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Proteases in bacteriophage defense systems 
and their potential in bioengineering
Konstantinos Kalogeropoulos 1 ,2 ,3 ,4 , * , Sam P.B. van Beljouw 1,2,4 , Dani Feldmann 1,2 , 
Daan F. van den Berg 1,2 , and Stan J.J. Brouns 1,2, * 
Highlights 
A broad spectrum of bacterial phage de-
fense systems featuring proteases likely 
still awaits discovery, showcasing di-
verse mechanisms fo r sensing, effector
activation, and function.

Unlike traditional DNA or RNA editing, 
activatable proteases present new ave-
nues for engineering biological systems 
through specific and direct modification
of proteins.
Novel phage defense systems featuring diverse enzymatic activities are continu-
ally being discovered. Among these, defense systems employing proteolytic en-
zymes have been identified, revealing a previously unrecognized enzymatic 
activity in phage defense. These protease-associated defense systems repre-
sent an untapped reservoir for new biotechnological tools and may serve as a 
springboard for the development of proteome editors. This review outlines re-
cent advancements in the discovery and characterization of protease-containing 
defense systems, proposes methods for further exploration and investigation of
protease activity, and considers the prospect of protease defense systems for
modulating protein processing and cell fate.
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Engineering proteases and their sub-
strates opens possibilities for manipulat-
ing prote in processing and function.

Adaptation of protease systems to other 
targets and pathways offers significant 
potential for protein signaling pathways
and cell process regulation.
A guild of protease-associated defense systems enters the frame
Bacteria and their viruses, phages, are engaged in a continuous evolutionary conflict, which has 
driven the development of sophisticated mechanisms of resistance and counteraction [1,2]. Over 
the past decade, advancements in genomic mapping of defense systems, protein comparisons, 
and clustering techniques have facilitated the discovery and characterization of numerous phage
defense mechanisms [3,4]. These systems can sense a variety of triggers – for example, DNA 
damage and phage-associated molecular patterns (PhAMPs) (see Glossary) – and employ 
diverse enzymatic effectors (e.g., metabolite depleting proteins and restriction enzymes) to medi-
ate phase defense [5,6]. 

Among the most recent discoveries are multiple novel defense systems that deploy proteases
[7–9], which are enzymes that cleave proteins via peptide bond hydro lysis, regulating
proteostasis and protein activity [10]. Notable examples of such bacterial protease-associated 
defense systems (PADS) are clustered regularly interspaced short palindromic repeats 
(CRISPR)–CRISPR-associated protein (Cas), antiviral signal transduction ATPases with 
numerous domains (STANDs) (Avs), bacterial cyclic oligonucleotide-based anti-phage 
signaling system (CBASS),  and  toxin–ant itoxin (TA) systems, many of which have been
unearthed through bioinformatic approaches and subsequent experimental characterization
[11,12]. However, most proteases in PADS are poorly understood and understudied.

Besides revealing novel insights into the biology of bacterial immunity, studying PADS offers 
unique avenues for bioengineering. The inducible nature of these protease systems, along wi th
their adaptability as scaffolds, opens up possibilities for application in diverse biological and ther-
apeutic contexts [13,14]. Unlike enzymes acting on DNA or RNA, proteases can act directly on 
proteins. In contexts where a rapid response to infection is critical, direct protein-level modulation 
enables faster cellular adaptation and may offer an evolutionary advantage. Therefore, direct pro-
tein processing by proteases can be advantageous in scenarios where immediate modification of
cell makeup is essential, or when genome editing is undesirable [15]. 
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Glossary 
Alphafold 3: a deep-learning-based 
protein structure prediction tool that 
extends the Alphafold framework to 
multimodal modeling, incorporating 
ligands, nu cleic acids, and protein
complexes.
Antiviral signal transduction 
ATPases with numerous domains 
(STANDs) (Avs): proteins that detect 
phage components and activate 
do wnstream defense mechanisms.
CHOPPER: click chemistry enrichment 
with positive strategies: a chemical 
proteomics method for selective 
labeling, enrichment, and analysis of 
prot eins or peptides with mass
spectrometry.
Clustered regularly interspaced 
short palindromic repeats 
(CRISPR): together with Cas proteins 
CRISPR forms adaptive immune 
sy stems in bacteria and archaea.
Craspase: a CRISPR-guided caspase-
like system, and the first described 
member of the protease-associated 
defense systems (PADS).
CRISPR-associated proteins (Cas): 
proteins that mediate target recognition 
and cleavage in CRISPR adaptive 
immune sy stems of bacteria and
archaea.
After outlining the conservation of proteases, we go on to explore recent discoveries of PADS in 
detail. We then highlight how engineering their proteases and sensing mechanisms could enable 
the next generation of post-translational editors. Such systems may offer a safer alternative to
nucleic acid-based genome editing, owing to the transient nature of their activity.

Protease activity is conserved across life
Proteases are indispensable enzymes that play pivotal roles in numerous cellular processes 
across all domains of life. In eukaryotes, proteases have evolved into highly complex systems es-
sential for maintaining homeostasis and orchestrating organismal processes. Proteases also play
critical roles in cell differentiation by regulating key signaling pathways and cell migration, and they
are indispensable for higher-order processes (Box 1). 

In eukaryotic immunity, caspases play a central role in eukaryotic cell death by initiating apoptosis 
by cleaving proteins in response to cellular damage [16]. Inflammatory caspases within 
inflammasomes also cleave proinflammatory cytokines – pro-interleukin (IL)-1β and pro-IL-18 – 
into their active forms and trigger pyroptosis, thereby amplifyin g the inflammatory response to in-
fection [17]. The complement cascade likewise relies on sequential serine proteases that activate 
one another in a zymogen cascade, resulting in opsonization of pathogens and assembly of 
membrane attack complexes for direct lysis of microbes [18]. Intracellularly, lysosomal proteases 
such as cathepsins are used in the process of xenophagy [19]. Furthermore, the ubiquitin– 
proteasome system and similar ubiquitin-like modifier proteins target viral proteins for protea-
somal degradation, limit viral replication, and regulate innate immune signaling pathways [20–22]. 

