider when more resources are available.

3.3 step 1: decision framing

The inputs of the EMA workbench are based on a XLRM-diagram. An XLRM-
diagram contains externalities (X), levers (L), relations (R) and metrics (M). The
externalities are also referred to as uncertainties, the levers to policies and the met-
rics to outcomes. These things mean the same, but for the sake of comparison with
the Groningen model the names are changed.

3.3.1 Externalities

The Groningen model is influenced by a set of uncertainties. In the original scenar-
ios that are run, two values for uncertainties are taken. These values are determined
on the high and the low WLO scenarios (Planbureau and voor de Leefomgeving,
2015). Table 3.2 gives the names of the uncertainties, the values that are taken from
the WLO scenarios and the adjusted values. The idea is to take the low scenario as
lower or upper bound and the high scenario as the lower bound or upper bound. It
has to be noticed that these values are from 2015. Anno 2020-2021 we are dealing
with COVID-19 which has shown some new insights. Especially the amount of peo-
ple working from home have grown a lot during the pandemic and expectations
are that some of this growth is detained after the end of the pandemic (van Eck
et al., 2020). Therefore, the range of reduction in tours due to people working from
home is slightly increased. Due to the fact that the developments are very recent, a
scientifically substantiated value is not yet available. The adjusted values are based
on a personal expectation which is possible due to the deep uncertain origin of this
value. The public transport costs per km are also adjusted. According to the WLO
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Table 3.2: Uncertainty ranges
Uncertainty Acronym Low scenario High scenario Adjusted range
Normal E-bike use EBIKE BASIS 0,220 0,280 -
E-bike used for education EBIKE OW 0,090 0,110 -
Car costs per km KMKOSTENINDEX 0,953 0,700 -
Public transport costs per km OVKOSTENINDEX 1,100 1,100 1,000-1,200

Reduction in tours due to
people working from home

THUISWERKREDUCTIE 1,000 0,950 0,850 - 1,000

scenarios this value will not change. However, technical developments or national
policies can still have a big impact on the costs per km for public transport. The
costs per km for public transport can be regarded as a deep uncertainty and there-
fore the new upper and lower bound are not scientifically grounded. In order to
clearly see the effect around 10% above and 10% below the WLO values is taken.
All other uncertainties are not changed due to the fact that there is no reason to
assume that these values end up differently.

3.3.2 Levers

The levers or policies are the actions the municipality can take to influence the
system. Sweco received a table of policies from the municipality. This table is
presented in figure A.1. They present 6 different policies with a high scenario,
a low scenario and a high scenario without Oosterhamrikstracé (OHT). The high
scenario presents a higher intensity of a certain policy.

The policy that are chosen are listed and described in detail:

• No policy: To see the effect of a policy clearly there is also a policy that
implements nothing. There are situations where the base case performs even
better than the non-base case. It is good practice to always include a base case
scenario.

• Bike policy: This policy is about increasing the amount of so called ”snelfi-
etsbanen”, which in translation means lanes where people can bike fast. This
policy focuses mainly on the expected increase of E-bikes. The higher speed
of E-bikes cannot fully be used if there are many other types of traffic or if
there are many side lanes. The ”snelfietsbanen” secure a more free road for
all cyclists. There are some roads in the Groningen model that are certainly
changed into ”snelfietsbanen”. Another group of roads is only changed into a
”snelfietsbaan” when this policy is active. The main effect of ”snelfietsbanen”
are higher speeds for cyclists.

• 30 km/h policy: The idea of this policy is to reduce speeds on roads within
the city of Groningen from 50km/h to 30km/h. On the one hand this policy
can reduce the number of and severity of accidents. If for example two cars
hit each other with 50km/h, the damage is worse than if two cars hit each
other with 30km/h. Next to the accident argument, this policy focuses on
reducing emissions of cars due to lower speeds and it focuses on reducing
the attractiveness of taking the car. The reason that the attractiveness reduces
is that, if the speed reduces the time to get somewhere in the city also takes
longer.

• Parking policy: There is a small area in Groningen where you have to pay
€4/h to park your car and a bigger area around that where you have to pay
€2,40/h. In the parking policy the municipality wants to increase the size of
the second area. So places where there are no parking costs as of this moment
will get a parking cost of €2,40/h. This makes it less attractive to own a car
in the city and also to travel to the city by car. In the high scenario there is a
bigger area that gets parking costs than in the low scenario. For this research
the high scenario is applied.
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Table 3.3: Ranges of changing policies
Lever Variable name Upper bound Lower bound
Speed of bikes BIKE SPEED 25 15

Speed of cars CAR SPEED 50 30

Parking costs PT KP 500 0

3.3.3 Changing levers

The EMA workbench gives the possibility to also change the level of policies. From
a policy maker perspective it is very interesting to see what the effects of different
levels of policies are. There are multiple benefits to this. The first benefit is that the
policy maker gets a more clear view on the influence of a policy on the outcomes.
There can be a certain threshold value for which the policy gets a different effect. For
example, the effect of the price of parking on car use. It can be that between 0 and
1 euro the effect is linear and after that the effect is exponential. A second benefit
is that the effects of different policies together can be researched. This hands the
policy maker a broader set of combinations of different policies that perform well.
This also shows the interaction effects between policies. A downside is that the
levers are part of the sampling. This means that more runs are needed to present
the uncertainty space in the same manner as with a single value policy. In other
words, it is more computational expensive.

The three polices used for the changing policies are the same as the policies used
for the non-changing policies. The idea is that the three policies are always active,
but the levels of the policies change for each scenario. The variables and values
are found in 3.3. The bike policy is put in a variable called BIKE SPEED. Normally,
when this policy is applied there are fast bike lanes on which bike can have a
higher speed. However, the speed a cyclist can get to depends mostly on the degree
of freedom on the lane. If there are very little places to get on to the lane or it is
completely separated from the normal road, the average bike speed will be higher.
Therefore, this variable can change between 15 km/h, which is equal to original
speed without a fast bike lane, and 25 km/h, which is equal to the speed with fast
bike lanes plus the difference between the speed with and without fast bike lanes.
The second variable represents the 30km policy. If this policy is enforced by speed
bumps or regular speed checks people shall drive 30km/h. However, if solely a sign
with 30km/h is placed people are more likely to drive a bit faster. Therefore, this
policy has as a max value of 50km/h to represent people not following the rules at
all. The third variable is parking costs. The policy changes the parking costs for the
whole parking area to a value between 0 and 5 euros. The upper bound is chosen
at 5, due to the fact that it is not much higher than the 4,20 euros they charge now
and it is a easy value to work with. The lower bound is equal to removing all the
parking zones. This includes the 4 euro/hour zone and the 2,40 euro/hour zone.

Changing policies does change the way policies are implemented in the Python
model. The policies are now regarded as levers and can change in value. This means
that they are also taking into the sampling of the scenarios. The benefit of this is
that the uncertainties are more widely represented. The reason for this is that they
can take on as many value as the amount of scenario that are run, while previously
the amount of different values was equal to the amount of scenarios divided by the
amount of policies. Operationalization wise, the fact that the all policies are always
active means that there is no need to close model files between runs. This reduces
total run time slightly.

