
CI Lab
CE Lab
CE Lab
|CE Lab|
C≡ Lab
CE Lab

Computer
Engineering
Laboratory

Delft
University of
Technology

Delft
University of
Technology

Computer
Engineering
Laboratory

Computer
Engineer ing
Laboratory

D
el
ft
U
ni
ve
rs
it
y
of

T
ec
hn

ol
og
y

Porting and Evaluation of Overlay
Architectures for FPGAs with Scientific
Kernels
Konstantinos Gkougkoulias CE-MS-2017-18

Abstract

In recent years due to the slow down of Moores Law and Dennard Scaling, alternative archi-
tectures are starting to be used instead of plain CPU implementations. These new architec-
tures, such as FPGAs and GPUs, offer higher performance to power consumption ratio when
compared with a CPU only implementation. But these new approaches have to sacrifice pro-
grammability in favor of performance gains. While GPUs are somewhat easily programmable
and provide high performance this comes at the cost of high power consumption. FPGA
programming on the other hand is a tedious and time consuming task. Specialized person-
nel is required for this, as their programming requires a background in designing with HDL
languages. Furthermore an implementation is specific to a certain algorithm and cannot
be used for any other algorithm even if it is slightly different. So if a new algorithm for a
particular task is found then a part of the design process has to be redone. Also designing
for FPGAs is a computationally intensive task as the whole design after simulation has to be
synthesized and then placed and routed (P&R) for a particular FPGA every time the design
changes slightly. This process of mapping the design can take hours or even days to compute
for large designs. In recent years developments in High Level Synthesis (HLS) and OpenCL
have made the whole process of designing for FPGAs an easier task. But this solution is not
without problems either as the algorithm has to still be implemented for a specific FPGA
device. A solution to the FPGA synthesis and P&R problem has recently been proposed
with the name of FPGA Overlay Architectures. The core concept of this idea to abstract the
FPGA create a virtual FPGA on top of the underlaying physical one in order to help with
configuration and compile time. In this thesis, we investigate available alternative overlay
architectures and select the most appropriate architecture for our analysis. We extended the
selected architecture to be deployed on alternative FPGA hardware and to work in a shared
CPU/FPGA system. Then, we implemented a number benchmarks to evaluate various as-
pects of system performance. Our results show that our architecture can be reconfigured in
only 11.9us, as compared to seconds for full FPGA reconfiguration. However, the overlay
architecture uses 10.5x more LUTs and causes a drop in frequency of about 30% for the
chosen architecture. For future work, there is room to improve these results by optimizing
the interconnect network of the device.

Porting and Evaluation of Overlay Architectures
for FPGAs with Scientific Kernels

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Konstantinos Gkougkoulias
born in Larisa, Greece

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Porting and Evaluation of Overlay Architectures
for FPGAs with Scientific Kernels

by Konstantinos Gkougkoulias

Abstract

In recent years due to the slow down of Moores Law and Dennard Scaling, alternative archi-
tectures are starting to be used instead of plain CPU implementations. These new architectures,
such as FPGAs and GPUs, offer higher performance to power consumption ratio when compared
with a CPU only implementation. But these new approaches have to sacrifice programmability
in favor of performance gains. While GPUs are somewhat easily programmable and provide
high performance this comes at the cost of high power consumption. FPGA programming on
the other hand is a tedious and time consuming task. Specialized personnel is required for this,
as their programming requires a background in designing with HDL languages. Furthermore an
implementation is specific to a certain algorithm and cannot be used for any other algorithm even
if it is slightly different. So if a new algorithm for a particular task is found then a part of the
design process has to be redone. Also designing for FPGAs is a computationally intensive task
as the whole design after simulation has to be synthesized and then placed and routed (P&R) for
a particular FPGA every time the design changes slightly. This process of mapping the design
can take hours or even days to compute for large designs. In recent years developments in High
Level Synthesis (HLS) and OpenCL have made the whole process of designing for FPGAs an
easier task. But this solution is not without problems either as the algorithm has to still be im-
plemented for a specific FPGA device. A solution to the FPGA synthesis and P&R problem has
recently been proposed with the name of FPGA Overlay Architectures. The core concept of this
idea to abstract the FPGA create a virtual FPGA on top of the underlaying physical one in order
to help with configuration and compile time. In this thesis, we investigate available alternative
overlay architectures and select the most appropriate architecture for our analysis. We extended
the selected architecture to be deployed on alternative FPGA hardware and to work in a shared
CPU/FPGA system. Then, we implemented a number benchmarks to evaluate various aspects of
system performance. Our results show that our architecture can be reconfigured in only 11.9us,
as compared to seconds for full FPGA reconfiguration. However, the overlay architecture uses
10.5x more LUTs and causes a drop in frequency of about 30% for the chosen architecture. For
future work, there is room to improve these results by optimizing the interconnect network of
the device.

Laboratory : Computer Engineering
Codenumber : CE-MS-2017-12

Committee Members :

Advisor: Zaid Al-Ars, CE, TU Delft

Chairperson: Zaid Al-Ars, CE, TU Delft

i

Member: Arjan van Genderen, CE, TU Delft

Member: Marco Zuniga, ES, TU Delft

Member: Johan Peltenburg, CE, TU Delft

ii

Dedicated to my parents and my brother

iii

iv

Contents

List of Figures vii

Acknowledgements ix

1 Introduction 1

1.1 Context . 1

1.2 Proposed overlays solutions . 2

1.3 Our use case . 3

1.4 Research question . 3

1.5 Approach and goal . 3

1.6 Contribution . 3

1.7 Thesis outline . 4

2 Background & related work 5

2.1 Principle of operation . 5

2.2 Related work . 7

2.2.1 IF and DySER . 8

2.2.2 DeCO . 8

2.2.3 Chosen architecture . 9

2.3 DySER . 9

2.3.1 DySER core . 9

2.3.2 DySER input/output bridge . 11

2.4 Platform . 11

2.4.1 About ZYNQ . 11

2.4.2 ZYNQ CPU . 12

2.4.3 ZYNQ FPGA . 12

3 Design 15

3.1 Adaptation to the FPGA . 15

3.1.1 Functional units . 15

3.1.2 Dual operation functional units . 16

3.1.3 Switch modification . 17

3.1.4 Grid size . 17

3.2 Integration . 18

3.3 Connection with the bus . 20

3.4 Software integration and using the overlay 21

3.5 Area usage . 24

3.5.1 Whole peripheral usage . 24

3.5.2 DySER area usage . 24

v

3.5.3 Input/Output bridge . 24
3.5.4 Core area usage . 26
3.5.5 Tile and switch area usage . 26
3.5.6 CDMA and AXI interfaces usage 26

3.6 Scaling for a bigger device . 27
3.7 Frequency and power usage . 27

4 Test setup 29
4.1 Testing methodology . 29
4.2 Test kernels . 29
4.3 Example of mapping a kernel . 30

5 Results & discussion 33
5.1 Performance measurements . 33

5.1.1 Latency . 33
5.1.2 Throughput . 34

5.2 Speedup . 36
5.3 Reconfiguration . 40
5.4 Area & Frequency Overhead . 41

6 Conclusion and future work 43
6.1 Conclusions . 43
6.2 Future work . 44

Bibliography 48

vi

List of Figures

2.1 Data flow graph produced by the C-code kernel above [1] 6
2.2 DFG of the kernel mapped to an overlay architecture [1] 6
2.3 DFG of the slightly modified kernel . 7
2.4 Comparison between the two architectures 8
2.5 Difference when mapping a kernel . 9
2.6 Configuration Registers form a large shift register in configuration mode 10
2.7 High Level Overview of Zynq platform[2] 12
2.8 Hard processor block integrated into Zynq-7000 series [2] 13
2.9 Available interconnects between PS-PL [3] 14

3.1 Modified functional unit . 17
3.2 Switch architecture . 18
3.3 Final high level architecture of the design 20
3.4 Block design of the peripheral containing the overlay 22
3.5 State machine for connection to the overlay 23
3.6 Image showing the FPGA area that is occupied by

a) the core in yellow b) the input bridge in red c) the output
bridge in pink . 25

3.7 Power of the Design as reported by Vivado 28

4.1 State machine that use for testing purposes 30
4.2 DFG produced by the convolution kernel 31
4.3 Mapping of the Kernel on the Overlay 32

5.1 Throughput for each kernel implemented on the 4 versions of the design 34
5.2 Speed up of the matrix multiplication algorithm for different versions of

the design . 36
5.3 Speed up of the 1d-convolution algorithm for different versions of the

design . 37
5.4 Speed up of the kmeans algorithm for different versions of the design . . 37
5.5 Speed up of the stencil algorithm for different versions of the design . . 38
5.6 Time spent in each of the execution steps for the 64-bit bus overlay . . . 39
5.7 Time spent in each of the execution steps for the 32-bit bus overlay . . . 39

vii

viii

Acknowledgements

First of all, I would like to thank my supervisor Prof. Zaid Al-Ars for letting me work
on this project but also giving me the freedom to work the way I wanted. His door was
always when I had questions or requests.

I would also like to thank my daily supervisor Johan Peltenburg for helping me in
understanding the topic and providing me with help and directions on different technical
problems that I had.