Bacterial proteases share several important functions with their eukaryotic counterparts, includ-
ing the maintenance of cellular homeostasis through the degradation of misfolded, unnecessary,
or aggregated proteins, particularly under stress [23,24]. Additionally, bacterial proteases are
Box 1. Protease classification, function, and regulation

Proteases are classified into clans based on the key catalytic residues, with further classi fication into subclans and families
based on sequence homology [102]. Proteases are termed endopeptidases if they cleave internal peptide bonds, or exo-
peptidases if they target terminal bonds, with further classification into aminopeptidases or carboxypeptidases according
to whether cleavage occurs at the N or the C terminus [103]. 

The mechanism of action typically involves a nucleophilic attack towards the scissile bond, initiated by substrate binding. 
Through a series of intermediate steps, two polypeptide chains, each with a neo N and C terminus, are released [104]. The 
substrate-binding pocket plays a critical role in determining substrate range, influenced by the residues around the cleavage site 
(named P1, P1′ for substrate and S1, S1′ for substrate pocket residues). Substrate specificity varies widely – from proteases with 
highly specific recognition sequences (e.g., SUMO proteases) to those with broad activity (e.g., matrix metalloproteinases), 
depending on specificity, localization, and cofactors – leading to diverse functions and substrate repertoires [105,106]. Auxiliary 
domains may assist in substrate binding, providing additional specificity and functionality in their activity [107]. 

In higher organisms, many proteases are synthesized as inactive zymogens with propeptide sequences that inhibit activity 
until removed by proteolysis, a process that is catalyzed by either the protease itself or another protease [108]. Additionally, 
protease activity is regulated by inhibitors that bind to the active site, preventing substrate access [109]. Proteases often 
require cofactors such as metal ions or proteins for activity, and activity is often further controlled by exosite binding and 
allosteric changes to their structural conformation. Functional activity may require the formation of higher-order structures 
such as dimers (caspase activation) or hexamers (proteasome), and proteases can be components of large complexes
such as the proteasome, or exist as simpler entities with only the protease domain [16]. 

Unlike other enzymes that modify proteins post-translationally, proteases induce irreversible changes in the proteome 
landscape, with precise regulatory mechanisms in place to avoid detrimental activity. Proteases typically operate in biological 
pathways where irreversible decisions are made, often being integrated into positive feedback loops and signaling cascades
controlled by multiple checkpoints [110]. Proteolysis is vital for maintaining proteome homeostasis, contributing to protein turn-
over and localization, aswell as regulating critical processes such as tissue remodeling and cellular fate determination [111]. Dys-
regulated protease activity is implicated in numerous diseases, highlighting the need for stringent control of protease action [112]. 

Cyclic oligonucleotide-based anti-
phage signaling system (CBASS): a 
system that uses cyclic nucleotides as 
second messengers to ac tivate diverse
defense effectors.
Cyclic triadenylate (cA3): a  small  
cyclic oligoadenylate second messenger 
produced by Type III CRISPR–Cas 
systems to activ ate downstream
defense effectors.
Degron: a short amino acid sequence 
at a protein terminus that marks the 
protein for degradation through 
ubiquitin-dependent o r ubiquitin-
independent pathways.
Deubiquitinases (DUBs): a  family  of  
proteases that remove ubiquitin or 
ubiquitin-like molecules from target 
prot eins by isopeptidase activity.
Inflammasome: a  multiprotein  
complex in a host cell that detects 
pathogens or cellular stress and 
activates caspase-1, leading to cytokine
maturation and pyroptosis.
JAB protease: a  metalloprotease  
family member (JAB1/MPN/Mov34) that 
processes ubiquitin-like proteins by 
priming them for conjugation or 
removing them from targets, thereby
enabling recycling.

Trends in Biochem
ical Sciences, January 2026, Vol. 51, No. 1 65



Mass spectrometry (MS): an 
analytical method for precise mass-to-
charge measurement of ions. In 
proteomics, especially bottom-up 
proteomics,MS is routinely used to study
protease cleavage events (degradomics).
Matrix-assisted laser desorption/ 
ionization (MALDI): a soft ionization 
method in MS often used for pep tide
and protein analysis.
Matrix metalloproteinases: zinc-
dependent endopeptidases that 
degrade extracellular matrix proteins 
and regulate tissue remodeling, 
si gnaling, and inflammation.
Metallo-β-lactamases (MBLs): a 
family of metal-dependent hydrolases 
best known for degrading β-lactam 
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essential in regulating cell division, fate determination, and cellular death [25–27]; their role also 
extends into transcriptional regulation, sensing, and signaling. These include th e control of TA
systems [28], degrading transcription repressors (e.g., in response to DNA damage, stress re-
sponse and protein quality control, and gene transfer) [29], and signal processing (e.g., in quorum
sensing) [30]. Proteases are essential not only for bacteria but also for viruses. Their use s pans
protein maturation from polyprotein proforms [31], virion assembly initiation with cleavage of
structural proteins [32], and counter-defense via degradation of critical components of host im-
mune systems [33]. This breadth of conserved functions across life underscores protease activity 
as a highly versatile and conserved enzyma tic mechanism, and suggests an ancient evolutionary
origin of proteolysis [10].

