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Abstract

This paper presents an approach to multi-user blind space-
time equalization expl oiting the constant modulus(e.g. BPK,
m-PSK or QAM) modulation properties of the source sig-
nals. Thisis a problem that asks for both a blind equaliza-
tion and a blind source separation based on the modulation
properties. Previously proposed algorithms have consisted
of two steps in sequence: equalization to linear mixtures of
the source signals followed by separation of these mixtures,
or separation into constant modulus source signals at sev-
eral delays followed by assigning outputs to corresponding
users. Inthispaper we combine both types of propertiesinto
a one-stage algebraic technique.

1. Introduction

Blind equalization has been an active research area during
the last few years, fueled by the growth of wireless commu-
nications and by the upcoming third generation standards of
wideband CDMA. Temporal and spatial oversampling tech-
niques (using fractional sampling and antenna arrays, re-
spectively) provide a multichannel data representation with
arich structure enabling several leverages for blind equal-
ization [1, 2].

We consider an application wherein several co-channel
users are received over an FIR convolutive channel with a
delay spread of at most 2 symbols. The signals themselves
can be modul ated by periodic CDMA codes, and we can em-
ploy multiple transmission and receiver antennas. Knowl-
edge of the codesis not assumed, in order not to confuse the
additional possibilitiesthat thiswould give. We thus arrive
at amodel where temporal (chiprate) and spatial oversam-
pling makes sense.

Froman algebraic perspective, oversampling an FIR con-
volutive channel leadsto alow-rank model for the received
data matrix. The structure present in this model (subspaces
generated by Toeplitz and Hankel matrices) enables blind
equalization in a variety of ways. Generally speaking, we
can classify algorithms into two categories: “column-span
methods” that first estimate the channel, asin [3], and “row-
span methods” that directly estimate the equalizers to re-
cover the symbols, e.g., [4, 5]. Here, we consider in partic-
ular the subspace-intersection formulation in [5], in which
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Figure 1. Mutualy referenced equalizers

severa shifts of the row span of the data matrix are inter-
sected. This procedure is such that only the symbol se-
quencethatispresentinall shiftswill remain, thusremoving
the ISI. Asshown in [6], the algorithm is essentially identi-
cal to the“mutually referenced equalizer” (MRE) technique
by Gesbert ea. [7]. The MRE ideais illustrated in figure
1: if the received data vector {x;} at timei is obtained by
the convolution of a source symbol sequence by a filter of
length 2, then there are two possible equalizer outputs, zi(o)

and zi(l), one adelay of the other. By forcing this property,
the equalizers are defined blindly.

A separate class of blind algorithms are those that sepa-
rate souces based on their modulation properties, e.g., con-
stant modulus (CM) or finite alphabet. In this paper we con-
sider that the sources have a constant-modulus modulation
(e.g., BPSK or QAM or m-PSK). The algebraic constant-
modulusagorithm (ACMA) in [8] constructs abeamformer
(or equalizer) to recover such a source based on forcing the
property

s JCM 0 s> =1.

In a multi-user FIR-MIMO scenario, blind equalization
needsto be combined with blind source separation. In previ-
ous publications[4, 5], it was shown that this can be donein
two separate stages: first blind equalization, which (ideally)
reduces the problem to an instantaneous mixture of sources,
and secondly ablind instantaneous MM O source separation
stage based on the constant modulus property.

We propose a gorithms that solve this problem in a sin-
gle stage. To this end, we explore how the MRE-conditions
on the equalizer outputs can be combined with the constant

modulus condition [Z” 2 = 1 and [£Y]2 = 1.

Notation T denotes a matrix transpose, “ the matrix com-
plex conjugate transpose, 0 a vector of al 0s, 1 a vector of
all 1s, vec(A) a stacking of the colums of a matrix A, 0 a



Kronecker product, and o a Khatri-Rao product: Ao B :=

[aa0b1 axOby ---]. Wewill usethe property, for vec-
torsa, b, c, d,

abcd = (cOb)Hd D a) (1)
2. Datamodée

We first consider a single source, and subsequently general-
izeto Q sources.