Finally, I would like to thank all my friends here in Delft for making my stay and
study here an easier task as well as helping me in difficult times.

Konstantinos Gkougkoulias
Delft, The Netherlands
December 1, 2017

ix

x

Introduction 1
1.1 Context

In recent years due to the slowing down of Moores Law and Dennard Scaling new
kinds of architectures using accelerators have been proposed to continue increasing
performance and power efficiency of integrated circuits. These types of accelerators
range from GPUs to FPGAs and even ASICs.

But with the cost of extra efficiency for the aforementioned accelerators comes the
difficulty of programming them. The GPUs are the easiest to program compared to
FPGAs and ASICs, and for parallel workloads they provide high performance at the
cost of high power consumption.

ASIC offer the best performance and power consumption when compared to the
other two solution but they lack programmability completely. Once a design has been
implemented in ASIC it cannot be changed and this particular circuit will from now
only be able to perform the specific functionality that it was designed for.

FPGAs on the other hand can sometimes provide the same performance as GPUs
with better power efficiency and are reconfigurable. The downside of using FPGAs is
the higher effort required in order to program them. Developing with them requires
more time as well as a high degree of expertise and experience in the field, because
someone needs to also be familiar with digital circuit design and computer architecture.

Once a design is verified for its correctness on a simulation level then it needs to be
mapped onto a specific device. This process is called synthesis and place&route (P&R).
These steps are too time consuming and can take hours or even days for larger designs,
when many configurations need to be tested.

Even though FPGAs provide reconfigurability, once a design is mapped onto an
FPGA then the FPGA can be used only to accelerate that particular algorithm, without
paying a reconfiguration time to change its functionality. Moreover a design is targeted
at a specific device and thus cannot be used with any other FPGA without passing the
synthesis and P&R phase again, with some added modifications for the new device.

One more disadvantage is that if the algorithm changes slightly or a better algorithm
is found, then some parts of the development process have to occur once more.

The lengthy compilation times are a result of the fact that the FPGAs are designed

1

2 CHAPTER 1. INTRODUCTION

in order to be able to support many kinds of applications and are not specialized
devices. So each time a design needs to be mapped onto an FPGA, millions of fine grain
resources, such as LUTs, MUXs, etc, need to be programmed, which is the main cause
of the long P&R times [4].

Overlay architectures on the other hand are build on top of the real FPGA structure,
and are virtual structures that connect different kinds of abstracted functional units
with an abstracted interconnection network.

This abstraction helps to hide much of the underlying complexity of the FPGA
structure [5]. Instead now the programmer or the compiler can see only higher level
coursed grained resources (such as adders, multipliers, square units, FFT units and so
on). That makes the mapping of kernels on an FPGA an easier and faster task, as the
algorithm has smaller design space to search and the configuration requires less bits to
be transfered.

Also because overlays are virtual devices a configuration is portable from one device
to another, as long as the overlay can be built on that device.

The only downside that comes with the use of overlays is the area increase when
compared with a same implementation using purely HDLs. The programmability of the
device is the cause behind this area increase.

1.2 Proposed overlays solutions

The advantages that overlay architectures bring can be used in one on the ways described
below

(a) James Coole and Greg Stitt [6] propose that we can have a library of intermediate
fabrics already implemented as bitfiles in the disk. Each of these intermediate fab-
rics supports a number of different but similar kernels. When a kernel is supported
by the overlay it gets faster execution and reconfiguration time.

If a normal FPGA structure would have been used then each time a new kernel
arrived the whole FPGA would have to be reprogrammed, something that requires
considerably more time. Using overlays this process has to be done only when a
new type of kernel arrives, that is not supported by the current overlay laying on
the FPGA.

(b) Tony Nowatzki et al [7] propose a new architectural model with the use of over-
lay Architectures. They connect a low power core with an overlay to accelerate
execution of certain demanding parts of the code.

The concept behind this idea, is the use of a general purpose CPU as load-store
engine for the overlay architecture. CPU cores are also responsible for configuring
the overlay architecture before the execution of each kernel.

1.3. OUR USE CASE 3

Computationally intensive parts of the algorithms are going to be executed by
the overlay while less demanding parts and parts that are not supported by its
structure will be executed on the CPU.

1.3 Our use case

For our use case, overlay architectures are going to be evaluated for their performance
in kernels that are used in big data [8] and scientific applications [9], but also we would
like to know how fast they can be reconfigured to alter their functionality.

In the fields of big data analytics and scientific research, FPGAs have recently began
seeing greater usage, for example in applications related to medical research, such as
DNA sequencing [10] and medical imaging [11]. Users in these areas can take advantage
of the low reconfiguration times to make better use of their FPGA devices.

1.4 Research question

Keeping the above mentioned points in mind, the main research questions that this
thesis will try to answer are the following ones

(a) What kind of speedup can we expect when we connect an overlay architecture to
a CPU, and which are the bottlenecks that limit potentially higher performance?

(b) How fast can we re-configure such an architecture so that a different kernel will be
able to run on the same fabric without having to reconfigure the whole FPGA?

(c) What is the overhead for using such an architecture in terms of area and power?

1.5 Approach and goal

Recently there have been certain systems, like the ZYNQ platform by Xilinx, that enable
easier integration of FPGAs with a general purpose processor. These systems provide a
hard processor and an FPGA fabric on the same die. The two can communicate with
low latency via the different interfaces available between the ARM core and the FPGA.

Therefore the goal of this thesis is to find such an architecture and try to integrate
it with the ARM CPU available on this system, so that it can make use of the overlay
as an accelerator for different kernels.

1.6 Contribution

In this section the contribution and the work that has been done on this thesis will be
summarized.

4 CHAPTER 1. INTRODUCTION

• Carried out literature review for the current state of the overlay architectures.

• Analyzed the alternatives and choose such an architecture that can be integrated
into an FPGA + CPU platform.

• Evaluated the chosen architecture and how it can be programmed to execute ker-
nels.

• Modified some parts of the functional units in order to execute FP operations on
Xilinx FPGAs. Also reduced the area of the switch, achieving a 25% reduction
while retaining the desired functionality.

• Connected the architecture with the ARM CPU using the AXI interfaces and
evaluated the performance by mapping kernels for scientific applications.

• Showed that such an architecture can be integrated to the current Xilinx ZYNQ
platform and confirmed the advantages of overlay architectures, such as fast recon-
figuration time. Also described the shortcomings of the current architecture.

1.7 Thesis outline

The thesis is divided into the following chapters

Chapter 2: This chapter will discuss the work already done by other authors in this
field, and one of the available options will be chosen for implementation. The chosen
architecture will also be presented in a bit more detail.

Chapter 3: In this chapter we will first discuss the architecture of the functional units
and the switches of the system as well as the modifications that were made to them in
order to better fit the chosen platform. We will also go into detail on how the design
was integrated to the platform.

Chapter 4: The benchmarks that were used and the methodology for their evaluation
will be presented in this chapter. An example of mapping a kernel will also be presented
step by step.

Chapter 5: In this chapter, the performance results of the selected benchmarks will
be presented. Results concerning reconfiguration time and area overhead will also be
shown.

Chapter 6: At the final chapter a summation of the work that was done on this thesis
along with guidelines for future work are going to be presented.

Background & related work 2
Overlay architectures have emerged in recent years as a response to the increasingly
high times required to build a design on an FPGA. This includes the large amounts
of time required for synthesizing and placing and routing the design as well as the
complexity that comes from designing in very low level HDL languages.

In principle all overlay architectures try to hide the complexity of the underlying
structure of an FPGA to the designer or the compiler. This means they do not have
to worry about specific details of the underlying structure of the device and see it
as an abstract entity, like the way Java runs on a Java virtual machine on top of a
real processor. This greatly benefits compilation and reconfiguration times, due to
the fact the compiler has less things to compute and less bits are required to pro-
gram the device. But as with anything virtual this comes at the cost of higher area usage.

Another important characteristic of overlay architectures is the fact that they are
programmable like a normal FPGA is. But what makes them more appealing that an
FPGA in this aspect, is that they require far less time to be configured. In a normal
FPGA, we have to configure the whole device every time we need to compute something
different. In an overlay architecture the configuration is much faster because only a
small number of things needs to be reconfigured.

This makes it possible to run different kernels on a device because we only have to
pay a small price for the reconfiguration. So an overlay can accelerate different types of
kernels with only a small time penalty between them, while a normal FPGA can only
accelerate one kernel before having to reconfigure the whole design something that takes
considerably more time.

2.1 Principle of operation

All of the available overlay architectures rely on the same principle. They try to ”draw”
a data flow graph (DFG) of a kernel on the structure of the overlay.

Lets suppose for example that we have the following piece of C code that happens to
be the kernel of an algorithm.

5

6 CHAPTER 2. BACKGROUND & RELATED WORK

Listing 2.1: Kernel of an algorithm in C

i n t foo (i n t a , i n t b , i n t c , i n t d){
re turn ((a+b)∗ (c+d))−d ;

}

The kernel above produces the following data flow graph (fig. 2.1)

+ +

X

-

 a b c d

Figure 2.1: Data flow graph produced by the C-code kernel above [1]

Suppose that we have a 2x2 grid of the functional units, that each of them can
implement operations like addition and multiplication, and switches that are responsible
for transferring data between the functional units. Then this data flow can be mapped
on the overlay architecture as seen in the following figure (fig. 2.2) (a rhombus represents
switches while a squares represents functional units).

