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SUMMARY

In this thesis, we explore the physics of optical singularities. We investigate them in light
waves propagating randomly in a planar nanophotonic chip. With a custom-built near-
field microscope, we map the electromagnetic field resulting from the interference of
these light waves. Our technique gives access to the full vectorial and complex nature
of such an electromagnetic field, with subwavelength resolution. The resulting informa-
tion allows us to precisely pinpoint and characterize the multitude of singularities that
arise in the random light field. We detect phase singularities in the Cartesian compo-
nents of light’s vector field, i.e., points where the phase of the field components is unde-
termined and it circulates in a vortical flow around them (Part II). Moreover, we identify
polarization singularities, e.g., C points: locations where the vector of light’s electric field
describes a perfect circle in time (Part III).

We experimentally determine the spatial correlation of phase singularities in the Car-
tesian components of vector random light waves, and compare it to the model for iso-
tropic random waves. We demonstrate that, because of the vectorial nature of light, the
spatial distribution of phase singularities becomes anisotropic. The anisotropy is caused
by the direct relation between the wave propagation direction and the vector field ori-
entation. This leads to an anisotropy in the propagation directions of the participating
waves when considering a specific electric field component. We include this relation in
existing scalar theory and find excellent agreement with our experiments.

We then consider the situation of isotropic random waves and determine the fluctu-
ations of the topological charge for phase singularities, as a function of the size R of the
observation window. We find that for two-dimensional fields such fluctuations increase
with a super-linear scaling law, consistent with a R logR behavior. Additionally, we show
that such scaling remains valid even in the presence of anisotropy.

As we tune an external parameter, namely the wavelength of the light field, phase
singularities are displaced. When two of them are found at the same location, they have
to have an opposite topological charge, resulting in their mutual annihilation. New pairs
can be created as well. Supporting our experiments with theory and numerical simu-
lations, we study the persistence and pairing statistics of phase singularities in random
optical fields as a function of the excitation wavelength. We find a relation between the
observed statistics and the eigenstate composition of the random light field. We find that
the persistence of singularities that annihilate with their creation partner is smaller than
that of singularities that “find another partner”.

For C points in a two-dimensional random light field, we find that their spatial dis-
tribution is dramatically different when considering a truly two-dimensional field rather
than a two-dimensional slice of a three-dimensional field. The most notable change is

xi
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that the probability of finding two C points with the same topological charge at a vanish-
ing distance is actually enhanced in a two-dimensional field. These experimental find-
ings are confirmed and supported with theory and excellent agreement is found between
theory and experiment.

As a consequence of having two singularities with the same charge at the same loca-
tion, higher-order singularities with twice the charge are created. We present the obser-
vation and the spatial correlation of these singularities – known as polarization vortices –
in 2D random vector waves. We also discover that polarization vortices of positive charge
occur more frequently than their negative counterpart. Such a symmetry breaking with
respect to the polarization vortices’ topological charge was unforeseen and surprising.

As a completion to the persistence studies performed for phase singularities, we also
analyze persistence and pairing statistics of C points in random optical waves as a func-
tion of the excitation wavelength. Even though C points of different handedness are cor-
related in space, we observe that the influence that anti-handed dislocations exert on
each other seems to be negligible for their evolution as a function of wavelength. We un-
derpin this finding by computing the persistence statistics of C points, which behavior is
highly similar to that observed for phase singularities in a the Cartesian components of
the field.

Finally, we present with a quick overview some preliminary studies on singularities
in random light, that offer interesting new avenues of research. These studies include
the time evolution of phase singularities, the determination of an effective interaction
potential for phase singularities from their pair correlation, and the transition from or-
der to disorder as the number of waves which contribute to a random wave pattern is
increased.



SAMENVATTING

Dit proefschrift beschrijft de fysica van optische singulariteiten. Deze singulariteiten
ontstaan in het interferentiepatroon van vele lichtgolven die in willekeurige richtingen
propageren over een vlakke nanofotonische chip. Door middel van een zelfbouw nabije-
veld microscoop visualiseren we het interferentiepatroon. Onze techniek geeft toegang
tot de volledige vectoriële en complexe eigenschappen van de elektromagnetische vel-
den, met een ruimtelijke resolutie kleiner dan de golflengte van het licht. De gemeten
informatie maakt het mogelijk om de optische singulariteiten precies te lokaliseren en
te karakteriseren en geeft ons nieuwe inzichten in hun grote verscheidenheid. Wij meten
fasesingulariteiten in de Cartesische componenten van het vectorveld van het licht. We
vinden punten waar de fase van deze componenten ongedefinieerd is en waar het opti-
sche veld omheen wervelt (Deel II). Daarnaast nemen we ook polarisatiesingulariteiten
waar, bijvoorbeeld C-punten: posities waar de elektrische veldvector van het optische
veld een perfecte cirkel doorloopt in de tijd (Deel III).

We meten de ruimtelijke correlatie tussen de fasesingulariteiten in de Cartesische
vectorcomponenten van het veld van de lichtgolven en vergelijken deze met een model
voor isotrope wanordelijke golven. We laten zien dat doordat licht een vectorverschijn-
sel is, de ruimtelijke distributie van de fasesingulariteiten in een specifieke vectorcom-
ponent anisotropisch wordt. Deze anisotropie komt doordat er een direct verband is
tussen de voortplantingsrichting van een lichtgolf en de trilrichting van het elektrische
veld. Wij voegen dit verband toe aan een scalaire beschrijving van het systeem, en vin-
den een uitstekende overeenstemming met de experimentele waarnemingen.

Wanneer we isotrope wanordelijke golven beschouwen, bepalen we de fluctuaties in
de topologische lading van de fasesingulariteiten, als functie van de afmeting R van het
waarnemingsvenster. We ontdekken dat zulke fluctuaties voor tweedimensionale vel-
den groeien met een super-lineaire schalingswet, in overeenstemming met een R logR
gedrag. Bovendien laten we zien dat deze schaalwet geldig blijft in de aanwezigheid van
anisotropie.

Wij kunnen de fasesingulariteiten laten verplaatsen door een externe parameter, na-
melijk de golflengte van het licht, te variëren. Zodra twee singulariteiten zich op dezelfde
positie bevinden, moeten deze een tegengestelde lading hebben, en zullen ze elkaar ver-
nietigen. Naast het annihileren van singulariteitparen, kunnen er ook nieuwe paren ont-
staan. Door onze experimentele waarnemingen te onderbouwen met theorie en nume-
rieke simulaties, kunnen we de evolutie van de fasesingulariteiten en de statistieken van
hun creatie-annihilatiebedrag bestuderen als functie van de excitatiegolflengte. Vervol-
gens vergelijken wij dit met de eigentoestanden van het wanordelijk lichtveld. Wij ont-
dekken dat singulariteiten die annihileren met hun creatiepartner een kleinere veran-
dering om de golflengte “overleven” dan singulariteiten die “een andere partner vinden”
om mee te annihileren.

xiii
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Bij bestudering van de C-punten van een tweedimensionaal wanordelijk lichtveld,
ontdekten we dat hun ruimtelijke verdeling drastisch afwijkt van hun verdeling in een
tweedimensionale doorsnede van een driedimensionaal veld. Het duidelijkste verschil
is dat de kans om twee C-punten te vinden met dezelfde topologische lading op een
kleine onderlinge afstand in een echt tweedimensionaal veld toeneemt met de afstand.
Ook in dit geval is er een uitstekende overeenstemming tussen onze experimentele waar-
nemingen en de theorie.

Als er zich twee singulariteiten met dezelfde lading op één plek bevinden, ontstaan er
hogere orde singulariteiten met een dubbele lading. We nemen de ruimtelijke correlatie
tussen deze nieuwe singulariteiten – bekend als polarisatie-vortices – in tweedimensio-
naal wanordelijk optische velden waar. We ontdekken daarnaast dat polarisatievortices
met een positieve lading vaker voorkomen dan hun negatieve tegenhangers. Een derge-
lijke symmetriebreking in de topologische lading van de polarisatievortices is tegenintu-
ïtief en verrassend. We hebben voor deze C-punten (net als voor de fasesingulariteiten)
dezelfde evolutie en creatie-annihilatie statistiek bestudeerd als functie van de excitatie-
golflengte. Ondanks het feit dat de C-punten van verschillende draairichting ruimtelijk
zijn gecorreleerd, nemen we waar dat de invloed die de tegengesteld roterende singula-
riteiten op elkaar uitoefenen verwaarloosbaar is op de creatie-annihilatie statistiek. We
onderbouwen deze vinding door de statistiek van de evolutie van deze C-punten uit te
rekenen en vinden dat het gedrag sterk vergelijkbaar is met de waargenomen fasesingu-
lariteiten in de Cartesische componenten van het veld.

Tenslotte geven wij een kort overzicht van enkele voorlopige vervolgstudies naar sin-
gulariteiten in wanordelijk licht, die nieuwe, interessante onderzoeksmogelijkheden bie-
den voor de toekomst. Deze studies omvatten de tijdsevolutie van fasesingulariteiten,
het bepalen van een effectieve interactie potentiaal voor fasesingulariteiten gebaseerd
op paarcorrelatie en de transitie van orde naar wanorde die plaatsvindt als het aantal
golven dat bijdraagt aan een willekeurig golfpatroon wordt verhoogd.
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1
LIGHT AND ITS SINGULARITIES

Happiness can be found in the darkest of times,
if one only remembers to turn on the light.

2Albus Dumbledore

In this introductory chapter we give a brief overview on wave optics and its singularities,
introducing the few mathematical elements which are necessary to understand these en-
tities. We then proceed to the main topic of this thesis: singularities in random waves. We
position this thesis in the broader context of the investigation of wave phenomena and
randomness in general. Subsequently, we explain how our work stands as a relevant com-
pletion of existing experiments and theories. Finally, we lay out the structure of this thesis
with a concise summary of each chapter.

3
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4 1. LIGHT AND ITS SINGULARITIES

1.1. LIGHT

A MONG the myriad of planets orbiting in our universe, life could settle on earth. Many
conditions were necessary for this magnificence to happen, one of which being the

continual availability of light. The flow of energy supplied by the sun via light waves
is indeed essential for life on our planet, straightforwardly for most plants, but for any
living organism.

Relevance of light to our lives was already clear to early civilizations. The sun was
worshiped in religious cults in Ancient Egypt, and light was already subject of investiga-
tion and speculation for Greek philosophers [1] and mathematicians [2]. Nowadays, we
benefit of a deep scientific knowledge concerning light and its behavior in a wide variety
of contexts. From ray optics and the first imaging instruments [3], to wave optics and the
wonder of interference [4], all the way to quantum optics and the concept of photons [5],
we are able to understand and influence the behavior of light at length scales spanning
several orders of magnitude.

Such abilities caused modern societies to rely even more on light. In fact, we can
collect and transform the energy of photons in order to power electric devices. Onto
photons we encode information, which can be carried around the globe at the maxi-
mum speed one can reach, the speed of light. Even our meals can be warmed up with
electromagnetic waves, which are just a bit longer than what we are used to call light.

But despite it being commonly used, light can still surprise us, and exhibit the most
unpredictable behavior which could be at the basis of the technology of tomorrow. For
this reason there is still a considerable effort in applied and fundamental research on
light. In this thesis we focus on aspects of light which are called singular [6]. These are
circumstances in which mathematics fails to describe some specific property of light as
we express it [7]. Circumstances which may conceal weaknesses of the theories we use,
opening the way for unexpected findings and innovation [8].

1.2. SINGULARITIES IN PHYSICS AND SINGULAR OPTICS

The concept of singularity is most clearly formulated in mathematics, as a point at which
a given mathematical object is not defined or not “well-behaved”, for example infinite or
not differentiable [9]. Hence, singularities generally take place in anything that such a
mathematical object can describe, from geometric curves [10] to physical quantities that
we can measure. In fact, for as eccentric as it sounds, the observation of singularities is
ubiquitous in physics, recurring in almost all its branches [11].

A very intriguing example are singularities of the space-time [12], points where the
gravitational field diverges, which general relativity places in the inside of black holes. A
more tangible case is the one of vortices. These are locations around which some quan-
tity rotates, being undetermined in the middle. With this regard, a straightforward exam-
ple is a water vortex, in which the direction of the flowing water rotates around the center
of the vortex, where it is undetermined [13]. Quantum vortices are found in supercon-
ductors, as singularities of the order parameter, as well as in superfluids. In both cases,
they play a leading role in understanding the superconducting/superfluid phase tran-
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sition. Finally, also light exhibits optical vortices: points where the phase of the optical
field is singular [14, 15].

In whichever domain of physics they occur, singularities are puzzling and fascinat-
ing. They are evocative of knowledge which is still not under our mathematical control,
shifting our understanding from one theory to another, or from a length scale to a smaller
one, or larger [8]. In this thesis we will focus our attention on the singularities exhibited
by light described as a wave. These are phase and polarization singularities, the intro-
duction of which requires some minimal notions on wave optics.

1.2.1. LIGHT AS A WAVE AND PHASE SINGULARITIES

In many circumstances light can be succesfully described as a wave. In fact, when ray
optics breaks down, and before entering the quantum regime of single photons, light is
effectively represented as an electromagnetic wave [16].

The easiest example of wave one could think of is a monochromatic plane wave

ψ0(r, t ) = A0 exp[i (k · r−ωt +δ)], (1.1)

propagating along the direction k, with angular frequency ω, phase δ and amplitude A0.
For light, such a plane wave is the mathematical description of the coherent oscillations
of the electric (or magnetic) field which constitutes light itself. In general, many plane
waves with different amplitudes, frequencies and phases contribute to the formation of
an optical field. The result is a complex field with a spatially dependent amplitude and
phase, which can be expressed as

ψ(r, t ) = ∑
k

Ak exp[i (k · r−ωkt +δk)]

= A(r, t ) exp[iϕ(r, t )].
(1.2)

For a monochromatic field (ωk = ω ∀k), the field in Eq. (1.2) is stationary and its time
dependence is a single imaginary exponential

ψ(r, t ) =ψ(r) exp[−iωt ], (1.3)

where ψ(r) is a generic complex scalar field. Although scalar, in some cases this kind
of function can be used to describe light, which is in general a vectorial quantity. For
instance, we can use a scalar field to describe the field profile of a laser beam propagating
in the paraxial regime. Figure 1.1 displays the typical field profile of a standard laser
beam, exhibiting in its beam waist a Gaussian amplitude and a constante phase ϕ [16],

ψg (r) ∝ exp[−r 2/2w2]. (1.4)

Having introduced a complex scalar field enables the explanation of the concept of
phase singularity. In fact, there are situations in which the phase of a complex field can-
not be defined [7]. These locations of undetermined phase are called phase singularities,
in optics also known as optical vortices [15]. Phase singularities naturally arise in field
patterns made of interfering waves. They appear at every location where destructive in-
terference sets the amplitude of the field to be identically zero [17]. Again, the easiest
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0

max
Amplitude Phase

0

Figure 1.1: Profile (amplitude and phase) of a Gaussian beam [Eq. (1.4)]. The phase front of this beam is com-
pletely flat.

example of a phase singularity in a complex scalar field can be found in propagating
light beams. In fact there is an entire class of beams which can exhibit phase singu-
larities. These are Laguerre-Gaussian modes, in optics commonly called vortex beams.
Figure 1.2 presents an example of a vortex beam with a topological charge q = +1. The
charge q represents the net change of phase in a circuit C enclosing the phase singular-
ity, quantized in units of 2π. For vortex beams, this is also equal to the quanta of orbital
angular momentum qħ carried by each photon in the propagating beam [15].

0

max
Amplitude Phase

0

Figure 1.2: Profile (amplitude and phase) of a Laguerre-Gaussian beam of azimuthal index l = 1 and radial
index p = 0. The beam exhibits a phase singularity with topological charge q = 1 in its center.
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1.2.2. POLARIZATION AND C POINTS

So far we have limited our analysis to scalar quantities. However, light is in general de-
scribed by a vector field. Particularly relevant to this case is the property of light called
polarization. For a light beam, the polarization is the direction along which the electric
field oscillates. The most intuitive case is that of linear polarization, for which the direc-
tion of oscillation is static as the wave propagates in time or space. This direction can
also vary in time, describing circles or, in the most general case, ellipses. In these cases
we talk about circular or elliptical polarization, respectively. Still, when the polarization
of an optical field is homogeneous in space, the scalar description described in Section
1.2.1 can be effective. To give an example we can consider the Gaussian beam of Fig. 1.1,
when this is linearly polarized along the horizontal direction x̂. At the beam waist, it can
simply be expressed as

E(r) = x̂ A0 exp[−r 2/2w2], (1.5)

which is a scalar field multiplied by the constant unit vector x̂, with the exact same profile
as the one presented in Fig. 1.1.

The picture becomes a lot richer when considering optical fields with spatially inho-
mogeneous polarization. This is the case whenever multiple waves with different phase
and polarization contribute to generate an optical field. The expression of such a field
now becomes a fully vectorial quantity, which requires a dedicated formalism for opti-
mal representation.

For optical fields with their vector components lying in a plane (Ex , Ey ), there are two
very effective ways to quantitatively describe their polarization. The first is given by the
Stokes parameters [18]:

S0 = Ex
2 +Ey

2, (1.6)

S1 = Ex
2 −Ey

2, (1.7)

S2 = 2Re(Ex Ey
∗), (1.8)

S3 = −2Im(Ex Ey
∗). (1.9)

S0 represents the total intensity of the optical field, whereas each of the other parameters
carries specific information on the polarization state of the field. S1 is the parameter
which indicates how much light is linearly polarized along the x (S1 > 0) or y (S1 < 0)
direction. The information carried by the parameter S2 is analogous to that of S1, but for
polarization oriented at ±45deg with respect to the x axis. Finally, S3 is the parameter
for circular polarization, positive for right-handed polarized light and negative for left-
handed. In general,

∑3
i=1 Si

2 ≤ S0
2, with the equality holding only for perfectly polarized

states. This is also a way to quantify the degree of polarization of light [18],

DOP =
√∑3

i=1 Si
2

S0
, (1.10)

equal to 1 for a perfectly polarized state and to 0 for unpolarized light.
For a more direct visualization of the polarization state, it is useful to normalize the

last three parameters to the first. This new set of parameters si = Si /S0 can be used as
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a coordinate system indicating a point in three dimensional space. In general, this is a
point inside the unitary sphere depicted in Fig. 1.3, called the Poincaré sphere [18]. In
this thesis we will focus on fully polarized states, which lie on the surface of this sphere.
A point on the surface of the Poincaré sphere uniquely describes the polarization state
of light.

S2

S1

2ψ

2χ

S3

Figure 1.3: Illustration of the Poincaré sphere. The polarization state encoded in the parameters (s1, s2, s3)
defines a point in the sphere. When this state is perfectly polarized (

∑
i si

2 = 1), such point can also be deter-
mined by the two angles ψ and χ.

The second method to characterize polarization is given by the parametrization of
its most generic elliptical state. To this end, we can define a polarization ellipse and
parametrize it with its orientation angle ψ, ellipticity angle χ, and handedness h, i.e.,
the direction in which the electric field vector describes the ellipse in time (Fig. 1.4). To-
gether, these three parameters also provide a complete description of light’s polarization.

Whenever an optical field exhibits a spatial dependence of its polarization state, the
Stokes parameters vary in space, and so does the polarization ellipse. Interestingly, the
latter mathematical description of polarization intuitively highlights the potential pres-
ence of singularities. Namely, the orientation of the polarization ellipse ψ becomes un-

ψ

E

x

y

ωt +ϕ

h

χ

Figure 1.4: Illustration of the polarization ellipse used to describe the polarization state of light. The relevant
parameters for the the definition of the ellipse are the orientation of the major axisψ, the ellipticity angle χ and
the handedness h. The last indicates whether the electric field vector E sweeps through the ellipse clockwise
or anticlockwise.
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determined as soon as the ellipse degenerates into a circle, leading to singularities of
purely circular polarization known as C points. These are points in the plane, as it can
be understood from the fact that in order to have purely circular polarization one has
to satisfy s1 = s2 = 0, that is a system of two equations in two dimensions, which can
be verified in a discrete set of points. Intuitively, in three-dimensional space C points
become lines. Moreover, the ellipse handedness becomes ill defined for ellipses which
collapse into a line, leading to singularities known as L lines (s3 = 0). These two families
of singularities also correspond to special locations on the Poincaré sphere, respectively
the poles and the equator.

In this thesis we will focus on C points, dislocations that share a similar mathematical
nature with phase singularities. Although C points are associated to completely different
properties of the field with respect to phase singularities, being points of purely circular
polarization rather than zeros of a scalar field, both entities are in fact still topological
defects of a circulating angular variable. As opposed to phase singularities, for C points
the circulation of such variable is a half integer times 2π (and multiple). This can be
simply understood by the fact that the polarization ellipse is degenerate under rotation
ofπ instead of 2π. Figure 1.5 presents as an example two C points of opposite topological
index I . This is defined by the circulation of the orientation of the polarization ellipse

I = 1/2 I = + 1/2

- /2 - /4 0 /4 /2
Orientation of the polarization ellipse (rad)

Figure 1.5: Example of C points with opposite topological index. The false-color map displays the orientation
of the major axis of the polarization ellipse in a 2D plane, also indicated by the black directors. On the left panel
a C point with topological index I =−1/2, and on the right with an index I =+1/2.

ψ around the singular point, in units of 2π. The orientation of the ellipse around the
singularities is also depicted by its director (black lines). The pattern that this director
field describes for the two different singularities is different for different indices [6], as it
will be extensively discussed in Chapter 6.

While phase singularities attract interest for their connection to the orbital angular
momentum of light [14], C points are representative of light’s spin angular momentum
[15]. In general, this is a topic of great interest and motif of investigation for fundamental
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as well as applied research, as an important building block for light-matter interaction
at the nanoscale [19–27]. From a fundamental science perspective, it is important to
stress that C points are topological defects of the vector field which we use to describe
light. As a consequence, they carry all the topological properties connected to disloca-
tions. For example, they are topologically protected entities, meaning that a point where
light is perfectly circularly polarized cannot be simply removed from a field [6]. This is
only possible when two points of opposite topological index are combined. Note that
this topological index is different from the handedness of a C point, i.e., its optical spin.
Moreover, we stress that in principle higher order singularities are possible, and in par-
ticular we will discuss the case of a double rotation of an angle ±2π which takes place in
correspondence of second order C points, which we will address as polarization vortices.

As introduced also in this Section, optical singularities start to arise whenever in-
terference among multiple light waves takes place. In this regard, arguably the most
general case study one can think of is an ensemble of waves coming from all possible
directions to randomly interfere. The study of random waves is indeed a well known and
prosperous topic [28], and the physics of its singularities very rich. Describing it as an
electromagnetic wave, we will use light as our tool to investigate singularities in random
waves.

1.3. SINGULARITIES IN RANDOM LIGHT

The study of randomness is ubiquitous in science. Almost as much as the investiga-
tion of wave phenomena is dominant in physics. There is no mystery therefore for the
incredible interest that the study of random wave fields has attracted in several commu-
nities in physics, whether this concerned the experimental realization or the theoretical
modeling of the random patterns. A bold analogy was also made connecting the realm
of random waves to quantum chaos, exploiting the equivalence of the Helmholtz equa-
tion with the stationary Scrödinger equation [28]. In this regard, several experiments
and models have been developed, demonstrating fascinating analogies between classi-
cal and quantum systems [29–35].

Interestingly, singularities arise abundantly in fields created by randomly interfer-
ing waves. The behavior of dislocations in random waves was already source of interest
for many theoretical and experimental physicists, starting from the pioneering works
of Freund and coworkers [36–41] and Berry and Dennis [17, 42]. The physics of dis-
locations in random waves field was found to be very insightful for a comprehensive
understanding of the wave field. This is especially true when considering the clear hall-
mark given by the spatial correlation of singularities in random waves, which makes it
tempting to think of them as interacting entities [43–46]. Subsequently, knowledge and
understanding grew hand in hand with technology, with several experiments performed
in microwave chaotic billiards [47–49], with structured light beams generated via spatial
light modulators [15, 50–52] as well as in light scattered by random media [53, 54]. The
first series of studies was performed with a one-to-one correspondence to quantum me-
chanics in mind, in the second series an universal fractal behavior of singularities was
unearthed, and in the third the focus was on Brownian statistics in relation to light in the
diffusive regime. In all cases, interest for a broad physics community was again drawn.
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In most of the models and experiments just mentioned, the investigations were per-
formed either on fields described by scalar quantities or for vectorial light in the paraxial
regime. However, light is fully vectorial in nature, and so are many other physical quan-
tities of general interest. With the capability of resolving the polarization state of light
fields confined in planar structures, we initiated the investigation of singularities in ran-
dom light fields, while fully accounting for its vectorial nature. The many changes in the
behavior of singularities which occur due to this vectorial nature are a central pillar of
this work, and will be presented in detail.

1.3.1. THESIS LAYOUT
In this thesis, we study the collective behavior of optical singularities in light fields, with
experiment, theory and numerical simulations. These investigations include spatial dis-
tribution as well as fluctuation and parametric evolution. The remainder of this first part
of the thesis is devoted to introduce the experimental tools that allow our investigations.
In the second part we focus our attention on phase singularities, whereas the third is
dedicated to C points. Finally, the last part offers some additional leads for further ideas
and analysis, as well as conclusions.

• In Chapter 2, we set the experimental framework, as we explain how to generate
and detect two-dimensional random light fields at optical wavelengths.

• In Chapter 3, we explore the spatial distribution of phase singularities in the vector
components of a transverse random light field.

• In Chapter 4, we present a study on the fluctuation of the topological charge in a
finite observation window in relation to charge screening.

• In Chapter 5, we investigate the evolution of phase singularities in random light as
the wavelength of the same optical field is varied.

• In Chapter 6, we study the spatial arrangement of C points in two-dimensional
random light, with a special attention to the changes produced by the reduced
dimensionality compared to the three-dimensional case.

• In Chapter 7, we discuss the occurrence of polarization vortices in two-dimension-
al random light, resulting from the superposition of pairs of same-index C points.

• In Chapter 8, we analyze the evolution of C points in random light as the wave-
length is varied, drawing a relation to the evolution of phase singularities and to
the occurrence of polarization vortices.

• In Chapter 9, we presents an outlook for additional studies that could be of in-
terest to the rest of the thesis, such as effective interaction of phase singularities,
evolution in time and the contrast between random and non-random waves.

• In Chapter 10, we draw the conclusions of our research on singularities in two-
dimensional random waves.





2
GENERATION AND DETECTION OF

2D RANDOM LIGHT

I study people in their most ordinary occupations,
to see if I can succeed in discovering in others

what I feel that I myself lack in everything that I do:
the certainty that they understand what they are doing.

3Luigi Pirandello

As optical singularities are deep-subwavelength entities, their detection requires a precise
measurement of the subwavelength structure of the field in which they occur. With near-
field experiments, we probe a random light field and measure its amplitude, phase and
polarization with subwavelength resolution. We generate the random field by coupling
light into a chaotic resonator. This is a planar on-chip photonic crystal cavity with the
shape of a quarter of a stadium. With a nanostructured probe we then detect the evanes-
cent field which decays away above the surface of the resonator. By processing the complex
data obtained from the experiment, we are able to determine all the vectorial and modal
components of the random light field, allowing the study of optical singularities.