3.3.4 Outcomes

One of the most important considerations in the model is the set of outcomes you
take into account. In this case the outcomes are chosen based on the goals of the



26 model implementation

Table 3.4: Metrics regarded in the model
Outcome Variable name Unit
Total amount of
movements

total verpl Movements

Percentage movements
by car

carshare verpl %

Percentage movements
by bike

bikeshare verpl %

Percentage movements
by public transport

OVshare verpl %

Total distance travelled total km km
Percentage distance
travelled by car

carshare km %

Percentage distance
travelled by bike

bikeshare km %

Percentage distance
travelled by public
transport

OVshare km %

Total distance travelled
by car

total car km

municipality of Groningen, the available data and the policies used. The MD model
produces two tables: a table that contains the amount of tours per mode per travel
from every region to every other region purpose and a table the contains the amount
of kilometers traveled per mode per travel purpose from every region to every other
region. The metrics chosen are based on these two tables and are found in table 3.4

The last outcome from table 3.4 is the most important. Since the goal of the
municipality of Groningen is to reduce the amount distance traveled by car in the
municipality. However, the other outcomes can help in understanding how tours
are divided between the different modes of transport. This is useful if for example
the municipality also want to encourage people to take the bike, instead of the
public transport. Thereby, the total distance travelled and the percentage of that
distance travelled by car can help to understand how the total amount of distance
travelled by car is built up. This can show on which aspect of the outcome the policy
works. For example, more people working from home should lower the amount of
distance travelled by car. However, this is not caused by less attractive car use, but
by the fact that there are less travels in total. It is important that this relationship
is understood correctly, because this helps the municipality in understanding the
effects of their policies. Looking at the data set, the data set divides the movements
based on region. These regions are divided as showed in table 1.1. For the outcomes
only region 1, Municipality Groningen, is used for the results.

3.4 conclusion model implementation

The first part of this chapter discussed the run time of the Visum model. The
RDM method requires a big amount of scenarios. Therefore, the run time of the
Visum model is reduced. The model ran for 22 hours and 45 minutes, which is now
only 12 minutes. The biggest time reductions are gained due to the removal of the
route assignment, a reduction in the amount of iterations and a big reduction in the
amount of MD models. All changes are made while preserving the purpose of this
research, getting the distance travelled by car within the municipality. The second
part discussed the connection between Visum and Python. This connection is made
via a COM interface. Thereby, Visum allows for 5 simultaneously running models,
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which reduces the total run time. The third part showed all the uncertainties, levers
and outcomes for this research. A total of 5 uncertainties, 4 levers and 10 outcomes
are defined. The most important outcome being the total distance travelled by car
within the municipality. From the lever side the decision is made to do some fixed
and some changing policies. With this additional part it is possible to see how
sensitive the outcomes are to the policies. This could convince the municipality of
Groningen to adjust some proposed policies.





4 R E S U LT S

The result chapter has four main sections, which describe the second, third and
fourth step of the RDM cycle. The first part is the experimental design. Here
it is determined how the experiments are drawn and how many experiments are
drawn. The second part is the global sensitivity analysis of the model consisting of
feature scoring. The third part includes the scenario discovery which is done with
the PRIM algorithm. The last part dives deeper into the robustness of the policies,
where multiple robustness metrics are compared.

4.1 step 2: experimental design

The second step of the RDM cycles is evaluating strategies across a set of futures.
Since there are two sets of policies, some that change in value and some that do
not, two sets of experiments are run. Every scenario consists out of a different
combination of values for uncertainties and levers. The value all fall within the
range of that variable. As mentioned in chapter 2 the values for the variables in the
scenarios are drawn via LHS sampling. The values that the uncertainties and levers
can take on are found in chapter 2.

There are two important consideration to make when deciding on the amount
of experiments run. The first is that the scenarios should fill the uncertainty space
and lever space in a broad sense. There is no real consensus on when the spaces
are filled enough. The second consideration is that the run time is in the time
frame of the research. Running a model for multiple weeks would be to long.
Taking these two consideration and the fact that the model runs for approximately
12 minutes, a decision has been made to run a set of 1000 scenarios for each of the
policy sets. This makes the run time for both approximately 3 days, which means
that both can be run in 6 days. For the non-changing policy set this means that
every policy runs 250 different scenarios. These 250 scenarios do not change across
different policies. In a 5-dimensional uncertainty space this might be too little. If
it does not become clear what the relations between variables are from these 1000

scenarios, more scenarios can be run. For the changing policies this means that
a 1000 scenarios are run in a 9-dimensional space. Again, this might leave some
important corners in the uncertainty and lever space covered. However, if there is
any doubt that the relations between variables are unclear or that there might be a
combination of uncertainties that is worth to consider, more scenarios are run.

4.2 step 3: global sensitivity analysis

A global sensitivity analysis gives insight into the effect of uncertainties and levers
on the output variables. Additionally, with the use of the PRIM algorithm regions
of scenarios that are of interest can be found. First the effects of all the uncertainties
and policies on all the output variables are discussed via feature scoring. Then the
feature scores per policy are shown and discussed to see what the effects of policies
are on the system. After that, the PRIM analysis uncovers some scenario regions of
interest.

29
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4.2.1 Feature scoring

Feature scoring is a mix of techniques used in machine learning to find the most
influential factors (chapter 2). The main idea of feature scoring is to look at effect
of an input variable on an output variable. The value lies between 0 and 1 where
1 means that it completely defines an output variable and 0 means that is has no
effect. The columns always add up to 1, so the values are relative to each other. This
means that for example the effect of THUISWERKREDUCTIE on totaal verpl can be
very small (figure 4.1). However, due to the fact that the effect of the other variables
is even lower it still accounts for 78% of the changes in this output variable. The
most interesting values are discussed below.

Figure 4.1: Feature scoring with policies

The first thing that is apparent from the feature scoring, in figure 4.1 is the high
value of THUISWERKREDUCTIE on totaal verpl and the way lower value on to-
taal km. However, the policy score does have a way bigger impact on totaal km.
There are multiple explanations possible for this effect. One logical effect can be
that if people work from home more often the amount of short movements de-
creases a lot, but the amount of long movements does not change a lot. The fact
that the policies do effect the amount of distance travelled but do not really effect
the amount of movements is difficult to pin down.

The second thing that is apparent is the high influence of policies on the outcome
variables. Around 80% of the changes in movements and distance travelled for all
the transport modes can be explained by the policies. This means that the policies
have a big influence of the system. It is not yet clear from this feature scoring which
policies influence the outputs and if they influence them in the right direction. One
of the next paragraphs researches this.

Due to the high effect of the policies, it is also interesting to see what the effect
is of the uncertainties when the policies are not taken into account. This is done
for every policy. This does mean that the sample size goes from a 1000 to 250 for
these 4 analyses. Figure 4.2 shows the results for the base case. The first take is
that for the main kpi, which is car total, the uncertainties KMKOSTENINDEX and
THUISWERKREDUCTIE are the main influence. The former determines around
60% of the output and the latter around 30%. The other outputs mostly correlate
with the uncertainties in an expected manner. The costs for public transport has the
highest influence on the movements and distance travelled with public transport
and if more people own an e-bike there are more movements and distance travelled
per bike.
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Figure 4.2: Feature scoring in the base case

Three outcomes are interesting from this feature scoring of the base case. Firstly,
the uncertainty that has a high impact on the amount of car movements, also has
a high impact on the amount of bike movements. Thereby, the effect on public
transport movement is almost none existent. This could mean that the shift from
car to bike (and the other way around) happens more often than the switch from
car to public transport. Secondly, the uncertainty that influence the public transport
movements impacts the amount of movements by bikes more than that of cars.
This means that people are more likely to switch from public transport to the bike
than to the car. Lastly, it seems that when the base case is taken, total km does
get almost completely determined by THUISWERKREDUCTIE. Taking figure 4.1 in
consideration, this means that the effect of the policies on total km is very different
from the effect on total verpl.

Figure 4.3a, 4.3b and 4.3c show the feature scoring of all uncertainties on car total,
carshare verpl and bikeshare verpl, respectively, in the scenarios of every single policy.
The complete feature scoring of all the policies is found in appendix B.