Figure 2.2: DFG of the kernel mapped to an overlay architecture [1]

Now imagine that a new kernel arrives, that is slightly changed similar the one that

2.2. RELATED WORK 7

can be seen in the following code section

Listing 2.2: New modified kernel

i n t foo (i n t a , i n t b , i n t c , i n t d){
re turn ((a−b)∗ (c+d))−d ;

}

This new kernel will require the DFG shown in the next picture (fig. 2.3).

+

X

-

 a b c d

-

Figure 2.3: DFG of the slightly modified kernel

Using the property of overlay architectures, we can quickly reconfigure the fabric in
order to support the new kernel. In that case a new programming sequence needs to
be send that will change the functionality of the bottom left functional unit shown in
fig. 2.2 from an addition to a subtraction.

Functional units (FUs) can be anything as simple as an adder or a multiplier and
as complex as an FFT unit or even a whole processor. But common FUs (adders,
multipliers, sqrt) are considered first as they can be used for almost every kernel.

While the FUs are fixed after generation their interconnection is configurable, so that
they can support different number of kernels.

2.2 Related work

In the past there have been a number of different overlay architectures that rely on the
above principle. The most researched ones are the following

(a) Intermediate Fabrics by James Coole and Greg Stitt [4, 5, 6]

(b) DySER by Vertical Research Group of the University of Wisconsin-Madison [12, 1]

(c) A number of different sorts of designs by Abhishek Kumar Jain et al [13, 14, 15].

8 CHAPTER 2. BACKGROUND & RELATED WORK

(a) DySER high level architecture [16]

(b) IF high level architecture

Figure 2.4: Comparison between the two architectures

The first two are quite similar and they both rely on the same island-style overlay
but with different interconnection schemes. In the third option Abhishek Kumar Jain
came up with a different number of overlays similar to the first two ones, but also with
one with different architecture that will also be presented.

2.2.1 IF and DySER

Intermediate Fabrics (IF) and DySER rely on the same high level architecture of island
style overlays. This is similar to the way that an FPGA is organized, where DSPs and
LUTs are connected via a configurable interconnect network.

In the figure above (fig. 2.4) a comparison between the two architectures can be seen.

The similarities between them are quite obvious. The difference is that DySER can
accept inputs from 4 different directions while IF only from 2. The output of DySER is
always directed at the SE of the FU while on the IF there are two options.

2.2.2 DeCO

Abhishek Kumar Jain et al have researched different overlay architectures most of which
are similar to the ones already described. The one that is different is called DeCo [15]
and does not use the island style architectural model.

So he proposed a different architecture he calls linear interconnect architecture. This
is a cone shaped architecture, similar to a reduction tree operation. The data can flow
only in one way thus reducing the interconnection complexity, but which also reduces
the generality of the architecture.

2.3. DYSER 9

(a) Deco high level architecture (b) Difference when mapping a kernel

Figure 2.5: Difference when mapping a kernel

The figure above fig. 2.4 shows how such an architecture looks like and the difference
with an island style, when mapping a kernel.

2.2.3 Chosen architecture

The architecture that was chosen to be implemented is DySER, since it is the only
design available open source and does not have principal differences with the other
architectures. The design is available at this website [17].

In the following section a more detailed description of the DySER architecture will
be presented.

2.3 DySER

2.3.1 DySER core

On the highest level the DySER core consists of two components, the edge fabric and
the tile fabric. Edge fabric lies on the left and top edge of the core. The rest of the
design is the tile fabric.

A design is characterized by its grid size and is of square size, for example 5x5 or
6x6. In general a NxN grid size contains N2 functional units and N2 + 2N + 1 switches.

The Edge Fabric is made out of edge tiles, that are just a single switch, and are
responsible for directing the data that is coming from the bus. The tile fabric is
composed out of tiles. Each tile contains a functional unit alongside a switch.

Both tiles contain a register that is responsible for programming the data flow and
the functionality of the functional unit when present. In order to program the overlay,
when in configuration mode the switches form a large shift register as it can be seen in
the picture below (fig. 2.6), which is essentially a daisy chain configuration.

10 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.6: Configuration Registers form a large shift register in configuration mode

The way that functional units work is that they have 4 inputs on NW, NE, SW
and SE. According to the programming of the FU two of these 4 inputs are selected
and the desired function is computed. Then the result is always outputted to the
SE of the functional unit and goes into the neighboring switch. Each FU contains
one or more computational resources and logic that is responsible for the synchronization.

Switches have 5 inputs (in the N, E, S, W and NW) and 8 outputs to every
direction. That requires a 5to1 multiplexer at every output as well as a state machine
for synchronization at each output.

To allow latency imbalances into the calculation of the DFG each FU also implements
a state machine for the synchronization. This state machines implements a credit-based
flow control protocol using a forward signal (valid) and a backward signal (credit) [18].
Functional units perform operations only when all inputs are valid and data is forward
only when the credit signal is asserted. Functional units and switches send credits only
when they can accept new data. This forms a pipelined execution model between different
FUs and takes cares of the latency imbalances between the data arriving at the ports.

2.4. PLATFORM 11

2.3.2 DySER input/output bridge

The core has a large number of data inputs, that each is made out of 32 bits. This
means that the CPU cannot be directly connected to each of the those inputs because
that wide buses do not exist in the targeted system.

So an input bridge must be created in order to connect a bus to the core. This looks
like a multiplexer but with added FIFOs at the end of each output. The FIFOs help in
buffering data to the core while the core is occupied doing calculations.

The same holds true for the output of the core as the overlay has a large number
of outputs, each also made out of 32 bits. A similar device needs to be constructed to
connect these outputs to the bus. At the output of such a device there are also FIFOs
because many results can be produced before the CPU reads them or they are written
to RAM.

2.4 Platform

In order to be able to realize an architecture like that, a platform that provides both a
general purpose processor and an FPGA fabric as well as the interconnect that enables
the communication of the two, is required .

The Xilinx Platform ZYNQ is an ideal candidate as it includes a hard-core general
purpose processor along with an FPGA fabric and interconnections, all on the same die.
This enables fast communication between the two, and also makes their integration an
easier task for the designer.

2.4.1 About ZYNQ

Zynq-7000 [19] is a platform developed by Xilinx that integrates a number of ARM v9
CPU cores along with Artix-7 or Kintex-7 FPGA fabric. Those two are built of the same
piece of silicon and a number of AXI interfaces are used to connect them, as can be seen
in the following image (fig. 2.7). The particular board that is going to be used, is called
PYNQ and contains the XC7Z020-1CLG400C chip with 512 MB of RAM. This chips
offers the resources seen in the following table (table 2.1).

Available

LUTs 53200

Registers 106400

DSPs 220

Table 2.1: Resources available at the FPGA

12 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.7: High Level Overview of Zynq platform[2]

This tight integration enables software and hardware to be partitioned into different
development phases and then integrated.

2.4.2 ZYNQ CPU

In the past most FPGA devices did not contain a hard general purpose processor so they
were unable to execute general purpose code in high level programming languages. To
overcome this it was possible to build a soft processor on the FPGA fabric, a processor
that was build using the FPGA LUTs and BRAMs. For example Xilinx had a processor
IP called Microblaze that someone could use with their FPGAs.

The disadvantage of this approach was the considerably lower clock speeds and the
large area overhead when compared with a hard processor block.

In the following image (fig. 2.8) the overview of the ARM A9 CPU used in Zynq-7000
can be seen. It can be observed that it not only provides a CPU core but also various
interfaces such as USB, SD, Ethernet, UART etc. that can be used to connect it with
peripheral devices.

In Xilinx terminology this part of the system is called PS (Processing System) and
will be referred this way from now on. Except the peripheral devices interfaces, the thing
that is most interesting to us is the presence of different AXI interfaces that connect it
with the FPGA fabric.

2.4.3 ZYNQ FPGA

As we have already mentioned the are several AXI4 interfaces that connect the FPGA
fabric with the ARM CPU. AXI4 [20] is a standard developed by ARM and is the default
bus used by Xilinx for all of its IPs, as well as a number of other vendors of embedded
systems. AXI4 comes in different versions that are the following

2.4. PLATFORM 13

Figure 2.8: Hard processor block integrated into Zynq-7000 series [2]

(a) AXI4: This is the full implementation of the protocol that is used for high per-
formance memory mapped applications. It can support burst of up to 256 data
transfers with a single address phase.

(b) AXI4-Lite: This is the light-version of the interface that supports memory
mapped transactions. It supports only single data transfer and is suitable only
for writing and reading to control and status registers.

(c) AXI4-Stream: This interface removes the requirement for an address phase in
the transactions process and can support unlimited data transfer bursts. This
interface is not memory mapped and it can be used only for data streaming.

In the following figure (fig. 2.9), the different interfaces that are available for the
interconnection between PS and PL (Programmable Logic) are presented in greater
detail.