The emergence of the PADS repertoire of bacteria
While a plethora of immune proteins has been experimentally described (e.g., CRISPR–Cas, 
restriction enzymes, RecBCD) [34–36], only a few PADS have been studied (Figure 1), though
antibiotics, but also widespread in
diverse enzymatic contexts.
Phage-assisted continuous 
evolution (PACE): a technique that 
links phage replication to the activity of a 
target protein, en abling rapid laboratory
evolution.
Phage-associated molecular 
patterns (PhAMPs): conserved 
phage-derived molecules recognized by 
bacterial immune systems as infection
signatures.
Protease: an enzyme that catalyzes the 
hydrolysis of peptide bonds in 
polypeptide chains, thereby regulating 
pr otein turnover and function.
Protease-associated defense 
systems (PADS): systems that use 
proteolysis and signaling to protect 
bact eria from phage infection.
ProteinMPNN: a deep-learning-based 
framework for protein sequence design 
that generates amino acid sequences 
compatible with a gi ven protein
backbone structure.
Proteomic identification of protease 
cleavage sites (PICS): a mass 
spectrometry-based method for 
unbiased, global mapping of pr otease
substrate specificity.
Pyroptosis: a  form  of  inflammatory lytic 
cell death triggered by inflammasome 
signaling and executed th rough
gasdermin pore formation.
RFdiffusion: a  generative  modeling  
method for protein design that leverages 
diffusion models to sample novel 
structures an d sequences with high
designability.
SMODS-associated and fused to 
various effector domains (SAVED): a 
class of bacterial defense systems 
centered on STAND ATPases that 
detect phage infection and trigger
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Figure 1. The increasing repertoire of characterized protease-associated defense systems (PADS). PADS
employ diverse mechanisms to couple phage signals to protease activation. (A) Toll/interleukin 1 (IL-1) receptor/resistance
protein (TIR)–caspase is activated by a phage component. The TIR domain uses NAD+ to generate N7-cyclic adenosine
diphosphate ribose (cADPR), which in turn activates a caspase-like protease that cleaves multiple host substrates to
promote defense. (B) In the Craspase system, hybridization of guide RNA (gRNA) with its complementary RNA induces
conformational changes in the complex that activate the associated caspase HetF associated with tetratricopeptide repea
(TPR) (CHAT) protease. The protease cleaves Csx30, which is in complex with Csx31 and an RpoE-like transcription
factor, releasing transcriptional inhibition and inducing an abortive infection response. (C) Prokaryotic caspase (PCaspase
is also triggered by complementary RNA; the system produces cyclic tri-adenylate (cA ). This signaling molecule activates
a SMODS-associated and fused to various effector domains (SAVED)–CHAT domain, which then activates PCaspase to
cleave cellular substrates broadly, driving antiviral defense. (D) The DdvA–DdvS system is proposed to sense a phage-
derived periplasmic signal: DdvA self-cleaves its linker, initiating a regulated intramembrane proteolysis cascade tha
releases the transcription factor DdvS to induce antiviral gene expression. (E) E1–E2 conjugation systems employ cyclase
or ubiquitin-like proteins to tag host or phage proteins, potentially blocking phage assembly or regulating cellula
pathways. JAB proteases within these systems balance conjugation by priming and removing modifiers. (F) BREX
(bacteriophage exclusion) systems are established as phage defense pathways, but the precise  role  of  the  protease
component remains unknown. (G) In the cyclic oligonucleotide-based anti-phage signaling system (CBASS)-associated
Cap system, DNA damage sensing relieves inhibition of CapP, a metalloprotease that degrades the transcriptiona
repressor CapH. This activates expression of the CBASS operon and triggers an abortive infection response. (H) The
CalpL system detects complementary RNA to stimulate synthesis of cyclic tetra-adenylate (cA ). This activates CalpL
protease, which cleaves CalpT to release CalpS, a transcriptional regulator of antiviral genes. Abbreviation: RNAP, RNA
polymerase. Figure created with BioRender.
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Terminal amine isotopic labeling of 
substrates (TAILS): a  proteomics  
method for enrichment and MS anal ysis
of protein N and C termini.
Tetratricopeptide repeat domains 
(TPRs): structural motifs that mediate 
protein–protein interactions and 
assembly of m ultiprotein complexes.
Toxin–antitoxin (TA) systems: 
bacterial modules composed of a stable 
toxin and a labile antitoxin that regulate 
growth, stress re sponses, and defense
against phages.
Type IV Thoeris: a bacterial immune 
system that defends against phages 
using a TIR-domain protein to produce 
the cy clic signalingmolecule N7-cADPR.
Ubiquitin–proteasome system: a 
eukaryotic protein quality control 
pathway in which ubiquitin tags proteins 
for degrad ation by the 26S proteasome.
Xenophagy: a selective form of 
autophagy in which host cells target and 
degrade intracellular pathogens.
Zymogen: an inactive precursor of an 
enzyme that requires proteolytic 
cleavage or conformational change to
become active.
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it is becoming clear that bacterial proteases also play essential roles in bacterial immune 
responses against phages. Here they often function as signal transductors or effectors, 
degrading viral components, regulating stress responses, or triggering cell dormancy or death 
to prevent phage propagation. We review PADS that have been experimentally described thus
far, including members from the cysteine, metalloprotease, and serine protease families.

Cysteine proteas es
Cysteine proteases comprise a ubiquitous class of proteolytic enzymes that have a cysteine in 
their active pocke t, with the caspase family as the predominant signature in emerging PADS.

Importantly in the context of this review, a recent study revealed that a cysteine protease in 
bacteria can activate gasdermin-like cell death effectors via proteolytic cleavage up on sensing
a viral invader, paralleling inflammasome-driven pyroptosis in eukaryotes [37]. In particular, 
caspase recruitment domain (CARD) motifs, also central to eukaryotic immune complexes, 
were identified at the N termini of these bacterial proteases (although these a re thought to be
trypsin-like proteases) that activate gasdermins [37]. The structural and functional parallels 
between bacterial and eukaryotic CARD protease and gasdermin modules support an ancient
evolutionary origin for this immune strategy.

Another experimentally studied immune system involving a cysteine protease is type IV Thoeris
[38]. In this PADS, infection is sensed by a Toll/IL-1 receptor/Resistance protein homology domain 
(TIR) protein through recognizing unknown phage-derived constituents, generating a cyclic aden-
osine diphosphate ribose (ADPR) (N7-cADPR) molecule from NAD+ (Figure 1A). This N7-cADPR in 
turn activates a caspase-like protease, resulting in massive reduction in cellular – and potentially 
phage – proteins that appears to prevent the invading phage from successfully reproducing [38]. 