13
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2.1. A PLATFORM FOR ON-CHIP RANDOM WAVES

T O generate optical random waves, we couple monochromatic light at telecommuni-
cation frequencies into a chaotic cavity [55]. This cavity is a planar structure realized

on a silicon-on-insulator platform, consisting of a 220 nm silicon slab on a 2µm thick sil-
ica buffer. A SEM image of the cavity is displayed in Fig. 2.1. From the figure, we can see
that the shape of the cavity is enclosed by a photonic crystal, which was patterned in the
silicon layer. Two ridge waveguides for in and out coupling are connected to the cavity
via defect waveguides made of a single row of missing holes in the photonic crystal [56].
A detail of this structure is displayed in the zoomed-in image of Fig. 2.1, where a short
fraction of the output ridge waveguides is also visible.

20 um

5 um

Figure 2.1: SEM image of the chaotic cavity used to generate random wave fields. The zoomed-in detail high-
lights the output waveguide, transitioning from a photonic crystal wavegui.

At a wavelegnth 1550 nm, the 220 nm thick silicon slab on glass supports the funda-
mental transverse electric (TE) and transverse magnetic (TM) electromagnetic modes.
These optical modes have a strict relation between their vector field components and
the wave propagation direction. The vectorial properties of the fields connected to these
modes are depicted in Fig. 2.2 In the case of a TE mode the electric field E lies entirely
in the plane of the slab, where it is perpendicular to the wave propagation direction, i.e.,
the in-plane wave vector kin. Instead, the magnetic field H is perpendicular to the total
wave vector k, and to E. In fact, the magnetic field H of a TE mode has a longitudinal
component, parallel to the propagation direction kin. The out-of-plane component of
the wave vector k is purely imaginary, as the fields decay exponentially away from the
surface and waves propagate in the plane only. For a TM mode electric and magnetic
fields switch their roles, with the magnetic field H lying in the plane in the direction
transverse to propagation, and the electric field having both out-of-plane and longitudi-
nal components (Fig. 2.2).

At frequencies of approximately 1550 nm the photonic crystal which delimits the cav-
ity does not support any TE mode, e.g., it exhibits a photonic band gap. Since for these
frequencies TE light cannot enter the photonic crystal region, it will be reflected by the
crystal, which effectively acts as a mirror. TE light will therefore be confined inside the
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Figure 2.2: Illustration of the orientation of the optical electric and magnetic fields E and H for the case of a TE
(left) and TM (right) mode.

chaotic cavity, the shape of which was designed to produce a random waves ensemble
[55]. Optical cavities which support random wave propagation have been studied ex-
tensively in the context of microwave billiards [28]. This resulted in the identification of
stadium-shaped cavities as the best platform for random random wave fields, with the
added adaptation of only using a quarter of the total stadium shape to avoid unwanted
symmetries in the system [28].

2.2. NEAR-FIELD MEASUREMENTS OF 2D RANDOM WAVES

2.2.1. NEAR-FIELD MICROSCOPY
We map the random light fields propagating in the chaotic cavity with a near-field mi-
croscope in collection mode [57]. We use a custom-built microscope that was developed
in our group [58], as well as continuously upgraded [59], with features such as phase [60]
and polarization resolution [61] or sensitivity to the optical magnetic field [61, 62]. A
schematic of the near-field setup is displayed in Fig. 2.3. The core of this experimental
technique consists of sensing the optical fields in a given sample by scanning its surface
with a nanostructured probe. In our case, the probe is a tapered single-mode optical
fiber coated with aluminum, the tip of which is truncated with a focused ion beam in
order to have an aperture hole with a diameter of approximately 100 nm (Fig. 2.3) [63].
Different approaches can be pursued to image optical fields with subwavelength reso-
lution [16, 64, 65]. A second powerful method is the so-called scattering type near-field
microscopy, where an apertureless tip is used to scatter light to the free space, where it is
then collected and measured [66–68]. In either case, a nanostructured probe is brought
to within a height of tens of nanometers above the sample and then raster-scanned to
map the near-field distribution. In general, the spectrum of application of different types
of near-field microscopies is very broad, ranging from fundamental studies [69] to biol-
ogy and nanomedicine [70], each type being more or less suited to each purpose.

In collection-mode near-field microscopy, the evanescent field which decays away
from the surface of the sample under consideration is scattered by the aperture of the
probe, exploiting a mechanism analogous to frustrated total internal reflection [58, 71].
As a result, a fraction of this evanescent wave is locally converted into a propagating
wave which is then guided through the optical fiber from which the probe itself was fab-
ricated. Scanning the probe over the surface of the sample allows the construction of an
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Sample

λ/2 λ/2

λ/4 PBS
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Figure 2.3: Schematic of the near-field setup used for the measurements presented in this thesis. The setup
consists of a Mach-Zehnder interferometer, in which one of the two branches contains the near-field optical
signal from the probe. Standard polarization optics is used to rotate the reference system of the polarized light
signal collected with the probe. In the zoomed-in panel, a SEM picture of a typical near-field probe.

image of the optical fields in the sample, with a resolution limited by the characteristics
of the nanostructured probe, rather than by the wavelength of light. A feedback mecha-
nism based on shear-force interaction keeps the probe at a constant height of approxi-
mately 20 nm above the surface of the sample [72]. Once the optical near-field collected
by the probe is delivered to the far field, we employ a heterodyne detection scheme for
measuring amplitude and phase. This method essentially consists of an interferometric
scheme in which the detected signal is combined with a reference beam extracted from
the same laser used for the excitation of the sample. This reference beam is shifted in fre-
quency by 40 kHz with a pair of acousto-optic modulators. This shift produces a beating
in the interference of reference and signal beams, from which the signal can efficiently
be extracted with lock-in methods [60]. With standard polarization optics we selectively
detect the (Ex ,Ey ) Cartesian components of the in-plane electric field E, thus gaining
access to its vectorial content (see also section 2.2.5 of this chapter). The subwavelength
resolution offered by near-field microscopy, as well as access to phase and polarization
information, is a key feature in the detection of optical singularities [60, 61, 73]. As the
investigation of these entities in random light is the main purpose of this thesis, we will
now examine how we can use near-field microscopy to produce a vectorial mapping of
the optical fields propagating in our chaotic cavity.

2.2.2. MAPS OF THE OPTICAL FIELD IN THE CHAOTIC CAVITY

With the near-field setup described in the previous section, we can produce maps the
optical field propagating inside the chaotic cavity, resolving its amplitude, phase and
polarization. As an example, Fig. 2.4 presents a measurement of the optical field in the
entire cavity. The false-color map going from dark red to yellow is representative of the
amplitude of the optical field, from low to high amplitudes, respectively. This image has
an illustrative purpose, offering an overview on what the interference pattern produced
by monochromatic light propagating in the cavity looks like.

For a more quantitative analysis, we measure the optical field in square regions po-
sitioned in the central part of the chaotic cavity. Figures 2.5(a)-(c) present the typical
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Figure 2.4: Example of a near-field measurement of the optical field in the entire chaotic cavity. The false-
color map represents the amplitude of the electric field above the cavity, in which black corresponds to zero
amplitude and white to high amplitude. The gray areas are a schematic representation of the chaotic cavity.
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Figure 2.5: Example of a near-field map of the optical field in the chaotic cavity. The measurement is performed
in a square area (17µm×17µm) in the central region of the cavity. The first row of images (a-c) presents the
amplitude of the x and y componente of the electric field (left and right), and the amplitude of the total in-

plane electric field |E| =
√

Ex
2 +Ey

2. In the second row (d-f) the amplitude of the Fourier decomposition

|F [Ei ]| for each of the fields displayed above. The Fourier image of |Ẽ(k)| displayed in (e) is obtained starting

from those displayed in (d) and (f), |Ẽ(k)| =
√

Ẽx (k)2 + Ẽy (k)2.
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outcome of a measurement of the amplitude of the in-plane electric field [Fig. 2.5(b)]
and of its Cartesian components Ex and Ey [Figs. 2.5(a) and (c)]. These components are
computed in the reference system with the x axis parallel to the shorter side of the cav-
ity, and the y axis to the longer side, as displayed in Fig. 2.4. In all the near-field maps of
Fig. 2.5, we see a multitude of dark and bright spots, resulting from the interference of the
light waves in the cavity. To better understand the origin of this interference pattern, it is
useful to look at the Fourier decomposition of these fields, displayed in Figs. 2.5(d)-(f).
Note that to numerically compute these Fourier images, it is essential to use the full com-
plex information (amplitude and phase) of the field components Ex,y . In all of the three
Fourier images in Fig. 2.5(d)-(f), we can recognize ring-like structures. A ring in Fourier
space corresponds to an ensemble of waves which share the same amplitude for their
wavevector, which is however oriented in every possible direction. De facto, this corre-
sponds to an ensemble of monochromatic waves propagating in all directions. The result
of the interference of these waves is the speckle-like pattern displayed in Figs. 2.5(a)-(c).

2.2.3. SEPARATION OF TE AND TM MODES

By having a closer look at the Fourier images of Fig. 2.5, we can identify more than one
ring-like structure, for all field components. Actually, this is to be expected, since in
Sec. 2.1 we already mentioned how the silicon slab supports two different modes, both
the fundamental TE and TM. The two inner-ring features which appear in the Fourier
images can indeed be related back to these two different modes. Inside the silicon these
two modes experience a different effective refractive index neff, resulting in a different
propagation constant k. We calculate these parameters by using a 1D mode solver for
slab waveguides [74], searching for solutions of Maxwell’s equation in a 220 nm silicon
slab (n = 3.48) on glass (n = 1.48) and exposed to air (n = 1). With a free-space wave-
length of 1550 nm we find that both the fundamental TE and TM modes are possible so-
lutions. The field profiles corresponding to each mode are displayed in Fig. 2.6. The elec-
tric field is shown for the TE mode, and the magnetic for the TM. The mode solver also
outputs the propagation constants of each mode: kTE = 11.5µm−1 and kTM = 7.8µm−1.
By comparing these values to the radii of the ring structures displayed in Fig. 2.5, we can
easily assign the outer ring of each figure to the TE mode, and the inner rings to the TM
mode.

TM MODE
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Figure 2.6: Field profiles of the fundamental TE (left) and TM (right) modes in a 220 nm silicon (n = 3.48) slab
between air (n = 1) and glass (n = 1.48). We show the field profile of the electric field |E| the TE mode and of
|H| for the TM [74].
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It is important to notice that the ring associated to the TM mode is far from being a
perfect ring, since it does not have equal intensity at every possible direction in k space.
As briefly discussed in Section 2.1, the photonic crystal which determines the bound-
aries of the chaotic cavity is designed to have a bandgap for the TE mode but not for
the TM. Hence, TM light can easily leave the cavity through its boundaries. As a result,
it is not randomized by being reflected multiple times towards the inner region like the
TE mode does. Since in this thesis we aim at analyzing the collective behavior of opti-
cal singularities in random light fields, we will filter out the data correspondent to the
TM mode, as it is not a random field, and focus on the TE light only. This is an easy op-
eration to perform in Fourier space, as illustrated in Fig. 2.7. We construct a ring with
a radius equal to kTE and a Gaussian profile [σ = 4 pixels ≈ 0.1kTE, see Fig. 2.7(c)] and
multiply this mask to the Fourier decomposition of the fields, e.g. to Ex (k). After apply-
ing the mask, only the ring correspondent to the TE mode will be left in Ex (k) = E TE

x (k)
[Fig. 2.7(d)]. Transforming back the field to real space will then lead to the filtered field
E TE

x (x, y), in which only the contribution of the TE mode is present.

Fourier
Filtering

Figure 2.7: Illustration of the procedure used for filtering the TM mode out of the collected data. The purple
Gaussian profile displays a 1D section of the Gaussian ring used for the Fourier filtering.
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2.2.4. ELECTRIC AND MAGNETIC CONTRIBUTION TO THE DETECTED FIELD

From different studies in the literature [75–79] and from experiments performed with
our own microscope [62], we know that a near-field probe is not only sensitive to the
electric optical field, but it can detect the magnetic component as well. However, in [62]
it was demonstrated that with our typical aperture probes Ex is always detected together
with Hy , both contributing to the detected signal

Lx =αEx +βHy , (2.1)

where α and β are two complex constants [80]. In complete analogy Ey is collected with
Hx and together they lead to Ly . Conveniently enough, in the case of a mode propagating
in a planar structure, the paired electric and magnetic components of the fields coincide
up to a constant, e.g., Hy ∝ Ex and Hx ∝ Ey . To give an example, in the studied case of a
TE mode we have that the electric field can be expressed as a function of the out-of-plane
magnetic field,

E ∝
 −ky

kx

0

Hz , (2.2)

as it can be derived from the rotation equation for the electric field H ∝ ∇×E. Addi-
tionally, combining the divergence equation for the magnetic field (∇ ·H = 0) and the z
component of the rotation equation for the magnetic field (∇×H|z ∝ Ez = 0), we obtain

H ∝
 kz kx

kz ky

k2
in

Hz , (2.3)

where kin is the amplitude of the in-plane wavevector (k2
in = k2

x +k2
y ) and kz is the out-of-

plane component, which is purely imaginary and describes the decay of the evanescent
wave away from the surface of the 2D structure. Combining the information displayed
in Eqs. (2.2) and (2.3), it is easy to notice that Hy ∝ Ex and Hx ∝ Ey , and therefore

Lx =αEx +βHy =αEx +β′Ex ∝ Ex , (2.4)

and analogously for Ey . The result of Eq. (2.4) is that what we measure in our experi-
ments is indeed a combination of electric and magnetic field components, but that the
measured signal is still equivalent to the electric (or magnetic) field alone. For ease of no-
tation, in the rest of the thesis we will denote our measurements as maps of the optical
electric field in the cavity.

2.2.5. PROJECTION OF THE POLARIZED LIGHT INTO THE x − y BASIS

In Fig. 2.5 we have already introduced the measurements of the different projections of
the vector field E in the x − y basis. However, from an experimental point of view, the
separation of the different vector field components is an often important but non-trivial
operation in the context of near-field microscopy [81–85]. This is also because in prop-
agating from the near-field probe, through the optical fiber, all the way to the detection
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stage of our setup (Fig. 2.3), the reference system for the polarization of light on the sur-
face of the sample typically undergoes a generic rotation. Moreover, birefringence effects
in the bent optical fiber can induce slight variations in the ellipticity of the light’s polar-
ization. To invert such transformations, we use a quarter and a half waveplate just before
projecting on the x−y basis with a polarizing beam splitter (Fig. 2.5). But the rotation an-
gle for these waveplates, which allows the transformation to be properly inverted, needs
to be calibrated [80]. To do so, one can rely on known symmetries of the system under
study, e.g., symmetric or antisymmetric modes in photonic waveguides [62], or on refer-
ence measurements on structures with a known mode profile. In the case of a random
field we lack any kind of easy symmetry in the real space data. However, a symmetry of
the electromagnetic modes can be exploited in Fourier space, where a very strict relation
holds among wavevector and polarization. Precisely, in a TE mode the orientation of the
in-plane electric field vector E is always perpendicular to the in-plane wavevector kin.
This means that when considering the x-polarized field Ex only, we should not observe
waves propagating along the x direction, and analogously for Ey . This is indeed clearly
visible in the Fourier images of Fig. 2.5, where in the ring correspondent to the TE mode
the amplitude vanishes at ky = 0 for Ex , and at kx = 0 for Ey .

This relationship between field direction and propagation direction forms the ba-
sis of our procedure for splitting the polarization in the two measured channels Ex and
Ey . First, while performing a series of near-field maps of the same area we rotate the
waveplates l1 and l2 in the setup (Fig 2.3), so to have mainly propagation along y in one
channel and along x in the other. Then, we refine the outcome of our measurements in
the analysis stage, by applying a virtual pair of waveplates through the Stokes formalism
[18], and optimizing their rotation angle so to have

Ex (−kTE,0) = Ex (kTE,0) = Ey (0,−kTE) = Ey (0,kTE) = 0, (2.5)

where kTE is the amplitude of the TE mode wavevector 2πnT E /λ0.
How accurately we are able to select the two orthogonal polarizations Ex and Ey

strongly depends on the resolution in Fourier space, which is determined by the size
of the maps in real space. With the 17µm×17µm maps displayed in Figs. 2.5 and 2.7 we
are able to achieve a level of unwanted signal of less than 1%, as estimated by the ratio
Ey (kTE,0)/Ex (kTE,0) > 100.
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2.3. SUPPLEMENTARY INFORMATION

2.3.1. RANDOMNESS OF THE MEASURED WAVE FIELD

From a mathematical point of view, for a wave field to be random it means that its real
and imaginary parts,

ψ(r)
.= ξ(r)+ iη(r), (2.6)

and their derivatives, are independent Gaussian random functions [17]. This is a conse-
quence of the central limit theorem, and it implies that the field intensity |ψ|2 = ξ2 +η2

is distributed according to a chi-squared distribution with two degrees of freedom, i.e.,
an exponential function [86]. Figure 2.8 presents the probability density function for the
intensities of the experimentally measured field components E TE

x and E TE
y . We assume

Poissonian uncertainty on each data point of Fig. 2.8, computed by counting the occur-
rence of a given intensity I in our experimental maps [σ(N ) = p

N ], and then normal-
ized. The experimental distributions of the two components are consistent with respect
to each other, suggesting that there are no anisotropy effects due to the shape of the sam-
ple. Both are in excellent agreement with the expected exponential behavior, underlying
the randomness.

0 1 2 3 4 5 6 7 8
I/ I

10 3

10 2

10 1

100
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I/
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exp( I/ I )
PDF(Ix/ Ix )
PDF(Ix/ Ix )

Figure 2.8: Probability Density Function (PDF) for the intensities Ix and Iy of the components of the electric
field E associated to the TE mode in the cavity. The intensities are expressed in units of their spatial averages
and the integral of the distribution functions is normalized to unity. The PDFs thus determined from our
experimental data (diamonds) are compared with an exponential distribution (line).
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3
SPATIAL DISTRIBUTION OF PHASE

SINGULARITIES IN VECTOR

RANDOM WAVES

There is no reason why because it is dark
you should look at things differently from when it is light.

The hell there isn’t.

4Ernest Hemingway

Phase singularities are dislocations widely studied in optical fields as well as in other ar-
eas of physics. With experiment and theory we show that the vectorial nature of light af-
fects the spatial distribution of phase singularities in random light fields. While in scalar
random waves phase singularities exhibit spatial distributions reminiscent of particles in
isotropic liquids, in vector fields their distribution for the different vector components be-
comes anisotropic due to the direct relation between the wave propagation direction and
the field orientation. By incorporating this relation in the theory for scalar fields by Berry
and Dennis, we quantitatively describe our experiments.

Parts of this chapter have been published in Physical Review Letters 117, 093901 (2016) [87].
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3.1. INTRODUCTION

F INDING correlations in chaotic systems is the first step towards understanding. Many
are the fields where such predictions could be exploited, from weather forecast to

economic modeling [88, 89]. The study of random phenomena is a topic of great interest
and inspiration for many branches of physics as well. In electromagnetism, for example,
random wave fields have been a topic of intense studies since decades, an outstanding
example being Anderson localization of light [90]. More recently the scientific interest on
random wave fields has continued intensively, ranging from useful techniques as non-
invasive imaging with speckle correlation [91] to fascination concerning the observation
of rogue waves in optical fields [55, 92]. Zooming into the structure of a random wave
field, attention has been pointed to deep-subwavelength dislocations known as phase
singularities [7].

Phase singularities are locations in which the phase of a scalar complex field is not
defined. In two-dimensional fields these locations are points in the plane. Although they
are just a discrete set of points, phase singularities can describe the basic properties of
the field in which they arise. For this reason they are widely studied in wave fields [36,
93–98], as well as in many areas of physics, where they are better-known as topological
defects in nematics [99] or as vortices in superfluids [100].

For a single frequency phase singularities are fixed in space, and their spatial distri-
bution in a scalar field of monochromatic random waves has been analytically modeled
by Berry and Dennis [17]. The hallmark of such a distribution is a clear pair correlation,
reminiscent of that of particles in liquids. By realizing random waves ensembles in mi-
crowave billiards [28, 48, 101], the correlation of phase singularities was tested for a field
perpendicular to the plane of the billiard, showing excellent agreement with the theoret-
ical expectations [102]. For such a field and in that geometry indeed scalar theory was
appropriate. However, electromagnetic waves are vectorial in nature, and in a different
framework it was already demonstrated how the presence of a spin degree of freedom
can affect the correlation properties of a random field [103, 104].

Here, we show how the vectorial nature of light affects the distribution of its phase
singularities. By mapping the in-plane optical vector field measured above a chaotic res-
onator, we investigate the distribution of phase singularities in two-dimensional random
vector waves. We show that the distribution of phase singularities deviates from that for
scalar random waves. This deviation is caused by the relation between the transverse
field and waves propagation direction. Thus, even when the considered vector field is
equipartitioned with respect to both the in-plane polarization and propagation direc-
tion, any specific choice of field component directly leads to an anisotropic distribution
of the contributing propagation directions. By treating this anisotropy with an analyt-
ical model, we quantitatively explain our experimental observations. Finally, we show
how an out-of-plane component that we construct from our in-plane fields obeys the
predictions for scalar fields.
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3.2. DETECTION OF PHASE SINGULARITIES IN RANDOM LIGHT

3.2.1. NEAR-FIELD MEASUREMENTS

As discussed in Chapter 2, we generate optical random waves by injecting monochro-
matic light (λ0 = 1550nm) in a chaotic cavity, and measure the in-plane components of
the optical field therein. Figure 3.1 presents the measurements of the amplitude of Ex

and Ey . At first sight destructive and constructive interference occurs at random loca-
tions in the plane. On closer inspection a difference between the maps of the two field
components catches the eye: the features of each pattern exhibit a preferred axis, related
to the specific field component. A vertical stripy pattern with roughly 1−2 micrometers
between the stripes is present in the Ex field. A modulation of the amplitude is observed
along the stripes as well, characterized this time by a shorter length scale. The case of Ey

is completely analogous, but rotated by 90 degrees.

10 µm

Ph.C.

Silicon IN

(a)
(b) (c)

Figure 3.1: Near-field measurement of the amplitude of the two cartesian component Ex (b) and Ey (c) of the
optical electric field in the Chaotic Cavity (optical micrograph shown) (a).

3.2.2. POSITION AND TOPOLOGICAL CHARGE PINPOINTING

By separately measuring the Cartesian components of the electric field we implicitly es-
tablished a criterion to depict a vector E by using two complex fields (Ex ,Ey ), in which
we can now seek for phase singularities [8]. Please note that such singularities cannot
be found in the total intensity, which has no vanishing points. In a two-dimensional
scalar complex fieldψ(r), phase singularities are points in which the phaseϕ of this field
is undefined. The phase circulates around the singular points, assuming all its possible
values from −π to π [7]. Quantitatively, the line integral of ϕ along a path C enclosing
only one singularity yields an integer multiple of 2π:∫

C
dϕ= 2πq, (3.1)

where the integer q is called topological charge of the singularity. The definition of topo-
logical charge also gives us a powerful way to identify phase singularities.
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We calculate the integral of Eq. (3.1) along 2×2 pixels loops at every point of the mea-
sured phase map, determining position and topological charge of all the optical vortices
in the field, with a spatial accuracy that is limited by the pixel size, of approximately
20 nm. The computation of the integral in Eq. (3.1) is implemented with the trapezoidal
rule, with some extra attention needed, because at each pixel j the value of the phase
ϕ j is defined up to a multiple of 2π. Indicating the pixels in the loop as j = 1, 2, 3, 4, the
integral is computed by adding the phase differences between each pair of pixels,

q = 1

2π
[∆ϕ1,2 +∆ϕ2,3 +∆ϕ3,4 +∆ϕ4,1],

with each difference being individually remapped to the interval [−π,π]:

∆ϕ j ,k = [(ϕ j −ϕk +π) mod 2π]−π.

The circulation integral is taken counterclockwise, following the convention of complex
analysis. In general q will be equal zero, but in presence of a singularity it will be an
integer number, with a positive or negative sign. Figure 3.2 shows the phase singulari-
ties pinpointed in a subset of the phase map of Ex . In this experiment, only topological
charges of ±1 are observed.

0.5 m

Positive Singularities

Negative Singularities

+
50 nm

- 0
Phase[Ex] (rad)x

y

Figure 3.2: False-color map of the measured phase of Ex . The circles indicate the location of the phase singu-
larities, with their topological charge: q =+1 (light gray) or q =−1 (dark gray). The zoomed-in image highlights
how the direction of the circulation of the phase around the singular point determines its topological charge.
The x and y axes are indicated in the main plot.

The distribution of optical vortices in the plane is rather disordered (Fig. 3.2), al-
though already by eye a spatial correlation seems discernible, especially if taking into
account the topological charge. In order to unveil such correlation, a good quantitative
description of the spatial distribution of the ensenble of singularities is needed, which
will be the main topic of the following section.
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3.3. SPATIAL CORRELATION OF PHASE SINGULARITIES

3.3.1. PAIR AND CHARGE CORRELATION FUNCTION

The natural way to describe the spatial distribution of an ensemble of discrete entities,
is to calculate their pair correlation function

g (r ) = 1

Nρ
〈∑

i 6= j
δ(r −|r j − ri |)〉, (3.2)

where N is the total number of singularities, ρ is the average density of surrounding
singularities and δ the Dirac function. This function is directly related to the probability
of finding two entities (ri and r j ) at a distance r from each other and is widely used in
physics to describe discrete systems of various kinds [105].

Figure 3.3 presents the g (r ) calculated from our experimental data, specifically for
the full data set of singularities of Ex

1. The shape of the distribution function is highly
similar to what is typically observed for a system of particles in a liquid [105]. After
an initial dip, g (r ) oscillates around one, with an amplitude that decreases as r is in-
creased. The first peak, representative of a surplus of singularities, emerges at a distance
of roughly half a wavelength. The decrease in amplitude of the oscillations describes
the loss of correlation of the system. However, one peculiarity that we observe is defi-
nitely different compared to the case of a liquid: g (r ) approaches a finite value for r ≈ 0.
This means that asymptotically there is a finite probability of finding two vortices at the

r (wavelength)

g
(r

),
 g

Q
(r

)

g(r)

0

1

0 1 2 3 4

Experimental data

Isotropic Model [17]

Anisotropic Model

gQ(r)

Figure 3.3: Pair (blue) and Charge (orange) correlation function of phase singularities in the measured field
Ex . The gray line is the theoretical expectation for a scalar field of isotropic random waves [17]. Our data
significantly deviates from such theory, while a perfect agreement is obtained by considering a new model that
includes directional anisotropies (black lines).

1Similar results are observed for the case of the Ey field.
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same location. While unusual this is in fact allowed by the zero-dimensionality of optical
vortices.

