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Abstract

With the increase of air traffic density, especially in the airport approach area, the need 

for aircraft navigation systems with a higher accuracy grows. Cost-effective test-facilities, 

like the Basic Research Simulator (BARESIM), are required for evaluation of these new 

and already-existing systems. In this report a navigation simulation (NAVSIM) model has 

been developed, able to fulfil the needs for simple and complex navigation system 

testing. The NAVSIM model consists of various modules suited to be implemented in an 

Object-Oriented Programming (OOP) test-environment. This paves the way for future 

programmers in charge of the implementation of a specific module.
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Summary

With the exponential growth of air traffic, especially in the airport approach area, the need 

for new and more accurate aircraft navigation systems increases. Development and 

extensive testing of these systems is only possible by means of cost-effective test 

facilities. This is where flight simulators come in.

The Basic Research Simulator (BARESIM) is a six-degrees-of freedom flight simulator, 

currently developed at Delft University of Technology. The planned system configuration 

is such that no navigation errors are taken into account yet. That is, the true aircraft state 

(as generated by the host-computer) is shown on the pilot’s displays, whereas in reality 

only a best-estimated state is available. This estimation is calculated by the on-board 

navigation systems. So, for a more realistic simulation, the navigation system’s restric­

tions should be modeled. A simple solution might be the addition of (gaussian) noise 

to the true aircraft state; however, for the validation of future complex navigation systems 

a better method is required.

A modular approach towards Navigation Simulation (NAVSIM) is suggested. A block 

diagram model has been developed, in which each ’activity’ module represents a specific 

part of the whole navigation system. The input, output, control, and mechanism data of 

each module has been defined, represented by arrow connections in the block diagram. 

The overall result is a flexible and yet detailed model, suitable for simple and complex 

navigation simulations. This has been proved by an evaluation of the NAVSIM diagram 

model with two existing models: a reflection model and a Differential Global Positioning 

(DGPS) signal model. Evaluation was successful: both models were covered by NAVSIM.

The theoretical NAVSIM model has been implemented in an Object-Oriented Program­

ming (OOP) environment. Each module corresponds to a self-supporting Class in the 

OOP-language C+ + . The resulting program should be a base for future yet-to-be- 

assigned programmers, in charge of further implementation of NAVSIM. The NAVSIM test­

environment should be extended with a User Friendly Interface, facilitating simulations 

under varying test conditions.
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1 Introduction

In this introduction both background and goal of the graduation research are discussed, 

and the structure of this report is clarified.

1.1 Background

Ground-based flight simulators are of increasing importance to aerospace industry. They 

provide both a cost-effective tool for flight crew training and an invaluable facility for 

aerospace research and development, including (future) navigation systems. The need 

for aircraft navigation system research increases with the exponential growth of air traffic, 

especially in the airport approach area. Some serious incidents have been reported 

involving navigation systems causing false acquisition to approach courses . A typical 

example of navigation system failure, are the problems encountered with a brand new

Figure 1.1 Symbolic presentation of the hazardous situation in Hong Kong: the pilot 
assumes he is on the right track.

Boeing 747/400 on a flight from Osaka to Hongkong (February 1990, [1]). The aircraft 

position shown on one of the pilot’s navigation displays differed from the actual position 

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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by more than 2 NM, due to a wrong DME1-update after passing the initial approach fix. 

As a result, the final turn was initiated 2 NM early. This fact was not detected by the flight 

crew because the navigation display showed an on-track-situation. Without intervention 

from air traffic control, glideslope (vertical guidance aid) interception might have occurred, 

and the aircraft might have followed the glideslope without being established on the 

localizer (horizontal guidance aid). Figure 1.1 shows the hazardous situation that 

occurred. This incident demonstrates the undeniable importance of extensive research 

into, and testing of already-existing and future complex navigation systems.

The Basic Research Simulator (BARESIM) is a six-degrees-of-freedom flight simulator, 

being developed as a joint effort within the Delft University of Technology by an inter­

faculty working group. This group involves the faculties of Aerospace Engineering, 

Mechanical and Maritime Engineering, and Electrical Engineering. The three basic 

research areas are [2]:

- The dynamic behaviour and control of motion platforms

- The performance of vehicle simulations in a ground-based environment

- The human factors aspects of vehicle operation

This report focuses on the second area, especially on aircraft systems research. A 

simulation model of the aircraft navigation systems is investigated. The NAVigation 

SIMulation (NAVSIM) model will be implemented in the flight simulator. The current 

BARESIM configuration is given in Figure 1.2. BARESIM consists of a host computer and 

various subsystems. The subsystems contain their own process related computers.

A short description of the various (sub)systems is given below:

Host computer

The host computer controls the simulator environment and generates the actual aircraft 

state variables and instrument readings using pilot controls as input. The aircraft state 

variables include the exact aircraft position, velocity and attitude at a certain simulation

DME stands for Distance Measurement Equipment; DME is a ground-based navigation aid; in the next 
chapter an explanation of its function is given.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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Figure 1.2 BARESIM system configuration

time. The aircraft model is generated between 30 and 60 times per second.

Motion subsystem

The six-degrees-of-freedom motion subsystem is driven by six linear hydraulic actuators 

and their related hardware. The six hydraulic actuators allow platform movement in x, 

y and z direction and rotation around x, y and z-axis (pitch, roll and yaw).

Visual subsystem

The multi-channel visual subsystem generates (by means of image generating computers) 

an out-of-the-window view using platform-based projectors. Probably a 75 degrees 

horizontal and 30 degrees vertical field of view will be simulated.

Control loading subsystem

The digital hydraulic loading subsystem provides a realistic force feel of the primary 

controls. There are four active channels in each pilot station : the ailerons, elevator, 

rudder pedals and brakes.

Instrument subsystem

All instrument readings will be presented on the Electronic Flight Instrument System 

(EFIS) in the simulator’s cockpit. The system consists of i80X86 based PC boards, 

equipped with Texas Instruments Graphic Adapter (TIGA) graphic cards. A hardware 

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group



Delft University of Technology -4- NAVSIM for BARESIM

independent description has been developed by Theunissen [3] to allow for efficient 

aircraft display development.

Sound subsystem

This system introduces a realistic sound environment. A 16-channel digital synthesizer 

and sampler, controlled by a MIDI interface, generate real-life engine, wind, taxiing and 

instrument warning sounds.

System interconnection

A connection based on the Ethernet (IEEE 802.3) protocol will provide the high-speed 

environment needed for real-time operation of the simulator [4].

Figure 1.3 BARESIM configuration with 
NAVSIM module

As stated before, the host computer 

fulfils a key role in the system conf­

iguration. Aircraft state variables are 

generated in the host computer and 

transferred via the Ethernet system 

interconnection to the various sub­

systems. This means the real position, 

velocity and attitude (from now on 

referred to as true aircraft state) are fed 

directly to the instrument subsystem. In 

reality however, aircraft state variables 

are processed by the Flight Manage­

ment System using the on-board navi­

gation systems. In other words: not the true aircraft state is used by the EFIS but the 

estimated aircraft state based on the outcomes of the navigation systems. Figure 1.3 

shows the NAVSIM module blocking the direct link between host computer and instru­

ment system. The function of the NAVSIM module is comparable to the introduction of 

a noise generator. However, one should bear in mind that modelling of NAVSIM by just 

adding some (gaussian distributed) noise will not do: a more complex method is required 

to allow for accurate simulation of both today's 'simple' navigation systems and future, 

complex integrated navigation systems.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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1.2 Goal

This report is divided into two parts:

The main goal of the research, described in the first part of this report, is the develop­

ment of a clearly structured NAVSIM model, i.e. dividing the navigation system into 

smaller parts, called modules (Chapter 2), and describing the data flow between these 

modules (Chapter 3) by means of defining the inputs and outputs of each module 

(Section 3.2). Once this is done a structure diagram of NAVSIM is made, also referred 

to as the NAVSIM model (Section 3.2). A software engineer can develop the exact 

contents of a specific module of the NAVSIM model by only taking into account its in- 

and output variables (and the later-discussed control data). This way, he does not have 

to understand the whole system; only a part of it is his concern. The newly developed 

theoretical NAVSIM model is compared to two existing models: a multipath reflection 

model and a GPS (Global Positioning System) signal model (Section 3.3 and 3.4). Both 

models should be embodied by the NAVSIM model. In Section 3.5 the complexity and 

related simulation depth of the model are discussed. The first part is ended with con­

clusions and recommendations on the theoretical NAVSIM model (Chapter 4).

The second part of this report (Chapter 5 & 6) deals with the implementation of the NAV­

SIM model. The modular NAVSIM approach is suited to use with an OOP (Object- 

Oriented Programming) language (Section 5.1). After a general description of the basics 

of OOP (Section 5.2), a test-environment is suggested for NAVSIM in Borland’s Turbo 

C++ (Section 5.3). The base structure of the NAVSIM program is discussed (Section 

6.1 & 6.3), together with some sneaky C++ techniques (Section 6.2). Although these 

tricks can be found in C++ documentation, a great deal of effort was needed to find 

the correct syntax and commands for the NAVSIM program. In order to prevent future 

programmers from "re-inventing the wheel", example C++ code has been included in 

the text of Section 6.2. In a similar manner to the first part, the second part is finished 

with conclusions and recommendations, this time on the implementation of the NAVSIM 

model in the OOP-language C++ (Chapter 7).

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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PART I - NAVSIM: towards a theoretical block diagram model

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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2 Dividing the navigation system into modules

When describing a complex system, such as the navigation system of an aircraft, it is 

not recommendable to try to explain the system as a whole at once. A better approach 

is dividing the system in smaller (digestible) parts. One possible method is the definition 

of modules to describe the navigation system. Each module represents a part of the 

system and can be developed adequately by a specific software engineer.

2.1 Introduction

The navigation modules will be defined during the following short analysis of the position­

ing and navigation process of an aircraft. The module names are underlined.

An electro-magnetic signal is transmitted by a navigation aid (navaid). These transmitters 

include both ’classic' NDB, VOR/DME, ILS stations and any future navaids, like MLS and 

GPS. The signal is distorted on its way to the aircraft due to atmospheric conditions (e.g. 

raindrops). The distorted signal reaches the aircraft antenna accompanied by multipath 

signals. Multipath signals consist of reflected and diffracted waves and are caused by 

the environment (e.g. mountains, rivers, and buildings) in the vicinity of the aircraft. The 

composed navaid signal (direct + multipath) is either amplified or attenuated by the 

aircraft antenna, as a function of the antenna position, orientation and radiation pattern. 

The raw antenna signal is processed by the software receiver, resulting in an estimated 

aircraft position. This position can be compared to position parameters generated by 

other state-determination systems, such as the Inertial Navigation System (INS). The 

Digital Air Data Computer (DADC) provides air data, like air speed and barometric height 

coming from the aircraft sensors (e.g. pitot static tube). This air data is needed in the 

positioning process (e.g. to calculate ground range out of slant range).

The best estimated aircraft position is transferred from the software receiver to the 4D- 

naviqation and guidance system. This position is compared to the desired flight path as 

defined in the flight plan, inserted by the pilot before taking off. The results are steering 

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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commands either by the pilot or the Flight Management System (FMS, auto-pilot), to 

direct the aircraft along the desired path.

A navigation data base contains files with so-called static data, loaded at the beginning 

of a flight. This data includes navaid information on positions and frequencies needed 

for the positioning process, as well as ’rough' map background data for the navigation 

displays (position of waypoints, airports etc.). All air, aircraft and map background data 

are gathered and prepared for presentation in the 4D-navigation and guidance system. 