14 CHAPTER 2. BACKGROUND & RELATED WORK

Figure 2.9: Available interconnects between PS-PL [3]

From the above interfaces the general purpose ones implement the AXI4-Lite
protocol, so they provide lower bandwidth and no burst support, making them suitable
only for controlling registers.

The HP Ports (High Performance) implement the AXI4 or AXI4-Stream protocol,
and can support bursts of 256 beats for the AXI4 protocol case. There are connected
straight to DDR so they are suitable for transferring large amount of data when high
performance is required.

Design 3
In this chapter there will be a discussion over the changes that were made to DySER
to be more suitable for implementation on an FPGA [16]. Also we will discuss how we
were able to integrate the overlay onto the ZYNQ platform and how it communicates
with the CPU.

3.1 Adaptation to the FPGA

3.1.1 Functional units

Dyser was not initially targeted for FPGA implementation but was a general design.
This means that certain aspects of the design are not that suitable for FPGA mapping.

The most important thing that falls under this category is the functional units
that are used in DySER. They are generic implementations of modules that implement
FP adders, multipliers and other floating point operations. While implementation on
ASIC maybe optimal or acceptable, such implementations on FPGA suffers from low
frequency and high LUT consumption.

Also using such implementations we are not taking full advantage of the FPGA
resources that are dedicated for this purpose, the DSP blocks. Thus using the DSP
blocks to implement them will improve area usage as well as frequency [16].

DSP blocks can support only integer operations out of the box. In order to
make them usable for floating point operations we need to extent their functionality.
Luckily, Xilinx offers floating point units [21] that are optimized for each of its devices.
These combine a number of DSP blocks and surrounding LUTs to add the required
functionality to support floating point operations.

They can be generated through Vivado and can implement any desired FP operation.
More parameters are also available like the desired latency, the type of interface etc.
These blocks are generate as encrypted files and their functionality can not be altered.
In essence they act like black boxes that receive inputs and after a certain number of
cycles produce the desired result.

As already discussed Vivado Software can generate versions of the FP units with
different amounts of latency from 1 till some number (10-12 usually), depending on
the design. Initially the FP units with latency for 8 and 11 cycles were generated for
multiplication and addition/subtraction respectively. But it was found that they were

15

16 CHAPTER 3. DESIGN

not producing the right result, as there was a problem with flow-control protocol for the
communication between FUs and switches. The largest number for latency that was
not producing a problem was found to be 4.

Less latency means that the module cannot reach that high of a frequency. The
design was implemented with both functional units that had the most pipeline stages
as well as with units that had 4 pipeline stages and no difference was found in terms
of frequency. This is due to the fact that the critical path in the design lies in AXI
interfaces and not on the computational units them selfs.

3.1.2 Dual operation functional units

In the reference HDL each functional unit consisted of one FP functional unit that
could only implement one operation. For example each functional unit was composed
out of an adder/subtractor or a multiplier or a divider along with the auxiliary logic
required for flow control.

Initially every general functional unit was replaced with the generated unit provided
by Vivado. Each generated functional unit uses then 2 DSP blocks so the whole overlay
would use 50 DSP, out of the 220 available. That is a very poor usage of the FPGA
resources as only 25% of the computational blocks were used.

Also since each functional unit was able to perform either addition/subtraction or
multiplication a problem arose with the mapping of kernels. On a 5x5 grid it was unable
to map more than one kernel of the chosen kernels, that were the sum of absolute
differences, matrix multiplication/convolution and stencil. This meant that for each
kernel a specific overlay with different functional units had to be constructed, something
that defeats the purpose of overlays because we would have to program the FPGA every
time a new kernel would appear.

To overcome this problem 2 Floating point modules were included in each functional
unit, one for FP addition/subtraction and one for FP multiplication. At the time of
programming the overlay, the function can be chosen from one of the three available
ones. This allowed all kernels to be mapped onto a single 5x5 overlay fabric and also
made the routing of kernels a much easier process.

It also improved the usage of the DSP blocks from 25% to 50%. One could expect
that this would have also increased the LUT consumption by lot, but that change
increased the area only by 5%. This reveals the fact that the switch network is probably
the part of the design that requires the most area.

In the following figure (fig. 3.1) the modified functional unit can be seen. The input
MUXs can be programmed to select 2 out of the 4 available the inputs to be the inputs
of the computational resources. Also the functionality of the adder can be programmed
to perform either an addition or a subtraction. Finally one of the two results is selected

3.1. ADAPTATION TO THE FPGA 17

at the output.

+/-

*

d_in_NW
d_in_SW

d_in_NE

d_in_SE

configuration

configuration

M
U
X

M
U
X

configuration M
U
X

configuration

Figure 3.1: Modified functional unit

3.1.3 Switch modification

The reference design of the switch had two parallel multiplexers, that each was selecting
one of the inputs, and then a third multiplexer that was selecting one of the these
outputs. But the way we programmed the switches, was making use only of the results
of the first switch and never from the other. That meant that the second multiplexer
could be completely removed without affecting the design desired functionality, in the
way that we intend to use it.

This gave a reduction in area of the whole design of about 10% for a grid size of 5x5
and about a 20% reduction in the area of the switch. If a functionality of the design
called predicate, needs to be used then the second multiplexer should also be included.

In the following figure (fig. 3.2) the design of a switch can be seen. As it can be
observed at every of the 8 outputs, there is a multiplexer that can be configured to select
one of the five inputs entering the switch. This way the data coming from the overlay
inputs or the functional unit outputs can be directed to the fabric.

3.1.4 Grid size

The reference design offered by the creators of Dyser had a grid size of 8x8, offering
64 Functional Units with 81 switches. Our target device was a Zynq-7020 SoC, which
contains 53K LUTs and 220 DSPs. As we target single precision algorithms for

18 CHAPTER 3. DESIGN

din
_W

din
_E

din
_S

din
_N

din
_N
E

din_W

din_E

din_N
din_S
din_NE

din_W

din_E

din_N

din_S

din_NE

din
_Wdin

_Edin
_Ndin

_Sdin
_N
E

din_W

din_E

din_N

din_S
din_NE

din_W

din_E

din_N
din_S
din_NE

din_W
din_E

din_N

din_S
din_NE

din_Wdin_Edin_Ndin_Sdin_NE

dout_E

do
ut
_N
E

dout_SE

dout_S

dou
t_S

W

dout_W

dout_NW do
ut
_N

M
U
X

M
U
X

M
U
X

M
U
X

M U X

M
U
X

M
U
X

M U X

configuration

configuration

co
nfi
gu
ra
tio
n

co
nfi

gu
ra
tio

n

configuration

configuration

co
nfi
gu
ra
tio
n

co
nfi

gu
ra
tio

n

Figure 3.2: Switch architecture

implementation, the size of the FUs and the connections required need to be 32 bits.

This overlay size was unable to fit in the device, so the size of the grid had to be
made smaller. The initial design was taken as a base and a NxN part was removed from
it to create the new size. After that some connections between the components had to
be adjusted so that they follow the structure of the 8x8 grid.

After a few tries it was found that the largest size that can comfortably fit on the
FPGA is 5x5. The resource that is limiting the use of bigger grid sizes is the number of
LUTs that are available on the particular device.

3.2 Integration

The overlay is only one part of the design, as an overlay needs to communicate with the
CPU and the main memory. Without a CPU the overlay cannot be programmed and
also cannot know which data are required each time for a particular kernel calculation.

3.2. INTEGRATION 19

As we have already discussed in the previous chapter, the are many ways that the
CPU can be connected to the FPGA fabric. Because the peripheral is memory mapped
we could use one of the following methods

(a) General Purpose Port with AXI4-Lite protocol: With this option CPU is
the master and the peripheral the slave. This means that the CPU can initiate
transactions and the peripheral is responsible for responding to it.

AXI-4 Lite interface is capable only of 32-bit transactions and no burst support.
Therefore is suitable only for reading and writing control register and not sending
large amount of data to the peripheral. Using AXI4-Lite for data transfer could
require an address phase for each word send to overlay and could also keep the
CPU busy with doing that.

(b) High performance port with AXI4 protocol: A better option is to use a
general purpose interface as well as a high performance one. The general purpose
is used only for register reading and writing and the high performance interface
for sending data to the overlay.

While in the general purpose interface CPU can be the master and send data from
the GP interface, it cannot be the master on the high performance port. This
means that the CPU cannot directly initiate a transaction on this port as only a
device on the PL can be the master. In order to overcome this problem a DMA
engine had to be used.

A DMA (called Central DMA (CDMA) [22] in Xilinx terms) is an IP that can be
built on the PL part of the ZYNQ and can act as a master to the high performance
ports. It can free up the CPU from the task of sending large amounts of data
to the peripheral. The CPU is connected to the CDMA via the GP port with it
being the master. This way it programs the CDMA to carry out the transaction
in its place.

The CPU sends to the CDMA the starting source address of the data we want
to transfer, the starting destination address and the number of bytes that needs
to be transfered. Then the CPU is free to do other tasks while the CDMA is
responsible for the transfer.

Finally, when the overlay finishes a calculation the result needs to be transfered
to the main memory. This is done by the CPU that polls the status register of the
peripheral to know when a result is ready, then reads the results and writes it to
the main memory.

