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Abstract 
Introduction: Trauma-induced rib fractures are a common injury, affecting millions of individuals 

globally each year. The number and characteristics of these fractures influence whether a patient is 

treated conservatively or surgically. Rib fractures are typically diagnosed using CT scans, yet 19.2% to 

26.8% of fractures are still missed during assessment. Another challenge in managing rib fractures is 

the interobserver variability in their classification. In 2023, a deep learning-based algorithm for the 

automatic detection and classification of rib fractures (DCRibFrac v1.0) was developed based on the 

Chest Wall Injury Society (CWIS) taxonomy. Although DCRibFrac v1.0 demonstrated promising 

results, there remained room for improvement, particularly in the accuracy of rib number labelling. This 

project aims to develop and assess DCRibFrac v2.0, an enhanced version of the original algorithm. 

Methods: Two novel approaches for automatic rib number labelling were proposed and evaluated: a 

pre-trained deep learning model named TotalSegmentator and a custom-developed nnUNet. 

Additionally, three nnDetection models were developed based on multi-centre data for the automatic 

detection of fractures and the classification of their type, displacement, and location. The performance 

of DCRibFrac v2.0 was evaluated. Finally, an external validation was conducted to assess the 

generalizability and robustness of DCRibFrac v2.0. 

Results: For the development and evaluation of DCRibFrac v2.0 a total of 170 patients were included. 

The custom-developed nnUNet was the best-performing method for rib number labelling, correctly 

labelling 95.5% of all ribs and 98.4% of fractured ribs in 30 patients. On the internal test set, DCRibFrac 

v2.0 achieved a detection sensitivity of 80%, a precision of 87%, and an F1 score of 83%, with a mean 

FPPS (false positives per scan) rate of 1.11. Classification sensitivity varied across fracture types, with 

the lowest being 25% for complex fractures and the highest being 97% for posterior fractures. The 

correct rib number was assigned to 94% of the detected fractures. The detection and classification 

performance on the external validation dataset was slightly better, with a fracture detection sensitivity 

of 84%, precision of 85%, F1 score of 84%, FPPS of 0.96 and 95% of the fractures assigned the correct 

rib number. 

Conclusion: The developments resulting in DCRibFrac v2.0 have improved the automatic detection 

and classification of rib fractures, with particular advancements in rib number labelling performance 

and detection precision. These improvements are important steps towards establishing a more accurate 

and standardised method for rib fracture assessment, which could enhance clinical decision-making and 

improve patient outcomes in trauma care.  
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1. Introduction 

1.1 Traumatic Rib Fractures 

Traumatic rib fractures are a common injury following thoracic trauma and are often caused by high 

force to the chest wall (1). Rib fractures account for 10% of all trauma admissions with a prevalence of 

10-40% among trauma patients (1–3). These injuries result from high-energy trauma (HET) in younger 

patients, such as falls from heights or car accidents, frequently accompanied by other injuries. In elderly 

patients, they result from low-energy trauma (LET) (4–6). In general, rib fractures lead to high morbidity 

and can cause mortality when combined with other conditions such as haemothorax, pneumothorax, and 

soft tissue injuries (3,7). The thoracic pain caused by rib fractures limits patients to cough and breathe 

deeply, which can result in atelectasis and pneumonia (8). An increased number of fractures and older 

age are associated with increased rates of morbidity and mortality (3,5).  

1.2 Rib Fracture Management 

Rib fractures can be managed through surgical intervention or conservative treatment. A combination 

of optimal pain management, pulmonary physical therapy, oxygen suppletion and mechanical 

ventilation is considered essential for the conservative management of patients with rib fractures 

(2,9,10). Despite this treatment strategy, mortality and complications such as pulmonary contusion and 

pneumonia still occur often (1,4,10,11). Traditionally, patients were treated conservatively, nowadays 

more data is supporting the positive effects of early surgical stabilisation of rib fractures (SSRF) (12). 

SSRF aims to improve respiratory mechanics, reduce pain and prevent pulmonary 

complications by inserting rib fracture stabilising systems. However, operative treatment increases the 

risk of surgical site infections with or without implant infections, potentially necessitating multiple 

additional surgical procedures.  

In the case of a flail chest, defined as at least three consecutive fractured ribs with two or more 

fracture lines per rib, SSRF is preferred. This condition leads to a segment of the chest wall that moves 

paradoxically compared to the rest of the chest, resulting in insufficient breathing physiology (Figure 

1). For patients with a flail chest, studies have shown that SSRF reduces the risk of pneumonia, shortens 

hospital length of stay and decreases the duration of mechanical ventilation (13–16). Therefore, SSRF 

is considered the best treatment option for flail pattern patients. 

For patients with multiple simple rib fractures, it remains unclear whether a conservative or 

surgical approach is more beneficial in terms of patient outcomes and cost-effectiveness, as well as 

which factors should influence this decision (11,17–19). It frequently occurs that these patients, as well 

as flail patients, present with non-union(s) of their rib fracture(s) a few months after the trauma. It is still 

a matter of debate if this patient group, with multiple simple (non-flail) fractures, could benefit from 

SSRF (20).  

Figure 1: Illustration showing the characteristic segmental rib fractures in flail chest, where a segment of the rib cage moves 

independently from the rest of the chest wall. 
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A multi-centre randomised clinical trial (RCT) is currently conducted by Erasmus MC, comparing the 

surgical and non-surgical treatment strategies for patients with multiple simple (non-flail) rib fractures, 

to evaluate which treatment yields the best outcomes (FixCon trial) (11). It is expected that SSRF for 

these patients will reduce the incidence of pneumonia and shorten the hospital length of stay compared 

to non-surgical treatment. The findings of this trial will provide valuable insights into the clinical 

outcomes associated with each treatment strategy, offering evidence that can inform future decision-

making processes. One of the key factors influencing treatment decisions is the fracture characteristics, 

such as the location, type and number of rib fractures (2). 

1.3 Rib Fracture Classification  

A reason for the limited implementation of SSRF guidelines is the inconsistency in rib fracture 

classification. This inconsistency complicates communication in both clinical practice and scientific 

research. Given that rib fracture classification plays a critical role in decision-making, improving the 

reliability and accuracy of classification, would be highly beneficial for optimizing treatment strategies. 

This enhancement would ensure that patients receive the most appropriate treatment through a 

standardised evaluation of their rib fractures. 

In 2020, the Chest Wall Injury Society (CWIS) published SSRF guidelines, including a rib 

fracture classification system. This classification system was conducted through a Delphi consensus 

study (21). The proposed taxonomy is based on three characteristics: the fracture type, fracture 

displacement and fracture location on the rib bow. The CWIS taxonomy distinguishes the fracture line 

type as simple, wedge or complex, the displacement as undisplaced, offset or displaced, and the location 

as anterior, posterior, or lateral (see Figure 2–4 for the definition of each class). However, significant 

interobserver variability remains among clinicians in rib fracture classification using the CWIS 

taxonomy, particularly concerning the type and displacement classification (22).  

Computed Tomography (CT) is the most effective imaging modality for diagnosing rib fractures 

resulting from trauma and is the golden standard. Nevertheless, literature shows that 19.2% to 26.8% of 

rib fractures are still missed during the diagnostic process, which is done manually by radiologists and 

other healthcare professionals (22–24). Additionally, the manual classification of these fractures is time-

consuming. To address these issues, a robust, (semi)automatic and reliable CT-based classification 

scoring approach is necessary.  

In the past years, several deep learning (DL) methods for rib fracture detection and classification 

have been published (25–32). DL is a subset of machine learning (ML), which is a subset of artificial 

intelligence (AI). DL is based on neural networks, which are designed to automatically learn and extract 

features from example data without explicit programming. These features can be used for the 

classification of new data. The studies show that DL models hold promise in enhancing rib fracture 

detection and establishing a more consistent classification compared to clinicians. However, these 

models are not up to date with the CWIS taxonomy standards, and it is unclear how robust these models 

are. The reported classification systems offer limited clinical value as they have no treatment 

consequences.  

Figure 2: Schematic representation of fracture type according to the CWIS rib fracture taxonomy (21). 

A) simple: single fracture line, 

B) wedge: single fracture line with an additional line that does not run through the entire width of the rib. This creates a 

chipped-off fragment, 

C) complex: two or more fracture lines that extend across the entire rib width, resulting in the presence of one or more 

fragments. 
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1.4 Automated CWIS Taxonomy  

In 2023, NB proposed a DL-based classification algorithm based on the CWIS taxonomy, named 

DCRibFrac v1.0 (33). The detection sensitivity was 77%, which is on par with that of clinicians but did 

not surpass them. In general, DCRibFrac v1.0 shows potential for improved detection sensitivity and 

consistent classification of acute rib fractures from CT scans, but further refinements are needed. The 

results indicate that certain classes are more difficult to classify than others (Table 1). In particular, 

DCRibFrac v1.0 did not yield satisfactory results for the rib fracture type classification. The lack of 

performance could be attributed to the size of the dataset, as overfitting was still evident with a training 

dataset of n=81. Therefore, a larger dataset is needed to decrease overfitting and improve detection and 

classification. Additionally, the large label imbalance might have made learning the less frequent labels’ 

characteristics more challenging (complex, wedge and displaced rib fractures). The significant 

interobserver variability, demonstrated by interobserver agreement studies, might also be an explanation 

for these results (22,33). 