This system is directly linked to the presentation part of the navigation system in the 

cockpit. Presentation data is shown on the EFIS displays such as the Primary Flight 

Display (PFD) and Navigation Display (ND).

The modules involved are:

transmitters

atmospheric conditions

environment

aircraft antennas

software receiver

other state-determination systems

Digital Air Data Computer (DADC) 

flight plan

4D-navigation and guidance system 

navigation data base 

presentation

One additional module will be specified. It cannot be found in the above description 

because it has to do with the actual simulation of the real world. Therefore we define it 

as:

simulation of real-world

In the next section the function of this module will become clear.

Next, each module is briefly described by means of a summary of its characteristics.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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2.2 Transmitters

The transmitters are the radio-navigation aids used by the airborne navigation systems 

to determine the position1 of the aircraft. These transmitters can either be ground-based 

(e.g. VOR/DME, ILS, MLS) or space-based (GPS), in the next sections the most common 

and widely used navaids are briefly discussed (see ref.[5], [6], [7] and [8]).

2.2.1 Non Directional Beacon (NDB)

The NDB is a ground-based station with an omni-directional antenna. Frequencies used 

are within the 200-1750 kHz band. The NDB is always used in combination with the 

airborne Automatic Direction Finder (ADF). The ADF determines the angle between the 

aircraft’s vertical axis and the radial towards the NDB. Nowadays the locator is the only 

NDB widely used for approach navigation up to 15 NM. Accuracy is between 2° and 5°2.

2.2.2 VHF Omnidirectional Range (VOR) and Distance Measuring Equipment (DME)

VOR stations are ground-based and transmit in the 108-118 MHz band. Actually two 

signals are transmitted: an azimuth independent reference signal and an azimuth depend­

ent signal. Comparison of the phases of these two signals gives the angle between North 

and the radial between aircraft and transmitter. VOR stations are of multiple use:

a pilot can use the direction of the beacon for positioning purposes.

a pilot can fly to or from the beacon via a radial; the Track Deviation Indicator 

(TDI) assists the pilot by means of the follow-the-needle principle.

Automatic Terminal Information Service (ATIS) data can be broadcasted by means 

of a VOR data-link.

In the future the aircraft’s velocity and attitude (GPS research project OHIO University) may be calculated 
with the help of navaid signals.

In general a 95% interval (2a) is used for accuracy specification. This during 5% of the time inaccuracies 
larger than the indicated values are met.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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Accuracies of 2° are usually met. VOR stations provide the aircraft with bearing informat­

ion.

DME stations are used for distance measuring. A carrier of approximately 1 GHz is modu­

lated with AM bursts. The DME system consists of a ground-based transponder and an 

airborne interrogator. The interrogator transmits pairs of AM bursts and the ground-based 

transponder returns the bursts after a specified delay time. The burst delay time contains 

information about the distance (slant-range) between transponder and interrogator. Errors 

of 0.5 NM are common.

Both VOR and DME stations use frequencies with line-of-sight wave properties. That is, 

these navigation aids can only be used within 250 NM for en-route purposes and within 

20 NM for the approach.

2.2.3 Instrument Landing System (ILS)

The ILS navigation aid is the most widely used navaid during the final approach phase 

of the flight. The system consists of a localizer, a glide slope and markers.

The localizer provides lateral guidance for approaching aircraft (see Figure 2.1). A 90 Hz 

and 150 Hz signal are modulated on a 110 MHz carrier. The 90 Hz signal's main lobe 

is slightly to the left of the centre-line of the runway (seen from the approaching aircraft). 

The 150 Hz signal has its main lobe to the right of the runway centre-line. The airborne 

ILS receiver compares the modulation depth of both signals. The relative amplitude 

difference between both signals indicates whether the aircraft is either too much to the 

left (stronger 90 Hz signal) or to the right (stronger 150 Hz signal). The localizer is 

positioned at the end of the runway.

The glide slope antenna provides the pilot with information about a 3° glide slope path 

in the vertical plane (see Figure 2.2). The basic idea is the same as with the localizer: 

the 150 Hz signal has its main lobe under the 3° glide path; the 90 Hz signal above the 

3° glide path. On the glide path both signals are equally strong. The glide slope antenna 

is situated at the beginning of the runway.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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The outer, middle and inner marker (at respectively 4 NM, 3500 ft, and 100-150 ft from 

the runway) provide the third dimension needed for approach navigation. The pilot is 

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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notified the moment he passes a marker by an illuminating coloured lamp in the cockpit. 

This enables him to estimate his distance to the runway. Each marker has its specific 

modulation frequency and (morse code) identification. A carrier frequency of 75 MHz is 

used.

DME can be used to give additional information on the distance-to-go to the runway.

2.2.4 Microwave Landing System (MLS)

The MLS is expected to be the most important approach guidance system in the near 

future. Unlike the ILS, MLS allows for a infinite number of approach paths. The carrier 

frequency used is around 5 GHz. The coverage area of MLS has a fan-shaped form (see 

Figure 2.3). Two scan beams can be distinguished:

An azimuth scan beam is used for lateral guidance. This beam is narrow in the horizontal 

plain (0.5o-3°) and wide in vertical plain (15°). The azimuth area between -40° and 40° is 

scanned. An aircraft is twice hit: once during the so-called TO-scan and a second time 

during the FRO-scan. The time difference between the moments the aircraft is hit by the 

beam is a linear function of the angle between the aircraft path and the runway centre­

line.

Figure 2.3 MLS fan-shaped radiation pattern.

The elevation scan beam 

operates in the same way 

as the azimuth. This beam 

is wide in the horizontal 

plane (80°) and narrow 

(0.5°-3°) in the vertical 

plane. An area between 0 

and 15° is scanned during 

a TO- and FRO-scan.

MLS is normally used in 

combination with DME. 

Two types of DME are in 

use: DME/N for normal 
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distance measuring and DME/P for precision purposes.

The last tool needed for a minimal MLS configuration is data-link equipment. One distin­

guishes data directly involved in the positioning process (basic data words), like runway 

status or the exact position of the MLS elements, and auxiliary data (auxiliary data 

words), like meteorological data. Data is modulated on the carrier frequency by means 

of Differential Phase Shift Keying (DPSK). The technique used to distinguish between the 

various signals for positioning purposes and the basic/auxiliary data, is time division 

multiplexing: position information (azimuth and elevation) and data are transmitted during 

different fixed time slots. Pre-ambles are added to each time slot to inform the aircraft’s 

receiver about the exact nature of the information to be expected during the next slot.

2.2.5 Global Positioning System (GPS)

In the near future GPS is expected to be one of the most important systems both for en­

route and approach aircraft navigation1. It will probably replace most of the existing 

navaids (NDB, VOR/DME, LORAN-C). The general GPS configuration is given in 

Figure 2.4.

GPS consists of three so-called system segments [9]:

space segment

The space segment contains 21 satellites (+ 3 spares). The constellation is such that 

5 or 6 satellites can be spotted from any place on earth. The satellites orbit at a height 

of 22.240 km around the earth. A complete orbit is accomplished in approximately 12 

hours. Each satellite transmits a 1.58 GHz (L^band) and a 1.23 GHz (L^-band) carrier 

signal. These signals are modulated by a Pseudo Random Noise (PRN) code and Data 

information. PRN codes differ from satellite to satellite and therefore allow for satellite 

identification. The complexity of the PRN depends on the user of the system: for military 

purposes a Precision (P) PRN code is available; civil customers can only use the Coarse 

Acquisition (C/A) Code.

Actually, GPS is suited for a variety of other navigation applications, including harbour precision 
approaches (DGPS) for (large) ships and travel pilot facilities for trucks and cars.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group
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control segment

The control segment consists of 4 monitor stations and 1 master control station, all 

ground-based. Data concerning satellite ephemeris, satellite clock drift, ionospheric errors 

etc. is gathered and transmitted to the satellites. The satellites process this information 

and add it to the data sent to the user. Hence the control segment determines the 

navigation message broadcasted by the satellites.

user segment

The user segment consists of receivers containing the same PRN codes used by the 

transmitters. The PRN code of the receiver is shifted in time until it perfectly matches the 

incoming satellite PRN-code. The time shift is an indication of the delay time of the signal 

from satellite to receiver. Multiplication of this delay time by the propagation velocity of 

the signal gives a pseudo-range. The gualification pseudo is added because it is not the 
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exact range that is determined: a "constant" distance error is made. This is due to the 

constant clock synchronisation error between the receiver and the GPS satellites time. 

A user needs at least 4 satellites to get a position fix. Three satellites are needed to 

determine a three dimensional position (with the earth center as reference). The fourth 

satellite is needed to correct for the afore-mentioned time error made by the receiver’s 

(relatively cheap) clock.

The PRN code is used to determine the pseudo-range toward a satellite. Once this code 

is extracted from the carrier signal, the remaining navigation message data becomes 

available. A frame of 1500 bits is broadcasted by each satellite at a rate of 50 bps. Each 

frame incorporates 5 subframes of 300 bits.

The subframes contain:

- clock parameters: used for synchronisation of the satellites clocks

- ephemeris data: Kepler parameters of the satellite position, used for the actual 

positioning process

- message data: all kinds of useful information, e.g. an ionospheric error model and

Universal Time Coordinated (UTC) data

- almanac: estimated ephemeris data of all 24 satellites and health condition

of each satellite.

During the so-called lock-in phase of the receiver most of this message data is decoded 

at least once. Part of the message data (e.g. ephemeris data) is only valid for a restricted 

period of time. This data therefore needs to be updated and re-decoded by the receiver 

every once in a while (every 8 hours new ephemeris data is uploaded).

The whole GPS system has been developed by the U.S. Department of Defense (DOD). 

The earlier mentioned PRN P code is only available for military purposes and allows for 

accuracies up to 3 m (95% interval). However, for civil use only the PRN C/A code is 

available. What is more, the GPS signals for civil use are distorted on purpose for civil 

use by the U.S. DOD: this is called Selective Availability (SA). This implies that an accura­

cy of 100 m is assured for 95% of the time. It goes without saying that, due to this 

restriction, GPS is inappropriate for use as sole means for radio navigation.
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A reduction of the errors resulting from SA and the (rough) C/A code, can be obtained 

by the introduction of a ground-based reference station. The exact position of the 

reference station (known beforehand) is compared to the position calculated by the 

reference station’s GPS receiver. The resulting error information can be added to the 

control segment navigation data sent to one of the GPS satellites. The satellites process 

the incoming data and transmit the navigation message to the user (e.g. aircraft 

receiver)1,2. Aircraft in the vicinity of the reference station can utilise the reference error 

information to reduce their own GPS positioning error. The principle is known as differen­

tial positioning (DGPS).

perceived GPS 
beacon pos.

Figure 2.5 Relative navigation concept

Another technique used to reduce the errors made by normal GPS is called relative 

navigation [10], The position calculated by the aircraft’s GPS receiver is compared

In fact any alternative data-link facility can be utilised to transmit the error information to the end-user; 
The MIAS (MLS Integrated Approach System) project at Delft University of Technology makes use of the 
MLS ADW-channel to send DGPS information from reference station to aircraft.

EUROFIX is a proposed integrated navigation system of DGPS and Loran-C at Delft University of Technolo­
gy: DGPS corrections are sent via a Loran-C data-link channel.
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to the position calculated by a ground-based GPS receiver. Both estimated GPS posi­

tions must be based on the same satellite signals. This results in two estimated positions 

with highly correlated error vectors. Therefore, the difference vector between both 

estimated positions equals the real difference vector.