The bike policy shows some difference in the feature scores in comparison to
the other policies. Especially in the effect of KMKOSTENINDEX, EBIKE BASIS and
EBIKE OW on carschare verpl and bikeshare verpl. This means that there is some
interaction between the bike policy and these uncertainties. The e-bike related un-
certainties seem to have less influence while the car related uncertainties seem to
have more influence. A logical explanation is that the fact that using the bike is
already made more attractive the effect of the e-bike related uncertainties diminish.
Why the car related uncertainty takes this influence over is not clear.

When the parking policy is active there is even more difference. This is especially
clear in the effect of KMKOSTENINDEX and THUISWERKREDUCTIE on car total.
The influence of these uncertainty are traded between each other. What diminishes
by KMKOSTENINDEX, increases by THUISWERKREDUCTIE. The explanation for
this is twofold. Firstly both parking costs are KMKOSTENINDEX increase the cost
of driving a car. The fact that it is already expensive to park in the city the effect
of high costs per km diminish. In addition, possibly movements for the working
motive are not influenced very much by high parking costs and therefore the reduc-
tion in movements due to people working from home stays does not decrease. Due
to the nature of feature scoring it is hard to pin down the exact reason behind the
behaviour.
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(a) A parcoords diagram of the feature scoring of all
uncertainties on car total

(b) A parcoords diagram of the feature scoring of all
uncertainties on carshare verpl

(c) A parcoords diagram of the feature scoring of all
uncertainties on bikeshare verpl

Figure 4.3: Parcoord plots of the feature scoring of all uncertainties on three different out-
comes

Feature scoring with changing policies

The last feature scoring looks at the feature scoring when policies are changing in
level. In figure 4.4 there are a coupled of interesting things. The first is the low
effect of BIKE SPEED on carshare verpl and the high effect on carshare km. If this
knowledge is combined with the fact that PT KP has a high effect of carshare verpl
and a slightly lower effect on carshare km, this means that one of the two policies
has a differing effect between the two outcomes.

The second interesting thing is the high effect of BIKE SPEED on totaal km, but
not on totaal verpl. Combined with the fact that THUISWERKREDUCTIE has the op-
posite happening, it can mean two things. Firstly, it can mean that people working
from home mostly effects the short movements or that more bike use shortens the
path of people compared to using another type of vehicle.

Figure 4.4: Feature scoring with changing policies
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The last interesting outcome is that the main kpi car total is mostly determined by
PT KP. The uncertainty KMKOSTENINDEX and the policy BIKE SPEED also have
some impact, but significantly lower than PT KP. This means that, based on this
analyses, parking costs are the main policy to influence the total distance travelled
by car.

95% confidence intervals of feature scores

The application of extra-trees can give different feature scores for every run. This
is due to the randomness in which the trees are picked. One key determinant of
the differences between feature scores is the amount of scenarios that are run. In
order to check how much the feature scores differ, 100 feature scores are calculated.
These feature scores allow for the calculation of the 95% confidence interval. The
95% confidence interval is calculated for the base case, the case with policies and
the case with changing policies. The calculation of the other three policies is found
in appendix B. Only the 95% confidence interval of the outcome car total is taken,
due to its importance in this research.

(a) Bar chart with the 95% confidence intervals and
the mean of the feature scores without policies

(b) Bar chart with the 95% confidence intervals and
the mean of the feature scores with policies

(c) Bar chart with the 95% confidence intervals and
the mean of the feature scores with changing poli-
cies

Figure 4.5: Bar chart with the 95% confidence intervals and the mean of three different sets
of feature scores

The 95% confidence intervals of the feature scores should not be to large. Since
the feature scores are always between 0 and 1 a difference of 0.1 between the upper
and lower bound is already quite large. From figure 4.5a it becomes clear that the
biggest range is found for both THUISWERKREDUCTIE and KMKOSTENINDEX.
The other two analysis, in figure do 4.5b and 4.5c, show a smaller range for the
95% confidence interval than the one without polices. It should be noticed that the
analysis without policies uses only 250 scenarios. Therefore the extra-trees method
has less data to work with. The 95% confidence intervals for all three analysis do not
raise red flags. The differences between the upper and lower bounds do not change
the conclusion of the feature scoring. However, one cannot take the numbers as
exact due to the ranges being to large for that. Running more scenarios could get
the 95% confidence interval smaller, then the feature scores can be taken as exact
more easily. Due to the long run time of the model, the exact amount of runs to
achieve this remains unknown.

4.2.2 Step 3: Scenario discovery

PRIM is applied to find scenarios of interest. In chapter 2 the method is explained.
PRIM is applied for the base case without policies, the case where the policies are
applied and the case where the policies change in value. This shows both the effect
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of the uncertainties, the policies and the uncertainties with the policies applied.
The PRIM algorithm is applied twice for all three analysis. First for the 10% worst
performing scenarios for the amount of distance travelled by car. Second for the 10%
best performing policies. The analysis is performed by both providing a graphical
overview and a statistical overview. The statistical overview shows the quasi p-
values (qp). The most commonly used p-value to show if a variable is statistically
significant is 0.05 (Kwakkel, 2019). Thereby, the ranges for variables that determine
the box and the coverage and density are shown in these figures.

Base case - 10% worst performing scenarios

Figure 4.7a shows the results of only the base case in a graphical manner. Orange
points are values that are of interest and the blue ones are not. PRIM tries to find a
box within a n-dimensional space which has both high coverage and high density.
The coverage is the total amount of orange dots divided by the amount of orange
dots within the box. The density is the total amount of dots in the box divided by
the dots within the box that are orange. From the qp-values in figure 4.6b, which are
shown in brackets behind the variables, it is clear that only KMKOSTENINDEX and
THUISWERKREDUCTE are statically significant. The upper right corner of figure
4.7a shows a box with a density of 0.875 and a coverage of 0.875, as can be found in
figure 4.6b. This means that it does not perfectly explain the data, but still finds a
good approximation. The box is made for high values for THUISWERKREDUCTIE
and low values for KMKOSTENINDEX. This is a logical outcome since when more
people travel for work and the costs for driving a car are low, the total distance
travelled by car increases.

(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.6: PRIM in the base case for the 10% worst performing scenarios
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Base case - 10% best performing scenarios

The results of PRIM in the 10% best case scenarios is almost the exact opposite of
PRIM in the 10% wort case scenarios. In figure 4.7 it is clear that the box is created
for high values of KMKOSTENINDEX and low values for THUISWERKREDUCTIE.
Figure 4.7b does show a higher density and a lower coverage. This means that for
these values almost all cases return true, but there are a significant amount of cases
that are true for lower values of these two variables.

(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.7: PRIM in the base case for the 10% best performing scenarios

With policies - 10% worst performing scenarios

When the policies are also used in the PRIM analysis the outcome is different. Fig-
ure 4.8a shows the results graphically. This figure shows that it is impossible to
recognize orange dots within the boxes of two uncertainties, due to the high level
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of overlap between scenarios. The combination of an uncertainty and the policies
gives a clearer view. It shows that all 10% worst cases are situated in the 30 km pol-
icy and the base case. KMKOSTENINDEX is the main uncertainty that determines
if a scenario in true or false. However, from the statistical analysis in figure 4.8b
it appears that THUISWERKREDUCTIE is also statistically significant. This means
that the found box is based on three variables.