A more optimized way would have been to make use of interrupts so when all
calculations are finished, only then the CPU commands a second CDMA engine to

20 CHAPTER 3. DESIGN

start transferring data to the main memory.

In the following two figures (fig. 3.3,fig. 3.4), the way that all devices described above
are connected can be seen, as well how the peripheral is internally organized. This is the
final design that makes use of both the GP and HP ports of the device.

ARM

RAM

GP Port

CDMA

AXI LITE

HP Port

AXI LITE

OVERLAY

AXI FULL

AXI-LITE
INTER-
CONNECT

AXI FULL AXI FULL

AXI FULL
INTERCONNECT

Figure 3.3: Final high level architecture of the design

3.3 Connection with the bus

In order to connect the bus with the Overlay we need to the logic that implements the
desired bus protocol. With Xilinx Vivado a AXI4 peripheral can be generated that in-
cludes the required logic for that protocol. But this alone is not enough, as we also need
a state machine to control the data coming from the bus. This state machine will be re-
sponsible for controlling the behavior of overlay after receiving commands from the CPU.

3.4. SOFTWARE INTEGRATION AND USING THE OVERLAY 21

The states machines follows a control and status register scheme to communicate
with the CPU. In the control register the CPU writes the commands to control the
peripheral. These command tell to the peripheral to go to configuration mode or
instructs the output bridge to expect results in certain ports etc.

There is also a status register that the overlay sets to 1 when the FIFOs are not
empty, which means that there is result ready. The CPU knows then that data in FIFOs
are valid and starts reading them. When the FIFOs are empty the status register goes
to 0 and the CPU stops reading the FIFOs.

Initially the overlay is in the idle state, and when receives a command it goes to
CONF state. In this state the overlay is in configuration mode and the content of the
configuration registers can change.

When the CPU sends all the required configuration data to the overlay, it issues a
command to change the state of the overlay. Along with that it sends the port or ports,
where the results are expected to exit the overlay. Also the ports for receiving data are
enabled and the overlay can start receiving data for calculations.

An image of the state machine described (fig. 3.5) as well as a block diagram of the
peripheral (fig. 3.4) can be seen below.

3.4 Software integration and using the overlay

After finishing with the hardware implementation and integration, the software side
that runs on the CPU was needed to be developed.

We took a couple of kernel implementations from a benchmark suite and two more
from other sources and tried to modify them to use the accelerator. In certain parts of
the code we inserted some instructions that make use of the overlay. In the following sec-
tion the way that an algorithm is scheduled for execution on the overlay will be presented.

The configurations of the overlay are saved into an array. These are the sequences
that will program the overlay for the desired kernel. For the particular case of a 5x5
overlay this sequence is 1568 bits long. The CPU initially writes the control register of
the overlay to instruct it to enter in configuration mode. After that it starts sending
the configuration sequence to it using the CDMA.

When this process is done, it sends an instruction to the overlay to move into the
calculation state. Then the algorithm start executing on the CPU, and when the kernel
is reached it programs again the CDMA engine to start sending kernel data from a
certain point in the main memory to the ports of the overlay that are used as inputs to
the core. Then the CPU is freed from the task of sending data and starts polling the

22 CHAPTER 3. DESIGN

data0 data1 port0 port1 config_data config
 enable

addr
gen

port0 port1 port18 port19

 d_in0 din_1 d_in18 d_in19

 d_out0 dout_1 d_out18 d_out19

 INPUT BRIDGE

 CORE

d_in0 d_in1 . . . d_in18 d_in19 port_out0 port_out1

data out0 data out1

empty0
empty1

 status register

 AXI LITE
READ ADDR

 AXI LITE
READ DATA

 control register
 AXI LITE
WRITE DATA

64

32 32 4 4
32

AXI4 WRITE
 DATA

AXI4
WRITE
ADDR

OUTPUT BRIDGE

. . .

32

INTEGRATION WITH AXI

64

Figure 3.4: Block design of the peripheral containing the overlay

3.4. SOFTWARE INTEGRATION AND USING THE OVERLAY 23

 CONF

enable configuration = 1
enable output ports = 0

 CALC

enable configuration = 0
enable ouput ports = 1
output port0 = control_reg[20:16]
output port1 = control_reg[28:24]

 IDLE

enable configuration = 0
enable output ports = 0

control_reg[1:0] = 01

control_reg[1:0] = 00

control_reg[1:0] = 10control_reg[1:0] = 00

Figure 3.5: State machine for connection to the overlay

status register of the overlay to read the results when available.

At each input of the overlay there are 4-wide FIFOs, so that the CPU can
send up to 4 data vectors for calculation. So after instructing the CDMA to do
the job in its place, it starts reading the output and needs to read the results for all
the calculated data before proceeding to the execution of the next instances of the kernel.

This process continues until the calculation for all the kernels is completed, or the
overlay needs to be programmed again for a different kernel.

One problem that was observed while creating the software component of the design
is the memory coherency between cache and main memory. Since the CDMA engine is
not contained in the CPU package, it is unaware if there are ”dirty” data in the main
memory that are still stucked in the cache. If that fact is ignored then wrong data are
sent to the overlay.

To overcome this problem the data cache needs to be flushed for the particular region
of interest and write the current data back to the main memory before initiating any
CDMA transfer. This is a point that effects negatively the performance of the overlay
and gives an advantage to the CPU that has the mechanisms to overcome it.

24 CHAPTER 3. DESIGN

3.5 Area usage

In the following subsections a overview of the area usage for each part of the design will
be presented.

3.5.1 Whole peripheral usage

First of all, the area that the whole peripheral occupies on the FPGA fabric is show.
This includes everything that has to do with the DySER and the logic that is needed
for it to be connected to the AXI4 buses, as well as the state machines that control the
overlay and the data flow.

What this area measurement does not contain is the area that is been used by the
AXI CDMA (the DMA engine that is responsible for transferring data from the main
memory) and well as the various AXI interconnects that connect the modules on the
FPGA with the CPU and the main memory.

Used Available Percentage

LUTs 40357 53200 75.8%

Slices Regs 26918 106400 25.3%

Slices 11008 13300 82.7%

DSPs 100 220 45.5%

Table 3.1: Peripheral area

3.5.2 DySER area usage

This area measurement includes everything that is directly related to DySER, namely
the input/output bridge and the core. It does not include the auxiliary logic that helps it
communicate with the bus such as the AXI4 protocol implementation and various other
states machines.

Used Available Percentage

LUTs 39524 53200 74.3%

Slices Regs 25963 106400 24.4%

Slices 10807 13300 81.2%

DSPs 100 220 45.5%

Table 3.2: Overlay + Input/Output bridges area

3.5.3 Input/Output bridge

These two bridges help to connect the inputs of the core to the buses in order to send
a receive data. They are essentially large multiplexers with 4-wide FIFOs connected at
their outputs.

3.5. AREA USAGE 25

Figure 3.6: Image showing the FPGA area that is occupied by
a) the core in yellow b) the input bridge in red c) the output bridge in pink

Used Available Percentage

LUTs 3365 53200 6.3%

Slices Regs 2640 106400 2.5%

Slices 1087 13300 8.2%

DSPs 0 220 0%

Table 3.3: Input bridge area

Used Available Percentage

LUTs 3959 53200 7.4%

Slices Regs 2620 106400 2.5%

Slices 1097 13300 8.2%

DSPs 0 220 0%

Table 3.4: Output bridge area

26 CHAPTER 3. DESIGN

3.5.4 Core area usage

In the core area only the logic that is related with the computation itself is included.
These are the switches and functional units that help to map a DFG onto the overlay
architecture.

Used Available Percentage

LUTs 32200 53200 60.5%

Slices Regs 20703 106400 19.4%

Slices 9162 13300 68.9%

DSPs 100 220 45.5%

Table 3.5: Core area

3.5.5 Tile and switch area usage

Finally, we are going to take a look that the smallest building block of the architecture,
the tile. The tile contains a functional unit and a switch.

When comparing the two, it is easily observed that the switch is consuming the
largest part of the tile area, something that confirms our previous assumption. That
means that an improvement in the switching network will have a great positive effect on
the design.

Used Available Percentage

LUTs 1121 53200 2.1%

Slices Regs 739 106400 0.7%

Slices 335 13300 2.5%

DSPs 4 220 1.8%

Table 3.6: Tile area

Used Available Percentage

LUTs 758 53200 1.4%

Slices Regs 376 106400 0.3%

Slices 239 13300 1.7%

DSPs 0 220 0%

Table 3.7: Switch area

3.5.6 CDMA and AXI interfaces usage

Finally, the area usage for anything that is not included in the peripheral is going to be
presented. This includes the CMDA engine and the logic that implements the various
AXI interfaces.

3.6. SCALING FOR A BIGGER DEVICE 27

Used Available Percentage

LUTs 364 53200 0.7%

Slices Regs 757 106400 0.7%

Slices 144 13300 1%

DSPs 4 220 1.8%

Table 3.8: Functional unit area

Used Available Percentage

LUTs 2023 53200 3.8%

Slices Regs 2563 106400 2.4%

Slices 863 13300 6.4%

DSPs 0 220 0%

Table 3.9: CDMA+AXI area usage

3.6 Scaling for a bigger device

Additionally, we would like to see how big of an overlay can fit in a state of the art
FPGA. The FPGA that was chosen was the XCVU9P [23], which offers 2.58 million
LUTs which is the limiting resource in our case. When synthesizing the 5x5 overlay for
this device, it occupied 4.33% of the total LUTs.