The distance between the reference station and a runway in its vicinity is accurately 

calculated beforehand (e.g. by means of laser measurements). The sum of the aircraft- 

/reference-station vector and the reference-station/runway vector equals the precision 

approach vector to the runway. The great advantage of this method is the fact that no 

absolute position needs to be calculated. Figure 2.5 clarifies the principle.

2.2.6 Long Range Navigation C (LORAN-C)

Loran C is a hyperbolic long range navigation system [6], Large parts of the Pacific and 

Atlantic ocean are covered by Loran-C. The system is based on time difference measu­

rements between the pulses coming from 1 master and 3 slave transmitters (together 

referred to as a Loran-C chain). These pulses are modulated on a 100 kHz carrier. A 

master station transmits 8 bursts. The first slave responds after a certain Emission Delay 

(ED), depending on the distance between master and slave. The next slave responds 

after receiving the signal of the first slave, and so on. This process is repeated every t 

seconds, defining a so-called Group Repetition Interval (GRI). The receiver compares the 

arrival times of the bursts coming from the master station and its slaves. The position 

of the various Loran-C chains and their transmitters must be known beforehand to the 

receiver. The different Loran chains are distinguished by the receiver by means of their 

different GRI’s. The accuracy of Loran-C positioning is strongly dependent on the 

distance between user and Loran-C station; besides, atmospheric conditions seriously 

influence the Loran-C signals. In general accuracies between 130 m and 550 m are met 

for distances between respectively 350 NM and 1000 NM from a transmitter. One of the 

expected functions of Loran-C is to serve as back-up system for GPS navigation.
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2.3 Atmospheric conditions

The atmosphere can be modelled as consisting of different layers, two of which are of 

crucial importance for radio wave propagation: the troposphere and the ionosphere 

[11].

2.3.1 Troposphere

The troposphere is the part of the atmosphere up to 11 km. In general the influence of 

this layer is equal for all frequencies: an additional time delay (compared to a wave 

propagating through a vacuum) is introduced. Waves propagating through the tropo­

sphere are refracted. The refraction index (N) is a function of air pressure (p), air tempera­

ture (T) and humidity (e). Consequently the refraction index decreases as a function of 

altitude. Radio waves with frequencies below 6 MHz are refracted in such way that their 

propagation paths follow the earth surface. These waves are called ground waves. 

Frequencies above 6 MHz are not bent along the earth surface. Instead, these waves 

are characterized by line-of-sight propagation (straight lines). Other mechanisms, like duct 

forming (as a result of special weather conditions), do influence high-frequency waves. 

Radio waves with frequencies in the Super High Frequency (SHF) range band are even 

more affected by weather conditions. For these frequencies the wave length is of the 

same order as the raindrop dimensions. As a result radio-waves can be absorbed and 

severely refracted by the raindrops.

2.3.2 Ionosphere

The ionosphere itself has a layered structure. We distinguish a D (50-90 km), E (90-125 

km), F1 (200 km) and F2 (200-400 km) layer. Each layer is characterized by its molecule 

density (N) and its electron density N(e). Both variables can be regarded as functions 

of the time of day, the time of year, location (earth surface as reference) and solar 

activity. The ionized molecules result in reflection of radio waves below a certain critical 

frequency (fcr). Consequently, long length radio waves with low frequencies (up to 300 

kHz) are completely captured between the earth and the ionosphere. Propagation charac­

teristics of these waves are usually described by means of sky waves (reflected wave 
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against the ionosphere) and the earlier mentioned ground waves. Waves with high fre­

quencies (above 30 MHz) are not reflected. These waves can cross the ionosphere freely, 

although they are distorted in comparison with free-space wave propagation by: 

additional group delay time, diffraction from a straight line, and phase shift.

Table 1.1 Radio-wave properties of navigation aids

NAVAID FREQUENCY BAND RADIO-WAVE PROPERTIES

LORAN-C 100 kHz LF ground + sky wave, distance 
< «100 km ground wave domi­
nates, minor meteorological 
influences on phase and ampli­
tude.

NDB 200-1750 kHz MF

VOR 108-118 MHz VHF direct wave (line-of-sight), re- 
flections against earth surface 
and (large) obstacles, influence 
of weather conditions (duct for­
ming).

ILS localizer 108-112 MHz VHF

ILS glide slope 330-335 MHz VHF

GPS «1.5 GHz UHF direct wave, (low) absorbtion 
by water damp and fog, reflec­
tions against small obstacles 
and tropospheric layers, iono­
spheric distortion (group delay, 
diffraction, Doppler shift).

MLS 5 GHz SHF direct wave, high absorbtion by 
rain and water-vapour (peak at 
1.33 cm), reflections: even 
against small objects.

After this general description, we focus on the transmitters described earlier. Table 1.1 

summarizes the wave properties for frequencies used by the avionic navigation aids. 

Some properties (influence of obstacles) relate to the module environment, described 

in the next section.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group



Delft University of Technology -20- NAVSIM for BARESIM

2.4 Environment

The module environment represents all obstacles that influence the radio-signals coming 

from the transmitters. Obstacles can be divided in four categories:

1. Natural, non-moving obstacles: mountains, rivers, oceans, etc. (earth surface).

2. Natural, moving obstacles: (large) animals.

3. Man-made, non-moving obstacles: buildings, hangars.

4. Man-made, moving obstacles: aircraft, cars, trucks.

In general, obstacles with dimensions matching the signal (carrier) wavelength influence 

the propagation of these waves. For low frequency signals (NDB, LORAN-C) relatively 

large obstacles should be taken into account; high frequency signals are even distorted 

by water-vapour and small raindrops. Obstacles can influence a radiated signal in three 

ways [12]:

- shadowing: a wave is completely blocked by an obstacle.

- multipath: the received signal is a composition of a direct wave, reflected waves and 

diffracted waves. A wave is reflected by the surfaces and diffracted by the 

edges (discontinuities) of an object. Reflected and diffracted waves can 

either increase the received signal strength (in-phase; amplification) or 

decrease this signal strength (out-phase; fading). Multipath wave parame­

ters are: amplitude, time delay, phase and phase rate-of-change (all 

relative to the direct wave properties)1.

- absorption: a part of the radiated wave power is completely absorbed by an obstacle. 

The amount of radiated and absorbed power depends on the surface 

structure, represented by the parameters a (conductivity), (permeability), 

e (permittivity) and roughness.

A possible method of the simulation of the module environment is a representation of 

obstacles by so-called polygon meshes. A polygon mesh is a collection of polygons,

1 Sky waves can be regarded as a special kind of reflected multipath signals. 
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edges and vertices. Polygons consists of surfaces characterized by a normal vector and 

the earlier mentioned surface parameters a, e and roughness.

2.5 Simulation of real-world

In this module the outputs of the modules transmitters, atmospheric conditions and 

environment are combined to produce distorted navaid signal. To be more specific: the 

unpolluted navaid signal from the transmitter module is distorted due to atmospheric 

conditions (additional time delay, phase shift etc.). Multipath propagation is estimated 

using the true aircraft state, the true navaid states and the outcomes of the module 

environment. The result is a composed (direct wave and reflected waves) distorted navaid 

signal. This resultant signal is used as an input for the module aircraft antennas.

2.6 Aircraft antennas

The aircraft antennas are characterized by a radiation pattern [13]. Two important 

radiation parameters are the directive gain (Dg) and directivity (Do) of the antenna. 

Directive gain is defined as the ratio of the radiation density in a specified direction to 

the radiation intensity of a reference antenna (usually an isotropic source). Directivity is 

the maximum directive gain in a certain direction. The directive gain and directivity result 

in an amplification or attenuation of the received navaid signal. This property can result 

in complete suppression of multipath signals. From this, it is clear that the position and 

orientation of the antennas on the aircraft are of crucial importance. Navaid signals are 

sometimes completely lost, due to the fact that a certain part of the aircraft (wing, 

fuselage etc.) is blocking the line-of-sight path between transmitter antenna and receiver 

antenna. This problem is often solved by the use of two antennas instead of one. If both 

antennas receive the same navaid signal (no shadowing), additional information about 

the attitude of the aircraft can be obtained (by means of a comparison of the phases of 

both signals). Currently the aircraft antennas for a certain navaid system are not actively 

tuned by the FMCS1: e.g. all VOR navaid signals are received with the same antenna

In literature the expressions FMS and FMCS are applied confusingly: the term FMS is often used to refer 
to all on-board aircraft navigation electronics (=avionics); while FMCS refers to the computational heart 
of the FMS, and consists of two FMC's.
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antenna locations

Beacon CAS DME ATC VHF Radio ADF 
altimeter

Figure 2.6 Antenna locations on a modern comercial aircraft [8]; CAS stands for 
Colission Avoidance System.

configuration. In the future, the FMCS can be expected to (fine) tune the antennas and 

to direct them automatically to the transmitting navaids. Figure 2.6 shows the locations 

of the aircraft antennas as they are mounted on today’s modern commercial aircraft.

2.7 Software receiver

The software receiver can be regarded as the heart of the on-board aircraft navigation 

system. The software in this module is a part of the FMCS. All of the navaid signals 

received by the various aircraft antennas are gathered and processed in the software 

receiver, resulting in a best-estimated 3-D position (and in the future possibly the velocity 

and attitude) of the aircraft. In order to calculate this position, the position, velocity and 

orientation (=state) of the navaids involved in the positioning process need to be known 
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as accurately as possible. The state of a navaid can either be extracted from the 

navigation data base or de-modulated from the transmitted navaid signal (part of 

navigation message). Navaids with fixed positions (no velocity), like NDB, VOR/DME, ILS 

and LORAN-C have their state recorded in the navigation data base, where as a non­

static system, like GPS, adds its exact position to the transmitted signal. This state data 

only becomes available once every T seconds. In between two updates, state parameters 

are calculated using pre-recorded ephemeris data from the navigation data base.

The MLS system can be regarded as a fixed-position-transmitter system with the navaid 

states stored in the navigation data base. Additionally, the exact position of the MLS 

elements (runway as reference) is transmitted by MLS itself as a part of the auxiliary data 

block. The stored transmitter state can be corrected with this accurate position data.

The decision to use or disregard certain signals depends on the ’health’ status of these 

signals. ’Health' data is often modulated on the navaid transmitted radio signal. There 

are two methods to mix the data of two different navaid systems [6]:

1. Integration: position-solutions of both systems are calculated and compared to 

each other. The result is a weighted Most Probable Position (MPP).

2. Hybridization: information of a single navaid is not sufficient for a proper position 

fix (e.g. only three GPS signals are received; one is shadowed). Pseudo-ranges 

of other systems are added to get sufficient information for a position fix.

An example of a navaid selection algorithm is the one used in the FMS of a Boeing 747- 

400 [14], The algorithm is based on integration of radio-navigation systems and the 

on-board Inertial Reference System (IRS) (discussed in the next section). Every two 

minutes the FMS software searches the navigation data base and generates a list of all 

navaids within 300 NM of the aircraft's computed position. Positions are calculated 

according to one of the four different lateral navigation (LNAV) modes :

mode 1 ILS localizer deviation data + IRS position (only in final approach area)
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mode 2 rho-rho1 positioning using 2 DME stations + IRS position

mode 3 rho-theta2 positioning using 1 DME and 1 VOR station + IRS position 

mode 4 position determined by IRS only

The mode selected depends on the availability, reliability and accuracy of the navaid 

signals. Of course, only the active mode is displayed on the ND by the instrument 

subsystem. Additional information (e.g. barometric height, air speed) obtained via the 

DADO, is combined with the radio-navigation and IRS computed position and velocity 

(e.g. DME slant range is converted into ground range with the help of the barometric 

height). Other variables computed by the FMCS include the true track angle, ground 

speed, vertical flight path angle, drift angle and wind vector.

