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The effects of strongly varying fluid properties, beyond the validity range of the so-called Boussinesq
approximation, were experimentally studied in Rayleigh-Bénard (RB) convection. Two experiments were
conducted in the same cubical RB convection cell at similar Rayleigh and Prandtl numbers. In one experiment
water was used as working fluid and the imposed temperature difference between the top and bottom plates of the
cell was such to ensure non-Boussinesq conditions. In the other experiment, taken as a reference for Boussinesq
conditions, methanol was used as working fluid, allowing a smaller temperature difference between the plates. In
both experiments the instantaneous and time-averaged flow fields were determined experimentally in a vertical
cross section of the cell by using particle image velocimetry. Results show a non-Boussinesq effect that manifests
itself as an increase of the time-averaged horizontal velocity component close to the bottom wall of the cell and
as a global top-bottom asymmetry of the velocity field. This is an experimental study of the whole velocity field
of RB convection at non-Boussinesq conditions.

DOI: 10.1103/PhysRevE.95.053113

I. INTRODUCTION

In the Boussinesq approximation [1], the fluid properties are
assumed to be constant in all the terms of the Navier-Stokes
equations, except in the buoyancy term. The Boussinesq
approximation can be used in many cases to simplify complex
problems without a significant loss of accuracy, but there are
also many physical phenomena that cannot be understood
without considering the temperature dependency of the fluid
properties (see, e.g., [2]). In the present paper Rayleigh-
Bénard (RB) convection was studied at conditions beyond the
Boussinesq approximation, in which the volumetric thermal
expansion coefficient, the kinematic viscosity, and the Prandtl
number vary significantly with temperature over the flow
domain.

There are several earlier studies in literature that focus
on RB convection at non-Boussinesq (NB) conditions. In
Ahlers et al. [3] an experimental and theoretical study on
the effects of NB conditions on the Nusselt and Reynolds
number is presented, with heat flux and temperature data.
Their Reynolds number measurements are based on thermal
plumes transient times calculated from temperature auto- and
cross-correlation functions [3]. The working fluid in their
study is water at atmospheric pressure, which shows significant
changes of the kinematic viscosity and the volumetric thermal
expansion coefficient in the range of temperatures considered.
They observed significant deviations from the Boussinesq
approximation in the ratio between the bottom and top
thermal boundary layer thicknesses, up to 20% for the studied
conditions. However, despite this reduction in the thickness of
the bottom boundary layer with respect to the top one, they did
not find significant changes of Nusselt and Reynolds numbers
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due to the temperature dependency of the fluid properties, up
to 2%. For similar conditions, Sugiyama et al. [4] performed
a two-dimensional (2D) direct numerical simulation study
with the purpose of analyzing the flow organization of
Rayleigh-Bénard convection with variable properties. In this
study, no significant differences between the flow structure at
NB and at Boussinesq conditions were observed, except for
the secondary flow, where an apparent asymmetry emerges
between the two small rolls at two opposite corners of the
cell. NB effects in the velocity fields of RB convection were
also studied in three-dimensional (3D) numerical simulations
in glycerol and water by Horn et al. [5,6]. In these studies
differences due to NB effects were observed in the mean
velocity profiles as bottom-top asymmetries of the horizontal
velocity component and in the thickness of the bottom kinetic
boundary layer. More specifically, they found an increase
of the horizontal component of the velocity and a decrease
of the kinetic boundary layer close to the bottom wall of
the cell. Both aspects were attributed to non-Boussinesq
effects due to the temperature dependency of the kinematic
viscosity. NB conditions in glycerol were experimentally
studied with velocity measurements in the thermal sublayers
through temperature fluctuation signals by Zhang et al. [7].
They observed that the second derivative of the velocity profile
has a different sign in the thermal sublayer close to the bottom
wall of the cell (positive sign) with respect to the top thermal
sublayer (negative sign). The change in the second derivative
of the velocity in the thermal sublayers was explained as a
response of the velocity to the kinematic viscosity changes
(due to a strong temperature dependency of the kinematic
viscosity) and the maintenance of a constant viscous stress in
a steady thermal layer. There are no experimental studies in the
literature of the whole velocity field of RB convection under
NB conditions.

The objective of the present study is to experimentally
determine the effects of NB conditions on the whole velocity
field in a vertical cross section of RB convection. This is an
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experimental verification on a 3D domain and with accurate
direct velocity measurements of the several numerical and
theoretical [3–6] studies on NB effects in the velocity fields of
RB convection.