Because area grows quadratically when increasing the size of the overlay, extrapolat-
ing from this result a 20x20 overlay that is 4 times larger in each direction would require
16x times more LUTs. This means that it would occupy about 60.5% of the total device.

3.7 Frequency and power usage

Lastly, the achieved frequency and power usage of the design will be shown. When the
design was first integrated, it had a frequency of 72 Mhz. The problem was with a
couple of AXI signals and the interconnection between the control and the data part of
the design due to the fact that the two are implemented in a different modules. Also
the reference design had an asynchronous reset that needed to be changed. After all
these improvements were implemented, the achieved frequency was 125 Mhz.

As for the power usage of the design this can be seen in the figure below (Figure 3.7).
As it can be seen the whole chip consumes 1.413 Watts of power. From those 1.256 W
are used by the the PS7 which is the processing system, and only 0.157 Watts from the
logic in the FPGA fabric.

28 CHAPTER 3. DESIGN

Figure 3.7: Power of the Design as reported by Vivado

Test setup 4
4.1 Testing methodology

In order to make an evaluation on the effectiveness of the overlay and to quantify
the weak point that need to be improved, a number of data parallel kernels was
chosen from the Parboil benchmark suite [24] together with some other kernels. This
benchmark contains kernels that are used in scientific applications like Matrix-Matrix
multiplication, stencil operations on Matrices etc.

The code for the CPU was used and adopted each time to be able to make use of the
overlay in the way that was described in the previous chapter. So at the end two version
of the benchmark will be available, one running just on the CPU and one running on
the Overlay + CPU.

In order for the algorithms to work they need data, that are available on the main
memory in both versions. The structure of data in memory is the same for both cases,
so that they can be compared fairly.

The time it takes for the whole execution of the program will be measured in both
implementation of the algorithms to indicate the speedup. But this will not show the
full potential of the overlay due to the limited width of the bus or the communication
overheads. However systems that are intended to be used in high performance appli-
cations, have the capabilities to overcome this problem as they provide way faster and
larger buses.

In order to achieve that more measurements have to be done to better characterize
it. These measurements have to do with the various latencies, the bandwidth as well as
the throughput on the overlay. All measurements are done in cycles and are based on
the following state machine (fig. 4.1).

Finally, there will be a comparison between the core of the overlay and the imple-
mentation of the same kernels on hand drawn designs, implementing them with the same
performance floating point units. This comparison will reveal the overhead that is paid
in terms of area and frequency, but makes the overlay programmable.

4.2 Test kernels

The kernels that were chosen to be mapped onto the overlay for performance compar-
isons are all data parallel workloads.

29

30 CHAPTER 4. TEST SETUP

DATA FRAME LATENCY

 data_frame_latency++

 LATENCY

 latency++
 data_frame_latency++

 IDLE

 idle++

 CPU POLLING

 idle_cpu_poll++

cdma transfer started

first result ready

computation finished

all results have
been read

Figure 4.1: State machine that use for testing purposes

The are matrix multiplication, kmeans (sum of absolute differences) [25], 1D
Convolution and Stencil operation on matrices. All of them are kernels that are used in
scientific workloads.

For the all the kernels it has been able to map one instance to the overlay, except for
the stencil that 2 instances were mapped on simultaneously.

4.3 Example of mapping a kernel

Before continuing on showing how to map a kernel for execution on the overlay, it needs
to be mentioned that even though a compiler for the project existed it was used for the
system that the original authors had build, that was not using the AXI interfaces and
the CPU was a OpenSPARC processor. That meant that it would not be immediately
used without modifying it, something that was outside of the scope of this thesis. The
above means that we had to program each switch and functional unit manually, a
process that took a considerable amount of time.

Moving on a particular example will be presented. In the following code section the
C code for the convolution algorithm can be seen.

4.3. EXAMPLE OF MAPPING A KERNEL 31

Listing 4.1: Kernel of an algorithm in C

f o r (i =10; i<s i z e ; i ++){
f o r (j =0; j <10; j++){

y [i] += x [i−j] ∗ h [j] ;
}

}

The above code produces the DFG below that is seen in the next figure(fig. 4.2).

* * * * * * * * * *

+ + + + +

+ +

+

+

x[i] h[0] x[i-1] h[1] x[i-2] h[2] x[i-3] h[3] x[i-4] h[4] x[i-5] h[5] x[i-6] h[6] x[i-7] h[7] x[i-8] h[8] x[i-9] h[9]

Figure 4.2: DFG produced by the convolution kernel

And finally the schedule on the overlay looks like the one in the following pic-
ture(fig. 4.3).

32 CHAPTER 4. TEST SETUP

* * * * *

**

*

*

* +

+

+

+ +

+ +

+

+

output
x0

h0

h0

x0

x1

h1 h1

x1

x2

h2
h2

x2

x2

x3

h3 h3

x3

x3

x4

h4

x4

h4

x4

x5

h5

h5

h5

x5

x5

x5

x6 h6

x6

h6

h6

h6

x6

x7 h7

h7

h7

h7

x7

x7

x8 h8

h8

h8

h8

x8

x8

x9 h9

h9

x9

x9

x9
h9

Figure 4.3: Mapping of the Kernel on the Overlay

Results & discussion 5
In this chapter, the results for different kinds of measurements will be presented. The
first section will present results related to performance measurements while the second
section presents results regarding area measurements and frequency.

5.1 Performance measurements

In this section, 4 versions of the design will be compared

(a) The initial version of the design that operated at 72 Mhz and where one data vector
was sent to the overlay for calculation. The AXI bandwidth of this design is 288
Mbytes/s.

(b) A version similar to the first one that had improved pipelining so it could achieve
a frequency of 125 Mhz. This gives a bus AXI bandwidth of 500 MBytes/s.

(c) A version with improved frequency but that also makes more efficient use of the
bus sending 4 data vectors to the overlay for calculation at each bus transaction.
This design has the same bus bandwidth as the previous one.

(d) A version similar to the third one that is using a 64-bit bus instead of a 32-bit.
The bus bandwidth of this design is 1000 Mbytes/s.

5.1.1 Latency

In this section, the performance of the overlay in terms of latency (in cycles) is presented
in table 5.1. Latency is defined as the number of cycles that are needed for the first
result of the overlay to be available. All these measurements were taken using counters
inside the peripheral so they are very accurate.

Design (a) Design (b) Design (c) Design (d)

Matrix mult 62 62 62 49

kmeans 64 64 64 50

Stencil 56 56 56 N/A

Convolution 62 62 62 49

Table 5.1: Latency results for the kernels (in cycles)

As expected, the latency is not affected by the frequency or the amount of data
sent per bus transactions; it is only affected by the data width. This is because when

33

34 CHAPTER 5. RESULTS & DISCUSSION

a 64-bit bus is used, we can communicate 2 words to the overlay at the same time for
computation instead of one at a time in the case of a 32-bit bus. This will allow us to
start earlier with the computation of kernels that require multiple inputs.

5.1.2 Throughput

A more interesting metric is the throughput of the overlay. That represents the number
of outputs it can process per second. Table 5.2 shows the throughput results for the
various kernels, when implementing the kernels on the 4 versions of the design.

Figure 5.1: Throughput for each kernel implemented on the 4 versions of the design

Design (a) Design (b) Design (c) Design (d)

mm 22.04 36.33 77.52 118.18

kmeans 25.3 41.86 92.23 141.22

stencil 20.56 33.76 72.32 N/A

conv 22.04 36.33 77.52 118.18

Table 5.2: Throughput for each kernel in MFlops when implemented on the 4 versions
of the design

The first observation that can be made from these results, is that throughput scales
linearly with the frequency of the design. This is specifically clear when comparing
designs (a) and (b), which have the same structure but only differ in their frequency.
Designs (a) and (b) process one kernel per bus transactions so they do not take
full advantage of the FIFOs interface that is present in the design, causing the the

5.1. PERFORMANCE MEASUREMENTS 35

throughput to become tied to the latency.

To overcome this, we send 4 data frames per each bus transaction, thereby fully
utilizing the 4-word wide FIFOs that are present in the inputs of the overlay. This way
throughput is not tied to the latency of the overlay but the pipeline of the design comes
into play and produces results much faster. That can be seen from the comparison
between design (b) and design (c) where the same 32-bit bus is used, but on the later
design data are readily available to be processed for a longer period of time resulting in
a better utilization of the fabric.

Besides the availability of data, another important factor is the bandwidth of the
bus that feeds data to the overlay. Design (d) has twice the bandwidth of design (c)
resulting in better throughput.

From the available measurements it was observe that the overlay produces a new
result (after waiting for the initial latency) at the rates listed in table 5.3.

32-bit bus 64-bit bus

mm 20 10

kmeans 20 10

stencil 18 9

conv 20 10

Table 5.3: Time between each new kernel result for different bus widths (in cycles)

These numbers together with the frequency of the overlay give us the theoretical
maximum performance of the overlay using 32-bit and 64-bit bus widths, in the case
that infinite bursts and FIFOs were available. The maximum possible throughput is
listed in table 5.5.

