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ABSTRACT
Regression testing is arguably one of the most important activities

in software testing. However, its cost-effectiveness and usefulness

can be largely impaired by complex system test cases that are poorly

designed (e.g., test cases containing multiple test scenarios com-

bined into a single test case) and that require a large amount of time

and resources to run. One way to mitigate this issue is decompos-

ing such system test cases into smaller, separate test cases—each

of them with only one test scenario and with its corresponding

assertions—so that the execution time of the decomposed test cases

is lower than the original test cases, while the test effectiveness

of the original test cases is preserved. This decomposition can be

achieved with program slicing techniques, since test cases are soft-

ware programs too. However, existing static and dynamic slicing

techniques exhibit limitations when (1) the test cases use external

resources, (2) code instrumentation is not a viable option, and (3)

test execution is expensive.

In this paper, we propose a novel approach, called DS3 (De-

composing System teSt caSe), which automatically decomposes a

complex system test case into separate test case slices. The idea is to

use test case execution logs, obtained from past regression testing

sessions, to identify “hidden” dependencies in the slices generated

by static slicing. Since logs include run-time information about the

system under test, we can use them to extract access and usage of

global resources and refine the slices generated by static slicing.

We evaluated DS3 in terms of slicing effectiveness and compared

it with a vanilla static slicing tool. We also compared the slices ob-

tained by DS3 with the corresponding original system test cases, in

terms of test efficiency and effectiveness. The evaluation results on

one proprietary system and one open-source system show that DS3
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is able to accurately identify the dependencies related to the usage

of global resources, which vanilla static slicing misses. Moreover,

the generated test case slices are, on average, 3.56 times faster than

original system test cases and they exhibit no significant loss in

terms of fault detection effectiveness.
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1 INTRODUCTION
Regression testing is a quality assurance technique applied when

changes are made to an existing codebase. It provides confidence

that the performed changes do not harm the behavior of the existing

and unchanged parts of the code [35]. Although many techniques

have been introduced for cost-effective regression testing, such

as test case prioritization and test suite selection, their usefulness

can be largely impaired if individual test cases (1) are poorly de-

signed (e.g., the codebase contains test smells) and (2) require a

large amount of time and resources to run [3, 28].

We observed both phenomena in the context of a collaborative

industrial research project, with a large company in the aerospace

domain. Due to the intrinsic complexity of the system under test

(SUT) and to the accumulated technical debt over several years

of software development, system test cases often contain multiple

test scenarios combined into a single test case. These tests, often

called eager tests [30], negatively impact both regression testing

and test evolution. In our industrial context, eager tests are very
expensive as they take several hours to run. This means that, for

example, even if a state-of-the-art test case prioritization technique
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is applied, no faults could be detected during the first few hours of

test execution. Furthermore, eager tests are more difficult to read,

understand, document, and evolve [30].

However, if such complex system test cases could be decomposed

into smaller test cases without losing their test effectiveness, the

execution time of the decomposed test cases would decrease and the

cost-effectiveness of test case prioritization could improve. More-

over, having smaller test cases would facilitate fault localization [33]

and program maintenance [3, 30] by providing more granular infor-

mation about test results. Furthermore, as decomposed test cases

have distinct test assertions, engineers would be able to easily pick

specific test cases of interest and run them efficiently.

To achieve this, ideally, one would decompose a complex system

test case containing multiple test scenarios into separate system

test cases, each of them with only one test scenario and its corre-

sponding assertions. Since system test cases are software programs

too, they could be decomposed using static slicing techniques based

on def-use analysis [32]. However, existing static slicing techniques

cannot identify and deal with “hidden” dependencies between state-

ments, originated from the usage of global resources such as ex-

ternal files or databases; such missing dependencies would lead

to run-time errors in the resulting decomposed (sliced) test cases.

Dynamic slicing [4] could be an alternative to static slicing, but

it requires to instrument the source code and to collect coverage

information. However, this alternative is not feasible for a system

composed of third-party components and it would not address the

problem of handling “hidden” dependencies as they are not captured

by code coverage. Finally, observational slicing [4, 34] would require
running each system test case multiple times. Such an approach is

not applicable for typically long system test case execution times,

as it is the case for the system developed by our industrial partner.

In this paper, we tackle the problem of slicing a complex sys-

tem test case into simpler ones — without missing any “hidden”

dependency between statements — by proposing a novel approach,

called DS3 (Decomposing System teSt caSe), which complements

static slicing with a log-based analysis. The idea is to use test case

execution logs, obtained from past regression testing sessions, to

identify missing dependencies in the decomposed test cases gener-

ated by static slicing. Since logs include run-time information about

the SUT, we can use them to extract the global resources accessed

(e.g., files, databases) and the actions performed (e.g., read/write

file, open/close database) upon executing each statement in the

original (unsliced) system test case. In this way, we can reconstruct

the additional dependencies between statements as defined by the

usage of global resources.

DS3 first generates test slices (i.e., decomposed test cases) by

applying backward static slicing using individual assertions in-

cluded in the original system test case as slicing criteria. Then, DS3

complements the individual slices taking into account any missing

dependencies identified by the analysis of the test execution logs.

We implemented DS3 in a prototype tool, on top of an off-the-

shelf program slicing tool. We evaluated DS3 in terms of slicing

effectiveness (i.e., ability to identify all required dependencies) and

compared it with the vanilla static slicing tool.We also compared the

test case slices obtained with DS3 with the corresponding unsliced

system test case, in terms of efficiency and effectiveness, i.e., how

quickly we can verify individual assertions and how many faults

we can detect. In our evaluation, we used one proprietary system

provided by our industrial partner and one open-source system. The

results show that DS3 is able to accurately identify the dependencies

related to the usage of global resources, which vanilla static slicing

misses. Moreover, decomposed test cases are much faster than the

corresponding original system test case (with an average speedup of

3.56𝑥 ) and there is no significant loss in terms of effectiveness (fault

detection rate). Additionally, both the original system test cases

and the decomposed test cases have the same function coverage

with a small difference in branch coverage.

To summarize, the main contributions of this paper are:

(1) DS3, an approach for slicing complex system test cases using

the global resources usage information available in test case

execution logs;

(2) the evaluation of DS3 in terms of slicing effectiveness as well

as test efficiency and effectiveness.

The rest of the paper is organized as follows. Section 2 provides

some basic definitions. Section 3 illustrates the motivating example.

Section 4 describes the main steps of DS3. Section 5 reports on the

evaluation of DS3. Section 6 discusses the practical implications

of using DS3. Section 7 summarizes the related work. Section 8

concludes the paper and provides directions for future work.

2 BACKGROUND
2.1 Logs
A log is a sequence of log entries; a log entry contains a times-

tamp (recording the time at which the logged event occurred) and

a log message (recording the logged event). A log message can

be further decomposed [10, 22] into a message template, charac-
terizing the event type, and the parameter values of the event,

which are determined at runtime. For example, given the log entry

14:26:00 read file X , we can see that the event of the tem-

plate read file * occurred at timestamp 14:26:00with the value

of X. Here, * denotes the position of the variable part in the tem-

plate. More formally, letMT be the set of all the message templates

that can occur in a program 𝑃 , and 𝑉 be the set of all mappings

from template parameters to their concrete values, for all templates

mt ∈ MT . A log 𝐿 is a sequence of log entries ⟨𝑒1, . . . , 𝑒𝑘 ⟩ where
𝑒𝑖 = (ts𝑖 ,mt𝑖 , 𝑣𝑖 ), ts𝑖 ∈ N, mt𝑖 ∈ MT , and 𝑣𝑖 ∈ 𝑉 for 𝑖 = 1, 2, . . . , 𝑘 .