In this study the characteristics of measured velocity fields
under NB conditions in a 77-mm-high cubical RB convection
cell were compared with the velocity fields of a control
experiment done in the same setup at Boussinesq conditions.
NB conditions were created with a temperature difference of
40 K imposed on the cell while it was filled with water. This
resulted in Ra = 6.9 × 108 and Pr = 4.3. The reference case
for Boussinesq conditions considered a 9.6 K temperature
difference between the bottom and top plates of the cell,
resulting in a Rayleigh number of 6.7 × 108 and a Prandtl
number of 7.2, with methanol as working fluid. Methanol was
chosen to maintain similar Rayleigh and Prandtl numbers in
the Boussinesq case with respect to the NB one, while using the
same setup for both experiments. Particle image velocimetry
was then applied to determine the mean velocities and the rms
values of the velocity fluctuations in a vertical cross section
of the RB convection cell for both the Boussinesq and the
NB case. From the experimental velocity fields a NB effect
emerges as top-bottom asymmetries in the mean velocity of
the flow.

II. EXPERIMENTAL SETUP

The Rayleigh-Bénard cell used for the experiments is a
cube of 77 mm inner length (H ) (see Fig. 1). It has four
1.2-mm-thick vertical glass walls that allow for optical access
and two horizontal copper plates. The bottom copper wall is
electrically heated by a heating strip with adjustable power.
The top copper wall is water cooled. The temperature of the
cooling water can be regulated to maintain the temperature of
the top plate to the desired value. Four thermistors are located
in each one of the horizontal walls to monitor the uniformity
of the temperature in the plates. The thermistors are made of

FIG. 1. Sketch of a vertical section of the Rayleigh-Bénard cell.

TABLE I. Upper bounds for the statistical relative uncertainties
of the measured quantities.

Quantity T uX,uY rms(u′
X,u′

Y )

Rel. unc. NB 1% 3% 11%
Rel. unc. Boussinesq 1% 7% 13%

epoxy coated negative temperature coefficient (NTC) of type
C100. The cell is slightly tilted, less than 3◦ on the horizontal
plane (XZ plane) in diagonal direction, in order to fix the
orientation of the large-scale circulation (LSC). Further details
about the apparatus can be found in [8].

A. Particle image velocimetry equipment and measurement
uncertainty

Planar particle image velocimetry (PIV) measurements
were performed in a vertical cross section of the convection
cell, at half the depth of the domain (Z/H = 0.5). A diode
laser (Pegasus) with a power of 400 mW and a wavelength of
520 nm was used to create a light sheet for the illumination
of seeding particles in the measurement section. Two kinds
of particles were chosen for the experiments with water and
methanol. In water, fluorescent particles were used with the
purpose of avoiding the effect of reflections off the glass walls
of the laser light in the images and improving the quality of
the measurements close to the wall. The fluorescent particles
(Fluostar) have an average diameter of 13 μm and a density
of 1.1 g/cm3. The fluorescent dye is rhodamine B, which is
excited by a wavelength of 550 nm and emits at 580 nm.
A long pass optical filter was placed in front of the camera
to block the laser light and visualize only the fluorescent
emission of the particles. For the experiments with methanol
it was not possible to use fluorescent seeding for reasons
of chemical incompatibility of the particles with alcohols.
Silver coated particles (Dantec) were used in methanol instead.
These particles have an average diameter of 10 μm and a
density of 1.4 g/cm3. A PIV camera (LaVision Imager Intense)
with a resolution of 1088 × 1040 pixels was used for the
recordings. In the experiments done with silver coated particles
a background image subtraction was applied to the camera
recordings, with the aim of reducing the effect of reflections
of the laser light in the images off the glass walls.

The camera was equipped with an objective with a focal
length of 60 mm and aperture stop f# = 8. The magnification
factor of the recordings is M = 0.055. Velocities are measured
with a second pass interrogation window of 16 × 16 pixels
and an overlap of 50%, which corresponds to a resolution in
space of 0.65 mm (8 pixels or 0.008 times the height of the
cell). The laser was triggered with a pulse separation time
of 0.030 s, corresponding to a particle image displacement
between frames of about 6 pixels in the highest velocity
regions of the NB experiment. For each experiment 10 800
frames were acquired during 1-h-long measurements, which
corresponds to more than 100 turnover times of the LSC
motion. To ensure steady state of the flow, the measurements
were done after running the setup at constant conditions for
about 4 h. To double-check the steady state of the flow, the
experiments were repeated twice on different days with results
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TABLE II. Experimental conditions and comparison between the relative changes of α, ν, and Pr from the bottom to the top of the cell. All
the properties in the nondimensional numbers are taken at the average temperature between the bottom and top wall temperatures of the cell
(indicated as Tm). The values of the properties of both water and methanol were taken from REFPROP version 9.1 [9].

