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Abstract

Introduction: Trauma-induced rib fractures are a common injury, affecting millions of individuals
globally each year. The number and characteristics of these fractures influence whether a patient is
treated conservatively or surgically. Rib fractures are typically diagnosed using CT scans, yet 19.2% to
26.8% of fractures are still missed during assessment. Another challenge in managing rib fractures is
the interobserver variability in their classification. In 2023, a deep learning-based algorithm for the
automatic detection and classification of rib fractures (DCRibFrac v1.0) was developed based on the
Chest Wall Injury Society (CWIS) taxonomy. Although DCRibFrac v1.0 demonstrated promising
results, there remained room for improvement, particularly in the accuracy of rib number labelling. This
project aims to develop and assess DCRibFrac v2.0, an enhanced version of the original algorithm.
Methods: Two novel approaches for automatic rib number labelling were proposed and evaluated: a
pre-trained deep learning model named TotalSegmentator and a custom-developed nnUNet.
Additionally, three nnDetection models were developed based on multi-centre data for the automatic
detection of fractures and the classification of their type, displacement, and location. The performance
of DCRibFrac v2.0 was evaluated. Finally, an external validation was conducted to assess the
generalizability and robustness of DCRibFrac v2.0.

Results: For the development and evaluation of DCRibFrac v2.0 a total of 170 patients were included.
The custom-developed nnUNet was the best-performing method for rib number labelling, correctly
labelling 95.5% of all ribs and 98.4% of fractured ribs in 30 patients. On the internal test set, DCRibFrac
v2.0 achieved a detection sensitivity of 80%, a precision of 87%, and an F1 score of 83%, with a mean
FPPS (false positives per scan) rate of 1.11. Classification sensitivity varied across fracture types, with
the lowest being 25% for complex fractures and the highest being 97% for posterior fractures. The
correct rib number was assigned to 94% of the detected fractures. The detection and classification
performance on the external validation dataset was slightly better, with a fracture detection sensitivity
of 84%, precision of 85%, F1 score of 84%, FPPS of 0.96 and 95% of the fractures assigned the correct
rib number.

Conclusion: The developments resulting in DCRibFrac v2.0 have improved the automatic detection
and classification of rib fractures, with particular advancements in rib number labelling performance
and detection precision. These improvements are important steps towards establishing a more accurate
and standardised method for rib fracture assessment, which could enhance clinical decision-making and
improve patient outcomes in trauma care.



1. Introduction

1.1 Traumatic Rib Fractures

Traumatic rib fractures are a common injury following thoracic trauma and are often caused by high
force to the chest wall (1). Rib fractures account for 10% of all trauma admissions with a prevalence of
10-40% among trauma patients (1-3). These injuries result from high-energy trauma (HET) in younger
patients, such as falls from heights or car accidents, frequently accompanied by other injuries. In elderly
patients, they result from low-energy trauma (LET) (4-6). In general, rib fractures lead to high morbidity
and can cause mortality when combined with other conditions such as haemothorax, pneumothorax, and
soft tissue injuries (3,7). The thoracic pain caused by rib fractures limits patients to cough and breathe
deeply, which can result in atelectasis and pneumonia (8). An increased number of fractures and older
age are associated with increased rates of morbidity and mortality (3,5).

1.2 Rib Fracture Management

Rib fractures can be managed through surgical intervention or conservative treatment. A combination
of optimal pain management, pulmonary physical therapy, oxygen suppletion and mechanical
ventilation is considered essential for the conservative management of patients with rib fractures
(2,9,10). Despite this treatment strategy, mortality and complications such as pulmonary contusion and
pneumonia still occur often (1,4,10,11). Traditionally, patients were treated conservatively, nowadays
more data is supporting the positive effects of early surgical stabilisation of rib fractures (SSRF) (12).

SSRF aims to improve respiratory mechanics, reduce pain and prevent pulmonary
complications by inserting rib fracture stabilising systems. However, operative treatment increases the
risk of surgical site infections with or without implant infections, potentially necessitating multiple
additional surgical procedures.

In the case of a flail chest, defined as at least three consecutive fractured ribs with two or more
fracture lines per rib, SSRF is preferred. This condition leads to a segment of the chest wall that moves
paradoxically compared to the rest of the chest, resulting in insufficient breathing physiology (Figure
1). For patients with a flail chest, studies have shown that SSRF reduces the risk of pneumonia, shortens
hospital length of stay and decreases the duration of mechanical ventilation (13-16). Therefore, SSRF
is considered the best treatment option for flail pattern patients.

For patients with multiple simple rib fractures, it remains unclear whether a conservative or
surgical approach is more beneficial in terms of patient outcomes and cost-effectiveness, as well as
which factors should influence this decision (11,17-19). It frequently occurs that these patients, as well
as flail patients, present with non-union(s) of their rib fracture(s) a few months after the trauma. It is still
a matter of debate if this patient group, with multiple simple (non-flail) fractures, could benefit from
SSRF (20).
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Figure 1: Illustration showing the characteristic segmental rib fractures in flail chest, where a segment of the rib cage moves
independently from the rest of the chest wall.



A multi-centre randomised clinical trial (RCT) is currently conducted by Erasmus MC, comparing the
surgical and non-surgical treatment strategies for patients with multiple simple (non-flail) rib fractures,
to evaluate which treatment yields the best outcomes (FixCon trial) (11). It is expected that SSRF for
these patients will reduce the incidence of pneumonia and shorten the hospital length of stay compared
to non-surgical treatment. The findings of this trial will provide valuable insights into the clinical
outcomes associated with each treatment strategy, offering evidence that can inform future decision-
making processes. One of the key factors influencing treatment decisions is the fracture characteristics,
such as the location, type and number of rib fractures (2).

1.3 Rib Fracture Classification

A reason for the limited implementation of SSRF guidelines is the inconsistency in rib fracture
classification. This inconsistency complicates communication in both clinical practice and scientific
research. Given that rib fracture classification plays a critical role in decision-making, improving the
reliability and accuracy of classification, would be highly beneficial for optimizing treatment strategies.
This enhancement would ensure that patients receive the most appropriate treatment through a
standardised evaluation of their rib fractures.

In 2020, the Chest Wall Injury Society (CWIS) published SSRF guidelines, including a rib
fracture classification system. This classification system was conducted through a Delphi consensus
study (21). The proposed taxonomy is based on three characteristics: the fracture type, fracture
displacement and fracture location on the rib bow. The CWIS taxonomy distinguishes the fracture line
type as simple, wedge or complex, the displacement as undisplaced, offset or displaced, and the location
as anterior, posterior, or lateral (see Figure 2—4 for the definition of each class). However, significant
interobserver variability remains among clinicians in rib fracture classification using the CWIS
taxonomy, particularly concerning the type and displacement classification (22).

Computed Tomography (CT) is the most effective imaging modality for diagnosing rib fractures
resulting from trauma and is the golden standard. Nevertheless, literature shows that 19.2% to 26.8% of
rib fractures are still missed during the diagnostic process, which is done manually by radiologists and
other healthcare professionals (22—24). Additionally, the manual classification of these fractures is time-
consuming. To address these issues, a robust, (semi)automatic and reliable CT-based classification
scoring approach is necessary.

In the past years, several deep learning (DL) methods for rib fracture detection and classification
have been published (25-32). DL is a subset of machine learning (ML), which is a subset of artificial
intelligence (Al). DL is based on neural networks, which are designed to automatically learn and extract
features from example data without explicit programming. These features can be used for the
classification of new data. The studies show that DL models hold promise in enhancing rib fracture
detection and establishing a more consistent classification compared to clinicians. However, these
models are not up to date with the CWIS taxonomy standards, and it is unclear how robust these models
are. The reported classification systems offer limited clinical value as they have no treatment
consequences.

Figure 2: Schematic representation of fracture type according to the CWIS rib fracture taxonomy (21).

A) simple: single fracture line,

B) wedge: single fracture line with an additional line that does not run through the entire width of the rib. This creates a
chipped-off fragment,

C) complex: two or more fracture lines that extend across the entire rib width, resulting in the presence of one or more
fragments.
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Figure 3: Schematic representation of fracture displacement according to the CWIS rib fracture taxonomy (21).
A) undisplaced: more than 90% cortical contact,

B) wedge: between no cortical contact and 90% cortical contact,

C) displaced: no cortical contact.
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Figure 4: Schematic representation of fracture location according to the CWIS rib fracture taxonomy. The mid-thoracic
point is defined as the middle of the line drawn between the linear alba and the posterior aspect of the vertebral spinous
process (21).

Anterior: the angle between 0° and 60° relative to the mid thoracic point,

Lateral: the angle between 60° and 120° relative to the mid thoracic point,

Posterior: the angle between 120° and 180° relative to the mid thoracic point.