(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.8: PRIM for the 10% worst performing scenarios with policies

With policies - 10% best performing scenarios

Figure 4.9 does show differences with the 10% worst case scenario PRIM analysis.
The effect of KMKOSTENINDEX and THUISWERKREDUCTIE seems to be more or
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less the same. The difference is found when looked at the effect of the policies. In
this case the fiets policy encapsulates almost all the cases of interest. This means that
this policy is very powerful in achieving a good scenario outcome. However, there
is quite a low coverage. This is mainly caused by the fact that the parking policy
also has some cases of interest. A possible reason for not taking these scenarios in
the box is a big decrease in density.

(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.9: PRIM for the 10% best performing scenarios with policies

With changing policies - 15% worst performing scenarios

Figure 4.10 shows the PRIM analysis of the 15% worst performing scenarios with
changing policies. In this case 15% is chosen instead of 10% because PRIM fails to
find a solution for 10%. PRIM has difficulty finding a box with both a high density
and a high coverage at 15% as well. The coverage is only 0,436 and the density is
quite high with 0,956. This means that this box makes up for less then half of all
cases of interest. As can be seen in figure 4.10b only a low value for PT KP is sta-
tistically significant. The effect of KMKOSTENINDEX and THUISWERKREDUCTIE
has diminished so much that it became statistically insignificant. This does explain
the reason for not finding a box for only the worst 10%.
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(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.10: PRIM for the 15% worst performing scenarios with changing policies
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With changing policies - 10% best performing scenarios

When looking at the best scenarios with changing policies, PRIM is able to find a
10% best scenarios. Therefore, not 15% but 10% is chosen. Figure 4.11 shows the
analysis. The box found is determined by four variables which are all statistically
significant. The two uncertainties which failed to be significant in the previous
analysis are significant here. The BIKE SPEED is the second policy alternative that
is responsible for the system to perform well. However, there is still a quite low
coverage. This means that there are still many cases which are not determined
by these four variables. The reason for this is the higher level interaction effects
between the policies and variables. This causes the system to perform more variable
than in the first four analysis.

4.3 step 4: robustness analysis
A robustness analysis can be performed with different robustness metrics. The
choice for a certain metric depends on the preferences from the side of the re-
searcher and the decision makers (Kasprzyk et al., 2013). Since the preference of
the decision maker is unknown, multiple metrics are used in this research.

Table 4.1: Robustness scores, between brackets show if a high or a low value is good

Minimax regret
(min)

90th percentile
minimax regret
(min)

Maximax
(min)

Mean-variance
(min)

Starr’s domain
criterion (max)

Base case 3,39x10
4

3,23x10
4

3,00x10
5

4,23x10
9

39

30 km policy 3,37x10
4

3,21x10
4

3,00x10
5

4,23x10
9

40

Fiets policy 0,0000 0,0000 2,70x10
5

3,61x10
9

222

Parking policy 9,96x10
3

8,94x10
4

2,78x10
5

3,55x10
9

199

Table 4.1 shows the robustness scores of every policies on every metric used. All
the metrics are based on how the policies score on car total The best performing
policy based on the minimax regret metric is the Fiets policy. The minimax regret
for this policy is 0. This means that in every scenario that is tested this policy
performed best. After the Fiets policy the Parking policy performs best with the other
two policies performing almost equally bad. The 90th percentile metric does not
change the outcome that much. This means that the minimax regret metric is not
based on outliers in the data.

A feature scoring is performed for only the regret to see how the uncertainties and
policies influence the regret. The results of this are found in table 4.2. The scores
show the high impact of the policies. Around 91,7% of the regret is determined by
the policies. All the uncertainties have an almost equal, and very small, effect on the
regret. This means that the difference between outcomes in the same scenarios are
greatly influenced by the policies and not that much by interaction effects between
policies and uncertainties.

Table 4.2: Feature scoring on regret
Variable Feature score 95% confidence interval
Policy 0,917 0,903 - 0,932

THUISWERKREDUCTIE 0,017 0,013 - 0,021

OVKOSTENINDEX 0,016 0,013 - 0,020

KMKOSTENINDEX 0,017 0,013 - 0,021

EBIKE OW 0,016 0,012 - 0,020

EBIKE BASIS 0,016 0,012 - 0,020

The maximax metric shows which policy has performed best in a single scenario.
Knowing that the minimax regret is already 0 for the Fiets policy it is already de-
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(a) Graphically

(b) Coverage, denisty and qp values

Figure 4.11: PRIM for the 10% best performing scenarios with changing policies
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ductible that this policy also has the best maximax score. The Fiets policy can achieve
a car total of 2, 7 ∗ 105. This is as a bit lower than the Parking policy and around 10%
lower than that of the other two policies.

The mean-variance metric shows which policies performs the most consistent
while having a low mean value. Now the Parking policy performs the best. From the
regret metric it became clear that the Fiets policy performs the best in every single
scenario. Which means that the Fiets policy has a lower mean and therefore that
the Parking policy has a lower variance. It performs more consistent. The other two
policies are again the two lowest.

The last robustness metric used is Starr’s domain criterion. The criterion is set on
a car total of 3, 1 ∗ 105. Which means that scenarios that score above 3, 1 ∗ 105 are not
adding to the score and the other way around they are adding to the score. This
value is based on the median value of the total data set. This computation shows
that Fiets policy almost always performs better than the median value. The Parking
policy performs in around 20% of the cases worse than the median. Logically, this
means that the other two policies have some policies that perform better than the
median. If the municipality of Groningen would use the the median value, the Base
case and the 30 km policy could perform good enough in around 15% of the scenarios.
In that case they could consider keeping the Base case if other considerations, like
budget, play a big role.

4.4 conclusion
The first analysis that is performed is a global sensitivity analysis. This method
is mainly used to see which uncertainties and policy are the most influential on
the system. This analysis shows that, based on only the uncertainties, the main
KPI’s are mostly influenced by the cost per km of car use and the amount of people
working from home. Thereby, it seems that based on the high influence of the cost
per car km on both the amount of movements by car as by bike, that people tend
to change from car to bike and vice versa instead of changing to public transport.
When the policies are taken into the analysis the underlying effects become more
clear. The effects of uncertainties seem to diminish when the policies also influence
the outcome which the uncertainty influenced greatly. The last part of the analysis
changes the level of the policies. The outcomes for the feature score show that the
costs for parking and the speed of bikes are the most influential factors to reduce
distance travelled by car. The effect of the uncertainties also seem to diminish by
quite a lot. Only on the total amount of movements, the reduction is travels due
to people working from home has by far the most impact. The 95% confidence
intervals calculated for the feature scores did not show to large ranges. This means
that the amount of runs are sufficient for the goal of this research.

The second analysis is the scenario discovery with PRIM. The most impacting
uncertainties from this analysis is again the cost per car km and the amount of
people working from home. No other uncertainty has a really big impact. The
amount of e-bike owners does have some impact, but is not statistically significant
in any analysis. With the policies included there are two policies, base case and 30

km, that cause all the 10% worst scenarios and one policy, bike policy, that causes
the top 10% best scenarios. So purely base on this PRIM analysis the bike policy
is the best policy to achieve the goal of the municipality. However, the cost per car
km and the amount of people working from home do influence this solution. If
the cost per car km are low the bike policy does not perform in the top 10% and
the same goes for a low amount of people working from home. Vice versa this
is also true. If the cost per car km or the amount of people working from home
are very high, the 30 km policy and the base case wont perform in the 10% worst
scenarios. The last scenario discovery analysis is with changing policies. For the
15% worst scenarios the main influence is the low cost for parking. Which means
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that low parking costs are not a good solution when low car share needs to be
reached. In the best 10% analysis a high speed of bikes and high costs for parking
almost always gets a positive outcome. However, low cost per car km and a high
amount of people working from home can still effect these solutions to perform
badly. The other uncertainties again seem to have very little effect.