2.2 Static Slicing
Static slicing is a technique, using def-use analysis [32], for isolating
a “slice” of a program (i..e, a subset of the original program state-

ments) that affects the computation of the value of one or more

variables in a specific statement in the program. More formally,

a slice 𝑆 of a program 𝑃 is constructed with respect to a slicing

criterion (𝑠,𝑉 ) where 𝑠 is a statement in 𝑃 and𝑉 is a set of variables

in 𝑠; a statement in 𝑃 is removed to form 𝑆 if it does not affect the

computation of 𝑉 at 𝑠 .

3 MOTIVATING EXAMPLE
In this section, we present an example that motivates our work.

Figure 1 shows, on the top, an example system test case 𝑇sys =

⟨𝑠1, 𝑠2, . . . , 𝑠7⟩ (where 𝑠𝑖 is the 𝑖-th statement). Figure 2 shows𝑇sys’s

corresponding execution log 𝐿sys = ⟨𝑒1, . . . , 𝑒4⟩; for simplicity, we
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def test_example ():
(1) fdm = create_fdm_setup ()
(2) ref = read_csv('output.csv')
(3) sim = deploy_proc('output.csv')
(4) self.assertEqual(ref , sim)
(5) new = run_ic ()
(6) diff = FindDiffs(ref , new , 1E-8)
(7) self.assertEqual(len(diff), 0)

def test_example_ideal_slice1 ():
(1) fdm = create_fdm_setup ()
(2) ref = read_csv('output.csv')
(3) sim = deploy_proc('output.csv')
(4) self.assertEqual(ref , sim)

def test_example_ideal_slice2 ():
(1) fdm = create_fdm_setup ()
(2) ref = read_csv('output.csv')
(5) new = run_ic ()
(6) diff = FindDiffs(ref , new , 1E-8)
(7) self.assertEqual(len(diff), 0)

Figure 1: A system test case 𝑇sys (top) and its ideal slices 𝐼1
(middle) and 𝐼2 (bottom)

ID Statement Template Value

𝑒1 𝑠1 read file * setup.xml
𝑒2 𝑠1 write file * output.csv
𝑒3 𝑠2 read file * output.csv
𝑒4 𝑠3 read file * output.csv

Figure 2: The execution log 𝐿sys for 𝑇sys

show the structured log instead of its original, free-formed log

and omit log entries not related to the usage of global resources.

Notice that each log entry has a reference to the test case statement

originating it. This example is a simplified version of a system test

case in JSBSim [13], an open-source flight simulator.

The example test case has been designed to cover multiple test

scenarios, with the presence of two assertions
1
(i.e., 𝑠4 and 𝑠7). Such

test cases can become less than an ideal if an engineer is interested

in testing only a specific scenario, and the execution of both test

scenarios is expensive.

Ideally,𝑇 could be replaced with two test cases 𝐼1 = ⟨𝑠1, 𝑠2, 𝑠3, 𝑠4⟩
and 𝐼2 = ⟨𝑠1, 𝑠2, 𝑠5, 𝑠6, 𝑠7⟩, as shown at the middle and at the bottom

of Figure 1, each of which contains only an assertion referring to a

specific test scenario. In this way, an engineer can select which test

scenario to execute, reducing the overall testing cost. Notice that,

though the new test cases are smaller than the original system test

case, executing 𝐼1 and 𝐼2 is equivalent to executing 𝑇 in terms of

code coverage.

An engineer may try to use program slicing to generate 𝐼1 and

𝐼2 from 𝑇sys since 𝑇sys is a software program too and 𝐼1 and 𝐼2
can be seen as slices of 𝑇sys . In particular, to have one assertion

per slice, the engineer could apply backward static slicing using

⟨𝑠4, {ref, sim}⟩ and ⟨𝑠7, {diff}⟩ as slicing criteria. However, the

variable fdm defined in 𝑠1 is never used in the following statements

1
We remark that, though assertions are common practice, they are not the only kind

of test oracles; for example, exceptions in the source code can be seen as test oracles.

However, we focus on assertions in this work, since this is the current practice of our

industrial partner.

in 𝑇sys , and therefore none of the slices generated based on the

data- and control-flow of the program code contains 𝑠1. This is

critical because, as recorded in 𝐿sys , file output.csv needed in 𝑠2
is internally generated by create_fdm_setup() in 𝑠1. In practice,

this means that the execution of the sliced test cases generated

with vanilla static slicing will result in a crash, due to the missing

resource (file output.csv).
Overall, because of the “hidden” dependency between 𝑠1 and 𝑠2,

static slicing alone cannot properly generate 𝐼1 and 𝐼2 from 𝑇sys .

This simple example shows the need for extending static slicing

to identify hidden dependencies due to the usage of global resources.

In the next section, we will present a method that achieves this goal

leveraging the information contained in test case execution logs.

4 LOG-BASED TEST CASE DECOMPOSITION
Our new approach, called DS3, decomposes a complex system test

case containing multiple test scenarios into multiple individual

system test cases, each of them with only one test scenario and

its related subset of assertions, while preserving the hidden depen-

dencies due to the usage of global resources. The main idea is to

complement static slicing with a log-based analysis. Since test exe-

cution logs include run-time information about the system under

test, we can use them to extract the global resources accessed (e.g.,

files, databases) and the actions performed (e.g., read, write) upon

executing each statement in the original (unsliced) system test case.

In this way, we can reconstruct hidden dependencies between state-

ments generated at run-time by global resources, which were not

identified by static slicing.

DS3 takes as input a system test case, an execution log corre-

sponding to the test case, and the log message templates related to

global resources; it returns a set of slices, each of them exercising

an individual test scenario and containing fewer assertions. In our

running example, DS3 takes the system test case𝑇sys (Figure 1, top)

and its corresponding log 𝐿sys (Figure 2) and returns ideal slices 𝐼1
and 𝐼2 (Figure 1, middle and bottom). The engineer is only required

to mark log message templates related to global resources, such

as output.csv, in the log. For example, the log entry 𝑒1 in 𝐿sys
indicates that the “read” operation is performed on file setup.csv.
Hence, by looking at each message template, such as read file *,
engineers can easily identify if it is related to the usage of global re-

sources. Then, DS3 automatically identifies the hidden dependency

between 𝑠1 and 𝑠2 using a log-based analysis, and generates 𝐼1 and

𝐼2 by refining the intermediate slices generated by static slicing.

Note that our approach is black-box: it does not require access

to the source code. Therefore, it can be applied to software sys-

tems composed of 3rd-party components, whose source code is

not accessible, as it is the case for the system developed by our

industry partner. Nevertheless, we need two conditions to be satis-

fied to apply DS3: (1) there is a traceability information between

statements in the test case and messages in the log and (2) the

log contains some information on the usage of global resources.

These conditions are required to identify 1) which messages were

logged upon the execution of each statement of the test case and

2) the global resources used as part of the statement execution.

Such conditions are satisfied by the system developed by our in-

dustry partner. In general, such conditions can easily be satisfied
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by appropriately instrumenting test cases and adding a watchdog

process (with logging capabilities) to monitor the usage of global

resources at run time. Though DS3 additionally requires engineers

to manually mark message templates related to global resources,

the number of all templates is typically manageable (e.g., there are

14 message templates in our proprietary system), and it is easy for

engineers with domain knowledge to identify the templates related

to the usage of global resources.