Expt. conditions Fluid Ra Pr Tm �T �α

αtop

�ν

νtop

�Pr
Prtop

Non-Boussinesq Water 6.91 × 108 4.33 40 ◦C 40◦C 153% −52% −57%
Boussinesq Methanol 6.74 × 108 7.24 20 ◦C 9.6 ◦C 1.5% −13% −11%

that confirm the previous ones. They are shown in Figures 4,
5, 7, 8, and 9. In Figures 4, 5, 8 and 9, two versions of each
case are plotted as one-line profiles. The repeated experiments
are called non-Boussinesq 2nd and Boussinesq 2nd. Figure 7
shows the contour plots of only the second experiment of each
case (non-Boussinesq 2nd and Boussinesq 2nd), while the first
experiment is in Fig. 6. Small differences between the first
experiments and the repeated ones are mainly due to statistical
uncertainty of the velocity measurements.

For each component of the velocity field, the mean velocity
magnitude and the rms of the fluctuating velocity component,
defined by the Reynolds decomposition ui = ui + u′

i , were
computed from PIV measurements as described in (1)–(3):

ui =
∑N

j=1 ui,j

N
, (1)

u′
iu

′
i = u2

i − ui
2, (2)

rms(u′
i) =

√
u′

iu
′
i , (3)

where i = X,Y and N is the number of frames. The turbulent
kinetic energy (k) is defined on the basis of the rms of the
velocity fluctuations as

k = 1

2

∑
i=X,Y

u′
iu

′
i . (4)

The statistical uncertainty of the mean velocity values of the
NB and the Boussinesq case was respectively estimated as 3%
and 7% of their measured values and the statistical uncertainty
of the rms of the fluctuating velocity values was estimated as
11% and 13% of their measured values, respectively. They
were computed from (5) and (6), where n is the number of
independent samples, estimated as in (7). Since Eqs. (5) and
(6) refer to a single measurement point, the values of for the
relative uncertainties of the mean and rms velocity values are
taken in the point where they assume their highest value and

TABLE III. Measured LSC (ULSC expt.) and LSC estimated with
the Gossmann-Lohse theory (ULSC(GL)) and the model from Pandey
et al. [13,14] (ULSC(P )). The measured LSC velocity represents the
maximum of the time-average vertical velocity.

Expt. conditions ULSC expt.[m/s] ULSC(GL)[m/s] ULSC(P )[m/s]

Non-Boussinesq 16.4 × 10−3 9.5 × 10−3 15.3 × 10−3

Boussinesq 12 × 10−3 7.5 × 10−3 12.9 × 10−3

rounded to the highest integer.

Rel. unc.(ui) =
√

u′
iu

′
i

ui

√
n

, (5)

Rel. unc.(
√

u′
iu

′
i) =

√
2

n
, (6)

n = N
4×H

0.9×umax
f

, (7)

where the frequency f is three frames/s. In Table I values for
the upper bounds of the relative uncertainties of the measured
quantities are reported.

III. EXPERIMENTAL PROCEDURE AND VELOCITY
SCALING

Two different experimental conditions were studied (see
Table II), which have been called the NB and the Boussinesq
case. At NB conditions the temperature difference between
the bottom and the top plates of the cell leads to fluid property
differences that are beyond the Boussinesq approximation,
while in the Boussinesq case the temperature difference
applied to the two horizontal plates of the cell results in smaller
changes of fluid properties. The Boussinesq experiment was
done in the same experimental setup of the non-NB experiment
to show that the NB effects seen in the NB case are due to the
strong temperature dependency of the fluid properties and not
to the experimental apparatus used for the measurements.

