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Abstract—We propose a novel reconfigurable hardware archi-
tecture to implement Monte Carlo based simulation of physical
dose accumulation for intensity-modulated adaptive radiother-
apy. The long term goal of our effort is to provide accurate
online dose calculation in real-time during patient treatment.
This will allow wider adoption of personalised patient therapies
which has the potential to significantly reduce dose exposure
to the patient as well as shorten treatment and greatly reduce
costs. The proposed architecture exploits the inherent parallelism
of Monte Carlo simulations to perform domain decomposition
and provide high resolution simulation without being limited by
on-chip memory capacity. We present our architecture in detail
and provide a performance model to estimate execution time,
hardware area and bandwidth utilisation. Finally, we evaluate
our architecture on a Xilinx VU9P platform and show that three
cards are sufficient to meet our real time target of 100 million
randomly generated particle histories per second.

Index Terms—Monte Carlo Simulation, FPGA Acceleration,
Radiotherapy, Dataflow, Dose Calculation

I. INTRODUCTION

Radiotherapy is a commonly used treatment for various

cancer types. High doses of radiation are used to kill cancer

cells. Modern radiotherapy relies on an intensity modulation

technique that aims to deliver high dose gradients to cancerous

tissues while sparing the surrounding healthy organs as much

as possible. This is achieved by setting up a therapy treatment

plan which takes into account the anatomy as well as the

clinical case and dose delivering machine. In order to validate

and optimise such therapy plans, the expected spatial dose

distribution within the patient needs has to be simulated before

the actual treatment. This is often implemented by Monte

Carlo methods which simulate the pathway of millions of

radiation particle trajectories as they enter the patient body.

These simulations are very accurate on the one hand but

require relatively long computation times on the other hand.

Historically, these long computation times were not a prob-

lem. However, modern treatment machines in addition to

radiation delivery, also allow imaging of the patient during

treatment [1]. Real time dose simulation would allow patient

treatment adjustments in real time. This is advantageous since,

e.g., in the case of prostate or lung cancer target tissue

might significantly move between imaging and treatment or

The support of the United Kingdom EPSRC (grant numbers EP/L016796/1,
EP/N031768/1, EP/P010040/1 and EP/L00058X/1), Maxeler, Intel and Xilinx
is gratefully acknowledged.

even within one treatment session. As a result, using real

time imaging techniques, will facilitate accurate radioactive

dose delivery. This would minimise dose accumulation in

healthy tissue and therefore reduce the risk of new cancer cells

growing. Additionally the number of treatments per patient

could be reduced, decreasing the overall treatment costs.
To solve the computational challenge of real time dose simu-

lation, different technologies have been proposed which utilise

Central Processing Units (CPUs), Graphics Processing Units

(GPUs) on local or cloud based systems. However, in the case

of CPUs and GPUs the size of the machine required to meet

the realtime target is prohibitive. In the case of cloud based

systems privacy concerns, bandwidth requirements and latency

issues as well as the need to guarantee service quality during

treatment provide major challenges for practical deployment.
In this paper, we will discuss the usage of Field-

Programmable Gate Arrays (FPGAs) to address these prob-

lems in order to build the first real time radiotherapy simula-

tion systems. There is a long history of accelerating Monte

Carlo simulations using FPGAs. The inherent parallelism

of Monte Carlo simulations allows very high speedups on

FPGAs. Additionally, FPGA implementations are highly pre-

dictable making them especially suited for real time appli-

cations. Finally, the compute density of datacenter FPGA

based systems is typically superior. As a result FPGAs are

an excellent fit for the problem of real time dose simulation.
Programmability of FPGAs, however, is still a major chal-

lenge. Especially for this use case, it is crucial that medical

domain experts can fine tune the FPGA design to their needs.

To ease the programming we adopted the static dataflow ab-

straction and Maxeler’s MaxCompiler. This provides a higher

level of abstraction for the underlying hardware.
The main contributions of this paper are as follows:

• A dataflow architecture for Monte Carlo based dose

accumulation simulation;

• An analytical model to estimate hardware usage and

accurately assess performance; and

• Evaluation of the architecture and model using an imple-

mentation based on a Xilinx VU9P FPGA.

The remainder of the paper is organised as follows. In

section II we will discuss the background of radiotherapy

and dataflow computing. Section III will present related work.

Afterwards in section IV we will present the architecture
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used for the FPGA implementation. The performance will

be modelled in section V. In section VI we will present and

evaluate our implementation. Finally, section VII will conclude

the paper and present possible directions for future work.