 

 

 Sensitivity Precision F1-score FPPS 

Detection 0.77 0.79 0.78 2.26 

Type 

• Simple 

• Wedge 

• Complex  

 

0.90 

0.30 

0.17 

 

0.75 

0.42 

0.30 

 

0.82 

0.35 

0.21 

 

 

Figure 3: Schematic representation of fracture displacement according to the CWIS rib fracture taxonomy (21). 

A) undisplaced: more than 90% cortical contact,  

B) wedge: between no cortical contact and 90% cortical contact, 

C) displaced: no cortical contact. 

Table 1: Detection and Classification Performance DCRibFrac v1.0 

Figure 4: Schematic representation of fracture location according to the CWIS rib fracture taxonomy. The mid-thoracic 

point is defined as the middle of the line drawn between the linear alba and the posterior aspect of the vertebral spinous 

process (21). 

Anterior: the angle between 0° and 60° relative to the mid thoracic point, 

Lateral: the angle between 60° and 120° relative to the mid thoracic point, 

Posterior: the angle between 120° and 180° relative to the mid thoracic point. 
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The currently used method for rib number labelling utilizes a nnUNet for the initial segmentation of the 

ribs. Segmentation is a technique used to divide data sets into multiple image segments to change the 

representation of the image in a more understandable way. In this process, 2D pixels and 3D voxels are 

assigned labels that share the same properties. In this case, one segment was created specifically to 

identify the ribcage. During post-processing, this segment is first improved by morphological operations 

(34). Additionally, the segmentation is split into multiple segments, which are then counted. Lastly, the 

centres of mass (CoMs) are calculated to order the segments (see Figure 5). 

Using this method, the rib number labelling yielded favourable results for patients with minor 

displaced rib fractures but was ineffective for severely dislocated ribs. In the internal test dataset, the rib 

numbers were labelled correctly in only 8 out of 19 patients (42%). Figure 6 illustrates two cases where 

the rib number labelling was incorrect. Figures 6A and 6B represent the same patient. The fracture 

encircled in Figure 6B has caused the two fragments to be labelled as separate ribs (Figure 6A), whereas 

they should be labelled as multiple fragments of the same rib. Figure 6C illustrates an example where 

multiple ribs were incorrectly merged due to morphological operations, resulting in a single segment 

containing multiple ribs. To improve the performance of DCRibFrac v1.0, the accuracy of rib number 

labelling should be enhanced. 

 

Displacement 

• Undisplaced 

• Offset 

• Displaced  

 

0.91 

0.78 

0.43 

 

0.83 

0.79 

0.75 

 

0.86 

0.78 

0.55 

 

 

 

 

Location 

• Anterior 

• Lateral  

• Posterior 

 

0.88 

0.88 

0.96 

 

0.88 

0.95 

0.84 

 

0.88 

0.92 

0.90 

 

Figure 5: Pipeline for automatic rib number labelling in DCRibFrac v1.0.  

 

Figure 6: Examples of wrongly segmented and labelled ribs. 

A) Posterior view of a 3D segmented model where the fracture splits the segmentation into two separate fragments, 

B) Axial slice of the fracture encircled in A, 

C) Lateral view of a 3D segmented model where ribs are merged due to dilation. 
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1.5 Objective and Contributions 

The primary objective of this project is to develop and evaluate DCRibFrac v2.0, an improved version 

of DCRibFrac v1.0. The contributions are as follows: 

• Implement and evaluate an improved rib number labelling method, 

• Enhance the classification performance by expanding the dataset with multi-centre FixCon 

data, 

• Assess interobserver agreement of CWIS classification to evaluate the consistency and 

agreement among different observers using the CWIS taxonomy, 

• Perform an external validation within the Netherlands to evaluate the generalizability and 

reliability of DCRibFrac v2.0. 
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2. Materials and Methods 

This section outlines the development of DCRibFrac 2.0 and details its advancements from DCRibFrac 

v1.0. Section 2.1 describes the framework of DCRibFrac v1.0. Sections 2.2 and 2.3 detail the steps taken 

to enhance the classification and the rib number labelling performance, respectively. Finally, the setup 

for external validation is explained in Section 2.4. 

2.1 DCRibFrac v1.0 

The algorithm development of DCRibFrac v1.0 involved creating four DL models, three nnDetection 

models and one nnUNet, each targeting a specific classification category: type, displacement, location 

or rib number (35,36). DCRibFrac v1.0 was developed and evaluated using 100 thoracic CT scans from 

trauma patients exclusively from EMC.  

2.1.1 CWIS Classification 

Figure 7 illustrates the pipeline to obtain the predicted CWIS classification. Three separate nnDetection 

models were developed for the classification of the type, displacement and location of the fracture, as 

the nnDetection framework processes only one classification at a time. Each nnDetection model 

produces bounding box coordinates. Each bounding box indicates a detected fracture and is 

accompanied by a probability score and the corresponding labels for each detection. Consequently, one 

detected rib fracture with the complete CWIS classification has three different bounding boxes. For 

further details on nnDetection, refer to Appendix A. During post-processing, the results from the three 

nnDetection models are ensembled by combining their bounding boxes. Initially, each nnDetection 

model's output is filtered to eliminate overlapping bounding boxes, retaining only those with the highest 

probability scores while discarding those with lower scores. Two bounding boxes overlap if their 

Intersection-over-Union (IoU) score exceeds 50%. The IoU score is calculated using the following 

formula: 

𝐼𝑜𝑈 =
𝑏𝑏𝑜𝑥1 ∩ 𝑏𝑏𝑜𝑥2
𝑏𝑏𝑜𝑥1 ∪ 𝑏𝑏𝑜𝑥2

 

 

where bbox1 and bbox2 are bounding boxes, ∩ indicating the intersection and ∪ the union of the boxes. 

Additionally, the models are merged with the requirement there is an overlap of bounding boxes from 

Figure 7: Overview of the pipeline for automatic detection and CWIS classification of rib fractures. The dotted boxes 

indicate the steps which are taken within the DL-models. During post-processing the predictions are combined. 
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at least two models, indicating the detection of a potential rib fracture by at least two models. These 

bounding boxes are combined through a union. In cases where only two out of three models overlap, 

one of the labels cannot be assigned. In such instances, a label 'unknown' is assigned. 

2.1.2 Rib number labelling 

To determine the rib number on which a detected fracture is located, rib segmentations are needed. The 

state-of-the-art medical segmentation framework nnU-Net was utilised for this task. This framework 

was chosen because it handles the entire pipeline, including preprocessing, training, and post-

processing, autonomously across a wide variety of segmentation tasks. In DCRibFrac v1.0 a nnU-net 

was trained to create one single segment representing the ribcage. For further details on nnUNet, refer 

to Appendix B. As explained in the introduction, the segmentation of the ribcage by nnUNet is post-

processed to obtain the number of fractured ribs. The nnUNet segmentation is first improved by 

morphological operations. Additionally, the single segment is split into multiple segments, which are 

then counted. Lastly, the centres of mass (CoMs) are calculated to order the segments, see Figure 5. 

2.1.2 Merging predictions  

The labelled segmentations are merged with the results of nnDetection. This is done by converting the 

bounding box coordinates of nnDetection into a binary label map. Subsequently, the binary label map 

and the numbered rib segmentations are merged. Bounding boxes that do not overlap with the numbered 

rib segmentations are discarded and in case of overlap, the fourth label, indicating the rib number, is 

assigned. This concludes the DCRibFrac model version 1.0. For a more in-depth explanation of 

DCRibFrac v1.0, please refer to (33). 

2.2 CWIS Classification Improvement  

The effectiveness and reliability of DL models are influenced by both the quantity and quality of the 

data used for training. Large and diverse datasets enable models to learn more effectively, generalise 

better to new data and provide accurate predictions (37,38). Therefore, to enhance the performance of 

the CWIS classification, the current dataset will be expanded. 

2.2.1 Data Acquisition  

For the development of DCRibFrac v2.0, available data from the multi-centre FixCon trial is included 

to expand the dataset. The most important inclusion and exclusion criteria for the FixCon trial are as 

follows (11): 

 

Table 2: Inclusion and exclusion criteria of the FixCon study 

 

Inclusion Criteria Exclusion criteria 

Age >18 years 
Neurotraumatic changes leading to mechanical 

ventilation 

Of ribs 4 t/m 10, either: 

- Simple (non-flail) fractures of 3 or more 

ribs, with at least one rib displaced by 

the width of the shaft 

- Simple (non-flail) fractures of 3 or more 

ribs accompanied by severe pain (VAS 

or NRS > 6) 

Rib fractures due to cardiopulmonary 

resuscitation. 

SSRF is not possible due to additional traumatic 

injuries 

Flail chest, based on radiological or clinical 

findings 

Blunt chest trauma 
Decreased sensory or motor function due to 

(previous) cervical or thoracic spine failure. 