A digital symbol sequence [s] is transmitted through a
medium and received by an array of M = 1 sensors. There-
ceived signalsaresampled P = 1 timesfaster than the symbol
rate, here normalizedto T = 1. Hence, during each symbol
period, atotal of MP measurementsare available, which can
be stacked into MP-dimensional vectorsx; = [xt, ---, xMP]T.
Assuming an FIR channel, we can model x; as the output
of an MP-dimensional vector channel with impulseresponse
[ho,ha,---,h -1], where L denotesthe channel length. Inthe
noise free case, x; isthen given by

L-1
Xi=Yy hSk. ()
=2

Although it is not hard to generalize this, we assume from
now on asimplified case wherethe channel haslengthL = 2
symboals, sincethis situation appliesto CDMA systems after
some preprocessing. Thusconsider afiniteblock of dataand
define the MP x N data matrix
X = [ Xi X1 XigN-1 | -
From (2), X has afactorization as X() = HS"), where H
isan MP x 2 channel matrix and S isa2xN signal matrix,

H = [ho hy]
g — S St S+N-1 (©)
S-1 S SN2 |

Wewill assumethat H istall and full columnrank 2, and St
iswide and full row rank 2, so that thisisalow rank factor-
ization. (If H is not tall, then it can be made tall by shift-
ing and stacking rows of X [5].) A low-rank factorizationis
essential because it ensures the existence of (zero-forcing)
equalizersw that can reconstruct rows of SviawX.

The above model is readily extended to Q sources:

Q L-1
X =3y 3, @

¢=1 K=
0 Sl(i)
X0 =3 HISO = [HE, o HO| |
=] <30)

where q indicates a source index, and with obvious defini-
tions of HY and A ) has a low-rank factorization en-
abling ZF equallzatlon |f MPZ 2Q. A low-rank factorization

can be obtained by shifting and stacking whenever MP > Q
and sufficiently large N [5].

To avoid equalizers in the null space of X, in al algo-
rithmsto follow apreprocessing isnecessary, consisting of a
prewhitening and dimension reduction to therank of X. The
processing consists of computing asingular value decompo-
sition of X = UZV, and replacing X by thefirst 2Q rows of
V. Referto[8, 5, 7] for further details.

3. Algorithm derivation
3.1. Mutually referenced equalizers

We consider Q = 1 for now, and drop the index q for read-
ability. An equalizer can be viewed as a vector w acting on
X to produce an output sequence z = w=X (M. Since S
has two rows, there are two different equalizers, wy and wy,
to recover the source symbols at different delays, viz.

{ woX) = [s s41 - Synei
wiX® = [sas - Sin]
or
WXk = WiKics1- )
Taking two delays of the inputs, we can write
wix® = [s0 s1 - Sn-1] = ng(o) (6)

Thus, the equalizer outputs can be paired, which isthe idea
behind the MRE technique. The equalizers can be found in
variousways, adaptively or using subspaceintersections, cf.
[6], essentialy by solving

min 11wl [ e | 12

Wo,W1

with a suitable norm constraint on [wg wi]. The solutionis
given by theleft singul ar vector corresponding to the small-

est singular value of [ x(l ] The correspondl ng right singu-
lar vector is the source sequence a[Sy S -+ Sn-1], Where o
is an indetermined scaling.

With Q users, we similarly find a basis of Q row vectors
in the intersection, with each vector an arbitrary linear com-
bination of the Q symbol sequences. Identification of the Q
source symbol sequences from this basis cannot be done us-
ing blind equalization, but only using the constant modulus
property.

3.2. Forcing the constant-modulus property
The constant-modul us property can be expressed as

IsP=1, k=0,---,N-1.

In this equation we can substitute the equalizer outputs

4% = wix and 2" = wik and require 722" = 1 and
BN
Wolxixidwo = 1, k=0,---,N-1 @
wixxdws = 1



Using property (1), we can rewrite this as
[XKDYK]D(WODWO) = 1, k=07"'7N_1
[Xk a Xk] EI(Wl O Wl) =1
These expressions can be written more compactly using
Khatri-Rao products,

[Xo 0 Xg)"”
Poo = [X(O) 07(0)} g :
[Xn-1 0 Xn-1]”
which gives
{ Poo(WoOWp) = 1 ®)
Poo(wiOWwy) = 1

Thisleadsto the ACMA technique[8] wherethe problemis
solved in two steps. First solve the unstructured problem

1 Pog| |0 @

There is a two-dimensional subspace of solutions, since
wo 0 Wg and w, [0 W, are solutions, but also linear com-
binations of these two vectors (with proper scaling). In par-
ticular, let {yo,y1} beabasisof the solution subspace of (9),
then

Pooy =1 =

Yi = Ai,o(Wo OWo) 4+ Aj 1(w1 OWy), i=0,1.