Several PADS employ a caspase HetF associated with tetratricopeptide repeat (TPR) (CHAT) 
protease domain, which has been classified as an evolutionary relative of caspases. This domain 
is characterized by its association with TPRs and is implicated in protein–protein interactions and
pathway signaling [39]. As described here, CHAT domains are employed by several bacterial 
PADS. First, proteases activated by CRISPR–Cas systems have been classified as the
CRISPR-controlled protease family [40]; this currently contains three members, of which two 
are cysteine proteases: Craspase and prokaryotic caspase (PCaspase). Craspase, also 
known as CRISPR–Cas  type  III-E,  is  a  complex  of  an  RNA-recognizing  CRISP  R–Cas effector
(gRAMP/Cas7–11) and a caspase-like protease (TPR-CHAT/Csx29) [41,42]  (Figure 1B). Upon 
binding of RNA complementary to the guide RNA (gRNA) of Craspase, a confor mational change
results in protease activation [43,44]. Craspase then cleaves the host-encoded protein Csx30, 
releasing the inhibition on a transcription factor (RpoE) and leading to an abortive infection pheno-
type [7,45]. Cleavage of the bound RNA shuts off the proteolytic activity, making Cr aspase an
RNA-controlled protease [43]. 

In the second CRISPR–Cas activated protease system, CRISPR–Cas type III-B, two proteases are 
involved: second messenger oligonucleotide or dinucleotide synthetase (SMODS)-associated 
and fused to various effector domains (SAVED)–CHAT – and PCaspase [9]. Upon recognition 
of target RNA by the type III-B effector protein, cyclic triadenylate (cA3), signaling molecules 
are generated which bind to the SAVED domain of SAVED–CHAT. This stimulates its proteo lytic
action, specifically cleaving and thereby activating PCaspase (Figure 1C). Activated PCaspase 
cleaves various protein substrates, mounting a strong defense phenotype [9]. It could be 
envisioned that such systems might be employed as programmable proteases, cleaving specific 
proteins in response to designed RNA triggers.
Trends in Biochemical Sciences, January 2026, Vol. 51, No. 1 67
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Beyond the CRISPR-controlled proteases, the CHAT-encoding DdvA–DdvS system is indirectly 
involved in phage defense by regulating a phage defense island [46]  (Figure 1D). The DdvA protein 
features a dimeric structure, with a periplasmic TPR–CHAT domain that resembles caspase pro-
teases. DdvA is proposed to sense a phage signal in the periplasm, triggering a conformational 
change that activates its protease activity. This leads to cleavage of its own linker region, initiating
a regulated intramembrane proteolysis (RIP) cascade that releases DdvS, enabling transcription
of antiviral defense genes [46]. Analogous systems could be engineered to link extracellular 
cues to controlled gene expression in synthetic contexts.

Lastly, the single-gene Borvo system encodes a CHAT protease that provides broad protection
against Siphoviruses in Escherichia coli [47]. Its exact mode of action is still unclear, but one plau-
sible model is that the Borvo CHAT protease cleaves bacterial gasdermin homologs encoded in 
different loci. Anothe r possibility is that they become activated upon sensing damage and trigger
dormancy through cleavage of essential proteins.

Metalloproteases 
Metalloproteinases are proteases that harbor a metal ion (Zn2+ ,  Mg2+ ,  Cu2+ ) in their active site, 
coordinating hydrolysis of peptide bonds [48]. Several such proteases of diverse families have 
been discover ed to be part of bacterial PADS.

Several CBASS systems with similarity to eukaryotic immunity, in particular the cyclic GMP–AMP 
synthase (cGAS) and the ubiquitin system, were discovered [12]. These systems utilize E1–E2 fu-
sion enzymes (cap2) to catalyze conjugation of a protein encoded in the system to other protein
substrates likely to enhance its activity [49]  (Figure 1E). Deubiquitinase (DUB)/JAMM-like-
metalloproteases seem to play an important role in these systems, potentially through removing 
the conjugated proteins to balance the system, akin to deubiquitinases [50,51]. For example, the 
Bil system, an interferon-stimulating gene (ISG)-15-like system containing a JAB protease, de-
ploys an E1–E2 enzymatic cascade to conjugate a ubiquitin-like protein to the central tail fiber of
infecting phages [47,52]. This conjugation interferes with tail assembly or obstructs the tail tip, re-
sulting in the release of tailless or non-infective phage particles. The JAB protease was shown to 
both pri me the ubiquitin-like protein for conjugation and remove it from targets, suggesting a dual
role in conjugation and recycling [53]. Another anti-phage defense system in which ubiquitin-like 
conjugation is central for antiviral activity is 6A-metallo-β-lactamase (MBL), which features a 
unique fusion of E1, E2, and JAB domains. Mutations in the active sites of E1, E2, and JAB do-
mains completely abolished the defensive phenotype, demonstrating the critical role of these
components [54]. In the future, such systems could be reprogrammed for ubiquitin conjugation 
of selected targets, enabling conditional protein degradation in response to defined triggers.

Another PADS featuring metalloproteases is the PD-λ-2 system which prevents the infection 
of lambda phages and consists of three genes, including a HigA antitoxin (PD-λ-2B), a P4 
phage antitoxin (PD-λ-2C), and a third gene that e ncodes both a HigB-like toxin domain and a
Zn-peptidase domain (PD-λ-2A) that is also present in the PADS RosmerTA and IrrE/ImmA
[55]. By contrast, overexpression of the proposed antitoxin PD-λ-2B was toxic and was rescued 
by the presence of Zn-peptidase encoding PD-λ-2A. The role of PD-λ-2C in this system is un-
clear, apart from being required for phage defense. These findings suggest that the peptidas e
of PD-λ-2B is rendered inactive upon phage infection, causing PD-λ-2B to inhibit phage replica-
tion in a self-inflicted toxic mechanism that as yet is not understood [55]. 