Hospital presentation within 72 hours of trauma Previous rib fractures or pulmonary problems 
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Initially, all available FixCon patients were included in the dataset for the development of DCRibFrac 

v2.0. Patients were excluded if their post-trauma thoracic CT scans did not cover all ribs. The FixCon 

dataset consists of data from thirteen Dutch hospitals, including ErasmusMC, Amphia Hospital, Bravis 

Hospital, Catharina Hospital, Deventer Hospital, Haga Hospital, Ikazia Hospital, Isala Hospital, 

Maasstad Hospital, Maastricht University Medical Centre, Rijnstate Hospital, Spaarne Hospital, and 

University Medical Centre Groningen. These hospitals, marked by the blue markers in Figure 8, cover 

a large area of the Netherlands. Incorporating data from multiple centres provides a more extensive 

dataset, which can enhance the model's performance. Multi-centre data encompasses a wider variety of 

patient demographics and clinical conditions. This diversity helps ensure the model is not overfitted to 

a specific patient population and is more likely to perform well across different groups.  

2.2.2 Ground Truth  

To obtain the ground truth of the internal test and training set, all rib fractures were labelled manually 

according to the CWIS taxonomy. For the development of DCRibFrac v1.0, the dataset from EMC has 

already been labelled by a single researcher. The additionally included FixCon data was manually 

labelled using the MeVisLab tool developed for DCRibFrac v1.0 (33). This semi-automatic tool stores 

the coordinates and manually classified labels for each fracture in the required format. Specifically, it 

records each fracture's coordinates, type, displacement, location, and rib number. A comprehensive 

overview of the labelling software and the application in this project is explained in Appendix C. 

Labelling is done independently by two researchers (VM and MvD). In cases where there was 

disagreement on the type or displacement class label, an experienced trauma surgeon (MW) solved the 

disagreement to obtain an accurate ground truth dataset. When one of the two labellers missed a fracture, 

the trauma surgeon made the final determination on whether a fracture was present. The classification 

of the fracture location (anterior/lateral/posterior) by VM was based on a measurement, as explained in 

Appendix C, while MvD's classification was done subjectively. Therefore, VM's classification is 

considered the truth for this category and disagreements were not solved by the experienced trauma 

surgeon.  

The inter-observer agreement between the labellers will be evaluated using Krippendorff’s 

Alpha and Cohen’s Kappa. Krippendorff’s Alpha handles categorical variables as well as missing data. 

Cohen’s Kappa is designed to measure the agreement between two raters. Together, these metrics 

provide a comprehensive evaluation of the consistency and reliability of the labelling process (39,40). 

2.2.3 Training and Evaluation  

The training dataset, which includes the CT scans and their corresponding ground truth, was used to 

train three new nnDetection models. To train the three nnDetection models, a five-fold cross-validation 

strategy was implemented for each model. The post-processing steps for nnDetection remained the same 

as in DCRibFrac v1.0. The model's ability to automatically detect and classify fractures will be evaluated 

Figure 8: Map of hospital locations: blue markers indicate hospitals contributing data for the development of DCRibFrac v2.0. 

The red marker represents the hospital used for external validation. 
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by comparing its predictions on the internal test dataset against its ground truth. The detection 

performance will be assessed on fracture level using sensitivity, precision, F1-score, and false positives 

per scan (FPPS) as evaluation metrics. A false-positive was defined as a 3D bounding box that did not 

overlap with the midpoint of a blob in the ground truth. For the classification performance, sensitivity, 

precision, F1 scores and confusion matrices were utilised to present the results. 

2.3 Rib number labelling 

In DCRibFrac v1.0, the rib number labelling task had favourable results for patients with minor 

displaced rib fractures, but it was ineffective for those with severely dislocated ribs. In eleven out of 

nineteen patients in the internal test set, the labelling of the segmented ribs was inaccurate for at least 

one rib. In this report, the rib number labelling approach proposed in DCRibFrac v1.0 will be referred 

to as nnUNet-PP (nnUNet, followed by post-processing), see Figure 5. Two novel approaches for rib 

number labelling (TotalSegmentator and nnUNetOnly) were developed and evaluated, explained in the 

following sections.  

2.3.2 TotalSegmentator 

Recently, the TotalSegmentator tool was released, a pre-trained DL segmentation model based on 

nnUNet (41). This tool automatically segments and labels all major anatomical structures in the body 

on CT scans, including the left and right ribs 1 to 12. TotalSegmentator has demonstrated a mean Dice 

score of 0.94 on the test set for many anatomical structures, ranging from the skeleton to the 

cardiovascular system to the gastrointestinal tract. It was developed using a large and diverse dataset of 

over 1,200 CT scans, which included pathological cases such as fractured bones. Detailed information 

on fracture characteristics and the causes of the fractures (e.g., whether they were traumatic or 

pathological) was not available. The performance suggests that the model is promising and worth 

considering. However, the study presenting the tool notes some limitations, such as occasional confusion 

between neighbouring ribs. Despite these shortcomings, TotalSegmentator is expected to provide 

improved accuracy compared to nnUNet-PP and its potential should be further evaluated. This model is 

the basis for the two new approaches developed and assessed in this study. The first novel approach is 

based solely on TotalSegmentator. The pipeline for obtaining a labelled segmentation using 

TotalSegmentator is shown in Figure 9. CT scans are fed to the TotalSegmentator model, which results 

in 24 segments, one for each rib. These labelled segments can be combined with the results of the 

nnDetection models during post-processing, as done in DCRibFrac v1.0. 

  

Figure 9: Pipeline to obtain labelled rib segmentation using TotalSegmentator. 
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2.3.3 nnUNetOnly  

The second novel approach involves the development of a new nnUNet based on the results from 

TotalSegmentator and is named nnUNetOnly. In this process, the results from TotalSegmentator are 

manually refined using 3D Slicer to create a correct training set. This refined dataset is utilized to 

develop and train a new nnUNet model. The training dataset used to develop the three nnDetection 

models is also employed for both the development and evaluation of nnUNetOnly. This dataset is 

divided into a training and validation dataset. The training set was used to train the nnUNet, while the 

validation set was used to assess the performance of nnUNetOnly by comparing its performance with 

TotalSegmentator, see Section 2.3.5. Figure 10 shows the workflow for the development and evaluation 

of this model. The aim of nnUNetOnly is to create a model which directly and automatically segments 

and labels each rib separately, see Figure 11.  

2.3.4 Experiment: nnUNet-PP versus TotalSegmentator 

To evaluate the performance of TotalSegmentator in rib number labelling, the segmentations will be 

compared to the results of nnUNet-PP. The evaluation is based on 30 EMC CT scans. The selected CT 

scans were not utilised for the development of the nnUNet in nnUNet-PP. The ground truth for rib 

number labelling was established by one researcher (VM), who created a spline by manually tracing and 

labelling each rib in the axial slices of the CT scans using 3D Slicer software 5.6.2 (42). The splines are 

created with the Curve function under the Markups tab. Each spline was created by following the rib 

from cranial to caudal, starting at the first rib. Figure 12A illustrates an axial slice with these splines 

overlaid, while Figure 12B presents a 3D model of the splines. To assess the accuracy of rib number 

labelling generated by nnUNet-PP and TotalSegmentator, the labelled splines (GT) were projected onto 

the same 3D image space as the segmentations. A qualitative assessment was then conducted through 

visual inspection, see Figure 12C. Evaluation is conducted for each rib. During qualitative analysis in 

3D Slicer, the following aspects are assessed: 

- Does the label of the spline match the label of the segment it intersects? 

- Does the spline intersect with multiple segments or no segments at all? 

If the ground truth spline intersects with a segmentation that carries the same label, the rib number label 

for that rib is categorised as correct. Conversely, if a spline intersects with a segment where the labels 

do not match or does not intersect with a segment at all, that rib is categorized as incorrect.  

Figure 10: Workflow for the development of nnUNetOnly 

Figure 11: Pipeline to obtain labelled rib segmentation using nnUNetOnly. 
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This evaluation process is applied to the results of both nnUNet-PP and TotalSegmentator, allowing for 

a comparative analysis to determine the superior approach. However, the clinical relevance lies more in 

the accurate labelling of specifically fractured ribs. Label maps containing the location of fractures are 

available, as they were created for the development of the nnDetection models. These label maps contain 

spheres which represent the location of a fracture. By visualising these spheres in 3D Slicer, the 

performance of the approaches specifically for fractured ribs will be evaluated (Figure 12D).  

 

2.3.5 Experiment: TotalSegmentator versus nnUNetOnly 

This experiment aimed to determine which approach is superior and should be implemented in 

DCRibFrac 2.0, TotalSegmentator or nnUNetOnly. The ground truth is established in a similar way as 

done in the previously explained experiment, where nnUNet-PP and TotalSegmentator were compared. 

Instead of comparing the segmentations of TotalSegmentator and nnUNetOnly with splines, they are 

compared with labelled control points for qualitative evaluation, since creating splines is time-

consuming. This comparison is performed using 3D Slicer as well, through the Point List function under 

the Markups tab. The control points are placed in the middle of the rib bow, with one control point 

assigned per rib. During the qualitative analysis in 3D Slicer, the following aspects are evaluated by 

visual inspection: 

- Does the label of the control point match the label of the segment it overlaps? 

- Is it feasible that the form of the segment represents a single rib? 

- In the case of severely dislocated fractures: Do the two fragments have the same label? 