II. BACKGROUND

A. Monte Carlo based Dose Simulation for Radiotherapy

Using Monte Carlo simulations to calculate the dose dis-

tribution in radiotherapy is widely considered to be the most

accurate method. This process relies on simulating individual

particles and their trajectories through material representing

the patient. The software simulates particle interactions and

calculates the dose deposition along the trajectories following

fundamental physics laws. However, this accuracy comes at

a cost, since a significant amount of particles need to be

simulated to achieve statistically significant results.

In our work we will focus on the Dose Planning Method

(DPM) [2] implementation of a Monte Carlo technique that

simulates the dosimetric effect of high energy photons in

organic materials. This algorithm is specifically optimised for

the radio therapy use case. DPM provides implementations

for all relevant photon-matter and electron-matter interactions

that occur in radiotherapy. High efficiency is achieved by

optimising the physical interaction description as well as their

implementation on modern processors. The authors distinguish

between hard interaction processes which have to be calculated

analogously and soft interactions which can be accumulated

and only simulated once over a certain distance. Especially

the latter technique reduces the simulation time of electron

interactions significantly.

The DPM implementation uses a patient cube to store details

on the patient as well as the accumulated dose. The cube

consists of voxels, which can represents different materials,

e.g., bone, tissue or water. In each dimension the cube has

a configurable numbers of voxels, which divide the patient

cube volume into equally sized parts. To achieve statistically

significant results 100 million particles have to be generated

and for real time operation the simulation needs to finish

within one second according to medical experts.

B. Dataflow

Streaming dataflow graphs provide a good abstraction for

hardware structures. Each node of the dataflow graph rep-

resents a hardware unit and each edge represents the wires

connecting these hardware units. Maxeler MaxCompiler uses

this dataflow concept as main abstraction for the programmer.

MaxCompiler uses the notion of Kernel, which represents

a single dataflow graph with inputs and outputs. The dataflow

graph is scheduled automatically and deeply pipelined to help

with timing closure. Due to the dataflow graph description,

the inherent parallelism is fully exposed to the compiler. The

control logic for the kernel is auto generated and stalls the

kernel when either an input is empty or an output becomes

full. As a result, the kernel abstraction provides an easy way

to implement massively parallel computational hardware struc-

tures without requiring deep understanding of the underlying

hardware concepts.

Additionally, MaxCompiler uses a Manager to describe

connections between kernels and all external interfaces. These

I/O interfaces include PCIe and DDR but also networking like

ethernet. I/O interfaces can be created using a single functional

call. Similarly, only a single function call is necessary to

connect these interfaces with each other or user logic. Another

block that can be included in the manager is a State Machine.

A state machine can be used to program custom flow control

based on simple push and pull interfaces. As a result state

machines are harder to program, but allow implementation

of more complicated and latency critical components, e.g.,

complex data arbitration tasks.

MaxCompiler targets different FPGA accelerator cards,

including in-house developed so called Dataflow Engines

(DFEs), Xilinx Alveo cards and the Amazon EC2 F1 instances.

The main assumption is that a CPU based host is available and

connected to the card. Additionally, the SLiC runtime interface

can be used to integrate the FPGA design into a normal CPU

application utilising Maxeler proprietary drivers and libraries.

III. RELATED WORK

A. Monte Carlo Dose Simulation

Due to the practical relevance of Monte Carlo dose sim-

ulation and the high computational requirements related to

it a lot of research has focused on accelerating it. This

includes algorithmic improvements as presented in [2]–[7].

There are also multiple studies which use GPUs to accelerate

the workload, e.g., [8] and [9]. In these cases, speedups

of up to multiple 100x are reported in comparison to CPU

code. However, the authors of [10] and [11] report that this

performance advantage is actually a lot smaller, if realistic test

cases are considered and the comparison is performed against

optimised CPU code. In those cases, the speedup of GPU over

CPU implementations is closer to 2.5x.

Additionally to the GPU implementations, also CPU based

implementations were proposed. Examples for these can be

found in [12], [13] and [14]. The latter manages to finish the

dose simulation in less than a minute and outperforms well-

known GPU implementations.