MucP, a membrane zinc metalloprotease, was discovered in Pseudomonas aeruginosa and 
shown to prevent the propagation of single-stranded RNA (ssRNA) phage PP7 by cleaving its
68 Trends in Biochemical Sciences, January 2026, Vol. 51, No. 1
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lysis protein [56]. Members of the Lamassu family encoding predicted peptidase effectors have 
also been implicated in antiviral immunity [47]. Although mutation of the putative protease active 
site did not impair phage protection, the peptidase may contribute to a secondary layer of
defense, as observed in other multi-effector systems.

Lastly, metalloproteases have recently also been implicated in the indirect regulation of phage 
defense systems. For instance, capP, a metalloprotease related to CBASS systems, is triggered
by ssDNA to degrade the HTH family transcriptional repressor of the cognate operon, capH [57] 
(Figure 1G). This results in the upregulation of the cognate CBASS system (encoded in the same 
operon) and abortive infection. It is conceivable that such a system could be engineered to sense
DNA damage in eukaryotic cells, triggering a downstream response to that stimulus.

Serine protease s
Serine proteases were also shown to be involved in defense against bacteriophages, mainly with 
Lon-like and trypsin-like proteases. Lon proteases are ATP-dependent serine proteases con-
served across bacteria, archaea, and eukaryotes, best known for their role in protein quality con-
trol and stress response. They degrade misfolded, damaged, or short-lived regulatory proteins,
and also contribute to cellular processes [58]. 

Two instances of Lon-encoding PADS have been characterized, including a subset of CRISPR– 
Cas type III and BREX (bacteriophage exclusion). CalpL, which exists in a complex with two co-
occurring proteins, CalpT and CalpS, is a Lon-like CRISPR-controlled protease from a CRISPR–
Cas type III subtype [8]  (Figure 1H). The Cas10 protein of the CRISPR–Cas system senses infec-
tion and produces cyclic tetra-adenylate (cA4) to activate CalpL through oligomerization, which 
subsequently cuts CalpT. This is thought to expose a degron, ta rgeting CalpT for degradation
via the ClpX/P system, ultimately freeing the σ-factor CalpS to initiate a transcriptional response
[59,60]. 

The BREX system is widespread in bacterial clades and also contains a Lon-like protease do-
main, conferring broad resistance by utilizing multiple enzymatic activities [61]  (Figure 1F). Al-
though the mechanism of action remains to be elucidated, deletion of the protease-encoding 
brxL gene abolishes protection, while individual expr ession of the same gene is highly toxic for
the host [62]. 

In two recent studies, another PADS called HamABM was shown to exhibit a protease-controlled 
nuclease activation mechanism, in which the trypsin-like serine protease domain of HamA acti-
vates the proenzyme form of the nuclease HamM leading to DNA degradation [63,64]. It is pro-
posed that, upon DNA sensing, ATP-dependent release of HamA initiates the system’s 
cascade, allowing HamA to cleave HamM, thereby serving as the trigger and regulatory step 
for protease function. Interestingly, this mechanism contrasts with other characterized PADS 
such as PCaspase and Craspase, where protease activity occurs downstr eam of nuclease acti-
vation, highlighting the mechanistic diversity within PADS. Protease-gated switches such as the
HamABM could inspire synthetic systems in which proteolysis serves as the trigger for nuclease
or enzyme activation.

Another PADS consisting of a single component, a trypsin-like secreted protease, was identified 
in Salinispora mooreana that reduces infect ivity of Streptomyces phages by seemingly promoting
premature DNA ejection from viral particles [65]. The protease acts extracellularly, with escaper 
phages acquiring mutations in a tail-associated structural protein, thus establishing a novel exam-
ple of a protease-mediated, secreted antiphage defense.
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Lastly, bacterial TA systems that do not contain protease components are often regulated by the 
proteolytic regulation of Lon-like and ClpP-like serine proteas es, which are able to rapidly
degrade the antitoxin when necessary [66]. For example, the antitoxin of phage defense TA 
system MazEF is degraded by the cellular serine proteases upon detecting a phage infection of
a neighboring cell [67,68]. Similarly, the Dodola system might also tap into these serine proteases 
of the host to convey phage protection, since it encodes the caseinolytic protease B (ClpB), a
protein that is known to be part of the ClpP-regulated stress response [29]. 

Expanding the PADS repertoire
Bioinformatic efforts have resulted in the prediction of several potential bacterial PADS
(Figure 2). In one of these exploratory studies, Shmakov and colleagues developed a pipeline 
for the identification of novel CRISPR loci [69]. Among these, they described several clusters 
containing putative proteolytic enzymes that would later be experimentally validated, including 
the CalpL and Craspase systems (clusters icity0089 and 6485, respectively). In addition, they
described a CRISPR cluster containing aspartyl protease genes in the Sulfolobales order of
thermoacidophilic archaea [70]. This cluster, called icity0034, includes operons with repeat 
associated mysterious proteins (RAMP). Among hypothetical proteins is an ATPase and 
aspartyl proteases with a fold structurally similar to the pro tease domain of the human protease
DDI2 [71]  (Figure 2, DDI2), which recognizes ubiquitinated proteins. Given its organization, this
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system might hint at potential proteasome-like activity in these extremophiles, induced by 
foreign nucleic acid recognition.

In the same study [69], a cluster of transmembrane metalloproteases (icity0083) with homology to 
the M48 family of the MEROPS database (Figure 2, Ste24) – which comprises stress response 
proteases in prokaryotes and eukaryotes – was discovered [72]. Two more clusters of putative 
metalloproteases (clusters 4229 and 4790 according to the study numbering) resemble TA sys-
tems similar to the ImmA protease domain belonging to the M78 family (Figure 2, ImmA), which is 
associated with cleavage of the immunity repressor ImmR in transposon systems [73]. Finally, 
they also predict a serine protease cluster (5921) of the rhomboid family (Figure 2, Rhomboid), 
which are transmembrane proteases with various cellular functions catalyzed by intramembrane 
processing of substrates in higher-order organisms [74]. Shay et al. contemporaneously per-
formed a similar study, searching for accessory proteins in type III CRISPR–Cas cassettes [75]. 
This study also describes the Lon-like protease (cluster 43 in the study numbering) and aspartyl
protease clusters mentioned earlier (cluster 47).