32-bit bus 64-bit bus

mm 118.94 234.08

kmeans 143.98 283.36

stencil 111.52 220.16

conv 118.94 234.08

Table 5.4: Max theoretical performance in MFlops for 32-bit and 64-bit bus

Finally, assuming that we have a bus system that could populate all the 20 ports
of the overlay in one cycle, namely a 640-bit wide bus. Then the theoretical maximum
performance of the overlay could be achieved, producing a new result each cycle. For a
frequency of 125 Mhz, as in the case of design (d), we would be able to achieve an even
higher performance as listed in table 5.5.

36 CHAPTER 5. RESULTS & DISCUSSION

Throughput

mm 2.37 GFlops

kmeans 2.87 GFlops

stencil 2.23 GFlops

conv 2.37 GFlops

Table 5.5: Max theoretical performance when using 640-bit wide bus

We also have to mention that in the case of a 640-bit wide bus, the design could
also require a slight change in the architecture of the overlay to accept new data every
cycle, as this now happens only when a result is ready.

5.2 Speedup

In this section, the speedup of the kernels will be shown when compared with the kernels
running on the ARM CPU. The speedup numbers are shown in fig. 5.2, fig. 5.3, fig. 5.4,
fig. 5.5.

Figure 5.2: Speed up of the matrix multiplication algorithm for different versions of the
design

From these results, it can be concluded that the largest jump in performance is
observed when bigger bursts are used to transfer data for calculation, which results in

5.2. SPEEDUP 37

Figure 5.3: Speed up of the 1d-convolution algorithm for different versions of the design

Figure 5.4: Speed up of the kmeans algorithm for different versions of the design

less communication time between the CPU and the peripheral.

The biggest bottleneck was found to be reading data from the main memory.
Because data needs to be in a very specific order in memory in order for the overlay to
perform calculations, data first needs to be ordered in a way that corresponds to the

38 CHAPTER 5. RESULTS & DISCUSSION

Figure 5.5: Speed up of the stencil algorithm for different versions of the design

physical ports of the overlay.

This intermediate data read and write to a buffer is the biggest bottleneck in
performance for this design, and probably is the reason why when reading larger
amounts of data gives better performance. This can also be concluded from the profiling
of the execution by the time spent in each phase of the execution on fig. 5.6 and fig. 5.7.
On top of that, cache needs to be flushed before every memory access as there is no
coherency when using the CDMA engine.

A solution to that problem could be to have a local memory build using BRAMs.
There, the data to be used would initially be written and rearranged, before they are
sent to the overlay for calculation.

In fig. 5.6 and fig. 5.7, ”Execution” means that the overlay is receiving data and/or
at least one on its functional units is computing a result.

”Idle polling” means that the CPU is reading the results from the FIFOs on the
peripheral and writing them to the main memory. During this time, the core of the
overlay is not doing any computation.

”Idle memory access” is the time that the CPU needs to read and reorder the data
in the main memory so that they are aligned to the physical ports of the overlay to be
sent using the CDMA engine (that requires data to be in consecutive memory address)
and flushing the cache. This is by far the most time consuming part of the execution

5.2. SPEEDUP 39

Figure 5.6: Time spent in each of the execution steps for the 64-bit bus overlay

Figure 5.7: Time spent in each of the execution steps for the 32-bit bus overlay

process.

40 CHAPTER 5. RESULTS & DISCUSSION

Writing the software in a better way

Based on the results above some of the kernels have been re-written so that they makes
more efficient use of the overlay. In the initial version after the CPU sends the command
to the CDMA to carry out the transfer, it immediately starts polling the status register
for results.

This is not a clever usage, as the results will take some time to be ready. So in the
improved version after the command is sent to the CDMA, the CPU starts preparing
the data for the next iteration. This way the time spent in idle polling with no reason
goes to a meaningful work.

Below the improvements from this reordering can be seen for the 32-bits bus version
(Table 5.6). Sadly there was no time for this to be done for all the test cases.

Old speedup New Speedup

mm 0.53 0.61

stencil 0.43 0.51

conv 0.48 0.61

Table 5.6: Improved speedup with code reordering

5.3 Reconfiguration

One of the most attractive reasons for using an overlay architecture is the fact that the
fabric can be reconfigured in a short period of time in order to support a different func-
tion. As mentioned already in a previous chapter, the way the overlay is programmed
is by configuration registers forming a large shift register.

When configuration mode is enabled, the configuration registers form a large shift
register, such that each cycle shifts 32 new bits of configuration in. So the configuration
time is proportional to the size of the overlay and grow linearly to the number of
switches and functional units.

Below we can see the reconfiguration time achieved by the overlay. This could have
be even lower, but is restricted by the fact that the CDMA engine can only do 16 long
burst to a fixed address. Also the configuration time for both the 32-bit and 64-bit buses
is the same, because connections internal to the overlay are 32-bit so the 32 extra bits
are discarded. Compared with partial reconfiguration of devices that is in the order of
tens of milliseconds [5], this is way faster.

32-bit bus 64-bit bus

Configuration time 11.9us 11.9us

Table 5.7: Configuration time

5.4. AREA & FREQUENCY OVERHEAD 41

5.4 Area & Frequency Overhead

In order to quantify the overhead of the overlay in terms of area and frequency, the
kernels that were chosen to be mapped on the overlay were also mapped using a
handmade implementation.

This was done by generating functional units from the Vivado interface and creating
the DFG of the kernel manually, with pipeline registers between the floating point units.

These handmade kernel implementations are going to be compared with the core
of the overlay. In essence only the parts that carry out computation are evaluated
since both need similar auxiliary logic to communicate with the bus, supporting logic etc.

This comparison will give out the price that is being paid in order for the fabric to
be configurable.

Used Available Percentage

LUTs 32499 53200 61.1%

Slice Registers 26414 106400 24.8%

Slices 9138 13300 68.7%

DSPs 100 220 45.4%

Table 5.8: Area usage of the core of the overlay

Used Available Percentage

LUTs 3109 53200 5.8%

Slice Registers 5651 106400 5.3%

Slices 1349 13300 10.1%

DSPs 38 220 17%

Table 5.9: Area utilization of th manual implementation of the matrix multiplication
kernel

Used Available Percentage

LUTs 3373 53200 6.3%

Slice Registers 6861 106400 6.4%

Slices 1566 13300 11.8%

DSPs 46 220 20.9%

Table 5.10: Manual implementation of the kmeans kernel

42 CHAPTER 5. RESULTS & DISCUSSION

Used Available Percentage

LUTs 2655 53200 5%

Slice Registers 5428 106400 5.1%

Slices 1227 13300 9.2%

DSPs 32 220 14.5%

Table 5.11: Manual implementation of the stencil kernel

Analyzing the results it can be seen that we require 9.6x - 12.22x more LUTs, 3.84x
- 4.86x more slice registers and 5.83x - 7.44x more slices.

The overhead depends on the percentage of the fabric that is being used. For
example, the kernel for the stencil algorithm uses 16 out out of the 25 functional units
therefore it will have a larger overhead than the kernel for kmeans that uses 23 out of
them 25 functional units.

The frequency is 68% of the original frequency and the power usage is 2.69x higher
on average than a direct implementation of a kernel.

This is a strange result because we see a big difference with the frequency of 125
Mhz that was reported in a previous section. This has to do with the fact that in this
case the overlay is synthesized on its own without any supporting logic.

From the manual of the CDMA [22], it can be seen that it can only achieve frequencies
up to 120 Mhz on our targeted device. Since the complete design uses the same clock
for all the logic, it also forces the overlay to achieve a lower frequency.

Conclusion and future work 6
In this chapter, the work that was performed in this thesis will be summarized as well
as suggestions would be provided that can improve the design.

6.1 Conclusions

The goal of this thesis was to have an evaluation of overlay architectures while trying to
map such an architecture on a current platform to gain better understanding of what
these architectures have to offer and what are their weak points.

Initially, a literature review was conducted in order to find the current status of
the topic and look up for alternatives that were suitable for implementation. Based on
this literature review, a design was identified that met the goals of the thesis. Then, a
study was done in order to understand how the design can be programmed to execute
our targeted benchmarks. The design was subsequently modified in order to make it fit
within the available FPGA as well as extend its functionally in order to support floating
point operations using the Xilinx DSP blocks. The switching network also was slightly
modified and saw a drop of 20% in area usage.

When finished with the modifications of the design and its correctness was evaluated,
it had to be connected to the ARM CPU via the various AXI interfaces available on
the SoC. The design was treated as a peripheral to the CPU which can program it and
send data to it in order to to offload calculations.

A number of kernels were then adapted to this programming scheme to evaluate
the performance but also the programmability of the systems. Although we saw no
performance gains when compared to the direct CPU implementation, we characterized
the design based on a number of different measurements and pointed the weak points of
the current integration. Based on these results and with a small number of optimizations
that were proposed, a big performance gain can be observed.

Finally, we confirmed the advantages of the overlay architectures when it comes to
reconfiguration time and also pointed out the trade-offs they come with.