Algorithm 1 provides the pseudo-code of DS3. It takes as input

a system test case 𝑇 = ⟨𝑠1, . . . , 𝑠𝑛⟩, its corresponding execution

log 𝐿 = ⟨𝑒1, . . . , 𝑒𝑘 ⟩, and the set of log messages templates MT𝐺 =

{mt1, . . . ,mt𝑚} marked as related to the usage of global resources

in 𝐿; it returns a set of decomposed test cases (i.e., slices) D =

{𝐷1, . . . , 𝐷 𝑗 }.

Algorithm 1 DS3: Decomposing System Test Case

Input: System Test Case T = ⟨𝑠𝑖 , . . . , 𝑠𝑛 ⟩
Log L = ⟨𝑒1, . . . , 𝑒𝑘 ⟩
Set of Templates MT𝐺 = {mt1, . . . ,mt𝑚 }

Output: Set of Decomposed Test Cases D = {𝐷1, . . . , 𝐷 𝑗 }
1: Set of Test Cases D ← ∅
2: for Assertion Statement 𝑠 ∈ 𝑇 do
3: Set of Variables𝑉𝑠 ← GET-VARS(𝑠)

4: Test Case 𝐷𝑠 ← BACK-SLICE(𝑠,𝑉𝑠 ,𝑇 )

5: D ← D ∪ {𝐷𝑠 }
6: end for
7: Set of Triples𝐺du ← GLOBAL-DU(𝐿,𝑇 ,MT𝐺 )

8: for Decomposed Test Case 𝐷 ∈ D do
9: Test Case 𝐷tmp ← 𝐷

10: for Statement 𝑠 ∈ 𝐷tmp do
11: Set of Statements𝑊 ← DEP-STMTS(𝑠,𝐺du,𝑇 )

12: 𝐷 ← ADD(𝐷,𝑊 )

13: end for
14: end for
15: returnMINIMIZE(D)

Algorithm 1 consists of four major stages: (1) assertion-based

backward slicing (lines 1–6), (2) def-use analysis for global resources

using logs (line 7), (3) slice refinement (lines 8–14), and (4) slice

minimization (line 15). The backward slicing stage generates static

slices D from 𝑇 . The global resources def-use analysis stage identi-

fies the relationships between the statements in 𝑇 , the log entries

in 𝐿 related to global resources, and the actions performed on the

latter, using 𝐿 and MT𝐺 . The resulting set of triples 𝐺du is then

used to refine each of the static slices 𝐷 ∈ D in the slice refinement

stage. Last, the slice minimization stage removes any redundant

slices inD. The algorithm ends by returning the minimizedD. The

four stages are described in detail in the following subsections.

4.1 Assertion-Based Backward Slicing
Algorithm 1 first performs backward static slicing on the assertions

in 𝑇 to generate a set of static slices D (lines 1–6). This guarantees

that each 𝐷 ∈ D has at most one test scenario by having one

assertion. The algorithm starts by initializing D as an empty set

(line 1). For each assertion statement 𝑠 ∈ 𝑇 (lines 2–6), the algorithm

gets the variables 𝑉𝑠 in 𝑠 (line 3), performs the backward static

slicing on 𝑇 using ⟨𝑠,𝑉𝑠 ⟩ as the slicing criterion (line 4), and adds

the resulting slice 𝐷 into D (line 5).

def test_example_static_slice1 ():
(2) ref = read_csv('output.csv')
(3) sim = deploy_proc('output.csv')
(4) self.assertEqual(ref , sim)

def test_example_static_slice2 ():
(2) ref = read_csv('output.csv')
(5) new = run_ic ()
(6) diff = FindDiffs(ref , new , 1E-8)
(7) self.assertEqual(len(diff), 0)

Figure 3: Static slice results: 𝑇static1 (top) and 𝑇static2 (bottom)

In our running example𝑇sys , for the assertion 𝑠4 ∈ 𝑇sys , the algo-
rithms performs the backward static slicing using ⟨𝑠4, {ref, sim}⟩
as the slicing criterion, yielding the slice 𝐷𝑠4 = 𝑇static1 = ⟨𝑠2, 𝑠3, 𝑠4⟩,
shown at the top of Figure 3. Note that 𝑠1 is not included in𝑇static1 be-

cause the variable fdm is not used in any statements in𝑇static1 based

on the static def-use analysis. Similarly, for the second assertion

𝑠7 ∈ 𝑇sys , the backward slicingwith the slicing criterion ⟨𝑠7, {diff}⟩
yields another slice 𝐷𝑠7 = 𝑇static2 = ⟨𝑠2, 𝑠5, 𝑠6, 𝑠7⟩, shown at the bot-

tom of Figure 3. 𝑇static2 does not include 𝑠1, 𝑠3, and 𝑠4 as they do

not affect the computation of the statements in𝑇static2 based on the

static analysis.

4.2 Def-Use Analysis for Global Resources
The second stage of Algorithm 1 identifies a set of triples 𝐺du in 𝑇

using 𝐿 andMT𝐺 (line 7) where each triple ⟨𝑠, 𝑔, 𝑎⟩ ∈ 𝐺du indicates

that an action 𝑎 is performed on a global resource 𝑔 when the

statement 𝑠 ∈ 𝑇 is executed. This is done by Algorithm 2.

Algorithm 2 GLOBAL-DU

Input: Log 𝐿 = ⟨𝑒1, . . . , 𝑒𝑘 ⟩
System Test Case𝑇 = ⟨𝑠1, . . . , 𝑠𝑛 ⟩
Set of Templates MT𝐺 = {mt1, . . . ,mt𝑚 }

Output: Set of Triples𝐺du
1: 𝐺du ← ∅
2: for Statement 𝑠 ∈ 𝑇 do
3: Set of Log Entries 𝐸𝑠 ← ENTRY-FOR-STATEMENT(𝑠, 𝐿)

4: for Log Entry 𝑒 ∈ 𝐸𝑠 do
5: if TEMPLATE(𝑒) ∈ MT𝐺 then
6: String 𝑔← GET-GLOBAL-RESOURCE(𝑒)

7: Action 𝑎 ← GET-ACTION-TYPE(𝑒)

8: 𝐺du ← 𝐺du ∪ {⟨𝑠, 𝑔, 𝑎⟩ }
9: end if
10: end for
11: end for
12: return𝐺du

Algorithm 2 starts by initializing 𝐺du as an empty set. For each

statement 𝑠 ∈ 𝑇 (lines 2–11), the algorithm identifies the set of log

entries 𝐸𝑠 originated from 𝑠 using the traceability information be-

tween the statements in𝑇 and the log entries in 𝐿 (line 3). Then, for

each log entry 𝑒 ∈ 𝐸𝑠 (lines 4–10) whose template is inMT𝐺 (line 5),

the algorithm identifies the global resource 𝑔 from 𝑒’s parameter

value (line 6) and the action type 𝑎 from 𝑒’s template (line 7). If the

template contains predefined keywords indicating a “use” of the re-

source, such as read and access, then 𝑎 = use; similarly, keywords

such as write and update indicate a “definition” of a resource and
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we have 𝑎 = def. The default set of keywords characterizing uses
and definitions of global resources can be enhanced by engineers.

The identified triple ⟨𝑠, 𝑔, 𝑎⟩ is added into𝐺du (line 8); the algorithm

ends by returning 𝐺du .