More recently, a large genome mining and clustering study aiming to discover as sociated
CRISPR loci was performed by Altae-Tran et al. [76], uncovering a large number of potential 
novel CRISPR systems and effectors. Among them, approximately 250 candidate systems 
encoding genes with protease activity are described, including previously discovered and exper-
imentally characterized SAVED-CHAT (UAS-54 and UAS-68), TPR CHAT (UAS-5), and Lon pro-
teases (UAS-55). Several other systems with associ ated protease effectors are present, either as
the bait of the cluster or in locus: UAS-76 and UAS-79 (ImmA), UAS-105 (Figure 2, UAS-105), 
and UAS-11 0 (Figure 2, UAS-11 0).

Additionally, Lowey et al. investigated the prevalence of CRISPR-associated Rossmann fold 
(CARF)-related effectors in CBASS systems, describing CBASS operons containing proteases 
with predicted caspase-like or metalloprotease activity, fused to SAVED domains [77]. Gao 
and co-authors have also described several predicted anti-phage Avast systems that encode 
an effector protease with a trypsin-like fold fused to a terminase sensor TPR domain, next to
an MBL or trypsin-co-occurring domain 2 (Trypco2) encoding protein [4,78]. Trypco2-encoding 
proteins are often found next to trypsin proteases and are believed to cooperate with the trypsin
domain through an unknown mechanism [79]. Unlike Trypco2, MBL proteins can operate more 
independently from trypsin proteases and can be found in a multitude of different gene archit ec-
tures. MBL proteins usually function as metal-dependent hydrolases and act on small molecules
[80]. However, recent studies focusing on other systems provide solid evidence that MBL is a
hydrolase-like nuclease [63,64]. How this function is connected to the effector activity of the 
Avast trypsin domain is unclear, but it might be similar to the activity of the MBL-containing 
JAB-encoding CBASS type II systems, which are yet to be fully characterized. Anti-phage 
Avast proteins have also been identified that encode an EAD8/10 domain together with an 
upstream caspase protein. It is therefore plausible that these domains regulate the activity 
of the caspase during phage i nfection. In an earlier study, Gao and colleagues also identified
another PADS named ietAS, which seems to be a TA system encoding a serine protease of
the S8 family [4]. 

Lastly, Millman et al. used clustering and enrichment near known defense genes to d iscover a
range of novel putative defense systems [47]. This study documents 83 clusters with predicted 
protease genes (which contain known TA and BREX protease-containing systems, as well 
M78 and aspartyl proteases identified in previous studies), and characterize the protection con-
ferred from a number of them with a phage panel against E. coli.
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These studies highlight the diversity of putative bacterial PADS uncovered through genome min-
ing, clustering, and functional studies. The bioinformatically identified systems often exhibit re-
markable versatility, likely arising from domain d uplication, fusion events, acquisition of new
effector activities, and evolutionary pressures favoring adaptability [81,82]. Yet fundamental ques-
tions remain as to how these proteases become activated, what molecular cues or signals they 
sense, and what their substrates are. Biochemical and analytical techniques could be employed
to answer these questions (Box 2). 

Protease engineering and substrat e expansion
Expanding the range of substrates for a protease can be accomplished by identifying 
existing proteins or domains that can be cleaved naturally by the protease [41,45]. This involves 
screening various proteins to find those susceptible to protease activity. Alternatively, the 
protease itself can be engineered to recognize and cleave new substrates [83]. This engineering 
can be achieved by altering the protease’s active site, modifying its substrate-binding regions, or 
incorporating new auxiliary domains that confer broader or more specific substrate recognition
(Figure 3).

Protease engi neering
Conventional techniques such as site-directed mutagenesis and guided mutagenesis via in silico 
prediction of substrate pocket interactions can be employed to engineer a protease [83]. This 
mutagenesis can be focused, random, or fully conducted in silico. Additionally, phage-assisted 
continuous evolution (PACE) and other methods of directed evolution in vivo are powerful
tools for refining protease activity [84]. For example, through PACE, the TEV (Tobacco Etch 
Virus) protease was engineered to cleave the target sequence HPLVGH|M instead of the canon-
ical ENLYFQ|S, a drastically different specificity that processes an exposed loop of the cytokine
IL-23 [84]. Directed evolution can be specifically targeted to enhance cleavage efficiency, while 
exosite engineering may be necessary for better substrate binding [85]. Functional scanning of
Box 2. A toolkit for protease activi ty investigation
A variety of techniques can be employed to investigate protease activity, ranging from traditional assays and gel electrophoresis to advanced mass spectrometry 
(MS)-based methods for substrate discovery and specificity profiling (Figure I). Traditional assays utilize casein or its derivatives for monitoring unspeci fic protease
activity [113]. Sodium dodecylsulfate–polyacrylamide gel electrophoresis (SDS–PAGE), whether native or denaturing, can be used to visualize truncated proteins or
cleavage products [114], while Edman degradation can precisely determine cleavage sites via sequencing of the newly formed neo-N terminus [115]. Assays that utilize 
fluorescent probes or fluorophore-quencher peptide moieties can also be employed to obtain time-dependent cleavage profiles [116]. 

Degradomics methods share the common principles of enrichment of protein termini, with techniques such as terminal amine isotopic labeling of substrates 
(TAILS) and high-efficiency undecanal-based N-termini enrichment (HUNTER) employing negative enrichment strategies, w hile CHOPPER and subtiligase employ
positive enrichment strategies [117–120]  (Figure IA). These techniques can precisely identify substrates and cleavage positions in substrates in vivo or proteomes 
incubated with purified proteases. Proteome digests can also be utilized in combination with MS to probe substrate specificity in linear epitopes, aiming to profile the 
sequence-based cleavage specificity of promiscuous proteases. Proteomic identification of pr otease cleavage sites (PICS) uses a biotin pull-down of newly
generated cleavage products, following the blocking of the natural N terminus with a different reagent [121]. Peptide libraries and peptide microarrays can also prove 
valuable tools for characterizing protease specificity [122]  (Figure IB). The incorporation of unnatural amino acids can be employed to probe specificity, enhance cleavage 
efficiency for recombinant substrates, and develop potent inhibitors. Substrate phage-display libraries, when coupled with next-generation sequencing, pro vide an
alternative method for analysis of protease specificity [87]. 