1.4 Automated CWIS Taxonomy

In 2023, NB proposed a DL-based classification algorithm based on the CWIS taxonomy, named
DCRibFrac v1.0 (33). The detection sensitivity was 77%, which is on par with that of clinicians but did
not surpass them. In general, DCRibFrac v1.0 shows potential for improved detection sensitivity and
consistent classification of acute rib fractures from CT scans, but further refinements are needed. The
results indicate that certain classes are more difficult to classify than others (Table 1). In particular,
DCRibFrac v1.0 did not yield satisfactory results for the rib fracture type classification. The lack of
performance could be attributed to the size of the dataset, as overfitting was still evident with a training
dataset of n=81. Therefore, a larger dataset is needed to decrease overfitting and improve detection and
classification. Additionally, the large label imbalance might have made learning the less frequent labels’
characteristics more challenging (complex, wedge and displaced rib fractures). The significant
interobserver variability, demonstrated by interobserver agreement studies, might also be an explanation
for these results (22,33).

Table 1: Detection and Classification Performance DCRibFrac v1.0

Sensitivity Precision Fl1-score FPPS
Detection 0.77 0.79 0.78 2.26
Type
e Simple 0.90 0.75 0.82
e Wedge 0.30 0.42 0.35
e Complex 0.17 0.30 0.21
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Displacement

e Undisplaced 0.91 0.83 0.86

o Offset 0.78 0.79 0.78

e Displaced 0.43 0.75 0.55
Location

e Anterior 0.88 0.88 0.88

e Lateral 0.88 0.95 0.92

e Posterior 0.96 0.84 0.90

The currently used method for rib number labelling utilizes a nnUNet for the initial segmentation of the
ribs. Segmentation is a technique used to divide data sets into multiple image segments to change the
representation of the image in a more understandable way. In this process, 2D pixels and 3D voxels are
assigned labels that share the same properties. In this case, one segment was created specifically to
identify the ribcage. During post-processing, this segment is first improved by morphological operations
(34). Additionally, the segmentation is split into multiple segments, which are then counted. Lastly, the
centres of mass (CoMs) are calculated to order the segments (see Figure 5).

Using this method, the rib number labelling yielded favourable results for patients with minor
displaced rib fractures but was ineffective for severely dislocated ribs. In the internal test dataset, the rib
numbers were labelled correctly in only 8 out of 19 patients (42%). Figure 6 illustrates two cases where
the rib number labelling was incorrect. Figures 6A and 6B represent the same patient. The fracture
encircled in Figure 6B has caused the two fragments to be labelled as separate ribs (Figure 6A), whereas
they should be labelled as multiple fragments of the same rib. Figure 6C illustrates an example where
multiple ribs were incorrectly merged due to morphological operations, resulting in a single segment
containing multiple ribs. To improve the performance of DCRibFrac v1.0, the accuracy of rib number
labelling should be enhanced.
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operations segments Segmentation

Figure 5: Pipeline for automatic rib number labelling in DCRibFrac v1.0.

Figure 6: Examples of wrongly segmented and labelled ribs.

A) Posterior view of a 3D segmented model where the fracture splits the segmentation into two separate fragments,
B) Axial slice of the fracture encircled in A,

C) Lateral view of a 3D segmented model where ribs are merged due to dilation.

12



1.5 Objective and Contributions

The primary objective of this project is to develop and evaluate DCRibFrac v2.0, an improved version
of DCRibFrac v1.0. The contributions are as follows:

e Implement and evaluate an improved rib number labelling method,

e Enhance the classification performance by expanding the dataset with multi-centre FixCon
data,

e Assess interobserver agreement of CWIS classification to evaluate the consistency and
agreement among different observers using the CWIS taxonomy,

e Perform an external validation within the Netherlands to evaluate the generalizability and
reliability of DCRibFrac v2.0.
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2. Materials and Methods

This section outlines the development of DCRibFrac 2.0 and details its advancements from DCRibFrac
v1.0. Section 2.1 describes the framework of DCRibFrac v1.0. Sections 2.2 and 2.3 detail the steps taken
to enhance the classification and the rib number labelling performance, respectively. Finally, the setup
for external validation is explained in Section 2.4.

2.1 DCRibFrac v1.0

The algorithm development of DCRibFrac v1.0 involved creating four DL models, three nnDetection
models and one nnUNet, each targeting a specific classification category: type, displacement, location
or rib number (35,36). DCRibFrac v1.0 was developed and evaluated using 100 thoracic CT scans from
trauma patients exclusively from EMC.
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Figure 7: Overview of the pipeline for automatic detection and CWIS classification of rib fractures. The dotted boxes
indicate the steps which are taken within the DL-models. During post-processing the predictions are combined.

2.1.1 CWIS Classification

Figure 7 illustrates the pipeline to obtain the predicted CWIS classification. Three separate nnDetection
models were developed for the classification of the type, displacement and location of the fracture, as
the nnDetection framework processes only one classification at a time. Each nnDetection model
produces bounding box coordinates. Each bounding box indicates a detected fracture and is
accompanied by a probability score and the corresponding labels for each detection. Consequently, one
detected rib fracture with the complete CWIS classification has three different bounding boxes. For
further details on nnDetection, refer to Appendix A. During post-processing, the results from the three
nnDetection models are ensembled by combining their bounding boxes. Initially, each nnDetection
model's output is filtered to eliminate overlapping bounding boxes, retaining only those with the highest
probability scores while discarding those with lower scores. Two bounding boxes overlap if their
Intersection-over-Union (loU) score exceeds 50%. The loU score is calculated using the following
formula:

_ bbox; N bbox;

IoU =
0 bbox; U bbox,

where bbox1 and bbox2 are bounding boxes, N indicating the intersection and U the union of the boxes.
Additionally, the models are merged with the requirement there is an overlap of bounding boxes from
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at least two models, indicating the detection of a potential rib fracture by at least two models. These
bounding boxes are combined through a union. In cases where only two out of three models overlap,
one of the labels cannot be assigned. In such instances, a label ‘'unknown' is assigned.

2.1.2 Rib number labelling

To determine the rib number on which a detected fracture is located, rib segmentations are needed. The
state-of-the-art medical segmentation framework nnU-Net was utilised for this task. This framework
was chosen because it handles the entire pipeline, including preprocessing, training, and post-
processing, autonomously across a wide variety of segmentation tasks. In DCRibFrac v1.0 a nnU-net
was trained to create one single segment representing the ribcage. For further details on nnUNet, refer
to Appendix B. As explained in the introduction, the segmentation of the ribcage by nnUNet is post-
processed to obtain the number of fractured ribs. The nnUNet segmentation is first improved by
morphological operations. Additionally, the single segment is split into multiple segments, which are
then counted. Lastly, the centres of mass (CoMs) are calculated to order the segments, see Figure 5.

2.1.2 Merging predictions

The labelled segmentations are merged with the results of nnDetection. This is done by converting the
bounding box coordinates of nnDetection into a binary label map. Subsequently, the binary label map
and the numbered rib segmentations are merged. Bounding boxes that do not overlap with the numbered
rib segmentations are discarded and in case of overlap, the fourth label, indicating the rib number, is
assigned. This concludes the DCRibFrac model version 1.0. For a more in-depth explanation of
DCRibFrac v1.0, please refer to (33).

2.2 CWIS Classification Improvement

The effectiveness and reliability of DL models are influenced by both the quantity and quality of the
data used for training. Large and diverse datasets enable models to learn more effectively, generalise
better to new data and provide accurate predictions (37,38). Therefore, to enhance the performance of
the CWIS classification, the current dataset will be expanded.

2.2.1 Data Acquisition

For the development of DCRibFrac v2.0, available data from the multi-centre FixCon trial is included
to expand the dataset. The most important inclusion and exclusion criteria for the FixCon trial are as
follows (11):

Table 2: Inclusion and exclusion criteria of the FixCon study

Inclusion Criteria Exclusion criteria
Age >18 vears Neurotraumatic changes leading to mechanical
g y ventilation
Of ribs 4 t/m 10, either: Rib fractures due to cardiopulmonary
- Simple (non-flail) fractures of 3 or more ~Tesuscitation. . .
ribs, with at least one rib displaced by SSREF is not possible due to additional traumatic
the width of the shaft injuries

- Simple (non-flail) fractures of 3 or more
ribs accompanied by severe pain (VAS
or NRS > 6)

Flail chest, based on radiological or clinical
findings

Decreased sensory or motor function due to
(previous) cervical or thoracic spine failure.
Hospital presentation within 72 hours of trauma  Previous rib fractures or pulmonary problems

Blunt chest trauma
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Figure 8: Map of hospital locations: blue markers indicate hospitals contributing data for the development of DCRibFrac v2.0.
The red marker represents the hospital used for external validation.

Initially, all available FixCon patients were included in the dataset for the development of DCRibFrac
v2.0. Patients were excluded if their post-trauma thoracic CT scans did not cover all ribs. The FixCon
dataset consists of data from thirteen Dutch hospitals, including ErasmusMC, Amphia Hospital, Bravis
Hospital, Catharina Hospital, Deventer Hospital, Haga Hospital, lkazia Hospital, Isala Hospital,
Maasstad Hospital, Maastricht University Medical Centre, Rijnstate Hospital, Spaarne Hospital, and
University Medical Centre Groningen. These hospitals, marked by the blue markers in Figure 8, cover
a large area of the Netherlands. Incorporating data from multiple centres provides a more extensive
dataset, which can enhance the model's performance. Multi-centre data encompasses a wider variety of
patient demographics and clinical conditions. This diversity helps ensure the model is not overfitted to
a specific patient population and is more likely to perform well across different groups.