The two experiments were done at similar Rayleigh and
Prandtl numbers. The Rayleigh and Prandtl numbers are
the two nondimensional parameters that govern the flow for
a given geometry of the domain. They are obtained after
nondimensionalization of the Navier-Stokes equations, under
Boussinesq conditions. The Rayleigh number is defined as

Ra ≡ αmg�T H 3

νmκm

, (8)

where α is the volumetric thermal expansion coefficient of
the fluid, g the gravitational acceleration, �T the difference
of temperature between the hot bottom plate and the cold top
plate of the cell, H the distance between the two horizontal
plates, ν the kinematic viscosity of the fluid, and κ the thermal
diffusivity of the fluid. The Prandtl number is defined as the
ratio between kinematic viscosity and thermal diffusivity:

Pr ≡ νm

κm

. (9)

All the fluid properties used in the calculation of the
nondimensional numbers are taken at the average temperature
between the bottom and the top wall temperature of the cell,
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Tm, reported in Table II . This is indicated with a subscript m

in the symbol of the fluid property.
To maintain the same Rayleigh number in the same setup,

both for the Boussinesq and the non-Boussinesq case, the
experiment at Boussinesq conditions was done with methanol,
while the working fluid in the NB case was water.

In Table II are given the experimental conditions of the two
cases, together with an example of the changes of the values
of two fluid properties and of the Prandtl number between
the bottom and the top plates of the cell. The two properties
considered are the volumetric thermal expansion coefficient
(α) and the kinematic viscosity (ν), because these are the
properties of water that show the largest change at atmospheric
pressure. In the last column, also the change on Prandtl number
throughout the cell due to its temperature dependency is given
for both fluids.

To make the flow fields dimensionless, taking into account
the influence of the variation in Pr number between the two
experiments (Pr = 4.33 in the NB case and Pr = 7.24 in
the Boussinesq one), the velocity values were scaled by a
characteristic LSC velocity of the flow. Currently in literature
there are two possible ways to determine the LSC velocity of
the flow as a function of the Rayleigh and Prandtl number with
the Boussineq approximation: the Grossmann-Lohse theory
[10–12] and the scaling method proposed by Pandey et al.
[13,14].

The Grossmann-Lohse theory, summarized by Ahlers et al.
[15] allows for the prediction of a typical Reynolds number
and Nusselt number as a function of the Rayleigh number and
Prandtl number, for cells of aspect-ratio-one at Boussinesq
conditions. The LSC velocity used for the scaling is calculated
from the Reynolds number predicted by the GL theory as

ULSC (GL) = Re
νm

H
. (10)

The equations of the Gossmann-Lohse (GL) theory that
were used for the velocity scaling are

(Nu − 1)Ra Pr−2 = c1(GL)
Re2

g(
√

ReL/Re)
+ c2(GL)Re3, (11)

Nu − 1 = c3(GL)Re1/2Pr1/2

{
f

[
2a Nu√

ReL
g

(√
ReL

Re

)]}

+ c4(GL)Pr Ref

[
2a Nu√

Rec
g

(√
ReL

Re

)]
. (12)

The following constants and formulas were applied [16]:

c1(GL) = 8.05, c2(GL) = 1.38, c3(GL) = 0.487,

c4(GL) = 0.0252, a = 0.922, ReL = (2a)2, (13)

f (xθ ) = (
1 + x4

θ

)−1/4
, xθ = 2a

Nu√
Re

, (14)

g(xL) = xL

(
1 + x4

L

)−1/4
, xL =

√
ReL

Re
. (15)

Both Ra and Pr are known (from the experiments). Hence by
solving Eqs. (11) and (12) the Re number can be computed and
from Eq. (10) the velocity scale ULSC(GL) can be determined.

The method proposed by Pandey et al. [13,14] is a
different way, with respect to the GL theory, to calculate
the LSC velocity of the flow on the base of the Rayleigh
and Prandtl numbers, under Boussinesq conditions. It is valid
for arbitrary Rayleigh and Prandtl numbers. It is based on
the comparison among the relative strength of the nonlinear
pressure, buoyancy, and viscous terms of the momentum
equation of RB convection. In the turbulent regime, which
is characterized by Ra � 106 Pr, the LSC velocity can be
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FIG. 2. Mean velocities (|u|) contour plots in a vertical cross section at half-depth of the cell (Z/H = 0.5). (a) Non-Boussinesq: Ra =
6.91 × 108, Pr = 4.33; (b) Boussinesq: Ra = 6.74 × 108, Pr = 7.24.
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FIG. 3. Mean velocities (|u|) contour plots in a vertical cross section at half-depth of the cell (Z/H = 0.5). Velocity values normalized by
ULSC(GL) in panels (a) and (c) and by ULSC(P ) in panels (b) and (d). Panels (a) and (b) Non-Boussinesq: Ra = 6.91 × 108, Pr = 4.33; panels (c)
and (d) Boussinesq: Ra = 6.74 × 108, Pr = 7.24.

computed with the formulas (16)–(20) [14]:

ULSC(P ) = Pe
H

κm

(16)

where κ is the thermal diffusivity of the fluid, taken at
the average temperature between the bottom and top wall
temperatures of the cell, Tm, and Pe is the Péclet number
computed from (17):

Pe =
√

c3(P )

|c1(P ) − c2(P )| , (17)

c1(P ) = 1.5 Ra0.10Pr−0.06, (18)

c2(P ) = 1.6 Ra0.09Pr−0.08, (19)

c3(P ) = 0.75 Ra−0.15Pr−0.05. (20)

As summarized in the paper about scaling of large-scale
quantities in RB convection by Pandey et al. [13], there are

several possible ways to calculate the ULSC of the flow. ULSC

can be quantified, for example, as the maximum absolute value
of the horizontal or of the vertical mean velocity component,
or on the basis of their rms’s. In the present study ULSC was
computed from the experimental data as the absolute value
of the maximum of the mean vertical velocity component,
because it is less affected by NB effects with respect to the
horizontal velocity component or to the velocity rms values.
The LSC velocity computed from the experimental data as the
peak of the time-average vertical velocity profile together with
the LSC velocities estimated from the GL theory and from the
formula of Pandey et al. [14], are all reported in Table III.

From the comparison among the experimental ULSC and the
two LSC scaling velocities that were theoretically predicted
on the basis of the Rayleigh and Prandtl numbers of the
experiments (see Table III), several interesting observations
can be made.

One is that the model proposed by Pandey et al. [13,14]
matches the experimental values very well for both the
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FIG. 4. Comparison between non-Boussinesq and Boussinesq mean velocity [panels (a) and (c)] and velocity fluctuations rms [panels (b)
and (d)] at half-depth of the cell (Z/H = 0.5). Velocity values normalized by ULSC(GL). Panels (a) and (b): horizontal component along the line
X/H = 0.5. Panels (c) and (d): vertical component along the line Y/H = 0.5. Non-Boussinesq: Ra = 6.91 × 108, Pr = 4.33; non-Boussinesq
2nd: Ra = 6.84 × 108, Pr = 4.33; Boussinesq: Ra = 6.74 × 108, Pr = 7.24; Boussinesq 2nd: Ra = 6.77 × 108, Pr = 7.24.

Boussinesq and the NB case. The relative difference between
the predicted velocity and the experimental one is indeed
within 7.5% for both cases. The relative difference of the ULSC

predicted with the GL theory with respect to the experimental
values is instead quite large for both the NB and the Boussinesq
case; 73% and 60%, respectively. From Table III it can also be
seen that while the GL theory underestimates both the NB case
and the Boussinesq case, the Pandey model underestimated the
NB case and overestimates the Boussinesq case. Eventually
another interesting observation that can be made from Table III
is that the ratio between the measured ULSC for the NB case
and the Boussinesq case (16.4/12 = 1.37) is matched better
by the predictions of the GL theory (9.5/7.5 = 1.27) than by
the Pandey model (15.3/12.9 = 1.19). The data presented in
this paper were scaled both by ULSC(GL) and by ULSC(P ), in
order to show that the choice of one scaling velocity with
respect to the other one does not make any difference with
regard to the NB effects found. The NB effects indeed were

presented as top-bottom asymmetries within one experiment
and the Boussinesq experiment was used as a reference
case done in the same setup to show that the NB effects
seen in the NB case are independent of the experimental
apparatus.

IV. RESULTS

A. Mean velocities

The mean velocity field in a vertical cross section at half-
depth of the cell (Z/H = 0.5) is shown in Fig. 2 . The NB case
is presented in panel (a), while the Boussinesq case is presented
in panel (b). It can be seen that the velocity fields show a similar
shape in both cases: a large roll in the center (the large-scale
circulation of the flow) and two small counter-rotating rolls
in the upper-left corner and in the bottom-right corner. This
agrees with what was reported by Xia et al. [17] at a similar
Rayleigh number under Boussinesq conditions. In particular,
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FIG. 5. Comparison between non-Boussinesq and Boussinesq mean velocity [panels (a) and (c)] and velocity fluctuations rms [panels (b)
and (d)] at half-depth of the cell (Z/H = 0.5). Velocity values normalized by ULSC(P ). Panels (a) and (b): horizontal component along the line
X/H = 0.5. Panels (c) and (d): vertical component along the line Y/H = 0.5. Non-Boussinesq: Ra = 6.91 × 108, Pr = 4.33; non-Boussinesq
2nd: Ra = 6.84 × 108, Pr = 4.33; Boussinesq: Ra = 6.74 × 108, Pr = 7.24; Boussinesq 2nd: Ra = 6.77 × 108, Pr = 7.24.