TotalSegmentator and nnUNetOnly will be evaluated by comparing their results to this ground truth 

using the validation dataset, as explained in Section 2.3.3. The evaluation will be done on a per-rib level, 

focusing on fractured ribs. Based on the results of this experiment, the best method will be implemented 

in DCRibFrac v2.0. Figure 13 provides an overview of the data utilisation, and the experiments 

performed in this project. The dotted line encircles the contributions of this project. 

2.4 External validation 
Apart from the internal validation using an internal test set, the final algorithm is evaluated by 

performing an external validation. External validation is needed to assess a model’s reproducibility and 

generalizability, which is necessary in a clinical setting. ML models must be robust, meaning they should 

reliably perform even in contexts that may differ subtly from those represented in the training data (43). 

Performing an external validation will give insight into the robustness and reliability of DCRibFrac v2.0. 

Frequently, the performance observed on external datasets is poorer than the performance appraised on 

original datasets (44). The external data, in this case, refers to a set of new data from another hospital 

which is not used for the development of DCRibFrac v2.0. The CT scans in the FixCon RCT originating 

Figure 12: Example of how the ground truth was created and used for evaluation. A) axial slice with labelled pink splines. 

B) display of 3D model of all splines in one patient. C) segmentation overlaid with the splines. D) Segmentation overlayed 

with blobs which represent fractures.  
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from Zuyderland Hospital are used for external validation, see the red pinpoint in Figure 8. This dataset 

was chosen due to its size, making it the second-largest dataset available, aside from the EMC dataset. 

  

Figure 13: Flowchart illustrating the data utilization and model development process for automatic rib fracture detection 

and classification. The dotted line encircles the contributions of this project.  
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3. Results 

This section presents the outcomes of the experiments detailed in Section 2. Section 3.1 provides an 

overview of the dataset used to enhance fracture detection, CWIS classification and rib number labelling. 

Section 3.2 discusses the findings from the interobserver agreement study. Section 3.3 outlines the 

results of the experiments where the three different rib number labelling approaches, nnUNet-PP, 

TotalSegmentator, and nnUNetOnly, were evaluated. Section 3.4 introduces the final pipeline and the 

performance of DCRibFrac v2.0. The results from the external validation are covered in Section 3.5. 

Finally, Section 3.6 summarises the CWIS classification performance across various DCRibFrac models 

and test sets. 

3.1 Dataset 

An additional 70 anonymised FixCon CT scans have been added to the ErasmusMC dataset, bringing 

the total to 170 CT scans, including 1509 fractures. The dataset characteristics of the included CT scans 

for the development of DCRibFrac v2.0 are presented in Table 3. Refer to Appendix D for details on 

the data characteristics of the EMC dataset, used to develop the initial model, DCRibFrac v1.0. 

Additionally, Appendix D visualises the distribution of fracture characteristics per rib for both the EMC 

and the added FixCon datasets separately, providing insights into how the dataset has expanded. The 

label distribution of the added FixCon data is similar to the EMC data. The fraction of complex and 

anterior fractures is slightly smaller in the added FixCon dataset. All scans have an in-plane image size 

of 512x512, and the number of slices varies between 195 and 1680. For the development of DCRibFrac 

v2.0, the dataset is split into an internal training set and an internal test set using an 80/20 split based on 

the number of fractures, respectively. To ensure class balance, stratified sampling is performed, focusing 

on the minority classes.  
 

 

 

Table 3: Data characteristics internal train and test set 

Variables Internal training set Internal test set 

No. patients (%) 136 (80) 34 (20) 

    Amphia Hospital Breda 12 (9) 1 (3) 

    Bravis Hospital Bergen op Zoom 3 (2) - 

    Catharina Hospital Eindhoven 1 (1) - 

    Deventer Hospital  1 (1) - 

    Erasmus Medical Centre Rotterdam 77 (57) 23 (68) 

    Haga Hospital The Hague  9 (6) 2 (6) 

    Ikazia Hospital Rotterdam 2 (1) - 

    Isala Hospital Zwolle 3 (2) 3 (9) 

    Maasstad Hospital Rotterdam 20 (15) 1 (3) 

    Maastricht University Medical Centre 3 (2) 2 (6) 

    Rijnstate Hospital Arnhem - 1 (3) 

    Spaarne Hospital Haarlem 4 (3) 1 (3) 

    University Medical Centre Groningen  1 (1) - 

No. fractures (%)  1203 (80) 306 (20) 

No. fractures for Type (%) 

- Simple 

- Wedge 

- Complex 

 

900 (75) 

203 (17) 

100 (8) 

 

235 (77) 

53 (17) 

18 (6) 

No. fractures for Displacement (%) 

- Undisplaced 

- Offset  

- Displaced  

 

696 (57) 

348 (29) 

159 (13) 

 

178 (58) 

79 (26) 

49 (16) 
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No. fractures for Location (%) 

- Anterior 

- Lateral 

- Posterior  

 

171 (15) 

606 (50) 

426 (35) 

 

49 (16) 

167 (55) 

90 (29) 

No. CTs with slice thickness (%)   

- > 2 mm 47 (35) 17 (50) 

- = 1 mm 33 (24) 4 (12) 

- < 1 mm 55 (41) 13 (38) 

No. CTs with pixel spacing (%)   

- > 0.9 mm 23 (17) 4 (12) 

- 0.7< x <0.9 mm  83 (61) 20 (58) 

- < 0.7 mm  30 (22) 10 (30) 

3.2 Interobserver Agreement & Ground Truth 

3.2.1 Interobserver Agreement 

The interobserver agreement study was conducted based on the FixCon dataset, excluding the EMC 

data. Two observers independently detected and classified rib fractures according to the CWIS 

taxonomy. In total, there were 519 rib fractures noted by the two observers, of which 467 rib fractures 

were seen by both observers. Out of the 52 fractures detected by only one observer, 16 were identified 

by observer 1, while the remaining 36 were detected by observer 2. To evaluate interobserver agreement 

on fracture type, displacement, and location, Cohen's Kappa statistic was calculated based on the 467 

fractures (Table 4). Additionally, Krippendorff's Alpha was calculated to account for missing data. 

Disagreements were observed in 144 fractures for 162 classification tasks, with 40 disagreements in 

type classification, 52 in displacement classification, and 70 in location classification. 

Table 4: Interobserver agreement for the CWIS classification of rib fractures 

Label Cohens Kappa (95%CI) Krippendorff’s Alpha (95% CI) Interpretation 

Type 0.74 (0.67 - 0.82) 0.76 (0.69 - 0.82) Substantial 

Displacement 0.82 (0.78 - 0.87) 0.82 (0.78 - 0.87) Strong 

Location  0.74 (0.69 - 0.80) 0.73 (0.68 - 0.79) Substantial  

3.2.2 Detection and Classification Accuracy  

Observer 1 (VM) identified 483 fractures, while observer 2 (MvD) identified 503 fractures. For the 52 

fractures detected by only one observer, observer 3 made the final determination on whether a fracture 

was present. Out of the 16 fractures detected solely by observer 1, 12 were confirmed as actual fractures, 

resulting in 4 false positives by observer 1. For the 36 fractures detected by observer 2, 16 were 

confirmed as actual fractures by observer 3, resulting in 20 false positives. Assuming that all fractures 

are detected by either observer 1 or observer 2, the overall detection sensitivity is 96.7% for observer 1 

and 97.4% for observer 2, with a precision of 99.3% for observer 1 and 96% for observer 2.  

Table 5 shows the percentage of agreements between observer 3 and either observer 1 or 

observer 2 regarding classification. For simple fractures, observer 3 agreed with observer 1 in 83.3% of 

cases, which is higher than the 16.7% agreement with observer 2. In contrast, for wedge fractures, 

observer 3 agreed more often with observer 2 (64.7%) compared to observer 1 (35.3%). Since both 

observers have different strengths, combining their decisions will lead to higher overall accuracy of the 

ground truth. 
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Table 5: Agreement in CWIS classification between observer 3 and either observer 1 or observer 2 

 

 

 

 

3.3 Results Rib Number Labelling Experiments 

3.3.1 Qualitative Evaluation nnUNet-PP versus TotalSegmentator  

A total of 716 ribs were labelled and evaluated in 30 patients, accounting for the fact that two patients 

had only 11 pairs of ribs. Among these, 316 fractures were identified in 233 ribs with the majority of 

the fractures occurring in the 3rd to 7th ribs. TotalSegmentator labelled 94% of all ribs correctly, which 

was 54% for nnUNet-PP. Focusing specifically on the fractured ribs, nnUNet-PP correctly labelled 50% 

of fractured ribs, while TotalSegmentator labelled 94% of fractured ribs correctly. Figure 14 shows the 

percentage of correctly labelled ribs on the y-axis, with the corresponding number of ribs displayed 

within the bars. 

Relabelling of the rib segments provided by TotalSegmentator was necessary since the initial labelling 

of TotalSegmentator is consistently incorrect. For instance, the first left rib (L1) was always mislabelled 

as the third right rib (R3), without exception. Consequently, all labels were automatically corrected and 

renamed before analysis.  