Our results show that our architecture can be reconfigured in only 11.9us, as
compared to seconds for full FPGA reconfiguration. However, the overlay architecture
uses 10.5x more LUTs and causes a drop in frequency of about 30% for the chosen
architecture.

43

44 CHAPTER 6. CONCLUSION AND FUTURE WORK

Our initial goal of having an initial mapping and evaluation of an overlay architecture
was achieved, while there is still room for improvement.

6.2 Future work

• The current interconnection scheme is the biggest bottleneck of the architecture. It
is too general and for most kernels when it is not needed, as most of the connections
are not used especially in the later stages of the DFG, as can be seen in fig. 4.3.

Adoption of the interconnection scheme presented in [13] could improve the fre-
quency as well as the area usage, but still there will be a 4-5 times higher LUT
usage than the manual implementation.

• At every switch on the left and top side only two inputs are available. Initially,
when using a 4x4 size to map kernels, the inputs were found to be enough. But as
the overlay got bigger the number of inputs was found not to be sufficient, because
they are 2*N while the functional units are N*N. As N gets bigger there will be a
bigger gap between those two numbers.

Extending the input to also cover the right hand side could help in solving that
problem and would also help the functional units on the right hand side as they
are currently hard to access.

• This version of the overlay had 4-word wide FIFOs per input and output. Using
bigger FIFOs could improve the usage and result in lower communication bottle-
necks with the main memory.

• Using a local memory on the FPGA side will lead to large performance gains, as
currently the utilization of the design is low. As seen by the figs. 5.6 and 5.7 only
20% and 10% of the time is spent on execution for the 32-bit and 64-bit cases
respectively.

If the fabric was fully saturated we could have had speedups of about 3x for the
32-bit case and 6x for the 64-bit case.

• Two thirds of the core are currently occupied by the switch and only one third by
the 2 floating point units. This means that the functional units can be extended
to include one more floating point unit, even potentially two.

The floating point unit that could be the most useful for this purpose, is a floating
point comparator so we can have comparisons on the fabric itself without the need
of the CPU.

• Currently there is a bug in the 64-bit version of the design and transactions on the
bus sometimes are not carried out. Probably this has to do with the way Xilinx
drivers handle sending 64-bit bursts with the CDMA, combined with the way that
the bare metal application handles the malloc system call that was used to allocate
memory.

6.2. FUTURE WORK 45

On the 32-bit version, 0.1% of results are different between runs with the same data
and this probably is caused by how the cache is flushed. It has to be pointed out
though that both of these bugs do not in any way interfere with the performance
measurements that were conducted.

Also there is a bug with the overlay itself, that when two or more numbers enter
the overlay and using functional units with more than a 4-cycle latency, the flow-
control system stops propagating data through the pipeline.

46 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] Z. Marsec, “Detailed performance evaluation of data-parallel workloads on the dyser
prototype system,” in M.Sc. Thesis.

[2] L. H. Crockett, R. A. Elliot, M. A.Enderwitz, and R. W.Stewart, “The zynq book,”
August 2015.

[3] “Zynq 7000 all programmable soc technical reference manual, ug585 (v1.11) septem-
ber 27, 2016.”

[4] J. Coole and G. Stitt, “Intermediate fabrics: Virtual architectures for circuit porta-
bility and fast placement and routing,” in CODES+ISSS’10, Stottsdale, Arizona,
October 2010.

[5] G. Stitt and J. Coole, “Intermediate fabrics: Virtual architectures for near-instant
fpga compilation,” in IEEE Embedded Systems Letters Vol.3, No.3, September 2011.

[6] J. Coole and G. Stitt, “Fast, flexible high-level synthesis from opencl using recon-
figuration contexts,” in IEEE Micro, January/February 2014.

[7] T. Nowatzki, V. Gangadhar, K. Sankaralingam, and G. Wright, “Pushing the limits
of accelerator efficiency while retaining programmabality,” in IEEE International
Symposium on High Performance Computer Architecture, 2016.

[8] J. Peltenburg, A. Hesam, and Z. Al-Ars, “Pushing big data into accelerators: Can
the jvm saturate our hardware?” in Proc. International Workshop on OpenPOWER
for HPC, Frankfurt, Germany, November 2017, pp. 220–236.

[9] N. Ahmed, V. Sima, E. Houtgast, K. Bertels, and Z. Al-Ars, “Heterogeneous hard-
ware/software acceleration of the bwa-mem dna alignment algorithm,” in Proc. In-
ternational Conference On Computer Aided Design, Austin, USA, November 2015,
pp. 240–246.

[10] J. Peltenburg, S. Ren, and Z. Al-Ars, “Maximizing systolic array efficiency to ac-
celerate the pairhmm forward algorithm,” in 2016 IEEE International Conference
on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, December 2016.

[11] J. Hoozemans, R. Heij, J. van Straten, and Z. Al-Ars, “Vliw-based fpga computation
fabric with streaming memory hierarchy for medical imaging applications,” in 13th
International Symposium on Applied Reconfigurable Computing (ARC2017), Delft,
The Netherlands, April 2017.

[12] V. Govindaraju, C.-H. Ko, and K. Sankaralingam, “Dynamucally specialized dat-
apaths for energy efficient computing,” in IEEE 17th International Symposium on
High Performance Computer Architecture, 2011.

47

48 BIBLIOGRAPHY

[13] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architectures based
on dsp blocks,” in 2015 IEEE 23rd Annual International Symposium on Field-
Programmable Custom Computing Machines, 2015.

[14] A. K. Jain, D. L. Maskell, and S. A. Fahmy, “Throughtput oriented fpga overlays
using dsp blocks,” in 2016 Design, Automation and Test in Europe Conference and
Exhibition(DATE), 2016.

[15] A. K. J. et al, “Deco: A dsp block based fpga accelerator overlay with low over-
head interconnect,” in 2016 IEEE 24th Annual International Symposium on Field-
Programmable Custom Computing Machines, 2016.

[16] A. K. Jain and al, “Adapting the dyser architecture with dsp blocks as an overlay
for the xilinx zynq,” in International Symposium on Highly-Efficient Accelerators
and Reconfigurable Technologies(HEART2015), Boston, MA, June 2015.

[17] “Dyser release v1.0.” [Online]. Available: http://research.cs.wisc.edu/vertical/
dyser-release-v1/doku.php

[18] V. Govindarajn and al, “Dyser: Unifying functionallity and parallelism specializa-
tion for energy-efficient computing,” in IEEE MICRO, Sept - Oct 2012.

[19] “Zynq-7000 all programmable soc.” [Online]. Available: https://www.xilinx.com/
products/silicon-devices/soc/zynq-7000.html

[20] “Axi reference guide, ug761 (v13.1) march 7, 2011.” [Online].
Available: https://www.xilinx.com/support/documentation/ip documentation/
ug761 axi reference guide.pdf

[21] “Floating-point operator v7.1.” [Online]. Available: https:
//www.xilinx.com/support/documentation/ip documentation/floating point/
v7 1/pg060-floating-point.pdf

[22] “Axi central direct memory access v4.1.” [Online]. Avail-
able: https://www.xilinx.com/support/documentation/ip documentation/axi
cdma/v4 1/pg034-axi-cdma.pdf

[23] “Virtex ultrascale+.” [Online]. Available: https://www.xilinx.com/products/
silicon-devices/fpga/virtex-ultrascale-plus.html#productTable

[24] “Impact benchmark suite.” [Online]. Available: http://impact.crhc.illinois.edu/
parboil/parboil.aspx

[25] “C source code implementing k-means clustering algorithm.” [Online]. Available:
https://www.medphysics.wisc.edu/∼ethan/kmeans

http://research.cs.wisc.edu/vertical/dyser-release-v1/doku.php
http://research.cs.wisc.edu/vertical/dyser-release-v1/doku.php
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_1/pg060-floating-point.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_cdma/v4_1/pg034-axi-cdma.pdf
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable
https://www.xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-plus.html#productTable
http://impact.crhc.illinois.edu/parboil/parboil.aspx
http://impact.crhc.illinois.edu/parboil/parboil.aspx
https://www.medphysics.wisc.edu/~ethan/kmeans

	List of Figures
	Acknowledgements
	Introduction
	Context
	Proposed overlays solutions
	Our use case
	Research question
	Approach and goal
	Contribution
	Thesis outline

	Background & related work
	Principle of operation
	Related work
	IF and DySER
	DeCO
	Chosen architecture

	DySER
	DySER core
	DySER input/output bridge

	Platform
	About ZYNQ
	ZYNQ CPU
	ZYNQ FPGA

	Design
	Adaptation to the FPGA
	Functional units
	Dual operation functional units
	Switch modification
	Grid size

	Integration
	Connection with the bus
	Software integration and using the overlay
	Area usage
	Whole peripheral usage
	DySER area usage
	Input/Output bridge
	Core area usage
	Tile and switch area usage
	CDMA and AXI interfaces usage

	Scaling for a bigger device
	Frequency and power usage

	Test setup
	Testing methodology
	Test kernels
	Example of mapping a kernel

	Results & discussion
	Performance measurements
	Latency
	Throughput

	Speedup
	Reconfiguration
	Area & Frequency Overhead

	Conclusion and future work
	Conclusions
	Future work

	Bibliography