the presence of the two corner rolls in the velocity field was
found in previous literature as an expression of a characteristic
velocity mode of the studied Rayleigh and Prandtl numbers.
This mode was identified as responsible for flow reversals
[18–20]. It is also interesting to observe that corner rolls
were also found in 2D numerical simulations done at similar
Rayleigh and Prandtl numbers of our NB experiment, at NB
conditions in water by Sugiyama et al. [4]. By looking at the
corner rolls of Sugiyama et al. [4], it can be seen that they are
characterized by a spatial extension of about 0.4 X/H , while
the spatial extension of the rolls in our 3D experiment is about
0.15 X/H . This consideration, however, cannot be considered
a direct comparison between the simulations of Sugiyama
et al. and our study, because of the difference between 2D
simulations and experiments in a 3D geometry and because of
similar but not perfectly matching Rayleigh numbers in the two
studies (Ra = 108 in the simulations; Ra = 6.91 × 108 in the
experiment).

By comparing the NB case and the Boussinesq case shown
in Fig. 2, one can observe that the magnitude of the velocity
values is higher for the NB case than for the Boussinesq
case. The same plots, scaled by ULSC(GL) and ULSC(P ) are
shown in Fig. 3, panels (a),(c) and (b),(d), respectively. After
scaling, the magnitude of the velocity fields is similar in the
two cases as can be seen by comparing panels (a) and (c)
of Fig. 3, and panels (b) and (d) of the same figure. The
differences before scaling are mainly due to the different
Prandtl numbers. In particular, the NB case is the one with
the smaller Prandtl number, and consequently the larger
magnitude of the velocity field. The velocity scaling allowed
us to normalize the velocities by taking into account the
influence of the Prandtl number on the LSC velocity. The
two small rolls cannot be scaled by the same scaling velocity
that was used for the center roll, indicating that more than
one characteristic velocity scale is present in the flow. Hence,
the relative importance of a characteristic velocity scale of the
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FIG. 6. Turbulent kinetic energy in a vertical cross section at half-depth of the cell (Z/H = 0.5). Values normalized by ULSC(GL) in panels (a)
and (c) and by ULSC(P ) in panels (b) and (d). Panels (a) and (b): Non-Boussinesq: Ra = 6.91 × 108, Pr = 4.33. Panels (c) and (d): Boussinesq:
Ra = 6.74 × 108, Pr = 7.24.

secondary flow with respect to the LSC velocity scale may
change, depending on how large the temperature dependency
deviates from Boussinesq conditions.

For a more quantitative comparison of the two cases, the
values of the horizontal and vertical velocity components along
the lines X/H = 0.5 and at Y/H = 0.5 are shown in Figs. 4
and 5, scaled by ULSC(GL) and ULSC(P ), respectively. From
Fig. 4 (and Fig. 5), panel (a), it can be seen that in the NB
case the peak of the horizontal velocity component close to
the bottom wall is significantly larger than close to the top
wall. The difference is about 13.4%, which is larger than the
statistical uncertainty of 3% and 7% of the NB case and the
Boussinesq case, respectively. Also, the slope of the boundary
layer at the bottom wall is steeper than at the top for the NB
case. The increase of the velocity close to the bottom wall of
the cell with respect to the region close to the top wall can be
explained by the lower values of the kinematic viscosity close
to the hot bottom wall of the cell. These findings are consistent
with the NB effects observed in 3D numerical simulations by
Horn et al. [5,6]. Indeed they also note an increase of the
horizontal velocity magnitude and a reduction of the kinetic
boundary layer thickness near the bottom wall of the cell, with
respect to the top wall, due to the temperature dependency of
the kinematic viscosity. To show that the NB effects seen in
the experiment are due to the temperature dependency of the
fluid properties and that they do not depend on the particular
apparatus used for the measurements, a Boussinesq case (see

Table II) was done in the same setup and used for comparison
in the plots. This case, being more Boussinesq than the NB
case studied, is characterized by more symmetric top-bottom
profiles, with a slight asymmetry of the top-bottom velocity
peaks just above the uncertainty limit of 7% (see Figs. 4 and 5).