In analogy to what typically done for ionic liquids [105], it is convenient to introduce
a generalized expression of the g (r ) for a system of charged entities. In the charge corre-
lation function gQ (r ) each vortex is weighted with its topological charge q :

gQ (r ) = 1

Nρ
〈∑

i 6= j
δ(r −|r j − ri |) si s j 〉. (3.3)

The experimental result for the gQ (r ) is also reported in Fig. 3.3, providing new informa-
tion about our system. The main observation here is that gQ (r ) is approximately equal
to −g (r ) in the region r ≈ 0, meaning that only singularities with opposite topological
charge are likely to be indefinitely close to each other. This behavior is usually inter-
preted in terms of reciprocal screening among critical points with opposite topological
charge [41, 106]. Notably, critical-point screening is related to the reduction of topolog-
ical charge fluctuations inside a finite region with respect to the prediction for a collec-
tion of random charges [17, 41, 107]. A more extensive discussion on this topic will be
the focus of Chapter 4.

3.3.2. VECTOR WAVES vs. SCALAR WAVES: ANISOTROPY

In an influential paper [17] Berry and Dennis calculated the correlation functions of sin-
gularities in a scalar random wave field ψ. This field was modeled as a superposition of
plane waves with the same momentum and random phases δk, i.e.,

ψ(r) =∑
k

ak exp(i k · r+ iδk). (3.4)

The model assumes that the waves amplitudes are isotropically distributed along a circle
of radius k0 in Fourier space. The results of this isotropic model are shown as solid gray
lines in Fig. 3.3. Most of the key features of the experimental distribution are qualitatively
accounted for by the model, but we clearly observe some deviation from the theory. The
biggest difference is in the gQ (r ), where the first peak turns out to be narrower than in
theory, as well as significantly shifted towards lower distances. This is in contrast with
what was observed for out-of-plane fields in microwaves billiards [102], where excellent
agreement was found.

The origin of the observed discrepancies with respect to g (r ) and gQ (r ) lies in the
vector nature of the light. For the TE modes a direct relation exists between the selected
in-plane field component and the direction of propagation: the modes will have no elec-
tric field component along the direction of propagation. Therefore the choice of field
component to be investigated (e.g. Ex in Fig. 3.2) affects the distribution of propagation
directions that contribute to the wave pattern. Whereas the general model in Eq. (3.4)
remains valid, the anisotropy of our system violates the assumption of isotropy [17], i.e.,
that ak only depends on the magnitude of k. As a consequence, the field correlation
function must display an additional dependence on the relative spatial orientation of
the points.
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3.3.3. ADJUSTED MODEL FOR ANISOTROPIC PROPAGATION

We now calculate the correlation properties of the in-plane components of the field and
the corresponding singularities distributions. We do this by including the discussed
anisotropy in a modified version of the original model. For a TE mode, the electric field
is perpendicular to the wave propagation direction: E(k) ⊥ k. As a consequence, the
Fourier coefficients of the in-plane field components are effectively modulated by the
sine of the angle θk enclosed by the direction of the considered field component and the
in-plane wavevector k. Therefore, we can write

E j (r) ∝∑
k

sin(θk)exp(i k · r+ iδk), j = x, y. (3.5)

Note that the total intensity, E 2
x +E 2

y remains isotropic.

The additional angular dependence in the Fourier expansion of Eq. (3.5) influences
the correlation properties of the wave field. In particular, the spatial autocorrelation
function of each field component,

C (r) =
∫

dr′ E∗
j (r′)E j (r′+ r) = 1

2π

∫
dk

∣∣E j (k)
∣∣2 e−i k·r, (3.6)

exhibits a dependence on the orientation ϕ of vector r:

C (r)
.=C (r,ϕ) = 1

2π

∫
dθk sin2(θk)e−i k0r cos(θk−ϕ)

= 1

2

[
J0(k0r )+cos(2ϕ)J2(k0r )

]
,

(3.7)

where Jn(x) is the Bessel function of order n and k0 is the wavenumber of the TE mode.
This is in contrast with the case of a fully isotropic scalar field, where C (r) = J0(k0r ) [17].
The autocorrelation function of the field contains all the information needed to retrieve
pair and charge correlation functions of the phase singularities (see Section 3.5.1 for
more details). Analogously to C (r,ϕ), the pair and charge correlation functions g (an)(r,ϕ)
and g (an)

Q (r,ϕ) display a dependence on the spatial vector orientationϕ. Since in the cor-
responding experimental quantities in Eqs. (3.2) and (3.3) the average is taken over all
reciprocal orientations of the points, to compare the experimental data with the theo-
retical results, we average the latter over the polar angle:

g (an)
Q (r ) = 1

2π

∫ 2π

0
dϕ g (an)

Q (r,ϕ) (3.8)

[and similarly for g (an)(r)]. The black solid lines in Fig. 3.3 show the analytic outcome
of such calculations (Anisotropic Model). A comparison between experiment and the
new model exhibits now an excellent agreement, both qualitative and quantitative. This
confirms that the anisotropy in the direction distribution of random waves, intrinsic in
the vector nature of optical wave fields, significantly affects the spatial distribution of
phase singularities.
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3.3.4. ANGULAR DEPENDENCE OF THE CHARGE CORRELATION FUNCTION

A further confirmation of the validity of our model comes from restricting the orientation
of the spatial displacement vector r to a limited range of values (∆ϕ = π/4) around the
directions perpendicular (⊥) and parallel (∥) to the field projection axis. In Fig. 3.4, we
compare the results for both the experimentally calculated gQ (r) and the restricted av-
erages of Eq. (3.8) (Anisotropic Model). The two direction-dependent distribution func-
tions show a completely different behavior. Neither of them is equal to the isotropic
gQ (r ) of Ref. [17], which, of course, does not display any orientation dependence. Sev-

eral differences can be spotted between g ∥
Q and g⊥

Q . First, g⊥
Q (r ) vanishes as r approaches

Anisotropic Model

0 1 2 3

0

1

2

r (wavelength)

Ex

0

gQ(r)gQ(r)

Experimental Data

g
Q
(r

)

Figure 3.4: Directional charge correlation function. We repoort the two illustrative cases of direction perpen-
dicular (red) or parallel (yellow) to the direction of the considered field component (Ex ). The distribution
function strongly depends on the direction in the plane. Experimental data is represented by the triangles,
while lines show our modified model for anisotropic random waves, which perfectly fits the data.

zero, while g ∥
Q (r ) does not. As a consequence singularities of opposite sign are most

likely to be arbitrarily close along the polarization direction. Secondly, in the g⊥
Q (r ) there

is an evident and positive peak, followed by a number of clear peaks with decreasing
height. This trend indicates sequences of same-sign singularities spaced by approxi-
mately half a wavelength along the direction perpendicular to the polarization (see also
Fig. 3.2). Here, the loss of spatial correlation is slow compared to the direction parallel
to the polarization, along which any correlation structure is immediately lost after the
initial dip in the g ∥

Q (r ≈ 0).

3.3.5. THE CASE OF A TRULY SCALAR FIELD

It is clear that the vector nature of the optical electric field impacts the spatial distribu-
tion of phase singularities. Interestingly, an out-of-plane field component would give us
access to a quantity that behaves like a scalar. By Fourier transforming the measured
complex fields Ex and Ey , we can calculate the wave-vector space distribution of the
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magnetic field H ∝ k×E. Fourier transforming back, we can thus construct a spatial
map of Hz (up to a constant) [108], in which we identify singularities and perform the
same statistical analysis done for Ex and Ey .

The inset in Fig. 3.5 shows the amplitude of Hz (r) as constructed from our measured
data. No anisotropy is evident in the resulting amplitude map, in contrast to what we
observed for the constituent fields Ex and Ey . Figure 3.5 presents the distribution func-
tions g (r ) and gQ (r ) for the phase singularities in Hz together with the theoretical model
for isotropic random waves [17]. The agreement is in this case excellent. The direction-
dependent distribution functions (not shown) do not exhibit any anisotropy.

r (wavelength)

g(
r)

, g
Q
(r

)

g(r)

gQ(r)

0

1

0 1 2 3 4

Isotropic Model [17]

Experimental data

5 µm 

|Hz(x,y)|

Figure 3.5: Pair and charge correlation function of phase singularities in the constructed out-of-plane magnetic
field Hz (x, y). The distribution functions for singularities in this scalar field are in perfect agreement with the
model for isotropic random waves [17]. In the inset an amplitude map of Hz (x, y) (a.u.).

3.4. CONCLUSIONS

When considering phase singularities in optical fields, one needs to take into account
that light is in general described as a vector wave. We studied the case in which the Carte-
sian components of an optical random field are considered as separate complex fields.
We noticed how considering each field component goes hand in hand with anisotropies
in the distribution of propagation direction of random waves. This leads to significant
consequences for the spatial distribution of optical vortices. As discussed when analyz-
ing experimental results supported by analytical model, the differences become partic-
ularly dramatic when considering the angular dependence of the distribution. We stress
that the anisotropic behavior that we analyzed in this chapter is a consequence of the
vector nature of light and it is not related to the shape or dielectric constituents of the
optical cavity that we used. For this reason, we believe that similar phenomena should
arise every time that a truly vectorial electromagnetic field is projected along one of its
components.



3

34 3. SPATIAL DISTRIBUTION OF PHASE SINGULARITIES IN VECTOR RANDOM WAVES

3.5. SUPPLEMENTARY INFORMATION

3.5.1. SINGULARITY DENSITY AND CORRELATIONS

The following treatment applies to both Ex and Ey ; for this reason, even if the variables ξ
and η depend on the projection, we omit the x and y subscripts. This choice also avoids
a potential notation conflict with Ref. [17], where the same subscripts are used to indi-
cate derivatives. Following the notation of the same Ref. [17], we also define the vorticity
associated with the field as ω = ∂xξ∂yη−∂yξ∂xη. The charge of phase singularities de-
pends on the local sign of the vorticity.

Given two points rA and rB in the plane, the density of singularities per unit area, d2,
the pair correlation function, g (r), and the charge correlation function of singularities,
gQ (r), are defined as follows [17]:

d2 = 〈δ(ξ)δ(η)|ω|〉, (3.9)

g (r) = 1

d 2
2

〈δ(ξA)δ(ηA)δ(ξB )δ(ηB )|ωA ||ωB |〉, (3.10)

gQ (r) = 1

d 2
2

〈δ(ξA)δ(ηA)δ(ξB )δ(ηB )ωAωB 〉, (3.11)

where r = rB − rA , 〈•〉 indicates the average over a statistical ensemble, and we use the
compact notation ξA = ξ(rA), ξB = ξ(rB ), and similarly for η and ω.

In the following, we summarize how the expressions for the quantities in Eqs. (3.9)–
(3.11) can be generalized to account for the anisotropy in the Fourier-space distribution
of the field components. Starting with the singularity density, we assume that the real
and imaginary parts of the field component have equal variance, i.e., 〈ξ2〉 = 〈η2〉. The
expression for the density can then be recast into the form

d2 = 1

2π〈ξ2〉 〈
∫

dt

t 2

(
1− 1

2
e iωt − 1

2
e−iωt

)
〉, (3.12)

where the average reduces to a four-dimensional complex Gaussian integral on the vari-
ables ∂xξ, ∂yξ, ∂xη, and ∂yη. The integration is carried out straightforwardly and the
final result is:

d2 = 1

2π

√
〈(∂xξ)2〉〈(∂yξ)2〉

〈ξ2〉 . (3.13)

The presence of the sine-modulation term in Eq. (3.5) implies that 〈(∂xξ)2〉 6= 〈(∂yξ)2〉, at
variance with the isotropic scalar field considered in Ref. [17]. On the other hand, it is
possible to show that Eq. (3.13) reduces to the result of Ref. [17] in the assumption that
〈(∂xξ)2〉 = 〈(∂yξ)2〉.

In order to compute the pair correlation function of the singularities, we introduce
the six-dimensional vector

u = [
ξ(rA),ξ(rB ),∂xξ(rA),∂xξ(rB ),∂yξ(rA),∂yξ(rB )

]
.= [

ξA ,ξB ,∂xξA ,∂xξB ,∂yξA ,∂yξB
] (3.14)



3.5. SUPPLEMENTARY INFORMATION

3

35

and the corresponding matrix of correlations

Mi j = 〈ui u j 〉. (3.15)

As detailed in Ref. [17], the elements of the matrix are obtained from the autocorrelation
function C (rB − rA) = 〈ξAξB 〉 = 〈ηAηB 〉 and its partial derivatives:

〈ξA ∂αξB 〉 =−〈∂αξA ξB 〉 = ∂αC (r) and 〈∂αξA ∂βξB 〉 =−∂α∂βC (r), (3.16)

where r = rB −rA andα,β= x, y . The expressions for C (r) in the isotropic and anisotropic
cases are discussed in the main text. In addition to the different expressions of the
autocorrelation function, there is an important difference between the isotropic and
anisotropic cases. In the former case, several assumptions based on isotropy consid-
erations allow to simplify and write in block form the correlation matrix. This is the
approach described in Ref. [17]. In the anisotropic case, such assumptions are no longer
valid and the derivation of the pair correlation function must be generalized to retain the
full correlation matrix at any stage, as we sketch in the following.

According to Eq. (4.33) of Ref. [17], the pair correlation function is expressed as an
integral of the characteristic function

T (tA , tB ) = 〈δ(ξA)δ(ηA)δ(ξB )δ(ηB )exp(iωA tA − iωB tB )〉. (3.17)

In our generalized derivation, we write the characteristic function as the eight-dimen-
sional complex Gaussian integral

T (tA , tB ) = 1

(2π)6 detM

∫
d8w exp(− 1

2 wTUw), (3.18)

with the block matrix

U=
[

N iA
iAT N

]
. (3.19)

In the latter equation, matrixN is obtained fromM−1 by removing the first two rows and
two columns (this results from the integration of the δ-terms); on the other hand, matrix
A is defined as follows:

A=


0 0 −tA 0
0 0 0 tB

tA 0 0 0
0 −tB 0 0

 . (3.20)

The Gaussian integral can be carried out with standard techniques and, after some al-
gebraic manipulations, the characteristic function becomes (1 denotes the 4×4 identity
matrix)

T (tA , tB ) = 1
/[

4π2 detMdetN
√

det(1+N−1A)det(1−N−1A)
]

. (3.21)

The determinant of 1+N−1A is a quartic polynomial in the variables tA and tB . In par-
ticular, since both N−1 and the cofactor matrix of N−1 are symmetric, it can be shown



3

36 3. SPATIAL DISTRIBUTION OF PHASE SINGULARITIES IN VECTOR RANDOM WAVES

that the polynomial contains only even-degree terms. As a further consequence, we ob-
serve that det(1+N−1A) = det(1−N−1A). After explicitly calculating the determinant and
rearranging the terms, the correlation function can be written in the form

g (r) = Ξ1/2

4π4d 2
2 detMdetN

∫
dtA

t 2
A

dtB

t 2
B

I (tA , tB ,Y , Z ), (3.22)

with the same integration kernel I (tA , tB ,Y , Z ) defined in Eq. (4.45) of Ref. [17], albeit
with a generalized definition of the parameters Y and Z :

Y = [N−1
14N

−1
23 −N−1

12N
−1
34 ]2/Ξ ; (3.23)

Z = detN−1/Ξ ; (3.24)

Ξ= [N−1
33N

−1
11 − (N−1

13 )2][N−1
44N

−1
22 − (N−1

24 )2]. (3.25)

Eventually, the tA integral is carried out as described in Ref. [17], to give the final result

g (r) = Ξ1/2

2π3d 2
2 detMdetN

∫
dt

3−Z +2Y + (3+Z −2Y )t 2 +2Z t 4

(1+ t 2)3
√

1+ (1+Z −Y )t 2 +Z t 4
, (3.26)

which can be easily evaluated by numerical means.
The last quantity under consideration, the sign correlation function of Eq. (3.11), can

be computed directly from the characteristic function:

gQ (r) = 1

d 2
2

∂

∂tA

∂

∂tB
T (tA , tB )

∣∣∣∣tA=0
tB=0

= N−1
12N

−1
34 −N−1

14N
−1
23

2π2d 2
2 detMdetN

. (3.27)
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SCREENING AND FLUCTUATIONS OF

THE TOPOLOGICAL CHARGE IN

RANDOM WAVES

Nothing exists;
Even if something exists, it cannot be known;

Even if something could be known, it cannot be communicated to others.

5Gorgias

Vortices, phase singularities and topological defects of any kind often reflect information
that is crucial to understand physical systems in which such entities arise. With near-field
experiments supported by numerical calculations, we determine the fluctuations of the
topological charge for phase singularities in isotropic random waves, as a function of the
size R of the observation window. We demonstrate that for 2D fields such fluctuations
increase with a super-linear scaling law, proportional to R logR. Additionally, we show
that such scaling remains valid in presence of anisotropy.

Parts of this chapter have been published in Optics Letters 43, 2740-2743 (2018) [109].
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4.1. INTRODUCTION

A N accurate knowledge on the statistical fluctuations of a given physical observable
is often essential, with an importance on par with the ensemble-averaged value of

the observable itself [110]. In fact, fluctuations are ubiquitous in quantum as well as in
classical physics. A prime example is the grand canonical ensemble in statistical physics,
where the number of particles is only known in average, and its fluctuations have an ac-
tual physical meaning, directly linked to the chemical potential of the system [111]. En-
sembles of this type are offered by many systems in physics, for example whenever they
exhibit topological defects [112, 113], which in the context of optics can be optical sin-
gularities [7]. These singularities are point-like entities carrying a topological charge and
in random waves they are reminiscent of interacting particles [87]. Oppositely charged
pairs can be created and destroyed [53], resulting in a total number of singularities which
is not conserved. Although the total topological charge of an ensemble of singularities is
always conserved [114], this number can still vary when considering a finite observation
window, and its fluctuations are the hallmark for intrinsic properties of the system, such
as charge screening [107].

Here we study quantitatively the fluctuations of the total topological charge for phase
singularities in random waves and determine the dependence of such fluctuations on
the size of the observation window. With near-field experiments we map the optical
near-field inside a chaotic cavity [87]. By tuning the excitation wavelength we mea-
sure different realizations of the optical random wave pattern inside the cavity [115].
Such phase- and polarization-resolved measurements enable us to pinpoint position
and topological charge of the individual phase singularities in all in-plane components
of the electric field that we measure, and therefore determine and investigate their to-
tal topological charge and its fluctuations. With experimental evidence, corroborated
by numerical calculations, we demonstrate that the sum of the topological charges con-
tained in a square region of area R2 fluctuates as R logR, in agreement with analytical
calculations [107].

4.2. EXPERIMENTAL

While our measurements provide access to the two-dimensional random vector field,
previous theoretical results on topological screening examined the case of scalar wa-
ves [107]. With this regard, it is important to note that our complete information on the
in-plane field E allows us to reconstruct an out-of-plane component Hz ∝ k×E, which
behaves fully as a scalar field (see also Section 3.3.5). Following well established models
for random wave fields [28], we can think of Hz as an isotropic superposition of plane
waves interfering with random phases φk [17],

Hz =
∑

|k|=k0

exp(i k · r+ iφk), (4.1)
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Ey

Ex

(a) (b)

Figure 4.1: Overview of the near-field measurements of the optical field inside the chaotic cavity. (a) Optical
micrograph of the cavity used for the generation of the optical random wave field. The dark area is the photonic
crystal that confines light inside the cavity. (b) Example of a direct measurement of the in-plane components
of the optical random field under investigation. In the upper panel the amplitude of Ex and in the lower pane
the amplitude of Ey . (c) Near-field maps of Hz ∝ k×E. In the upper panels the amplitude of Hz for different
excitation wavelength λ, and in the lower panels zoomed-in images of its phase. Phase singularities of positive
and negative topological charge are depicted by light-gray and dark-gray circles, respectively.

which is characterized by an autocorrelation

C (r ) =
∫

dr′Hz (r′)Hz (r+ r′) = J0(kr ), (4.2)

where J0(kr ) is the Bessel function of order 0.
Figure 4.1 presents a direct measurement of the amplitude of the in-plane field com-

ponents (Ex ,Ey ), as well as amplitude and phase of Hz , as obtained from measurements
at different excitation wavelengths. From the subwavelength maps of the amplitude we
can clearly resolve the interference that results in a speckle-like pattern [116]. Figure 4.1
also displays zoomed-in images for the phase of Hz . Here, the circles indicate the loca-
tion of phase singularities with their topological charge (color), i.e., the integer number
of times that the phase of the field loops from −π to π around the singular point (see
Section 3.2.2 singularities pinpointing). We always observe the topological charge to be
equal to ±1 (dark/light gray) [7]. The patterns presented in Fig. 4.1 change dramatically
with the input wavelength. A wavelength shift of 1nm already leads to a totally different
field configuration. In fact, the spectral correlation width of this random field is of the
order of 0.2nm, as we quantify by computing the wavelength-wavelength correlation of
Hz (more details in Chapter 5).

Although the wave field is made up by randomly interfering waves, the distribution
of the singularities does contain structure. In fact, as extensively discussed in Chapter 3,
the distribution of phase singularities in random waves has a liquid-like correlation. An
immediate question that arises at this point, is whether the charges of such distribution
of singularities are correlated or not, and, if so, how. In a system of charged particles we
would expect such correlation to occur due to charge screening. While it is tempting to
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make an analogy straight away, and predict a screening among topological charges, we
must remember that the nature of phase singularities is radically different from that of
atoms and molecules, and there is no true and measurable physical interaction among
these entities. A straightforward analogy between charged particles and singularities
with their topological charge is therefore not so trivial.

4.3. SCREENING OF PHASE SINGULARITIES IN RANDOM WAVES

4.3.1. CHARGE SCREENING AND TOPOLOGICAL SCREENING

The easiest test that can be performed to determine the existence of charge screening, is
to measure the overall topological charge Q = ∑

i qi of the singularities qi contained in
an area of dimension A = R2. In complete absence of charge correlation one expects the
average 〈Q〉 of such quantity to be zero, and its variance 〈Q2〉 to scale with the area of the
observation window R2 [107]. A screening among charges would reveal itself by slowing
down the dependence of such variance to a sub-quadratic law. In fact, screening neutral-
izes charges by surrounding them with a cloud of opposite charges, so to prevent fluctua-
tions of the total charge inside an area ∼ R2, in favor of fluctuations along the perimeter
region ∼ R [117]. The existence of screening among topological charges is well estab-
lished in literature. [41, 106, 107, 117–122]. It starts to play a role when the size of the ob-
servation window is bigger than the typical inter-singularity distance, of approximately
λ/2. However, how much this screening slows down the quadratic law 〈Q2(R)〉 ∝ R2 is
yet unclear. Explicitly, a first model of 〈Q2(R)〉, in which two assumptions were made
on the autocorrelation of the random field, predicted linear scaling [41], whereas further
theory developments proved such quantity to scale as R logR [107]. More recently, also
paraxial experiments were performed, supporting the linear dependence [106, 117, 121].

4.3.2. RESULTS

Figure 4.2 presents our results for 〈Q2(R)〉. In the main plots the analysis of screening
for R ≥ λ/2, in the inset a proof of its absence in the region R < λ/2. In the left panel we
present the experimental data, which is the result of the sampling of 200 experimental
scalar field realizations where we randomly pick the position of our observation window.
The fields are obtained by varying the excitation wavelength λ over a range ∆λ = 20nm
around λ0 = 1550nm. In the right panel we show simulation data, realized by sampling
3500 random wave fields which were independently calculated by adding up 250 plane
waves with isotropic directions and random phases [(4.1)]. In both cases, we obtain a
good agreement only with the R logR dependence. A quadratic fit cR2 is clearly inade-
quate for the data displayed in the main plot. However, this functional behavior perfectly
describes the short-distance data in the insets of Fig. 4.2, at which range screening is in-
deed absent. Less evident, but still significant, is the inconsistency between the data and
a linear behavior. Although this is more eye-catching in the region R/λ > 5, a clear de-
viation is still present for R/λ < 3, with even greater significance considering the small
errorbars associated with the latter region.

More quantitatively, we fitted our data with f1(R) = mR (gray lines in Fig. 4.2), and
f2(R) = a bR logbR (red lines in Fig. 4.2). We focus on how well these functions can de-
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Figure 4.2: Fluctuation of topological charge 〈∆Q2〉 as a function of the size R of the observation area R2, for
the experimental scalar field Hz (a) and for a simulated isotropic scalar field (b). The blue errorbars are the
respective data points. The gray lines are the best fit with f1 = mR [mexp = 2.20(5); msi m = 2.08(4)]. The red
lines are the best fit with f2 = a bR logbR [aexp = 0.026(5), bexp = 19(3); asi m = 0.0144(1), bsi m = 30(2)]. The

light blue lines are the best fit with f3 = cR2 [cexp = 0.286(11); csi m = 0.260(11)].

scribe our data rather than on the resulting fit parameters, which we found to depend on
the shape of the chosen observation window (not shown). We quantified the goodness
of such least-square fits by performing a χ2 test, the results of which are summarized in
Table 4.1. In both experiment and simulation we are performing the fit on 145 equally
spaced data points, resulting in 144 degrees of freedom (DOF) for the linear fit (1 free pa-
rameter) and in 143 DOF for f2 (2 free parameters). The χ2 is a stochastic variable, with
expectation value equal to the DOF [123]. The values of the χ2 for the fittings with f2(R)
are consistent with their expectation value, whereas the case of f1 leads to χ2 values that
are too high to be mere statistical fluctuations. After this quantitative analysis of our fits
we can most certainly conclude that the R logR scaling law is describing the behavior of
〈Q2(R)〉 better than a linear function.

Fit function χ2
exp χ2

si m DOF

f1(R) = mR 954 104 144
f2(R) = a bR logbR 125 147 143

Table 4.1: Summary of the χ2 tests for the least-square fits presented in Fig. 4.2 (isotropic case). From left to
right: fit function, sum of the residuals for the experimental case, sum of the residuals for the simualtion, and
number of degrees of freedom.

Certainly, the studied cases are not exhaustive of all the possible functional behav-
iors one could think of. For instance, an alternative trade-off between the linear and
quadratic scalings could be given by a generic power law βRα. Interestingly, such a func-
tion can be effectively used to fit both experimental and simulated data, with α ≈ 1.2.
However, the result of such fits (not shown) are found to be less reliable, since they lead
to different optimal fit parameters when varying fitting range. In the absence of existing
theories, they remain difficult to interpret.
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4.4. SCREENING IN THE PRESENCE OF ANISOTROPY

Going back to screening and its nature, we now investigate its functioning in presence of
anisotropy. In fact, in case of anisotropic wave propagation also the spatial arrangement
of phase singularities becomes anisotropic [87], and it does not resemble the distribution
of a simple liquid anymore. Actually, along particular directions the resulting distribu-
tion is more reminiscent of an ordered structure. Thus, it is interesting to check whether
or not this anisotropy influences the topological screening here discussed.

Anisotropic wave propagation naturally takes place in the single vector components
of the measured in-plane electric field. This is caused by the strict relation between
polarization and propagation direction set by transverse electric propagation [87]. Fig-
ure 4.1(b) presents an example of our direct measurement of amplitude Ex and Ey inside
the chaotic cavity. By comparing this figures to the maps for the scalar field Hz presented
in Fig. 4.1(c), we can see a pronounced anisotropy. For example, in the amplitude map
of Ex we easily distinguish a stripy pattern, given by a fast modulation of the amplitude
along the y-axis, opposed to a modulation along the x-axis which is slower by at least a
factor two. This anisotropy results in a spatial arrangement of dislocations where many
singularities with the same topological charge are displaced along the y-axis, while the
first neighbor in the x-direction is often oppositely charged [87].