Beyond cleavage determination and substrate discovery, substrate validation is typically performed through SDS–PAGE and Edman degradation, or by monitoring the 
cleavage of peptide epitopes or full proteins via matrix-assisted laser desorption/ionization (MALDI) or liquid chromatography–MS (LC–MS)/MS (Figure IC). The 
location and activity of proteases can be investigated using active site probes (Figure ID), serving as proxies for determining the active fraction of a protease zymogen
[123]. 

Computational methods such as co-folding or docking can be employed to predict interactions, although these results may be inaccurate since proteases fun ction
through transient interactions rather than stable binding [124]. Candidate substrates often co-localize with their proteases and may be part of the same operon [7]. 
To find interactors or substrates, pulldown assays coupled with MS could also be used.
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tryptic peptides), both followed by liquid chromatography (LC)–mass spectrometry (MS)/MS analysis. Peptide libraries and arrays (B): panels of synthetic peptides 
provide a scalable means to screen proteases, define substrate specificity, and identify consensus cleavage motifs. Targeted methods (C): approaches such as 
targeted proteomics or Edman degradation enable precise mapping of cleavage posi tions and accurate quantification of cleavage products in known protein
substrates. Substrate and imaging probes (D): chemical probes and reporter substrates allow kinetic monitoring of cleavage events and spatial visualization of
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mutational libraries can prove useful in the identification of variants with improved binding and 
cleavage of desired substrates. Importantly, applying such strategies to PADS proteases could 
allow their reprogramming toward novel triggers or targets, paving the way for programmable
proteolytic circuits in biotechnology and therapeutic contexts.

Proteases must exhibit transient binding with substrates to ensure that they are released and 
recycled for continuous activity, which is an important consideration in their engineering [86]. 
Adding domains that confer substrate specificity might enhance protease functionality, but care 
must be taken not to disrupt its natural sensing, regulation, and activation mechanisms [14]. 
Engineering efforts should avoid interfering with these elements to maintain proper protease 
function while recognizing new substrates. Inducible activation of proteases presents a strategic 
approach, allowing for controlled activity and the creation of protease display libraries. These 
libraries can be instrumental in the engineering and discovery of protease variants with desired 
specificities. For example, substrate phage-display libraries coupled with next-generation
sequencing (NGS) was shown to allow for sensitive protease specificity profiling [87].
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Figure 3. Methods for protease and substrate engineering. Recent advances in protein design enable both computational and experimental strategies for tailoring 
protease activity and substrate recognition. (A) Protease engineering (in silico): catalytic sites can be fixed and designed around active site scaffolding, while allosteric 
binding sites can be engineered for altered regulation. Artificial intelligence (AI)-guided tools such as RFdiffusion and ProteinMPNN expand the design space for 
protease scaffolds and binding pockets. (B) Protease engineering (experimental): protease variant libraries can be generated and screened against target substrates, 
while directed evolution methods such as phage-assisted continuous evolution (PACE) enable selection for novel or enhanced protease activities. (C) Substrate 
engineering (in silico): motif scaffolding around characterized cleavage sites, or fully de novo design of new substrates, can yield stable proteins with desired protease
recognition properties. These approaches increasingly leverage deep learning frameworks originally developed for binder and inhibitor design. (D) Substrate engineering
(experimental): cleavage site grafting into proteins of interest or screening of substrate libraries provides tractable routes for substrate discovery. Cleavage can be
monitored using functionalized phage-display systems or mass spectrometry (MS)-based readouts. Figure created with BioRender.
Computationally guided modeling of enzymatic activity is an emerging frontier in protease 
engineering. Generative artificial intelligence (AI) approaches, such as RFdiffusion [88]  and  RF  
All-atom models [89], alongside ProteinMPNN [90] and ESM2 [91] for sequence generation, 
hold significant potential for generating sequences from backbone structures, thereby improving 
enzyme stability. In recent years, considerable progress has also been made on the enzyme 
design front, enabling the development of acti ve protein enzymeswith desired properties, including
proteases [92–96]. These methods show great promise in protease engineering, with clear appli-
cations in the engineering of PADS. Advances in models that enable the design of more compact 
enzyme domains while retaining substrate specificity would also be particularly advantageous. 
Utilizing tools like Alphafold, especially with recent improvements in biomolecule incorporation
and complex interaction seen in Alphafold 3 [97], will be essential for in silico design. Integrating 
these generative and structural modeling approaches could enable the creation of proteases 
that are not only highly specific and stable but also controllable by defined molecular triggers, 
offering a bl ueprint for programmable defense-like systems in synthetic biology.

Substrate engin eering
Recombinant substrates designed to mimic the natural substrates of proteases offer an attractive 
alternative to direct protease engineering. This approach has been successfully demonstrated 
with Craspase, where part of the target substrate Csx30 was grafted into other proteins, effec-
tively converting them into Craspase targets [45]. While this method may be more tractable, 
grafting protease cleavage sites onto proteins to confer desired functions can be challenging
and requires a comprehensive understanding of protease specificity [45]. Substrate libraries 
could also be screened to identify variants that are preferentially cleaved, providing a route to 
systematically probe the specificity landscape and discover new substrate sequences. These
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Outstanding questions 
Prevalence of protease-containing 
defense systems: what is the full extent 
and diversity of PADS in nature, and 
how widely are they used in defense 
against phages? How did these 
systems evolve, and what is the full 
extent of similarities with defense
mechanisms in other life kingdoms and
multicellular eukaryotes?