2.8 Other state-determination systems

Radio-positioning is not the only way to determine aircraft state variables. The on-board 

IRS [15] produces attitude and acceleration information using up to 3 Inertial Refer­

ence Units (IRU). Integration and double integration of the acceleration information results 

in respectively velocity and position of the aircraft with respect to its initial state. This 

initial state (position, velocity, and attitude3) must be inserted into the FMCS at the start 

of a flight. Future systems involve infrared techniques to determine vehicle position.

Positions calculated by the alternative positioning systems are compared to the radio­

navigation positions (integration). Once again this results in a MPP.

With rho-rho positioning, two distances are determined towards two independent (DME) beacons. This 
results in two independent circles the aircraft can be flying on. The intersection points (2) of both circles 
give the estimated aircraft positions. Ambiguity is solved by other-state-determination input (e.g. INS).

Rho-theta positioning is a combination of distance measurements (DME) and angle information (VOR).

The initial a/c attitude includes the magnetic compass heading.
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2.9 Digital Air Data Computer (DADC)

The DADC [7] collects information from the aircraft sensors, such as the pitot static tube. 

This information includes the static pressure (p), the total pressure (Pt), the static 

temperature (T) and the angle of attack (a). The DADC calculates from these variables 

the True Air Speed (TAS), Calibrated Air Speed (CAS), barometric height (H) etc. The 

outputs of the DADC are electric signals representing the air data. Air data can either 

directly be shown on the ND or PFD of the instrument subsystem, or it can be used by 

the FMCS to calculate other variables (e.g. ground range out of slant range).

2.10 Flight plan

So far this report mainly has dealt with radio-positioning. However, radio-navigation 

involves comparing the estimated aircraft position with a desired flight path and control­

ling the aircraft according to a flight plan. A flight plan is defined and inserted in the FMS 

by the pilot before taking off, using a Control Display Unit (CDU). Information from the 

navigation data base is used by the pilot to create the flight plan. Another imminent 

method of inserting a flight plan into the FMS is by means of a data-link, with the flight 

plan being transmitted by an air company or by ATC.

The flight plan can be shown on the ND by the instrument subsystem. Selection of the 

navaids to be used by the FMCS (software receiver) depends on distance between 

aircraft and waypoints. With the Boeing 747/400 the 5 closest navaids are selected. An 

alternative selection method rejects waypoints not defined in the flight plan (even if they 

are at close range), and thus giving priority to flight-plan-defined-waypoints.

2.11 4D-Navigation and guidance system

The 4D-navigation and guidance system gathers and processes all kinds of information 

possibly needed to be shown on the CRT’s of the presentation module. This includes 

the outcomes of the module software receiver: the best estimated aircraft state and the 

selected navaids/non-radio positioning systems used for this estimation. Other data, 

coming from the modules navigation data base and flight plan is often referred to as map 

background (e.g. waypoints positions, flight path). Air speed and height, calculated by 
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the DADC, are also collected by the navigation and guidance system and can either 

directly be transferred to the presentation module or used for guidance purposes.

The guidance function of the system compares the aircraft’s 4D-position (best estimated 

3D-position + time), generated by the software of the receiver, and DADC data, with the 

desired flight path defined in the flight plan. Steering commands are generated to control 

the aircraft along the flight path. Additional thrust commands are produced in order to 

fulfil the time demands of the flight plan. In other words: the Estimated Time of Arrival 

(ETA) at a certain waypoint is adjusted until it approximately equals the Scheduled Time 

of Arrival (STA) defined in the flight plan.

2.12 Navigation data base

The navigation data base contains a number of files. These files contain the so-called 

static data: during a flight the contents of the files are not altered. The files included 

are1:

- Navaid file

- Waypoint file

- Airway file

- Airport file (runway, gate and airport procedure information)

- Customer file

- Holding pattern file

- Company route file

The contents of the files are used for multiple purposes2. A pilot creates a flight plan 

according to information about the existing waypoints, airways and company routes. The 

FMCS automatically selects the frequencies of ground-based navaids in the vicinity of 

the aircraft (e.g. 5 different frequency channels can be used in the Boeing 747-400). 

Navaid frequency and state information are extracted from the navaid file.

1 source: Boeing 747-400 FMS manual 

p
The data base files (supplied by Jeppesen) are updated every 28 days.
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2.13 Presentation

The last module of the navigation system is involved with the presentation of the esti­

mated aircraft state. This module is actually a part of the instrument subsystem of the 

BARESIM configuration (see Figure 1.2). In today’s modern aircraft CRT’s are widely used 

for the presentation of aircraft data. The two most important displays in the cockpit are 

the Primary Flight Display (PFD) and the Navigation Display (ND). The term EFIS is often 

used to refer to both displays and to distinguish between flight instruments displays and 

Engine Indication & Crew Alert System (EICAS) displays.

Information shown on the PFD includes [14]:

- aircraft position, velocity, heading, attitude and slip

- autopilot info

- ILS info

- guidance information

The ND contains information about:

- The aircraft position, velocity, track, heading and course

- Map background information about: - The flight-plan

- The navigation aids

- The Weather Radar

The kind of information shown on the EFIS displays is selected by the pilot via the EFIS 

Control Panel (EFISCP). For example: the ND can operate in one of four different modes: 

MAP, APPROACH, VCR and PLAN DISPLAY. The pilot chooses the most appropriate 

mode (depending on the current flight phase) by turning a 4-position knob on the 

EFISCP.
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3 Information flow between the modules

In the previous chapter the contents of each module were briefly discussed. The focus 

will now be on the interaction between the modules. Each module uses information 

coming from another module or from an external source (e.g. from another subsystem 

of the BARESIM configuration). It then processes the information and outputs data that 

can be used by yet a third module. In this chapter a block diagram representation 

(NAVSIM model) is developed to describe the data flow between the modules.

3.1 Activity block representation

There are two different methods of block representation [16], The first method 

describes a model by means of data block representation. Each data block contains a 

certain type of data. Arrows between the blocks define the action needed to get from 

data in block A to the data in block B. The second method is reciprocal to the first 

method; it is called the activity block representation. A block embodies a certain activity. 

The arrows linking the blocks represent data. Figure 3.1 shows both methods.

Figure 3.1 data and activity block representation

activity data activity data activity data

The navigation modules described in the previous chapter are clear examples of activity 

blocks: e.g. navaid signals (data) are polluted by a process in the simulation of real-world 

module (activity); the result is a distorted signal (data). Obviously input data is needed, 

processed and output data is the result. The amount of output can be controlled by the 

control data. The activity of the block is characterized by mechanism parameters. 

Figure 3.2 shows the basic activity block concept. The module NAVSIM as a whole can 

be represented using the same activity block representation (Figure 3.3). Note that the 

host computer both provides input data (the aircraft model, as a part of the host com-
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control data

mechanism parameters

Figure 3.2 Activity block with vari­
ables

host computer control

model complexity

Figure 3.3 NAVSIM activity block re­
presentation

puter software, generates the true a/c state) and controls the NAVSIM module. A second 

input source consists of data coming from one of the BARESIM subsystems (see Chapter 

1).

3.2 Activity block structure diagram of the navigation system

Now that we have found a proper way of representing the navigation modules (activity 

blocks), the activity block variables of each module are defined. Appendix A includes 

a complete listing of all variables.

Next we get to the structure diagram of the whole navigation system: the NAVSIM model. 

Note that this was done earlier, but in a rough manner (see Figure 3.3); but now we can 

go into details. The arrow connections between the modules represent the correlation 

of the input, output and control data of the various modules. Figure 3.4 shows the 

resulting NAVSIM block diagram. Some additional notes are given to clarify the diagram:

■ The main input of the whole system is the true aircraft state, generated by the 

host computer. The main outputs are the visual images on ND/PFD including 

the best estimated a/c state.

■ The c just inside a module indicates that the data entering the module at that 

point, consists of control data; c/i means both control and input data is provided 

by this link.

■ Each module is controlled by a reset input. This is to protect the whole naviga­

tion system from going down if just one module is blocked. Resetting this module
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Modular Navigation Simulation

navigation message 
differential data 
health condition host computer

time (day/night, season) 
weather conditions 

sun activity 3D-world data base

visual images on ND/PFD

Figure 3.4 Detailed NAVSIM activity block representation 
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will solve the problem. This reset control data is not shown in the figure. This is 

done on purpose: omission of all resets increases the readability of the structure 

diagram.

The true aircraft state is not a module. To indicate the importance of this data 

it is encircled:

The true a/c position controls both the atmospheric conditions and the 

environment module, hence reducing the amount of output data: only 

atmospheric and environmental conditions in the vicinity of the aircraft are 

considered.

The true a/c state is used as input for the transmitters module. The 

complexity of this module depends on the programmer. For a simple 

simulation of transmitter time delays and angles, the true a/c state has to 

be known beforehand (see also ?).

The true a/c state is inserted into the simulation of real-world module to 

allow for reflection calculations (multipath).

The true a/c position and attitude are used together with the relative 

antenna position and attitude by the aircraft antennas module to simulate 

attenuation or amplification of the received radio signals.

The other state-determination systems module includes the on-board INS. 

The INS needs the true a/c acceleration to output a best-estimated a/c 

state (a/c state + error).

One of the inputs of the module simulation of real-world is coming from the 

module transmitters: it is named true navaid states. To calculate multipath 

propagation, the positions and velocities of the transmitters and receiver must 

be known. The true aircraft state contains the receiver position and velocity. The 

transmitters’ positions and velocities are provided by the transmitter module. 

These parameters need to be known beforehand for reflection modelling in the 

simulation of real-world module. In reality however, they are not needed until the 

position solution in the module software receiver.

The selection of the navaids used for the positioning process is done by the 

software receiver. Usually the navaids that are closest to the aircraft are selected 

from the navigation data base. An alternative selection method is based on the 

flight plan: only navaids (e.g. waypoints) that are directly involved with the flight 
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plan are selected. Note that only a restricted amount of navaids can be selected 

at a certain moment (for the Boeing 747-400,5 frequency channels are available).

■ The modules software receiver and 4D-navigation and guidance system are both 

part of the aircraft’s FMCS. Another important function of the FMCS (outside the 

scope of this report) concerns the performance of the aircraft [15, chpt.6]. Two 

contradicting performance criteria are a minimum fuel consumption and a mini­

mum flight time. The performance function of the FMCS is directly connected with 

the Thrust Management Computer System (TMCS), which controls the engines.

3.3 Comparison of NAVSIM model diagram with reflection model diagram

Bloem developed a model to represent the environment in a radio-navigation simulation. 

In Chapter 8 of his report [12] he introduces a data block diagram for the reflection 

model as a part of the environment. In this section a comparison is made between the 

recently developed NAVSIM activity block diagram and the data block diagram developed 

by Bloem. If the NAVSIM model is complete, there should be no problem fitting the 

reflection diagram model in. One could say it is a fair test for the NAVSIM model comp­

leteness.

Figure 3.5 shows the data block diagram proposed by Bloem1. The different entries are 

briefly explained:

Polygon characteristics

These are the earlier discussed polygon parameters a (conductivity), (permeability) and 

e (permittivity). Roughness is not taken into account because only specular reflection 

and not diffuse reflection or diffraction is considered.

Signal data

The signal data represents the properties of the waves transmitted by a certain radio 

navigation system (e.g. GPS, MLS, VOR/DME, ILS). These properties include the signal 

frequency, polarization, modulation technique used, etc.