To facilitate adaptive radiotherapy and the required real time

dose simulation, the work in [14] was further expanded in [15]

by adding support for cloud computing. The authors propose

to use the scalability of cloud based systems to create a bigger

cluster of cloud instances to perform the simulation. They

manage to reduce the runtime of Monte Carlo dose simulation

to values between 1.1 and 10.9 seconds depending on the

specific use case. Additionally, they make use of encryption

to facilitate privacy for the medical data transferred into the

cloud. However, cloud based solutions have the disadvantage

of requiring a very good and stable internet connection in the

hospital to be useable for medical treatment.
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To our knowledge there is currently no implementation

which manages to meet our real time requirements of finishing

the simulation in less than a second.

B. Monte Carlo Simulations on FPGAs

In [16] the authors propose an FPGA implementation for

Monte Carlo based dose simulation. They simulate photons

and electrons, where the initial photons are generated by an

external source and sent to the FPGA. Afterwards, the dose

is calculated and accumulated in the patient cube. However,

the patient cube voxels are only saved in on-chip memory,

limiting the resolution of the patient cube to 64 voxels in

each dimension. A speedup of up to two orders of magnitude

compared to a CPU implementation is claimed.

In [17] a methodology to develop FPGA based mixed pre-

cision Monte Carlo designs is presented. The authors propose

an analytical model to determine the optimal precision and

resource allocation for a given Monte Carlo simulation. They

combine an FPGA and a CPU to achieve the desired accuracy

while using reduced precision. As a result they report speedups

of up to 4.6x, 7.1x and 163x compared to state of the art GPU,

FPGA and CPU designs respectively.

The authors of [18] present a domain specific language for

the development of Monte Carlo simulations which targets

FPGAs and GPUs. They report a 3.7x speedup compared

to CPUs for the generated FPGA designs. The advantage

of this work is that the user only needs to describe the

Monte Carlo simulation using a high level framework based

on LATEX equations to obtain the FPGA design.

A significant amount of other related work exists, in

which different Monte Carlo simulations are accelerated using

FPGAs. This includes image reconstruction for Single-Photon

Emission Computed Tomography (SPECT) [19], pricing of

Asian options [20], simulation of electron dynamics in semi-

conductors [21] and simulation of biological cells [22].

IV. ARCHITECTURE

For simplicity the full capability of DPM is not completely

implemented. For example, we focus only on the simulation of

electrons, do not consider bremsstrahlung and only use water

as material within the patient cube. However, these simplifi-

cations have no impact on the feasibility of the architecture

and adding them will add only minimal overhead. For the full

feature set the following changes are required. Bremsstrahlung

is an additional form of particle interaction and as a result only

needs additional area. Different materials can be implemented

as on-chip memory initialised from DDR. Additionally, inter-

action equations will use the material coefficients. All in all

the simulation kernel area will slightly increase and a bit more

on-chip memory as well as DDR bandwidth will be required.

One of the major challenges involved in implementing the

dose accumulation simulation is the memory access into the

patient cube. This is due to the random paths an electron

takes through the patient cube. As a result, the position of

the memory access into the patient cube to accumulate the

dose is also random. Per voxel of the patient cube we only

need to access a few bytes. This leads to a bandwidth of less

than 10 % of the theoretical achievable bandwidth due to the

random access pattern to DDR memory. For this reason the

patient cube has to be buffered on-chip.

The on-chip memory capacity of even the largest con-

temporary FPGAs is not sufficient to store patient cubes of

the required resolution for all envisioned use cases. As a

result, we decided to decompose the patient cube into multiple

subdomains, where each subdomain fits into on-chip memory.

Since we only consider water as material, the on-chip patient

cube buffer only needs to store the dose. Due to on-chip

buffering of the patient cube, we can perform fully random

memory access without impacting performance.

The buffer containing the patient cube is implemented in

a kernel. Additionally this kernel contains the arithmetic to

perform the actual simulation of the electrons and the calcu-

lation of the emitted dose. As described above, the simulation

of the electron decides which interaction occurs. Based on

this, the emitted dose is calculated and the values of the

electron can be updated. The updated electron moves into a

new direction and has updated energy and fuel values. The

energy and fuel values determine which interaction occurs and

when an electron gets absorbed. In the CPU implementation,

a while loop is executed for each externaly generated electron,

which repeats these steps until the energy of the electron

is depleted. However, in our case, the kernel accepts new

electrons, evaluates the interaction and outputs the updated

electrons on every cycle. Since the kernel is deeply pipelined

a loop implementation is not feasible. To circumvent this the

processing order of electrons differs between CPU and FPGA.

This is a valid transformation, since all electron interactions

are fully independent. As a result, the data arbitration and

loop logic is handed off to a different component, which also

handles the transport of electrons between subdomains.