In our running example, let us consider the case where GLOBAL-

DU is called with parameters 𝑇 = 𝑇sys = ⟨𝑠1, . . . , 𝑠7⟩, 𝐿 = 𝐿sys =

⟨𝑒1, . . . , 𝑒4⟩, and MT𝐺 = {read file *, write file *}. The
algorithm first initializes𝐺du to ∅ and starts the iteration over state-

ments in 𝑇sys . For 𝑠1 ∈ 𝑇sys , the call to ENTRY-FOR-STATEMENT

with 𝑠1 and 𝐿sys returns 𝐸𝑠 = {𝑒1, 𝑒2}, by checking the reference of

each log entry to the test case statement originating in 𝐿sys . Based

on 𝐸𝑠 , the algorithm starts the inner iteration over entries in 𝐸𝑠 . For

𝑒1 ∈ 𝐸𝑠 , since 𝑒1’s template, i.e., read file *, is in MT𝐺 , the algo-
rithm identifies the global resource and action type of 𝑒1 using GET-

GLOBAL-RESOURCE and GET-ACTION-TYPE. Specifically, the call

to GET-GLOBAL-RESOURCEwith 𝑒1 checks the parameter value of

𝑒1 and returns 𝑔 = setup.xml. Similarly, the call to GET-ACTION-

TYPE with 𝑒1 checks the template of 𝑒1 and returns 𝑎 = use be-

cause read file * contains the read keyword. The algorithm ends

the inner iteration for 𝑒1 by adding the triple ⟨𝑠1, setup.xml, use⟩
into 𝐺du and moves on to the next iteration to process 𝑒2. After

processing all statements and corresponding log entries, the algo-

rithm returns 𝐺du = { ⟨𝑠1, setup.xml, use⟩, ⟨𝑠1, output.csv, def⟩,
⟨𝑠2, output.csv, use⟩, ⟨𝑠3, output.csv, use⟩ }.

4.3 Log-Based Slice Refinement
The two previous stages of Algorithm 1 compute D and 𝐺du . In

this stage, we aim to refine the slices D using the information

in 𝐺du (lines 8–14). Specifically, for each slice 𝐷 ∈ D and for

each statement 𝑠 ∈ 𝐷 , the algorithm finds all the statements of 𝑇

needed for 𝑠 using algorithm DEP-STMTS (line 11, described in

detail below) and adds the found statements into 𝐷 (line 12). As a

result, we ensure that all 𝐷 ∈ D have no missing statements, and

can be executed without resulting in a crash due to the improper

usage of a global resource (e.g., writing to a file before opening it).

Algorithm 3 presents the pseudo-code of DEP-STMTS, the core of

the slice refinement stage. It recursively finds dependent statements

using both the information in 𝐺du and backward static slicing
2
.

For a given 𝑠 ,𝐺du , and𝑇 , the algorithm first gets a set of variables

𝑉𝑠 in 𝑠 and calculates a set of statements 𝑆dir directly needed for 𝑠

using DEFS and BACK-SLICE. Specifically, the call to DEFS with 𝑠

and 𝐺du returns all statements 𝑠 ′ such that ⟨𝑠 ′, 𝑔, def⟩ ∈ 𝐺du and

⟨𝑠, 𝑔, use⟩ ∈ 𝐺du . The call to BACK-SLICE with 𝑠 , 𝑉𝑠 , and 𝑇 returns

all statements in the static slice of 𝑇 constructed by the slicing

criterion of ⟨𝑠,𝑉𝑠 ⟩. If 𝑆dir = ∅, the algorithm returns ∅ (line 4);

otherwise, the algorithm collects another set of statements 𝑆rec
needed for each statement 𝑠dir ∈ 𝑆dir (lines 6–9) by recursively

calling DEP-STMTS with 𝑠dir (line 8) and then returns 𝑆dir ∪ 𝑆rec
(line 10).

In our running example, let us consider the case where DEP-

STMTS is calledwith parameters 𝑠 = 𝑠2,𝐺du = {⟨𝑠1, setup.xml, use⟩,
⟨𝑠1, output.csv, def⟩, ⟨𝑠2, output.csv, use⟩, ⟨𝑠3, output.csv, use⟩},

2
Note that Algorithm 3 could be called for the same statement multiple times. To

reduce the execution time, Algorithm 3 internally keeps a cache of the dependency

information for each statement.

Algorithm 3 DEP-STMTS

Input: Statement 𝑠

Set of (Global Resource def-use) Triples𝐺du
System Test Case𝑇 = {𝑠1, . . . , 𝑠𝑛 }

Output: Set of Statements 𝑆

1: Set of Variables𝑉𝑠 ← GET-VARS(𝑠)

2: Set of Statements 𝑆dir ← DEFS(𝑠,𝐺du) ∪ BACK-SLICE(𝑠,𝑉𝑠 ,𝑇 )

3: if 𝑆dir = ∅ then
4: return ∅
5: else
6: Set of Statements 𝑆rec ← ∅
7: for Statement 𝑠dir ∈ 𝑆dir do
8: 𝑆rec ← 𝑆rec∪ DEP-STMTS(𝑠dir ,𝐺du,𝑇 )

9: end for
10: return 𝑆dir ∪ 𝑆rec
11: end if

and𝑇 = 𝑇sys . Since 𝑠2 has no variables,𝑉𝑠 = ∅ and the call to BACK-
SLICE returns ∅. On the other hand, the call to DEFS returns {𝑠1}
since ⟨𝑠1, output.csv, def⟩ ∈ 𝐺du and ⟨𝑠2, output.csv, use⟩ ∈
𝐺du . Thus, 𝑆dir = {𝑠1}, and the algorithm recursively calls DEP-

STMTS for 𝑠1. Since 𝑠1 does not depend on any other statement,

the recursive call returns ∅, leading to 𝑆rec = ∅. The algorithm ends

by returning 𝑆dir ∪ 𝑆rec = {𝑠1}.
Recall that the assertion-based backward slicing stage calculated

𝐷𝑠4 = 𝑇static1 = ⟨𝑠2, 𝑠3, 𝑠4⟩ and 𝐷𝑠7 = 𝑇static2 = ⟨𝑠2, 𝑠5, 𝑠6, 𝑠7⟩ for 𝑇sys .
Since the call to DEP-STMTS for 𝑠2 returns {𝑠1} as described above,
both 𝐷𝑠4 and 𝐷𝑠7 can be refined, thanks to the inclusion of 𝑠1. Note

that, while 𝑠3 also depends on 𝑠1 according to 𝐺du , function ADD

in Algorithm 1 (line 12) does not redundantly add 𝑠1 to 𝐷𝑠4 and 𝐷𝑠7 .

As a result, 𝐷𝑠4 and 𝐷𝑠7 become the same as the ideal slices 𝐼1 and

𝐼2, respectively.

4.4 Slice Minimization
After the slice refinement stage, D may contain slices that (exclud-

ing the assertions) are subsets of others. A slice 𝐷𝑖 is a subset of
another slice 𝐷 𝑗 , denoted by 𝐷𝑖 ⊑ 𝐷 𝑗 , if all statements (except

assertions) of 𝐷𝑖 are in 𝐷 𝑗 . As we are dealing with test case slices,

we make the following assumption, based on our observations in

real-word codebases: 𝐷𝑖 ⊑ 𝐷 𝑗 (or 𝐷 𝑗 ⊑ 𝐷𝑖 ) holds when 𝐷𝑖 and

𝐷 𝑗 belong to the same test scenario and thus share the same test

fixture (e.g., the same setup and teardown code). For example, a

test scenario for the initialization routine of an object can be imple-

mented with multiple assertions that verify the initialization of the

various properties of the object; in such a case, the assertions will

rely on the same setup code. Based on this assumption, DS3 includes

a minimization stage to remove any redundant slices in terms of

test scenarios. Specifically, the MINIMIZE function in Algorithm 1

analyzes each obtained slice (ignoring assertions) in D, to ensure

that the property ∀𝐷𝑖 , 𝐷 𝑗 ∈ D, 𝐷𝑖 @ 𝐷 𝑗 ∧ 𝐷 𝑗 @ 𝐷𝑖 holds on D.