1 Used by permission of the author.
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Figure 3.5 Data block diagram for reflection model (developed by Bloem)
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Position/velocity of transmitter

The position of the transmitter is needed to calculate the reflection points that lead to 

multipath effects. Doppler shift in the multipath signal (in case of GPS) can only be calcu­

lated knowing the velocity of both transmitter and receiver.

Geometry

The geometry of the scene contains the positions of the polygons and their orientation 

with respect to each other.

Position/velocity receiver

The position and velocity of the receiver are needed to compute the reflected signals 

time delays and Doppler shift.

All of these data entries are needed to obtain an estimate of the reflected signal proper­

ties (amplitude, time-delay and phase and phase rate-of-change).

For the verification of the NAVSIM model the question rises: where does this data block 

diagram fit in? It is quite clear that calculation of reflections of the transmitter signal 

should be part of the module simulation of real-world. Consequently, the data blocks 

should correspond with the inputs and outputs of that same module. Indeed the polygon 

characteristics and geometry can be regarded as environment data from the module 

environment (4); the signal data is part of the input provided by the module transmitters 

(1); the position/velocity of the transmitter are extracted from the same transmitters mo­

dule (1); the position/velocity of the receiver are part of the true aircraft state (2); the 

resulting reflected wave properties of the data block diagram are combined with the 

direct transmitter signal in order to produce the composed signal (o). Atmospheric 

distortions, based on the propagation characteristics from the module atmospheric 

conditions (3), may be added. The result is a composed and distorted signal (including 

its direction vectors) going to the aircraft antennas. Figure 3.6 shows the data block 

diagram properly inserted in the simulation of real-world module.
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Figure 3.6 Simulation of reality module containing the reflection data block diagram

3.4 Comparison of NAVSIM model diagram with D/GPS-signal model diagram

Braasch ([17], [18] and [19]) developed a closed-loop DGPS signal model 

block diagram, for a simulation of GPS positioning and navigation. Figure 3.7 shows the 

model1. As with the reflection model of Bloem, Braasch' signal model should be 

embodied by the NAVSIM block diagram. A short explanation is given of the function 

of the various blocks:

1 Used by permission of the author.
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CLOSED-LOOP DGPS SIMULATION

Figure 3.7 Closed-loop D/GPS-signal model diagram proposed by Braasch

D/GPS Signal Model

The D/GPS signal model activity block forms the heart of the block diagram. Its function 

is comparable to the NAVSIM module simulation of real-world-, the undistorted signals 

of the satellites are polluted by it. But the D/GPS signal model incorporates more: the 

module aircraft antennas is included in this block. The output of the D/GPS signal model 

is raw data from an airborne receiver. This data is comparable to the output of the 

NAVSIM aircraft antennas module.

Environmental conditions

This data block consists of atmospheric condition parameters like weather conditions 

(to calculate tropospheric time delay), electron density (to calculate ionospheric time 

delays), etc. This block also includes multipath parameters to represent reflections.
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Ground and airborne GPS receiver architecture characteristics

This data block input of the D/GPS signal model needs further explanation. As stated 

before the heart of the closed loop model is the D/GPS signal model: this activity block 

can be regarded as a GPS receiver emulator. With the variety of GPS receivers currently 

available, this implies that receiver related properties need to be inserted in the emulated 

receiver. In the NAVSIM model, these properties are not taken into account until the 

software receiver.

Ground reference station position

The true reference station position is needed to process DGPS error information.

GPS ephemeris or almanac

This data block contains the navigation message broadcasted by the GPS satellites.

Time of measurement

This data block represents the requested time of measurement by the simulation driver. 

This time is not exactly equal to the true time of reception (see [18] for an in-depth 

explanation).

DGPS data link

This activity block represents the DGPS data-link properties. The DGPS error information 

can be transmitted using any kind of data link: we earlier mentioned the possible use 

of Loran-C stations or the MLS ADW-channel as links.

Navigation solution

The best estimated aircraft state is calculated in the activity block navigation solution. 

In reality, this is done in the software of the navigation system of the FMCS.
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Figure 3.8 The NAVSIM model encloses the GPS signal model

Aircraft Flight Control System (ARCS1)

In the activity block AFCS the estimated a/c state is compared to the desired state as 

defined in the flight plan. Aircraft steering commands are the result.

Aircraft dynamics

In the last activity block the steering command are converted into aircraft dynamic 

movements. The dynamic responses of an aircraft depend on aircraft type and configu­

ration (i.e. number of passengers, amount of cargo).

The term AFCS is yet another expression referring to the on-board avionics: in general it is used to label 
the guidance function of the FMCS.

Faculty of Electrical Engineering Telecommunications and Traffic Control Systems group



Delft University of Technology -39- NAVSIM for BARESIM

Just like the Bloem model, the Braasch diagram should be covered by the NAVSIM 

model (Figure 3.8). The environmental conditions stem from the modules atmospheric 

conditions and environment. The receiver architecture is delivered by the module 

software receiver. The ground reference station position, as well as GPS ephemeris 

or almanac are extracted from the module transmitters. The time of measurement 

equals the host computer simulation time. Finally the navigation solution can be 

considered a part of the software receiver. Though there exists no one-on-one corre­

spondence of the GPS signal model and the NAVSIM model, all blocks of the GPS signal 

model are contained within the NAVSIM model.

3.5 Complexity of the NAVSIM model

In the preceding sections two existing models were compared to the NAVSIM model. 

Bloem’s diagram proved the complexity of just one module of the whole NAVSIM model. 

Braasch’ model pointed out the complications involved when taking into account just 

a part of one navigation aid: DGPS. Both examples stress the importance of thorough 

consideration on the simulation 'depth'1 of the NAVSIM model: what amount of com­

puter power is needed for different levels of simulation?; what modules are expected to 

be computer-capacity-consuming?; what data flow connections require a relatively large 

internal network bandwidth?

3.5.1 The specific contents of the NAVSIM modules

The abstraction level of the NAVSIM model is considered the highest level possible. This 

implies that none of the modules may be omitted without losing a complete representati­

on of the whole navigation system. On the other hand, the modules themselves may 

consist of several internal layers. For example, the module software receiver does not 

only embody the algorithms (e.g. tracking loops) to calculate a best-estimated radio a/c 

state, but includes the integration algorithms to mix radio and non-radio determined 

states as well. Furthermore, the detail level of the modules highly depends on the 

purpose of the simulations. It would not be wise to make any speculations about the

1 The simulation depth indicates how close to reality the simulation is.
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Figure 3.9 Computer power and connection bandwidth requirements: bold modules
need more power; data flow is larger for bold arrows.
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exact amount of computer power needed for a certain detail level; it is suggested that 

by the time a real navaid model will be implemented, a careful analysis should be made 

about the detail level required. The detail level is determined by the goal of the research. 

The maximum achievable detail level is directly related to the available computer power. 

If the available power is less than the required one, the simulated processes will be 

slower than in reality: the simulation is non real-time. On the other hand, if the amount 

of computer capacity equals or even exceeds the required power, processes can be run 

either in real-time1 mode or in fast-time mode. Fast-time mode implies that test-data can 

be gathered from the simulated process faster than the same data would come available 

in reality. Computers must be purchased, corresponding to these requirements and cash 

funds available. It might well be that, for the benefit of a real-time simulation, certain 

modules are to be considered of minor importance for certain test purposes: these 

modules should be regarded as ’dummies’. Dummy modules simply copy the input 

variables to the output variables (1* operator). Nevertheless a rough indication can be 

made of where to expect a necessity of relatively large and small computer power. In 

Figure 3.9 modules that ask for huge computational power are represented in bold.

This section is concluded with two examples concerning GPS and MLS. The basic idea 

behind a varying simulation depth is illuminated focusing on the transmitters module.

GPS

A GPS signal consists of two circular polarized carrier signals both derived from a 10.23 

MHz base frequency: the LI band of 1.58 GHz and the L2 band of 1.23 GHz. These 

carriers are modulated by P (L1 and L2) and C/A (L1 only) PRN codes. Once again the 

frequencies (often referred to as chip-rates) of these codes are derived from the base 

frequency of 10.23 MHz: 10.23 MHz for the P code and 1.023 MHz for the C/A code. 

Additionally, a navigation message is modulated on the same LI and L2 carrier freq­

uencies, transmitted with a rate of 50 bps. Processes in the transmitter module, concern­

ing GPS navaids, can be simulated by (in order of increasing depth):

The term real-time is related to the calculation speed of a simulated process: if a simulated process takes 
the same time (depending on sufficient computer power) as its real counter part, that is, if a simulated 
second corresponds to a real second, a simulation is labelled real-time.
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Table 1.2 Computer power requirements for the module transmitters for different 
levels of detail (simulation depth); the last column gives the ratios of the 
data generated depending on the simulation depth.

DEPTH GENERATED OUTPUT 
(1 satellite)

FREQ. BANDWIDTH

(bits/s.)

RATIO

1 time delays 
navigation message 
true satellite state

8 Hz
50 Hz 
n.k.*

58 Hz 1

2 C/A PRN code 
navigation message 
true satellite state

1.023 MHz. 
50 Hz 

n.k.*

1.023 MHz 1,76e4

3 samples containing: 
carrier frequency (LI) 
C/A PRN code 
true satellite state

1.58 GHz
1.023 MHz 

n.k.*

3.16 GHz 2.72e7

* Not Known: the frequency with which the true GPS satellite states are needed by the simulation of real- 

world module to estimate reflection parameters, fully depends of the simulation depth of this very module. 

There is no computer power needed inside the transmitter module; only a data-link bandwidth between 

simulation of real-world and transmitters will be required.

1. Generating time delays corresponding to the pseudo-range between satellite and

a/c receiver. In most of the available receivers, this information comes available 

once a second per satellite1. Navigation messages are generated like simple 

ASCII strings and transmitted with a realistic 50 bps. rate. The true transmitter and 

a/c state are needed to calculate the time delays. The true navaid state is directly 

transferred to the simulation of real-world module.

2. Generating both modulating signals. That is, producing a PRN code and a naviga­

tion message. The signal time-of-transmission is broadcasted as a part of the 

navigation message. The navigation message is sent to the simulation of real- 

world module, and from there on transferred to the a/c antennas with a realistic 

rate of 50 bps. The true a/c state is not needed. The navaid state is broadcasted

Suppose a time delay can be coded in 1 byte = 8 bits. 
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both as a part of the navigation message (like in reality), and as plain ASCII 

numbers, needed for reflection simulation in the module simulation of real-world.

3. Generating a carrier frequency signal containing PRN code and navigation messa­

ge. Samples of the signal (amplitude) are sent to the simulation of real-world 

module. Additional phase samples represent the circular polarization character 

of the satellite signal. Neither the navaid state, nor the a/c state are needed in 

the process. Once again the true navaid state is both embedded in the navigation 

message and directly sent to the simulation of real-world module.

Table 1.2 summarizes the computer power requirements for the three levels suggested 

above.

MLS

The MLS signals consist of a carrier signal with a frequency of 5 GHz. The omni-direc­

tional carrier signal is modulated (DPSK technique) by Basic Data Words (BDW) and 

Auxiliary Data Words (ADW), transmitted with a rate of 15.625 kHz [20]. Time multiplex­

ing is used to distinguish between data and positioning info. Pre-ambles notify the 

receiver of the information sent. Directional elevation and azimuth antennas broadcast 

scan beams that cover a fan-shaped area. Simulation of MLS navaids implies (in order 

of increasing depth):

1. Generation of azimuth and elevation angles. BDW and ADW information (referred 

to as the navigation message) are produced like ASCII strings. No signal direction 

vectors are considered: all signals are supposed to be omni-directional.