2.2.2 Ground Truth

To obtain the ground truth of the internal test and training set, all rib fractures were labelled manually
according to the CWIS taxonomy. For the development of DCRibFrac v1.0, the dataset from EMC has
already been labelled by a single researcher. The additionally included FixCon data was manually
labelled using the MeVisLab tool developed for DCRibFrac v1.0 (33). This semi-automatic tool stores
the coordinates and manually classified labels for each fracture in the required format. Specifically, it
records each fracture's coordinates, type, displacement, location, and rib number. A comprehensive
overview of the labelling software and the application in this project is explained in Appendix C.

Labelling is done independently by two researchers (VM and MvD). In cases where there was
disagreement on the type or displacement class label, an experienced trauma surgeon (MW) solved the
disagreement to obtain an accurate ground truth dataset. When one of the two labellers missed a fracture,
the trauma surgeon made the final determination on whether a fracture was present. The classification
of the fracture location (anterior/lateral/posterior) by VM was based on a measurement, as explained in
Appendix C, while MvD's classification was done subjectively. Therefore, VM's classification is
considered the truth for this category and disagreements were not solved by the experienced trauma
surgeon.

The inter-observer agreement between the labellers will be evaluated using Krippendorff’s
Alpha and Cohen’s Kappa. Krippendorff’s Alpha handles categorical variables as well as missing data.
Cohen’s Kappa is designed to measure the agreement between two raters. Together, these metrics
provide a comprehensive evaluation of the consistency and reliability of the labelling process (39,40).

2.2.3 Training and Evaluation

The training dataset, which includes the CT scans and their corresponding ground truth, was used to
train three new nnDetection models. To train the three nnDetection models, a five-fold cross-validation
strategy was implemented for each model. The post-processing steps for nnDetection remained the same
as in DCRibFrac v1.0. The model's ability to automatically detect and classify fractures will be evaluated
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by comparing its predictions on the internal test dataset against its ground truth. The detection
performance will be assessed on fracture level using sensitivity, precision, F1-score, and false positives
per scan (FPPS) as evaluation metrics. A false-positive was defined as a 3D bounding box that did not
overlap with the midpoint of a blob in the ground truth. For the classification performance, sensitivity,
precision, F1 scores and confusion matrices were utilised to present the results.

2.3 Rib number labelling

In DCRibFrac v1.0, the rib number labelling task had favourable results for patients with minor
displaced rib fractures, but it was ineffective for those with severely dislocated ribs. In eleven out of
nineteen patients in the internal test set, the labelling of the segmented ribs was inaccurate for at least
one rib. In this report, the rib number labelling approach proposed in DCRibFrac v1.0 will be referred
to as nnUNet-PP (nnUNet, followed by post-processing), see Figure 5. Two novel approaches for rib
number labelling (TotalSegmentator and nnUNetOnly) were developed and evaluated, explained in the
following sections.

2.3.2 TotalSegmentator

Recently, the TotalSegmentator tool was released, a pre-trained DL segmentation model based on
nnUNet (41). This tool automatically segments and labels all major anatomical structures in the body
on CT scans, including the left and right ribs 1 to 12. TotalSegmentator has demonstrated a mean Dice
score of 0.94 on the test set for many anatomical structures, ranging from the skeleton to the
cardiovascular system to the gastrointestinal tract. It was developed using a large and diverse dataset of
over 1,200 CT scans, which included pathological cases such as fractured bones. Detailed information
on fracture characteristics and the causes of the fractures (e.g., whether they were traumatic or
pathological) was not available. The performance suggests that the model is promising and worth
considering. However, the study presenting the tool notes some limitations, such as occasional confusion
between neighbouring ribs. Despite these shortcomings, TotalSegmentator is expected to provide
improved accuracy compared to nnUNet-PP and its potential should be further evaluated. This model is
the basis for the two new approaches developed and assessed in this study. The first novel approach is
based solely on TotalSegmentator. The pipeline for obtaining a labelled segmentation using
TotalSegmentator is shown in Figure 9. CT scans are fed to the TotalSegmentator model, which results
in 24 segments, one for each rib. These labelled segments can be combined with the results of the
nnDetection models during post-processing, as done in DCRibFrac v1.0.

TotalSegmentator Labeled Segmentation

Figure 9: Pipeline to obtain labelled rib segmentation using TotalSegmentator.
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2.3.3 nnUNetOnly

The second novel approach involves the development of a new nnUNet based on the results from
TotalSegmentator and is named nnUNetOnly. In this process, the results from TotalSegmentator are
manually refined using 3D Slicer to create a correct training set. This refined dataset is utilized to
develop and train a new nnUNet model. The training dataset used to develop the three nnDetection
models is also employed for both the development and evaluation of nnUNetOnly. This dataset is
divided into a training and validation dataset. The training set was used to train the nnUNet, while the
validation set was used to assess the performance of nnUNetOnly by comparing its performance with
TotalSegmentator, see Section 2.3.5. Figure 10 shows the workflow for the development and evaluation
of this model. The aim of nnUNetOnly is to create a model which directly and automatically segments
and labels each rib separately, see Figure 11.

Apply Labelled Manually refine Perfectly Train nnUNet Segmentation

Training dataset . 1segmentator segmentation using 3D Slicer Iabelled model
segmentations {

Validation
dataset

Figure 10: Workflow for the development of nnUNetOnly

nnUNet Labeled Segmentation

CT scan

Figure 11: Pipeline to obtain labelled rib segmentation using nnUNetOnly.
2.3.4 Experiment: nnUNet-PP versus TotalSegmentator

To evaluate the performance of TotalSegmentator in rib number labelling, the segmentations will be
compared to the results of nnUNet-PP. The evaluation is based on 30 EMC CT scans. The selected CT
scans were not utilised for the development of the nnUNet in nnUNet-PP. The ground truth for rib
number labelling was established by one researcher (VM), who created a spline by manually tracing and
labelling each rib in the axial slices of the CT scans using 3D Slicer software 5.6.2 (42). The splines are
created with the Curve function under the Markups tab. Each spline was created by following the rib
from cranial to caudal, starting at the first rib. Figure 12A illustrates an axial slice with these splines
overlaid, while Figure 12B presents a 3D model of the splines. To assess the accuracy of rib number
labelling generated by nnUNet-PP and TotalSegmentator, the labelled splines (GT) were projected onto
the same 3D image space as the segmentations. A qualitative assessment was then conducted through
visual inspection, see Figure 12C. Evaluation is conducted for each rib. During qualitative analysis in
3D Slicer, the following aspects are assessed:

- Does the label of the spline match the label of the segment it intersects?
- Does the spline intersect with multiple segments or no segments at all?

If the ground truth spline intersects with a segmentation that carries the same label, the rib number label
for that rib is categorised as correct. Conversely, if a spline intersects with a segment where the labels
do not match or does not intersect with a segment at all, that rib is categorized as incorrect.
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Figure 12: Example of how the ground truth was created and used for evaluation. A) axial slice with labelled pink splines.
B) display of 3D model of all splines in one patient. C) segmentation overlaid with the splines. D) Segmentation overlayed
with blobs which represent fractures.

This evaluation process is applied to the results of both nnUNet-PP and TotalSegmentator, allowing for
a comparative analysis to determine the superior approach. However, the clinical relevance lies more in
the accurate labelling of specifically fractured ribs. Label maps containing the location of fractures are
available, as they were created for the development of the nnDetection models. These label maps contain
spheres which represent the location of a fracture. By visualising these spheres in 3D Slicer, the
performance of the approaches specifically for fractured ribs will be evaluated (Figure 12D).

2.3.5 Experiment: TotalSegmentator versus nnUNetOnly

This experiment aimed to determine which approach is superior and should be implemented in
DCRibFrac 2.0, TotalSegmentator or nnUNetOnly. The ground truth is established in a similar way as
done in the previously explained experiment, where nnUNet-PP and TotalSegmentator were compared.
Instead of comparing the segmentations of TotalSegmentator and nnUNetOnly with splines, they are
compared with labelled control points for qualitative evaluation, since creating splines is time-
consuming. This comparison is performed using 3D Slicer as well, through the Point List function under
the Markups tab. The control points are placed in the middle of the rib bow, with one control point
assigned per rib. During the qualitative analysis in 3D Slicer, the following aspects are evaluated by
visual inspection:

- Does the label of the control point match the label of the segment it overlaps?
- Isit feasible that the form of the segment represents a single rib?
- Inthe case of severely dislocated fractures: Do the two fragments have the same label?

TotalSegmentator and nnUNetOnly will be evaluated by comparing their results to this ground truth
using the validation dataset, as explained in Section 2.3.3. The evaluation will be done on a per-rib level,
focusing on fractured ribs. Based on the results of this experiment, the best method will be implemented
in DCRibFrac v2.0. Figure 13 provides an overview of the data utilisation, and the experiments
performed in this project. The dotted line encircles the contributions of this project.