Figure 4.3 presents the fluctuation of topological charge 〈∆Q2〉 for the case of Ex ,
in both experiment and simulation. The analysis of its behavior is carried in complete
analogy to what already described for Hz . Again, we can conclude that the scaling law
given by R logR is more successful than a linear function [χ2

exp (mR) = 2098, whereas

χ2
exp (a bR logbR) = 187]. However, we do observe that the growth rate of 〈∆Q2〉 is faster

than in the case of the scalar field Hz (Fig. 4.2). This suggests that an anisotropic distri-
bution of topological charges results in a screening that on average is less effective with
respect to its isotropic counterpart. This of course only holds when considering the aver-
age over all the possible directions along which singularities are displaced, whereas it is
very likely for this form of screening to strongly depend on the considered direction. Still,
considering these qualitative differences with the isotropic scalar case, it is remarkable
how the R logR law can still describe the data.
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Figure 4.3: Fluctuation of the topological charge 〈∆Q2〉 vs. R, as in Fig. 4.2. These results are for the anisotropic
case of a Cartesian component (Ex ) of a trasverse vector field E. Gray lines f1 = mR [mexp = 2.85(9); msi m =
2.08(4)]. Red lines f2 = a bR logbR [aexp = 0.15(2), bexp = 6.5(5); asi m = 0.126(3), bsi m = 6.9(1)].
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4.5. CONCLUSIONS

To conclude, we presented a quantitative study on the screening of topological charges
for singularities in random waves. With near-field experiments and numerical calcula-
tions we demonstrated that while the average topological charge remains zero indepen-
dently of the size R of the observation window, the fluctuation of this quantity increases
with a dependence which is consistent with a R logR law. This result validates previous
analytical theory [107]. Additionally, we extended our study to the case of anisotropic
wave propagation. Even though the nature of screening drastically changes in presence
of anisotropy, we showed that the functional dependence of topological charge fluctua-
tions is still well described by the R logR scaling law.





5
WAVELENGTH-DEPENDENT

EVOLUTION OF

PHASE SINGULARITIES

IN RANDOM WAVES

Theories were clean and convincing and comprehensible.
Life was messy and full of nonsense.

6Julian Barnes

Phase singularities are locations where light is twisted like a corkscrew, with positive or
negative topological charge, depending on the twisting direction. Among the multitude
of singularities arising in random wave fields, some of them can be found at the same
location, but only when they exhibit opposite topological charge, which results in their
mutual annihilation. New pairs can be created as well. With near-field experiments sup-
ported by theory and numerical simulations we study persistence and pairing statistics of
phase singularities in random optical fields as a function of the excitation wavelength. We
demonstrate how such entities can encrypt fundamental properties of the random fields
in which they arise.

Parts of this chapter have been published in Physical Review Letters 119, 203903 (2017) [115].
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5.1. INTRODUCTION

A Wide variety of physical systems exhibit vortices: locations around which an observ-
able rotates while being undetermined in the middle [124–132]. It is exceptionally

fascinating when the properties and evolution of such singular entities can comprehen-
sively describe complex phenomena such as the Kosterlitz-Thouless transition [133]. But
vortices are not a peculiarity of superconductors: light’s phase swirls around optical vor-
tices, where it is singular [7]. A multitude of these phase singularities arises in random
optical fields, one half swirling in opposite direction to the other, so that they can ap-
proach respectively to an arbitrarily small distance [17, 52, 87]. It is by letting them move
that one can observe creation and/or annihilation of such pairs [53, 134–136].

With near-field experiments we track phase singularities in a random optical field
from birth to death. We map the singularities’ trajectories as a function of the excitation
wavelength and quantitatively determine properties such as their persistence in the field
and the retention of creation and annihilation partners of a singularity, known as lifelong
fidelity [137]. We observe two populations of singularities, neatly differentiated by their
typical persistence in the varying wave field: short-lived pairs that are predominantly
faithful to their creation partner, and a more promiscuous population.

5.2. CREATION, EVOLUTION AND ANNIHILATION OF PHASE

SINGULARITIES

To study the evolution of singularities, we perform near-field measurements of the op-
tical field in the chaotic cavity while slowly tuning the input wavelength. Figure 5.1
presents a typical example of our measurements of amplitude and phase of Ex . The op-
tical field inside the cavity is a random superposition of light waves [28] with transverse
electric (TE) polarization [87]. Only the behavior of Ex is presented here, without loss of
generality, as it is representative of the behavior of all in-plane field components [87].

Figure 5.1(b) is a full-size measurement: a square map 17µm×17µm with a pixel size
of about 17nm. In this map we distinguish a multitude of dark and bright spots, the
results of destructive and constructive interference. Figures 5.1(c)-(f) are 2µm×2µm
zoom-ins of the full measurements taken at different wavelengths of the input light.
Here, we can observe how a small change of the wavelength (δ = 0.02nm), hardly pro-
duces any change in the spatial pattern of the amplitude. Figures 5.1(g)-(j) depict the
measured phase, and reveal the phase singularities which take place at every zero in the
amplitude (gray circles). We pinpoint the position of these singularities with deep sub-
wavelength resolution (see Section 3.2.2), and simultaneously determine their topolog-
ical charge, which is always observed to be +1 (light circles) or -1 (dark circles), corre-
sponding to a ±2π change of the phase around the singular point [114].

In the panels (g)-(j) of Fig. 5.1, we observe that the singularities move as a function
of wavelength. More eye-catching than their tiny movements are the annihilation and
creation events of pairs of singularities, which can be both observed between the pan-
els (h) and (i) (Fig. 5.1), highlighted by black circles. Indeed, singularities can be created
and annihilated, but only in processes that conserve the total topological charge of the
system, i.e., in pairs of opposite topological charge. Thus, as we tune the wavelength,
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Figure 5.1: Near-field measurements of the optical field in the chaotic cavity. (a) Optical micro-graph of the
chaotic cavity: the dark area is a photonic crystal that confines light inside the cavity. (b) 17µm×17µm near-
field map of the amplitude of the x component of the electric field in the cavity. (c-f) Zoom-in of panel b for
different input wavelength λ. (g-j) False-color map of the measured phase for different input wavelength λ;
in such maps we pinpoint phase singularities with positive (dark spots) or negative (light spots) topological
charge. The black circles highlight annihilation and creation events.

singularities exhibit a transitory persistence in the random field over the span of a finite
wavelength shift ∆λ between their creation and annihilation. We track the singularities
as a function of wavelength shift with a heuristic algorithm based on the vicinity of sin-
gularities in two consecutive frames. In particular, singularities existing in the field have
two options: propagation or annihilation (creation). Therefore, all the singularities need
to be connected to their propagation in the next frame or to their annihilation/creation
partner in the same frame. We establish such connection within an error < 1%. A small
amount of trajectories is truncated at the edges of the measured map (∼ 1%). We simply
do not consider this trajectories, with no relevant consequences on our statistics. A sig-
nificant amount of trajectories is truncated at the beginning and end of our wavelength
sweep. We do not consider these trajectories as well, but we need to take this fact into ac-
count, as it will be discussed in Section 5.3. In Fig. 5.2 we present a 3D representation of
the trajectories followed in space and wavelength by a small subset of all the singularities
that we measure. Among all the trajectories, the red ones represent lifelong faithful sin-
gularities: special cases where the singularities have the same partner for both creation
and annihilation. In contrast, the green trajectories are unfaithful singularities.
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Δx = 2 μm

Δλ = 0.18 nm

Δy = 2 μm

Trajectories of phase singularities (experimental data)

Figure 5.2: 3D representation of the trajectories of singularities that propagate through a 2µm×2µm×0.64nm
observation volume. The red and green trajectories are of faithful and unfaithful singularities, respectively. In
both cases bright and dark colors differentiate oppositely charged singularities. Please note that the parts of the
trajectories that continue outside of the observation volume are not shown. The semi-transparent trajectories
are of singularities that propagate outside of the total wavelength range: these are not taken into account in
our statistics.

5.3. PERSISTENCE AND LIFELONG FIDELITY

5.3.1. EXPERIMENTAL OBSERVATIONS

Figure 5.3(a) presents the number N of singularities as a function of their persistence
∆λ in the measured field. The main plot illustrates the results obtained from a dataset
in which we tuned the wavelength with a step δ= 0.02nm for a total range L = 1.2nm.
In such a plot, we distinguish two persistence regimes separated by a cutoff wavelength
shift λ∗ ≈ 0.15nm. In the region ∆λ> λ∗, the number of singularities exponentially de-
cays versus their persistence in the field, with a characteristic persistence λd = 0.6nm.
Such exponential behavior is even clearer from the the inset, representative of a mea-
surement in which the total range of the wavelength sweep is L = 8nm (δ = 0.1nm).
Please note that the finite size of the wavelength scans has non-negligible effects on the
measured statistics, mainly for the longest trajectories, thus slightly distorting the expo-
nential behavior. This is because singularities that are created and/or annihilated out-
side the measured wavelength range need to be excluded from the persistence statistics.
Intuitively, we estimate the fraction of such singularities to be of the order of the ratio
∆λ/L , resulting in a correction factor for N (∆λ) proportional to (1−∆λ/L ).

The exponential behavior that we observe could be interpreted in a straightforward
way as the result of a memoryless Poisson process. However, we discover a physics richer
than that. From the main plot of Fig. 5.3(a) we notice that N (∆λ) is not purely exponen-
tial: it clearly deviates from such a distribution for ∆λ smaller than λ∗. This spectral
region contains an excess of singularities compared to what the asymptotic exponential
distribution would predict. Their characteristic persistence in the field is much smaller
thanλd . In fact, by fitting N (∆λ) with a bi-exponential distribution, we can estimate the
characteristic persistence for such short-living population to be approximately 0.03nm.
Please note that the cutoff wavelength shift λ∗ does not depend on the absolute start-
ing wavelength as the trajectories of the singularities in excess are uniformly distributed
along the measured wavelength range.”

Interestingly, when considering only the faithful singularities (the red trajectories in
Fig. 5.2), a different behavior is observed than for the full ensemble of all singularities. It
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Figure 5.3: Overview of the statistics for the persistence and fidelity of singularities in random waves, in exper-
iment (a,b) and FEM simulation (c,d). In the upper panels the dashes indicate the number of singularities N

which persisted in the field for a given wavelength shift ∆λ. The main figures refer to experiment/simulation
where the wavelength was sweeped over a range L = 1.2nm with a step δ= 0.02nm, whereas the insets show
the results of wider scans (L = 8nm, δ = 0.1nm). The gray lines are representative of the prediction for the
persistence histogram given by our model. In the same panels, the boxes are still a persistence histogram, but
in which only the N f singularities that were faithful to each other are taken into account. In the lower pan-
els we report the fidelity fraction F of phase singularities, again as a function of their persistence in the field
[F (∆λ) =N f (∆λ)/N (∆λ)].

is clear from Fig. 5.3(a) that in the region where deviation from a single exponential takes
place (∆λ < λ∗), we have an over-representation of faithful singularities (yellow boxes).
This is reflected explicitly in the fidelity fraction F (∆λ) = N f (∆λ)/N (∆λ) represented
in Fig. 5.3(b): while a majority of the short-living singularities is faithful to each other,
the opposite is true for long-living ones.

5.3.2. WAVELENGTH-WAVELENGTH CORRELATION OF THE FIELD

The origin of the cutoff λ∗ which discriminates the population of faithful and short-
living singularities from that of unfaithful and long-living ones must be sought in the
evolution properties of the field. Figure 5.4 displays the correlation coefficient of the
considered experimental field at wavelengths λ1 and λ2:

ρ(λ1,λ2) = |∫ dr Ẽ∗
x (λ1)Ẽx (λ2)|√∫

dr |Ẽx (λ1)|2 ∫
dr |Ẽx (λ2)|2

, (5.1)

where Ẽx = Ex −〈Ex〉. It is interesting to note that the correlation coefficient ρ(λ1,λ2) de-
cays over a finite wavelength shift λc ≈λ∗. Such a close relation between λc and λ∗ may
suggest that those singularities which spend their entire existence in the region of spec-
tral correlation of the field exhibit persistence and pairing properties that are different
from those of singularities over-living this region.

Although seemingly intuitive, this simple interpretation cannot be the whole story.
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Figure 5.4: Correlation coefficient ρ(λ1,λ2) of the measured (upper left) and FEM simulated (lower right) op-
tical random field, at wavelengths λ1 and λ2 (λ0 = 1550nm).

We can firmly state this, having developed a model that creates a field with correlation
properties analogous to those of our measured field, which in fact does not contain any
excess of faithful singularities for small persistences.

5.3.3. POISSONIAN MODEL AND FEM SIMULATIONS

We model the frequency-dependent field as a superposition of the cavity eigenstates E
j

x ,
centered at frequencies ω̃ j =ω j + iγ j [28]:

Ex (r,ω) =∑
j

α j E
j

x (r,ω j )

ω− (ω j + iγ j )
. (5.2)

Based on the size of our cavity we can estimate the average spectral separation between
two consecutive eigenstates ∆ = 〈ω j+1 −ω j 〉 j to be approximately 0.08nm [28]. In the
simplest model field, we assume the eigenstates to be equidistant in frequency (spacing
∆), with a constant width γ and a unitary weight (α j = 1). We set γ = 0.16nm, equal to
the average loss rate of our system, which we determine from a finite difference time do-
main (FDTD) simulation of the entire three-dimensional chaotic cavity. Finally, follow-
ing Berry’s hypothesis [138], we consider every eigenstate to be a random superposition
of monochromatic plane waves:

E
j

x (r,ω j ) = ∑
|k|=nω j /c

ax,k exp(i k · r+ iδk), (5.3)

where δk is a random variable uniformly distributed in [0,2π] and ax,k ∝ |k× x̂| is the
polarization coefficient for the TE mode [87]. With these assumptions, we construct the
wavelength-dependent field of Eq. (5.2) and determine the statistics of its singularities.
We find that the persistence of singularities is exponentially distributed, with a charac-
teristic decay rate that depends on the ratio between the eigenstates’ width and spacing
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γ/∆. For our estimated parameters (γ/∆≈ 2) this results inλth
d = 0.6nm. The persistence

calculated with our model is presented in Fig. 5.3(a) (gray line). In the region∆λ>λ∗ we
obtain perfect matching between experiment and theory.

These theoretical results are confirmed by a 2D finite element method (FEM) simu-
lation. The FEM simulation produces a direct expression of E(r,ω), free of the previous
model assumptions. The statistics for the singularities obtained from these simulations
are reported in Fig. 5.3(c)-(d). Comparing the simulated persistence histogram to our
model calculation we notice perfect agreement at every wavelength shift. No deviation
from a single-exponential distribution in the region ∆λ< λ∗ is present, and in the same
region the fidelity fraction is lower than exeperimentally observed [Fig. 5.3(b),(d)]. It is
interesting that we find a close correspondence between the correlation properties of
measured and simulated fields: in both cases the correlation coefficient ρ(λ1,λ2) decays
over a finite wavelength shift of (Fig. 5.4), measurable in a half-width-half-max value
HWHMe = 0.22(3)nm for the experiment and HWHMs = 0.26(3)nm for the simulation.
We can therefore exclude the different behavior of the short-living population of sin-
gularities to originate merely as a consequence of the finite spectral correlation of the
random wave field.

We note that we ruled out the eventuality in which the short-living population of
singularities is generated by experimental artifacts such as noise in the measurements,
temperature fluctuations or phase drifts. With this regard, independent measurements
realized with different wavelength sweeps showed perfect consistency, demonstrating
that variables which are not the wavelength shift cannot affect the final results [115].
Moreover, we introduced these as well as other possible measurement artifacts (i.e., per-
turbation from the near-field probe, frequency instabilities) in our models, in order to
check if they could in any case lead to an enhanced population of faithful singularities
at small ∆λ: they did not show any.

5.4. A MODEL BASED ON TWO FAMILIES OF EIGENSTATES

Interestingly, we did find a modeling that reproduces the observed enhanced popula-
tion. When a second family of eigenstates with a spectral width γ′ different from the one
of the original eigenstates is added to the decomposition of Eq. (5.2), two populations
of singularities start to appear. Such an additional family of modes could be provided
by resonances which due to polarization or physical separation would ideally remain
orthogonal to the chaotic modes, but which get coupled to them in the real-life system.

In this model, the second family is characterized by eigenstates with a spectral width
γ′, which lie in between the eigenstates of the first family (spectral width γ), i.e.,

Ex (r,ω) =∑
j

E
j

x (r,ω j )

ω− (ω j + iγ)
+∑

l

γ′/γ E l
x (r,ωl )

ω− (ωl +∆/2+ iγ′)
. (5.4)

Coherently to what done in the previous model, the eigenstates of both families are
equally spaced (ω j+1 − ω j = ∆), and their weight α j has been set to unity. In this
particular example we use γ≈ 4γ′.

In Fig. 5.5(a) we show the persistence histogram for the singularities of the field de-
scribed in Eq. (5.4). We see that a deviation from a single exponential distribution takes
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place in the region∆λ< 0.2nm. Moreover, from the same figure we notice that the num-
ber of faithful singularities increases when∆λ approaches zero, as observed in the exper-
iment. Figure 5.5(b) presents the wavelength-wavelength correlation coefficient of the
field calculated according to Eq. (5.4). This is also qualitatively comparable with what
found experimentally.
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Figure 5.5: (a). Persistence histogram with fidelity for the field modeled according to Eq. (5.4), with γ = 4γ′.
The plot is analogous to those reported in Fig. 5.3(a) and (b). Here, a biexponential fit (black line) highlights
the deviation from single exponential distribution. (b). Wavelength-wavelength correlation function for the
same field used in the panel (a). The correlation coefficient is calculated as explained in the main text.

To give a more comprehensive overview on this new model, we studied its behavior
for different values ofγ′. Figure 5.6 presents the persistence histogram for such proposed
model case, at varying the ratio γ/γ′. For some choices of γ′ a bi-exponential behavior
appears. Specifically, we observed that such choices satisfy ∆ ' γÀ γ′, in which cases
an excess of faithful singularities living within the spectral correlation region of the field
is again found.
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Figure 5.6: Persistence histograms for singularities arising in numerically generated random fields in which
two families of eigenstates with different spectral width γ and γ′ coexist. The lines are bi-exponential fits to
the data points.
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5.5. CONCLUSIONS

To conclude, we studied the persistence and pairing statistics of phase singularities in
optical random waves. For singularities with a persistence longer than the spectral cor-
relation of the random field, we find perfect agreement between experiment, simulation
and theory. It is striking that, for singularities with a persistence that falls within the
spectral correlation of the random field, we experimentally observe an excess of singu-
larities compared to theoretical prediction, and these are more faithful than expected.
With this regard, we propose a mechanism based on the coexistence of different families
of eigenstates, which could lead to a full explanation of our experimental observation.
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5.6. SUPPLEMENTARY INFORMATION

5.6.1. DETAILS ON THE NUMERICAL SIMULATIONS

We determine the average loss rate of the system from a three-dimensional FDTD simu-
lation of the chaotic cavity, including the surrounding photonic crystal. The electromag-
netic field is excited with a current source located inside the cavity and the loss rate is
estimated from the relation

γ'
∫
∂D d 2rRe[E(r)×H∗(r)]∫

D d 3rε0ε(r)|E(r)|2 +µ0|H(r)|2 , (5.5)

where the numerator and denominator represent the time-averaged energy flux leaving
the computational domain D and the total electromagnetic energy inside the domain,
respectively. This rate includes both losses due to light escaping into the coupling waveg-
uides and scattering at the photonic-crystal edge.

The value of the electric field E(r,ω) inside the cavity with varying frequency is cal-
culated with a simplified two-dimensional geometry. We assume that the field can be
factorized into the form

E(r) = E(2D)(x, y)ETE(z), (5.6)

where ETE(z) is the z-profile of the TE guided mode of a 220nm silicon-on-insulator slab
(ẑ is the out-of-plane direction) and E(2D)(x, y) is a two-dimensional in-plane polarized
field that satisfies the Helmholtz equation with the effective wavenumber kTE(ω), which
can be obtained by inverting the dispersion relation of the TE guided mode. We simulate
E(2D) by the finite element method on a two-dimensional domain with the same shape as
the chaotic cavity. On the boundary of the cavity, we set impedance boundary conditions
for an effective band-gap optical material with the dielectric constant ε= ε′+iε′′ (ε′ < 0),
where ε′′ is chosen so as to reproduce the loss rate of the three-dimensional FDTD sim-
ulations. Please note that such three-dimensional FDTD calculations were computa-
tionally very demanding, and not suitable for efficient wavelength-resolved simulations,
which, with the required spectral resolution, required few weeks to be completed. How-
ever, we did perform a preliminary FDTD simulation of the full wavelength sweep, and
this did not show any qualitative difference with the correspondent FEM simulation. For
this reason we then used the FEM simulations, which were by about two orders of mag-
nitude more efficient and gave us more flexibility in tuning different parameters.
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6
SPATIAL BUNCHING

OF SAME-INDEX C POINTS

IN 2D RANDOM LIGHT

Two is not the double but the opposite of one, of its loneliness.
Two is an alliance, a double thread that is not broken.

7Erri De Luca

Topological singularities are ubiquitous in many areas of physics. Polarization singular-
ities are locations at which an aspect of the polarization ellipse of light becomes undeter-
mined or degenerate. At C points the orientation of the ellipse becomes degenerate and
light’s electric field vector describes a perfect circle in time. In 2D slices of 3D random fields
the distribution in space of the C points is reminiscent of that of interacting particles. With
near-field experiments we show that when light becomes truly 2D, this has severe conse-
quences for the distribution of C points in space. The most notable change is that the prob-
ability of finding two C points with the same topological index at a vanishing distance is
enhanced in a 2D field. This is an unusual finding for any system that exhibits topolog-
ical singularities as same-index repulsion is typically observed. All of our experimental
findings are supported with theory and excellent agreement is found between theory and
experiment.

Parts of this chapter have been published in Physical Review X 8, 041012 (2018) [139].
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6.1. INTRODUCTION

L IGHT-BASED technology has transformed our society and will continue to do so, with
applications that range from energy harvesting to telecommunications and quan-

tum informatics [140–142]. Increasing control over light’s polarization is one key capa-
bility inspiring new developments. For instance, optical fields near nanostructures can
be engineered to exhibit locations of circular polarization [61, 98, 143], allowing applica-
tions such as spin-dependent directional coupling [20], also with local solid-state spin
into optical information conversion [27]. Interestingly, points of circular polarization
are singularities of the light field, also known as C points [6, 19], widely studied in struc-
tured light beams [25, 26, 114] and representative of the transverse spin momentum of
light [21–24].

More in general, C points are topological defects of the vector field which describes
light’s polarization. The study and understanding of topological defects goes way be-
yond optics. Currently, dislocations of the local magnetization known as Skirmions are
being intensively investigated [144–146]. In nematic systems, topological defects have
continuously attracted interest because of their fascinating behavior [147, 148]. In addi-
tion, these kinds of defects can even govern the physics of biological system [149], and
their spatial arrangement is representative of intrinsic properties of the system in which
they are found [150].

Interestingly, the large ensemble of C points which naturally arises in random light
fields also exhibits an emblematic and rigorous spatial distribution [42, 50, 151, 152],
which resembles that of particles in a simple liquid and only scales with the wavelength
of the interfering waves [151]. However, a random wave field can be realized in sev-
eral ways [52, 153–158]. So far, the work has concentrated on the investigation of polar-
ization singularities in two-dimensional (2D) slices through random three-dimensional
(3D) fields in the paraxial limit. The question now arises as to how limiting the propaga-
tion of light to a truly 2D situation, e.g., by confining it on a flat optical chip, would be to
the spatial distribution of its polarization singularities. In such a case, transverse propa-
gation would set a one-to-one relation between the wave propagation direction and the
direction of the electric field. Moreover, this would create correlations between right-
handed and left-handed polarization that are absent in the three-dimensional fields.

With near-field experiments we investigate the spatial distribution of C points in a
planar random light field and reveal crucial differences with respect to existing paraxial
theory [151]. We demonstrate that confining light propagation in two dimensions leads
to a large increase in the probability of finding, at close proximity, C points with the same
topological charge, i.e., their index. This is an exotic behavior for topological singulari-
ties, which usually exhibit same-charge repulsion. We relate our experimental findings
to light’s handedness and excellently describe them with a new theoretical model devel-
oped for the two-dimensional case.
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6.2. EXPERIMENT AND METHODS

6.2.1. NEAR-FIELD OPTICAL MEASUREMENTS

In our experiments, we map the near field of light waves propagating in the planar chaot-
ic cavity sketched in Fig. 6.1(a). This is a photonic crystal cavity realized in a silicon-
on-insulator platform (220-nm silicon slab) designed to provide random wave propa-
gation [55]. With a monochromatic laser at the telecom frequencies (λ0 ' 1550nm)
we excite a transverse electric (TE) slab mode which results in a random superposi-
tion of monochromatic TE waves inside the cavity [87, 115]. With a custom-built near-
field scanning optical microscope (NSOM) we probe the light field approximately 20nm
above the surface of the cavity. The measurement of the amplitude and phase of both
the in-plane components (Ex ,Ey ) allows the full characterization of its polarization state
at every point in the measured plane. For simplicity, we only consider the TE light prop-
agating in the sample, which has its electric field entirely in the plane of propagation. We
do not investigate TM light, as our cavity was not designed to confine [55].

Light
Photonic Crystal Cavity

Spatially Dependent Polarization Polarization Ellipse
(a) (b)

Ψ

E

x

y

ωt+φ
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Figure 6.1: Overview of the near-field measurements of light’s polarization in a chaotic cavity. (a) Schematic of
the experimental realization of random light waves in the planar photonic crystal cavity (black). Inside the cav-
ity, light exhibits a spatially dependent polarization. This is illustrated by a few different polarization ellipses
(purple ellipses) observed at different points in the cavity (indicated by the green shadows). (b) Parametriza-
tion of the polarization ellipse, describing the local polarization state of light. (c)-(f) Near-field maps of the
Stokes parameters of the optical random field in a square region of 17µm×17µm inside the chaotic cavity.
Note that S0 = E2

x +E2
y is the total intensity of the vector field. This is displayed with a false-color map ranging

from 0 to Imax, where Imax is the maximum measured intensity. The parameters Si (i = 1,2,3) describe the
polarization state of light, with respect to linear (horizontal-vertical), linear (±45deg) and circular (right-left)
polarizations, respectively. These Stokes parameters are also represented with false-color maps, which this
time range from −Imax to Imax.
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A comprehensive description of light’s polarization is provided by its Stokes param-
eters [18]. These parameters are often used to characterize the polarization state of light
in the far field, ranging from a simple laser beam to the polarized emission of exotic
structures [159], but they can be used for a local analysis of the near field as well. Fig-
ures 6.1(c)-(f) present the near-field maps of the Stokes parameters for the optical ran-
dom field inside the chaotic cavity. As result of vector light waves randomly interfering,
these patterns are quite difficult to interpret. However, we can spot a few specific fea-
tures in the morphology of each map. Note that S1 exhibits patterns of spatial modula-
tion approximately half a wavelength wide and several wavelengths long. Depending on
their color (sign), these stripy patterns are either oriented along the x or the y axis. The
same observation is valid for S2, but here the modulations are oriented at ±45deg with
respect to the horizontal axis. No clear preferential direction stands out from the map of
S3. In fact, S1 is representative of light linearly polarized along x (S1 > 0) or y (S1 < 0),
and since light propagates as a transverse vector wave, the observed stripy patterns are
reminiscent of x-polarized waves mainly propagating along y and vice versa [87]. A to-
tally analogous argument holds for S2, while S3 does not exhibit any pattern that bears
a resemblance to any specific in-plane direction since it is the parameter representative
of circular polarization.