The last analysis is the robustness analysis. The robustness analysis showed for
4 of the 5 metrics that the bike policy performed best, the parking policy came is
second while the other two performed evenly bad. The bike policy scored 0 on
the minimax regret metric. This means that in no scenario another policy performs
better. The main cause of this is that there are very little interactions between the
uncertainties and the policies. There is a little enhancing effect when for example
the bike policy is active and more people own an e-bike. However, this effect seems
to be so small that it can not really compensate for the positive of negative effect
that a policy has on the system. The feature scoring on regret confirms that the
interaction effects between policies and uncertainties are very small. Another re-
markable thing is the tiny effect of the 30 km policy. Apparently this policy effects
this system by so little that it of average is good for a 0.01% change in car share of
total distance travelled. The satisficing metric of Starr does sketch a different pic-
ture. Here it shows that the two worst policies do not always perform below what
is needed. Therefore, if the budget is small, doing nothing can still proof useful.



5 D I S C U S S I O N

In this research a deep uncertainty analysis is performed on a a macro-level traffic
model of a big city in the Netherlands. Firstly, this chapter discusses how the
results should be interpreted and if they can be generalized to other macro-level
traffic models. Secondly, the implication of the results is discussed. Thirdly some
limitations of the research are given. Finally, the possibilities for future work are
discussed.

5.1 interpretation

This research focuses on the application of the RDM method on a macro-level traf-
fic model of a big city in the Netherlands. By applying the RDM method robust
decisions, which take deep uncertainty into account, can be taken. The results show
that every step of the RDM cycle can be performed in such a model. In the first
step two possibilities arise. On the one hand, the modeller can choose to pick a
set of unchanging policies. However, due to the high level of detail in macro-level
traffic models the results of such an analysis can get very one sided. This is ob-
vious in the fact that the bike policy performs best in every single scenario. On
the other hand, the modeller can choose to change the value of the policies. This
way a combination of viable policies can be found. Nevertheless, the run times of
macro-level traffic models are too high to fully exploit the usefulness of this type of
analysis. With changing policies the space in which is sampled becomes larger and
therefore needs a lot more scenarios to cover the sample space. Another possibility
that changing policies provide is optimization. However, this does require lower
run times as well.

In the second step of the RDM cycle, where the model is run over a wide set of
scenarios, has two important considerations. The first is how to connect the traffic
model to the EMA workbench. In the case presented in this research PTV Visum is
used. This has a built-in python console which makes the connection easy to imple-
ment via a COM interface. Other software written by PTV, like PTV Vissim, have
these built-in python consoles as well. Different traffic model software might have
a harder time connecting to the EMA workbench. However, the EMA workbench is
not the only way to run a wide set of scenarios. For example, PTV Visum could per-
form the same tasks via reading a dataset to determine scenarios. This does require
some extra coding within the traffic model. The second consideration is how many
scenarios are run. Since the run time of macro-level traffic models is quite long, it is
very dependable on the amount of uncertainties and levers and the available time
of the modeller. This research shows that for 5 uncertainties and 4 fixed policies,
1000 scenarios are sufficient to get a meaningful analysis. However, this does not
mean that this is sufficient for other traffic models. It is difficult to pinpoint the
exact amount of scenarios that have to be run to do a meaningful analysis. When
there is a lot of interaction between variables 1000 might be to little and when there
is no interaction between variables, less runs could suffice. Via an iterative process
the modeller should be able to pinpoint the right amount of runs for the problem
at hand.

The third step shows the effectiveness of both GSA and scenario discovery in
macro-level traffic models. GSA reveals how the outcomes are influenced by both
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the uncertainties and the policies. This helps the decision-maker to see which un-
certainties are important to track and which policies can be helpful in achieving
a goal. The case of this research did show that macro-level traffic models have
low interaction effect. Between different policies the effect of uncertainties on the
outcomes changes very little. This effect can be assigned to over fitting, which is
described in more detail in sub-chapter 5.3. It can be assumed that this is the case
for other macro-level traffic models in the Netherlands, since most of these models
are based on the same base model as the Groningen model, namely the LMS and
NRM (Rijkswaterstaat, 2021). The research of De Jong et al. (2007) also looked at
a the LMS since this is so widely used in the Netherlands. The scenario discovery
part shows that PRIM is able to find scenarios of interest in the sample space. Based
on preferences from the side of the decision maker a threshold value, which has to
be reached, can be set. With the help on the EMA workbench it should be easy to
conduct such an analysis.

The fourth step of the RDM cycle consists of a trade-off analysis. This trade-off
analysis is based on robustness metrics. In this research multiple metrics are used to
show the possible differences in ranking. The minimax regret metric makes it clear
how low the interaction effects are in macro-level traffic models. The outcomes
of the regret values are almost exactly the same between different policies for the
same scenarios. However, their are some interaction effects visible, because one
policy shows a better score for the mean-variance metric, while performing worse
in every scenario. This means that it does matter which metric is chosen to use
in the scoring of policies in a macro-level traffic models. Metrics that compare the
performance between policies within the same scenario and satisficing metrics do
not change insight into the results. These metrics put forward the exact same policy
as the best due to that policy performing best in every single scenario. Metrics that
look at consistency, like mean-variance, can show a different perspective than the
previous mentioned metrics. A combination of a metric that measures consistency
and a regret/satisficing metric would hand the decision maker with the most useful
information.

In conclusion, the RDM cycle is applicable to macro-level traffic models of large
cities and can proof to be very helpful in coming to more robust decisions. However,
there are some characteristics of traffic models which make the execution of the
steps more difficult. Accounting for these characteristics is an obstacle that can be
overcome with the tools provided in this section.

5.2 implications
As mentioned in the introduction (1) there were already some researches that ad-
dressed uncertainty in traffic modelling. Especially the researches of De Jong et al.
(2007) and Petrik et al. (2018) tried to cope with the uncertainty. The difference with
these researches is the size and the methods use. Petrik et al. (2018) looked at 100

uncertainties over 500 scenarios. The problem with this is that just a small part of
the uncertainty space is uncovered. With 100 uncertainties even 100000 runs have
trouble with searching the whole uncertainty space. The eventual analysis that is
performed, is a look at the mean, standard deviation and the standard deviation di-
vided by the mean, which they call the coefficient of variation. This research shows
that more in-depth analysis, like PRIM and feature scoring, are possible to perform
on the scenarios. The research of De Jong et al. (2007) did look at a similar set of
uncertainties, policies and outcomes. However, they only sampled 100 scenarios of
which 50 had a policy and 50 had no policy. The research in this thesis does a more
extensive analysis and tries to represent the uncertainty space more broadly. This is
done by running a 1000 scenarios for only 5 different uncertainties. This proves that
it is certainly possible to apply deep uncertainty analysis in traffic models. Thereby,
it proves useful in finding a robust decision and the sensitivity of the system to mul-



5.3 limitations 45

tiple uncertainties. It allows for scenario discovery techniques and global sensitivity
analysis.

The analysis could have applied more complex methods. Bonham et al. (2020)
used the Multi Objective Robust Decision Making (MORDM) method. In this
method the objective first get optimized to then be tested over a set of future sce-
narios. This method is quite similar to the RDM method, with the exception that
it optimizes the policies instead of just test some chosen policies. Optimization is
a computational expensive procedure. Therefore, it is difficult to do this for traffic
models due to the long run times. In other words, deep uncertainty research have
produced more advanced techniques, but this research has yet to prove that this is
also possible for traffic models. Micro level traffic models could be more suited for
such research. However, this has to be tested in future researches.