Thesecond stepistoidentify the structured vectorsfromthis
basis. Thisis done by reshaping the vectors y; into square
matrices Y; such that vec(Y;) =y;. Using (1), we can write

Yi = AjoWoWg+ A 1wy

= [wo wy [ No it ] [wo wy]”

)

Thus, we have two matrices Y g and Y ; with structure
Yo=WAqW", Y, =WA;WP

where W = [wp ws4] is the solution of interest, and A; is
diagonal. Thisis a joint diagonalization problem that can
be solved using various techniques, in this case e.g. viaan
eigendecomposition of YoY 2.

Note that the ACMA technique produces two equalizers,
but does not tell which iswg and which iswg: they are not
related, and both solve the same system of equations(8). To
identify which equalizer is which, we have to compare the
corresponding output sequences to see which one isadelay
of the other, cf. equation (6).

For Q > 1 users, the ACMA technique can still be used.
We form the same equations (9), but in this case, we find
a subspace of 2Q solution vectors. After solving the joint
diagonalization problem for 2Q matrices, we obtain an
unordered set of 2Q equalizers. The correct pairing into
{(wg,w)} follows from solving a combinatorial problem
that involves correlating all 2Q output sequences with their
shifts.

3.3. Combining both parts

We now show how the MRE equations (5) can be combined
withthe CM conditions(7), sothat they areautomatically re-
lated and the combinatorial problem can be avoided. We de-
rive several versions, beginning with a simple solution and
extending it to involve more relations.

Version1 Let usstart with (7), wg{xixJwo = 1, and com-
bine with (5), viz. WyXk = WiX4+1. This produces
k=0,---,N-2 (10)
Asbefore, we can rewrite this equation as

k=0,---,N-2

and collect the equations compactly by defining

[Xl 0 Yo]D

Wg[XkXE+1]W1 =1,

(X1 O] H(wy OWo) =1,

o0
Pip = [X(l) oX(O)] = :
[Xn-1 0 Xn-2]”
which gives

Pro(wi OWp) =1 (11)

Asbefore, thisis solved as
Pl,Oy = 17

For Q = 1 user, thelinear equation has a single unique solu-
tiony. To factor it into y = wj [0 Wp, we construct a square
matrix Y such that vec(Y) =Y, which is such that

y =wq W

Y = wow}

Thus, Y isarank-1 matrix and we can easily find the factors
wp and w1, e.g. viaasingular value decomposition.

For Q > 1 users, thisimmediately generalizes. We form
thelinear system P, gy = 1 and computeabasis{ys,---,yq}
of the subspace of solutions. Each y; is an arbitrary lin-
ear combination of the desired structured sol utionsw‘l‘ a Wg,
g=1,---,Q. Weunstack they; into matrices Y, with struc-
ture

Q
Yi= 3 Agwini = WoAW?,  i=1-,Q
=1

where Wo = [w}---wg], Wy = [wl---w§]. Thisisajoint
diagonalization problem of the Q matrices Y;, and can be
solved using the sametechniquesasin [8]. Notethat, unlike
in ACMA, the matrices Y; are non-symmetric. A Gauss-
Newton optimization procedure for problems of thistypeis
considered in[9].

After solving, we have all equalizersavailablein W and
W, and moreover we know for each user which equalizer
iswg and w{: the equalizersare automatically paired and no
combinatorial search is needed. Moreover, the matrix P1g
has the same size asin ACMA, but we have to find and de-
coupleonly Q solutionsfromit. From acomplexity point of
view, it isthus more attractive.