6.2.2. LIGHT’S POLARIZATION AND C POINTS

A more concise yet comprehensive summary on the complex polarization pattern illus-
trated in Fig. 6.1 can be obtained from the analysis of its singularities [50]. In general,
light’s polarization is elliptical and thus parametrized with the orientationψ of the polar-
ization ellipse, the ellipticity angle χ and the handedness h [Fig. 6.1(b)]. However, there
are special cases in which the polarization ellipse degenerates into a circle or a line, and
some of these parameters are not well defined anymore. In two dimensions, such singu-
larities of the vector field are, respectively, points of circular polarization (C points) and
lines of linearly polarized light (L lines) [160].

Figure 6.2 is a map of the orientation of the polarization ellipse for a small subsec-
tion of the measurement presented in Fig. 6.1.The position of C points is highlighted by
circles and triangles, whose color represents their topological index I . This is defined as
the half-integer number of times that the axis of the polarization ellipse rotates around
the singularity, clockwise (positive index) or anticlockwise (negative index), i.e.,

I = 1

2π

∫
C

dψ (6.1)

where C is a closed path enclosing one singularity. In Fig. 6.2, we only observe topolog-
ical indices of ±1/2.

Strictly related to their topological index is the so-called line classification of C points,
which differentiates them in three types: lemons, stars and monstars [161, 162]. The
line classification can be understood by looking at the orientation of the polarization
ellipse around the singularity, highlighted by the black directors in Fig. 6.2 and in the
zoomed-in images of Fig. 6.3. For lemon-type singularities (lemons) there is only one
direction along which the orientation of the polarization ellipse is directed towards the
singularity, whereas the possible directions are always three for star-type singularities
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Figure 6.2: False-color map for the orientation of the major axis of the polarization ellipse. The black directors
indicate the orientation of such an axis, too. The plot is representative of a subsection of the measured optical
random field. Circles and triangles are C points. The white and gray symbols denote positive and negative
topological indices, respectively. The shape of the symbols, triangles or circles, denotes a star-type or lemon-
type classification, respectively.

(stars and monstars). To determine the line classification of all the C points in our data
set in a deterministic way, we apply the method illustrated by Dennis for computing the
number of directors pointing towards each singularity [161]. In our figures, we indicate
stars and monstars with triangles, and lemons with circles.

Star Lemon Monstar

Figure 6.3: An overview of the three kinds of C points based on their line classification [161]. The lines are the
orientation of the polarization ellipse at each pixel around the C point (circle or triangle), as determined from
experimental data.

Already a quick glance at Fig. 6.2 illustrates the clear relation between the topologi-
cal index (marker color) and the line classification (marker shape) of C points. In fact,
negative-index singularities are always stars, whereas both lemons and monstars are
characterized by a positive index, as expected, in general, for C points [161]. Table 6.1
lists the fraction of C points for each kind observed in our experimental data set. Note
that 50% of the total number of C points are stars, and they all carry a negative topo-
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logical index. Approximately 45% of the singularities are lemons, and only 5% mon-
stars, both types exhibiting a positive index. In the same table, we directly compare our
experimental outcome with the results from previous paraxial theory [151] and exper-
iments [152]. All of these examined statistics are perfectly consistent with each other.
In summary, the abundance of C points with a particular line classification is the same
for C points in truly two-dimensional light and two-dimensional slices through a three-
dimensional field.

Singularity 2D field 2D slice of a 3D field

Type Experiment Experiment [152] Theory [151]

Star 0.4997±0.0002 0.506±0.003 0.500

Lemon 0.4493±0.0013 0.443±0.002 0.447

Monstar 0.0503±0.0013 0.050±0.003 0.053

Table 6.1: Fraction of C points with different line classification. The results of our 2D experiment are compared
with a previous experiments [152] and theory [151].

6.3. SPATIAL DISTRIBUTION OF C POINTS

6.3.1. PAIR AND CHARGE CORRELATION FUNCTION

Having established that there is no difference between the abundances of the various
types of singularities observed in 2D slices of 3D light fields and truly 2D fields, the ques-
tion now arises as to whether their distribution in space is also the same. The natural
way of investigating the spatial distribution of pointlike singularities is by determining
their pair correlation function g (r ). Given a C point, this function describes how the
density of the surrounding C points varies as a function of distance. This method is
widely used to describe the physics of discrete systems [163–168], it can be directly re-
lated to the structure factor [169], and it represents a spatial analogous of the degree
of second-order coherence g (2)(τ), commonly used to determine photon bunching and
antibunching [170].

Figure 6.4 presents the pair correlation function for C points in two-dimensional ran-
dom light, as obtained from our experimental data. With the position of each singularity
known, we can compute their pairwise distances |ri − r j |, and eventually the pair corre-
lation function

g (r ) = 1

Nρ
〈∑

i 6= j
δ(r −|ri − r j |)〉, (6.2)

where N is the total number of singularities, ρ is the average density of surrounding sin-
gularities, and δ is the Dirac function. We compute the average and uncertainty of such
a correlation function by combining the outcome of 20 near-field measurements of the
optical random field under investigation. In each of these maps, we precisely pinpoint
the location and topological index of approximately 6500 C points, with a spatial accu-
racy that is limited by the pixel size of the experiment (≈ 20nm).
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Note that g (r ) is not flat, indicating that C points in random light exhibit spatial cor-
relation. At first glance, this g (r ) seems similar to the one of phase singularities in scalar
random waves [17, 87] and therefore also reminiscent of that of particles in a simple liq-
uid. In fact, g (r ) displays a damped oscillatory behavior around unity as a function of
r , with a maximum, representative of a surplus of singularities, at approximately half a
wavelength of distance. Surprisingly, the pair correlation of C points in 2D actually in-
creases as r approaches 0. In principle, the zero dimensionality of optical singularities
allows for a finite probability of having two at the same location. However, an increase
of g (r ) towards zero has never been observed, neither for phase singularities in scalar or
vector random waves [17, 87] nor for C points in a 2D slice of a 3D random field (Ref. [151]
and gray lines in Fig. 6.4).
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Figure 6.4: Pair and charge correlation function (g , g I ) for C points in random vector waves. The data points
with errorbars are the results from our experiment, blue and orange solid lines show our model for 2D vector
fields, and gray lines are the paraxial model [151].

To understand the unexpected behavior at small distances and to obtain an overview
of the spatial distribution of the C points, it is useful to also consider the charge correla-
tion function g I (r ): a more general expression of the pair correlation function in which
each singularity is weighted with its topological index [17]. The orange data points in
Fig. 6.4 display our experimental results for g I (r ). The most striking observation here is
that the charge correlation function is positive near r = 0. This means that when sin-
gularities are found at a close distance from each other they most often carry the same
topological index. Then, at r ≈ λ/4 the charge correlation function flips sign, indicating
the beginning of a displacement range where two singularities are more likely to have
opposite sign. The zero crossing roughly coincides with the distance at which g (r ) ex-
hibits the unexpected increase towards small r . This increase can therefore be attributed
to the surplus of same-sign singularities in such a displacement range.

The reason why C points in 2D tend to rearrange to form closely spaced pairs with the
same topological index is at this stage still unclear. The origin of the clustering should



6

64 6. SPATIAL BUNCHING OF SAME-INDEX C POINTS IN 2D RANDOM LIGHT

be sought in correlations among different field components set by the modal properties
of the field. However, the topological index is not the only intrinsic property carried by
C points. We could gain more insight by analyzing their behavior with respect to light’s
handedness.

6.3.2. C POINTS AND LIGHT’S HANDEDNESS

The correlation functions displayed in Fig. 6.4 provide an extensive description of the
distribution of C points but still not the full picture. This is because the information car-
ried by C points is not limited to their topological index. In fact, light’s polarization is
purely circular at every C point; however, it can be left- or right-handed, independent
of the topological index. In Fig. 6.5 we show a spatial map of the degree of circular po-
larization s3 = S3/S0, together with the position, topological index and handedness of
the C points therein. We notice how C points fall in domains of a given handedness. Of
course, s3 equals exactly +1 or −1 at every C point, with a sign that determines the hand-
edness of the C point itself. Each domain is delimited by L lines (white lines), where
polarization is purely linear (s3 = 0), and light’s handedness is undetermined. L lines
have to separate C points of opposite handedness. Contrarily, several co-handed singu-
larities can occur within the same domain. Furthermore, from Fig. 6.5 one immediately
realizes how handedness and topological index of a C point are not directly related, as
every combination of these quantities is possible.

The handedness of C points provides an additional degree of freedom to be account-
ed for in their spatial distribution. It is illuminating to include this degree of freedom

/10

Polarization singularities in random waves
Right-Handed Singularities
Left-Handed Singularities

-1 0 1
S3/S0

Figure 6.5: False-color map for the degree of circular polarization s3 = S3/S0, as obtained from our experi-
mental data. The plot corresponds to the same subsection of the measured optical random field displayed
in Fig 6.2. The black directors indicate the orientation of the polarization ellipse. Circles and triangles are
C points, and their inner color (purple or green) represents their handedness (left or right, respectively.
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in the computation of a new set of pair correlation functions. In general, g (r ) can be
expressed as the average of all possible partial correlation functions for C points with the
same or opposite handedness and the same or opposite topological index:

g (r ) = 1

16

∑
i , j

∑
α,β

gα,β
i , j (r ), (6.3)

where i , j ∈ [+,−] are indices for topological index and α,β ∈ [l ,r ] indicate handedness.
Following the notation of Dennis [151], Eq. (6.3) can be simplified with the definitions

g C
same ≡ gα,α

i ,i and g C
opp ≡ gα,α

i ,−i , (6.4)

both corresponding to co-handed singularities, for the cases of same and opposite top-
logical indices, respectively. Analogously, for anti-handed C points we have

g A
same ≡ gα,ᾱ

i ,i and g A
opp ≡ gα,ᾱ

i ,−i . (6.5)

Thus, we can express Eq. (6.3) as a function of these four correlation functions:

g (r ) = 1

4

[
g C

same + g C
opp + g A

same + g A
opp

]
. (6.6)

Figure 6.6 presents our experimental results for the four pair correlation functions
of the decomposition in Eq. (6.6), taking both the topological index and handedness
of the C points into account. In the distribution functions depicted in Fig. 6.6(a), we
only consider co-handed C points, either with the same (green) or opposite (purple)
topological indices. In this case, the experimentally determined functions describe the
standard characteristic properties exhibited by phase singularities in random waves. In
fact, g C

same(r → 0) = 0 for singularities with the same topological index, and a monotone
decrease towards finite value at r → 0 in g C

opp. The experimental results displayed in
Fig. 6.6(a) perfectly match the prediction of the model for polarization singularities in a
2D slice of a 3D field in the paraxial regime [151], which is equivalent to the model for
phase singularities in scalar random waves [17].

In fact, we can interpret C points as phase singularities in either the left- or right-
handed circular components of E:

ψl = Ex + i Ey , ψr = Ex − i Ey . (6.7)

This is because a phase singularity in ψl corresponds to a zero in ψl , resulting in a point
where E only has contributions from its circular-right componentψr , i.e., a right-handed
C point, and vice versa. Therefore, the spatial distribution of co-handed C points is ex-
actly equivalent to that of phase singularities arising in a single circular field component
ψl/r , i.e., of phase singularities in a scalar random wave field [151].

Our experiment confirms that also in 2D the distribution of co-handed C points is
the same as that of phase singularities in a scalar random field. Therefore, the origin of
the unusual behavior of the global distribution of C points must necessarily lie in anti-
handed singularities. Figure 6.6(b) presents the correlation functions for singularities
with opposite handedness. Here, g A

same(r ) reaches its maximum values at r ≈ 0. Singu-
larities of opposite handedness and the same topological index are often found at close
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Figure 6.6: Pair correlation function g (r ) for C points with the same (a) or opposite (b) handedness, and
the same (gsame) or opposite (gopp) topological index. Data points represent our experimental results, col-
ored solid lines show our model for an isotropic 2D random field, and solid gray lines are the 3D paraxial
model [151]. The solid gray lines in panel (a) overlap exactly with the colored solid lines.

distances from each other, confined in an extremely subwavelength regime. Regarding
pairs of C points with opposite topological index, the distribution g A

opp exhibits a behav-

ior that is qualitatively very similar to that of g C
opp. This result creates two clearly distinct

behaviors for the four combinations of index and handedness. On the one hand, the im-
pact of the handedness of C points on their spatial correlations seems to be only minor
for singularities with opposite topological indices, for which we do not observe big qual-
itative differences between g C

opp and g A
opp (purple data in Fig. 6.6). On the other hand,

considering the same or opposite handedness is crucial in the same-index case, since
the behaviors of g C

same and g A
same are evidently different, eventually with an opposite gra-

dient for r → 0 (green data in Fig. 6.6).

As a matter of fact, the data displayed in Fig. 6.6(b) offer a clear illustration of the
novel behavior registered for C points in 2D random light compared to the case of a 2D
slice of a 3D field. In particular, it clarifies that, in the 2D case, C points of opposite hand-
edness are far from being independent and so must be for the left- and right-handed field
projections from which they arise.

6.4. CORRELATION AMONG LIGHT’S VECTOR COMPONENTS

The overall spatial correlation of C points in 2D random light (Fig. 6.4) and, more specif-
ically, the correlation of singularities with opposite handedness [Fig. 6.6(b)], exhibit a
number of features that were not accounted for in a previous paraxial theory [151]. In
that theory, an assumption was made, consisting of the absence of any correlation be-
tween oppositely handed C points, i.e., g A

same = g A
opp = 1. This assumption corresponds

to a situation in which ψl and ψr are completely uncorrelated.

In fact, in three dimensions there are no restrictions that would imply a correlation
among the circular components ψl and ψr of a paraxial random field. The same holds
true for a two-dimensional slice of such a three-dimensional field [152]. In this circum-
stance, transversality can be fulfilled out of the plane in which the field is observed,
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meaning that the vector components of such a field can even be independently gen-
erated. Contrarily, in a truly two-dimensional vector field transverse propagation must
be fulfilled in the same plane in which the waves are actually propagating. Dismissing
the third dimension while obeying transversality then results in a correlation among the
vector components of the field, eventually its left- and right-handed projections.

We now adapt the paraxial model of Dennis [151] in order to account for the cor-
relations intrinsic to a 2D light field. The key for explaining our results is that in our
system the electric field can be modeled as a superposition of TE waves only. Note that
we would find completely equivalent results considering the in-plane component of a
field composed only of TM waves (see Section 6.6.1). Contrarily, the coexistence of two
independent TE and TM fields would add one extra degree of freedom to the system. In
the unlikely scenario in which those two contributions have equal wavelength and am-
plitude for a given optical frequency, the results for the spatial correlation of C points
would revert back to those observed in a 2D slice of a 3D field [139]. A TE mode in 2D
can be expressed starting from a scalar field Hz :{

Ex = ky Hz

Ey = −kx Hz ,
(6.8)

which, by default, satisfies the transverse condition.
For a random wave field, we follow Berry’s hypothesis and assume that Hz is an

isotropic superposition of monochromatic plane waves, each of them with a random
phase δk [17],

Hz =
∑

|k|=k0

exp(i k · r+ iδk), (6.9)

where δk is a random variable uniformly distributed in [0,2π]. The autocorrelation of
such a scalar, random, wave field is well known [17]: It is a Bessel function of order zero,

Czz (r) =
∫

dr0 H∗
z (r0)Hz (r0 + r) = J0(k0r ). (6.10)

The autocorrelations of Ex and Ey are also known [87], the main difference with Czz (r)
being an anisotropic term dependent on the orientation ϕ of r:

Cxx (r) = 1

2

[
J0(k0r )+cos(2ϕ) J2(k0r )

]
,

Cy y (r) = 1

2

[
J0(k0r )−cos(2ϕ) J2(k0r )

]
.

(6.11)

Also highly relevant to our study is the cross term among Ex and Ey , which exhibits the
following correlation:

Cx y (r) =
∫

dr0 E∗
x (r0)Ey (r0 + r)

= 1

2
sin(2ϕ) J2(k0r ).

(6.12)

This equation can be easily proven by carrying out the integral in Fourier space and sub-
stituting the relations Ex (k) ∝ sin(θk)δ(|k|−k0) and Ey (k) ∝−cos(θk)δ(|k|−k0) [87]. It
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is interesting to note that Ex and Ey only exhibit correlation when displaced since Cx y (r)
lacks the term proportional to J0, and J2(0) = 0.

Known these correlation functions, and given the expression ofψl andψr [Eq. (6.7)],
we have all the ingredients to compute the correlations among the circular components
of a TE random vector field. The autocorrelation of the left-handed component is

Cl l (r) =
∫

dr0ψ
∗
l (r0)ψl (r0 + r)

= Cxx (r)+C∗
y y (r) = J0(k0r ),

(6.13)

and similarly for Cr r (r). The result of Eq. (6.13) is also identical to what we obtained in
Eq. (6.10) for Hz , proving that each separate circular component behaves as a random
scalar field. Similarly to Eq. (6.13), we can finally determine the correlation among left
and right circular components:

Cl r (r) = [
cos(2ϕ)− i sin(2ϕ)

]
J2(k0r ) (6.14)

and
Cr l (r) = [

cos(2ϕ)+ i sin(2ϕ)
]

J2(k0r ). (6.15)

As elegantly explained by Berry and Dennis [17], the autocorrelation function of a
complex field contains all the information needed to retrieve the pair and charge corre-
lation function of its phase singularities. In the case of C points, i.e., phase singularities
in the right- or left-handed field component, the cross terms (Cr l and Cl r ) are also nec-
essary. Following the same procedure of Berry and Dennis, we first calculate the point
density of singularities in a scalar complex field, e.g., ψl ≡ψ′

l + iψ′′
l , which is defined as

ρ[ul ] = δ(ψ′
l )δ(ψ′′

l )

∣∣∣∣∣∂ψ
′
l

∂x

∂ψ′′
l

∂y
− ∂ψ′

l

∂y

∂ψ′′
l

∂x

∣∣∣∣∣ , (6.16)

where δ indicates the one-dimensional Dirac delta function, and where, for compact-
ness, we have introduced the real vector ul = [ψ′

l ,ψ′′
l ,∂xψ

′
l ,∂yψ

′
l ,∂xψ

′′
l ,∂yψ

′′
l ]T . An anal-

ogous density can be defined for ψr .
The pair correlation function between C points at two different space points rA and

rB and with opposite handedness can now be written in a straightforward way as

g A(rB − rA) = 〈ρ[ul (rA)]ρ[ur (rB )]〉
〈ρ[ul (rA)]〉〈ρ[ur (rB )]〉 . (6.17)

In this equation, the notation 〈 f [ul (rA),ur (rB )]〉 indicates the statistical average of a
generic f , the functional of the field components and of their derivatives at different
points in space. Introducing the combined vector u = [ul (rA),ur (rB )]T , the average can
be explicitly written in the form

〈 f [u]〉 = 1

(2π)D/2
p

det M

∫
d D u f [u]exp(− 1

2 uT M−1u), (6.18)

where D is the dimension of the vector u and M is the matrix of the correlations between
the various components of u, i.e., Mi j = 〈ui u j 〉. These elements correspond to the cor-
relations between the different components of the left- and right-handed fields that we
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have summarized above, as well as their spatial derivatives. Similar expressions for dif-
ferent combinations of the fields ψl and ψr and for specific choices of the index of the
singularities can be obtained from Eq. (6.17) with intuitive modifications.

In some particular cases [17, 87, 151], it is possible to derive a closed analytical ex-
pression for averages of the form in Eq. (6.17) by reducing the integrand to a quadratic
form and integrating with standard mathematical techniques [171]. However, the spe-
cific form of the correlation matrix in our model does not lend itself easily to applying the
formalism of Ref. [171]. This is because of the additional correlations between the real
and imaginary parts of the field components, corresponding to the imaginary terms in
Cl r and Cr l [Eqs. (6.14) and (6.15)]. Nevertheless, the average in Eq. (6.17) is particularly
suited to numerical integration with Monte Carlo techniques [172]. We therefore calcu-
late the pair correlation functions of C points and polarization vortices in two steps. First,
we analytically perform the integral over the terms containing the Dirac delta functions
in the integrand of Eq. (6.17). Subsequently, numerically we carry out the integration
over the remaining variables, using the multidimensional Monte Carlo method [172].
We also validate our theoretical results by numerically simulating the superposition of
random plane waves with TE polarization. The simulation results were all found in ex-
cellent agreement with the theoretical ones and are therefore not shown here.

We plot the theoretical expectations for the pair and charge correlation functions in
direct comparison with the experimental data. In Fig. 6.4, we show the pair and charge
correlation function for C points in 2D random vector waves and, in Fig. 6.6, the pair cor-
relation functions for C points with the same or opposite handedness, respectively. For
each of these curves we find an excellent agreement with the experiment. In particular,
the pair correlation functions displayed in Fig. 6.6(b) for C points with opposite hand-
edness represent the major novelty introduced by the model for 2D light. Among these
functions, g A

same exhibits a behavior that is extremely unusual for pair correlations of this
kind. Although this behavior is perfectly consistent with the experimental observation,
it might conceal further interesting properties of random light confined in 2D.

6.5. CONCLUSIONS

In this work, we investigated the spatial correlation of C points in 2D random light. We
compared it to existing theory and experiments for 2D slices through a 3D random field
in the paraxial regime. We demonstrated that confining the optical field to propagate in
two dimensions induces severe changes in the spatial distribution of its C points. The
shortage of degrees of freedom caused by the removal of one dimension results in a cor-
relation among the vector components of the 2D light field. In the circular basis, this
results in a correlation among the oppositely handed optical-spin components of light.
One of the key consequences was the observation that the chance of finding C points
with same topological index actually increases as their mutual distance goes to zero. This
is an unusual finding for dislocations of any kind. We quantify the correlation between
left- and right-handed spin for the case of a TE field and incorporate it in a newly de-
veloped theoretical model. Our results are general for in-plane fields, including those
of a TM mode as well. The outcome of the 2D model is found to be in perfect agree-
ment with our experimental results. Given the unusual properties of the ensemble of
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C points in 2D random vector waves, our findings may trigger a reevaluation of concepts
that are considered pillars of singular optics and topological defects, i.e., the sign prin-
ciple [37] and topological screening [41]. Moreover, we anticipate that our results will
trigger investigations of the evolution of C points as a function of external parameters, in
order to explore phenomena such as same-index attraction and the formation of bound
states among pairs of C points, which would be compatible with our observed correla-
tion functions. Finally, the behavior at short distances might lead to more unexplored
features such as polarization vortices and higher-order singularities.
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6.6. SUPPLEMENTARY INFORMATION

6.6.1. ANALOGY BETWEEN TE AND TM MODES
As introduced in Eq. (6.8), we can express a TE mode in 2D starting from a scalar field
Hz :

ET E =
 ky

−kx

0

Hz (6.19)

which satisfies transverse propagation in the x − y plane for the electric field:

k ·E = 0. (6.20)

In Eq. (6.7), Hz is actually the out-of-plane component of the magnetic field, up to a
normalization constant. However, this is not the only components of the magnetic field,
which also has (imaginary) in-plane components

HT E ∝
 kz kx

kz ky

k2
0

Hz . (6.21)

This expression can be easily verified by using the divergence equation for the magnetic
field (∇ · H = 0) and the z component of the rotation equation for the magnetic field
(∇×H|z ∝ Ez = 0). In this formula, kx and ky are the x and y Cartesian components of
the wavevector k, k0 is the amplitude of such an in-plane wavevector (k2

0 = k2
x +k2

y ), and
kz is the out-of-plane wavevector component, which is purely imaginary and describes
the decay of the evanescent field away from the 2D structure.

It is very easy to relate TE fields to TM fields. In fact, electric and magnetic fields of a
TM mode are analogous to magnetic and electric fields of a TE mode, respectively. This
results in the following TM fields

ET M ∝
 kz kx

kz ky

k2
0

Ez , HT M ∝
 ky

−kx

0

Ez , (6.22)

Where it appears Ez as the out-of-plane component of the electric field, up to a nor-
malization constant. In our work we study the case of a TE mode, where Hz is a scalar
random field. In general a TM mode will correspond to another random field Ez . For
simplicity we now consider the case in which Ez = Hz , which allows us to conveniently
express the in-plane components of the electric field for a TM mode as a function of the
electric field of a TE mode:(

Ex

Ey

)
T M

∝
(

0 −1
1 0

)(
Ex

Ey

)
T E

. (6.23)

We now demonstrate that the relation of Eq. (6.23) leads to equivalent C points for
the two-dimensional TE or TM fields. The more general situation in which Ez 6= Hz will
simply correspond to a different realization of the starting random field, leading to a
different set of C points, but with no consequences on their spatial correlation.
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In Eq. (6) of the main text we introduced the circular components of the vector field E:

ψl = Ex + i Ey , ψr = Ex − i Ey . (6.24)

If we calculate such circular field components for a TM mode, we find that we can ex-
press them as a function of the same component for the TE mode:

ψT M
l = E T M

x + i E T M
y =−E T E

y + i E T E
x = iψT E

l ,

and similarly for the right-handed component ψr . The only difference among the TE
and TM circular fields consists in a global phase-shift of ψl/r . Such a phase shift does
not influence existence and position of the phase singularities arising in ψl/r . As ex-
plained in the main text, every C point in the in-plane field E corresponds to a phase
singularity in either ψl or ψr . So we can conclude that when Ez = Hz the C points of
the in-plane electric field of a TM mode are exactly the same as those of a TE mode.
In general, when Ez 6= Hz are arbitrary scalar random wave fields, the C points of the
corresponding TE/TM mode will follow exactly the same statistics, both in index and
handedness, as described in the main text.



7
POLARIZATION VORTICES

Tiger got to hunt, bird got to fly;
Man got to sit and wonder “why, why, why?”

Tiger got to sleep, bird got to land;
Man got to tell himself he understand.

8Kurt Vonnegut

When the position of two singularities of equal topological index coincides, a higher or-
der singularity with twice the index is created. In general this is not an event that takes
place spontaneously, especially when it involves point-like entities like phase or polar-
ization singularities in 2D. Here, we present the observation and the spatial correlation
of polarization vortices in 2D random vector waves. These are higher-order singularities
resulting from the overlap of two C points with the same topological index. We discover
that polarization vortices of positive index are observed to spontaneously occur more fre-
quently than their negative counterpart, which results in a symmetry breaking with un-
precedented equals. We expand on this finding by analyzing the spatial correlation of
C points, which is indeed found to exhibit different behavior for ++ and −− pairs.