Fig. 1 shows the simplified architecture of the application.

An External Particle Generator kernel generates new electrons

and sends them to the Particle Distributor state machine.

The particle distributor has three inputs, one from the Ex-
ternal Particle Generator, one from DDR and another from

the kernel containing the subdomain buffer and interaction

simulation. Additionally, it has outputs to DDR and to the

particle simulation kernel. This kernel sends the patient cube

back to the host via PCIe once the dose is calculated and

forwards the updated electrons to the particle distributor.
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Fig. 1. The simplified architecture of the dose accumulation simulation.

The particle distributor handles the arbitration of the elec-
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trons and controls the simulation kernel. It decides, when the

simulation kernel is going to switch to the next subdomain.

Additionally, it makes sure that only electrons which are in

the current subdomain are sent to the kernel. If they belong

to a different subdomain, they are buffered in DDR and read

as soon as the kernel switches to the correct subdomain.

The amount of data that has to be stored for each electron

approximates the DDR4 burst size. To simplify memory layout

we decided to pad the electron data structure to 512 bits.

Additionally, for each subdomain we reserve the same memory

capacity. However, this means, that only a very limited number

of electrons can be buffered in the DDR memory. Since we

need to generate around 100 million electrons for statistically

significant results and each of those electrons can create

multiple additional electrons, this has to be considered.

If the complete simulation is run, it is not possible to buffer

all electrons for a specific subdomain in the allocated off-chip

memory block. As a result, we split the overall simulation

in multiple batches. Within each batch we run through all

subdomains, which means that each subdomain of the patient

cube is processed multiple times. However, we decided that we

could further simplify the architecture by sending the current

part of the patient cube back to the CPU once processing of

the current batch is finished. As a result, the combination of

multiple copies of the same subdomain is not required on the

FPGA, which removes the requirement to buffer the data on-

card. As such, we decided to double buffer the patient cube.

Therefore when processing of a subdomain finishes the buffers

can be switched and the now inactive half can be streamed out

and set to zero in preparation for the next subdomain.

As a result of splitting the patient cube into subdomains a

problem occurs if an electron updated by an interaction moves

into an already processed subdomain. Since we use multiple

batches, it is possible to buffer these electrons in DDR for

the next batch. However, on the last batch this is not possible.

As a result we added another output to the particle distributor

which sends those electrons back to the CPU when the last

batch is currently processed. Since the amount of electrons

sent back is orders of magnitude smaller than the total, it is

possible to simulate those electrons on the CPU. We also start

the simulation of the electrons sent back as soon as they arrive

to overlap the compute time on the CPU and on the FPGA.

In the proposed architecture, DDR memory is used only to

buffer electrons. Potentially, the amount of electrons which

have to be buffered in DDR is very large. As such, we need

to consider the access patterns to optimise the achievable

bandwidth. By using long continuous memory access we can

get closest to the theoretical peak memory bandwidth.

Reading electrons from DDR is inherently linear, since we

can simply read all electrons buffered for a specific subdomain

sequentially. However, the access pattern on the write side is

not linear. Since the direction of electrons after interaction is

based on random number generators, it is very likely that each

electron is written to different parts of the memory. To alleviate

this problem we added an additional state machine, which

has small on-chip buffers for each subdomain. We accumulate

multiple electrons in these on-chip buffers and only when they

are full we write the complete buffer to DDR. Additionally,

they can be flushed by the particle distributor to make sure that

all electrons for the current subdomains are written to memory,

so that they can be read again for processing. We decided to

make these buffers hold sixteen electrons, which limits the

required on-chip memory capacity but already manages to

achieve up to 90% of the peak bandwidth. By packing all

individual buffers into a single on-chip memory we can also

increase the on-chip memory utilisation. Each individual buffer

has a unique address range in the bigger on-chip memory. By

ensuring that read and write patterns are linear we are able to

significantly improve off-chip memory bandwidth.

The area required for the simulation of a single electron

is small compared to the area available on modern FPGAs

(see section V). As such, we can not only rely on the pipeline

parallelism but also need to exploit algorithm level parallelism

to use all available chip resources. We exploit the inherent

parallelism of the Monte Carlo simulation on two levels.

The first additional level of parallelism creates multiple

instances of the entire design. The motivation for this can

be found in the platform we target (see section VI). We use

an FPGA accelerator card based on the Xilinx VU9P. The

VU9P consists of three individual dies and interconnectivity

between these dies is limited. As such it is often a good idea

to treat those dies like they would be separate FPGAs. On

the platform used here, each die is connected to one DDR4

DIMM and as a result implementing one design on each die

is easy. The individual designs only share the PCIe controller

and are otherwise completely independent.