\Version2 To obtainimproved accuracy, we can extend the
system with additional equations. Similar to (5), consider
WgXki1 = WiXk+2. From thiswe can derive

WE[Xk+1XE+1]W1 = W?[Xk+2XaWO

Along with the conjugate of this equation, and the conjugate
of (11), we obtain the set

WolXiXiy Jwa = 1, k=0,---,N-2
Wil xwo = 1
Wo[Xicr 1Xjep 1 /W1 = WilXier 2] Wo
WilXi 1 Xy Wo = WlXioxic, o]
Pio O 1
O PO,l Wl D WO _ l
< TP —Poz [wo Owi) — |0 (12)
-Poo P11 0

where Py, := [X(a) oX® g

Thisis again alinear system of the form Py = e and for
Q users we expect a subspace of Q solutions. After solving
for the subspace, we can split each basis vector y; into two
componentsy; o and y; 1, unstack to obtain Yo = Wo/\iw?
and Yi 1 = W1AjW, and combine both partsto Yi = Yi o+
Y, . For thistowork we haveto ensurethat A; isreal, which
can be done by playing with the conjugate structure in (12)
which allowsto map it to an equation with real entries. (We
omit the details.)

Version 3 Continuing along these lines, we can introduce
equations involving all variants of the parameter vectors,
wo O Wp, w1 OWq, wg OWq and wy O Wp. Thisleadsto the
following linear system of equations:

[ Pop O 0 0

0 Py O 0
0 0 Py O

0 0 0 Poo Wo L Wp
Pl,O 0 0 —P2’1 wi OWo|
PO,l 0 0 —P1’2 WoOWq| —

0 -Py1 Pop 0 w1 Wy

0 —Pg’o P171 0
P1o —Pg’o 0 0
0 0 —Po’g P172 ]

[cNeoNoNeNoNoll Dl i

This system is again of the form Py = e, and for Q usersit
has abasis of Q solutions{y;}. Asbefore, we reshape these
into square matrices Y, satisfying

Q q
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Figure 2. Single user, SINR after equalization

W is obtained as the joint diagonalizer of the Y;. The joint
diagonalization problem is a bit different than before, be-
cause the Y; have size 2Q x 2Q but only rank Q. A Gauss-
Newton optimization procedure for problems of thistypeis
considered in [9].

4. Simulations

We first illustrate the performance of the algorithms for the
single user case, with MP = 2 antennas/oversampling. We
used a random channel of length L = 2 and a conditioning
of about 7. The second path was about 3 dB weaker than
the first. We compare to the MRE followed by ACMA to
separate the users (section 3.1), and to ACMA followed by
acombinatorial search to relate the equalizers (section 3.2).
We also show the performance of the Wiener equalizer com-
puted from known symbols.

Figure 2 shows the resulting SNR at the output after
equalization, for the best equalizer among (wy,wsz), for
varying number of samples N and input SNR. The results
indicatethat for N > 20 all algorithms perform about equally
well and converge towards the Wiener equalizer in samples
or SNR. Usually, the performance of CM+MRE version 1
is abit worse than the others, and ACMA can be somewhat
better, especialy if the second path is much weaker than the
first.

Figure 3 shows the results for Q = 2 usersand MP = 4
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Figure 3. Two users, worst user SINR after equalization

antennas or oversampling. The channel was selected ran-
domly, but the second paths of each user were a factor 10
weaker than the first paths. The resulting conditioning of H
was about 65. We plot the SINR performance of the best
equalizer of the worst user. In most cases, the performance
of MRE is the best and of ACMA is worst, especialy for
small number of samples. CM+MRE version 1 is usually
close to ACMA, whereas the version 3 is similar to that of
MRE.

Similar conclusions are obtained for a higher user load.
Figure 4 shows a case with Q = 4, MP = 12, and ran-
dom channels. A moderate performance gain over ACMA
(which asymptotically convergesto the Wiener solution) is
observed for low SNR and for small number of samples,
and similar performance to the combination of MRE and
ACMA.

5. Conclusions

Combination of blind equalization and source separation in
a single stage is possible, and we have derived three ver-
sions of an algorithm to do so. The simplest version is
the most elegant, has a complexity similar to ACMA (but
omits the combinatorial search to find equalizer pairs at the
end), and also similar performance unless the second path
is much weaker than the first. The other two versions are
significantly more complex, and their performance for the

50
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T VREthen Acwa M=12,Q=4 =

e known S (Wiener) <
401

T
_— CM+MRE 3

SINR after equalization [dB]
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Figure 4. Four users, worst user SINR after equalization

multi-user caseisamost never better than that of MRE fol-
lowed by ACMA. We observed that all algorithms converge
asymptotically to the Wiener solution. Further research is
needed to assess the performance under non-ideal channel
conditions.
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