73
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7.1. INTRODUCTION

Measurable quantities circulate around their singularities and whether they do it clock-
wise or anticlockwise determines their topological charges, or indices [7]. In the case of
polarization singularities, the rotating quantity is the orientation of the polarization el-
lipse. This orientation, or director, rotates over an angle ±π around ordinary C points
[160]. In principle, one can also have a ±nπ angular variation around the singulari-
ties, where n can be any integer number, so to avoid discontinuities in the ellipse’s ori-
entation [173]. For n bigger than 1, these are nth-oder singularities of the field [174].
High-order singularities can be designed to emerge in the central axis of vortex beams
of arbitrary angular momentum [175], as for radially and azimuthally polarized beams
[176–179]. In these cases, the optical fields are purposely engineered to exhibit these
exceptional points. Instead, a lot more peculiar is the case in which high-order singu-
larities are spontaneously formed, for example starting from a disordered ensemble of
single-order ones. This typically is not allowed, as in the case of phase singularities in
a random wave field, which exhibit mutual repulsion when they share the same topo-
logical charge (Chapter 3). But as demonstrated in Chapter 6, the story is different for
polarization singularities in 2D random light, where the vicinity of same-index C points
is enhanced with respect to opposite-index ones. This suggests that two C points of half-
integer index can approach to a separation of zero and thereby give rise to a higher-order
singularity of integer index, around which the polarization ellipse rotates by ±2π. Anal-
ogous higher-order singularities have also been observed in a few different frameworks,
such as spinorial quantum fluids [180], or in correspondence of a bound state in the con-
tinuum [181, 182], and they are known as polarization vortices. In this chapter, we show
that we are able to experimentally observe polarization vortices in 2D random fields.
We demonstrate that these high-order singularities obey strict spatial correlation rules.
Most surprisingly, polarization vortices in random waves do not satisfy charge neutrality,
as an excess of positive vortices is found with respect to negative ones. This imbalance of
topological indices concerns the ensemble polarization vortices only, since considering
all the singularities of the field will still lead to index neutrality. We trace our findings
back to the correlation of pairs of same-index C points in random light, which helps
understanding the asymmetry in vortex creations. Finally, we employ the model for 2D
random fields described in Chapter 6 to underpin the index imbalance as a consequence
of confining the propagation of light in a 2D plane, finding a good agreement between
experiment and theory.

7.2. INDENTIFICATION OF POLARIZATION VORTICES

Finding the polarization vortices in the near-field of two-dimensional random waves
requires a dedicated analysis method. In principle, the detection of a polarization vortex
is equivalent to that of single-order singularities, except that a double index must be
observed. In practice, this requires some modifications to the algorithm described in
Section 3.2.2. In that case, an integration path of 2× 2 pixels was used. Such a path
would not be enough to detect a phase circulation of 4π. To avoid confusion, we reiterate
that C points (index I =±1/2) are phase singularities (charge q =±1) in the constructed
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field Ψ = S1 + i S2 (see Chapter 6). Polarization vortices (index I = ±1) therefore appear
as phase vortices of charge q = ±2 in Ψ. For practical convenience, we always detect
C points and polarization singularities as phase singularities in Ψ. For this reason we
need to be able to detect a phase circulation of ±4π in order to determine the location of
polarization vortices.

Such a phase change is too fast to be encoded by only four pixels. Thus, the algo-
rithm described in Chapter 3 will always indicate the existence of a pair of single-order
singularities displaced by a single pixel. At this point two approaches can be pursued. In
a first approach one could still use the existing algorithm, and establish that when two
C points are displaced by a single pixel they actually correspond to a polarization vortex.
Alternatively, a new detection algorithm can be designed to perform phase integrals over
3×3 pixels loops. This larger integration path indeed allows for the direct visualization
of second order singularities. After verifying that both approaches yield the same results,
we only applied the second method for the data presented in this chapter.

Figure 7.1 presents an illustrating set of 24 of the polarization vortices detected in our
measured random field. Depending on their topological index (I =±1), the polarization
vortices exhibit different topologies that also differ from the three classes of C points
described in Chapter 6. Considering the orientation of the major axis of the polarization
ellipse around the vortices (Fig. 7.1), we identify two possibilities. In the case of negative
vortices (−1) the directors point towards the singularity along four directions, forming a
four-pointed star. For positive vortices (+1) there is no direction along which the ellipse
axes point towards the singularity, resulting in a circular pattern around the vortex.

With a pixel size of 17nm, corresponding to integration loops with approximately
50nm per side, we detect on the order of 80 polarization vortices per measured field
map (17µm×17µm). This number is a lot smaller than the number of C points detected
in the same field map (≈ 6500). The fact that only a small fraction of the total amount of
C points leads to polarization vortices is justified by the high-order nature of the latter.
It is important to stress that the experimental determination of a polarization vortex is
a complicated task to be achieved with an experimental approach. In fact, resolution as
well as pixel size are necessarily finite. Instead, polarization vortices are the result of the
perfect overlap of two point-like entities, and are therefore impossible to observe with
a finite resolution. What we have done here is to set an effective threshold below which
two same-index C points are considered as one single polarization vortex. Pragmatically,
we set this distance to be the pixel size of our experiment. Changing this threshold would
change the number of vortices detected as such, and therefore their density. Still, with a
pixel size of less than 20nm we are in the regime where the pair correlation function of
C points is rather flat (Fig. 6.4, Chapter 6), so we can reasonably expect that the number
of detected vortices would simply scale linearly with the threshold distance.

Especially after these considerations, the study of spatial correlations among polar-
ization vortices becomes a lot more insightful and insightful than their bare observation.
The observation of a clear spatial correlation would unveil the presence of an underly-
ing physical mechanism governing their collective behavior rather than them being po-
sitioned at random.
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Figure 7.1: False-color map for the orientation of the major axis of the polarization ellipse in a 2D random light
field (main plot). The black directors indicate the orientation of such an axis, too. The plot is a 8.5µm×8.5µm
subsection of the total measured map. Circles and triangles are C points. The color of the symbols, white or
black, denotes a topological index I = +1/2 or I = −1/2, respectively. The shape of the symbols, triangles or
circles, denotes a star-type or lemon-type classification, respectively. In the observed map, four occurrences of
the formation of polarization vortices are highlighted (zoomed-in figures in the panels above the main plot).
These are depicted by white (index I =+1) or black (index I =−1) symbols.



7.3. SPATIAL CORRELATION OF POLARIZATION VORTICES

7

77

7.3. SPATIAL CORRELATION OF POLARIZATION VORTICES

To characterize the spatial correlation of the polarization vortices we compute their pair
and charge correlation function. This is done in analogy to what presented for phase
singularities in Chapter 3 and for C points in Chapter 6. However, the statistics offered
by a single measurement is strongly reduced for the case of polarization vortices (∼ 80
vortices v s ∼ 6500 C points). For this reason, we combine the statistics from 150 differ-
ent measurements of the random light field in order to calculate the pair correlations
discussed in this section.

7.3.1. PAIR AND CHARGE CORRELATION FUNCTIONS

Interestingly, polarization vortices do exhibit a clear spatial correlation. Figure 7.2 pre-
sents the pair and charge correlation function for polarization vortices in 2D random
vector waves. In these correlation functions we can identify several characteristic fea-
tures. Firstly, g (r ) clearly tends to zero when r ≈ 0, indicating that polarization vortices
of any sign are never to be found in complete overlap. Secondly, the oscillations of this
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Figure 7.2: Pair (g ) and charge (g I ) correlation function for polarization vortices in random waves. The data
points are representative of the experimental results, while solid lines are the result of the theory for polariza-
tion vortices in 2D random light.

correlation function show a much stronger contrast compared to the one displayed by
C points (Fig. 6.4) and phase singularities (Figs. 3.3 and 3.5). The first peak reaches val-
ues ≥ 4, more than twice as high as the values observed in the pair correlation function
for C points. Additionally, this first peak in the g (r ) actually consists of two peaks. It is
revealing to combine this observation with the information contained in the charge cor-
relation function g I (r ). In fact, in the displacement range contained within the double
peak of the g (r ), the g I (r ) exhibits a zero crossing, going approximately from −4 to 2.5
over a distance less than one fifth of the wavelength of light. Not only is it clear that the
average nearest-neighbor distance for pairs of same-sign vortices is 20% bigger than that
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of opposite-sign vortices, but the statistical distribution around these average values is
narrow enough to resolve it as a double peak in the g (r ).

This is the first hint that polarization vortices of opposite topological index are dis-
playing different statistical properties. Another observation that must be made at this
point, is that g I (r ) does not display a damped oscillatory behavior about zero as r in-
creases, but it approaches a finite, positive, value. The charge distribution function is
a measure of the number of vortices displaced by a distance r and weighted with their
topological index. Therefore, a positive asymptotic value indicates an imbalance in the
index distribution. In fact, if more positive than negative indices are present, the number
of same-sign pairs will necessarily be higher than that of opposite-signed pairs, yielding
a positive value of the charge correlation function g I at large distances. We can express
this in formulas, with N+ as the number of positive vortices and N− as the number of
negative ones. Then, if N+ = f N−, we have that the number of pairs of same-index sin-
gularities is

Nsame = N+(N+−1)+N−(N−−1) = (1+ f 2)N 2
++O (N+), (7.1)

whereas the number of pairs with opposite index is

Nopp = N+N−+N−N+ = 2 f N 2
+. (7.2)

When r →∞, we can neglect the term O (N+), resulting in

g I (r →∞) ∝ Nsame −Nopp ∝ 1+ f 2 −2 f = (1− f )2 > 0 ∀ f 6= 1. (7.3)

The imbalance in the indices is evident already when counting the number of pos-
itive and negative polarization vortices found in our measurements. In a total of 150
measurements, we find an average ratio of vortices f = N+/N− ≈ 2.3. Such an im-
balance in topological index is quite an unusual result for singularities in random fields.
The statistical properties of the singularities with positive topological charge (index) are
usually completely analogous to those of the ones with negative charge (index) [151]. To
understand the origin of the asymmetry that we find, it is useful to take one step back and
reconsider the entities of which polarization vortices are constituted: pairs of C points.
An imbalance in the index of vortices must hence originate from a different spatial cor-
relation for pairs of positive C points with respect to their negative counterparts, at least
when their mutual distance approaches zero, i.e., when they collapse into a vortex.

7.3.2. INDEX IMBALANCE: + + AND – – PAIR CORRELATIONS

Figure 7.3 presents the pair correlation function of C points for the cases in which both
the singularities that constitute the pair have either positive (g A++, orange data) or nega-
tive (g A−−, purple data) topological index. Note that in both cases only singularities with
opposite handedness are taken into account, as the correlation of co-handed pairs is
identical for ++ and −− pairs, and equivalent to that of phase singularities in scalar ran-
dom waves (see Section 6.3.2). The two functions of Fig. 7.3 equally contribute to the
pair correlation of C points with the same topological index and opposite handedness,
as described in equation (6.5), with

g A
same(r ) = 1

2

[
g A
++(r )+ g A

−−(r )
]

. (7.4)
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Figure 7.3: Pair correlation functions: g A++(r ) for pairs of C points with positive topological index (orange) and

g A−−(r ) for negative index pairs (purple). The data points with errorbars show our experimental data, the solid
lines are our model for 2D random light fields. The solid gray line is the model for a paraxial random field [151].

Evidently, it makes a difference for pairs of C points to have positive or negative index, as
it strongly influences their spatial arrangement. At very short distances (r < λ/5), g++ is
significantly higher than g−−, by about a factor 2. This is consistent with the observation
of a larger number of polarization vortices with positive rather than negative index. In
the range where the displacement r among C points is between λ/2 and λ the behaviors
of g A++ and g A−− are anticorrelated (correlation coefficient in that range ≈ −0.85). As the
displacement is increased towards values of r > 2λ the two correlation function start to
coincide, as they will eventually do for r →∞.

A symmetry breaking in the behavior of topological singularities with opposite index
is not common. From bare intuition there is no reason why a pair of entities with index
−1 should behave differently from a pair of index +1. Similarly to what was shown in
Chapter 6, this breaking of symmetry is a change in the behavior of C points that stems
from confining a random field to propagate in 2D only. With this regard, it is important
to recall that in a 2D slice of a 3D field, C points of opposite handedness would not ex-
hibit any correlation, i.e., g A++ = g A−− = 1. Confining the random field in two dimensions
breaks this degeneracy, encouraging pairs of positive C points to approach each other
more than negative ones, and resulting in the observed imbalance in the total index of
polarization vortices. We verify that this is the case by computing the theoretical ex-
pectations for g A++ and g A−− with the model described in Chapter 6 for a 2D transverse
electric random field. The outcome of the model is plotted together with the experimen-
tal data in Fig. 7.3, represented by solid lines. The agreement between model and data
is excellent. All the essential features discussed in the previous paragraph are accounted
for by the model, and no additional ones are revealed.
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7.3.3. SPATIAL TOPOLOGY OF STAR-STAR AND LEMON-LEMON PAIRS

Especially in relation to their index-dependent behavior, it is interesting to include the
line classification of C points in the discussion. As detailed in Chapter 6, the index of
C points is related to the topological properties of the director field around these singu-
larities, with negative index singularities always being star-type, and positive index ones
primarily being lemon-type. This line classification is related to the broken rotational
invariance of the field topology around C points. Thus, we can associate a set of spe-
cial directions around a C point. These are the directions along which the director of
the polarization ellipse points towards the singularity core: three directions for star type
and one for lemon type (see also schematic in Fig. 7.1). The question naturally arises
whether these special directions play a role in the spatial arrangement of C points. If so,
this could be one cause to the different behavior unveiled in the spatial correlations of
++ and −− pairs of C points (Fig. 7.3). To answer this question we compute a new set of
pair correlation functions, including a dependence on the displacement direction with
respect to C point’s directors.

Figure 7.4 presents the pair correlation g (r,θ) of C points as a function of the dis-
placement direction θ. In computing a pair correlation function, the singularities dis-
placed by a distance between r and r +dr from a reference one are counted, averaging
among all possible choices of the reference singularity (see also Chapter 3). In the case
of the direction-dependent pair correlation functions in Fig. 7.4, we restrict the counting
to the singularities contained in a circular sector of width π/3 around θ, where θ is the
orientation of the displacement vector of a pair calculated with respect to the direction
of the director of the reference singularity. For lemons (one director) the choice of this
reference frame is unambiguous. For stars and monstars (three directors), we choose as
a reference one of their three directors, at random.

The lemon-lemon correlation function in Fig. 7.4(a) displays a strong dependence
on the displacement angle θ. Near r = 0, the data correspondent to small displacement
angles (brown) is approximately 8 times as high as the one correspondent to θ ≈π (light
orange). This means that among these closely spaced lemon-lemon pairs, a clear ma-
jority is oriented along the direction pointed by the singularity directors. Quantitatively,
approximately 50% of of the pairs of lemons with displacement r < λ/10 are aligned
within an angle π/6 with respect to the director of the reference singularity. Then, 35%
of the pairs have either orientation θ = π/3 or θ = 5π/3. Finally, the remaining 15% are
equally partitioned among θ = 2π/3, θ = π and θ = 4π/3. This analysis explains the cir-
cular pattern of the director field that surrounds positive polarization vortices (Fig. 7.1).
For C point separations larger than λ the angular dependence vanishes, and all the cor-
relation functions correspondent to different values of θ tend to coincide.

The analysis of the star-star correlation function [Fig. 7.4(b)] shows a much less clear
dependence on the angle θ than the one displayed by the lemon-lemon pair correlation.
Intuitively, given the fact that star-type C points have three directors instead of one, the
dependence on θ of their pair correlation g (r,θ) could be expected to have a periodicity
of 2π/3, i.e., to the angle between the three directors of a perfectly symmetric star. We
test this hypothesis by computing the correlations g (r,θ) for θ = nπ/3 (n = 0,1, . . . , 5)
and plotting all the functions obtained for even values of n with the same color (dark
purple), in contrast to that used for odd values of n (light purple). Figure 7.4 shows that
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all the pair correlation functions correspondent to angles θ′ = θ+2nπ/3 are indeed con-
sistent with each other. On the contrary, some difference exists between the functions
computed at θe = 2nπ/3 and those correspondent to θo = θe + (2n + 1)π/3. This is es-
pecially visible in the region r < λ. The most evident observation here is that g (r,θo)
almost vanishes at r = 0.4λ, while g (r,θe ) stays close to unity. This indicates that at this
particular separation stars tend to stay aligned to the direction of one of their directors
rather than to avoid it. For r <λ/10 the differences among the correlation functions cal-
culated for different values of θ have rather similar values. This means that stars, unlike
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Figure 7.4: Pair correlation functions for positive index C points (upper left panel) and negative index C points
(upper right panel), as a function of the displacement angle among the C points. The data points with different
colors are the pair correlations for C points displaced within a given angular range with respect to the orienta-
tion of one (the) director associated to each singularity (see schematics below the main plots, and inset in the
main plots for the color code). In the main plots, the lines are a guide for the eyes.

lemons, do not have a precise preferential alignment for their directors when their mu-
tual distance approaches r = 0. In this regard, it is important to notice that a pair of stars
superimposed while pointing at each other with one of their directors, or not, would
in both cases lead to a four-pointed star shape for the director field which surrounds
negative-index polarization vortices (Fig. 7.1).

Overall, the study presented in this Section for the pair correlation of C points in re-
lation to their line classification, shows that the differences found between g A++(r ) and
g A−−(r ) also include a dependence on the topology of the director field around each sin-
gularity. For a C point to be a lemon (or a star) it influences its spatial correlation towards
other lemons (or stars), in the way exemplified in Fig. 7.4. One might think that such
topological properties could then be the reason of the imbalance between positive- and
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negative-index vortices. One hypothesis is that it is easier for lemons pairs to approach
at distance r = 0 than it is for stars pairs. However, we stress that the imbalance of vor-
tices has to come from the fact that the random field in which all these singularities live
is two-dimensional. In a 2D slice of a 3D field, C points would still be divided in stars
and lemons, with the exact same topologies, and even with the exact same occurrence
of each type as in the 2D field (see Chapter 6). But in the 3D case, pairs of C points with
different handedness do not exhibit any correlation with respect to each other, turning
all the curves in Figs. 7.3 and 7.4 into flat lines g A++(r ) = g A−−(r ) = 1 (gray line in Fig. 7.3).
Consequently, this fact undermines any argument intended to explain the imbalance of
polarization vortices starting from the line classification of the pairs of C points from
which they are generated.

Another interesting comparison is that of a TM field, still in 2D. As described in Sec-
tion 6.6.1, the statistics of the C points in a TM field are completely equivalent to those
of a TE field, both in index and handedness. However this is not the case for the absolute
orientation of the C point directors, which is slightly rotated. This results in different
topologies for the polarization vortices of a TM mode, especially for those with positive
index, originating from lemons pairs. For a TM mode, these pairs tend to have their di-
rectors anti-aligned (θ ≈ π) when approaching mutual distances r = 0. Again, the fact
that the different pairing topology found for the TM mode still maintains the same index
imbalance for the polarization vortices as in the TE mode, confirms that the topology of
the director field around C points does not have a direct relation with the index imbal-
ance in polarization vortices, which must be sought in the two-dimensional nature of
the field only.

7.4. CONCLUSIONS

In this chapter, we presented the experimental observation of higher order singularities
of the polarization state of a random light field, known as polarization vortices. We dis-
covered that polarization vortices in random waves exhibit a strong spatial correlation,
with measured values for their pair correlation function reaching values larger than 4.
Most interestingly, we discovered an imbalance in the total topological index of the de-
tected vortices: about twice as many positive vortices were found than negative ones. We
traced this observation back to the fact that C points with positive index are more prone
to be found at a vanishing mutual distances than negative ones. Moreover, we found that
at short distances positive C points (mostly lemons) prefer to align along the direction
defined by the director of the singularity, while negative C points (stars) do not exhibit
a clear preferential direction. As in Chapter 6, these observations find their explanation
in the fact that a truly 2D (TE) random field is investigated, as no index imbalance is to
be expected for a 2D slice of a 3D field. In fact, the model developed in Chapter 6 for
2D random fields perfectly describes our experimental findings. It is important to stress
that the lower dimensionality and its resulting correlations among the vector field com-
ponents is the underlying cause of the observations made in this chapter, in particular
with respect to the analysis described in Section 7.3.3, which could inspire the develop-
ment of a more universal description of the behavior of C points. Finally, we note that
these results are quite general for the 2D case, as they apply to both TE and TM in-plane
fields, with no relevant differences.
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WAVELENGTH-DEPENDENT

EVOLUTION OF C POINTS

IN 2D RANDOM LIGHT

Second star to the right, this is the way
and then straight on, till morning
then you find the road by yourself

it leads to Neverland

9Edoardo Bennato

In this chapter, we study persistence and pairing statistics of C points in random opti-
cal waves as a function of the excitation wavelength, and compare them to the case of
phase singularities. Even though C points of different handedness are correlated in space,
anti-handed singularities do not appear to influence each other’s evolution as a function
of wavelength. We underpin this observation by computing the persistence statistics of
C points, which behavior is highly similar to that observed for phase singularities in a
single scalar component.
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8.1. INTRODUCTION

I N Chapter 6 we showed how the C points of a vector wave field can be considered
as phase singularities in the projections of this field on a circular basis [139]. This

suggests that the evolution of C points in random light might be understood by consid-
ering that of phase singularities in scalar random fields. In a situation in which the two
circular components of the fieldψl andψr are independent [50, 151], also the two corre-
sponding ensembles of phase singularities will have an independent evolution, exerting
no influence on each other. Hence, in this case one expects the statistics of the evolu-
tion of C points to be exactly equivalent to those of these equivalent ensembles of phase
singularities [51, 115]. However, as we demonstrated in Chapter 6, in two-dimensional
random light ψr and ψl do exhibit correlations [139]. In particular we found spatial cor-
relations between C points of different handedness, especially pronounced for singular-
ities with the same topological index, but also present for opposite-index singularities.

In this chapter, we investigate the evolution of C points in two-dimensional random
light when the wavelength of the wave field is varied. Regarding the persistence of these
singularities in the light field we obtain statistics that follow the behavior found for phase
singularities (Chapter 5). Moreover, we analyze the evolution of C points near the ob-
servation of a polarization vortex. We find that before and after being superimposed,
C points with the same index typically diverge from each other, suggesting that polariza-
tion vortices are unstable in random waves.

8.2. EVOLUTION OF C POINTS AND THEIR STATISTICS

To study the evolution of C points in random light as a function of wavelength, we couple
monochromatic light in the chaotic cavity and map amplitude, phase and polarization
of the optical field in a square region 17µm×17µm above its surface (see Chapter 6). We
then repeat the measurement at different wavelengths of the input radiation with a step
δλ = 0.01nm (see Chapter 5). As in the case of phase singularities, the displacements of
each C point are small enough to allow us to track them throughout their entire evolu-
tion. To perform the tracking computationally we exploit the same heuristic algorithm
that was used in Chapter 5 [115].

Figure 8.1 presents three subsections of the total field maps for three different wave-
lengths (δλ between each presented measurement is 0.02nm). In the upper row of plots,
we present the degree of circular polarization S3/S0, whereas the lower row displays
maps of the orientation of the polarization ellipse. In all the plots, C points are high-
lighted by light-gray circles and dark-gray triangles, indicative of positive and negative
topological indices, respectively. Green and purple insets inside the markers represent
right/left handedness, respectively. By comparing the polarization maps measured at
different wavelengths, we can appreciate how C points move with the tuning of this pa-
rameter. A quick analysis of the figure allows us to spot immediately one of the main
differences with respect to the case of phase singularities: a pair of positive-index singu-
larities that are able to approach each other when at very small separations. We record
a total of approximately 25000 full trajectories, from creation to annihilation. The infor-
mation contained in these trajectories allows us to investigate persistence and pairing
statistics of C points with a good statistical significance.
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Figure 8.1: Evolution of C points as a function of light’s wavelength (δλ between the presented measurements
is 0.02nm). The first row of panels (a)-(c) displays a false-color map for the degree of circular polarization (s3),
at each input wavelength. The second row of panels (d)-(f) shows a false-color map for the orientation of the
polarization ellipse (ψ), for each input wavelength. The black lines display this orientation angle, too. In all the
figures positive-index singularities are depicted by white light-gray circles and negative-index ones by dark-
gray triangles. A purple or green color in the marker is used to indicate left- or right-handedness, respectively.

8.2.1. PERSISTENCE AND LIFELONG FIDELITY

Figure 8.2 presents the histograms for the persistence of C points in the measured ran-
dom field. The data points in the upper plot represent the number N of C points mea-
sured to persist in the field for a wavelength shift ∆λ. At a first glance, the behavior is
qualitatively highly similar to that observed for phase singularities. Indeed N (∆λ) ex-
hibits an exponential behavior for ∆λ bigger than a cutoff wavelength shift λ∗. In chap-
ter 5 we modeled this part of the behavior with an exponential decay ∼ e−∆λ/λc , with
λc = 0.6nm. In that case we performed measurements covering a wavelength range
L = 1.2nm with a step δ = 0.02nm. The measurements presented in this chapter are
instead for a range L = 1.5nm, with a step δ = 0.01nm. The difference in L slightly
affects the finite-size effects due to the finite range of the wavelength scan, as L is con-
tained in the correction factor (1−∆λ/L ) in front of the exponential (see Chapter 5).
Additionally, this change influences the quality of the statistics, since the total number of
measured trajectories increases for a larger range L . When we plot the model discussed
in Chapter 5 including the factors which are appropriate for this new set of measure-
ments, we observe that it perfectly describes the trend corresponding to the long-living
population of C points, but with N (0) twice as big as the one used for phase singulari-
ties. This finding suggests that C points of a given handedness are hardly influenced by
the evolution of oppositely handed singularities. In fact, we find that the persistence his-
togram of C points in random light is equivalent that of two sets of independent phase
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Figure 8.2: Histogram for the persistence of C points in random light. The errorbars in the upper plot represent
the number N of singularities versus their persistence in the random field in wavelength shift ∆λ. The boxes
are the number N f of faithful C points. These are C points that preserve their partner for both their creation
and annihilation. In the lower plot we show the fidelity fraction F =N /N f

singularities in scalar random fields added together. These two sets, are the ensemble of
phase singularities in ψr (left-handed C points) and that of ψl (right-handed C points).
When considering their evolution as a function of wavelength, these two ensembles of
oppositely-handed dislocations do not seem to affect each other’s persistence. This in-
dependent behavior is expected for C points in 3D fields, where ψr and ψl can be com-
pletely independent from each other, but it is surprising in a 2D field, as in Chapter 6
we demonstrated how the spatial distribution of C points with different handedness ex-
hibits a strong correlation. Clearly, this correlation in space does not have significant
implications on the evolution of C points as a function of wavelength.