2. Generation of the ’hit-times’ of the elevation and azimuth scan beam. The BDWs 

and ADWs are generated during specific time slots with a 15,625 baud rate. Pre­

ambles are added. Still no signal direction info is produced.
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Table 1.3 Computer power requirements for the module transmitters for different 
levels of detail (simulation depths) for MLS simulations.

DEPTH GENERATED OUTPUT FREQ. BAND
WIDTH 

(bytes/s)

RATIO

1 azimuth angle 
elevation angle 
navigation message* 
true MLS state

39 Hz**
39 Hz 

202 bps.

103 Hz 1

2 azimuth hit-times 
elevation hit-times 
navigation message 
true satellite state

78 Hz
78 Hz 

15,625 bps. 
n.k.

2109 Hz 20

3 samples containing: 
carrier frequency 
scan information 
navigation message 
true satellite state

5 GHz

15,625 bps. 
n.k.

10 GHz 9.7e7

Only Basic Data Words are considered: 5 words of 18 bits (excluding preamble and parity check bits) 

are broadcasted every second, 1 word of 18 bits is generated every 0.16 s.

High rate azimuth approach guidance rate is considered: 39 times per second an angle must be 

generated by means of 8 bits (1 byte).

Not Known: the frequency with which the true MLS antenna states are needed by the simulation of real- 

world module to estimate reflection parameters, fully depends of the simulation depth of this very module. 

There is no computer power needed inside the transmitter module; only a data-link bandwidth between 

simulation of real-world and transmitters will be required.

3. Generation of samples of the 5 GHz signal including the time multiplexed elev­

ation and azimuth scans and the BDW’s and ADW’s. The samples include 

direction of the scan beam that are generated. Time slots are used for distinction 

between data and positioning info.

From these examples it is obvious how easily computer power is exceeded: increasing 

the simulation depth will slow down the model. Table 1.3 summarizes the computer 

power requirements for MLS transmitter simulation. An important earlier mentioned topic 

concerns the real-time requirements. For research of a pilot's overall response on new 
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response on new navigation systems, a real-time test environment might be essential, 

where as with reliability and so-called continuity of service tests a slower simulation would 

do.

3.5.2 The amount of data flow between the modules

The communication between the modules was represented by arrow connections. Just 

like the contents within the modules, the connections between the modules are not 

equally large. Some modules generate a lot of data, whereas a module like flight_plan 

only produces a small data flow. In Figure 3.9 a rough hint is given of where to expect 

large data flows. But one should keep in mind that all data flow depends both on the 

control data and the simulation depth of the modules involved. For example: the amount 

of data generated by the modules atmospheric conditions and environment is reduced 

by the control data true a/c state. The atmospheric conditions can be represented by 

the same characteristics for all navaid frequencies (low simulation depth = small data 

flow) or by varying influences for the different frequencies of ILS, MLS, GPS etc. (high 

simulation depth = large data flow between atmospheric conditions and simulation of 

real-world). The module presentation does not require a lot of computer power, where 

as its data-links ask for a large bandwidth.
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4 Conclusions and recommendations: NAVSIM model

In this chapter, the last of the first part, some concluding remarks on the NAVSIM model 

are made. The NAVSIM module representation gives rise to several questions:

Is it possible to implement the model in a real-time environment?

This strongly depends on the complexity of each module and program skills of 

the software developer and therefore can be a problem with today’s limited 

computer power. The next question evolves from this:

Does it make sense, to first generate navaid signals (e.g. complex circular polar­

ized GPS signals) in the transmitter module, and later on process them in the 

software receiver, to restore the initial information? Why not just generate simple 

radio-position and error data (corresponding to different atmospheric and environ­

mental conditions) in the software receiver and save an enormous amount of 

signal calculation time?

The answer to this question lies in the lessons learned in the past. Simplifying 

complex models can be profitable for the current computer capacity and speed 

(earlier discussed noise modelling), but one should bear in mind that future 

research on navigation systems will ask for extended model presentation. The 

NAVSIM modular block diagram can both be used for simple modelling with 

today’s restricted amount of computer power and for future complex modelling 

when new and faster processors become available. The software developer deter­

mines the complexity and contents of each module.

It is recommended that if any changes are to be made in the NAVSIM model, this should 

be done with an awful lot of consideration. Adding new arrows results in a redefinition 

of many variables. What is more, often the addition of new arrows is not necessary: data 

can be transported using the already-existing connections!
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PART II - NAVSIM: developing a test-environment for the model
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5 Object-Oriented Programming

In the previous chapter a theoretical model for NAVSIM was developed. The implementa­

tion of this model asks for a programming language suited to represent the different 

modules. In this chapter the use of an Object Oriented Programming language is justified 

(Section 5.1). The basic principles of OOP are explained in Section 5.2. In the last section 

(5.3) the OOP-language Borland C++ is promoted to be used as the program language.

5.1 Modular NAVSIM and Object-Oriented Programming

The different modules of the NAVSIM model represent various parts of the navigation 

systems. To ensure easy implementation of the whole model, a programming style should 

be chosen that corresponds to the modular approach. OOP perfectly fits in here. Each 

module can be defined as an object. An object in OOP can be regarded as a self- 

supporting entity. That is, an object contains both data and methods describing the kind 

of action to perform on the data. This is exactly corresponding to the way that the 

NAVSIM modules should work: processes in the module should influence only data of 

the same module.

5.2 Basic principles of Object-Oriented Programming

In this section the basic principles of OOP are covered [21],

5.2.1 Introduction

OOP is as big a revolution in the programming world today as structured programming 

was 20 years ago. It is a whole new way of thinking. Many professional 0 programmers 

are just learning about OOP and debating its merits, and it has not yet become the new 

standard. Why make the change? What does OOP offer that warrants so much relearning 

and so much rewriting of existing code?

OOP’s most obvious advantage is with group projects. Ten years ago, PC programs were 

often one-person projects, but that is rarely the case today. With the increasing power 
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available on the most simple desktop, PC programs that take advantage of that power 

are generally written by a team of programmers. The same holds for NAVSIM: numerous 

programmers will work on the implementation of the different modules of the model.

With these kinds of large programs, debugging and maintaining them has grown 

exponentially more difficult. OOP addresses the problems inherent in debugging and 

maintaining large, complex programs.

5.2.2 Encapsulation

One of the key features of OOP is encapsulation-, data and the functions that operate 

on that same data are encapsulated into a self-contained object. A clear example of this 

feature are objects in so-called visual development environments: each object is painted 

on the screen and described by clicking the mouse on it; characteristics such as its 

color, its size and its behavior can be altered (independent of other objects). Encapsula­

tion in OOP-languages is accomplished through the use of classes. Classes are compa­

rable to C’s data structures and Pascal’s data records. But besides data, they also 

contain the program code for operating on that data. This program code is referred to 

as member functions.

Encapsulation provides numerous advantages. Data within a class can be declared 

private. This means it is accessible only within that same class. This ensures that only 

that class’s member functions can access the data; a highly useful protection in a multi­

programmer project such as NAVSIM. Besides, with encapsulation large programs are 

much more readable , because all the related code and data is in one place. Object- 

oriented programs are also more modular and therefore more easily maintained.

5.2.3 Inheritance

OOP is much more than encapsulation: inheritance is the second topic discussed. 

Inheritance lets us derive new classes that inherit the properties (both data and member 

functions) of a previously defined base class. The new properties are built on top of the 

inherited properties, which can save the programmers quite a bit of coding. Multiple 
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inheritance refers to a class that inherits from multiple base classes. Through the 

inheritance principle, a hierarchy of classes is created to form the backbone of a 

program. Designing a useful and elegant class hierarchy is no trivial matter. Therefore 

OOP programming takes much up-front planning. What is more, since the code from 

parent classes is pulled into derived classes, it is easy to create a huge overhead in a 

program without even realizing it.

5.2.4 Polymorphism

The third aspect of OOP is polymorphism-, directly translated from the Greek it means: 

"having many shapes". With polymorphism, the same function or operator (such as a plus 

sign) can have multiple meanings, depending on the context in which the operator is 

used. For example, a plus sign can be overloaded to mean concatenation when the 

operands of either side of it are strings.

Example:

6 + 10 = 16 (normal + operator)

poly + morphism = polymorphism (overloaded + operator for strings)

With functions, polymorphism is achieved either through overloaded functions, where 

all ambiguities are resolved statically at compile time, or through virtual functions, where 

ambiguities are resolved dynamically at run-time. Virtual functions provide the OOP- 

language with a special kind of extensibility that can be powerfully exploited in class 

libraries. Virtual functions can be used as provided, or overridden with customized 

versions of the functions. This flexibility makes OOP code highly re-usable. Programmers 

do not have to be forever re-inventing the wheel just because they want to make one 

aspect of the code slightly different.

5.3 The OOP-language Borland C+ +

After this general introduction about OOP, we have to decide what OOP-language kit 

to pick. Since C++ is one of the most powerful OOP-languages and smoothly con­

nected to C, the choice is obvious. Canter [22] compared several versions of C+ + .
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Borland C+ + was rated editors’ choice. The complete development kit consists of two 

entry-level compilers Turbo C++ for DOS and Turbo C++ for windows, and the pro­

fessional-level compiler Borland C+ + . The latest release (june 93) is version 3.1.

5.3.1 C++ as a superset of C

The real power of C, gained by using a restricted instruction set with great flexibility 

[23], is maintained in C+ + . C++ is a superset of C, providing (optional) additional 

instructions for the normal C programmer. Pointer operations are similar, though in C+ + 

a call-by-reference1 is extended with the use of a so-called reference parameter. This 

means that no ’dummy’ pointer has to be declared within a function to alter a variable. 

Instead the variable is referenced (& sign), meaning that it gets a second name. The 

variable changes automatically if the reference name is changed within the function.

5.3.2 The entry-level compiler Turbo C++ (version 3.0)

Turbo C++ is a part of the complete kit of Borland C+ + . It is an entry-level compiler, 

but fully equipped with Borland’s famous Integrated Development Environment (IDE). The 

IDE is the same one as used with Borland Turbo Pascal. Pull down menus facilitate the 

integrated use of compiler, linker, debugger and C++'s project manipulations.

A great deal of confusion was met by a comparison of the version numbers and features 

of Borland C++ and Borland Turbo C++. Turbo C++ version 3.0 is the latest release 

and part of the complete Borland C++ version 3.1(1) kit. One of the new features of 

Turbo C+ + version 3.0 is color syntax high-lighting, which helps the beginning program­

mers to spot the elusive C and C++ pointer errors. Color syntax highlighting gives 

comments, reserved words, operators, datatypes and the programmer’s exclusive code, 

different colors to distinguish between one another. Turbo C+ + version 3.0 is completely 

implemented with AT&T version 2.1 and ANSI C specifications.

A call-by-reference means a function is called with the address of a variable A: the variable A can be 
changed by the function; a call-by-value implies a variable A is copied to a local function variable L, 
therefore the function cannot alter the variable A directly.
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6 A test-environment for NAVSIM using C+ +

Documenting software of a large program is often a very tedious and dangerous job. 

The moment the documentation is finished, the actual program software may already 

have been changed. This results in false information in the software document. Therefore 

it was decided not to give a fully detailed software description, but instead briefly discuss 

the main structure of the program and some sneaky tricks used during programming. 

Additionally the C++ source code is accompanied by a lot of comments1. It is recom­

mended that these comments are frequently updated during the implementation of new 

program code. For a better understanding of the NAVSIM code, the reader is strongly 

advised to single step through the program2.