The second additional level of parallelism allows us to

process multiple electrons in parallel within the same sim-

ulation kernel. Parallelising the compute in the kernel itself

is accomplished by simply duplicating the dataflow graph.

However, the patient cube buffer has to be shared to save

on-chip memory resources. As a result, we need to consider

potential memory access conflicts. To decrease the likelihood

of such events, we implement each xy plane of the cube as a

separate memory. This will also help with timing closure, since

big on-chip memory structures often have problems routing the

control signals between multiple memory columns.

Another state machine is introduced which checks the elec-

trons coming from the particle distributor for memory access

conflicts. Only if the z position of the electrons is different

or they access the same memory position, all electrons are

sent to the simulation kernel. Otherwise, only a conflict free

subset is forwarded. To avoid starving one input, a round

robin scheme is used to prioritise all inputs fairly. Since it is

non trivial to parallelise the particle distributor we decided to

instead create one instance of the particle distributor for each

electron processed in parallel. This also means that the off-chip

memory space has to be equally split between each particle

distributor. The overhead introduced by this is negligible, but

the implementation complexity is significantly reduced.

The final architecture for a single die where the kernel

processes two electrons per cycle is shown in figure 2. All
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arrows, apart from the kernel output sending the dose cube to

the host, represent electrons. These connections use FIFOs.
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Fig. 2. The architecture of the dose accumulation simulation for a single
FPGA die if the kernel processes two electrons on every cycle.

To summarise, the main technical challenges are to support

big voxel cubes and the processing of multiple electrons within

the same kernel using the same on-chip dose memory. The first

challenge is addressed by splitting the voxel cube into multiple

subdomains and adding particle distribution logic to deal with

electrons transitioning between subdomains. Additionally we

add logic to improve memory efficiency and maximise our

usable memory bandwidth. The second challenge is addressed

by adding a unit for resolving potential memory conflicts at

the input of the kernel.

V. PERFORMANCE MODEL

The performance model consists of a set of simple equations

capturing the most important system characteristics. It is used

for rapid design space exploration without running place and

route. It also guides the architectural design and evaluates

the final implementation. The architecture described above

was developed using an iterative process of performance

modelling and refinement. We, however, present only the final

results. The performance model will be used to verify if our

implementation meets our expectations in section VI.

One of the major challenges in modelling the performance

of this application is the extensive use of random number

generators. For example, after how many iterations an electron

is absorbed and the amount of electrons stored in DDR are

both variable. As such, we need to work with estimations

based on measurements using the CPU code.

We will denote the number of electrons updated by inter-

actions before they are absorbed as ninter. The percentage of

electrons which move between subdomains, and therefore re-

quire DDR buffering, is noted as psub. Finally, the percentage

of cases in which there is a memory access conflict in the

patient cube buffer of the simulation kernel is represented by

pmem. These factors are also highly dependent on the way

in which the external electrons are generated and as a result

we will discuss the factors in more detail in section VI while

keeping all equations generic here.

In this section, we will provide equations for area usage,

the achievable electron processing speed, memory bandwidth

requirements and finally PCIe bandwidth requirements.

A. Area Usage

To forecast the area usage of the implementation we need

to count the operations in the CPU code. The simulation of

the electrons does include multiple trigonometric functions

and square roots. For some of those MaxCompiler offers API

functions and we implement the remaining ones as a linear

interpolation between values in a ROM lookup table.

Tab. I shows the operation count and the predicted area

usage for one simulation kernel which processes one electron

per cycle. We determined the area usage for each operation

using micro benchmarks and then simply multiply these with

the number of operations needed and calculate the sum over

all operations. The area usage will scale linearly with the

number of processed electrons per cycle. It should be noted

that additional memories and FFs are needed for scheduling

of the dataflow graph.

The simulation kernel also contains the memory to buffer

the patient cube. The size of this memory depends on the

dimensions of the subdomain, xsub, ysub and, zsub in voxels.

Additionally we have to consider the depth and width of

the physical memories, which we call memd and memw

respectively. Eq. 1 calculates the number of physical on-

chip memories required for a single xy plane. The parameter

accWidth represents the number of bits required for the

datatype used for the dose accumulation. In total zsub of

these memories are needed. However, they might use different

memory resources, since MaxCompiler will automatically use

either BRAMs and URAMs.