8.2.2. MIXING OF ANTI-HANDED C POINTS

In principle, C points with opposite topological index and handedness can be created
and/or annihilated together, as two singularities with these characteristics can approach
each other until their separation is zero [see Fig. 6.6(b)]. However, having observed that
the evolution of C points is compatible with that of two independent sets of oppositely
handed singularities, such a pairing seems to be discouraged. It is therefore interesting
to investigate whether these events, that originate from singularities existing in oppo-
sitely handed projections of light’s vector field, are actually taking place. Their occur-
rence can be checked by including the information on C points’ handedness in their
trajectories. In Fig. 8.3 we display the persistence histogram for C points in 2D random
light, and directly compare it with the histogram for singularities that are created and
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annihilated with anti-handed partners. In the upper plot, in orange the total number
of singularities N as a function of their persistence in the field. In purple the number
of singularities Nm which during creation and/or annihilation mix with a anti-handed
C point. In general, we observe that Nm ¿ N , at every wavelength shift ∆λ. Moreover,
the trend of Nm is highly similar to that of N . In fact, when we compute the ratio be-
tween these two quantities (lower plot), this does not show any significant dependence
on ∆λ. The ratio Nm/N is approximately 1.9% for all ∆λ. This number can be inter-
preted as an upper limit for the number of singularities which can act as connections
between the ensembles of right-handed and left-handed C points. It is an upper bound
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Figure 8.3: Histogram for the persistence of C points in random light. The data points in the upper plot rep-
resent the number of singularities versus their persistence in the random field in wavelength shift ∆λ, for all
the measured C points (orange) and for the subset of C points which are created and/or annihilated with a
C points of opposite handedness (purple). In the lower plot the fraction of singularities which are created or
annihilated with an oppositely handed partner (Nm /N ), versus persistence in wavelength shift ∆λ. The red
line is the weighted average of these fractions.

due to our finite resolution. This can cause an overestimation of the number of events
in which singularities of different handedness are created or annihilated. In fact, a pair
that we detect to be created or annihilated could just be displaced by a distance smaller
than our pixel size, without actually being involved in a creation or annihilation process.
Nevertheless, this overestimation can not contradict the main outcome of the observa-
tions made in this section. The data presented Fig. 8.3 confirms that the vast majority of
singularities with opposite handedness do not influence their mutual evolution.

Considering the creation/annihilation events of pairs of anti-handed C points opens
an interesting line of reasoning in relation to the polarization vortices studied in Chapter
7. As a matter of fact, polarization vortices are also pairs of C points with opposite hand-
edness. Here, we are considering events of similar nature, where instead of having two
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dislocations with the same topological index, we consider the annihilation or creation
among two opposite indices. Even though this event is not visualized as a higher order
singularity with twice the index, it will still be a non-trivial location of the field, since two
points of opposite handedness, therefore separated by an L line [6, 15], collapse onto the
the same location.

8.2.3. C POINTS’ TRAJECTORIES BEFORE AND AFTER VORTICES FORMATION

As we mentioned the case in which two C points with opposite handedness and same
index lead to a polarization vortex, the question that arises naturally is how do these
C points move just before and after creating the vortex. In Chapter 7, we illustrated how
in 2D random light the occurrence of polarization vortices is enhanced with respect to
a 2D slice of a 3D field. In two dimensions, pairs of same-index C points are found at a
vanishing mutual distance with significant probability [139]. By varying the wavelength
of the light field, we are now able to investigate the actual formation process of vortices
as a function of an external parameter. In Fig. 8.4 we display in a 3D rendering two typi-
cal examples of the trajectory followed by two C points which merge into a polarization
vortex. In theses images, the color of the trajectories indicates handedness (green for
right-handed C points and purple for left-handed ones) and topological index (light col-
ors for positive index, dark colors for negative). Only the two singularities which take part
into vortex formation, with their creation and annihilation partners, are plotted with full
opacity. All the other singularities passing through the observation window are plotted
with a transparency of 0.9.

Δλ = 0.8 nm

Ly = 1 μm

Lx = 1 μm

(a) (b)

Figure 8.4: Example of the trajectories of C points in random light in correspondence of the observation of
a polarization vortex. The black sphere highlights the formation of a polarization vortex. The color of the
trajectories encodes topological index and handedness of C points: green is used for right-handed C points,
and purple for left handed ones. Among these, light colors indicate positive topological index, while light colors
are used for negative indices. We consider an observation window of 1µm×1µm×1nm. The trajectories which
are involved in the creation of the polarization vortex, with their creation/annihilation partners, are plotted in
solid colors. All the other singularities propagating through the window are plotted with a transparency of 0.9.

Figure 8.4(a) presents a clear example in which the two C points that generate a vor-
tex at the particular point in wavelength λv (black circle), are unbound from each other
shortly after the vortex formation, and continue their trajectory independently. Instead,
Fig. 8.4(b) illustrates the case in which the two same-index C points stay close to each
other (distance ¿ λ/2) as the wavelength is varied, intersecting their trajectories few
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more times. An interesting observation to be made on Fig. 8.4(b), is that both C points
terminate their existence as their trajectories diverge, after a wavelength shift that is
smaller than the one for which the two C points remained at close proximity. This ob-
servation could suggest a sort of threshold behavior, which keeps the C points together
until they are at a distance larger than a certain value l∗.

Seeking statistical significance, we now combine the information on the trajectories
of C points in correspondence of every polarization vortex formation in our database
(approximately 10’000 events). Figure 8.5 represents with a false-color map a 2D his-
togram for the C points displacement density around polarization vortices. To real-

Figure 8.5: 2D histogram for the displacement of same-index C points, before and after they generate an optical
vortex. On the x axis the wavelength shift is with respect to the one at which the two C points meet to form a
vortex (wavelength shift = 0).

ize this two-dimensional histogram, we calculate the displacement δl between the two
C points as a function of wavelength shift ∆λ. We set the origin of the wavelength shift
(∆λ = 0) to be the value λv at which the C points pair into a vortex. Subsequently, we
combine in the histogram all the computed displacements δl (∆λ). The color of each
pixel of the false-color map represents the number of C points that at a wavelength shift
∆λ after vortex formation were displaced by a distance δl . We used a logarithmic scale
for the color map to accommodate the large dynamic range in the measured number of
C point displacements. In this figure we can see how our statistics degrade as the wave-
length shift ∆λ or the displacement δl is increased, since fewer and fewer trajectories
with those characteristics can be observed. While from a first analysis of Fig. 8.4 it is
difficult to draw a definitive conclusion, it suggests that on average C points tend to di-
verge from each other before/after generating a vortex. This would again be consistent
with a picture in which anti-handed C points undergo an independent evolution as the
parameter is varied. Such a conclusion would be totally expected for a field in which the
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right- and left-handed components exhibit no correlation, as it can be possible in a 2D
slice of a 3D field. In truly 2D light, the independent behavior that we have observed
appears surprising. In fact, in the two-dimensional case, anti-handed C points exhibit
a strong spatial correlation, especially when they have opposite index (see Chapter 6).
Concluding the analysis of Fig. 8.5, we note that a small asymmetry can be glimpsed in
the histogram. This is that the cone-shapes that start from δl = ∆λ = 0 seem to exhibit
two lobes, suggesting two distinct behaviors of ∆λ v s. δl . However, at this stage the ob-
servation is not significant enough to exceed pure speculation.

8.3. CONCLUSIONS

In this chapter we analyzed the evolution of C points in random light, as a function of
the wavelength. We compared this evolution to that of phase singularities in a scalar
random field, and highlighted a one-to-one correspondence. As a matter of fact, the
evolution of C points is equivalent to that of two sets of independent phase singularities:
those of the right- and left-handed polarized fields. From a conceptual point of view this
is in contrast with what found in Chapter 6 for the static distribution of C points in 2D
random waves. In that case, a strong correlation among the differently handed polar-
ization singularities was uncovered. Furthermore, we studied the case of the evolution
of C points near the formation of a polarization vortex, which again emphasized the in-
dependent behavior of differently handed C points. It is an intriguing conclusion that
C points of different handedness seem to ignore each other during their evolution, even
though they have to keep satisfying the strict spatial correlation described in Chapter 6.
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9
TIME EVOLUTION, EFFECTIVE

INTERACTION AND PHASE

TRANSITIONS

“In that direction,” the Cat said, waving its right paw round, “lives a Hatter:
and in that direction,” waving the other paw, “lives a March Hare.

Visit either you like: they’re both mad.”
“But I don’t want to go among mad people,” Alice remarked.

“Oh, you can’t help that,” said the Cat: “we’re all mad here. I’m mad. You’re mad”
“How do you know I’m mad?” said Alice.

“You must be,” said the Cat, “or you wouldn’t have come here.”

10Lewis Carroll

Here we report a quick overview of some preliminary studies on singularities in random
light of interesting new avenues of research. This involves how time-dependent fields can
be related to monochromatic wave fields, and therefore how the time-evolution of singu-
larities can be observed. Additionally, given the direct relation that exists in statistical
physics among the pair correlation function g (r ) and the effective interaction potential
V (r ), we set the stage for the definition of an effective interaction among phase singular-
ities in random waves using a reverse-engineering method which takes the g (r ) as input.
Finally, we address the fundamental question of how many waves are required to obtain
a random wave ensemble, and show for the singularities different regimes which are rem-
iniscent of the solid, liquid and gaseous state of matter.
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9.1. TIME-DEPENDENT EVOLUTION OF PHASE SINGULARITIES

IN RANDOM WAVES

In this thesis we have studied the evolution of phase and polarization singularities as
an external parameter – the wavelength – was varied. One could wonder about the time
evolution of singularities, but in monochromatic waves they are stationary. For instance,
if we consider the case of phase singularities, the time-evolution operator simply acts as
an additive phase factor. Clearly, adding any value to a point where the phase is undeter-
mined does not change anything, and while their surroundings rotate in a vortical flow,
phase singularities remain pinned to their locations. The key to visualize time evolu-
tion is the use of transients. The most natural example is a light pulse, of finite temporal
width, which therefore contains more than a single frequency component. Creating a
superposition of the different frequency components of such a pulse leads to a non-
stationary field, and to the motion of phase singularities. Here, we pursue two different
approaches in order to visualize this type of time evolution. The first approach is purely
experimental, involving time-dependent near-field measurement in which a light pulse
is coupled into the chaotic cavity instead of monochromatic light. The second method
consists in reconstructing the time-dependent field starting from its frequency compo-
nents. The direct measurement offers an intuitive picture of what the time evolution of
the optical field in the chaotic cavity means, whereas the reconstructed frequency data
offers more freedom in the tuning of relevant parameters.

9.1.1. DIRECT TIME-DEPENDENT MEASUREMENTS

Time-resolved near-field measurements are performed in complete analogy to frequen-
cy-resolved ones, except that light pulses are used. The signal measured in the cavity
by the near-field probe is then combined with a fraction of the original pulse which was
sent to the reference branch of our setup, and their interference is measured (see also
Section 2.2.1). By varying the delay of the reference pulse with respect to the signal, it is
possible to monitor the time evolution of the measured field [81, 183–185].

Figure 9.1 presents the near-field maps measured for the optical field Hz at differ-
ent delay times t . At time t = 0 the light pulse is located approximately at the input
waveguide of the chaotic cavity. Figure 9.1(a) displays the build up of random waves
in the inner region of the cavity. In the first frame (t = 750fs) the light pulse has been
reflected only few times by the edges of the cavity. The resulting field pattern is ex-
tremely anisotropic, qualitatively very different from what we typically observed for ran-
dom waves (for several examples see Part II of this thesis). In fact this time range cor-
responds to the transient in which a random wave ensemble is being constructed by
the pulse being multiply reflected. As the delay t between reference and signal is in-
creased, we access time regions for which the input pulse has been reflected more and
more times inside the cavity, and the resulting field pattern starts exhibit the typical fea-
tures of a random wave field. These consist in the speckle-like pattern of alternating
locations of high and low intensity, concealing a multitude of phase singularities. If we
compute the density of singularities from the measured maps, and compare it to the
value expected for a random wave ensemble, we can conclude that the random regime
is reached at t ≈ 1200fs. Figure 9.1(b) shows four consecutive frames (δt = 25fs) in the
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Figure 9.1: Evolution of the optical field in the chaotic cavity as a function of the time delay between the pulse
input in the cavity and the reference pulse. These plots show the transient non fully random dynamics which
takes place as soon as the pulse enters the cavity. The upper row of plots displays the amplitude of the optical
field in a square region in the center of the chaotic cavity. The lower row exhibits the phase for the same square
region above. Phase singularities are pinpointed by dark/light gray circle for negative/positive topological
charge. The figure aims at giving an overview of the transient, so we only show one every five of the measured
frames, resulting in a time step of 125fs. (b) Evolution of the optical field in the chaotic cavity as a function
of the time delay between the pulse input in the cavity and the reference pulse. These plots illustrate the
evolution after the transient dynamic of Fig. 9.1(a), and are structured in the same way. This figure aims at
illustrating the fine dynamics of the field and its singularities once the random regime is reached. Therefore
we show consecutively measured frames, with a time step of 25fs.
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random regime. In the zoomed-in maps of the phase of the field we observe that its
singularities move as time progresses. Creation and annihilation events are observed as
well. On this data, we can use the same tracking procedure as the one used in Chapters
5 and 8 for the wavelength-dependent evolution and describe the dynamics of phase
singularities in random waves.

9.1.2. CONSTRUCTING THE TIME DEPENDENCE FROM SINGLE-FREQUENCY

MEASUREMENTS

A second useful way of obtaining a time-dependent representation of the optical field
in the chaotic cavity, is to exploit the Fourier relation which connects such time-varying
field to its single frequency components [186]. In general, we can write

E(r, t ) =
∫ +∞

−∞
dω Ẽ(r,ω)e iωt , (9.1)

where E(r, t ) and Ẽ(r,ω) are the electric field at position r and at time t or frequency ω,
and the integral spans all possible frequencies. For an adequate comparison to the direct
measurements of the light pulse propagating in the cavity discussed in Section 9.1.1, we
need to include the spectral shape of the pulse in Eq. (9.1). We can assume the shape of
the pulse to be a Gaussian,

P (ω) = exp

[
− (ω−ω0)2

2σ2
P

]
, (9.2)

where ω0 is the central frequency of the pulse and σP its spectral width. Including this
term in Eq. (9.1), we obtain the expression of the time evolution of the random field
generated by a pulse with spectral shape P (ω):

EP (r, t ) =
∫ +∞

−∞
dωP (ω)E(r,ω)e iωt . (9.3)

This ideally requires the knowledge of E(r,ω) for every value of ω. Since we will use our
single-frequency measurements to construct EP , we have to rewrite the formula in its
discrete approximation [172],

EP
∆ (r, t ) =∑

n
∆ωP (ωn)E(r,ωn)e iωn t , (9.4)

and given that we performed the near-field measurements by performing a wavelength
sweep, we express the formula as a function of wavelength,

EP
∆ (r, t ) =∑

n
|J (λn)|∆λP (λn)E(r,λn)e i 2πct/λn , (9.5)

where J (λn) =−2πc/λ2
n is the Jacobian for the variable transformation from ω to λ. The

discretization of the integral given in Eqs. (9.4) and (9.5) has consequences on the max-
imum time span T for which we are able to determine the reconstructed field. This will
be inversely proportional to the wavelength step: T = 2π/∆ω∝ 1/∆λ. In fact,

EP
∆ (r, t +2π/∆ω) =∑

n
∆ωP (ωn)E(r,ωn)e iωn t e iωn 2π/∆ω = EP

∆ (r, t ), (9.6)
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which is easily verified by substituting ωn = n∆ω in Eq. (9.6), and exploiting the relation
exp(2πi n) = 1 for every integer n.

Another substantial fact to account for in our Fourier decomposition of the time-de-
pendent field, is that we can measure a limited wavelength range rather than [−∞,+∞].
This limits our choice of pulse spectral widths, which cannot be larger than the mea-
sured wavelength range. The results presented in this chapter are obtained from two
datasets of wavelength-dependent measurements. The first dataset contains measure-
ments with a wavelength step∆λ= 0.1nm which span a range L = 20nm (10µm×10µm
maps). The second dataset provides measurements with ∆λ = 0.01nm and L = 1.5nm
(17µm×17µm maps). The first dataset, with a longer wavelength range L , enables us
to simulate shorter pulses (pulse duration > 500fs). This will come at the cost of a con-
straint on the total time T , limited by the larger wavelength step ∆λ (T < 104 fs). Con-
versely, with the second dataset we are able to reconstruct the time dependent field for a
longer time T (T < 105 fs), but only for long pulses (pulse duration > 5000fs). After con-
structing the time-dependent fields we pinpoint the singularities and track them in the
same way as in Chapters 5 and 8 for the wavelength-dependent evolution.

9.1.3. LIFETIME OF PHASE SINGULARITIES AND CREATION RATE

So far in this thesis we considered the persistence of phase singularities in random waves
as the wavelength was varied. Here, we will investigate their lifetime in a time-dependent
random field. Figure 9.2 shows as an example two lifetime histograms which were ob-
tained from our two different approaches. On the left, the result of the direct time-
dependent measurements, on the right the result from the reconstructed field. Inter-
estingly, in both cases the lifetime histograms exhibit an exponential distribution, as
opposed to the biexponential trend observed for phase and polarization singularities
(Figs. 5.3 and 8.2). By fitting the histogram of the direct time-dependent measurement,
we obtain a typical lifetime τ = 250± 20fs. This number is comparable in magnitude
to both the pulse width (FMHW ≈ 150fs), and to the time that the pulse takes to travel
across the cavity (t f ≈ 400fs). Usefully, we can combine the information of the time-
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Figure 9.2: Lifetime histograms for phase singularities in time-dependent random waves. On the left, the case
of a direct time-dependent measurement. On the right, one example resulting from the reconstructed time-
dependence. The dashes are the measured number of singularities with a given lifetime in the field. The boxes
are the number of lifelong-faithful singularities. Both plots derive from the analysis of the x component of the
electric field.
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dependent measurement with that of the time-reconstructed field, where we can study
the lifetime of singularities for different pulse durations

Figure 9.3 presents the characteristic lifetime of the phase singularities arising in
time-dependent random waves. This is computed as a function of the duration of the
pulse used to compute the field in Eq. (9.5) (squares), or coupled in the cavity (star). The
analysis is carried out for singularities arising in each of the Cartesian components of
the in-plane electric field Ex (left panel) and Ey (right). In both cases, a clear correlation
between lifetime of singularities and pulse duration is observed. The straight line in the
plots is a linear fit [l (x) = mx + q] that we compute on the data, which results in slopes
close to unity [mx = 1.00(2), qx = 140(20), my = 1.14(2), qy = 150(20)]. These fits give as
result a non-zero intercept at zero pulse duration. This could be for a few different rea-
sons. One possible explanation is that even if we consider an extremely short pulse, with
extremely broad spectrum, still the eigenstates supported by the cavity will exist within a
limited bandwidth. This bandwidth could be the result of the extrapolation performed in
Fig. 9.3. However, at this stage we also cannot exclude the dependence to become non-
linear in the range where the pulse duration is smaller than 500fs, that we cannot access
with our wavelength-dependent measurements. Nevertheless, it is evident that in the
studied range the temporal width of the pulse is a strong contributor to the lifetime of
singularities in the field.
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Figure 9.3: Lifetime of phase singularities in time-dependent random waves as a function of the time duration
of the pulse that generates the wave pattern. The left panel presents the result corresponding to the x compo-
nent of the field, and the right panel for the y component. The squares represent the data corresponding to
the field reconstructed from the measured frequency-dependent field. The stars are the result from the direct
time-dependent measurements. The solid lines are linear fit through te data.

Another observable, in principle related to the lifetime, is the event rate. This is the
number of creations (or annihilations) of pairs of phase singularities that are observed
during the time evolution of the field. Figure 9.4 presents the number of creations per
unit time and per unit area visualized as a function of pulse duration. Clearly, the trend
here is opposite to the one observed for the lifetime: the number of detected events
decreases as the pulse duration increases. The analysis contains data combined from the
two datasets used to reconstruct the time-dependent field starting from the frequency-
dependent one (dark and light colors). The trend of event rates versus pulse width is
linear in a log-log representation, indicating a power law dependence. We find the power
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to be approximately equal to -1 [fitting with f (x) = mxα yields α = −0.93(3)]. The data
corresponding to the two datasets are both well described by the same power law trend.
When the pulse duration approaches 5000fs the dataset with the smaller wavelength
range and with finer wavelength resolution (S1fine) hits its limit of usability, and indeed
we see that it starts to deviate from the fitted trend.
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Figure 9.4: Event rates for phase singularities in time-dependent random waves as a function of the time dura-
tion of the pulse that generates the wave pattern. The plot is in log-log scale. The left panel presents the result
corresponding to the x component of the field, and the right panel for the y component. The light-colored
data points correspond to the field constructed starting from the measurements with the smallest wavelength
step (δλ = 0.01nm). The dark-colored ones correspond to the measurements with larger wavelength step
(δλ= 0.1nm). The solid lines are the best fit with a generic power law mxα.

9.1.4. SOME REASONING ON EIGENSTATES AND PULSE DURATION
One interesting relation that can be made between this work and that presented in Chap-
ter 5 is related to the eigenstate decomposition of the random field. In Chapter 5 we ex-
plained how the frequency-dependent field can be expressed as a superposition of the
random eigenstates of the chaotic cavity, with a given central frequency and width. Such
eigenstate properties were determining the persistence of phase singularities in the field
as the wavelength was tuned. Particularly relevant to those studies, was the observation
of two families of singularities with two different characteristic persistences, which we
could trace back to two families of eigenstates contributing to the random pattern. It is
interesting that we do not find an immediate equivalent of these two families in the time
evolution of the singularities.

As described in Eq. (9.4), one single frame t in the time-evolution of the field, corre-
sponds to the superposition of several states at different frequencies ωn , weighted with
the pulse spectrum P (ωn) and interfering with a phase term e iωn t . The sketch in Fig. 9.5
represents the typical scenarios that we considered in this Section, consisting of pulse
durations of 150fs, 500fs and 5000fs (from top to bottom). We compare these spectra to
the eigenstates configurations discussed in Chapter 5, with two families of eigenstates
with spacing ∆ = 0.08nm, and spectral widths γ = 0.16nm and γ′ = 0.04nm. From the
figure, we can see that one single time frame contains contributions from several eigen-
states of both families. As time progresses the coefficients with which such contributions
are combined varies, but not their weights. The copious mixture might be the reason
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why the consequences of having two families of eigenstates are not so evident in the
time evolution of the field, and its singularities. The effects of the two populations might
be concealed by the mixing of different frequency states that takes place in the time-
dependent field. However, at this stage we cannot exclude that such effects might be
disclosed by further analysis.
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Pulse spectral width
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Figure 9.5: Graphical representation of the overlap between the pulse spectral width and the frequency eigen-
states of the chaotic cavity. The three cases sketched in the figure are for pulse durations of 150fs, 500fs and
5000fs (from top to bottom).
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9.2. EFFECTIVE INTERACTION OF PHASE SINGULARITIES IN

RANDOM WAVES

Throughout this thesis we have characterized the spatial distribution of optical singu-
larities in random waves by using pair correlation functions (see Chapters 3, 6 and 7).
This is, in fact, the natural way to characterize the spatial arrangement of ensembles of
discrete entities [105]. While describing the properties of the measured pair correlations,
we often drew analogies to those of systems of interacting particles, such as particles in
a simple liquid [105]. The pair correlation function of a system is indeed directly related
to the pair interaction in the same system. Known the pair interaction, one can easily
predict the pair correlation with Monte Carlo simulations or even analytical calculations
[105]. The opposite procedure is more difficult, since the relation between pair interac-
tion and correlation is highly nonlinear [105].

Here, we use a reverse-engineering approach [164] to compute an effective pair-
interaction for phase singularities in scalar random waves. Starting from their known
pair correlation, we can in this way generate a fictive pair-interaction potential, which
would generate an equilibrium configuration consistent with the input pair correlation.
We perform this procedure in the canonical ensemble, i.e., for a fixed number of singu-
larities in a given observation area. With this approximation, we are able to converge
to a stable solution for the effective interaction among pairs of singularities, taking into
account their charge. Performing a final Monte Carlo simulation using these pair in-
teraction as an input we are able to reproduce the pair correlation expected for phase
singularities in random waves, with excellent consistency.

9.2.1. DEFINITION OF THE PROBLEM

As point-like entities with a topological charge, it is tempting to think of phase singulari-
ties as of virtual particles with an effective interaction. Figure 9.6 shows how we can map
a random wave field — with its amplitude and phase — onto a distribution of interacting
particles through a set of discrete points, which are its phase singularities. Of course, in

Amplitude Phase

Vopp

Vsame

Phase Singularities

0 max 0 Negative Sing.
Positive Sing.

Figure 9.6: Amplitude, phase and singularities for a section of a calculated random wave field. The schemat-
ics in the third panel illustrates the effective pair interaction among singularities with the same (Vsame ) or
opposite (Vopp ) topological charge.
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order for this to be true, the correct interaction needs to be provided. In this Section, we
will retrieve such an interaction by exploiting the knowledge on the pair correlation of
phase singularities in random waves. In particular, we will consider the model case of
phase singularities in isotropic scalar waves [17].

9.2.2. REVERSE MONTE CARLO FOR POTENTIAL RETRIEVAL

Given the pair correlation function g (r ) of an ensemble of particles at their thermody-
namic equilibrium, one can use various approximations to guess the underlying pair in-
teraction. In a mean-field approximation for instance [105], the interaction would sim-
ply be given by

V mf(r ) =−kT log[g (r )]. (9.7)

Note that as we do not have access to a parameter such as the temperature T , all the
energies and interaction potentials that we compute will be expressed in units of kT ,
i.e., kT = 1. Although mean-field approximation can represent a good first step for a
qualitative idea of the interaction in a system, it is a quite brutal approximation. Using it
as the pair interaction to simulate the evolution of a system in a Monte Carlo simulation
does typically not reproduce the expected equilibrium state, which should be consistent
with the initial pair correlation g (r ).

One interesting approach to obtain the actual pair interaction V (r ) starting from a
known pair correlation g th(r ), is to reverse engineer the problem of the Monte Carlo sim-
ulation. This procedure was already illustrated by Lyubartsev and Laaksonen [164] in the
context of ionic liquids physics, and it consists of three main steps. As a first step, one
needs to start a preliminary Monte Carlo simulation with a guessed interaction V (0)(r ).
Subsequently, when the final equilibrium configuration is reached, one can measure its
pair correlation function 〈g (0)〉(r ) and compare it to the known g th(r ). Based on the de-
viation ∆〈g (0)〉 between the two distributions, the interaction potential V (0)(r ) can then
be corrected, to obtain V (1)(r ) =V (0)(r )+∆V (0)(r ). By iterating this process one can then
calculate

V ( j+1)(r ) =V ( j )(r )+∆V ( j )(r ), (9.8)

until ∆V ( j )(r ) becomes negligible, and convergence is reached. The key step in this pro-
cedure is finding the correction ∆V ( j )(r ), which was elegantly described to depend on
the covariance of the measured pair correlation function [164]. Explicitly, it is conve-
nient to introduce the function S(r ) = 2πr g (r ) (valid for the 2D case), and expand it in
its Taylor series,

∆〈S( j )〉(rα) =∑
rβ

∂〈S( j )〉(rα)

∂V ( j )(rβ)
∆V ( j )(rβ)+O(∆V 2), (9.9)

which omitting the terms of order O(∆V 2) is a system of linear equations in ∆V ( j )(rβ),
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with

∂〈S( j )〉(rα)

∂V ( j )(rβ)
= ∂(rα)

∂V ( j )(rβ)

∫
d q S( j )

q (rα) exp
[
−∑

rγ V ( j )(rγ)S( j )
q (rγ)

]
∫

d q exp
[
−∑

rγ V ( j )(rγ)S( j )
q (rγ)

]


= −
[
〈S( j )(rα)S( j )(rβ)〉−〈S( j )(rα)〉〈S( j )(rβ)〉

]
.