If MINIMIZE finds two slices 𝐷𝑖 , 𝐷 𝑗 ∈ D such that 𝐷𝑖 ⊑ 𝐷 𝑗 ,

it merges 𝐷𝑖 and 𝐷 𝑗 by moving the assertion from 𝐷𝑖 into 𝐷 𝑗

(preserving the order among statements defined in the original test

case) and removing 𝐷𝑖 from D.

In our running example, when ignoring the assertion statements,

𝐷𝑠4 = 𝐼1 contains 𝑠3 and 𝑠4 that are not included in 𝐷𝑠7 = 𝐼2,
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and therefore 𝐷𝑠4 @ 𝐷𝑠7 ; similarly, 𝐷𝑠7 @ 𝐷𝑠4 . So MINIMIZE re-

turns {𝐷𝑠4 , 𝐷𝑠7 } = {𝐼1, 𝐼2}, and Algorithm 1 ends by returning

D = {𝐼1, 𝐼2}.
Note that the minimization stage results in some slices having

multiple assertions since MINIMIZE merges slices without taking

them into account. Nevertheless, based on the aforementioned

assumption, the assertions included in each slice belong to the

same test scenario. Furthermore, the assertions of the original test

case will be distributed over the generated slices, thus reducing the

overall number of assertions per slice.

5 EVALUATION
We implemented DS3 as a Python program, using the Python-
Program-Analysis toolkit [26] to perform static slicing.

In this section, we report on the assessment of DS3 in slicing

system test cases, and the effectiveness and efficiency of the obtained

slices. More specifically, our research is steered by the following

research questions:

RQ1: How effective is DS3 in slicing system test cases compared to
standard static slicing?

RQ2: How efficient are the slices produced by DS3 compared to the
original test cases?

RQ3: What is the code coverage and fault detection capability of the
slices produced by DS3 compared to the original test cases?

RQ1 investigates how effective DS3 is in slicing system test cases

into sliced test cases that successfully compile and have no run-time

errors (i.e., no “hidden” dependency is missing). These two aspects

are essential when decomposing complex system test cases since

slices yielding compilation or run-time errors are useless.

RQ2 assesses the running time (efficiency) of the generated test

slices compared to the corresponding original (non-sliced) test cases.

Efficiency is important in the context of regression testing because

developers would execute only a subset of the test cases (and their

assertions) to find regression faults within the available time budget.

The efficiency of regression testing depends on the running time of

the test cases that are selected.

RQ3 analyzes the code coverage and fault detection capability

of the generated test slices compared to the non-sliced ones. Since

DS3 decomposes system test cases into slices, a potential drawback

is that the latter may be less effective than the former in terms

of structural coverage and fault detection capability. Thus, it is

essential to investigate how structural coverage and fault detection

capability may be affected by applying DS3.

5.1 Benchmarks
A candidate benchmark for our evaluation should meet the follow-

ing requirements: (1) it contains system or integration level test

cases, (2) the test cases should generate logs when executed, and

(3) the test cases should access/use global resources (e.g., external

files, databases, remote resource).

These requirements are fulfilled by a proprietary benchmark,

hereafter referred to as Prop, provided by one of our industrial

partners active in the satellite industry. This benchmark includes 30

complex system test cases written in Python, each of which takes on

average 53 minutes to execute, as it triggers multiple cyber-physical

components
3
.

To increase the diversity of our experimental subjects and sup-

port open science, we aimed to include in our benchmark one

open-source system as well. Among the top 10 trending reposito-

ries on GitHub, we filtered out those that do not satisfy the above

requirements, ending up with one open-source system, namely

JSBSim, an open-source flight simulator already introduced in our

running example in section 3. It is mainly written in C++ with

about 300 source files (in total over 20 KLOC). It also includes 81

system-level test cases written in Python.

Our approach uses logs to detect dependencies originated from

the usages of global resources. The proprietary test cases generate

log messages with detailed information regarding the usage of

global resources (file, database, and network connection) and the

timestamp of each executed test statement. Therefore, Prop did not

require further modifications to generate appropriate logs.

In contrast, the logs generated by the JSBSim test cases do not

include the usages of global resources by default. Thus, we im-

plemented a watchdog script that monitors the usage of global

resources during test executions. Since the system test cases in

JSBSim access and modify external files only, our script captured

the names of the changed files as well as the timestamp of each

file access. Besides, we also instrumented the test cases to store

the timestamps of each executed test statement. This allowed us to

determine precisely which statement read or wrote which external

files. Notice that implementing a watchdog and instrumenting sys-

tem test cases can easily be automated, without requiring access to

the code base.

5.2 RQ1: Slicing Effectiveness
5.2.1 Methodology. To answer RQ1, we considered static slicing

(using the same slicing criterion used in the assertion-based back-

ward slicing stage of DS3, see 4.1) as the baseline for comparison;

we used the implementation provided by an open-source toolkit,

python-program-analysis, since all the test cases in our bench-

marks are written in Python. We consider neither dynamic slicing

nor observational slicing as alternative baselines. The former is

not feasible as our proprietary system Prop includes several third-

party components; hence, instrumenting these components and

building the test execution traces is not possible. The latter is too

expensive for system test cases since it requires executing each test

case multiple times, each time by deleting one single test statement

and observing whether the test case fails [4]. Considering the av-

erage execution time of 53 minutes of the system test cases in the

Prop benchmark, observational slicing was not applicable from a

practical standpoint.

To assess the slicing effectiveness, we ran both DS3 and the

baseline static slicing tool on the two benchmarks, obtaining two

sets of sliced test cases (one generated by each tool). To measure the

slicing effectiveness of the two approaches, we used the following

metric:

Eff (D) = |{D𝑖 ∈ D | D𝑖 has no errors}|
|D|

3
Due to non-disclosure agreements, we cannot divulge more details about this system.
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Table 1: Comparison between DS3 and static slicing in terms
of slicing effectiveness Eff (D)

System # Test Cases Approach #Slices Eff (D)

Total #Pass #Fail

JSBSim 76

DS3 84 84 0 1

Static Slicer 169 56 113 0.33

Prop 30

DS3 137 137 0 1

Static Slicer 166 40 126 0.24

where D is the set of slices produced by a given approach (DS3 or

the baseline). In the formula, the numerator indicates the number

of test slices that do not lead to compilation or run-time errors; the

denominator represents the total number of generated slices. The

value of Eff ranges between 0 and 1; larger values are preferable as

they indicate fewer failing test slices. In our context, generated slices

may fail due to missing dependencies; therefore, larger Eff (D)
values mean that the technique under analysis is more effective in

generating correct slices that do not miss any dependency.

Notice that the same static slicer used in the first stage of DS3 is

also used as baseline static slicer. This means that the comparison

between DS3 and the baseline actually shows the effect of log-based

refinement on vanilla static slicing.

Note that each test case was executed in a sandbox to avoid

any side effects on other test cases. Furthermore, to avoid non-

deterministic behaviors, we ran each of the original test cases mul-

tiple times and removed flaky test cases (i.e., passing in some runs

and failing in others).