2.4 External validation

Apart from the internal validation using an internal test set, the final algorithm is evaluated by
performing an external validation. External validation is needed to assess a model’s reproducibility and
generalizability, which is necessary in a clinical setting. ML models must be robust, meaning they should
reliably perform even in contexts that may differ subtly from those represented in the training data (43).
Performing an external validation will give insight into the robustness and reliability of DCRibFrac v2.0.
Frequently, the performance observed on external datasets is poorer than the performance appraised on
original datasets (44). The external data, in this case, refers to a set of new data from another hospital
which is not used for the development of DCRibFrac v2.0. The CT scans in the FixCon RCT originating
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from Zuyderland Hospital are used for external validation, see the red pinpoint in Figure 8. This dataset
was chosen due to its size, making it the second-largest dataset available, aside from the EMC dataset.
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Figure 13: Flowchart illustrating the data utilization and model development process for automatic rib fracture detection
and classification. The dotted line encircles the contributions of this project.
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3. Results

This section presents the outcomes of the experiments detailed in Section 2. Section 3.1 provides an
overview of the dataset used to enhance fracture detection, CWIS classification and rib number labelling.
Section 3.2 discusses the findings from the interobserver agreement study. Section 3.3 outlines the
results of the experiments where the three different rib number labelling approaches, nnUNet-PP,
TotalSegmentator, and nnUNetOnly, were evaluated. Section 3.4 introduces the final pipeline and the
performance of DCRibFrac v2.0. The results from the external validation are covered in Section 3.5.
Finally, Section 3.6 summarises the CWIS classification performance across various DCRibFrac models
and test sets.

3.1 Dataset

An additional 70 anonymised FixCon CT scans have been added to the ErasmusMC dataset, bringing
the total to 170 CT scans, including 1509 fractures. The dataset characteristics of the included CT scans
for the development of DCRibFrac v2.0 are presented in Table 3. Refer to Appendix D for details on
the data characteristics of the EMC dataset, used to develop the initial model, DCRibFrac v1.0.
Additionally, Appendix D visualises the distribution of fracture characteristics per rib for both the EMC
and the added FixCon datasets separately, providing insights into how the dataset has expanded. The
label distribution of the added FixCon data is similar to the EMC data. The fraction of complex and
anterior fractures is slightly smaller in the added FixCon dataset. All scans have an in-plane image size
of 512x512, and the number of slices varies between 195 and 1680. For the development of DCRibFrac
v2.0, the dataset is split into an internal training set and an internal test set using an 80/20 split based on
the number of fractures, respectively. To ensure class balance, stratified sampling is performed, focusing
on the minority classes.

Table 3: Data characteristics internal train and test set

Variables Internal training set Internal test set
No. patients (%) 136 (80) 34 (20)
Amphia Hospital Breda 12 (9) 1(3)

Bravis Hospital Bergen op Zoom 3(2) -
Catharina Hospital Eindhoven 1(1) -
Deventer Hospital 1(1) -
Erasmus Medical Centre Rotterdam 77 (57) 23 (68)
Haga Hospital The Hague 9 (6) 2 (6)
Ikazia Hospital Rotterdam 2 (1) -
Isala Hospital Zwolle 3(2) 309
Maasstad Hospital Rotterdam 20 (15) 1(3)
Maastricht University Medical Centre 3(2) 2 (6)
Rijnstate Hospital Arnhem - 1(3)
Spaarne Hospital Haarlem 4(3) 1(3)
University Medical Centre Groningen 1(1) -
No. fractures (%) 1203 (80) 306 (20)
No. fractures for Type (%)
- Simple 900 (75) 235 (77)
- Wedge 203 (17) 53 (17)
- Complex 100 (8) 18 (6)
No. fractures for Displacement (%)
- Undisplaced 696 (57) 178 (58)
- Offset 348 (29) 79 (26)
- Displaced 159 (13) 49 (16)
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No. fractures for Location (%)

- Anterior 171 (15) 49 (16)

- Lateral 606 (50) 167 (55)

- Posterior 426 (35) 90 (29)
No. CTs with slice thickness (%)

- >2mm 47 (35) 17 (50)

- =1mm 33 (24) 4(12)

- <lmm 55 (41) 13 (38)
No. CTs with pixel spacing (%)

- >09mm 23 (17) 4(12)

- 0.7<x<0.9 mm 83 (61) 20 (58)

- <0.7mm 30 (22) 10 (30)

3.2 Interobserver Agreement & Ground Truth

3.2.1 Interobserver Agreement

The interobserver agreement study was conducted based on the FixCon dataset, excluding the EMC
data. Two observers independently detected and classified rib fractures according to the CWIS
taxonomy. In total, there were 519 rib fractures noted by the two observers, of which 467 rib fractures
were seen by both observers. Out of the 52 fractures detected by only one observer, 16 were identified
by observer 1, while the remaining 36 were detected by observer 2. To evaluate interobserver agreement
on fracture type, displacement, and location, Cohen's Kappa statistic was calculated based on the 467
fractures (Table 4). Additionally, Krippendorff's Alpha was calculated to account for missing data.
Disagreements were observed in 144 fractures for 162 classification tasks, with 40 disagreements in
type classification, 52 in displacement classification, and 70 in location classification.

Table 4: Interobserver agreement for the CWIS classification of rib fractures

Label Cohens Kappa (95%CI) Krippendorff’s Alpha (95% CI) Interpretation
Type 0.74 (0.67 - 0.82) 0.76 (0.69 - 0.82) Substantial
Displacement  0.82 (0.78 - 0.87) 0.82 (0.78 - 0.87) Strong
Location 0.74 (0.69 - 0.80) 0.73 (0.68 - 0.79) Substantial

3.2.2 Detection and Classification Accuracy

Observer 1 (VM) identified 483 fractures, while observer 2 (MvD) identified 503 fractures. For the 52
fractures detected by only one observer, observer 3 made the final determination on whether a fracture
was present. Out of the 16 fractures detected solely by observer 1, 12 were confirmed as actual fractures,
resulting in 4 false positives by observer 1. For the 36 fractures detected by observer 2, 16 were
confirmed as actual fractures by observer 3, resulting in 20 false positives. Assuming that all fractures
are detected by either observer 1 or observer 2, the overall detection sensitivity is 96.7% for observer 1
and 97.4% for observer 2, with a precision of 99.3% for observer 1 and 96% for observer 2.

Table 5 shows the percentage of agreements between observer 3 and either observer 1 or
observer 2 regarding classification. For simple fractures, observer 3 agreed with observer 1 in 83.3% of
cases, which is higher than the 16.7% agreement with observer 2. In contrast, for wedge fractures,
observer 3 agreed more often with observer 2 (64.7%) compared to observer 1 (35.3%). Since both
observers have different strengths, combining their decisions will lead to higher overall accuracy of the
ground truth.
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Table 5: Agreement in CWIS classification between observer 3 and either observer 1 or observer 2

Label Observer 1 (%) Observer 2 (%)
Simple 83,3 16,7

Wedge 35,3 64,7

Complex 100,0 0,0

Undisplaced 90,0 10,0

Offset 67,9 31,3

Displaced 21,4 78,6

3.3 Results Rib Number Labelling Experiments

3.3.1 Qualitative Evaluation nnUNet-PP versus TotalSegmentator

A total of 716 ribs were labelled and evaluated in 30 patients, accounting for the fact that two patients
had only 11 pairs of ribs. Among these, 316 fractures were identified in 233 ribs with the majority of
the fractures occurring in the 3" to 7" ribs. TotalSegmentator labelled 94% of all ribs correctly, which
was 54% for nnUNet-PP. Focusing specifically on the fractured ribs, nnUNet-PP correctly labelled 50%
of fractured ribs, while TotalSegmentator labelled 94% of fractured ribs correctly. Figure 14 shows the
percentage of correctly labelled ribs on the y-axis, with the corresponding number of ribs displayed
within the bars.
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Figure 14: Fraction of correctly labelled (fractured) ribs using nnUNet-PP and TotalSegmentator

Relabelling of the rib segments provided by TotalSegmentator was necessary since the initial labelling
of TotalSegmentator is consistently incorrect. For instance, the first left rib (L1) was always mislabelled
as the third right rib (R3), without exception. Consequently, all labels were automatically corrected and
renamed before analysis.

In two out of the six patients with incorrectly labelled ribs using TotalSegmentator, the
mislabelling was due to the patients having 11 pairs of ribs rather than the standard 12 pairs, which was
something TotalSegmentator apparently could not process well. This issue accounts for 17 of the 43
inaccurately labelled ribs. nnUNet-PP effectively addresses this problem, as it does not require 24
classes and classifies all ribs in these patients correctly. Therefore, in cases with 11 pairs of ribs, nnUNet-
PP appears to be the superior method. However, the prevalence of having 11 pairs of ribs is only 3.4%
(45). Figure 15A illustrates an example of a patient with 11 pairs of ribs and the corresponding results
from TotalSegmentator. Misclassification of a single rib often led to additional inaccuracies in the
labelling of other ribs for the same patient using TotalSegmentator.