#memcube =

⌈
accWidth

memw

⌉
∗
⌈
xsub ∗ ysub
memd

⌉
(1)

In addition to the kernel resource, we also have to consider

the state machines and other manager blocks. The state ma-

chines predominantly use LUTs, FFs and on-chip memory. We

can safely estimate the number of LUTs and FFs required per

state machine to be less than 5,000 and 10,000 respectively.

The particle distributor does not need any additional memory

resources, while the write cache to improve memory efficiency

mainly consists of a single buffer. The size of this buffer can be

estimated using eq. 2 with elecw representing the width of the

electron data structure in bits without padding, 417 bits in our

case. The depth is determined by the number of subdomains

necessary in total. d represents the depth of the memory per

subdomain, which in our case is 16.

#memcache =

⌈
elecw
memw

⌉
∗
⌈

xcube

xsub
∗ ycube

ysub
∗ zcube

zsub
∗ d

memd

⌉
(2)

Lastly, we need to consider the remaining manager blocks.

The memory requirements for each FIFO can be estimated

using eq. 3. Usually the depth of a FIFO is 512 and since

most FIFOs buffer electrons the width is usually either 417
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TABLE I
OVERVIEW OF OPERATION COUNT AND PREDICTED AREA USAGE FOR THE SIMULATION OF ONE ELECTRON.

Multiplications Divisions Additions Interpolation RNG Sin/Cos/Sqrt LUT FF DSP BRAM
82 15 45 8 11 8 85,000 120,000 408 54

or 512 bits. Each memory controller requires 3 DSPs, roughly

20,000 LUTs and 30,000 FFs and around 50 BRAMs. Per

design instance we will require one memory controller. Finally

the resource requirements for the PCIe controller can be

estimated as 8,000 LUTs, 12,000 FFs and 35 BRAMs. The

PCIe controller is shared between all instances of the design.

#memFIFO =

⌈
FIFOw

memw

⌉
∗
⌈
FIFOd

memd

⌉
(3)

B. Electron Processing Speed

To calculate the electron processing speed, we need to

estimate how many electrons can be processed by the kernel

at a given frequency. Eq. 4 shows how to calculate this.

nelec represents the number of electrons processed per second,

while ndesign and npipes represent the parallelism in terms of

number of instances of the design and electrons processed

in parallel respectively. Finally f represents the assumed

frequency the implementation will be running at.

nelec = ndesign ∗ (pmem + npipes ∗ (1− pmem)) ∗ f (4)

Additionally, we have to consider that for each subdomain

the on-chip buffer has to be written back to the host. Normally

this can be overlapped with the compute latency using double

buffering. However, if only a very small number of electrons

belong to a given subdomain the time required for the compute

might not be sufficient to flush the previous buffer. As a result,

we need to wait for the previous buffer to be fully written back

before we can switch to the next subdomain. The number of

cycles required for that per subdomain can be calculated as

shown in equation 5. In this case, readoutwidth represents

the number of voxel values read from the patient cube buffer

per cycle. The overlap between the flushing of the patient

cube buffer and the electron calculation heavily depends on

the electron generation pattern.

cyclesflush =
xsub ∗ ysub ∗ zsub
readoutwidth

(5)

C. Memory Bandwidth Requirements

The total amount of data that needs to be transferred to

and from DDR memory, SDDR, is calculated in equation 6.

Each electron requires 64 bytes and needs to be written and

read only once. Additionally, the data volume depends on the

number of electrons created by the external particle generator

nelec,total. The required bandwidth can then be calculated as

a function of the execution time ttotal as shown in equation

7, where DDReff represents the average memory efficiency.

SDDR = 2 ∗ 64 ∗ nelec,total ∗ ninter ∗ psub (6)

BWDDR =
SDDR

ttotal
∗ 1

DDReff
(7)

D. PCIe Bandwidth Requirements

The PCIe bandwidth requirements are determined by two

factors. On one side, the patient cube has to be streamed back

to the host and in addition we also send the electrons back,

which we can not process within the last batch. Eq. 8 estimates

the amount of data that has to be transmitted for the patient

cube. We assume that all values sent back from the FPGA are

converted to single precision floating point, to ease usage on

the CPU side of the system. As such, the total amount of data

is simply the product of the cube dimensions, the number of

batches that are processed and 4, the size of single precision

floating point number in bytes.