5.2.2 Results. Table 1 reports the number of slices produced by

both our approach and the baseline. Column “System” indicates the

name of the benchmark; column “# Test Cases” indicates the number

of the original test cases to be sliced; columns “Total”, “Pass”, and

“Fail” indicate, respectively, the total number of obtained slices, the

number of test case slices that successfully passed when executed,

and the number of test case slices that failed when executed; column

“Eff (D)” indicates the slicing effectiveness of an approach. The total
number of test cases to be sliced for JSBSim is 76 because three of

them were flaky and two additional test cases could not be properly

parsed by the static slicer.

The results show that the static slicer has lower slicing effective-

ness than DS3 for both subject systems. For JSBSim, the static slicer

achieved an effectiveness score of 0.33. Indeed, 67% of the test slices

it generated resulted in compilation or run-time errors; such errors

occurred because the static slicer missed hidden dependencies. For

Prop, only 24% of the slices generated by the static slicer ran success-

fully, without run-time errors, as they had no missing dependencies.

Instead, all the slices generated by DS3 ran successfully, without

errors, resulting in an effectiveness score of 1. Overall, this means

that DS3, leveraging the global resources usages recorded in the

logs, is able to identify many hidden dependencies that a vanilla

static slicer would have missed.

5.3 RQ2: Efficiency of the Sliced Test Cases
5.3.1 Methodology. To answer RQ2, we compared the execution

time of the generated test slices with the execution time of the

original (non-sliced) test cases. As the test case execution can alter

the environment (e.g., by creating or modifying a file), we reset the

environment before running each test case, to avoid any incorrect

results. We ran each test 10 times to account for the uncertainty

in test execution time. We also assessed the overhead of DS3 by

measuring, over the 10 executions, the average time taken by DS3

internal stages (see Algorithm 1 in section 4) and the total execution

time for slicing a given test case.

The JSBSim test cases have a very short execution time (a few

seconds), so they are not adequate to realistically assess the effi-

ciency of the sliced test cases. For this reason, to answer RQ2, we

only considered the results obtained for the Prop test cases.

All test cases (original and sliced) were executed on an Apple

MacBook Pro computer with a 2.50GHz Intel Core i7 processor

and 16GB of memory.

5.3.2 Results. Table 2 shows the time (in seconds) for running

DS3 to generate the test slices, as well as the time for executing

the generated slices and the original test cases. More specifically,

columns “Others”, “Static”, and “Refine” indicate the average time

for executing the different stages of DS3: finding global resources

defs and uses and the minimization step (column “Others”), static

slicing (column “Static”), slice refinement (column “Refine”); column

“Total” indicates the average total execution time of DS3; column

“Slices” indicates the number of slices produced by DS3; column

“Org” indicates the execution time of the original (non-sliced) test

cases; columns “Sl. Avg” and “Sl. Tot” indicate the average and

the cumulative execution time of the sliced test cases, respectively,

where the latter represents the sum of the execution time of all slices

obtained for each individual system test case; column “Speedup”

indicates the speedup ratio between the execution time of the non-

sliced test cases and the cumulative execution time of the sliced

test cases.

The results shows that, for 24 out of 30 test cases, DS3 produced

test case slices whose cumulative execution time is shorter than

the one of the original test case, with an average speedup of 3.56x.

The largest speedup (23.14x) can be observed for test case PTC30.

In this case, the cumulative execution time of the five slices is 1004 s

(≈ 17 minutes) on average; instead, executing the original test case

requires 23 231 s (≈ 387 minutes, i.e., more than six hours). This

large difference is due to the execution, within the original test

case, of an expensive procedure that actually does not have any

dependencies with other statements in the test case; indeed, DS3

successfully determined and excluded this procedure in the test

case slices it generated.

In the remaining six test cases (characterized by a speedup ratio

lower than one), the total execution time of the test slices was

higher than the one of the original test case. We observed the

lowest value of the speedup ratio (i.e., the highest slowdown, 0.53)

for PTC5: the execution time of the original test case was 465 s

while the cumulative execution time of the two slices produced by

DS3 was 874 s. To further understand the root cause of this large

increase in execution time, we manually analyzed PTC5 and its

corresponding slices. We discovered that, for this case, DS3 created
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Table 2: Execution time (in seconds) of DS3 and of the origi-
nal and sliced system test cases.

STC

DS3 (s)
Slices

Test Cases (s)
Speedup

Others Static Refine Total Org Sl. Avg Sl. Tot

PTC1 2.76 5.06 204.42 212.23 2 1139 520.00 1040 1.10
PTC2 2.19 3.25 108.79 114.21 2 498 342.50 685 0.73
PTC3 0.14 3.08 32.99 36.15 3 245 132.60 398 0.62
PTC4 3.51 3.07 54.11 60.70 1 330 210.00 210 1.57
PTC5 0.10 3.57 84.65 88.35 2 465 437.00 874 0.53
PTC6 2.77 3.07 36.31 42.25 2 2720 139.00 278 9.78
PTC7 13.84 18.53 258.58 290.94 3 3080 372.00 1116 2.76
PTC8 18.78 25.36 260.06 304.18 4 3765 404.75 1619 2.33
PTC9 0.75 5.48 15.49 21.72 1 197 103.00 103 1.91
PTC10 10.24 68.15 89.47 167.62 7 2280 296.43 2075 1.10
PTC11 9.50 4.95 20.13 34.58 3 1041 121.00 363 2.87
PTC12 4.26 9.95 69.89 84.10 3 913 182.67 548 1.67
PTC13 3.65 50.81 28.29 82.74 5 4150 328.60 1643 2.53
PTC14 0.01 27.81 91.25 119.07 7 15480 144.00 1008 15.36
PTC15 4.16 5.66 9.50 19.32 2 541 89.00 178 3.04
PTC16 0.51 49.58 142.25 192.32 6 922 128.50 771 1.20
PTC17 5.08 11.43 596.04 612.53 8 4975 212.50 1700 2.93
PTC18 0.04 11.46 11.14 22.61 5 4091 116.00 580 7.05
PTC19 0.02 5.08 36.11 41.19 3 183 68.33 205 0.89
PTC20 0.08 15.10 223.85 239.02 3 342 70.00 210 1.63
PTC21 0.06 20.79 136.81 157.65 2 4172 953.50 1907 2.19
PTC22 0.03 9.84 27.52 37.37 5 1201 209.00 1045 1.15
PTC23 0.11 15.95 250.19 266.24 3 6383 281.67 845 7.55
PTC24 0.03 9.24 31.20 40.46 7 2173 201.30 1409 1.54
PTC25 0.74 7.79 89.80 98.33 10 1060 187.00 1870 0.57
PTC26 0.05 28.32 312.50 340.85 3 3768 382.33 1147 3.29
PTC27 0.03 217.56 194.08 411.64 13 3051 137.15 1783 1.71
PTC28 0.55 53.06 24.06 77.22 7 2802 120.00 840 3.34
PTC29 1.69 8.83 128.98 138.88 10 680 99.10 991 0.69
PTC30 0.23 5.07 14.94 20.29 5 23231 200.80 1004 23.14

Average 2.86 23.56 119.45 145.82 5 3196 239.66 948 3.56

two independent test slices, each with the same copy of the test

set-up code; executing this set-up code takes a large portion of the

execution time of the text case slice.

Statistical Analysis. We further analyzed the results reported

in Table 2 using statistical and effect size tests. In particular, we

used the Wilcoxon rank sum test [6] and the Vargha-Delaney’s

𝐴12 effect size [31]. Both tests are non-parametric; therefore, they

do not make any assumption on the data distributions. We used

the Wilcoxon test to assess whether the difference in running time

between the original test cases and the corresponding slices are sta-

tistically significant. For the sake of the analysis, we considered the

cumulative execution time for all slices obtained for each individual

system test case. We considered a level of significance 𝛼 = 0.05.