(9.10)

This procedure was validated for systems of particles in three dimensions, with and
without the presence of a charge [164]. In presence of charge, it is convenient to split
the problem in two subproblems. Firstly, particles with the same charge, pair correla-
tion gsame(r ) and pair interaction Vsame(r ). Secondly, particles with opposite charge, de-
scribed by gopp(r ) and Vopp(r ) [164]. This will be the case for a system of phase singulari-
ties in random waves, where the topological charge is relevant to the spatial distribution,
and gsame(r ) 6= gopp(r ).

9.2.3. RETRIEVAL OF EFFECTIVE INTERACTION FOR PHASE SINGULARITIES

IN RANDOM WAVES

With the recipe for the iterative procedure, we use the theoretical pair correlation func-
tion of phase singularities in random waves [17] to retrieve their effective interaction. We
perform the retrieval considering in parallel both cases of same and opposite topological
charge interaction. Typically the mean-field potential is a good choice as a starting guess
of the interaction potential [V (0)(r )] [164]. Including the topological charge, there would
be two mean-field potentials:

V mf
same(r ) =− log[gsame(r )] and V mf

opp(r ) =− log[gopp(r )], (9.11)

for same and oppositely charged pairs, respectively. However, for the case of phase sin-
gularities, this choice of using mean-field approximation does not lead to stable Monte
Carlo simulations. We find that the main reason for this is the long-range correlations in
the pair correlation functions, which result in long-range oscillations in the mean-field
potentials Vsame(r ) and V mf

opp(r ). Truncating these oscillations by setting V (r > rc ) = 0
dramatically improves the convergence. Note that in our simulations we do not allow
creation and annihilation of phase singularities with opposite topological charge, and
therefore not allow for fluctuations of their density. Practically, we set the density of
singularities to be equal to its theoretical average value [17]: d = π/λ2, where λ is the
wavelength of the wave field, which we set to unity for convenience.

Figure 9.7 presents an overview of the outcome of our iterative procedure for the
retrieval of the effective interaction among phase singularities in random waves. The
green and orange lines are the resulting potentials after each iteration j , changing from
light to dark colors as j is increased (only one in every ten iteration is shown). On the
left we depict the interaction potential among same-charge singularities, while on the
right the interaction among oppositely charged ones is displayed. From both plots, we
can observe how after a few tens of iterations the algorithm starts converging to a stable
solution. Interestingly, the oscillations in V (r ) that we forcefully suppressed in the start-
ing potential V (0), re-appeared as a result of the potential retrieval. In Fig. 9.7 we can
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Figure 9.7: Overview of the retrieval of the effective potential between same-charge (left) and opposite-charge
(right) singularities. The color palettes in the inset of the plots represent the iteration number, from light colors
( j = 0) to dark ones (up ot j = 100).

see how for the lighter colors (first iterations) V (r > 2) = 0, due to the initial truncation.
The differences between the mean-field potential and the final V (r ) are interesting, and
they are actually crucial for the retrieved potential to reproduce the behavior of singu-
larities in random waves. One clear difference in both Vsame(r ) and Vopp(r ) is that the
average value around which the potential oscillates as a function of r is not fixed at 0
as in the mean-field approximation. This average value decreases as r is increased for
Vsame(r ), whereas it increases with r for Vopp(r ). This is especially clear from the first dip
in Vsame(r ), which has been significantly lifted by the retrieval procedure. With respect
to Vopp(r ), an additional clear difference implemented by the retrieval algorithm is the
higher contrast between the first dip and its value at r = 0. In both cases of Vsame(r )
and Vopp(r ), most of the changes happen in proximity of the first dip in the potential,
which is indeed the most relevant as it dominates the nearest-neighbors interaction. It
is not immediately obvious how to interpret the oscillations that follow the first dip, and
it might be interesting to further investigate on this feature in the future. In this context
it is important to point out that these oscillations can also be observed in the effective-
interaction description of an ionic-liquid in a polarizable solvent [164].

The prime test to perform in order to verify the validity of the interaction potential
that we computed in this section, is to perform a final Monte Carlo simulation based on
this interaction, and to compare the equilibrium configuration of this simulation with
the theoretical spatial distribution of phase singularities in random waves. Figure 9.8 di-
rectly compares the pair distribution functions computed on the outcome of the Monte
Carlo simulation with the theoretical curves g th(r ), for both same-charge and opposite-
charge singularities. In both cases we acknowledge a very good agreement, certifying
that the retrieved potential is the one that can reproduce the spatial correlation of phase
singularities in random waves.

We demonstrated how phase singularities in random waves can be thought of as of
interacting particles, not only qualitatively, but also quantitatively. The results of this
section are shown for the prime example of singularities in isotropic random waves,
well known system already for a few decades [17]. It is important to emphasize that
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Figure 9.8: Pair correlation function measured at the iteration j = 100 (data points), in direct comparison with
the expected theoretical functions (solid lines). In the left panel the correlation for same-charge singularities
and in the right panel the correlation of opposite-charge ones .

the method shown here is general, as it only requires a knowledge of the pair correlation
functions g (r ). This is essential in the context of this thesis, since here we uncovered
different behaviors for singularities than the classic one of isotropic random waves. In
Chapter 3 we found anisotropic distributions for the phase singularities arising in the
vector components of a random light field, and in Chapter 6 we showed that polariza-
tion singularities invert their behavior with respect to charge in case of 2D confinement.
All of these properties, can now be mapped into interaction potentials, possibly offering
further insights on the role of singularities in wave fields.
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9.2.4. SUPPLEMENTARY INFORMATION

MONTE CARLO SIMULATIONS

At every step j of the potential retrieval procedure described in this Section, we perform
a full Monte Carlo simulation of the system, based on the interaction potential V ( j )(r ).
Given this pair interaction of the system, we run a Monte Carlo simulation to compute
its final state at equilibrium [111]. We do this in the canonical ensemble, i.e., with a
fixed volume and a fixed number of particles. The simulation is initiated by distribut-
ing the particles in an ordered configuration with some Gaussian noise. The simulation
area is a square region of side L = 10 (wavelength = 1), containing 314 particles, with
periodic boundary conditions. Subsequently, the simulation is carried by proposing at
each Monte Carlo step MCSn a displacement ∆r for the particle at ri . We compute the
difference in energy ∆E corresponding to this change

∆E = ∑
k ∈ system

[
V ( j )(ri +∆r − rk )−V ( j )(ri − rk )

]
, (9.12)

and accept the change with a probability

pacc = min

[
1, exp

(
−∆E

kT

)]
. (9.13)

This procedure is known as the Metropolis algorithm [111]. The total energy of the sys-
tem is monitored after each Monte Carlo step, and it is used to determine whether the
equilibrium configuration is reached, which is when this parameter does not exhibit sig-
nificant changes rather than statistical fluctuations.
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CONVERGENCE OF THE RETRIEVAL PROCEDURE

As a way to quantify the convergence of our iterative algorithm, we consider the total
residual R[g ( j )] of the observed pair correlations g ( j )(r ) with respect to their expectation
values g th(r ):

R[g ( j )] = 1

Nα

∑
rα

|g ( j )(rα)− g th(rα)|2
σ[g ( j )(rα)]2

, (9.14)

where Nα is the available number of discrete radii rα, and σ[g ( j )(rα)] the uncertainty
on each observed g ( j )(rα), estimated with the standard deviation on independent sam-
plings of the equilibrium configuration of the Monte Carlo simulation. Figure 9.9 shows
the total residual R for each iteration j . As we can see, a reasonable convergence is al-
ready obtained for j ≈ 60.

0 25 50 75 100
# Iteration (j)

100

101

102

R[
g(j)

]

Convergence test
Same Sign
Opposite Sign

Figure 9.9: Convergence test for the iterative procedure. The plot shows the average residual R[g ( j )] between
measured and expected pair correlation functions at every iteration j , for both same- and opposite-sign sin-
gularities.
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9.3. PHASE SINGULARITIES IN GENERIC WAVE FIELDS: FROM

ORDER TO DISORDER

In almost every chapter of this thesis we modeled a random wave field as a superposition
of plane waves with uniformly distributed random phases, as in Berry’s hypothesis [138].
This hypothesis allows for straightforward numerical calculations of random wave fields
by adding a set of plane waves with isotropic propagation direction and random phases.
However, when calculating such field in practice, the question naturally arises as to how
many waves one needs to add in order to have a fully developed random wave ensemble.
Where is it, if there it is, the transition from non-random to random, is a fundamentally
interesting question. The field pattern obtained by adding a limited number of waves,
can in fact be clearly non-random, i.e. ordered, creating a big contrast with the random
fields illustrated in this thesis. With an approach consistent with the rest of this thesis, we
face this question by analyzing the impact that varying the number of waves constituting
the field has on its phase singularities.

9.3.1. SINGULARITIES DISTRIBUTION vs. NUMBER OF WAVES

As zeros of the field, phase singularities arise from wave interference. One single plane
wave does not have any zero, whereas the interference of two waves in the same plane
produces lines of vanishing intensity. Instead, when three waves interfere, points of zero
intensity are generated, and with them phase singularities. Figure 9.10 presents the am-
plitude of the wave field that is obtained by interfering three plane waves isotropically
in a plane. Specifically, for the case of three waves this means that the propagation di-
rection of each wave is rotated by 2π/3 with respect to the subsequent one. Although
the phase of each of these waves is a random number, the pattern is clearly not random.
The symmetry of the wave propagation direction distribution results in an interference
pattern that is reminiscent of a crystalline structure with hexagonal symmetry. As we in-
crease the number of interfering waves to 5 (Fig. 9.11), we observe a situation in which
the presence of an overall order is still present, as we can find the same pattern repeated
in different location of the wave field. However, the five-fold rotational symmetry of the
wave propagation direction distribution can not lead to a crystalline structure, as five-
fold symmetry does not allow it [187]. The pattern obtained is highly similar to struc-
tures known as quasi-crystals [188]. The interference of 6 waves instead allows again for
hexagonal symmetry, and it leads to crystal-like configurations. Interestingly, these con-
figurations can differ quite a lot when using different random number for the phase of
each contributing wave (Figs. 9.12 and 9.13). Patterns reminiscent of quasi-crystal are
again obtained when interfering 7 (Fig. 9.14), 9 and 12 waves (not shown). Eventually, if
we keep increasing the number of interfering waves, we realize a pattern consistent with
the random wave model, in which no traces of short-range or long-range order can be
found. This is the case in the example in Fig. 9.15, where 100 waves are used. In fact, the
field pattern obtained with such number of waves is and qualitatively similar to the ones
studied in Chapters 3, 4 and 5 of this thesis, with speckle-like features.

Observing the spatial distribution of the singularities which arise in these wave fields
invites a comparison to condensed matter systems. In fact, in the case of 3 waves inter-



9.3. PHASE SINGULARITIES IN GENERIC WAVE FIELDS: FROM ORDER TO DISORDER

9

109

Constitution of the field

5 wavelengths

Phase with singularities

20 wavelengths

Field Amplitude (3 waves)

0

max

0

Figure 9.10: Field pattern resulting from the interference of 3 waves. On the left a false-color map for the
amplitude of the field. On the top right a graphical representation of the waves that contribute to the pattern.
The colors of the circles in this last plot represent the phase of each wave, and the arrows the propagation
directions. On the bottom right a zoomed-in image of the phase of the field, with its singularities (dark/light
circles).
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Figure 9.11: Field pattern resulting from the interference of 5 waves. On the left a false-color map for the
amplitude of the field. On the top right a graphical representation of the waves that contribute to the pattern.
The colors of the circles in this last plot represent the phase of each wave, and the arrows the propagation
directions. On the bottom right a zoomed-in image of the phase of the field, with its singularities (dark/light
circles).
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Figure 9.12: First realization of a field pattern resulting from the interference of 6 waves. On the left a false-color
map for the amplitude of the field. On the top right a graphical representation of the waves that contribute to
the pattern. The colors of the circles in this last plot represent the phase of each wave, and the arrows the
propagation directions. On the bottom right a zoomed-in image of the phase of the field, with its singularities
(dark/light circles).
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Figure 9.13: Second realization of a field pattern resulting from the interference of 6 waves. On the left a false-
color map for the amplitude of the field. On the top right a graphical representation of the waves that con-
tribute to the pattern. The colors of the circles in this last plot represent the phase of each wave, and the
arrows the propagation directions. On the bottom right a zoomed-in image of the phase of the field, with its
singularities (dark/light circles).
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Figure 9.14: Field pattern resulting from the interference of 7 waves. On the left a false-color map for the
amplitude of the field. On the top right a graphical representation of the waves that contribute to the pattern.
The colors of the circles in this last plot represent the phase of each wave, and the arrows the propagation
directions. On the bottom right a zoomed-in image of the phase of the field, with its singularities (dark/light
circles).
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Figure 9.15: Field pattern resulting from the interference of 100 waves. On the left a false-color map for the
amplitude of the field. On the top right a graphical representation of the waves that contribute to the pattern.
The colors of the circles in this last plot represent the phase of each wave, and the arrows the propagation
directions. On the bottom right a zoomed-in image of the phase of the field, with its singularities (dark/light
circles).
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ference the singularities arrange in a hexagonal lattice, for 5 waves they form a quasi-
crystal and for 100 waves distribute in a liquid-like fashion. Despite the clear qualita-
tive difference between the extreme cases, it is difficult to point a sort of phase transi-
tion. An additional difficulty is that the tuning parameter – the number of waves – pro-
duces abrupt changes in the arrangement of singularities from one step to the following.
These changes are especially strong when the number of waves is limited, as the symme-
try properties of the wave propagation distribution strongly influence the resulting field
pattern.

The first observable we can study to describe the different fields in a simple way, is
the spatial density of singularities in the generated wave fields. It is interesting to ob-
serve how this density varies as a function of number of waves, and compare it to the
theoretical value expected for a random wave field, calculated by Berry and Dennis [17].
Figure 9.16 presents the spatial density of phase singularities in wave fields as a function
of the number N of interfering waves (left plot). We observe that the density is highest
for 3 waves, and it monotonically decreases towards an asymptotic value d = π. This
asymptotic value is in fact consistent with the one predicted for phase singularities in
random waves [17]. Each density in the plot was estimated by computing 100 indepen-

Figure 9.16: On the left, the density of singularities v s. the number N of waves that are used to produce the
wave field in which the singularities arise. The data collected from simulations (circles) are compared with the
theoretical value for random wave fields [17] (dashed line). On the right, a histogram (horizontal histogram)
for the density corresponding to N = 6, which exhibits a bimodal distribution.

dent realizations of the wave field for each value of N . We then calculated the average
density from this realization (circles), and the corresponding standard deviation (error-
bars). The standard deviation gives an idea of how much variation in density there can
be among different realizations of the wave field, e.g., for different choices of the random
values for the phases of each contributing wave. The most interesting case is the N = 6.
For this configuration of the wave propagation direction the density fluctuations among
different realizations are bigger than in any other case. Analyzing more in detail this case
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by considering the probability distribution of observing a given density, we observe that
N = 6 exhibits a bimodal distribution for the density of singularities, as displayed in the
right panel of Fig. 9.16. Just varying the sequence of random numbers associated to the
phase of each interfering wave, can produce dramatic changes for this field constituted
by six waves (two examples in Figs. 9.12 and 9.13). Although at the moment we do not
have a physical explanation for the reason of this phenomenon, it is intriguing to no-
tice that the case N = 6 is somehow special, as the representation of this field in Fourier
space is a perfect hexagon, in which two consecutive apexes are separated exactly by a
distance k = 2π/λ, the wave vector amplitude.

9.3.2. A CONTINUOUS APPROACH TO INCREASE THE NUMBER OF WAVES
In the previous Section we observed an intriguing transition from an ordered to a disor-
dered wave pattern as the number N of interfering waves was increased. In that case, we
were tuning a discrete parameter, which does not allow to zoom-in into specific regions
of this parameter space, as only integer values are possible. Moreover, due to the high
symmetry of some specific cases, the results were dominated by the symmetry prop-
erties of the wave propagation direction distribution rather than by the number of in-
terfering waves. Here, we pursue a different approach, trying to emulate an increasing
number of waves in a continuous fashion. This approach represents an alternative to
the one of Section 9.3.1, in which the tuning parameter can be varied more continu-
ously. Moreover, we do not vary abruptly the symmetry properties between consecutive
field configurations, as they all originate from a continuous perturbation of the case of
three interfering waves.

We begin the study with the case of three interfering waves. Subsequently, we add to
these a number ∆N of waves, but without redistributing of the original waves. Instead,
the additional waves are normally distributed in an angular spread δθ around the orig-
inal ones. δθ indicates the standard deviation of such normal distribution. We define
Ns = 3 as the number of initial waves, and Nd as the number of times these waves are
duplicated and spread out, so to have a total number of waves N = Ns Nd . At the same
time, we define the angular spread as proportional to the number of duplicated waves,
with a dependence

δθ =α (Nd −1)β.

In the calculations that we are going to show we used α= 0.005 and β= 2. Additionally,
we do not set all the waves amplitude to be the same, but we apply a coefficient a expo-
nentially distributed around the starting angle, with a decay length proportional to the
number of duplications,

p(a) = e−2/Nd .

Regarding the phase, we initiate the Ns waves with a random value uniformly distributed
in 0− 2π, and then we program the phase of each additional wave to be normally dis-
tributed around these values with a standard deviation

δϕ= ηδθγ.

In our calculations we set γ = 3 and η = 25. All the parameters enumerated in this sec-
tion were chosen after performing preliminary simulations, with the goal of achieving
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non-zero, but smooth, field variations as a function of the tuning parameters. It might
seem that the (discrete) number of waves is still the relevant parameter also for this study.
However, here the number of waves is directly bound to their angular spread and decor-
relation properties. This relation diminishes the discreteness of the tuning parameter, as
adding more waves which preserve their original phase and propagation direction does
not produce changes in the resulting interference pattern. What is varied continuously
here is in fact the angular spread, and the related phase decorrelation.

As the angular spread δθ of the wave propagation direction approaches the separa-
tion of the three initial waves θs = 2π/3, amplitudes get more homogeneous, phases
get more uniformly distributed, and the system approaches the isotropic random wave
configuration. When δθ À θs the full random wave regime is reached. In Fig. 9.17 we
can observe how this process takes place in the three exemplifying cases in which δθ = 0,
0.245 and 12.005, from top to bottom. These cases correspond to a total number of waves
N = 3, 24 and 150, respectively. Each figure presents 5 panels. On the left the pair cor-
relation function of the phase singularities arising in the computed field. On the right,
starting from the top a graphical illustration of the wave-composition of the field. Here
each wave is represented with a colored circle and an arrow. The arrow represents the
propagation direction of the corresponding wave, the size of the circle represents its am-
plitude, and the color its phase (same false-color map of the phase plot, from −π to π).
On the bottom the amplitude of the resulting field, on the top right its Fourier represen-
tation, and on bottom right a zoomed-in image of the field’s phase with its singularities
(light/dark markers for positive/negative charge). Going from top to bottom in Fig. 9.17
we see how the initial lattice of singularities gets deformed, and eventually scrambled
into a liquid-like phase.

With this model we can naturally take a step further, and spread the wave contribu-
tion also radially in k space. This corresponds to varying the amplitude of the wavevec-
tors around the initial value k0. We do this in a similar way as with the angular spread.
Given a wavevector spread δk, we create an additional number of waves according to

N k
d = Nd (δk/µ)ν,

where Nd is the number of waves spread angularly, and N k
d is the number of waves

spread radially in k. In our calculations we useµ= 0.005 and ν= 0.5. Figure 9.18 presents
an overview of this study, in analogy to what shown in Fig. 9.17. In this figure we present
the cases in which δk = 0.1, 0.3 and 0.6 (from top to bottom). These correspond to a
total number of waves equal to 2682, 4647 and 6570, respectively (Nd = 200). As δk is
increased the wave pattern gets more and more randomized, as it starts missing the fea-
tures associated with the only length scale of the system, the wavelength. Already in the
top panel of Fig. 9.18, the pair correlation function g (r ) starts losing its features at r > 2
wavelengths. For δk = 0.6 (bottom panel in Fig. 9.18) we cannot really distinguish any
significant trend as a function of displacement in the g (r ), which is consistent with a flat
line equal to 1, reminiscent of an ideal gas state.
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Figure 9.17: Overview of field patterns and their phase singularities for wave fields realized with different de-
gree of angular spreads in the wave propagation direction (increasing spread from top to bottom). The figures
are organized in a similar way as Fig. 9.10. Additionally, we show the pair correlation function of phase singu-
larities (left panels), and the Fourier composition of the field (top right panels).
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Figure 9.18: Overview of field patterns and their phase singularities for wave fields realized with different de-
gree of wavevector’s amplitude spread (increasing spread from top to bottom). The figures are organized in a
similar way as Fig. 9.10. Additionally, we show the pair correlation function of phase singularities (left panels),
and the Fourier composition of the field (top right panels).
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Finally, in Fig. 9.19 we present a graphical impression of the pair correlation func-
tions that we can compute at varying the two sets of parameters discussed in this Sec-
tion. In the first part (red to white) we vary the angular spread, and in the second part
(white to blue) the wavevectors amplitude spread. This figure offers a good overview
on how we can obtain a continuous variation from crystalline-like, to liquid-like, and
gaseous-like state of phase singularities in wave fields.

Crystal

Liquid

Gas

δk δθ

Figure 9.19: Pair correlation function of phase singularities in wave fields for different values of the tuning
parameters described in Section 9.3.2. These are related to the number of interfering waves, which is increased
in the tangential (red to white) and radial (white to blue) direction in k space (see also Fig. 9.17 and 9.18). The
white curve correspond to the isotropic random waves model.
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CONCLUSION

Let it go...

11Elsa

In this concluding chapter we briefly summarize this dissertation, and place it in a broader
context as compared to the discussion in the individual chapters. Moreover, we relate our
work to previous studies and current developments, also beyond the field of optics.
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T HIS thesis covered several properties of optical singularities, with a focus on their
behavior in random light. The main approach was experimental, as we exploited

near-field microscopy to study light fields confined to a planar chip. The ability to detect
phase and polarization singularities allowed us to unearth a number of novel collective
properties of these entities in random light. These were mainly caused by the full vec-
torial character of light, and by the dimensionality of the studied field that for the first
time could be truly considered as two dimensional. For the key discoveries made in this
thesis, we accompanied our experimental observations with theoretical modeling. This
modeling often used the inspiring and foundational work of M. V. Berry and M. R. Den-
nis [17, 42] as starting point.

Scientific curiosity was the prime driving force for this thesis, especially in relation to
the multidisciplinary connections that the study of optical singularities allows. More
than once we drew a comparison between optical singularities and systems of inter-
acting particles: in the spatial distribution of phase singularities of Chapter 3, in the
analysis of topological screening of Chapter 4, and ultimately in the modeling of a fic-
tive interaction among phase singularities of Section 9.2. It intrigued us to observe how
mathematical entities defined in a generic random wave field could behave just as if
they were interacting particles in a liquid-like system. Yet it was interesting to discern
differences in behavior for different types of singularities, even though each of them
reminiscent of liquid particles. The most striking example is the effective attraction of
polarization singularities with the same topological charge. This was observed to occur
in a truly two-dimensional random field rather than a two-dimensional slice of a three-
dimensional field, as described in Chapter 6.

Besides fascination, the study of wave fields through their singularities revealed to
be insightful as well. Describing the persistence of phase singularities in random waves
required a certain eigenstate decomposition of the field. This was crucial in order to
obtain the populations of the dislocations arising in such a field, as described in Chap-
ter 5. Obtaining the same insight on the eigenstates through different means would have
been hard. It is also important to recognize the potential role that such a methodology
could offer to different areas of physics, and beyond. Indeed it is often the case that one
has to deal with a big amount of data to analyze, in which spotting subtle correlations
can be very difficult, and sometimes impossible. In this regard, the transition from the
study of a massive complex field consisting of about one million pixels per frame, to the
analysis of just a few thousands of singularities represents a significant leap. This thesis
showed how hidden correlations in complex fields not only appear but sometimes stand
out naturally in the properties of their singularities. We have shown how to interpret
these properties, both in the singularities’ spatial distribution (Chapters 3 and 6) and
parametric evolution (Chapters 5 and 8).

Our findings on the spatial bunching of same-index C Points naturally prompted
questions regarding the existence of higher order singularities, which forms the basis
of Chapter 7. It was exciting to locate such higher order singularities in a random field,
and to find that they exhibit a clear spatial correlation as well. To visualize a breaking of
symmetry in the behavior of these singularities with respect to their topological charge
was unexpected, and not yet fully understood. In fact, we have been able to justify our
experimental findings by acknowledging a good agreement with our theoretical model
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for two-dimensional random light. Still, an intuitive explanation of the asymmetry in
formation of more positive rather than negative polarization vortices is lacking.

In a context broader than optics, topological singularities continuously attract the
interest of the scientific community. This is partially due to the fact that singularities are
points where mathematics fails to describe the quantity which we measure/describe,
and as such they are intrinsically intriguing. However, it has been demonstrated more
than once that their relevance can span beyond scientific curiosity. This is especially true
in the field of biological physics, where topological defects in active matter allowed for
a more straightforward understanding of the physical mechanisms underlying the com-
plex dynamic processes which occur in biological systems [148, 189]. In the context of
superconductivity, the discovery and formal introduction of vortices allowed for break-
throughs in the understanding of high-temperature superconductivity, which is still an
exotic and not fully understood state of matter [190]. Also in optics, the relevance of
topological singularities is now becoming established. Indeed singularities are now be-
ing used to intuitively design photonic and plasmonic structures which work efficiently,
or display the desired properties [191]. In this framework, one of the most interesting
outlook of our work will probably lie in the combination of what was presented in Sec-
tion 9.3 for generic wave fields with the idea of repositioning singularities, as discussed
in Chapter 5 and 8. In fact, by using the proper number of waves, propagating along
specific directions and with suitable initial phases, one can build an engineered network
of optical singularities, e.g. C points, in a two-dimensional platform. As a possible ap-
plication, this network of maxima in the optical-spin density can be coupled directly on
chip to systems which exhibit optical-to-electric spin conversion [27], with the potential
to control such spins in space, and possibly in time.

At this stage it is difficult to say which part of this thesis will be the most relevant.
Personally, the spatial bunching of same-index polarization singularities and their gen-
eration of patterns of polarization vortices is what amazed me the most. This thesis
shows that light can still surprise us, especially when considering its singular aspects.
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