In two out of the six patients with incorrectly labelled ribs using TotalSegmentator, the 

mislabelling was due to the patients having 11 pairs of ribs rather than the standard 12 pairs, which was 

something TotalSegmentator apparently could not process well. This issue accounts for 17 of the 43 

inaccurately labelled ribs. nnUNet-PP effectively addresses this problem, as it does not require 24 

classes and classifies all ribs in these patients correctly. Therefore, in cases with 11 pairs of ribs, nnUNet-

PP appears to be the superior method. However, the prevalence of having 11 pairs of ribs is only 3.4% 

(45). Figure 15A illustrates an example of a patient with 11 pairs of ribs and the corresponding results 

from TotalSegmentator. Misclassification of a single rib often led to additional inaccuracies in the 

labelling of other ribs for the same patient using TotalSegmentator. 

Label Observer 1 (%) Observer 2 (%) 

Simple 

Wedge 

Complex 

Undisplaced 

83,3 

35,3 

100,0 

90,0 

16,7 

64,7 

0,0 

10,0 

Offset 67,9 31,3 

Displaced  21,4 78,6 

Figure 14: Fraction of correctly labelled (fractured) ribs using nnUNet-PP and TotalSegmentator 
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Among the remaining 26 misclassified ribs by TotalSegmentator, 8 were from two patients who had 

thorax drains at the time of the CT scan. Parts of these drains were mistakenly classified as ribs, resulting 

in multiple errors (Figure 15B). In another case, a metal object resting on the patient caused scattering, 

resulting in the misclassification of 12 ribs (Figure 15C). For the remaining patient, the 

misclassifications of 6 ribs could not be explained other than by severe displacement of fractures.  

Figure 16A shows an example of a correct segmentation and labelling result by 

TotalSegmentator. In the case of dislocated ribs, nnUNet-PP is not able to accurately label the ribs, 

which explains its low performance. In Figure 16B, displaced fragments of the fractured 8th and 9th left 

ribs, encircled in red, are classified incorrectly as separate fragments by nnUNet-PP and correctly as a 

single fragment by TotalSegmentator (Figure 16C). Using nnUNet-PP often leads to merged rib 

segments (Figure 16D) and excessive thickness due to the morphological operations applied during 

postprocessing (Figure 16E). In contrast, TotalSegmentator does not exhibit this issue (Figure 16F). 

Overall, TotalSegmentator demonstrates a clear advantage over nnUNet-PP in terms of rib number 

labelling accuracy. It is robust and performs well, particularly in standard cases, with 12 pairs of ribs.  

 

  

Figure 15: Examples of wrongly labelled ribs using TotalSegmentator. A) Patient with 11 pairs of ribs, B) Part of a drain 

misclassified as a rib, C) Misclassification due to scattering. 

Figure 16: Example of results using nnUNet-PP (B, D, E), and TotalSegmentator (A, C, F).  
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3.3.2 Qualitative Evaluation TotalSegmentator versus nnUNetOnly 

The developed nnUNet was designed to handle a variable number of ribs, unlike TotalSegmentator, 

which required assigning 24 classes (12 pairs of ribs). This flexibility may allow the nnUNet to improve 

rib number labelling in patients with only 11 pairs of ribs. A total of 716 ribs (30 patients) were 

evaluated, including two cases where only 11 pairs of ribs were present. Among these 716 ribs, 246 ribs 

were fractured. TotalSegmentator correctly labelled 92,5% of all ribs and 95,5% of the fractured ribs. 

In comparison, nnUNetOnly labelled 95,5% of all ribs and 98,4% of the fractured ribs correctly. Figure 

17 shows the percentage of correctly labelled ribs on the y-axis, with the corresponding number of ribs 

displayed within the bars. 

There was at least one incorrectly labelled rib in 7 patients when using nnUNetOnly, of which 5 were 

labelled incorrectly by TotalSegmentator as well. TotalSegmentator had at least one error in 11 patients. 

Figure 18(A-D) illustrates two cases where nnUNetOnly outperformed TotalSegmentator. In Figure 

18(A, B), the results for a patient with only 11 pairs of ribs are shown. nnUNetOnly correctly assigned 

22 labels, while TotalSegmentator assigned 24 labels, leading to inaccurate rib number labels. However, 

for another patient with 11 pairs of ribs, nnUNetOnly was not error-free, since 6 ribs were mislabelled 

(Figure 18E). TotalSegmentator labelled 8 ribs incorrectly for this same patient (Figure 18F). Figure 

18C presents an example of incorrect labelling of severely displaced fractures by TotalSegmentator. 

This highlights the challenges in accurate rib labelling under complex conditions, which nnUNetOnly 

managed better (Figure 18D). There were two cases where TotalSegmentator outperformed 

nnUNetOnly. Figure 18H illustrates one of these cases, where the 9th right rib is labelled incorrectly by 

nnUNetOnly but correctly by TotalSegmentator. Additionally, the rib segments are notably thin at 

certain points, compared to the segmentation of TotalSegmentator. 

Even though the cause of mislabelling cannot always be determined, these results indicate that 

nnUNetOnly performs better than TotalSegmentator. McNemar’s test statistics show a significant 

difference with a p-value = 0.023 based on the rib number labelling results of fractured ribs. 

Consequently, nnUNetOnly has been incorporated into the pipeline of DCRibFrac v2.0. 

 

 

 

Figure 17: Number of incorrectly labelled (fractured) ribs using TotalSegmentator and nnUNetOnly. 
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3.4 Final Pipeline and Performance 

Figure 19 represents the final pipeline of DCRibFrac v2.0. The newly developed nnUNet (nnUNetOnly) 

has replaced the initial nnUNet and postprocessing steps (nnUNet-PP). Additionally, the nnDetection 

models have been retrained with more data to enhance performance. The ensembling methods, however, 

remain unchanged from those used in DCRibFrac v1.0.  

Figure 18: Examples of results using TotalSegmentator (B, C, F, G) and nnUNetOnly (A,D, E, H) of four patients.  

Figure 19: Pipeline of DCRibFrac v2.0 
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3.4.1 Validation Results 

The precision-recall (PR) curve of the validation set for DCRibFrac v2.0, along with the corresponding 

thresholds, was analysed to gain insight into the performance of the ensembled nnDetection models 

(Figure 20). The probability score threshold required to achieve a target sensitivity of 82% (dotted 

vertical line) was determined based on this curve. This sensitivity surpasses the range typically observed 

among clinicians, which is between 73.2% and 80.8% (22–24). Figure 20 compares the PR curves of 

DCRibFrac v1.0 and DCRibFrac v2.0. The increased area under the curve (AUC) for DCRibFrac v2.0 

reflects an overall improvement in model performance, indicating better precision across various recall 

levels. At the desired sensitivity of 82%, the threshold for DCRibFrac v2.0 is higher than it was for v1.0. 

This higher threshold translates to a more selective model, resulting in improved precision compared to 

DCRibFrac v1.0, reducing the likelihood of false positives while maintaining a similar recall.  

3.4.2 Performance DCRibFrac v2.0 on Internal Test Set 

To assess the performance of DCRibFrac v2.0 on unseen data, the rib fracture detection, CWIS 

classification and rib number labelling results on the internal test set were evaluated. DCRibFrac v2.0 

achieved a detection sensitivity of 80%, a precision of 87%, and an F1 score of 83% on the internal test 

set, with a mean FPPS of 1.11. All classification labels were successfully assigned, as no cases involved 

only two overlapping nnDetection models. False positives resulted from old fractures, indicated by 

callus formation around the fracture (Figure 21D). Misclassifications also occurred in the region where 

the anterior rib transitions to the costal cartilage, due to irregularities in the cortical bone in this region. 

Figure 20: Precision-Recall curve CWIS classification of DCRibFrac v1.0 and DCRibFrac v2.0 

Figure 21: Example of a missed fractures (A), a true positive (B), a fracture classified as two fractures resulting in a false 

positive (C), a false positive due to callus formation (D). Squares indicate the detected fracture by DCRibFrac v2.0 and 

circles indicate fractures labelled as the ground truth. 
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Additionally, large fractures (often with displacement) were assigned two fracture labels instead of one, 

leading to false positives (Figure 21C). Missed fractures are frequently undisplaced fractures with small 

interruption of the cortical bone (Figure 21A). The qualitative evaluation of the detection of rib fractures 

revealed three additional true positives that were not labelled in the ground truth (Figure 21B). Table 8 

presents the characteristics of the missed fractures and the fraction per class that was missed. Figure 22 

illustrates the classification performance per class of all detected fractures in a confusion matrix. For 

type classification of the detected fractures, simple fractures had a sensitivity of 95% and a precision of 

87%. Wedge fractures had a sensitivity of 36% and a precision of 47%, while complex fractures had a 

sensitivity of 25% and a precision of 40%. Regarding displacement, the sensitivity and precision were 

90% and 89% for undisplaced fractures, 80% and 69% for offset fractures, and 61% and 95% for 

displaced fractures. For fracture location, the sensitivity and precision were 79% and 93% for anterior 

fractures, 94% and 93% for lateral fractures, and 97% and 93% for posterior fractures.  