According to theWilcoxon tests, the slices generated byDS3 have

a statistically significant lower execution time than the correspond-

ing non-sliced test cases (𝑝-value=0.01). The Vargha-Delaney’s

statistic reports a medium effect size 𝐴12 = 0.69.

DS3 Overhead. As shown in the left side of table 2, DS3 takes, on

average, 145.82 s to slice a complex system test case. The most time-

consuming step is the refinement step, which recursively derives the

hidden dependencies and performs backward slicing to guarantee

that all related statements are included. This step takes, on average,

82% of the overall DS3 execution time. The second most expensive

step is the generation of the initial set of slices using the static

slicer; this step takes 16% of the overall DS3 execution time, on

average. The remaining steps take, on average, only 2% of the total

DS3 execution time.

It is worth noting that DS3 will be used just once to obtain the

test case slices, so its overhead will be limited in any case. Further,

using DS3 is particularly advantageous for those test cases that are

executed many times a day, a common situation in continuous in-

tegration and deployment (CI/CD) environments, for example [27].

5.4 RQ3: Coverage and Fault Detection
Capability

5.4.1 Methodology. To answer RQ3, we first compared the cumu-

lative coverage of the original test cases and the test slices ob-

tained through DS3. To measure code coverage, we used Bullseye
Coverage [29], an advanced C++ code coverage tool used to im-

prove software quality in critical system domains such as industrial

control, medical, automotive, communications, aerospace, and de-

fense. Next, we used mutation testing to assess the difference in

fault detection capabilities between the original test cases and slices.

Mutation testing is widely used in the literature to systematically

assess the fault detection effectiveness of test cases [5, 8, 14], espe-

cially when not enough real-faults have been recorded, which is

our case. Mutation testing introduces syntactic changes (mutations)

into the production code using well-established mutation rules

(mutation operators). The variants of the program produced by the

mutation operators are often referred to as mutants. Effective test
suites should pass on the original program but fail when executed

against the mutants. In this scenario, the mutant is said to be killed;
otherwise, the mutant is said to be alive.

For mutation analysis, we used Mutate++ [18], an open-source

mutation testing tool. Mutate++ provides 15 mutations operators,

including arithmetic, conditional, Boolean, numeric, and line-deletion
operators. For our analysis, we selected six mutation operators

based on the following observations. First, for some mutation oper-

ators, the majority of the generated mutants were killed at the build

stage due to compilation errors; an example of such a mutation

operator is the line-deletion operator, which removes a source code

statement. Second, Lin et al. [17] reported that some mutation oper-

ators are sufficient in selective mutation. Selective mutation aims to

reduce the number of mutants to consider without compromising

the measurement of test effectiveness [11]. Based on the above

observations, in our evaluation we considered the following muta-

tion operators: (1) Logical Operator, (2) Conditional Operator, (3)

Increment Decimal Operator, (4) Arithmetic Operator, (5) Boolean

Literal Operator, (6) Decimal Number Operator.

To assess whether the slicing process of DS3 did not impact the

fault detection capability of the test slices (group 1) compared to the

original test cases (group 2), we compared the number of mutants

killed by each group. We use KO to denote the set of mutants killed

by the original test cases and KS to denote the set of mutants killed

by the test slices generated by DS3.

We performedmutation testing and coverage analysis only on JS-
BSim. We could not consider Prop for the following reasons: (1) the

proprietary system includes a large number of software compo-

nents, written with different programming languages. Analyzing

such a heterogeneous codebase would require a powerful and so-

phisticated mutation testing tool. (2) We did not have access to the

system source code. (3) Running mutation testing on Prop would

have required to run the test cases hundreds of times, once for
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Table 3: Comparison between original and sliced test cases
in terms of code coverage

Subject

FunctionCov BranchCov

Total Org Slices Total Org Slices

JSBSim 2980 1831 1831 13541 5736 5698

Table 4: Comparison of the mutation testing results (KO : the
set of mutants killed by the original test cases, KS : the set of
mutants killed by the test slices produced by DS3)

Subject ALL Mutants 𝐾𝑂 𝐾𝑆 𝐾𝑂 ∩ 𝐾𝑆 𝐾𝑂 \ 𝐾𝑆
JSBSim 2678 289 288 288 1

each generated mutant. One execution for all Prop test cases re-

quires ≈ 26 hours; hence, mutation testing for Prop would have

been prohibitively expensive.

5.4.2 Results. Table 3 reports code coverage for the original test
cases and the generated test slices. Columns “FunctionCov” and

“BranchCov” indicate, respectively, function coverage and branch

coverage scores; sub-columns “Total” indicate the total number

of functions/branches in the system source code; sub-columns

“Org” and “Slices” indicate, respectively, the number of function-

s/branches covered by the original test cases and by the slices.

In terms of function coverage, both the original test cases and

the generated slices achieved 61% (1831/2980). We observe a very

small difference in branch coverage: the original test cases cover

42.36% (5736/13541) of the code branches whereas the generated

slices covered 42.08% (5698/13541) of them.

We manually analyzed the test slices to understand the root

cause of such (minor) differences in branch coverage. We observed

that a few original test cases contain spurious function calls whose

execution results are neither asserted nor used as input for other

method calls. As such, these function calls do not contribute to the

test scenario under test. Since DS3 uses an assertion-based slicing

criterion, it can successfully identify these spurious statements as

they are not included in any of the generated slices.

Table 4 shows the mutation testing results. For the original sys-

tem test cases, 289 mutants were killed. The generated test slices

were able to kill 288 mutants which, as expected, were all killed by

the original test cases. To better understand why this single mutant

was not killed by the generated slices, we manually analyzed the

original (non-sliced) test case that killed that mutant as well as the

slices generated by DS3. We found out that the mutant was injected

within a function that was invoked by the original test case but

removed in the generated slices. The function call was removed by

DS3 because it does not contribute to the test cases’ assertions; it

is not used to create inputs for other method calls, and it does not

access global resources (i.e., it does not have hidden dependencies).

Though the original test case kills the mutant, it is not due to an

assertion failure but rather a run-time error when invoking the

function call after the mutant is injected. This negligible difference

shows that DS3 does not negatively impact the effectiveness in terms
of code coverage and fault detection capability.

5.5 Threats to Validity
Threats to construct validity. We evaluated DS3 using different met-

rics, namely (1) number of generated test slices with no compilation

or run-time error, (2) running time, (3) code coverage, and (4) killed

mutants. These metrics are widely used in testing [19, 35]. To give

a reasonable estimate of the test execution cost, we ran each test

(both slices and original tests) 10 times and reported the average

(arithmetic mean) results. To have a more reliable measure of the

DS3 overhead, we also ran our approach 10 times.

Threats to external validity. We assessed DS3 in the context of a

collaborative industrial research project with a large company in

the aerospace domain. Hence, we reported the achieved results for

one industrial, proprietary system. To improve the generalizability

of our results and promote open science, we also included an open-

source project, namely JSBSim, which implements a multi-platform,

object-oriented Flight Dynamics Model written in C++.

6 PRACTICAL IMPLICATIONS
Test Smells and Maintainability. We argue that DS3 contributes

to addressing two test smells: assertion roulette and eager tests. As-
sertion roulette is a test with multiple assertion statements, which

make root cause analysis more difficult in case of test failure [30].

Eager tests check multiple different functionalities at once, neg-

atively affecting test code readability and understandability [30].