This research has proven that RDM can be applied to macro-level traffic mod-
els. Groves et al. (2019) proved that RDM was applicable in multiple sectors. They
conducted the analysis for water resource management policies and climate change
mitigation’s policies. Now, traffic management policies can be added to the list of
sectors in which the the RDM can be usefully applied. For more advanced tech-
niques, more research is needed.

5.3 limitations

Every research has some limitations that have to be taken into account when looking
at the results and conclusions. This research has three main limitations, which are
discussed below.

Run time and time frame

One of the biggest limitations of this research is the run time of the Visum model.
Even though the run time has been lowered from 22 hours and 45 minutes to 12

minutes per run. This combined with the fact that the time for this thesis was only
4 - 5 months, the quality of the research suffered. The first thing that makes this
apparent in the non-circular way of conducting the RDM cycle. As can be seen in
chapter 2, the idea with RDM is to test some policies on a system and than adjust
the system and come up with new policies. Due to the high run time, adjusting
the model and choosing new strategies was hard to fit in the given time frame.
The long run time and short time frame, also made it hard to apply any more
advance techniques. The EMA workbench allows for optimization of the solution
and optimization of the robustness. However, running such techniques would take
such a long time that it could not be performed in this research. Note that this is not
necessary for RDM, but it is necessary for many other deep uncertainty methods.

The run time has caused another limitation. That is the amount of procedures that
can be run inside the Visum model. The way the run time has been decreased is by
reducing the amount of procedures. Therefore, only the direct tours are included
and there are not multiple iterations conducted for the model. However, as shown
in chapter 3, only taking the direct tours does not change the outcomes of the
model in a way that is hindering. The fact that only one iteration is run reduces the
reliability of the model run. Nevertheless, the high amount of single scenarios run
do already account for the randomness of the model.

Since macro-level traffic models in the Netherlands are all based on the LMS
and NRM models, the same problems occur for the same type of models. It is an
inherent problem of macro-level traffic models due to the way the algorithms work
and the high level of detail in the models. Sub-section 5.4 elaborates more on ways
to deal with these run times.
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Over fitting

In the model there are very little interactions effects between the uncertainties and
the polices. A very likely reason for this is that the model has been over fitted
(Hawkins, 2004). In the pursued of a model that has a very great level of detail
which describes every possible relation, single variables lose their effectiveness. It
is debatable if this is a limitation for the purpose Sweco uses it for. However, it is
a limitation for the purpose of this research. It makes the robustness analysis very
one sided. In every scenario all the policies ranked in the same order and only one
metric slightly preferred another policy. When the policies change in level there
are more interactions effects visible, but doing an optimisation for this is to time-
consuming due to the previous mentioned limitation. The value of the analysis does
decrease a bit due to the little interaction effect. You could argue that, in this case,
to get the most robust solution you could run it with any set of uncertainties since
it always ranks the policies in the same order. However, especially Starr’s domain
criterion does show its value here. If there is a criterion that should be reached
this metric can still show if a policy does suffice. The little interaction effect also
effects the other two analyses. As shown, the comparison of feature scores between
policies could not show the interactions between policies and uncertainties. While
it is expected that, for examples, making biking more attractive and having more
e-bike users would show some form of enhancing effects.

Limited variable set

The amount of uncertainties, policies and outcomes used in the analysis is relatively
low, 1 kpi of interest, 4 policies and 5 uncertainties. This is mostly caused by the
fact that the Visum model was already constructed. Adding new uncertainties and
policies could disrupt the complex working of the model. Thereby, the outcomes are
to be taken from what is generated by the model. Outcomes like costs or expected
congestion would add a lot of value in the analysis. Uncertainties like the increase in
e-bike use for educational purposes are of very little influence to the model. Because
of the fact that there are some low impact uncertainties, it would be interesting to
add some uncertainties on for example demographic data. The same goes for the
policies. The 30 km policy had almost no effect on the outcomes. Trying more
different policies would add value to the total analysis. To conclude, with a broader
set of variables, the analyses could have been more in-depth.

Regarding the outcomes it is debatable if it really limits the research. As men-
tioned in chapter 1 an often used metric is the distanced travelled for a certain
mode. In many researches such an outcome is the only outcome. However, this
characteristic of traffic research does limit the possibilities. For example, with the
addition of costs and expected emissions a trade-off can be made between these
conflicting outcomes. The Visum model in this research did not have any costs
involved in the model.

Conclusion limitations

The limitations and obstacles found in this case study are expected to be found in
other macro-level traffic models. Especially in these type of models for large cities in
the Netherlands. As mentioned, most Dutch traffic models are built from the LMS
and NRM models. Therefore, run time limitations will be the same, the models are
over fitted and the available set of variables is limited. The next sub-chapter goes
deeper into possibilities to deal with these limitations.
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5.4 future work
This section focuses on possibilities for future research. Some parts are written
from the point-of-view of the case which is run for this research. However, since
macro-level traffic models are very similar, especially for cities in the Netherlands,
all proposed future research can be conducted on similar cases. It is debatable if
the same is true for traffic models from other countries. For these models it should
first be checked if the models share the same characteristics as that of macro-level
traffic models of cities in the Netherlands.

Despite some limitations to the current conducted research, it does open up some
roads to new or expanding research in this topic. The first possibility is to built on
the existing work with none changing policies. As mentioned in the limitations, the
variable set limits the research. Adding for examples costs of a policy as an output
or the amount of car-owners as an uncertainty would broaden the scope of the
research. However, it is hard to add new variables to the model without messing
up its structure. Therefore, to achieve this expert knowledge from the developer
of the model is needed. From the outcomes side, executing this on any case opens
doorways to a trade-off analysis with conflicting goals. In this research there were
no conflicting goals.

The second possibility is to go further with the changing policies. The changing
policies have one big advantage, they can be optimised on both outcomes and ro-
bustness. This allows for more advanced techniques like Multi Objective Robust De-
cision Making (MORDM) or Dynamic Adaptive Policies (DAP) (Bartholomew and
Kwakkel, 2020). Before the is possible a couple of things are required. First of all,
there should be more research in possible possibilities and the realistic values these
policies can take on. Second of all the run time has to be lowered drastically. There
are several ways to achieve this. Reducing the size of the existing model is possible,
but is very hard without changing the model quality. The biggest time consumer is
in the iterations of the computation of the 2200 by 2200 matrix, which equals 5 mil-
lion computations. Reducing this matrix to a 100 by 100 would already reduce the
amount of computations by a factor of 500. Visum does allow distributed compu-
tations. Coupling more calculating computers to the model could reduce run time
quite a lot. However, this does require multiple node to run on and a wide range
of different licenses. The first problem can be solved by a provider like Amazon
Web Services (AWS). The second problem should be discussed with the provider of
the license PTV. There are definitely possibilities to construct something like this to
reduce total run time, but it could get costly very quickly. A probably more time
consuming and realistic approach would be to remake the model, but way less de-
tailed. This way the most optimal and robust policies can be found in a smaller
model and these policies can than, for more extensive calculation, be applied in a
bigger model. This type of modelling is also referred to as multi-resolution mod-
elling, as in the paper of Yang et al. (2012). The biggest challenge according to that
paper is keeping the different models consistent. This is definitely the biggest chal-
lenge in traffic models as well, due to the high level of detail in the bigger model.

The third possibility is to do a deep uncertainty analysis on a not yet existing
model. If before the model is made the decision is made to do a deep uncertainty
analysis, the model can be adjusted to the needs of a deep uncertainty analysis.
In combination with the previous idea, two different models can be made simulta-
neously. The first is quick and basic to do the deep uncertainty analysis and the
second is slow and very detailed to do more route assignment based calculations.
The idea is that knowing the purpose beforehand can make an integration between
two such models easier. This reduces the severity of the consistency problem of
multi-resolution modelling.