From Fig. 4 (and Fig. 5), panel (a), one can also observe
that the horizontal velocity component plotted along the line
X/H = 0.5 shows two linear parts in the central region of the
cell, at 0.1 � Y/H � 0.3 and 0.7 � Y/H � 0.9, for both the
NB case and the Boussinesq case. This was also observed by
Xia et al. [17] under Boussinesq conditions at similar Rayleigh
number. While the slopes of the horizontal velocity component
in Fig. 4 (and Fig. 5), panel (a), for NB and Boussinesq
conditions are similar in the top part (0.7 � Y/H � 0.9),
they are different near the bottom (0.1 � Y/H � 0.3). This is
related to the large difference between the horizontal velocity
peaks close to the bottom wall compared to the top in the
NB case. It is also interesting to observe a further difference
between the two cases in the central region of the cell for
0.3 � Y/H � 0.7 where both the NB and the Boussinesq
profiles show an inflection point, albeit at different locations.
In particular, from Fig. 4 (and Fig. 5), it can be seen that both
the mean horizontal [panel (a)] and vertical [panel (c)] velocity
component values are different from zero at the center of the
cell (Y/H = 0.5 or X/H = 0.5, respectively) for the NB case
of quantities that are larger than the statistical uncertainty.
This effect is also present in the Boussinesq values of the
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FIG. 7. Turbulent kinetic energy in a vertical cross section at half-depth of the cell (Z/H = 0.5) (repeated experiments). Values normalized
by ULSC(GL) in panels (a) and (c) and by ULSC(P ) in panels (b) and (d). Panels (a) and (b): non-Boussinesq 2nd: Ra = 6.84 × 108, Pr = 4.33.
Panels (c) and (d): Boussinesq 2nd: Ra = 6.77 × 108, Pr = 7.24.

mean horizontal velocity component [Figs. 4 and 5, panel (a)].
Since for a perfect Boussinesq case, one would expect a zero
mean velocity value at the center of the cell, deviations from
zero show that the nominal Boussinesq case is also affected
by NB effects.

This top-bottom asymmetry NB effect agrees with previous
numerical studies [5,6] (Fig. 9) and confirms them experimen-
tally.

Also the values of the rms’s of the horizontal velocity
component along the line Y/H = 0.5, presented in Figs. 4
and 5, panel (b), show a top-bottom asymmetry, but it is
within the statistical uncertainty. The vertical component of
the velocity rms along the line Y/H = 0.5 does not show
evident asymmetries in the two cases [Fig. 4, panel (d)].

B. Turbulent kinetic energy

The turbulent kinetic energy (k) at Z/H = 0.5 for the NB
case and the Boussinesq case is shown in Fig. 6, after scaling
by ULSC(GL) [panels (a) and (c)] and by ULSC(P ) [panels (b)
and (d)]. The NB case is presented in panels (a) and (b)
and the Boussinesq case in panels (c) and (d). The contour
plots of both cases show similar shape and magnitude after
scaling. For both cases, the regions with the highest values
of k are in the vicinity of the corners. These peaks are
related to the two counter-rotating rolls at the top-left and
at the bottom-right corners of the cell shown in Fig. 3. The

fluctuations of the velocity indeed are higher immediately
before the impingement of the two vertical jet regions onto the
two horizontal plates. From instantaneous flow visualizations
one can see that the two vertical jet regions are unstable and
oscillate before the impingement onto the horizontal walls.
This leads to the high values of the turbulent kinetic energy at
the top-left corner and at the bottom-right corner of the cell.

From Fig. 6, panels (a) and (b), NB effects are visible as
an increase of the turbulent kinetic energy in the bottom-left
quadrant of the cell with respect to the top-right quadrant. The
Boussinesq reference case, plotted in panels (c) and (d) of
Fig. 6 is instead more symmetric. To quantify this NB effect
better, in Figs. 8 and 9 the values of the turbulent kinetic energy
along the horizontal axis X/H at three different heights in
the bottom-left quadrant (Y/H = 0.1,0.2,0.3) and in the top
quadrant (Y/H = 0.7,0.8,0.9) are plotted for both the NB
case and the Boussinesq case, with both scaling models. By
comparing panels (a) and (b) of Figure. 8 (or Fig. 9), it can be
seen that the values of k are slightly larger in the bottom-left
quadrant of the cell shown in panel (b), with respect to the
top-right quadrant shown in panel (a) for the NB case (relative
increase of about 20%). In the repeated NB experiment shown
in Fig. 7 and in panels (a) and (b) of Fig. 8 (and Fig. 9)
as 2nd expt.; however, this NB asymmetry was not detected.
The reference Boussinesq case [see panels (c) and (d) of
Figs. 8 and 9] shows a good symmetry within experimental
uncertainty, which was confirmed by a repeated experiment
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FIG. 8. One-line plots of the turbulent kinetic energy values at several heights Y/H (Y/H = 0.1,0.2,0.3,0,7,0.8,0.9) along the axis X/H