Of the 244 detected fractures by nnDetection, 94% were assigned the correct rib number. Of the 15 

misclassified ribs, 7 were due to a postprocessing step. During postprocessing, the rib segments are 

overlaid with the bounding box of each detected fracture. If there is an overlap between a rib segment 

and a bounding box, the bounding box is assigned to that rib. However, when neighbouring ribs are 

close to each other because of a displaced fracture or anatomical variation, the bounding box may 

intersect with multiple ribs. In this case, the more cranial rib will get assigned the bounding box, 

resulting in a misclassification. Figure 23 illustrates two examples of misclassifications due to this issue. 

Figure 22: Confusion matrix of CWIS classification on the internal test set 

Figure 23: Two examples of predicted bounding boxes, which overlap slightly with a more cranial rib, resulting in incorrect 

rib number labelling. 

Table 8: Characteristics of missed fractures in the internal test set 

 
Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior

Missed fractures (%) 82 15 3 66 8 26 24 58 18

Missed  fractures per class  (%) 22 17 11 23 6 33 30 22 12
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The remaining six misclassified ribs were the result of inaccurate labelling by the developed nnUNet in 

four patients. One of these patients had 11 pairs of ribs. Although 22 segments were created for this 

case, some ribs were still mislabelled, leading to one fracture being assigned to the wrong rib number. 

In two other patients, an object resting on the thorax caused scattering, resulting in four 

misclassifications (Figure 24). For the remaining patient, no clear reason for the misclassifications could 

be identified. 

The runtime of DCRibFrac v2.0 for a single patient ranged from 20 to 90 minutes on the GPU 

cluster at Erasmus MC, utilising the 2090 Ti 11GB and Nvidia A40 48GB GPUs when the nnDetection 

models and the nnUNet model were run parallel. Detection and classification with the nnDetection 

models took between 7 and 80 minutes per scan for a single classification task (type, displacement, 

location), depending on the number of slices, with an average runtime of 23 minutes per scan. 

Segmentation using the nnUNet model took approximately 2 minutes per scan, while postprocessing 

required between 5 and 15 minutes.  

3.4.3 DCRibFrac v1.0 versus DCRibFrac v2.0  

To ensure a fair one-on-one comparison of detection and classification performance between 

DCRibFrac v1.0 and DCRibFrac v2.0, both models were evaluated on the internal test set of DCRibFrac 

v1.0, which consists of 19 EMC patients with 207 fractures. This comparison gives insight into the 

impact of incorporating additional and multi-centre datasets on the performance of DCRibFrac (Table 

6). However, since DCRibFrac v2.0 was trained using a subset of this internal test set, the nnDetection 

models were retrained with a slightly adjusted training and testing split, excluding the images that were 

part of the test set.  

The detection sensitivity, precision and F1 score on the EMC test set were 79%, 88% and 83%, 

respectively, with a FPPS rate of 1.16. The performance of DCRibFrac v1.0 on this same internal test 

set was 77%, 79%, 78% and 2.26 respectively. Table 6 presents the percentage of fractures per class 

which were not detected. The last column represents the difference in detection performance per class, 

with positive values indicating improvement of detection sensitivity using DCRibFrac v2.0 for that 

specific class, compared to v1.0. The confusion matrix in Figure 25 visualizes the results of the 

classification performance per class of DCRibFrac v1.0 and v2.0 on the internal test set of DCRibFrac 

v1.0.  

Figure 24: Two examples of incorrectly labelled segmentations by nnUNet due to an object causing scattering.  

Table 6: Percentage of missed fractures per class on the internal test set of DCRibFrac v1.0 
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3.5 External Validation  
The pipeline of DCRibFrac v2.0 was applied to the dataset from Zuyderland Hospital, to assess its 

performance on external data. As done for the internal test and training set of DCRibFrac v2.0, the 

external validation dataset was labelled by two observers (VM and MvD). If there was a conflict in 

classification, an experienced trauma surgeon (MW) solved the disagreement to obtain an accurate 

ground truth dataset. The image size of the external validation dataset was 512x512 for every patient. 

The number of slices differed between 251 and 1414 slices. Table 7 shows the data characteristics of 

the Zuyderland dataset and the data of the internal test set for comparison. For more details on the 

external validation dataset, please refer to Appendix E. Interestingly, the distribution of fractures within 

this dataset shows a higher prevalence of rib fractures on the left side. 

Variables External test set  Internal test set  

No. patients  28  36 

No. fractures  193 309 

No. fractures for Type (%) 

- Simple 

- Wedge 

- Complex 

 

134 (70) 

33 (17) 

26 (13) 

 

235 (77) 

53 (17) 

18 (6) 

No. fractures for Displacement (%) 

- Undisplaced 

- Offset 

- Displaced 

 

99 (51) 

56 (29) 

38 (20) 

 

178 (58) 

79 (26) 

49 (16) 

Table 7. Data characteristics Zuyderland Hospital 

Figure 25: Confusion matrix showing the performance of DCRibFrac v1.0 (top) and DCRibFrac v2.0 (bottom) on the internal 

test set of DCRibFrac v1.0 (19 EMC patients) 
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The detection sensitivity on the external validation dataset was 84%, with a precision of 85%, an F1-

score of 84% with a FPPS of 0.96. Table 8 presents the characteristics of the missed fractures and the 

percentage of missed fractures per class.  

Concerning the classification performance of all detected fractures, simple fractures had a 

sensitivity of 93% and a precision of 83%, see Figure 26. Wedge fractures had a sensitivity of 47% 

and a precision of 43%, while complex fractures had a sensitivity of 22% and a precision of 83%. 

Regarding displacement, the sensitivity and precision were 88% and 81% for undisplaced fractures, 

65% and 63% for offset fractures, and 67% and 86% for displaced fractures. For fracture location, the 

sensitivity and precision were 86% and 95% for lateral fractures, and 95% and 86% for posterior 

fractures.  

Of the detected fractures, 8 were assigned an incorrect rib number, resulting in a classification 

accuracy of 95%. 5 out of these 8 can be explained by the bounding boxes of the predictions 

overlapping with the cranially neighbouring rib, as explained in Section 3.4.2. The remaining 3 cases 

are misclassified due to incorrect rib number labelling by nnUNet. 

  

No. fractures for Location (%) 

- Anterior 

- Lateral 

- Posterior 

  

5 (3) 

102 (53) 

86 (44) 

 

49 (16) 

167 (55) 

90 (29) 

No CTs with slice thickness (%)   

- >2.0 mm 1 (4) 17 (50) 

- =1 mm  - 4 (12) 

- <1 mm 27 (96) 13 (38) 

No CTs with pixel spacing (%)   

- Pixel spacing > 0.9 mm 

- Pixel spacing 0.7< x <0.9 mm 

5 (18) 

23 (82) 

4 (12) 

20 (58) 

- Pixel spacing < 0.7 mm  - 10 (30) 

Figure 26: Confusion matrix of CWIS classification on external validation dataset 

Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior

Missed fractures (%) 87 3 10 88 6 6 16 45 39

Missed  fractures per class  (%) 20 3 12 27 5 4 100 14 14

Table 8: Characteristics of missed fractures from the external validation dataset 
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3.6 Overview Classification Performance  

Table 9 gives an overview of all the datasets that have been used for testing and training each version 

of DCRibFrac. Table 10 presents the results obtained from the tests conducted on these datasets. 

 

 

 

 

EV= External validation, EMC= Erasmus Medical Centre 

  

DCRibFrac version Training Testing 

v1.0  EMC (n=81) EMC (n=19) 

v2.0 (EMC) Multi-Centre (n=137) EMC (n=19) 

v2.0 Multi-Centre (n=136) Multi-Centre (n=34) 

EV v2.0  - Zuyderland (n=28) 
EV= External validation  

  

Table 10: Performance of each DCRibFrac version on several datasets  

Table 9: DCRibFrac versions and their datasets used for training and testing 

Test data Detection 

Simple Wedge Complex Undisplaced Offset Displaced Anterior Lateral Posterior

v1.0 0.77 0.90 0.30 0.17 0.91 0.78 0.43 0.88 0.88 0.96

v2.0 (EMC) 0.79 0.94 0.25 0.16 0.93 0.66 0.62 0.90 0.97 0.94

v2.0 0.80 0.95 0.37 0.25 0.90 0.80 0.61 0.79 0.94 0.97

EV v2.0 0.84 0.93 0.47 0.22 0.88 0.65 0.67 0.86 0.95

v1.0 0.79 0.75 0.42 0.30 0.83 0.79 0.75 0.88 0.95 0.84

v2.0 (EMC) 0.88 0.72 0.45 0.50 0.77 0.84 0.61 0.95 0.95 0.96

v2.0 0.87 0.87 0.47 0.40 0.89 0.69 0.95 0.93 0.93 0.93

EV v2.0 0.85 0.83 0.43 0.83 0.81 0.63 0.86 0.95 0.86

v1.0 0.78 0.82 0.35 0.21 0.86 0.78 0.55 0.88 0.92 0.90

v2.0 (EMC) 0.83 0.82 0.32 0.24 0.84 0.74 0.61 0.92 0.96 0.95

v2.0 0.83 0.91 0.41 0.31 0.89 0.74 0.74 0.85 0.93 0.95

EV v2.0 0.84 0.87 0.45 0.35 0.84 0.64 0.75 0.90 0.90

v1.0 2.26

v2.0 (EMC) 1.16

v2.0 1.11

EV v2.0 0.96

FPPS

DisplacementType Location

Precision 

Sensitivity 

F1-score
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4. Discussion 

4.1 Performance of DCRibFrac v2.0  

This project aimed to enhance the performance of DCRibFrac v1.0 by improving its automatic detection, 

CWIS classification, and rib number labelling of rib fractures. To accomplish this, a new rib number 

labelling method was developed, evaluated, and implemented. Additionally, three nnDetection DL 

models, responsible for automatic fracture detection and CWIS classification, were retrained with an 

expanded multi-centre dataset. These advancements resulted in DCRibFrac v2.0, an improved version 

of DCRibFrac v1.0. 