Lastly, one could argue if there really is a need for such a detailed model. The
”Mobiliteitsvisie Groningen 2040” is a very broad prediction of the year 2040. With
the time span of 20 years their ought to be a lot of deep uncertain factors. For ex-
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ample the prediction for demographic data is now taken as a known factor, while
it is impossible to predict such data perfectly. If the model is so uncertain overall,
this also means that outcomes like congestion on a street falls victim to this uncer-
tainty. The model tries to predict those outcomes very precisely with a lot of heavy
algorithms while the future always turns out differently. So there seems to be a
trade-off between preciseness and taken deep uncertainty into account via, for ex-
ample, RDM. In most traffic researches preciseness is valued higher than doing an
uncertainty analysis. The question rises, how close do these precise future predic-
tions come to real future? If these predictions are far off, using a deep uncertainty
analysis method might proof more valuable than that exact prediction. Thereby,
the analysis in this research has shown that due to over fitting the model fails in
recognizing small changes. All in all, these reasons show that it is definitely worth
to take a look at less detailed models.



6 C O N C L U S I O N

The final chapter of this thesis starts with the answering of the sub-questions and
the main research question. After that some recommendation are given to the mu-
nicipality of Groningen.

6.1 answer research question
In the introduction (1) a set of 4 sub-questions is given. These sub-questions are
listed below with an answer and short discussion.

• Which method can be used to take deep uncertainty into account in a traffic model?

The answer to this question if found in chapter 2. There are multiple methods that
try to deal with uncertainty in order to improve decision making. Robust Decision
Making (RDM) is the method used in this thesis. RDM improves decision making
on multiple facets. It allows the decision maker through an iterative process to
improve the way the system is modelled and to find a policy that performs most
robust in a wide set of plausible futures. A robustness metric is chosen by the deci-
sion maker to let their preferences shine through. This preference is based on level
of risk aversion and if the solution should satisfy or should have the lowest possible
regret. The difference with decision making without regarding deep uncertainty
is that scenarios which are normally not taken into account are taken into account.
This can filter out possible combination within the uncertainty space that would
make a policy fail.

• What are the important deep uncertainties, policies and outcomes in traffic models?

Chapter 3 answers this question. There are initially 5 uncertainties which the Visum
model runs experiments for. These are the amount of people owning an e-bike from
normal to educational purposes, reduction in home-work movements due to people
working from home and the cost for using the car and the public transport. The
original upper and lower bound for these uncertainties values is taken from the
WLO scenarios. For the deep uncertainty analysis these values are partly taken as
the same and partly changed due to previous optimistic/pessimistic predictions.

The policies are used in two ways. The first way is by taking a set of 4 policies
that cannot change. One policy lower the speed on some roads from 50 to 30, one
policy changes some roads so only bikes can ride on them at a higher speed, one
policy that increases the size of the area where parking costs are charged and lastly
a policy in which the municipality does nothing. More policies can be chosen, but
these four seem the most distinctive. The second way is by changing the level of
the policies. So the same policies are all implemented at the same time, but, for
example, parking costs can differ between 0 and 5 euros. This can show what the
correlations between policies and outcomes are.

There are in total 9 outcomes that are researched. However, to the municipality
of Groningen the distance travelled by car within the city is the most important
outcome. Literature in chapter 1 shows that this is a commonly used outcome for
traffic research. The other outcomes help in understanding why a reduction in
distanced travelled by car takes place.
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• Which uncertainties and policies is the model sensitive to?

This question is answered in the scenario discovery part of chapter 4. The scenario
regions that are looked for are the 10% best and 10% worst case scenarios. Regard-
ing the uncertainties, in both cases the amount of people working from home and
the cost per car km have the most influence. When policies are included the 10%
best performing scenarios are always found when the bike policy is active. The
10% worst performing scenario are found by both the 30 km policy and the base
case. If the policies are active there is a clear reduction in the effect of the uncertain-
ties. Especially of people working from home. This is the case because the effect of
the policies is higher than that of the uncertainties. The scenario discovery is also
done with changing policies. To achieve a scenario that performs in the worst 10%,
having low parking costs is the most effective policy. To achieve a scenario that
performs in the best 10%, more variables are of interest. In this case having high
parking cost, a high bike speed and high cost per km for car has the highest change
to perform well.

• Which policies perform best across a wide set of future scenarios?

In order to answer this sub-question it first needs to be determined when a policy
is ”best”. From the method chosen in the first sub-question the best policy is the
one that is most robust. Robustness can be measured in multiple ways. In this
research 5 different metrics are chosen which can all have different outcomes, since
they all reward other aspects of a policy. Combined with the answer of the second
sub-question, the metrics are calculated on the performance of a policy on the total
amount of distance travelled by car. In chapter 4 the outcome for all policies on
all robustness metrics is found. The bike policy performs the best over almost all
metrics. The only metric in which it gets outperformed by the parking policy is
the mean-variance metric. This metric rewards a good average value with a low
variance. So the best performing policy can not unambiguously be determined.
Even though the bike policy has the lowest distance travelled by car in every single
future, the parking policy is more consistent over those futures.

Finally, the main research question can be answered.

“How to account for deep uncertainty in macro-level traffic models to achieve more robust
decision alternatives?”

This research has shown that by applying the RDM method, the decision maker
can get more robust decision alternatives. The method is based on running policies
of interest over a wide set of futures, which are combinations of values of deep
uncertain variables. The complete set of results over these futures allows for the
computation of the robustness. However, there is a choose for the modeller in the
way robustness is measured. There is a wide list of robustness metrics that differ
in what quality of a policy they reward. The choose of metric can change the
ranking of different decision alternatives. There are some limitations in detailed
traffic models that make it more difficult to apply the RDM method. The main
limitation is the run time of the models. For example, the model used for this
research initially took 22 hours and 45 minutes to perform one run. The run time
had to be lowered to approximately 12 minutes to perform a acceptable amount
of runs. This reduced the amount of output that the model could generate, which
means that the original analysis performed on the model are not possible to perform
on the adjusted model. To conclude, RDM is a good method to account for deep
uncertainty in traffic models, but the run time has to be lowered in order to do more
meaningful analysis. The chapter 5 goes into greater detail about solutions for the
limitations of the model.
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6.2 recommendations municipality of groningen
The municipality of Groningen has to make a decision on which policies they will
apply. Based on this research, changing lanes into fast bike lanes seems, in most
cases, to be the most robust policy. In all scenarios, this policy performed better
than the other three polices that are tested. However, if the municipality values
consistency very high, increasing the parking zones is the better policy to apply.
Nevertheless, the results from this research are some what narrow. There are more
policy that could be tested and there are no combination of policies tested in the
model. Therefore it is to easy to choose a certain policy only based on this research.

Outside of the scope of this research there are many ways the municipality can
build upon this research. This first interesting way is by testing policies, that the
municipality are seriously considering, on their robustness. The way the connection
is made between PTV Visum and Python allows for a very easy implementation of
other policies. It can open up some areas of interest in the uncertainty space for a
policy which could have been over seen without this analysis.