SPCIe,PatientCube = xcube ∗ ycube ∗ zcube ∗ batches ∗ 4 (8)

Additionally the amount of data transferred for the electrons

that have to be sent back to the CPU is calculated in eq. 9

based on the number of electrons sent back nelectron,PCIe.

This factor again depends on the external particle generation.

SPCIe,Electron = nelectron,PCIe ∗ 64 (9)

The required bandwidth can be obtained by calculating the

sum of both equations and dividing by the execution time.

VI. EVALUATION

To evaluate our architecture we implemented it using Max-

eler MaxCompiler version 2018.3.1 and Vivado 2018.2. We

target Maxeler’s MAX5C Dataflow Engine (DFE) as our

FPGA platform. Its compute device, the Xilinx VU9P FPGA,

consists of 1,182,240 LUTs, 2,364,480 FFs, 6,840 DSPs,

4,320 BRAMs and 960 URAMs. Additionally the card has

three 16GB DDR4 DIMMs which provide a peak theoretical

bandwidth of 15 GB/s each.

We built the implementation with different parallelism de-

grees and cube sizes to run the resulting bitstreams on up to

three cards in parallel. For this we used a 2U server powered

by two, six core Intel Xeon E5-2643 v4 CPUs running at 3.4

GHz. Even though we used a server, it is possible to build a

workstation with very similar configuration.

A. Area Results

We decided to implement four different configurations. All

use three design instances, to make optimal use of the three

dies of the VU9P. For builds 1 and 3, the simulation kernel

processes only one electron per cycle, while builds 2 and 4

process two. In the case of builds 1 and 2, we set the patient
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cube size to 128 voxels in each dimension and the subdomain

size is 64 voxels accordingly. For builds 3 and 4, the resolution

is increased and the cube size is set to 256 in each dimension.

The subdomain in these cases consists of 128 voxels in x

dimension and 64 in y and z. The area usage for these four

designs is depicted in tab. II.

The area usage predicted using the equations presented in

section V-A are shown in tab. III. The predicted numbers for

DSPs and LUTs for designs with a kernel parallelism of one

are very close. In the case of a higher kernel parallelism the

LUT prediction is slightly higher, which can be explained by

a pessimistic estimation of the state machines. Our FIFO and

BRAM prediction is usually lower, since we do not include

the resources required for the scheduling of the dataflow

graph. Additionally, to simplify the prediction task, we only

predict BRAM usage and not URAMs. To summarise, the area

predictions are sufficiently accurate and allowed us to perform

a very fast design space exploration.

B. Performance Results

The results of processing 100 million externally generated

electrons are shown in tab. IV. The particles are generated

as a single beam, where all electrons enter the voxel cube at

the same point with an energy of 6MeV. The offset column

indicates if this voxel is within a subdomain or at the centre

of the cube. No offset means, that the beam is pointed at the

centre of the patient cube. In this case the cube is entered at

the intersection of four subdomains, significantly increasing

the number of electrons needing DDR buffering.

We show FPGA and total runtime separately. The total

runtime includes the time required to finish simulation for all

electrons sent back to the CPU as well as the time required

to combine all partial results into one single patient cube.

We predicted the runtime and the time required to perform

memory transfers using the equations in section V. For each

combination of offset and build we simulate a smaller run on

the CPU to derive the factors determined by random number

generators like the number of iterations for each initial electron

and the rate of electrons which require buffering in DDR. In

most cases our predictions are accurate, even though a bit too

optimistic. The reason for this is that we omitted initialisation

time and the time required to send back subdomains to the

CPU when transmission time and compute time can not be

fully overlapped. The initialisation time can take up to 100

ms and additionally the time to send back sub domains can

take between 60 ms for the smaller patient cube and 500 ms

for the bigger one.

In some cases, however, our prediction error is more sig-

nificant. Usually, the error is bigger if the simulation kernel

processes two electrons on every cycle. This can be explained

by considering that the chance of two electrons conflicting,

therefore reducing the parallelism back to one, is random

and has a significant impact on the expected runtime. In our

experiments the chance of a conflict occurring was usually

around 60%, however the actual timing in hardware might

differ significantly from our simulation.

In the cases where the electron beam is sent to the centre

of the patient cube the error is even bigger. In these cases

the predicted compute time is up to 4 times smaller than

the actual time. However, in many of these cases the time

for memory transfers needs to be considered. The kernel will

stall to access memory, if the access happens in bursts and

the DDR memory can not deliver enough data fast enough.