Executing DS3 on a given system test case will yield multiple slices,

each with fewer assertion statements and one individual test sce-

nario. Notice that the slice minimization stage further contributes

to reduce the overall number of slices. Thanks to DS3, the assertions

of the original test case will be distributed over the generated slices,

thus reducing the number of assertions per slice (assertion roulette).

Furthermore, splitting the test cases into independent slices helps

address eager tests.

Regression testing. Although DS3 has a non-negligible overhead

(see Section 5.3), it is applied only once to generate the test slices.

Therefore, its impact on the testing cost is limited. The advantage

of using DS3 is that the generated slices are less expensive: this

plays an important role in regression testing [35]. Reducing test

execution time is one of the objectives of test case selection and pri-

oritization. Using test slices, lightweight code analysis, and domain

knowledge, test engineers can select and run the slices covering the

changed or impacted portion of the production code, instead of the

original test cases. In addition, test slices can be grouped by setup

configuration, input values, or target functionalities. Slices can be

further selected for each group to run only the most representative

test slices and further reduce the overall test execution cost. Indeed,

after reviewing the results on Prop, some of our industry partner’s

engineers stated that the sliced test cases were easier to understand

and modify and of course faster to execute; they also found it inter-

esting to extract useful information from the large number of logs

they already have.

According to the results for RQ3, the test slices generated by DS3

have the same coverage and fault detection capability as the original

test cases. Since the test slices are also statistically less expensive
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to run (see RQ2 results), which positively affects regression testing,

there is a clear gain in using DS3.

Two common objectives used in test case selection and prior-

itization are coverage (to maximize) and test execution (to mini-

mize) [35]. With DS3, developers can select test slices that reach

the same coverage and mutation scores as the original test cases

but with a significantly lower execution time.

7 RELATEDWORK
The approach presented in this paper is mainly related to work

done in the areas of test case decomposition, program slicing, and
test refactoring.

Test Case Decomposition. The closest approaches to DS3 are those
based on test carving techniques [7, 15], which automatically carve

unit test cases from system test cases. Such techniques consist

of capturing, for a specific target unit method, the system states

before (pre-state) and after (post-state) the invocation of the unit

method during the execution of the system test case. From the

pre-state, the unit method is replayed and the resulting state is

queried to determine if there are differences with the recorded

post-state. One of the main differences between these techniques

and ours is that DS3 preserves the system level characteristics of

the obtained (sliced) test cases (which can potentially entail a very

complex usage of the various units), whereas carved tests target

unit methods. Another difference is that carving techniques require

to instrument the program code to capture pre- and post-states and

to replay the unit method, whereas DS3 relies on program slicing

and on information, regarding global resource usage, recorded in

execution logs.

Xuan and Monperrus [33] propose test case purification for im-

proving fault localization, by separating existing test cases into

small fractions (called purified test cases). Similar to DS3, they use

program slicing on assertions in an original test case to generate

single-assertion test cases. Since they mostly target inexpensive,

unit test cases (rather than expensive system test cases), dynamic

slicing represents a viable solution for their approach. In contrast,

DS3 deals with system test cases, relies on static slicing extended

with log-based refinement to capture all dependencies in test case

statements, and does not require the execution of test cases.

Bach et al. [2] propose to extract unit test cases from system test

cases through the reverse execution (called time travel debugging)

of a program flow for reconstructing object creation and modifi-

cation statements from the source code. The approach also uses

differential analysis to identify the test statements from which the

unit test case will be extracted. Different from DS3, which requires

only access to the test cases and to the execution logs, this approach

requires access to the source code of the SUT.

Finally, Jorde et al. [12] investigated whether coarser granularity

tests could be automatically generated by aggregating unit tests

using Differential Unit Tests (DUT), initially developed for test carv-

ing by Elbaum et al. [7]. Such a strategy is, conceptually speaking,

dual to test case decomposition.

Program Slicing. DS3 represents an enhancement of vanilla static
slicing [32]; as discussed in section 3, the latter is most likely to miss

hidden dependencies among statements, originated from the usage

of global resources (e.g., external files) within the test case program.

Compared to vanilla static slicing, DS3 requires one single execution
of the test cases (from previous regression testing activities) to

collect and parse the execution log files.

Dynamic slicing [16] is another form of enhancement of static

slicing, which considers only specific executions of the program

for a given objective (e.g., to perform debugging and root cause

analysis). Dynamic slicing requires running test cases and accessing

the source code for instrumentation and coverage analysis. Slices

can be generated by analyzing the execution paths and the depen-

dencies across the executed statements. However, this alternative is

not feasible for a system composed of third-party components, and

it does not handle “hidden” dependencies. Indeed, code coverage

does not include information about which external resource has

been accessed during the test execution.

Binkley et al. [4] presents a particular type of dynamic slicing

technique, called observation-based slicing, which aims to slice

programs independently from the programming language used.

The key idea is not to purely rely on dependency analysis, but

rather to use iterative observations on the validity of obtained

slices (i.e., to execute the obtained slice to make sure it runs without

compilation or run-time errors). Although this technique can be

used for multi-language systems that include (3rd-party) binary

components, it requires a large number of executions of the test case

under analysis to iteratively slice candidates and check their validity.

This requirement makes observation-based slicing impractical for

complex system test cases (especially those in the cyber-physical

system domain [1, 9]), whose execution is time-consuming. For this

type of systems, DS3 is preferable as it does not require additional

test case executions for assessing the validity of the generated slices.

Test Refactoring. A side benefit of the application of DS3 is the

removal of some test code smells [21]. In this sense, DS3 is related to

approaches for (test) code smells refactoring [20, 30], which intro-

duced catalogues of test smells together with (manual) refactoring

operations to address them. Based on existing catalogues, there

have been proposals [23, 25] to automatically detect (rather than

refactor) test smells. These approaches rely on detection rules that

raise warnings when some metrics (e.g., size, number of method

calls, number of assertions) in the test code exceed given thresholds.

However, a recent study [24] showed that detection rules are far

less accurate than previously reported, especially when tests use

external resources.

Although the primary goal of DS3 is neither to detect nor to

refactor test smells, by slicing test cases into separate sliced test

cases with fewer assertions, DS3 addresses the eager tests and as-
sertion roulette test smells. Furthermore, eager tests are identified

through static slicing and log analysis, instead of using detection

rules, as proposed in the literature.

8 CONCLUSION
In this paper, we addressed the problem of dealing with complex sys-

tem test cases containing multiple test scenarios, which negatively

impact both regression testing and test evolution. We proposed

DS3, a novel approach to decompose a complex system test case

with multiple test scenarios into separate sliced test cases, each of

them running one test scenario. DS3 leverages static slicing and
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the execution logs collected during past regression testing sessions.

The main idea is to use logs containing run-time information about

the SUT to identify dependencies between test statements due to

the access and usage of global resources; these dependencies are

used to refine sliced test cases generated by static slicing, which

tend to miss such dependencies. The evaluation results, conducted

on one proprietary system and one open-source system, show that

log-based slice refinement is indeed effective at avoiding, in the

generated sliced test cases, compilation or run-time errors due to

missing dependencies. Furthermore, the generated test case slices

are, on average, 3.56 times faster than the original system test case,

with no significant loss in fault detection capability.

As a part of future work, we plan to assess the impact of using

DS3 on the cost-effectiveness of regression testing activities, such

as test case prioritization. We also plan to extend DS3 to support

different programming languages, and to evaluate it on additional

benchmarks. Since the idea of log-based slicing is not only applica-

ble to test cases but also to program source code in general, we will

further investigate possible applications beyond regression testing.
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