23



Figure 15: Examples of wrongly labelled ribs using TotalSegmentator. A) Patient with 11 pairs of ribs, B) Part of a drain
misclassified as a rib, C) Misclassification due to scattering.
Among the remaining 26 misclassified ribs by TotalSegmentator, 8 were from two patients who had
thorax drains at the time of the CT scan. Parts of these drains were mistakenly classified as ribs, resulting
in multiple errors (Figure 15B). In another case, a metal object resting on the patient caused scattering,
resulting in the misclassification of 12 ribs (Figure 15C). For the remaining patient, the
misclassifications of 6 ribs could not be explained other than by severe displacement of fractures.
Figure 16A shows an example of a correct segmentation and labelling result by
TotalSegmentator. In the case of dislocated ribs, nnUNet-PP is not able to accurately label the ribs,
which explains its low performance. In Figure 16B, displaced fragments of the fractured 8™ and 9 left
ribs, encircled in red, are classified incorrectly as separate fragments by nnUNet-PP and correctly as a
single fragment by TotalSegmentator (Figure 16C). Using nnUNet-PP often leads to merged rib
segments (Figure 16D) and excessive thickness due to the morphological operations applied during
postprocessing (Figure 16E). In contrast, TotalSegmentator does not exhibit this issue (Figure 16F).
Overall, TotalSegmentator demonstrates a clear advantage over nnUNet-PP in terms of rib number
labelling accuracy. It is robust and performs well, particularly in standard cases, with 12 pairs of ribs.

Figure 16: Example of results using nnUNet-PP (B, D, E), and TotalSegmentator (A, C, F).
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3.3.2 Qualitative Evaluation TotalSegmentator versus nnUNetOnly

The developed nnUNet was designed to handle a variable number of ribs, unlike TotalSegmentator,
which required assigning 24 classes (12 pairs of ribs). This flexibility may allow the nnUNet to improve
rib number labelling in patients with only 11 pairs of ribs. A total of 716 ribs (30 patients) were
evaluated, including two cases where only 11 pairs of ribs were present. Among these 716 ribs, 246 ribs
were fractured. TotalSegmentator correctly labelled 92,5% of all ribs and 95,5% of the fractured ribs.
In comparison, nnUNetOnly labelled 95,5% of all ribs and 98,4% of the fractured ribs correctly. Figure
17 shows the percentage of correctly labelled ribs on the y-axis, with the corresponding number of ribs
displayed within the bars.
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Figure 17: Number of incorrectly labelled (fractured) ribs using TotalSegmentator and nnUNetOnly.

There was at least one incorrectly labelled rib in 7 patients when using nnUNetOnly, of which 5 were
labelled incorrectly by TotalSegmentator as well. TotalSegmentator had at least one error in 11 patients.
Figure 18(A-D) illustrates two cases where nnUNetOnly outperformed TotalSegmentator. In Figure
18(A, B), the results for a patient with only 11 pairs of ribs are shown. nnUNetOnly correctly assigned
22 labels, while TotalSegmentator assigned 24 labels, leading to inaccurate rib number labels. However,
for another patient with 11 pairs of ribs, nnUNetOnly was not error-free, since 6 ribs were mislabelled
(Figure 18E). TotalSegmentator labelled 8 ribs incorrectly for this same patient (Figure 18F). Figure
18C presents an example of incorrect labelling of severely displaced fractures by TotalSegmentator.
This highlights the challenges in accurate rib labelling under complex conditions, which nnUNetOnly
managed better (Figure 18D). There were two cases where TotalSegmentator outperformed
nnUNetOnly. Figure 18H illustrates one of these cases, where the 9th right rib is labelled incorrectly by
nnUNetOnly but correctly by TotalSegmentator. Additionally, the rib segments are notably thin at
certain points, compared to the segmentation of TotalSegmentator.

Even though the cause of mislabelling cannot always be determined, these results indicate that
nnUNetOnly performs better than TotalSegmentator. McNemar’s test statistics show a significant
difference with a p-value = 0.023 based on the rib number labelling results of fractured ribs.
Consequently, nnUNetOnly has been incorporated into the pipeline of DCRibFrac v2.0.
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Figure 18: Examples of results using TotalSegmentator (B, C, F, G) and nnUNetOnly (A,D, E, H) of four patients.

3.4 Final Pipeline and Performance

Figure 19 represents the final pipeline of DCRibFrac v2.0. The newly developed nnUNet (nnUNetOnly)
has replaced the initial nnUNet and postprocessing steps (nnUNet-PP). Additionally, the nnDetection
models have been retrained with more data to enhance performance. The ensembling methods, however,
remain unchanged from those used in DCRibFrac v1.0.
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Figure 19: Pipeline of DCRibFrac v2.0
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3.4.1 Validation Results

The precision-recall (PR) curve of the validation set for DCRibFrac v2.0, along with the corresponding
thresholds, was analysed to gain insight into the performance of the ensembled nnDetection models
(Figure 20). The probability score threshold required to achieve a target sensitivity of 82% (dotted
vertical line) was determined based on this curve. This sensitivity surpasses the range typically observed
among clinicians, which is between 73.2% and 80.8% (22-24). Figure 20 compares the PR curves of
DCRibFrac v1.0 and DCRibFrac v2.0. The increased area under the curve (AUC) for DCRibFrac v2.0
reflects an overall improvement in model performance, indicating better precision across various recall
levels. At the desired sensitivity of 82%, the threshold for DCRibFrac v2.0 is higher than it was for v1.0.
This higher threshold translates to a more selective model, resulting in improved precision compared to
DCRIibFrac v1.0, reducing the likelihood of false positives while maintaining a similar recall.
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Figure 20: Precision-Recall curve CWIS classification of DCRibFrac v1.0 and DCRibFrac v2.0

3.4.2 Performance DCRibFrac v2.0 on Internal Test Set

To assess the performance of DCRibFrac v2.0 on unseen data, the rib fracture detection, CWIS
classification and rib number labelling results on the internal test set were evaluated. DCRibFrac v2.0
achieved a detection sensitivity of 80%, a precision of 87%, and an F1 score of 83% on the internal test
set, with a mean FPPS of 1.11. All classification labels were successfully assigned, as no cases involved
only two overlapping nnDetection models. False positives resulted from old fractures, indicated by
callus formation around the fracture (Figure 21D). Misclassifications also occurred in the region where
the anterior rib transitions to the costal cartilage, due to irregularities in the cortical bone in this region.

Figure 21: Example of a missed fractures (A), a true positive (B), a fracture classified as two fractures resulting in a false
positive (C), a false positive due to callus formation (D). Squares indicate the detected fracture by DCRibFrac v2.0 and
circles indicate fractures labelled as the ground truth.
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Additionally, large fractures (often with displacement) were assigned two fracture labels instead of one,
leading to false positives (Figure 21C). Missed fractures are frequently undisplaced fractures with small
interruption of the cortical bone (Figure 21A). The qualitative evaluation of the detection of rib fractures
revealed three additional true positives that were not labelled in the ground truth (Figure 21B). Table 8
presents the characteristics of the missed fractures and the fraction per class that was missed. Figure 22
illustrates the classification performance per class of all detected fractures in a confusion matrix. For
type classification of the detected fractures, simple fractures had a sensitivity of 95% and a precision of
87%. Wedge fractures had a sensitivity of 36% and a precision of 47%, while complex fractures had a
sensitivity of 25% and a precision of 40%. Regarding displacement, the sensitivity and precision were
90% and 89% for undisplaced fractures, 80% and 69% for offset fractures, and 61% and 95% for
displaced fractures. For fracture location, the sensitivity and precision were 79% and 93% for anterior
fractures, 94% and 93% for lateral fractures, and 97% and 93% for posterior fractures.

Table 8: Characteristics of missed fractures in the internal test set

Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior

Missed fractures (%) 82 15 3 66 8 26 24 58 18
Missed fractures per class (%) 22 17 11 23 6 33 30 22 12
Type Location Displacement

0.01
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simple
undisplaced
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True Label
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Figure 22: Confusion matrix of CWIS classification on the internal test set

Of the 244 detected fractures by nnDetection, 94% were assigned the correct rib number. Of the 15
misclassified ribs, 7 were due to a postprocessing step. During postprocessing, the rib segments are
overlaid with the bounding box of each detected fracture. If there is an overlap between a rib segment
and a bounding box, the bounding box is assigned to that rib. However, when neighbouring ribs are
close to each other because of a displaced fracture or anatomical variation, the bounding box may
intersect with multiple ribs. In this case, the more cranial rib will get assigned the bounding box,
resulting in a misclassification. Figure 23 illustrates two examples of misclassifications due to this issue.

Figure 23: Two examples of predicted bounding boxes, which overlap slightly with a more cranial rib, resulting in incorrect
rib number labelling.

28



Figure 24: Two examples of incorrectly labelled segmentations by nnUNet due to an object causing scattering.