at Z/H = 0.5. Values normalized by ULSC(GL). (a), (b) Non-Boussinesq: Ra = 6.9 × 108, Pr = 4.33; non-Boussinesq 2nd: Ra = 6.84 × 108,
Pr = 4.33. (c), (d) Boussinesq: Ra = 6.7 × 108, Pr = 7.24; Boussinesq 2nd: Ra = 6.77 × 108, Pr = 7.24.

shown as a contour plot in panels (c) and (d) of Fig. 7 and as
one-line profiles at several heights Y/H in panels (c) and (d)
of Figs. 8 and 9. The different values of k between the NB
experiments may be due both to statistical uncertainty of the
velocity measurements as quantified in Eqs. (6) and (7) and to
a very small difference in the Rayleigh number between the
two NB cases (Ra = 6.91 × 108 in the first experiment and
Ra = 6.84 × 108 in the second).

In conclusion, from this experimental turbulent kinetic
energy study it was seen that while there is symmetry at Boussi-
nesq conditions (verified by two independent experiments),
at NB conditions there is a tendency toward an asymmetric
distribution of the values of k. In particular, a relative increase
of the values of k was observed at the bottom-right quadrant of
the cell, with respect to the top-left quadrant of about 20%. This
asymmetry, however, was difficult to detect experimentally
and it was not confirmed in a second experiment done at
similar experimental conditions. Differences between the first
and the second NB experiments were mainly due to statistical
uncertainty in the velocity measurements.

V. CONCLUSIONS

Rayleigh-Bénard convection under NB conditions was
investigated experimentally with particle image velocimetry in
a cubical cell. The effect of the strong temperature dependency
of the fluid properties on the mean velocity field and its
rms values in the NB case was compared with a reference
Boussinesq case done in the same setup.

To make the flow fields of the two cases dimensionless,
while taking into account the influence of their different Pr
numbers, the velocity values were scaled by a characteristic
LSC velocity of the flow. Two LSC velocities were considered:
one calculated from the Grossmann-Lohse theory [10–12]
and another one calculated from the model of Pandey et al.
[13,14]. The latter matched the experimental values of both
the NB case and the Boussinesq one very well, with a relative
difference of 7.5% for both cases. The ULSC predicted with
the GL theory instead matched the experimental values of
the NB case and of the Boussinesq case with a relative differ-
ence of 73% and 60%, respectively. It was also observed that
the ratio between the measured ULSC for the NB case and the
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FIG. 9. One-line plots of the turbulent kinetic energy values at several heights Y/H (Y/H = 0.1,0.2,0.3,0,7,0.8,0.9) along the axis X/H

at Z/H = 0.5. Values normalized by ULSC(P ). (a), (b) Non-Boussinesq: Ra = 6.9 × 108, Pr = 4.33; non-Boussinesq 2nd: Ra = 6.84 × 108,
Pr = 4.33. (c), (d) Boussinesq: Ra = 6.7 × 108, Pr = 7.24; Boussinesq 2nd: Ra = 6.77 × 108, Pr = 7.24.

Boussinesq case is matched slightly better by the predictions
of the GL theory, than by the Pandey model. The presented
data were scaled with both LSC velocities, in order to show
that the choice of one scaling velocity with respect to the other
one does not make any difference with regard to the NB effect
found.

A NB effect was found in the mean horizontal velocity
component of the NB case, where a top-bottom asymmetry
with the bottom velocity peak larger than the top one of about
13% was found. This top-bottom asymmetry of the mean
velocity was seen to be very weak, just above the uncertainty
limit of 7%, in the nominal Boussinesq case, where the material
properties only weakly depend on temperature.

It was also seen that the value of the mean horizontal
velocity component at half height of the cell is not zero for
both cases, of a value that is larger than the experimental
uncertainty. This shows that also the nominal Boussinesq case

was influenced by the same NB effect. In the NB case, also
the mean vertical velocity value at half-depth of the cell is
different from zero.

Since the velocity fields of the two cases were acquired in
the same setup, differences among them can be attributed to
different temperature dependency of the material properties of
the two fluids used in the two cases and not to the experimental
setup.

This NB effect well agrees with previous numerical studies
[5,6] and confirms them experimentally.
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