In this chapter a test-environment for NAVSIM in C++ is discussed. It was by no means 

my intention to cover all details of the model. On the contrary: the main purpose of the 

basic test-environment is to facilitate the complete implementation of the NAVSIM by 

individual yet-to-be-assigned programmers. For these programmers, only the software 

of a specific module should be of their concern. The remaining part of the model will be 

transparent to them; implying that they can neither ’damage’ the remaining part of the 

software, nor have to understand themselves the code of other modules. First the one- 

on-one correspondence between NAVSIM modules and C++ objects is exploited, 

resulting in the definition of classes (Section 6.1). Within these classes data and member 

functions are defined for the NAVSIM modules. Some special techniques used to 

program the test-environment are covered in Section 6.2.

In C++, comments are distinguished from program code by // followed by text; in C comments are 
recognized by /* at the begin and */ at the end of text.

The expression single step is used by programmers to indicate the execution of a program line by line 
(instruction by instruction). During single stepping, so-called watches can be used to show the values 
and meaning of variables.
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6.1 Defining C+ + Classes for the NAVSIM modules

In the previous chapter inheritance was promoted as a powerful tool to avoid the need 

of multiple definitions1 of both data and member functions in multiple classes. In our 

NAVSIM test-environment we use the same technique to define some common variables 

for all modules.

6.1.1 The Base Class: MODULE

In Section 3.2 we stressed the importance of a control variable reset for each module, 

to prevent the system from crashing. Another important variable for each module is the 

local simulation time. Both variables are defined in the base class MODULE and 

consequently inherited by all derived classes. Special attention should be paid to the 

globally defined SIM_TIME. Although the definition of a global variable is strongly advised 

against in C and C++2, the global simulation time must be accessible to all classes 

and their member functions. The purpose of the locally defined simulation times 

becomes clear now: once inside a class SIM TIME is copied to the local simulation time, 

avoiding the danger to change SIM_TIME directly.

6.1.2 Derived Classes

All of the modules of our NAVSIM model are defined as derived classes of the base class 

MODULE. Class definitions are always in upper-case characters, to distinguish between 

definition and declared instances (=objects) of a class. Objects are always declared in 

lower-case characters. The derived classes defined are: TRANSMITTERS, ATMOSP­

HERIC, ENVIRONMENT, REAL_WORLD, ANTENNAS, OTHER_STATE, RECEIVER, 

DATA BASE, DADC, NAV_GUID, FLIGHT PLAN, and PRESENTATION.Thetree-hierarchy 

of NAVSIM is shown in Figure 6.1. So, each module of the NAVSIM module is repre-

NOTE: a lot of confusion can be avoided by distinguishing between the definition of classes, structures, 
variables, and member functions, and on the other hand the declaration of instances or objects of these 
classes or structures. Computer memory is reserved the moment variables are declared; a definition of 
a class does not take any memory!.

o
Global variables are ’dangerous’ to use: they go directly against the principle of encapsulation; a global 
variable can be changed by any ’unaware’ programmer, not knowing that he may not alter this variable.
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Base Class

Derived Classes

Figure 6.1 NAVSIM class hierarchy 

sented by a class.

Before defining input, output and control data (data=variables) for each class, a short 

consideration on our modules is in place. Instead of defining inputs and outputs separa­

tely, inputs alone will do. The reason is that the one-on-one correspondence of the 

output data of the ’current’ module and the input data of the ’next’ module. Figure 6.1 

clarifies this thought. All this boils down to more simple class definitions: only defining 

input and control variables. In addition to this member data, member functions are 

defined within the classes.

We focused earlier on the importance of encapsulation: the protection of certain data 

and member functions (together referred to as class members). The next section covers 
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three kinds of access that we have to class memb­

ers.

6.1.3 Base and derived class access

For a complete and detailed description on class 

access the reader is referred to [24], Chpt. 13. 

In this section class member access control is 

described.

There are three key-words used to specify the 

protection of class members. These are:

- public The member can be used by any 

function outside the class.

- private The member can be used only by 

member functions and friends of 

Figure 6.2 Reduction of data: 
input equals output

the class in which it is defined.

- protected Same as for private, but additionally, the member can be used by member

functions and friends of derived classes from the defined base class.

The specifier friend needs some more explanation. A friend FRIEND of a (base) class 

BASE is a function or class that, although not a member function of BASE, has full 

access rights to the private and protected members of BASE. Apparently we can make 

use of friend classes to establish the arrow connections in our NAVSIM model. For 

example:

The derived classes TRANSMITTERS, ATMOSPHERIC and ENVIRONMENT can be made 

friends of the derived class REAL WORLD, so that they can access the input data of 

this module. Other modules of the model will not be able to access this data and
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Figure 6.3 Base class accessibility to friend, derived and independent classes

therefore the encapsulation of REAL WORLD members is still guaranteed to a safe 

extent. Figure 6.4 shows the accessibility of the REAL WORLD inputs. The member 

functions discussed in the next section are also shown.

6.1.4 Member functions: ProcessQ, Evaluate() and Generate()

We return to the basic properties of the NAVSIM modules. Input data is processed and 

output data (= input of ’next’ module) is the result. This means each class should have
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class class
TRANSMITTERS ATMOSPHERIC ENVIRONMENT

member data:
input data 

control data

member data:
input data 

control data

member data:
input data 

control data

member functions: 
ProcessO

member functions:
ProcessO

member functions:
ProcessO 

EvaluateO , 
GenerateQ y

class REAL-WORLD1
friend TRANSMITTERS 
friend ATMOSPHERIC 
friend ENVIRONMENT 

member data:
input data 

control data accessible to

member functions:
ProcessO

EvaluateQ ,
GenerateQ /

Figure 6.4 Accessibility of the input (and control) data of the REAL WORLD class to 
the member functions of the TRANSMITTER, ATMOSPHERIC and ENVI­
RONMENT classes

a function Process()1, in which specific code is programmed, depending on the navaids 

simulated. In our test-environment the ProcessO functions of the classes are filled with 

dummies: input of ’current’ module is simply copied to input of ’next’.

Of course we want to keep track of the input and control data of the modules. The 

function EvaluateQ shows us the current state of all input and control variables of a 

specific class.

The last function implemented is GenerateQ. GenerateQ facilitates testing of (unexpected) 

inputs of each module. For the class TRANSMITTERS, GenerateQ lets us assign a value

In general in C++ parentheses are used to indicate we are dealing with a (member) function and not 
with (member) data.
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to the input data: in_navigation_message, in_differential_data and in_health_condition. 

Special attention should be paid to the input data true_aircraft_state. This input should 

be equal for all modules and will eventually be generated by the host computer (see 

Section 1.1). However, with the member functions GenerateQ of each module, 

true_aircraft_state can be altered for testing purposes of that specific module.

6.2 C+ + specifics used for NAVSIM

There are a lot of special tricks in C+ + that make programming a lot easier (see [23], [25] 

and [26]). One should really be familiar with these C++ features, for a reasonable 

understanding of a program. That is why the next sections seem to be tedious and 

annoying, but really help the reader to get more insight in the complex C+ + code.

6.2.1 Constructors and destructors

Constructors are a special kind of member functions of a class. Each time an object of 

a class is declared (either statically or dynamically1) the constructor of that class is 

automatically invoked. Actually the real creation of that object is done by the constructor. 

Apart from creating an object, the real power of a constructor lies in the initialization of 

the member data. For example: all variables can be set to 0, and all pointers are set to 

a meaningful address, instead of pointing to ’garbage’ or worse to NULL2. A constructor 

gets the same name as its class: TRANSMITTERS has a constructor function TRANSMIT- 

TER(). If no user-defined constructor exists for a certain class, C++ automatically 

generates a default constructor. A special case occurs if an object of a derived class is 

declared: first the base class constructor is invoked, followed by a call to the derived 

class constructor.

Dynamic memory allocation allows for creation and deletion of objects during run-time. This implies that 
memory can be free-ed if an object is no longer needed. Static objects cannot be de-allocated during 
run-time.

C+ + and C programs often crash because of pointers referring to NULL. To avoid this, pointers should 
be initialized as soon as possible once they are declared.
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In the NAVSIM program, the base class MODULE has its constructor MODULEQ. We 

mentioned earlier (Section 6.1.1) the two base class member variables reset and simula­

tion time. In MODULEQ reset is set to an initial non-true (0) and the simulation time to 

0 for all derived class objects. As far as the derived class constructors concerns, ’dummy’ 

constructors are defined and can be filled with the appropriate code later (if desirable).

The destructor for a class is called to free members of an object before the object itself 

is destroyed. The destructor is a member function whose name equals the class’ name 

preceded by a tilde (~). If a destructor is not explicitly defined for a class by the program­

mer, the C++ compiler will generate a default one. Up to now there is no user-defined 

destructor code implemented in the NAVSIM program.

6.2.2 Overloading functions and operators

One way that Turbo C++ achieves polymorphism is through the use of function over­

loading. In C++, two or more functions can share the same name as long as their 

parameter declarations are different. In this situation, the functions that share the same 

name are said to be overloaded and the process is referred to as function overloading. 

Though there are no overloaded functions yet in the NAVSIM program, further implemen­

tation of the modules could undoubtedly ask for this feature. The next example clarifies 

overloaded functions:

Imagine that you want to have a function Cube that operates on and returns three 

different types of variables (int, float and double). In C the declarations would look like:

int Cube (int number);
float Fcube (float float_number); 
double Dcube (double double_number);

In other words, three functions with different names should be declared, though perform­

ing the same kind of action. In C++, however, one name can be used according to the 

"overloading" principle:

int Cube (int number);
float Cube (float float_number);
double Cube (double doubte_float);
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As long as the argument lists are all different, C++ takes care of calling the correct 

function for the argument given. As stated before, there is no need for overloaded 

functions in the NAVSIM environment yet. The functions ProcessO, EvaluateQ and 

GenerateQ are all declared member functions of different derived classes. This means 

they are accessed differently. For example:

Let transptr be a pointer referring to an object of type TRANSMITTERS and let atmosptr 

be a pointer linked to an object of type ATMOSPHERIC. The member functions are 

invoked differently:

transptr->Generate(); // invokes TRANSMITTERS::Generate()
atmosptr->Generate(); // invokes ATMOSPHERIC::Generate()

A second way of achieving polymorphism in Turbo C++ is through the use of over­

loaded operators. The example of polymorphism given in Section 5.2.4 is actually an 

overloaded (unary1) operator. Overloading an operator let us redefine the action of any 

standard operators when applied to the objects of a given class.

In the NAVSIM program the operator new has been overloaded. This operator is used 

for dynamic memory allocation and comparable to the C function mallocQ. Instead of 

digging to deep into the real meaning of new, the overloading trick is illustrated by a 

copy of the code of the NAVSIM program:

II dynamic memory allocation
TRANSMITTERS *gpsptr = new TRANSMITTERS;

// new overloaded for all classes
void * operator new(size_t size) <

void *p;
p=malloc(size);
if (p==0) <

cerr«"\nmemory allocation error - aborting\n";
exit(1);
>;

return p;
>;

What actually happens in this code is that new is overloaded with a function that checks

The following operators are called unary operators in C+ + : & * + — ! ++ and -- 
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if the newly declared pointer refers to NULL1. If so, an error message is generated. The 

original new does not include this safety check.