The remaining six misclassified ribs were the result of inaccurate labelling by the developed nnUNet in
four patients. One of these patients had 11 pairs of ribs. Although 22 segments were created for this
case, some ribs were still mislabelled, leading to one fracture being assigned to the wrong rib number.
In two other patients, an object resting on the thorax caused scattering, resulting in four
misclassifications (Figure 24). For the remaining patient, no clear reason for the misclassifications could
be identified.

The runtime of DCRibFrac v2.0 for a single patient ranged from 20 to 90 minutes on the GPU
cluster at Erasmus MC, utilising the 2090 Ti 11GB and Nvidia A40 48GB GPUs when the nnDetection
models and the nnUNet model were run parallel. Detection and classification with the nnDetection
models took between 7 and 80 minutes per scan for a single classification task (type, displacement,
location), depending on the number of slices, with an average runtime of 23 minutes per scan.
Segmentation using the nnUNet model took approximately 2 minutes per scan, while postprocessing
required between 5 and 15 minutes.

3.4.3 DCRibFrac v1.0 versus DCRibFrac v2.0

To ensure a fair one-on-one comparison of detection and classification performance between
DCRIibFrac v1.0 and DCRibFrac v2.0, both models were evaluated on the internal test set of DCRibFrac
v1.0, which consists of 19 EMC patients with 207 fractures. This comparison gives insight into the
impact of incorporating additional and multi-centre datasets on the performance of DCRibFrac (Table
6). However, since DCRibFrac v2.0 was trained using a subset of this internal test set, the nnDetection
models were retrained with a slightly adjusted training and testing split, excluding the images that were
part of the test set.

The detection sensitivity, precision and F1 score on the EMC test set were 79%, 88% and 83%,
respectively, with a FPPS rate of 1.16. The performance of DCRibFrac v1.0 on this same internal test
set was 77%, 79%, 78% and 2.26 respectively. Table 6 presents the percentage of fractures per class
which were not detected. The last column represents the difference in detection performance per class,
with positive values indicating improvement of detection sensitivity using DCRibFrac v2.0 for that
specific class, compared to v1.0. The confusion matrix in Figure 25 visualizes the results of the
classification performance per class of DCRibFrac v1.0 and v2.0 on the internal test set of DCRibFrac
v1.0.

Table 6: Percentage of missed fractures per class on the internal test set of DCRibFrac v1.0

DCRibFrac v1.0 DCRibFracv2.0  Difference (%)

Simple 28 28 0
Wedge 8 0 8
Complex 18 14 4
Undisplaced 28 26 2
Offset 9 6 3
Displaced 44 48 -4
Anterior 24 5 19
Lateral 19 20 -1
Posterior 29 29 0
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Figure 25: Confusion matrix showing the performance of DCRibFrac v1.0 (top) and DCRibFrac v2.0 (bottom) on the internal
test set of DCRibFrac v1.0 (19 EMC patients)

3.5 External Validation

The pipeline of DCRibFrac v2.0 was applied to the dataset from Zuyderland Hospital, to assess its
performance on external data. As done for the internal test and training set of DCRibFrac v2.0, the
external validation dataset was labelled by two observers (VM and MvD). If there was a conflict in
classification, an experienced trauma surgeon (MW) solved the disagreement to obtain an accurate
ground truth dataset. The image size of the external validation dataset was 512x512 for every patient.
The number of slices differed between 251 and 1414 slices. Table 7 shows the data characteristics of
the Zuyderland dataset and the data of the internal test set for comparison. For more details on the
external validation dataset, please refer to Appendix E. Interestingly, the distribution of fractures within
this dataset shows a higher prevalence of rib fractures on the left side.

Table 7. Data characteristics Zuyderland Hospital

Variables External test set Internal test set
No. patients 28 36
No. fractures 193 309
No. fractures for Type (%)
- Simple 134 (70) 235 (77)
- Wedge 33(17) 53(17)
- Complex 26 (13) 18 (6)
No. fractures for Displacement (%)
- Undisplaced 99 (51) 178 (58)
- Offset 56 (29) 79 (26)
- Displaced 38 (20) 49 (16)
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No. fractures for Location (%)

- Anterior 503) 49 (16)

- Lateral 102 (53) 167 (55)

- Posterior 86 (44) 90 (29)
No CTs with slice thickness (%)

- >2.0mm 1(4) 17 (50)

- =lmm - 4(12)

- <l mm 27 (96) 13 (38)
No CTs with pixel spacing (%)

- Pixel spacing > 0.9 mm 5(18) 4(12)

- Pixel spacing 0.7< x <0.9 mm 23 (82) 20 (58)

- Pixel spacing < 0.7 mm - 10 (30)

The detection sensitivity on the external validation dataset was 84%, with a precision of 85%, an F1-
score of 84% with a FPPS of 0.96. Table 8 presents the characteristics of the missed fractures and the
percentage of missed fractures per class.

Concerning the classification performance of all detected fractures, simple fractures had a
sensitivity of 93% and a precision of 83%, see Figure 26. Wedge fractures had a sensitivity of 47%
and a precision of 43%, while complex fractures had a sensitivity of 22% and a precision of 83%.
Regarding displacement, the sensitivity and precision were 88% and 81% for undisplaced fractures,
65% and 63% for offset fractures, and 67% and 86% for displaced fractures. For fracture location, the
sensitivity and precision were 86% and 95% for lateral fractures, and 95% and 86% for posterior
fractures.

Of the detected fractures, 8 were assigned an incorrect rib number, resulting in a classification
accuracy of 95%. 5 out of these 8 can be explained by the bounding boxes of the predictions
overlapping with the cranially neighbouring rib, as explained in Section 3.4.2. The remaining 3 cases
are misclassified due to incorrect rib number labelling by nnUNet.

Table 8: Characteristics of missed fractures from the external validation dataset

Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior

Missed fractures (%) 87 3 10 88 6 6 16 45 39
Missed fractures per class (%) 20 3 12 27 5 4 100 14 14
Type Location Displacement
=
o = D
= 0.93 0.07 0.00 = &
g ) ©) 2 ©) ©) ©) B
@ o
=]
— =3
2
< g -
— %" 0.50 ) 0.03 = .
o 2 (16) (15) (V] 3 (6} &
= e} )
=
.w = 3
o 0.22 0.22 ) 2 0.33
§ (s) (s) 2 (0) - (0) (12)
3 &, =
simple wedge complex anterior lateral posterior undisplaced  offset displaced

Predicted Label

Figure 26: Confusion matrix of CWIS classification on external validation dataset
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3.6 Overview Classification Performance

Table 9 gives an overview of all the datasets that have been used for testing and training each version
of DCRibFrac. Table 10 presents the results obtained from the tests conducted on these datasets.

Table 9: DCRibFrac versions and their datasets used for training and testing

DCRIibFrac version  Training Testing

v1.0 EMC (n=81) EMC (n=19)

v2.0 (EMC) Multi-Centre (n=137) EMC (n=19)

v2.0 Multi-Centre (n=136)  Multi-Centre (n=34)
EV v2.0 - Zuyderland (n=28)

EV= External validation

Table 10: Performance of each DCRibFrac version on several datasets

Testdata Detection Type Displacement Location
Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior
v1.0 0.77 090 0.30 0.17 0.91 0.78 0.43 0.88 088 096
Sensitivity v2.0 (EMC) 0.79 094 0.25 0.16 0.93 0.66 0.62 090 097 0.94
v2.0 0.80 095 0.37 0.25 0.90 0.80 0.61 079 094 0.97
EV v2.0 0.84 093 047 0.22 0.88 0.65 0.67 - 086  0.95
v1.0 0.79 0.75 042 0.30 0.83 0.79 0.75 088 09 084
Precision v2.0(EMC) 0.88 0.72 045 0.50 0.77 0.84 0.61 095 095 0.96
v2.0 0.87 0.87 047 0.40 0.89 0.69 0.95 093 093 0.93
EV v2.0 0.85 0.83 0.43 0.83 0.81 0.63 0.86 - 095 0.86
v1.0 0.78 082 0.35 0.21 0.86 0.78 0.55 0.88 092 0.90
F1-score v2.0 (EMC) 0.83 0.82 0.32 0.24 0.84 0.74 0.61 092 096 0.95
v2.0 0.83 091 041 0.31 0.89 0.74 0.74 085 093 0.95
EV v2.0 0.84 0.87 045 0.35 0.84 0.64 0.75 — 090 0.9
v1.0 2.26
v2.0(EMC) 1.16
FPPS v2.0 1.11
EV v2.0 0.96

EV= External validation, EMC= Erasmus Medical Centre

32



4. Discussion
4.1 Performance of DCRibFrac v2.0

This project aimed to enhance the performance of DCRibFrac v1.0 by improving its automatic detection,
CWIS classification, and rib number labelling of rib fractures. To accomplish this, a new rib number
labelling method was developed, evaluated, and implemented. Additionally, three nnDetection DL
models, responsible for automatic fracture detection and CWIS classification, were retrained with an
expanded multi-centre dataset. These advancements resulted in DCRibFrac v2.0, an improved version
of DCRibFrac v1.0.