The detection sensitivity of DCRibFrac v2.0 achieved 80% on its internal test set, with a 

precision of 87%, an F1-score of 83%, and a mean FPPS of 1.11. This detection sensitivity is at the 

upper limit of the range observed for clinicians, which spans from 73.2% to 80.8% (22–24,46). 

Compared to DCRibFrac v1.0, v2.0 demonstrates improved performance across all detection metrics on 

the same internal test set: sensitivity increased from 77% to 79%, precision from 79% to 88%, F1-score 

from 78% to 83%, and FPPS decreased from 2.26 to 1.11. Missed fractures are most often simple, 

undisplaced fractures. Besides the fact that these fracture classes occur most often, simple undisplaced 

fractures can be subtle and may not show major changes in bone structure, and therefore do not create 

distinctive features that are easily detectable.  

Classification performance remains challenging, particularly for accurately identifying the type 

of fractures. Label imbalance may cause the model to become biased toward the more prevalent classes 

(simple fractures), leading to suboptimal classification for less frequent fracture types (complex and 

wedge). A significant proportion of the underrepresented complex and wedge fractures are misclassified 

as simple, leading to low sensitivity for wedge and complex fractures and reduced precision for simple 

fractures. Overall, the location classification has improved, especially for lateral fractures, and performs 

well across all classes. DCRibFrac v2.0 demonstrates an increase in classification sensitivity for 

displaced fractures, improving from 43% to 62% on the internal test set of v1.0, and achieving 61% 

sensitivity on the internal test set of v2.0. However, the sensitivity for offset fractures decreased from 

78% to 66% on the v1.0 internal test set. The addition of more multi-centre data to the training set could 

have resulted in the model extracting other features and patterns, which results in improved classification 

of displaced fractures and decreased classification of offset fractures on this test set. Nevertheless, the 

performance on the internal test set of DCRibFrac v2.0 shows an improved sensitivity of 81% for offset 

fractures. 

The automatic rib number labelling performance has significantly improved, with 94% and 95% 

of rib fractures being assigned the correct rib number in the internal and external test sets, respectively. 

The results indicate that the presence of fractures does not necessarily lead to a higher rate of 

mislabelling, suggesting robust performance even in cases with fractures. 

The external validation results confirm the strong potential of DCRibFrac v2.0, with 

performance metrics slightly better than the internal test set. The external test set demonstrated a 

detection sensitivity of 84%, a precision of 85%, an F1-score of 84%, and a FPPS rate of 0.96. The label 

distribution of the external validation set is similar to the label distribution of the internal test set of 

DCRibFrac v1.0, see Table 7. However, the fraction of complex and posterior fractures is larger in the 

external validation dataset and lower for anterior fractures, compared to the internal test set. The results 

of DCRibFrac v2.0 on the internal test set show that only 11% of complex and 12% of posterior fractures 

are missed, in contrast to 22%, 17%, 30%, and 22% for simple, wedge, anterior, and lateral fractures, 

respectively. Therefore, the increase in detection performance on the external validation set can be 

attributed to the fact that complex and posterior fractures are detected more often, which results in higher 

detection sensitivity for the external validation dataset, since it contains relatively more complex and 

posterior fractures, compared to the internal test set. 

Another factor potentially contributing to the improved classification performance on the 

external validation dataset could be the difference in CT scan slice thickness. In the external validation 
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set, 89% of the CT scans had a slice thickness of 0.5 mm, compared to only 30% in the internal test set, 

where the majority of scans had a larger slice thickness. Since no resampling is performed during 

preprocessing, and the images retain their original slice thickness and pixel spacing, the smaller slice 

thickness in the external dataset likely provides more detailed imaging, leading to better detection and 

classification of fractures. 

Despite the relatively small dataset, the detection sensitivity and FPPS rate are comparable with 

other DL-based methods for automatic rib fracture detection (Table 11). Including only 70 additional 

patients has enhanced sensitivity and lowered the FPPS. The DL methods achieving the highest 

sensitivities (>90%) are generally trained on larger datasets, indicating that further dataset expansion 

will improve detection performance. 

 

Table 11: Comparison with other DL methods that noted both the sensitivity and false positives per scan 

(FPPS) for detecting rib fractures. ‘*’ Denotes a missing value 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Strengths and Limitations 

The study design presents several strengths and limitations. Firstly, a strength of DCRibFrac v2.0 is the 

establishment of the ground truth for the additional FixCon data by multiple observers, in contrast to the 

single-observer approach employed in DCRibFrac v1.0. This approach reduces bias and enhances the 

accuracy of the ground truth, as classification interpretations can vary between observers, as 

demonstrated by the interobserver agreement study. The interobserver agreement study underscores the 

complexity of establishing a uniform ground truth among observers and highlights the necessity for a 

standardised classification method. By involving multiple observers, the performance metrics more 

accurately reflect the true sensitivity of the model. However, a limitation is the absence of multiple 

observers for the previously annotated EMC patients, which is a large fraction of the dataset used for 

the development and evaluation of DCRibFrac v2.0. This inconsistency in labelling may affect the 

overall reliability and robustness of the model. 

Another strength is the inclusion of multi-centre data, which enhances the heterogeneity of the 

dataset. This increased diversity makes the findings more representative of a broader population and 

thereby improves the generalizability of the results. The variability introduced by different patient 

demographics, clinical practices, and equipment across centres contributes to the robustness of the 

predictive model. This variability helps the model become more resilient to overfitting, as it is trained 

on a wider range of scenarios. The improved performance, as reflected in the results, underscores the 

benefits of incorporating multi-centre data in developing a more reliable and generalizable model. 

 Year Patients, fractures Sensitivity FPPS 

Zhou et al. (26) 2022 640, 2853 95% 0.17 

Niiya et al. (25) 2022 918, * 93% 1.9 

Li et al. (47) 2023 18172,* 93% 0.5 

Meng et al. (48) 2021 8829, 34699 92% 0.14 

Wang et al. (27) 2022 9265, 43803 85% 0.35 

Wu et al. (49) 2021 10943, 9590 85% 0.764 

Azuma et al. (32) 2022 539, 4906 84% 2.71 

Zhou et al. (50) 2020 1049, 25054 83% 1.1 

DCRibFrac v2.0   2024 170, 1509 80% 1.11 

Zhang et al. (51) 2021 3580, 15947 80% 0.43 

Weikert et al. (52) 2020 159, 991 66% 0.16 

Kaiume et al. (53) 2021 39, 256 65% 1.1 
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A limitation of the study is the lack of direct comparison between the classifications made by 

DCRibFrac v2.0 and those of a clinical expert. This comparison is essential for validating the model's 

clinical relevance and accuracy. 

4.2 Future research 

The current results indicate that expanding the dataset has led to increased sensitivity and precision in 

detection and classification. This suggests that further expansion of the dataset size could continue to 

enhance performance. To improve CWIS classification, future efforts should focus on augmenting the 

dataset with underrepresented fracture classes. This would help refine the model's ability to accurately 

classify these types of fractures as well. 

As mentioned in the previous section, the ground truth for the EMC dataset was established by 

a single observer. Integrating labels from an additional observer could potentially enhance the accuracy 

of the ground truth and improve the model's accuracy. 

Future research should focus on modifying the method for combining the rib segmentation and 

CWIS classification results to prevent the fractures from being assigned an incorrect rib label due to the 

overlap of the bounding box with more cranially laying ribs. For example, this issue can be solved by 

assigning the bounding box to the rib it overlaps the most. Based on the results of the internal test set, 

solving this issue will expectedly result in ~50% reduction of incorrectly labelled fractures, which 

translates to a correct rib number label for 97% of the fractured ribs. The developed nnUNet could be 

further improved by training a nnUNet with a dataset that includes more challenging cases, such as CT 

scans with artefacts and those featuring 11 rib pairs. 

The time required to process a single CT scan through the entire pipeline lies between 20 and 

90 minutes per patient, depending on the number of slices. This processing time limits the model's 

applicability in acute care settings. However, in non-acute settings, the model could improve detection 

sensitivity and support clearer communication. Trauma-related CT scans often cover a larger area than 

just the thorax, which is the region of interest for DCRibFrac v1.0. To reduce processing time, an 

additional preprocessing step, such as cropping the image to the region of interest, could be 

implemented. 

Conducting an international external validation will provide valuable insights into the model’s 

generalizability and robustness across different populations and medical imaging protocols. This 

evaluation helps ensure that the model remains accurate, reliable, and applicable in various clinical 

settings, not only within The Netherlands. Testing the model on a diverse international dataset confirms 

its effectiveness in detecting and classifying rib fractures under different conditions, thereby supporting 

its broader applicability and potential for global use. 