This increases the total runtime. Even though it is theoretically

possible to overlap compute, memory access and data transfers

to the host it turns out that especially in these cases overlap is

quite limited. One reason for this is that, the overall run has

to be split into significantly more batches to ensure that the

off-chip memory address space reserved for each subdomain

is sufficient. As a result, up to 64 batches have to be executed.

It seems that in many cases not enough electrons belong to

one subdomains to overlap streaming back to the host and the

compute (see eq. 5). This adds up to 500ms to the runtime.

In run 3 we managed to simulate the required 100 million

particles in less than a second even when the post processing

on the CPU is included. This requires all three cards. In order

to also meet our requirements for bigger voxel cubes we will

need to improve the timing characteristics or use more cards.

C. Comparison to Traditional Systems

The comparison to related work for this application is not

easy, since the precise test case is often not reproducible. In

[14] the authors report execution times of 10.8 seconds for a

patient cube of size 256x256x234 on a two socket Intel Xeon

system. Additionally they report a speedup of 1.95x compared

to the GPU implementation presented in [8]. A similar test

case on our system (Run 12) takes 2.6 seconds including

the not fully optimised CPU code. As a result we achieve

a speedup of 4.1x compared to the CPU and 8x compared to

the GPU implementation.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an FPGA based implementation

for real time Monte Carlo dose simulation for adaptive radio-

therapy. We proposed an architecture, which decomposes the

voxel cube representing the patient into multiple sub cubes

to reduce on-chip memory space requirements. The perfor-

mance and area usage for this architecture were modelled

using simple equations to predict the hardware implementation

characteristics. Finally, we presented four implementations of

the architecture and showed that in most cases the perfor-

mance model provides an accurate indication of the measured

runtime. We manage to fulfil our realtime goals of simulating

100 million electrons in less than a second using three FPGA

cards for a voxel cube with a size of 128 in all dimensions.

Future work will include the implementation of

bremsstrahlung, additional particle types and support of

different materials. The integration of our approach into the

latest adaptive radiotherapy systems will also be explored.
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TABLE II
AREA USAGE RESULTS FOR THE PROPOSED ARCHITECTURE.

Num Frequency
Design
Count

Kernel
Parallelism

Cube
Size

Subdomain
Size

LUT FF DSP BRAM URAM

1 250 3 1 128 64 337,059 (28.51%) 640,139 (27.07%) 1,233 (18.03%) 1,770 (40.97%) 351 (36.56%)
2 250 3 2 128 64 543,642 (45.98%) 1,069,421 (45.23%) 2,457 (35.92%) 2,916 (67.5%) 384 (40%)
3 250 3 1 256 128 343,918 (29.09%) 669,232 (28.3%) 1,233 (18.03%) 2,562 (59.31%) 672 (70%)
4 250 3 2 256 128 554,637 (46.91%) 1,105,734 (46.76%) 2,457 (35.92%) 3,708 (85,83%) 708 (73.75%)

TABLE III
PREDICTED AREA USAGE RESULTS FOR THE PROPOSED ARCHITECTURE.

Num LUT FF DSP BRAM
1 338,000 492,000 1,233 2,763
2 623,000 912,000 2,457 3,371
3 338,000 492,000 1,233 5,067
4 623,000 912,000 2,457 5,675

TABLE IV
ACTUAL AND PREDICTED RUNTIME.

Run
Num

Build
Num

Cards Offset
FPGA
Time
[ms]

Total
Time
[ms]

Predicted
Compute

Time [ms]

Predicted
DDR

Time [ms]
1 1 1 yes 2,882 2,977 2,667 110
2 1 2 yes 1,451 1,558 1,333 55
3 1 3 yes 981 1,088 889 37
4 2 1 yes 3,267 3,435 1,901 69
5 2 2 yes 1,173 1,342 950 34
6 2 3 yes 810 988 634 23
7 3 1 yes 3,956 4,612 3,333 378
8 3 2 yes 2,182 2,878 1,667 189
9 3 3 yes 1,589 2,351 1,111 126

10 4 1 yes 3,127 4,241 2,427 351
11 4 2 yes 1,750 2,933 1,214 176
12 4 3 yes 1,387 2,613 810 117
13 1 1 no 7,710 7,987 2,800 1,364
14 1 2 no 4,222 4,596 1,400 682
15 1 3 no 3,475 3,778 933 455
16 2 1 no 4,185 5,084 2,011 1,404
17 2 2 no 3,765 4,134 1,005 702
18 2 3 no 2,642 3,101 670 468
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