The detection sensitivity of DCRibFrac v2.0 achieved 80% on its internal test set, with a
precision of 87%, an F1-score of 83%, and a mean FPPS of 1.11. This detection sensitivity is at the
upper limit of the range observed for clinicians, which spans from 73.2% to 80.8% (22-24,46).
Compared to DCRibFrac v1.0, v2.0 demonstrates improved performance across all detection metrics on
the same internal test set: sensitivity increased from 77% to 79%, precision from 79% to 88%, F1-score
from 78% to 83%, and FPPS decreased from 2.26 to 1.11. Missed fractures are most often simple,
undisplaced fractures. Besides the fact that these fracture classes occur most often, simple undisplaced
fractures can be subtle and may not show major changes in bone structure, and therefore do not create
distinctive features that are easily detectable.

Classification performance remains challenging, particularly for accurately identifying the type
of fractures. Label imbalance may cause the model to become biased toward the more prevalent classes
(simple fractures), leading to suboptimal classification for less frequent fracture types (complex and
wedge). A significant proportion of the underrepresented complex and wedge fractures are misclassified
as simple, leading to low sensitivity for wedge and complex fractures and reduced precision for simple
fractures. Overall, the location classification has improved, especially for lateral fractures, and performs
well across all classes. DCRibFrac v2.0 demonstrates an increase in classification sensitivity for
displaced fractures, improving from 43% to 62% on the internal test set of v1.0, and achieving 61%
sensitivity on the internal test set of v2.0. However, the sensitivity for offset fractures decreased from
78% to 66% on the v1.0 internal test set. The addition of more multi-centre data to the training set could
have resulted in the model extracting other features and patterns, which results in improved classification
of displaced fractures and decreased classification of offset fractures on this test set. Nevertheless, the
performance on the internal test set of DCRibFrac v2.0 shows an improved sensitivity of 81% for offset
fractures.

The automatic rib number labelling performance has significantly improved, with 94% and 95%
of rib fractures being assigned the correct rib number in the internal and external test sets, respectively.
The results indicate that the presence of fractures does not necessarily lead to a higher rate of
mislabelling, suggesting robust performance even in cases with fractures.

The external validation results confirm the strong potential of DCRibFrac v2.0, with
performance metrics slightly better than the internal test set. The external test set demonstrated a
detection sensitivity of 84%, a precision of 85%, an F1-score of 84%, and a FPPS rate of 0.96. The label
distribution of the external validation set is similar to the label distribution of the internal test set of
DCRibFrac v1.0, see Table 7. However, the fraction of complex and posterior fractures is larger in the
external validation dataset and lower for anterior fractures, compared to the internal test set. The results
of DCRibFrac v2.0 on the internal test set show that only 11% of complex and 12% of posterior fractures
are missed, in contrast to 22%, 17%, 30%, and 22% for simple, wedge, anterior, and lateral fractures,
respectively. Therefore, the increase in detection performance on the external validation set can be
attributed to the fact that complex and posterior fractures are detected more often, which results in higher
detection sensitivity for the external validation dataset, since it contains relatively more complex and
posterior fractures, compared to the internal test set.

Another factor potentially contributing to the improved classification performance on the
external validation dataset could be the difference in CT scan slice thickness. In the external validation
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set, 89% of the CT scans had a slice thickness of 0.5 mm, compared to only 30% in the internal test set,
where the majority of scans had a larger slice thickness. Since no resampling is performed during
preprocessing, and the images retain their original slice thickness and pixel spacing, the smaller slice
thickness in the external dataset likely provides more detailed imaging, leading to better detection and
classification of fractures.

Despite the relatively small dataset, the detection sensitivity and FPPS rate are comparable with
other DL-based methods for automatic rib fracture detection (Table 11). Including only 70 additional
patients has enhanced sensitivity and lowered the FPPS. The DL methods achieving the highest
sensitivities (>90%) are generally trained on larger datasets, indicating that further dataset expansion
will improve detection performance.

Table 11: Comparison with other DL methods that noted both the sensitivity and false positives per scan
(FPPS) for detecting rib fractures. “*’ Denotes a missing value

Year Patients, fractures Sensitivity FPPS

Zhou et al. (26) 2022 640, 2853 95% 0.17
Niiya et al. (25) 2022 918, * 93% 1.9
Li et al. (47) 2023 18172,* 93% 0.5
Meng et al. (48) 2021 8829, 34699 92% 0.14
Wang et al. (27) 2022 9265, 43803 85% 0.35
Wu et al. (49) 2021 10943, 9590 85% 0.764
Azumaetal. (32) 2022 539,4906 84% 271
Zhou et al. (50) 2020 1049, 25054 83% 1.1
DCRibFracv2.0 2024 170, 1509 80% 1.11
Zhangetal. (51) 2021 3580, 15947 80% 0.43
Weikertetal. (52) 2020 159, 991 66% 0.16
Kaiume etal. (53) 2021 39,256 65% 1.1

4.2 Strengths and Limitations

The study design presents several strengths and limitations. Firstly, a strength of DCRibFrac v2.0 is the
establishment of the ground truth for the additional FixCon data by multiple observers, in contrast to the
single-observer approach employed in DCRibFrac v1.0. This approach reduces bias and enhances the
accuracy of the ground truth, as classification interpretations can vary between observers, as
demonstrated by the interobserver agreement study. The interobserver agreement study underscores the
complexity of establishing a uniform ground truth among observers and highlights the necessity for a
standardised classification method. By involving multiple observers, the performance metrics more
accurately reflect the true sensitivity of the model. However, a limitation is the absence of multiple
observers for the previously annotated EMC patients, which is a large fraction of the dataset used for
the development and evaluation of DCRibFrac v2.0. This inconsistency in labelling may affect the
overall reliability and robustness of the model.

Another strength is the inclusion of multi-centre data, which enhances the heterogeneity of the
dataset. This increased diversity makes the findings more representative of a broader population and
thereby improves the generalizability of the results. The variability introduced by different patient
demographics, clinical practices, and equipment across centres contributes to the robustness of the
predictive model. This variability helps the model become more resilient to overfitting, as it is trained
on a wider range of scenarios. The improved performance, as reflected in the results, underscores the
benefits of incorporating multi-centre data in developing a more reliable and generalizable model.
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A limitation of the study is the lack of direct comparison between the classifications made by
DCRibFrac v2.0 and those of a clinical expert. This comparison is essential for validating the model's
clinical relevance and accuracy.

4.2 Future research

The current results indicate that expanding the dataset has led to increased sensitivity and precision in
detection and classification. This suggests that further expansion of the dataset size could continue to
enhance performance. To improve CWIS classification, future efforts should focus on augmenting the
dataset with underrepresented fracture classes. This would help refine the model's ability to accurately
classify these types of fractures as well.

As mentioned in the previous section, the ground truth for the EMC dataset was established by
a single observer. Integrating labels from an additional observer could potentially enhance the accuracy
of the ground truth and improve the model's accuracy.

Future research should focus on modifying the method for combining the rib segmentation and
CWIS classification results to prevent the fractures from being assigned an incorrect rib label due to the
overlap of the bounding box with more cranially laying ribs. For example, this issue can be solved by
assigning the bounding box to the rib it overlaps the most. Based on the results of the internal test set,
solving this issue will expectedly result in ~50% reduction of incorrectly labelled fractures, which
translates to a correct rib number label for 97% of the fractured ribs. The developed nnUNet could be
further improved by training a nnUNet with a dataset that includes more challenging cases, such as CT
scans with artefacts and those featuring 11 rib pairs.

The time required to process a single CT scan through the entire pipeline lies between 20 and
90 minutes per patient, depending on the number of slices. This processing time limits the model's
applicability in acute care settings. However, in non-acute settings, the model could improve detection
sensitivity and support clearer communication. Trauma-related CT scans often cover a larger area than
just the thorax, which is the region of interest for DCRibFrac v1.0. To reduce processing time, an
additional preprocessing step, such as cropping the image to the region of interest, could be
implemented.

Conducting an international external validation will provide valuable insights into the model’s
generalizability and robustness across different populations and medical imaging protocols. This
evaluation helps ensure that the model remains accurate, reliable, and applicable in various clinical
settings, not only within The Netherlands. Testing the model on a diverse international dataset confirms
its effectiveness in detecting and classifying rib fractures under different conditions, thereby supporting
its broader applicability and potential for global use.

Future research could investigate the impact of automated rib fracture detection and
classification systems on the clinical decision-making processes of radiologists and other medical
specialists, with a focus on changes in decision-making patterns. Additionally, it would be valuable to
evaluate how the integration of these systems influences clinical outcomes.

Finally, the DCRibFrac model could be enhanced by integrating additional clinical data to
provide more comprehensive information for the decision-making process between surgical and
conservative treatment options. Including risk factors that predict mortality in patients with blunt chest
wall trauma, such as age over 65 years and pre-existing conditions like cardiopulmonary disease,
could result in a more clinically relevant prediction model (54,55).