Future research could investigate the impact of automated rib fracture detection and 

classification systems on the clinical decision-making processes of radiologists and other medical 

specialists, with a focus on changes in decision-making patterns. Additionally, it would be valuable to 

evaluate how the integration of these systems influences clinical outcomes. 

Finally, the DCRibFrac model could be enhanced by integrating additional clinical data to 

provide more comprehensive information for the decision-making process between surgical and 

conservative treatment options. Including risk factors that predict mortality in patients with blunt chest 

wall trauma, such as age over 65 years and pre-existing conditions like cardiopulmonary disease, 

could result in a more clinically relevant prediction model (54,55).  
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Conclusion 
In conclusion, this project introduces DCRibFrac v2.0, an enhanced DL-based algorithm for automatic 

rib fracture detection and classification. Through the development and implementation of a novel rib 

number labelling method and the retraining of DL models using a more comprehensive, multi-centre 

dataset, improvements have been achieved in automatic rib fracture detection, CWIS classification, and 

rib number labelling. Specifically, the detection sensitivity and precision were 80% and 87%, 

respectively, with an FPPS rate of 1.11 and an accuracy of 94% in rib number labelling. Key 

enhancements include improvements in rib number labelling and a reduction in false positives, 

advancing towards a more reliable and standardised approach for rib fracture detection and CWIS 

classification. The findings of this thesis contribute to the development of a predictive model that 

supports the automation of the decision-making process for patients with blunt chest trauma, potentially 

improving clinical outcomes.  
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Supplementary Materials 

Appendix A nnDetection 

nnDetection is a framework for semantic segmentations, which can also be used as an object detector 

and follows the same self-configuring strategy as nnU-Net (see Appendix B). The framework consists 

of a Retina U-Net. The Retina U-Net is specifically designed to combine the strengths of both object 

detection and semantic segmentation in a unified framework. 

Retina U-Net uses the Feature Pyramid Network, which extracts features at different scales, 

enabling analysis of objects with varying sizes. The layers in Figure 1 represent different levels of the 

feature pyramid. The pyramid structure is used to capture multi-scale features, which are essential for 

detecting objects of various sizes. Each layer of the pyramid corresponds to a different resolution or 

scale of the image features.  

The red layers are the coarse feature maps used for object detection on different scales. These 

layers aggregate information from the corresponding levels of the feature pyramid, allowing the network 

to detect objects of different sizes. The green layer represents the semantic segmentation features, which 

are used for classifying pixels into different categories and distinguishing between different objects. The 

network produces two outputs: the classification of the detected objects and the coordinates of their 

bounding boxes. 

 

 

 
Figure 1: A schematic 2D representation of Retina U-Net (56).  
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Appendix B nnUNet 

The nnU-Net framework is an advanced, fully automated method for medical image segmentation, 

capable of handling a wide variety of segmentation tasks. It functions end-to-end, covering all steps 

from preprocessing to training and post-processing, while adapting to different challenges with minimal 

manual intervention. nnU-Net is based on the U-Net architecture, shown in Figure 1. 

The process begins with the model analysing an input image. As the image passes through multiple 

layers, the model learns important features while the image size gradually decreases (downsampling). 

At the network's deepest point, the image becomes small, but the model has captured a lot of detailed 

features. The model then increases the size of the image back to the original size, while combining the 

learned features (upsampling). The final output is a segmented version of the image, where each part is 

labelled according to what it represents, for example, a ribcage.  

 

Figure 1: U-Net Architecture for Image Segmentation 
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Appendix C: Labelling Software 

This appendix was written by N. Borren for the development of DCRibFrac v1.0 (33) 
 
A comprehensive overview of the labelling software is given. First, a description of the module 

network is given. Then, a manual belonging to the GUI will be described.  

 

C.1 Module Network  

 
Figure 2: Module network of MeVisLab for the labelling of rib fractures. 
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There are two main parts in the module network; the marker and label assignments, and the calculation 

of the angle from which the location label can be determined. Each module will briefly be described. 

For both parts, the same input is needed from the OrthoView2D, which is used to visualise the image 

that is loaded through ImageFromFile. Then, for the midpoints and label assignments:  

SoView2dMarkerEditor – used for setting markers in the middle of the rib fractures.  

StylePalette – used for setting different colours per marker to be able to distinguish them.  

BoolInt – used to set the height and width of the visualisation bounding box around the marker.  

XMarkerListContainer – used to merge all markers with their labels to a string.  

StringSplit & StringUtils – used to concatenate all four labels belonging to one marker.  

XMarkerListTransform – used to transform the world coordinates of the marker points to voxel 

coordinates. The voxel to world transformation matrix is given by the GetImageInformationsInfo.  

StringsUtils1 – used to obtain the image size information.  

RunPythonScript – used to combine all information, reformat it and save it as a CSV-file. Here, error-

messages are also defined for when not all labels are assigned to a marker.  

 

Similarly, the location label angle calculation is set up. However, instead of using markers to which the 

labels are assigned, it uses midlines from which angles can be calculated. The SoView2DMarkerEditor 

is now used in vector mode. Then, the RunPythonScript is used to calculate the angle between the marker 

and the drawn midline. The result of this script is an angle in degrees which can help in deciding which 

location label should be assigned to the marker.  

The module network comes together in the GUI that is explained in the next chapter.  

 

C.2 GUI Manual  

 
Figure 3: The GUI of the MeVisLab labelling software with numbers indicating the different sections. 

The GUI will be explained according to the different sections in the interface, corresponding to the 

numbers in Figure 3.  

1. Give the path to the NIfTI image and click on ‘Load File’.  

2. The images are shown in axial, sagittal and coronal slices. After identifying the rib fracture, left 

mouse click in the middle of the fracture to set a marker. Here, shown as the yellow square. If 

you want to calculate the angle for the location label, hold shift + right mouse click from the 

posterior aspect of the vertebral spinous process to the anterior table of the sternum to create the 

midline. The angle will be given in section 5.  



44 
 

A marker can be deleted by clicking on it and using delete from your keyboard. Shift + right 

mouse click on the midline begin or endpoint to delete the midline.  

3. A quick user guide on how to use the software. Additional tips are given for adjusting the images 

in section 2. Moreover, a short description of the definition of labels is given.  

4. When going through the slices of different patients, the field of view is sometimes not correct 

and it seems like there is no image showing. Press Unzoom to set the field of view to the current 

patient.  

5. Label the rib fracture. In the first line, the rib fracture number that is currently selected and the 

given labels are shown. In the drop-down menus the four labels can be assigned. Then, the 

output path needs to be defined. Once all rib fractures are marked and given their labels, the 

Create .csv files button can be clicked. If all rib fractures have all four labels and there is at least 

one midline drawn, the notification will output Saved pt [name patient]. When labels are 

missing, the notification will output which marker’s label is missing. When no midline is 

defined, the output is Draw at least one midline.  

6. If the patient data is saved and a new patient is loaded, all markers and midlines of the former 

patient should be deleted. To do this, click on Delete all markers & midlines. 

7. The visualisation of section 2 can be changed a little. The visualisation bounding box can be 

changed, which is purely for visualisation purposes as it does not influence the marker 

coordinates. Lastly, the locator and the number notation next to the yellow box can be changed.  
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Appendix D: Label Distribution Internal Dataset 

Table 1: Dataset Characteristics Internal Test and Training set DCRibFrac v1.0 

 

Figure 1: Number of fractures per rib in the internal test and training set of DCRibFrac v2.0 

  

Variables Internal training set Internal test set 

No. patients 81 19 

No. fractures (%)  803 (80) 207 (20) 

No. CT slice thickness = 2 mm (%) 51 (63) 12 (63) 

No. CT slice thickness = 1 mm (%) 8 (10) 0 

No. CT slices thickness < 1 mm (%) 22 (27) 7 (37) 

No. CT pixel spacing > 0.9 mm (%) 

No. CT pixel spacing 0.7< x <0.9 mm (%) 

No. CT pixel spacing < 0.7 mm (%) 

16 (20) 

49 (60) 

16 (20) 

5 (26) 

10 (53) 

4 (21) 

No. fractures for Type (%) 

- Simple 

- Wedge 

- Complex 

 

597 (74) 

138 (17) 

68 (9) 

 

145 (70) 

40 (19) 

22 (11) 

No. fractures for Displacement (%) 

- Undisplaced 

- Offset  

- Displaced  

 

506 (63) 

195 (24) 

102 (13) 

 

103 (50) 

79 (38) 

25 (12) 

No. fractures for Location (%) 

- Anterior 

- Lateral 

- Posterior  

 

159 (20) 

364 (45) 

280 (35) 

 

21 (10) 

116 (56) 

70 (34) 
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Figure 2: Label distribution of the EMC dataset (left) and the additional FixCon data (right). Distribution per 

rib number for the labels type (top), displacement (middle), and location (bottom). 
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Appendix E: Label Distribution External Validation Dataset 

Figure 1: Number of fractures per rib in the external test set 

Figure 2: Fracture characteristics of external validation dataset. Distribution per rib number for the 

labels type (top left), displacement (top right), and location (bottom). 

 