A second option is to broaden the current model. The current model has a small
amount of uncertainties and policies. If there are other uncertainties and policies
that the municipality deem important they can be added. A direction of making
the run time of the model shorter can also open up a wide set of new opportuni-
ties. This could allow for the application of more advanced techniques like DAP
or MORDM. This is most interesting with the changing policies. For example, the
changing policies can be optimised and over a set of optimal solutions a robustness
analysis can be performed. The run time does have to be a lot shorter than is. Find-
ing optimal solution can already take multiple weeks with the current run time. If
50 solutions are found and these are run over 1000 scenarios, the total run time goes
into the months. The main place of time reduction can be found in the amount of
zones. The mode choice consists out of matrix calculations. The size of the matrices
is equal to the amount of zones in the model. This means that the matrices now
have a size of 2200 * 2200. If this is reduced to 500 * 500 the run time reduction is
enormous. The run time problem can also be reduced by using nodes via a provider
like AWS. However, this can be very expensive and the fact that PTV Visum runs
with licenses has to be considered.

The last recommendation for this case is to make a second smaller model as men-
tioned in chapter 5. The idea with such a model is that it replicates the behaviour of
the bigger more complex model. It should produce close to the same outputs. This
model does not have to be made in PTV Visum. There are many other simulation
tools that can produce similar outcomes. When choosing the package there are two
considerations. One, is it able to produce the same outputs and two, can it produce
the same outputs with a shorter run time. When there is a model that fulfills the
requirements, the policies that performs best in the smaller model can be tested in
the more complex model. This should be an iterative process. First get robust and
optimal policies from the smaller model and than test them in the bigger model. If
these do not seem to suffice, adjust the smaller model and find new robust optimal
policies.

Beside the currently discussed case, there are also possibilities for future cases or
other current cases. For future cases there is one big advantage, the model has not
been made yet. This means that a bigger and smaller model can be made in parallel.
This way the characteristics of the models can be aligned. In addition, the outcomes
produced by the models and the uncertainties used are easier to implement. If the
municipality is considering an deep uncertainty analysis, this is the best approach.
In every research a form of a deep uncertainty analysis can add value. It is up to the
municipality to weigh the extra costs of such an analysis to the potential value it can
offer. The fact that the connection between PTV Visum and the EMA workbench is
already constructed, makes the cost for applying RDM lower. This should make the
consideration of applying RDM easier.
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Barceló, J. (2010). Models, traffic models, simulation, and traffic simulation. In
Fundamentals of traffic simulation, pages 1–62. Springer.

Bartholomew, E. and Kwakkel, J. H. (2020). On considering robustness in the search
phase of robust decision making: a comparison of many-objective robust deci-
sion making, multi-scenario many-objective robust decision making, and many
objective robust optimization. Environmental Modelling & Software, 127:104699.

Bonham, N., Kasprzyk, J., and Zagona, E. (2020). Robust robustness: A sensitivity
analysis of mordm with competing assumptions about future states of the world.
In AGU Fall Meeting Abstracts, volume 2020, pages H173–07.

Calvert, S., Taale, H., Snelder, M., and Hoogendoorn, S. (2018). Improving traffic
management through consideration of uncertainty and stochastics in traffic flow.
Case Studies on Transport Policy, 6(1):81–93.

Christopher Frey, H. and Patil, S. R. (2002). Identification and review of sensitivity
analysis methods. Risk analysis, 22(3):553–578.

Curtis, C., McLeod, S., Hultén, J., Pettersson-Lofstedt, F., Paulsson, A., and Hede-
gaard Sørensen, C. (2020). Knowledge for policy-making in times of uncertainty:
the case of autonomous vehicle model results. Transport Reviews, pages 1–21.

De Jong, G., Daly, A., Pieters, M., Miller, S., Plasmeijer, R., and Hofman, F. (2007).
Uncertainty in traffic forecasts: literature review and new results for the nether-
lands. Transportation, 34(4):375–395.

Douglas, M. J., Watkins, S. J., Gorman, D. R., and Higgins, M. (2011). Are cars the
new tobacco? Journal of Public Health, 33(2):160–169.

Flyvbjerg, B., Bruzelius, N., Rothengatter, W., et al. (2003). Megaprojects and risk: An
anatomy of ambition. Cambridge University Press.

Friedman, J. H. and Fisher, N. I. (1999). Bump hunting in high-dimensional data.
Statistics and Computing, 9(2):123–143.

Geurts, P., Ernst, D., and Wehenkel, L. (2006). Extremely randomized trees. Machine
learning, 63(1):3–42.

Groves, D. G., Molina-Perez, E., Bloom, E., and Fischbach, J. R. (2019). Robust
decision making (rdm): application to water planning and climate policy. In
Decision Making under Deep Uncertainty, pages 135–163. Springer, Cham.

53



54 bibliography

Hall, J. W., Lempert, R. J., Keller, K., Hackbarth, A., Mijere, C., and McInerney,
D. J. (2012). Robust climate policies under uncertainty: A comparison of robust
decision making and info-gap methods. Risk Analysis: An International Journal,
32(10):1657–1672.

Hamarat, C., Kwakkel, J. H., and Pruyt, E. (2013). Adaptive robust design under
deep uncertainty. Technological Forecasting and Social Change, 80(3):408–418.

Hawkins, D. M. (2004). The problem of overfitting. Journal of chemical information
and computer sciences, 44(1):1–12.

Helgeson, C. (2020). Structuring decisions under deep uncertainty. Topoi, 39(2):257–
269.
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Figure A.1: Possible policies
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B F E AT U R E S C O R I N G

A feature scoring is conducted for every policy. This is to to show the effect of
policies on the effect of uncertainties of policies. Added to this is the 95% confidence
interval for car total

b.1 30 km policy
Results are found in figure B.1 and B.2.

Figure B.1: Feature scoring with the 30 km policy

Figure B.2: 95% confidence interval of the feature scoring of car total for the 30 km policy

b.2 bike policy
Results are found in figure B.3 and B.4.
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Figure B.3: Feature scoring with the bike policy

Figure B.4: 95% confidence interval of the feature scoring of car total for the bike policy

b.3 parking policy
Results are found in figure B.5 and B.6
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Figure B.5: Feature scoring with the parking policy

Figure B.6: 95% confidence interval of the feature scoring of car total for the parking policy





C P R I M

c.1 peeling and covering process

Figure C.1: Conceptual illustration of PRIM’s: a) peeling and b) covering process. (Lempert
et al., 2008)
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	1 Introduction
	1.1 The negative effects of car use
	1.2 Traffic modelling
	1.3 Deep uncertainty in transport modelling
	1.4 Research scope
	1.5 Research questions
	1.6 Research approach
	1.6.1 Mode choice
	1.6.2 Route assignment
	1.6.3 Run time

	1.7 Structure

	2 Methodology
	2.1 Uncertainty is everywhere
	2.2 Ways to deal with uncertainty
	2.2.1 Robust decision making

	2.3 Conclusion methodology

	3 Model implementation
	3.1 Adapted model
	3.1.1 Considerations to make when adapting the model
	3.1.2 Changes in the model
	3.1.3 Validation of the adapted model

	3.2 Connection between Visum and the EMA_workbench
	3.3 Step 1: Decision framing
	3.3.1 Externalities
	3.3.2 Levers
	3.3.3 Changing levers
	3.3.4 Outcomes

	3.4 Conclusion model implementation

	4 Results
	4.1 Step 2: Experimental design
	4.2 Step 3: Global sensitivity analysis
	4.2.1 Feature scoring
	4.2.2 Step 3: Scenario discovery

	4.3 Step 4: Robustness analysis
	4.4 Conclusion

	5 Discussion
	5.1 Interpretation
	5.2 Implications
	5.3 Limitations
	5.4 Future work

	6 Conclusion
	6.1 Answer research question
	6.2 Recommendations municipality of Groningen

	A Possible measures
	B Feature scoring
	B.1 30 km policy
	B.2 Bike policy
	B.3 Parking policy

	C PRIM
	C.1 Peeling and covering process