35



Conclusion

In conclusion, this project introduces DCRibFrac v2.0, an enhanced DL-based algorithm for automatic
rib fracture detection and classification. Through the development and implementation of a novel rib
number labelling method and the retraining of DL models using a more comprehensive, multi-centre
dataset, improvements have been achieved in automatic rib fracture detection, CWIS classification, and
rib number labelling. Specifically, the detection sensitivity and precision were 80% and 87%,
respectively, with an FPPS rate of 1.11 and an accuracy of 94% in rib number labelling. Key
enhancements include improvements in rib number labelling and a reduction in false positives,
advancing towards a more reliable and standardised approach for rib fracture detection and CWIS
classification. The findings of this thesis contribute to the development of a predictive model that
supports the automation of the decision-making process for patients with blunt chest trauma, potentially
improving clinical outcomes.
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Supplementary Materials
Appendix A nnDetection

nnDetection is a framework for semantic segmentations, which can also be used as an object detector
and follows the same self-configuring strategy as nnU-Net (see Appendix B). The framework consists
of a Retina U-Net. The Retina U-Net is specifically designed to combine the strengths of both object
detection and semantic segmentation in a unified framework.

Retina U-Net uses the Feature Pyramid Network, which extracts features at different scales,
enabling analysis of objects with varying sizes. The layers in Figure 1 represent different levels of the
feature pyramid. The pyramid structure is used to capture multi-scale features, which are essential for
detecting objects of various sizes. Each layer of the pyramid corresponds to a different resolution or
scale of the image features.

The red layers are the coarse feature maps used for object detection on different scales. These
layers aggregate information from the corresponding levels of the feature pyramid, allowing the network
to detect objects of different sizes. The green layer represents the semantic segmentation features, which
are used for classifying pixels into different categories and distinguishing between different objects. The
network produces two outputs: the classification of the detected objects and the coordinates of their
bounding boxes.
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Figure 1: A schematic 2D representation of Retina U-Net (56).

40



Appendix B nnUNet

The nnU-Net framework is an advanced, fully automated method for medical image segmentation,
capable of handling a wide variety of segmentation tasks. It functions end-to-end, covering all steps
from preprocessing to training and post-processing, while adapting to different challenges with minimal
manual intervention. nnU-Net is based on the U-Net architecture, shown in Figure 1.

The process begins with the model analysing an input image. As the image passes through multiple
layers, the model learns important features while the image size gradually decreases (downsampling).
At the network's deepest point, the image becomes small, but the model has captured a lot of detailed
features. The model then increases the size of the image back to the original size, while combining the
learned features (upsampling). The final output is a segmented version of the image, where each part is
labelled according to what it represents, for example, a ribcage.
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Figure 1: U-Net Architecture for Image Segmentation
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Appendix C: Labelling Software

This appendix was written by N. Borren for the development of DCRibFrac v1.0 (33)

A comprehensive overview of the labelling software is given. First, a description of the module
network is given. Then, a manual belonging to the GUI will be described.

C.1 Module Network

Figure 2: Module network of MeVisLab for the labelling of rib fractures.
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There are two main parts in the module network; the marker and label assignments, and the calculation
of the angle from which the location label can be determined. Each module will briefly be described.
For both parts, the same input is needed from the OrthoView2D, which is used to visualise the image
that is loaded through ImageFromFile. Then, for the midpoints and label assignments:
SoView2dMarkerEditor — used for setting markers in the middle of the rib fractures.

StylePalette — used for setting different colours per marker to be able to distinguish them.

Boollnt — used to set the height and width of the visualisation bounding box around the marker.
XMarkerListContainer — used to merge all markers with their labels to a string.

StringSplit & StringUtils — used to concatenate all four labels belonging to one marker.
XMarkerListTransform — used to transform the world coordinates of the marker points to voxel
coordinates. The voxel to world transformation matrix is given by the Get/magelnformationsinfo.
StringsUtils 1 —used to obtain the image size information.

RunPythonScript — used to combine all information, reformat it and save it as a CSV-file. Here, error-
messages are also defined for when not all labels are assigned to a marker.

Similarly, the location label angle calculation is set up. However, instead of using markers to which the
labels are assigned, it uses midlines from which angles can be calculated. The SoView2DMarkerEditor
is now used in vector mode. Then, the RunPythonScript is used to calculate the angle between the marker
and the drawn midline. The result of this script is an angle in degrees which can help in deciding which
location label should be assigned to the marker.

The module network comes together in the GUI that is explained in the next chapter.

C.2 GUI Manual

& Landmark placements - o X
Browse for thorax CT F:/EMC/EMC_0010.nii.gz User guide rib fracture labelling
Adjust image:

Label rib fracture

Rib fracture number 0 R9 simple displaced posterior

Indicate rib number of fracture

n
LUT CAW: 1023.500 / 4095.000| RO =

H Fracture Type Displacement Type Location Type
simple ¥ | displaced ¥ | posterior
Measured angle in degr
Path for output: C:\Users\eline\Document ode

Create .csv files

Notification: Saved pt EMC_0010
Delete markers E | Adjust visualisation tools

Delete last placed landmark Change size bounding box

Delete all markers Change locator Circle
Set on/off number notation  Markerlistindex

User Mode
Scan

7, Delete all midlines
LUT CW: 1023.500 / 4 LUT CAW: 1023.500 /4095.000

Unregistered version of MeVisLab SDK

Figure 3: The GUI of the MeVisLab labelling software with numbers indicating the different sections.

The GUI will be explained according to the different sections in the interface, corresponding to the
numbers in Figure 3.

1. Give the path to the NIfTI image and click on ‘Load File’.

2. The images are shown in axial, sagittal and coronal slices. After identifying the rib fracture, left
mouse click in the middle of the fracture to set a marker. Here, shown as the yellow square. If
you want to calculate the angle for the location label, hold shift + right mouse click from the
posterior aspect of the vertebral spinous process to the anterior table of the sternum to create the
midline. The angle will be given in section 5.
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A marker can be deleted by clicking on it and using delete from your keyboard. Shift + right
mouse click on the midline begin or endpoint to delete the midline.

A quick user guide on how to use the software. Additional tips are given for adjusting the images
in section 2. Moreover, a short description of the definition of labels is given.

When going through the slices of different patients, the field of view is sometimes not correct
and it seems like there is no image showing. Press Unzoom to set the field of view to the current
patient.

Label the rib fracture. In the first line, the rib fracture number that is currently selected and the
given labels are shown. In the drop-down menus the four labels can be assigned. Then, the
output path needs to be defined. Once all rib fractures are marked and given their labels, the
Create .csv files button can be clicked. If all rib fractures have all four labels and there is at least
one midline drawn, the notification will output Saved pt [name patient]. When labels are
missing, the notification will output which marker’s label is missing. When no midline is
defined, the output is Draw at least one midline.

If the patient data is saved and a new patient is loaded, all markers and midlines of the former
patient should be deleted. To do this, click on Delete all markers & midlines.

The visualisation of section 2 can be changed a little. The visualisation bounding box can be
changed, which is purely for visualisation purposes as it does not influence the marker
coordinates. Lastly, the locator and the number notation next to the yellow box can be changed.
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Appendix D: Label Distribution Internal Dataset

Table 1: Dataset Characteristics Internal Test and Training set DCRibFrac v1.0

Variables Internal training set Internal test set
No. patients 81 19
No. fractures (%) 803 (80) 207 (20)
No. CT slice thickness =2 mm (%) 51(63) 12 (63)
No. CT slice thickness = 1 mm (%) 8 (10) 0
No. CT slices thickness < 1 mm (%) 22 (27) 7 (37)
No. CT pixel spacing > 0.9 mm (%) 16 (20) 5(26)
No. CT pixel spacing 0.7< x <0.9 mm (%) 49 (60) 10 (53)
No. CT pixel spacing < 0.7 mm (%) 16 (20) 4(21)
No. fractures for Type (%)
- Simple 597 (74) 145 (70)
- Wedge 138 (17) 40 (19)
- Complex 68 (9) 22 (11)
No. fractures for Displacement (%)
- Undisplaced 506 (63) 103 (50)
- Offset 195 (24) 79 (38)
- Displaced 102 (13) 25 (12)
No. fractures for Location (%)
- Anterior 159 (20) 21 (10)
- Lateral 364 (45) 116 (56)
- Posterior 280 (35) 70 (34)

Rib number

T T T T T T T
L L2 3 L4 L5 L6 L7 L8 L9 Lo L1 L2 RL R2 R3 R4 RS R6 R7 RE R9 RLO R11 R12

Figure 1: Number of fractures per rib in the internal test and training set of DCRibFrac v2.0
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Type labels per Rib

Type labels per Rib
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Figure 2: Label distribution of the EMC dataset (left) and the additional FixCon data (right). Distribution per
rib number for the labels type (top), displacement (middle), and location (bottom).
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Appendix E: Label Distribution External Validation Dataset
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Figure 1: Number of fractures per rib in the external test set
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Figure 2: Fracture characteristics of external validation dataset. Distribution per rib number for the
labels type (top left), displacement (top right), and location (bottom).
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