Apart from the new operator, the extraction operator > >, and insertion operator < < are 

overloaded as well. Originally these operators are used for bit manipulation (shift right, 

shift left). But once again, if the context in which >> and << are used has to do with 

input/output streams (in detail discussed in next section), C++ overloads the original 

bit manipulators by (default) inserters and extractors. The last step to be made is 

overloading of these default stream operators by user-defined stream operators. The next 

example clarifies this:

// overloaded inserter for class TRANSMITTERS objects 

ostream &operator«(ostream Sstream, TRANSMITTERS *transptr) < 
// here user-defined program code for console output 
>

// main program code 

int number;
TRANSMITTERS *gpsptr = new TRANSMITTERS; // dynamic allocation of a new TRANSMITTERS object

cout « "a default inserter is used"; // a string is printed to the screen
cout « number; H the integer number is printed by an overloaded 

// default inserter
cout « gpsptr; // normally, this instruction will result in a

// compiler error; but « is overloaded for
II objects of type TRANSMITTERS

In the same way that the inserter operator < < is overloaded, the extractor operator > > 

can be overloaded. This comes in very handy when writing and reading to (formatted) 

files. The next section focuses on file in- and output.

6.2.3 File I/O using C+ + streams

A stream is an abstraction referring to any flow of data from a source (or producer) to 

a sink (or consumer). The synonyms extracting, getting and fetching are frequently used 

when speaking of inputting characters from a source; terms like inserting, putting and 

storing are used for outputting characters to a sink. Classes are provided that support

Confusingly, a pointer is checked to be referring to 0 and not to NULL. In C NULL was defined as macro 
to be 0 (#def ine statement). However, C++ programmers regretfully tend to use 0 instead of NULL.
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console output (constrea.h1), memory buffers (iostream.h), files (fstream.h), and strings 

(strstrea.h) as sources or sinks (or both). Like C, C++ contains several predefined 

streams (i.e. pre-declared objects of stream classes) that are automatically opened when 

a C++ program begins execution. These are ein, cout, cerr and clog. The stream ein 

is associated with standard console input and cout is the stream associated with 

standard console output. The streams cerr and clog are both linked to standard console 

output and used for error handling. All stream class functions are defined in header files 

(*.h) and have their function bodies recorded in class libraries. The classes are linked 

to each other by a complex mechanism of multiple inheritance. Figure 6.5 shows the tree 

hierarchy.

In the NAVSIM program, the class fstream is used to declare a stream for file in- and 

output to NAVSIM.DAT. An additional advantage of this class is the stream buffer 

between the program and the output devices, in this case the NAVSIM program and the

The extension h refers to so-called header files. Header files contain class definitions and function 
prototypes. For more details see ref. [22],
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file NAVSIM.DAT. This means that data is not written to the file until the file is actually 

closed. This is done at the end of the program. While running, all data is written to the 

stream, saving a lot of hard disk access time1. The stream tree hierarchy provides 

fstream with a lot of member functions. Together with its own member functions an 

object of fstream can access files with special file-pointer functions and format options 

inherited from its base classes. A complete overview can be found in ref. [23].

6.3 The NAVSIM project file

At the end of this chapter we return to one of the basics of C and C++. Let us briefly 

describe the way an executable file is made in C/C+ + . First an ASCII text is written with 

the use of an editor, for example with the help of the Borland’s IDE editor. The code is 

saved in a file with an extension like .C or .CPP. Next the compiler is called and the 

ASCII code is translated in a sort of assembly code. The result is an object file with 

extension .OBJ. The last step involves the linker, which connects the different object files, 

eventually creating an executable file (extension .EXE). The question arises: where do 

the different object files come from with just one program? The answer lies in project files.

A stubborn programmer may actually compile his program in one go, but this leads to 

a larger code, and a longer compilation time. Therefore it is strongly advised to break 

a large program down in modules (not to be confused with the NAVSIM modules!). This 

is where the project file (extension .PRJ) comes in. In a project file the different modules 

of a program, all with extension .C or .CPP are brought together. In fact there are more 

files in a project: pre-compiled library files (extension .LIB, either user-defined or provided 

by Borland) can be added and linked to the object files. The advantage of library files 

over object files is that only truly used functions of an .LIB file are linked to the body of 

the program; where as object files are linked completely, thereby increasing the size of 

your program enormously.

Computer freaks know that the same hard-disk-movement-saving can be obtained by ’caching’ the disk 
with a special cache program, like SMARTDrive(R): a part of computer memory is an emulated hard disk.

2
The term object file has nothing to do with objects of a class!
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The great benefit of project files is the reduction of compilation time: an unaltered 

program part does not have to be re-compiled by C/C++; the already existing object 

file is used.

After this short explanation the question arises: what about the earlier mentioned header 

files? Header files (extension .H) are just ordinary parts of a .C or .CPP file. To avoid 

’ugly’ definition of structures and classes at the beginning of a program file, header files

Figure 6.6 The process involved to get an executable file; the project NAVSIM.PRJ 
is used as an example.
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contain all these definitions. The .C or .CPP file can make use of all the defined types 

by including (#inciude statement) the header files. During linking the bodies of the 
functions defined in the header files, are linked from either .OBJ files or .LIB1 files. The 

exe-file process is elucidated in Figure 6.6 with the NAVSIM project as example.

The NAVSIM project file contains the following modules:

NAVSIM.CPP: Main program, contains dynamic object declarations of all classes 

and calls to the various member functions of these classes.

NAVMEM.CPP The member functions of the classes are defined in this module. 

This program part will grow extensively large when more of the 

NAVSIM model is implemented; a further program break-down 

would be advisable.

NAVOVL.CPP This program module consists of all overloaded operators.

The NAVSIM classes are defined in the file NAVSIM.H. All data input is read from, and 

written to the file NAVSIM.DAT.

Each C++ program is automatically linked with the standard Borland libraries C*.LIB and MATH*.LIB 
(* depends on the memory model used).
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7 Conclusions and recommendations: implementation

This chapter concludes the second part of this paper. Concluding remarks on the 

implementation of the theoretical NAVSIM model are made.

The implementation of NAVSIM proved to be a very complicated task. With the use of 

an OOP language, like Turbo C++, a lot of pre-planning had to be done, before one 

single line could be programmed. The earlier-stated article of Canter [21] points out the 

slow process of getting really familiar with C+ + : a time span of two - three years is 

suggested for optimal use of C+ + . Nevertheless the basic structure and initial outlay 

of the NAVSIM test-environment were implemented.

The robustness of the C++ code needs to be verified. To overcome the tedious file 

format constraints, I spent a lot of time testing little independent program parts. But all 

of this effort really paid off: the code could easily be copied to the main program.

The main objective of the test-environment was to make a body transparent for the 

module-dedicated, yet-to-be-assigned programmers. For most of the program this is 

actually the case. However it is recommended that this report is studied before imple­

menting specific module software. Also, it is strongly advised to ’single step’ the program 

at least once for a better understanding of both C++ and the main program structure. 

Last but not least the lack of flow diagrams in this report is justified: up to now there are 

no real loops and condition jumps in the program, simply because no concrete naviga­

tion system is covered yet; if any part of the program asks for explanation, comments 

are added. Project notes are added to the NAVSIM.PRJ file. In this file special comments 

are made on specific program items. These notes should be read thoroughly.

Up to now there is no User Friendly Interface (UFI) implemented in the test-environment. 

In general, UFIs facilitate the use of a program, e.g. by means of pull down menus. The 

menu-controlled environment of Windows(R) is a typical example of a UFI. Borland 

C/C++ comes with a graphics library, suited for presentation and UFI purposes. It is 

recommended to extend the NAVSIM program with a UFI.
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Appendix A: Activity block variables of the NAVSIM modules

Transmitters

input: data from monitor station (e.g. control segment GPS: navigation 

message)

differential error information from reference station

integrity data (health condition of own or other navaid elements) 

true aircraft state

output: signals containing range (rho) or angle (theta) information + direc­

tion vectors

navigation message data (including position parameters, eventual­

ly needed for accurate radio positioning)

true navaid states

control: maintenance (number of elements per navaid in use) 

reset

mechanism: - number of navaids simulated 

signal complexity

Atmospheric conditions

input: time (day/night, season) 

weather conditions 

sun activity

output: propagation characteristics (group delay time/phase shift/phase- 

rate-of-change)

control: true aircraft position (only atmospheric conditions in the vicinity 

of the aircraft are considered)

reset

mechanism: - frequency dependency of distortions (variation of propagation 

characteristics for each frequency band) 

noise models



Environment

input: visual information from a 3D-world data base (e.g. filtered infor­

mation from BARESIM visual subsystem)

output:

control:

environment representation data (e.g. polygon mesh parameters) 

true aircraft position (only the environment within a certain range 

from the aircraft is considered)

- reset

mechanism: - representation method

- level of detail

Simulation of real-world

input: undistorted transmitter signal + direction vector

- navigation messages

- true navaid states

- true aircraft state

- environment data (world as seen by aircraft)

- propagation characteristics

output:

control:

composed and distorted transmitter signals + direction vectors 

reset

mechanism: - reflection depth (number of reflections considered)

- diffraction consideration

- noise models

Aircraft antennas

input: composed and distorted transmitter signals + direction vectors

- true aircraft position and attitude

output:

control:

amplified or attenuated raw signals 

active tuning (frequency, direction)

mechanism: - antenna type (directivity/directive gain)

- number of antennas per navaid system

- position and orientation of antennas on aircraft



Software receiver

input: raw signal from antennas

aircraft state + error from other state-determination systems (inc­

luding magnetic compass heading)

output: best estimated aircraft state (3D-Position + attitude + velocity) 

selected navaids

control: mode selection (either manually through CDU or automatically by

FMCS)

reset

mechanism: - navigation mode specification (priority navigation modes)

radio navaid selection used for a certain mode (reliability/availa- 

bility based on health data)

hybridization or integration of radio navaid signals (filtering tech­

niques used)

filter technique used for integration radio and non-radio deter­

mined positions

Other state-determination systems

DADO

input: true aircraft acceleration

output: aircraft state + error + reliability + accuracy

control: initialisation at start of flight 

reset

mechanism: - number of IRU’s

system error specifications

input: aircraft sensor information (e.g. static pressure, dynamic pressure)

output: air speed

barometric height

control: reset

mechanism: - kind of sensors used



number of sensors 

calculation method

Flight plan

input: - waypoint info from navigation data base

CDU input 

data-link data 

output: - map background data

control: - reset

pilot control through CDU: flight plan creation 

flight plan orders via data-link 

mechanism: - detail level flight plan

Navigation data base

input: - source data: - standard data (public property obtained

from e.g. International Civil Aviation 

Organisation (ICAO)) 

tailored data (route structures of specific 

airlines)

output: - map background info: position of waypoints, airports, navaids

navaid frequencies: used by the software receiver to select the 

navaids 

navaid states: needed for radio positioning

control: - reset

mechanism: - data format

4D-Navigation and Guidance System

input: - best estimated aircraft state

selected navaids (by software receiver) 

map background (including weather radar data) 

DADC data (air speed & height)



Presentation

- time

output: presentation data for EFIS

data for auto-pilot function of guidance system (resulting in stee­

ring commands)1

data for performance function of the FMCS2

control: reset

mode selection

mechanism: - steering command algorithms

input:

output:

presentation data from FMCS 

visual images on ND/PFD

control: mode selection via EFISCP

mechanism: - number of display modes (e.g. ND modes include: MAP, APPROA­

CH, VCR and PLAN DISPLAY mode for 747-400) 

presentation method (display lay out)

This data is mentioned for a better understanding of the navigation & guidance function, but it may not 
be regarded as real output data: it is internal output from navigation to guidance system.

In fact this data is not directly involved with the presentation of the best-estimated a/c state by EFIS, and 
therefore falls outside the scope of this paper



Appendix B: Detailed NAVSIM model (A3 format)



Appendix C: Source code NAVSIM.PRJ (supplied on request)