Mechanisms of protease activation: 
what other mechanisms exist for 
sensing, guiding, and inducing protease 
activity across different systems?

Targets and specificity: what are the 
targets of these proteases, and are 
there off-target effects of these systems 
within the co gnate proteome or in non-
native organisms that would hamper
applications?

Specificity of protease interfaces: 
what are the natural target sequences 
for the proteases in PADS? Whi ch
substrate properties govern the
specificity of these proteases?

Target and sensing versatility: what are 
the limitations of targeting transcripts in 
eukaryotes using CRISPR-controlled 
proteases? Can sensor an d effector
domains be adapted to act on
different targets?

System dynamics and kinetics: what 
are the dynamics and kinetics of the 
different components involved in 
PADS with multiple activities and
checkpoints?

Engineering flexibility of PADS: how 
adaptable  are  the  protease  systems  
to modifications in their sensor and
effector mechanisms?

Efficiency and compactness in 
engineered systems: when engineered, 
can these systems be made more 
compact and efficient for delivery? Is it 
possible to fuse domains or co-deliver
substrates with the system to simplify
deployment?
recombinant substrates would need to be accurately delivered to their target sites, increasing the 
complexity of their application in practical settings. However, if efficient delivery strategies are de-
veloped and substrate engineering methods beco me more predictive, such approaches could
enable practical and flexible deployment of engineered proteolytic systems.

Similar to emerging protease engineering methods, substrate engineering with AI-guided tech-
nologies could also be envisioned. As development of binders and inhibitors for prot ein targets
with deep learning structural and protein language models becomes increasingly ubiquitous
[91], these design principles could be adapted to design protease substrates for PADS. Design-
ing around the sequence and structural features of the natural substrate cleavage site offers one 
strategy, while fully de novo substrate design could further expand the functional space. How-
ever, protease cleavage specificity and substrate pocket fit will likely present a challenging 
path. If overcome, substrate engineering could provide a powerful parallel to protease engineer-
ing, enabling programmable proteolytic circuits where both the enzyme and its synthetic sub-
strates are rationally designed.

Concluding remarks 
The discovery of PADS has fundamentally expanded our understanding of bacterial immunity. In 
the dynamic arms race between bacteria and phages, evolutionary pressures drive the adapta-
tion of protease activity and inhibition.

As more PADS in bacterial immunity are identified, they are expected to yield significant 
insights into protease biology and engineering (see Outstanding question s). A deeper under-
standing of protease activation, specificity, and substrate recognition will inform strategies 
to predict off-target effects and optimize enzyme engineering. Phages may also encode pro-
tease inhibitors to counteract host defenses or dep loy proteases to bypass bacterial immunity
[98]. This interplay invites further investigation into whether bacterial and archaeal viruses, akin 
to eukaryotic viruses, encode proteases with moonlighting fu nctions or immunity-suppressing
roles.

Looking ahead, rational substrate design for proteases is becoming increasingly feasible, either 
through classical bioengineering approaches or using AI-driven technologies. Designing such 
substrates could provide a more controlled and predictable means of manipulating protease ac-
tivity, but it also introd uces additional complexities. However, substrate engineering would open a
new frontier where proteolytic processing can be precisely tailored for desired molecular
changes.

Promiscuity and lack of controllability have posed challenges for the biotechnological application
of proteases [99]. However, the CRISPR-controlled proteases, being controlled by specific RNA 
molecules, have demonstrated exceptional utility in applications requiring specific recognition and 
activation. For example, Craspase and PCaspase have been already repurposed for RNA diag-
nostics, leveraging protein or peptide cleavage as a readout [45,100]. It is of note that, so far, 
all known CRISPR PADS are derived from type III CRISPR–Cas systems. Conventional type III 
CRISPR–Cas stand out due to their multifunctional effector complexes that couple RNA sensing
with DNase and cyclase activities via the Cas10 subunit, triggering multistep signaling pathways
[101]. Layered signal transduction is well suited to the incorporation of protease modules, whose 
own activity often unfolds through sequential proteolytic cascades. Integrating proteases into this 
architecture provides additional checkpoints, potentially enabling tighter control and lowering the
risk of deleterious off-target activation, a crucial concern when highly promiscuous proteases are
involved.
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Figure 4. Potential applications of protease-associated defense systems (PADS) in bioengineering and protein 
editing. Craspase, the type III clustered regularly interspaced short palindromic repeats (CRISPR)-associated PADS, is 
shown as an example system. Here, RNA hybridization activates the protease, but the same principles could apply to 
protein, metabolite, or synthetic triggers. Preliminary studies have already demonstrated applications in biosensing, protein
regulation, and transcriptional control [45,100]. (A) Biosensing: target recognition activates a protease that cleaves a 
quencher domain, releasing a fluorophore signal. (B) Protein degradation: activation of a protease leads to cleavage of a 
target protein, directing it for destruction. (C) Protein activation/upregulation: proteolytic processing releases a bioactive 
fragment or removes an inhibitory domain, stabilizing the protein and enhancing its abundance. (D) Protein upregulation 
via degron removal: cleavage of a degron sequence prevents degradation, increasing protein stability. (E) Transcriptional 
regulation: protease activation enables release or processing of a factor that translocates to the nucleu s to induce gene
expression. (F) Programmable cell death: cleavage of gasdermin or similar proteins allows pore formation, inducing
pyroptosis specifically in cells containing the activating signal. Figure created with BioRender.
Opportunities for innovation lie in adapting these systems for biotechnological applications, 
where engineering proteases to sense specific signals or activate under defined conditions 
could lead to transformative tools in diagnostics, therapeutics, and synthetic biology (Figure 4). 
Nevertheless, deploying multicomponent protease systems presents challenges, particularly in 
delivery and functional integration within cellular environments. Accurate control over these sys-
tems within biological pathways requires advances in delivery technologies and a nuanced under-
standing of systems biology and cellular dynamics. Future research will determine whether PADS
will live up to these expectations.
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